
Proteomics studies of protein

homeostasis and aggregation in

ageing and neurodegeneration

Giulia Vecchi

Department of Chemistry

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

Newnham College February 2018





Ai miei meravigliosi esseri ed alla mia dada e nonna,

che mi hanno insegnato a combattere, ad amare il sapere, a vivere ogni momento

e a non mollare mai

To those marvellous beings that are my parents, and to my dada and granny,

who taught me to work hard, to love knowledge, to live to the fullest

and to never give up





Declaration

I hereby declare that except where specific reference is made to the work of others,

the contents of this dissertation are original and have not been submitted in whole or

in part for consideration for any other degree or qualification in this, or any other

university. This dissertation is my own work and contains nothing which is the

outcome of work done in collaboration with others, except as specified in the text and

Acknowledgements. This dissertation contains fewer than 65,000 words including

appendices, bibliography, footnotes, tables and equations and has fewer than 150

figures.

Giulia Vecchi

February 2018





Acknowledgements

These four years have passed very quickly and very slowly at the same time, with

moments of high satisfaction alternated to bits of hard times as well. Overall, it has

been one of the greatest experiences I lived so far, I believe mostly thanks to the

people I have come to meet, interact and work with. Every moment has contributed

to both my personal and professional growth, and there are many people I wish

to send my deep thanks to for accompanying and supporting me in this important

journey.

First, I would like to thank my supervisor, Prof Michele Vendruscolo, for giving

me the opportunity to undertake this journey in the group and carry out this project.

His expert guidance, encouragement and support were fundamental to my scientific

and personal development over these years, so I am deeply thankful for the time he

has dedicated to our discussions.

I am deeply grateful to Dr. Benedetta Mannini, who has been a wonderful

colleague and a guide. She started the use of proteomics in the group and did all

the experimental work for our projects. Her deep knowledge of biology has been

fundamental for the interpretation of my analyses, our discussions are always very

insightful and lively, and her comments very helpful. Working alongside her has

been a great and pleasant learning experience.

I would like to thank as well Dr. Pietro Sormanni, for teaching me some crucial

analysis skills during the first two years of my PhD studies, for his help, feedback

and collaboration, and for taking the time to explain the details of the s2D predictor

he developed and I used for my studies.



viii

I would like to acknowledge Prof F. Ulrich Hartl, for the time and expertise he

has devoted to our collaborations and from which I developed my interest for the

raising field of proteomics.

Equally, I would like to thank Dr. Bertrand Fabre for sharing with me his expertise

in mass spectrometry and proteomics. Discussing with him sped up incredibly my

learning in the field, and was always very enjoyable.

The 142a office where I spent these last four years, the adjacent 145, and the

basement have been vibrant places to work in and develop friendships. Thanks to

all the people of the Vendruscolo group there, these are the places I felt I happily

belonged to. Dr. Priyanka Joshi, Dr. Predrag Kukic, Prof. Stefano Gianni have

been wonderful office mates, and I am very thankful for the nice time we spent

together and for the great, lively discussions. I would like to thank also Andrea

Possenti, who joined the group and the office recently and has been brainstorming

with me on the content of our projects and the details of the analyses. Thanks to his

expertise, similar background, and nice friendly attitude, our discussions have been

really productive and inspiring.

Many thanks to all the Vendruscolo people I haven’t thanked so far, for giving

me insightful comments and suggestions inside and outside group meetings, and for

making the lab a great place to work in.

On a more personal side, I wish to send my thanks to Maya Wright, Chistiana

Smyrilly, Jennifer Bellamy, Alicia Krozer, Marta Baldrighi and all the girls of the

Women Blues Volleyball team who played with me in the last four years. You have

been the greatest teammates I have ever had, and playing together while representing

the Cambridge University team at the national finals and student cup finals, and

arriving top 6 in the whole United Kingdom was one of the most fulfilling moments

in my little sport career, and one of the most exciting in my life. Thanks to you, I

can confidently affirm I truly lived the Cambridge experience, boosted my fighting

spirit against any challenge, improved my team work. Once a Blue, always a Blue.

Thanks to all my friends in Cambridge, who I learnt to know in these years

and have become among the dearest people to me. You gave me support in tough



ix

times and joyful happy moments. Laura, who is now in Italy who has always been a

support and a guide. Marta, who has been giving me power and keeping me company

during the writing of this thesis. Sean, who took the trouble to go through this thesis

and prepare me with a mock VIVA. Johnny, Priyanka, Benedetta, Swapan, Andrea

and Karen. Thank you all, my 118 and weirdos, for making Cambridge a great place

to live.

Pietro, AJ, Michele, Datta, Simone, Aprile, Gabi, Rosie, Sam, Mattia, Tessa. I

am grateful to have met you all.

Finally, thanks to my friends at home, Giorgio, Susanna, Silvia, Alessandro,

Carolina, Manuela, my friends for my former University. Mostly, thank you so much

to my family and my parents, who has constantly supported and loved me throughout

these years. I love you too.

Last, thanks to you again, Benedetta, because you are the greatest person I had

the luck to meet, a dearest friend, a brilliant scientist, and a model of inspiration. So

long, and thanks for all the fish(-pasta-food)!





Acknowledgements

Questi quattro anni sono sembrati allo stesso tempo un attimo ed una vita, con

momenti di grandi soddisfazioni alternati a periodi molto difficili. Alla fin fine,

principalmente grazie a tutte le persone che ho incontrato e con cui ho interagito e

lavorato, questo dottorato si é rivelato una delle esperienze piú importanti della mia

vita, ad oggi.

Ogni singolo istante ha contribuito alla mia crescita personale o professionale,

e ci sono veramente molte persone che voglio ringraziare di cuore per avermi

accompagnato e sostenuto in questo grande cammino.

Prima di tutti, vorrei ringraziare il mio supervisor, Prof. Michele Vendruscolo,

per avermi dato l’opportunitá di intraprendere questo viaggio e affrontare nel gruppo

questo progetto di ricerca. La sua guida ed il suo costante supporto in questi anni

sono state fondamentali per il mio sviluppo sia scientifico che personale, e sono

molto grata per tutto il tempo che ha dedicato alle nostre discussioni.

I miei piú sentiti ringraziamenti vanno alla Dr. Benedetta Mannini, che é stata la

mia guida oltre che una collega eccezionale. é stata lei ad aprire il settore della pro-

teomica nel gruppo, e si é occupata di tutto il lavoro sperimentale nei progetti in cui

ho lavorato in sua collaborazione. La sua infinita conoscenza della biologia é stata

fondamentale per l’interpretazione delle mie analisi, e le nostre discussioni sono

sempre produttive ed interessanti grazie ai suoi commenti estremamente utili e mi-

rati. Lavorare al suo fianco é stata un’esperienza di apprendimento incredibilmente

piacevole e importante per me.

Vorrei ringraziare anche il Dr. Pietro Sormanni, per il suo aiuto, feedback

e collaborazione, specialmente per avermi insegnato delle tecniche essenziali di



xii

analisi dati durante i primi due anni di dottorato ed aver speso tempo nel spiegarmi

i dettagli del suo predittore s2D che ho applicato nei miei studi.

Vorrei esprimere il mio riconoscimento anche al Prof. F. Ulrich Hartl, per tutto

il tempo e la conoscenza che ha dedicato alla nostra collaborazione e dalla quale

ho realizzato il mio interesse per il campo emergente della proteomica.

Allo stesso modo, vorrei ringraziare il Dr. Bertrand Fabre, per aver condiviso

con me la sua expertise in spettrometria di massa e proteomica. Conversare con lui é

sempre piacevole, ed ha velocizzato incredibilmente la mia curva di apprendimento

nel settore.

L’ufficio 142a, dove ho trascorso le giornate in questi ultimi quattro anni,

l’adiacente ufficio 145 ed il basement del dipartimento sono luoghi che non di-

menticheró mai, dove le menti lavorative entrano in risonanza e da cui nascono le

amicizie. Grazie a tutte le persone del gruppo Vendruscolo che ho incontrato al

loro interno, questi luoghi mi hanno fatto sentire felicemente a casa. Dr. Priyanka

Joshi, Dr. Predrag Kukic, Prof. Stefano Gianni sono stati compagni d’ufficio fantas-

tici, sono veramente grata per tutto il tempo che abbiamo passato insieme. Vorrei

ringraziare anche Andrea Possenti, arrivato da poco in ufficio e nel gruppo, per

il brainstorming praticamente giornaliero che facciamo sui progetti, i risultati e

perfino i dettagli delle analisi. La sua expertise, lo stesso background scientifico,

ma soprattutto il suo atteggiamento positivo e propositivo hanno reso le nostre

discussioni incredibilmente produttive e stimolanti.

Mille grazie a tutti i Vendruscoli che non ho ancora ringraziato, per avermi

sempre dato consigli e suggerimenti, e per aver reso il laboratorio un luogo fantastico

in cui lavorare.

Passando al lato personale, ci terrei a ringraziare di cuore Maya Wright, Chis-

tiana Smyrilly, Jennifer Bellamy, Alicia Krozer, Marta Baldrighi e tutte le ragazze

Women Blues Volleyball che hanno giocato con me in questi quattro anni: siete

state le migliori compagne che abbia mai avuto, e giocare insieme rappresentando

l’Universitá di Cambridge alle finali nazionali e alle finali delle coppe studenti,

raggiungendo il traguardo di sesta squadra piú forte in tutto il Regno Unito, é stata



xiii

una delle tappe piú soddisfacenti ed appaganti di tutta la mia mini carriera sportiva,

e sicuramente uno dei momenti piú emozionanti della mia vita. Grazie a voi, posso

affermare con convinzione di aver veramente vissuto la "Cambridge experience",

sviluppato uno spirito combattivo in grado di affrontare ogni difficoltá, e imparato

cosa significhi veramente il "lavoro di squadra". "Once a Blue, always a Blue";

Leone Blu é per sempre.

Grazie grazie grazie a tutti gli amici della Cambrigia, che ho imparato pian piano

a conoscere e che mi hanno sostenuto nei periodi piú bui e donato una quotidianitá

piena di spensieratezza, risate e allegria, divenendo in questi anni tra le persone a

me piú care. Laura, che ora é tornata in Italia ma é sempre stata un sostegno ed una

guida. Marta, che mi ha accompagnato durante praticamente tutta la scrittura di

questa tesi, tenendomi compagnia e dandomi forza. Sean, che si é preso la briga di

leggere questa tesi e simulare una prova di VIVA. E poi Johnny, Priyanka, Benedetta,

Swapan, Andrea e ancora Karen: grazie, coinquiline del 118 e "weirdos", avete reso

Cambridge un posto speciale dove vivere.

Pietro, AJ, Michele, Datta, Simone, Aprile, Gabi, Rosie, Sam, Mattia, Tessa.

Sono grata di avervi incontrati tutti!

Infine, grazie ai miei amici di casa, ormai di lunga data: Giorgio, Susanna,

Silvia, Alessandro, Carolina, Manuela e tutti gli amici ferraresi. Ma soprattutto, un

eterno grazie alla mia famiglia ed ai miei genitori, che mi sostengono ed amano sin

dal giorno che son nata. Vi amo tanto anche io.

E poi, grazie mille ancora a te, Benedetta, per essere la persona piú incredibile

che io abbia avuto la fortuna di incontrare, una delle amiche piú care, una scienziata

brillante ed una fonte di ispirazione continua. Per ogni giorno, ogni istante, ogni

attimo che mi é stato dato, grazie mille per il pesce (la pasta e tutto il resto!)





Abstract

Upon ageing, a progressive disruption of protein homeostasis often leads to extensive protein

aggregation and neurodegeneration. It is therefore important to study at the proteome level the

origins and consequences of such disruption, which so far have remained elusive. Addressing

this problem has recently become possible by major advances in mass spectrometry-based (MS)

proteomics, which allows the identifications and quantification of thousands of proteins in a variety

of biological samples.

In the first part of this thesis, I analyse proteome-wide MS data for the nematode worm C.

elegans upon ageing, in wild type (WT), long-lived and short-lived mutant strains. By comparing

the total abundance and the soluble abundance for nearly 4000 proteins, I provide extensive evidence

that proteins are expressed in adult worms at levels close to their solubility limits. With the use of

sequence-based prediction tools, I then identify specific physico-chemical properties associated

with this age-related protein homeostasis impairment. The results that I obtained reveal that the

total intracellular protein content remains constant, in spite of the fact that the proteome undergoes

wide remodeling upon ageing, resulting into severe protein homeostasis disruption and widespread

protein aggregation. These results suggest a protein-dependent decrease in solubility associated

with the protein homeostasis failure.

In the second part of the thesis, I determine and classify potential interactions of misfolded pro-

tein oligomers with other proteins. This phenomenon is widely believed to give rise to cytotoxicity,

although the mechanisms by which this happens are not fully understood. To address this question,

I process and analyse MS data from structurally different oligomers (toxic type A and nontoxic

type B) of the protein HypF-N, incubated in vitro with proteins extracted from murine cell cultures.

I find that more than 2500 proteins are pulled down with the misfolded oligomers. These results

indicate that the two types of oligomers interact with the same pool of proteins and differ only in

the degree of binding. Functional annotation analysis on the groups reveals a preference of the

oligomers to bind proteins in specific biological pathways and categories, including in particular

mitochondrial membrane proteins, RNA-binding proteins and molecular chaperones.

Overall, in this study I complement the powerful and high-throughput experimental approach

of MS proteomics with bioinformatics analyses and prediction algorithms to define the physical,

chemical and biological features of protein homeostasis disruption upon ageing and the interactome

of misfolded oligomers.
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Chapter 1

Quantifying protein homeostasis in

ageing and neurodegeneration

1.1 Ageing and neurodegeneration

1.1.1 A definition of ageing

Ageing has been described as a time-dependent functional decline associated with

an increase in probability of death and a diminution in fertility affecting essentially

all living organisms [1]. It is a very general phenomenon involving a variety of

processes at different biological scales, from the macroscopic scale of the whole

organism to the microscopic scales of cellular and molecular mechanisms [2]. At

the organismal level, some of the most familiar age-related phenotypes exhibited in

humans include the redistribution of body fat, greying and thinning of hair, loss of

vigour, muscle and skin tone [3]. While describing the ageing features may appear

straightforward, characterising the miscroscopic origins of the overall phenomenon

and the connections among all the different components is a complex task [4, 5]. Over

the last 30 years, ageing research has been greatly facilitated by the isolation of the

first long-lived strains in Caenorhabditis elegans (C. elegans) [6] which demonstrated
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that genetic pathways and biochemical processes conserved in evolution can control,

to some extent, the rate of ageing [7–14].

It has so become increasingly recognised that such progressive loss of physiolog-

ical integrity, impaired functioning and increased vulnerability to death characteristic

of the ageing phenotype can be directly related to the presence at a microscopic level

of a time-dependent accumulation of cellular and molecular damage. Ageing is thus

considered the primary risk factor for the most significant human pathologies of our

century, namely cancer, diabetes, cardiovascular disorders and neurodegenerative

diseases [9, 16–32].

1.1.2 Impact of neurodegenerative diseases

Of all the pathological conditions mentioned above, neurodegenerative disorders,

including Alzheimer’s, Parkinson’s and Huntington’s diseases, typical of aged in-

dividuals, have grown to become the most debilitating, common and expensive

medical conditions of our age [16, 23–25, 33–39]. By contrast, deaths from other

major causes have decreased significantly due to medical advances and improved

social and environmental conditions (see Fig. 1.2A). These improvements have

led to a substantial increase in the average human lifespan [40]. As a result, the

worldwide population aged 60+ is projected to more than double in size between

2015 and 2030 (see Fig. 1.1A), eventually reaching about 2.1 billion people (see Fig.

1.1), as presented in a 2015 United Nation report on world population ageing [15].

These ageing trends are not only restricted to the western wealthy areas. Increas-

ing of the life expectancy is affecting the human population globally. Indeed, the

biggest contribution to such an increase is estimated to come from the less developed

regions [15]. Also, in the more developed areas, the fastest growth rate will come

from the oldest people, those in age range over 80 years old, who will reach about

434 million in 2015, more than three-fold the number present in 2015 (Fig. 1.1).

Such an improvement in life expectancy, however, comes at a price. As neither

treatments nor efficient diagnostic tools have been found yet for neurodegenerative
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(A)

(B)

Fig. 1.1
Estimated population growth in 2000-2050

(A) Relative increase in world population by age group between 2000 and 2050.
Solid lines represent calculated values, while dashed lines indicate projections. (B)
Population size aged 60-79 years and 80+ years, separated by development group,

calculated in 2000 and 2015, and predicted for 2030 and 2050.
Figure reproduced from [15], see section 1.1.
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disorders, these diseases have become the most dreaded pathologies of old age

[16, 23–25, 33–39] not only in terms of mortality rate, but also in terms of social

and economic burden. Indeed, Alzheimer’s disease (AD) has been named "the

twenty-first century plague" [35, 41] and is the most common cause of dementia,

the condition of chronic cognitive decline that affect patient’s day-to-day functions

and spans multiple cognitive domains [36, 42–44]. In terms of mortality rates,

American records [24] report that deaths from AD are the only kind of deaths that

increased between 2000 and 2013, even massively (71%), compared to the current

most common causes of death by disease (see Fig. 1.2A). In terms of economical

and social burden, according to a 2011 economic report in the United Kingdom [43],

the figures for dementia expenses to the UK economy in 2008, combining social

care and health services, were about £10.5 billion, more than twice those for cancer

(£4.5 billion), and over three fold those for stroke (£2.7 billion) and Coronary Hearth

Disease (£2.3 billion).

1.1.3 Clinical features of neurodegenerative diseases

Despite the great social and economic burden that dementia has been causing, this

condition is still under-detected, under-diagnosed, under-treated and under-managed

in primary care [39]. As already mentioned, the term dementia usually refers to a

pathological state characterised by a progressive cognitive impairment, associated

with a decline in memory, reasoning and language, resulting into severe issues in

performing daily activities [25, 45]. Such impairment is the result of the damage and

death of neurons in the regions of the brain responsible for cognitive function. This

damage can be most often caused by four general categories of diseases: metabolic

deficiencies (such as B12 thyroid hormone deficiencies), infections (such as syphilis

and AIDS), structural lesions (such as neoplasm, tumours, and stroke), and neurode-

generation. However, since advanced diagnostic tests and early treatments currently

exist for the first three processes but not for neurodegeneration, the vast majority
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(A)

(B)

Fig. 1.2
Incidence of Alzheimer’s disease in the U.S. population

(A) Percentage changes between 2000 and 2013 in the current most widespread
pathological conditions. (B) Projected number of people in the US older than 65
suffering from Alzheimer’s disease, from 2010 to 2050, grouped by age ranges.

Figure reproduced from [25], see section 1.1.
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of patients suffering from dementia are those ending up having neurodegenerative

diseases [36].

Diseases belonging to this class are varied in symptoms and characteristics

[31, 46–55] as they target separate regions of the brain, especially in the early

stages of the pathology. Mapping the anatomical sites of dysfunction is currently

considered the most effective method for diagnosis. However, since there are no

definitive markers available yet for the regional mapping of different neurodegenera-

tive diseases, distinguishing among the different types of neurodegeneration remains

a current problem at the clinical level [36]. In case of Alzheimer’s disease, the

most widespread among the neurodegenerative disorders [25, 35–38, 56], cognitive

disability get combined with motility and swallowing problems, as neuronal damage

and destruction progressively affect other parts of the brain responsible for basic

bodily functions [57, 58]. As the transfer of information at the neuronal synapses

starts to fail, the number of synapses decreases and neurons die. In a later stage, the

increase of dead neurons leads to a dramatic shrinkage of the brain, and inflammation

is also observed [25]. At the latest stage, the individual becomes bed-bound and

eventually dies [25].

Despite the differences in the anatomical spreading patterns, brain regions in-

volved and consequent symptoms, neurodegenerative diseases share a common

attribute at the molecular level. While ageing is considered to be the greatest risk

factor, a nearly universal hallmark of these disorders, and a common feature of other

"non-neuronal diseases", like type II diabetes, is the formation and accumulation

of protein aggregates, in the form of amyloid deposits [35, 59–63]. For this reason,

such diseases have also been called protein conformational or misfolding diseases

[59–62]. Description of this process and its relation with ageing, disease and cellular

impairment will be discussed in section 1.2.3.
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1.2 Protein homeostasis and aggregation

1.2.1 The role of protein homeostasis in ageing

and neurodegeneration

We have seen in section 1.1 how the ageing mechanism has recently gained the

interest of the scientific community with the increase of the average human lifespan

and concomitant diffusion of neurodegenerative disorders. Each level of biological

organisation at which the ageing process can be defined is characterised by one or

more physiological and cellular change, but the interplay between these processes

and their causality relations are far from being fully understood [4]. The first attempt

to define and categorise the main cellular hallmarks of ageing only dates to four

years ago [9]. In that work, nine candidate hallmarks were proposed to contribute to

the mammalian ageing process, and were functionally categorised as:

• primary cause of the cellular damage

• response to the damage

• subsequent reflection on the phenoype

Four physiological sources were suggested as primary cause of the cellular

damage: genomic instability, telomere attrition, epigenetic alterations, and loss of

protein homeostasis [64]. Of these four, the latter has emerged as a important factor

also in neurodegenerative diseases [64–67]. Improving protein homeostasis through

genetic manipulations has been shown to delay ageing in mammals [68, 69], while

perturbation of protein homeostasis has been associated with ageing and fastening of

age-associated pathologies [70–73].

Protein homeostasis refers to the state in which the proteome of a living organism

is in functional balance, by the production and maintenance of correctly folded and

soluble proteins [75, 76]. There are various biological mechanisms responsible for
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(A)

(B)

Fig. 1.3
The protein states and protein homeostasis network (PN)

(A) Diagram of the possible states in which a protein can exist coupled with the PN
pathways which ensure the functional balance of the proteome through the three

mechanisms of protein biogenesis (yellow components in the figure), maintenance
(blue components in the figure) and degradation (red components in the figure)

which control the levels of functional proteins and prevent or reduce the formation
of toxic aggregates. (B) Approximate numbers of the PN components of the human

proteome. 200 of the 1400 unities are molecular chaperones (shown in green).
Adapted from [67, 74] and [61].
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protein homeostasis. Some have been conserved through evolution, while others

have appeared more recently with the increasing complexity of cellular constituents,

networks and organisms [74, 77, 78]. The main mechanisms responsible for the

regulation of the folding state and the concentration distribution of the proteome can

be grouped into three categories (see also Fig. 1.3):

• protein biogenesis, from transcription to translation

• protein maintenance, i.e. folding and refolding by molecular chaperones

• protein degradation, like autophagy and the proteasome system

These array of quality controls processes are necessary for cells to preserve the

functionality and stability of their proteomes [70, 71, 79, 80].

1.2.2 The interplay of protein homeostasis and aggregation

Despite the great variety of such control mechanisms, as organisms age a progressive

decline of protein homeostasis occurs as the cellular stress response and quality

control become compromised [68, 73, 81].

In addition, disruption of protein homeostasis may occur when proteins fail to

stay soluble and aggregate into non-functional and/or toxic species [82, 83]. This

could produce an alteration of the normal protein homeostatic mechanism. One

example is the failure of the proteasome in degrading insoluble protein aggregates

and its subsequent loss of function from the association with the aggregates [84–

86]. Also molecular chaperones, which are responsible for the protein maintenance

machinery, have been seen to bound with aggregates in dynamic and complex ways

[87–89]. Inhibiting these homeostatic mechanisms place a burden to the cell. This,

in turn, can degenerate into a positive feedback loop in which the cell produce more

proteins that aggregate, as they cannot be degraded nor refolded, and cause further

inhibition of protein homeostasis (see Fig. 1.4, reproduced from [67]).
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Fig. 1.4
Cycle of cellular impairment in ageing and disease

Aberrant misfolded species chronically produced with age, stress or disease place a
burden to the protein homeostasis network (PN). Inhibition of this network in turns
worsen the clearance of the non-functional/toxic aggregated species, which keep

engaging the PN components impairing further the protein homeostasis and
eventually leading to its collapse.

Figure reproduced from [67].

The features of protein homeostasis impairment and widespread aggregation oc-

curring during the ageing process will be the subject of Chapter 2, a work performed

from the collaboration with the group of Prof. F. Ulrich Hartl at the Max Planck

Institute of Biochemistry in Martinsried, Germany [90].

1.2.3 Protein aggregation in neurodegeneration

Even if aggregation of non-disease related proteins has been recently observed to

occur upon stress [91, 92] and during the ageing process [90, 93–95], the formation

of protein aggregates and their implication in the failure of cellular machinery have

first raised an interest in both the research and medical community because associated

with a great variety of human diseases, from Type II diabetes and liver and skin

amylodosis to neurodegenerative disorders [96, 59–62, 97, 98]. These diseases

are very diverse in symptoms and span over organ and tissue types [62], however

they all share a common feature: the pathology involves the aggregation of one or
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Fig. 1.5
Protein aggregates in brain patients affected with neurodegenerative

disorders

Disease-specific proteins are shown in brown.
Figure reproduced from [99].

more proteins, specific to the disease (see Fig. 1.5, reproduced from [99]). For this

reason, diseases that seem so diverse have been grouped and classified as protein

conformational or misfolding diseases. A list of the most widespread disorders

among the various that fall under the category of misfolding diseases, together with

the information on the characteristic aggregating protein, are found in Table 1.1.

The most notorious subset of disorders among the protein misfolding diseases

is represented by the neurodegenerative pathologies like Alzheimer’s disease (AD),

Parkinson’s disease (PD), and Huntington’s disease (HD). In the case of AD, the

accumulation of the protein amyloid-β outside neurons and of the protein tau intra-

cellularly into amyloid aggregates, named respectively amyloid-β plaques and tau

neurofibrillary tangles, represents the characteristic molecular fingerprint observed in

the brains of patients affected by the disease. According to the "amyloid hypothesis"

[59, 62], these aggregates are considered to contribute to the damage and destruc-

tion of neurons that result in memory loss and other symptoms of the pathology.

While amyloid-β is believed to interfere in the inter-neurons communication at the
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Table 1.1
Some of the various human disorders associated with amyloidosis

Adapted from [96].

Disease Aggregating protein/peptide Length

Neurodegenerative diseases

Alzheimer’s disease Amyloid-β peptide 37-43
Creutzfeldt-Jakob diseases Prion protein or its fragments 208
Gerstmann-Straussler-Scheinker disease Prion protein or its fragments 208
Kuru Prion protein or its fragments 208
Spongiform encephalopathies Prion protein or its fragments 208
Huntington disease-like 1 Prion protein or its fragments 208
Parkinson’s disease α-synuclein 140
Dementia with Lewy bodies α-synuclein 140
Multiple system atrophy α-synuclein 140
Pick disease Microtubule-associated protein tau Variable
Progressive supranuclear palsy Microtubule-associated protein tau Variable
Corticobasal degeneration Microtubule-associated protein tau Variable
Argyrophilic grain disease Microtubule-associated protein tau Variable
Tangle predominant dementia Microtubule-associated protein tau Variable
Guam Parkinson dementia complex Microtubule-associated protein tau Variable
Frontotemporal lobar degeneration Microtubule-associated protein tau Variable
Chronic traumatic encephalopathy Microtubule-associated protein tau Variable
Hallervorden-Spatz disease Microtubule-associated protein tau Variable
Lipofuscinosis Microtubule-associated protein tau Variable
Amyotrophic lateral sclerosis Superoxide dismutase 1 153
Huntington’s disease Huntingtin fragments Variable
Familial amyloidotic polyneuropathy Transthyretin mutants 127
Familial British dementia ABri peptide 34
Familial Danish dementia ADan peptide 34

Non-neuropathic systemic amyloidosis

Light chain (AL) amyloidosis Immunoglobulin light chains/fragments ∼90
Heavy chain (AL) amyloidosis Immunoglobulin heavy chains/fragments ∼190
AA amyloidosis Serum amyloid A protein fragments 45-104
Senile systemic amyloidosis Wild-type transthyretin 127
Familial amyloidotic polyneuropathy Wild-type transthyretin 127
Familial amyloid cardiomyopathy Wild-type transthyretin 127
Dialysis-related amyloidosis β2-microglobulin 99
Lysozyme amyloidosis Lysozyme mutants 130
Apolipoprotein amyloidoses Apo A-I, A-II, A-IV, C-II, C-III fragments Variable
Familial finnish amyloidosis gelsolin fragments 53 or 71

Non-neuropathic localized amyloidosis

Type II diabetes Islet amyloid polypeptide 37
Insulinoma Islet amyloid polypeptide 37
Medullary carcinoma of the thyroid Calcitonin 32
Atrial amyloidosis Atrial natriuretic factor (ANF) 28
Pituitary prolactinoma Prolactin fragments 34
Aortic medial amyloidosis Medin 50
Gelatinous drop-like corneal dystrophy Lactotransferrin 691
Injection-localized amyloidosis Insulin 21 and 30
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synapses, tau tangles seem to interfere with the intracellular transport of nutrients in

the neurons, both processes contributing to cell death [25]. In the case of PD, the

protein involved in the pathological aggregation is α-synuclein, a presynaptic protein

140 amino acids long, involved in vesicular transport [100–102]. Fibrillation of

α-synuclein happens intracellularly in the dopaminergic neurons cell body, starting

from brainstem structures (substantia nigra) and spreading to limbic and neocortical

areas in the later stages of the disease [48, 46]. The formed aggregated structures are

named Lewy bodies.

1.2.4 The generality of the aggregation process

Table 1.1 shows that each neurodegenerative disease involves the aggregation of one

or more specific proteins. Despite the different nature of these proteins, the final

structures in the aggregation process, the amyloid fibrils, have common characteris-

tics that are independent of the constituting protein [103–106]. Amyloid structures

appear as unbranched thread-like structures with diameters in the nanoscale and

length ranging even up to micrometers, composed of multiple protofilaments twisted

around each other [107]. They are highly ordered, closely packed, and possess a

generic cross-β architecture [63, 108–112]. The cross-β structure allows the forma-

tion of a continuous array of hydrogen bonds along the length of the fibril, giving it

high stability [107, 113, 114].

The observation that amyloid fibrils of different proteins possess this generic con-

served architecture prompted the hypothesis that aggregation is a general mechanism

that any polypeptide chain can be subject to. Evidence in support of this hypothesis

has been reported both with in vitro and in vivo experiments. In the first case, it has

been shown that almost every protein, even unrelated to diseases, can aggregate into

amyloid fibrils under specific conditions [60, 115, 116]. In the latter case, work on

C. elegans and yeast showed that many proteins unrelated to disease are found to

form aggregates (widespread aggregation, see Chapter 2) with ageing or under stress

conditions (e.g. starvation) [83, 93, 94, 117].
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Fig. 1.6
Diagram of the energy landscape for the reactions of folding and aggregation

Competing reactions of protein folding and aggregation. A protein folds into its
native functional state by sampling various intermediate conformations in a folding
energy landscape. Energetically favourable intramolecular interactions (green) drive

the protein progressing toward the native state, with the help of molecular
chaperones. Molecular chaperones also try to avoid the formation of energetically

favourable but nonnative conformations which happen when intermolecular
interactions (red) occur and start the aggregation process. The amyloid fibrillar state
resulting at the end of the aggregation process is the most thermodynamically stable.

Adapted from [67, 74] and [61].

The hypothesis that every protein, under given conditions, can aggregate into an

amyloid fibrillar structure implies that the amyloid structure form is a physical state

that any protein in principle can assume. Furthermore, it implies that under those

specific conditions the amyloid state is more thermodynamically stable than the

functional native state of the protein itself [60, 74, 118, 119]. Strikingly, increasing

evidence is showing that for many protein the amyloid fibrillar conformation might be

the state of lowest free energy even under physiological conditions [106, 119–121].

The conditions under which a protein is pushed out of its soluble native-like

state and aggregates depend on both the difference in energy between the native

and amyloid state, and the height of the kinetic energy barrier that needs to be
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overcome in order for this transition to occur [83, 106, 120, 122–128]. The amyloid

state is characterised mostly by the intermolecular interactions, in contrast to the

soluble native state in which intramolecular interactions dominate [61]. Since

the conversion of proteins from the soluble to the aggregated state involve the

formation of intermolecular contacts, a key role for the thermodynamic stability of

the amyloid state is played by protein concentration. Indeed, as protein concentration

increases, the ability to form intermolecular contacts becomes higher and favours

the thermodynamic stability of the amyloid state, since the native state can be to

a good approximation considered independent of the concentration [61, 120, 129].

Eventually, a critical concentration will be reached over which the free energy of the

amyloid state will be lower than that of the native state.

Some proteins, however, have been reported to exist in vivo at physiological

concentrations higher than the critical concentration [76, 120, 130, 131]. In this

scenario, either spontaneous aggregation occurs; or high kinetic energy barriers

prevent the transition from the native to the amyloid state, and the native state

becomes metastable [119–121]. In vivo, the kinetic barrier is enhanced by the

presence of molecular chaperones and the protein homeostasis network, which help

proteins staying in their native state and prevent them from aggregate [77, 79, 120,

132, 133] (see Fig. 1.6). Whether the critical concentration in vivo is a general

threshold for every protein under given conditions or is a protein-dependent value

will be discussed in Chapter 3, with the results obtained from the measurements of

proteome-wide protein abundances in C.elegans.

1.2.5 Oligomers toxicity in the amyloid hypothesis

The conversion of a protein from its soluble native form to the amyloid state is a com-

plex self-assembly mechanism which involves the formation of multiple precursor

soluble and insoluble species [98, 120, 123, 134–139]. These intermediate structures

differ in size and characteristics, and range from early-stages small heterogeneous

oligomeric assemblies to protofibrillar structures,smaller in length and width than the
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final amyloids but organised in the same cross-β structure [105, 140, 141] (Fig.1.3A

and Fig.1.6). Fig.1.3A and Fig.1.6 also show that amorphous aggregates can be

formed, as an alternative pathway to the amyloid state formation [142, 143].

Despite the fact that the current diagnosis of neurodegenerative diseases is based

on the spatial spreading pattern of amyloid fibrils, and the amyloid formation has

been associated with the onset of the pathological event, little is known about the

specific mechanisms of toxicity of the aggregates in the pathology [144–146]. While

in systemic amyloidoses the mass of large fibrils in vital organs seems to represent

the primary cause of the disease [62], an increasing number of studies now identifies

the oligomeric pre-fibrillar species as the main pathogenic agents in neurodenerative

diseases [62, 98, 115, 146, 147].

Fig. 1.7
Oligomers are more toxic to cells than larger aggregates

Toxicity versus size of Aβ40 and Aβ42 aggregates, measured by treating cultured
cells with oligomers added to the extracellular medium and quantifying their MTT
reduction relative to untreated cells. Aggregate toxicity is expressed as percentage of
MTT reduction where the extremes, 0% and 100%, represent full cell death and full
cell viability respectively. Small oligomeric species are found to compromise cell

viability much stronger than fibrils and bigger aggregated species.
Figure reproduced from [148].
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This hypothesis is the results of multiple observations: from the presence of

many cases in which the amount of fibrillar aggregates does not correlate with the

spreading of the disease [144, 145], to the evidence that oligomeric intermediates

formed during the aggregation process are more toxic to cells than the mature

amyloids (see Figure 1.7) [98, 115, 146–151]. Misfolded oligomers originated from

proteins not associated with any pathology have also been demonstrated to bring

damage to cells by making inappropriate interactions with lipid membranes and other

functional cellular components [98, 150, 152]. Formation of larger structures like

fibrils could be, in this context, a cellular response to the oligomeric damage. Indeed,

we have detected the formation of bigger and more insoluble deposits have been

detected in a long-lived strain of C. elegans. Results of this study, especially in terms

of the physico-chemical principles of the insoluble aggregates, will be discussed in

Chapter 2 and are found in [90].

In Chapter 4 we will present results on the interaction of misfolded oligomers that

were found to mimic synaptic toxicity [152] with the functional cellular component

that perform the vast majority of biological activities in the cell: the proteome.

This results will provide insights in understanding how protein homeostasis can

be potentially affected upon the presence of early-stages aggregated species in

neurodegeneration.

1.3 Mass spectrometry-based proteomics

1.3.1 Tools to measure the molecular changes in ageing

and neurodegeneration

So far, large-scale studies of the molecular factors associated with ageing and neu-

rodegeneration have been mainly performed using genomics and transcriptomic

approaches [4, 8, 153–157]. These studies tend to come from two different perspec-

tives. On one side, they focus on finding features associated with longevity and
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exceptional lifespan, predisposition and cause of disease, mostly in terms of genetic

mutations. Genome-wide association studies (GWAS) have recently emerged as

a powerful technique to address this task [154, 156, 158, 159]. On the other side,

gene and mRNA expression analyses have become common practise to identify

molecular changes that occur in healthy ageing and in neurodegeneration, either

upstream as fingerprint of vulnerability or downstream as a response to the damage

[155, 157, 160–162]. The systematic use of both techniques has also prompted

the creation of numerous tools and databases aimed at integrating, collecting and

extracting the biology and genetics of ageing and neurodegeneration from these

large-scale information data [4, 157, 163, 164].

However, techniques that work at the gene and mRNA level provide only one type

of information concerning what happens in a cell [165, 166]. In the cell, essentially

all processes are catalysed and controlled by proteins, which account altogether for

about 50% of the cell dry mass, with a concentration of more than 106 entities per

cell volume [167].

Biophysics and biochemistry methods are conventionally used to isolate specific

proteins and analyse their function and structure, but there are various ways in which

proteins carry out their task and influence the behaviour of the cell in the cell: they

can work at specific times, in precise locations, by themselves or in association with

other proteins and molecules, organised in networks and structures. Collectively,

proteins form a "proteome network" which determines the phenotype of the cell and

is responsible for its functional state by dynamically adapting to external or internal

perturbations, including genetic modifications [168].

Also, for any given protein a wide range of processes are required for its produc-

tion and maintenance: from the transcription, processing and degradation of mRNAs,

to the translation, localisation and degradation of the subsequent protein itself. The

dynamic balance of these processes determines the cellular protein abundance at any

given time, which in turns contributes to the balance of the proteome network and

the maintenance of the protein homoestasis.
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(A)

(B)

Fig. 1.8
Individual and functional-associated comparison of mRNA levels and protein

abundances

(A) mRNA abundances do not correlate much with their respective proteins levels,
as it is shown in the scatterplot on the left from data on mouse fibroblast cells where

5028 proteins and corresponding transcripts were quantified. On the right, a pie
chart obtained from human DAOY medulloblastoma cell line shows that mRNA
abundances can explain only for 30-40% of the variance in protein abundance.
Figure reproduced from [166]. (B) An example of scatterplot, from yeast cells

proteomics and transcriptomics measurements, of the 2D-annotation enrichment
[169] that quantitatively estimates significant upregulation or downregulation of

entire biological processes and protein functional classes between the transcriptomic
level and the proteomic level. Some processes belonging mostly to mitochondrial
pathways are upregulated at the transcriptomic level compared to the proteomic

level, while proteins belonging the amino acid transmembrane transport process and
the glucose transport show an opposite behaviour. Figure reproduced from [169].
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The importance of protein homeostasis and aggregation in ageing and neurode-

generation has thus prompted the need of large-scale studies of protein abundances

and interactions. Since GWAS studies cannot monitor expression levels, the most

common procedure so far consisted in using mRNA concentrations as proxies of

activity and concentrations of the corresponding proteins. This choice follows the

assumption that transcript levels are the main determinants of protein abundances.

However, recent evidence obtained from actual measurements of protein abundances

(see section 1.3.2) shows that for almost every organism tested, mRNA levels do not

mirror cellular protein levels, but can only account for one to two third of their varia-

tions in the cell [166, 170, 171] (see Fig. 1.8A). This suggests that other processes

beside and downstream mRNA translation, like post-transcriptional and translational

regulation and protein degradation can give a dominant contribution to the regulation

of protein expression levels. Moreover, the poor correlation between mRNA and

protein abundances is not only restricted to single expression levels, but sometimes

even involves the differential expression of entire biological pathways or functional

components [169] (Figure 1.8B). For this reason, an accurate quantification of direct

protein levels becomes fundamental for the study of protein homeostasis and protein

interactions.

1.3.2 Mass Spectrometry-based proteomics for the direct

measure of proteomes and protein interactions

In the last decades, major technological improvements in mass-spectrometry (MS)-

based methods boosted the field of proteomics, the scientific area that aim to quanti-

tatively study the proteome and the mechanisms that it mediates [172–192]. In terms

of instrumentation, the development of the Orbitrap detector in 2005 [193] repre-

sented a milestone for the diffusion and affordability of rapid, high-sensitivity mass

spectrometers, and permitted the nearly complete analysis of proteomes, an approach

now addressed as "shotgun proteomics" [166, 181, 183, 188, 189, 194]. In such ex-

periments, complete proteomes or proteins in a complex mixtures are enzymatically
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digested and subsequently separated and analysed by nanoflow chromatography and

high-resolution tandem mass spectrometry [172, 176, 179, 181, 183, 188, 195, 196].

This allows the identification of up of thousands proteins in a sample ("bottom-up

proteomics").

Fig. 1.9
Bottom-up proteomic workflow for shotgun proteomics

Proteins are first enzymatically digested, usually by trypsin protease, then separated
by nanoflow chromatography and subsequently electrosprayed and analysed by

high-resolution tandem mass spectrometry (MS), usually with an Orbitrap machine
[193]. The first level of MS (MS1) acquires a full spectrum of the peptides that were
eluting in the column in each recording time frame (MS run), while the second level
(MS2) further fragments the most abundant MS1 peptides for identification of their
amino acid sequence. Software packages can process the spectra and determine the

protein content of the sample. Figure reproduced from [197].

A schematic representation of this MS-based proteomics workflow is shown

in Fig. 1.9. The sample preparation is the first stage of the workflow, in which

proteins are extracted from the sample and digested by a sequence-specific enzyme

like trypsin. The peptides obtained from enzymatic digestion are then separated

via liquid chromatography and electrosprayed before entering the vacuum of the

mass spectrometer. As already mentioned, the most common mass spectrometer for

bottom-up proteomics is the Orbitrap type mass analyser [193], which consists of



22 Quantifying protein homeostasis in ageing and neurodegeneration

two MS levels: a first level (MS1) which allows the acquisition of the full spectrum

of peptides eluting in the column with their intensities, followed by a second level

(MS2) which collects of as many fragmentation spectra as possible, within a cycle

of 1-3 seconds, in order to identify the amino acid sequence of the most abundant

peptides detected in the MS1 [168, 180, 193]. Resulting MS1 and MS2 spectra can

be processed to obtain peptides identifications as well as protein identifications from

the mapping of detected peptide sequences with a proteome sequence database.

This bottom-up proteomics approach has also been able to become quantitative

[177, 198–201] with the development of data-processing software packages, which

measure either spectral counts or ion intensities derived from each peptide, and

reconstruct the signal of the parental protein. Among the softwares available that

process the MS-MS data and measure ion intensities, which have been demonstrated

to be more robust indicator of the protein levels in a sample than spectral counts

[177, 202, 189, 203], the MaxQuant software has become highly recommended for

proteome-wide protein quantification analyses, both in labelled or label-free condi-

tions, thanks to his high peptide identification rates, mass accuracy and quantification

technology [203–206].

In MaxQuant, peptide quantities are determined at the MS1 level by integrating

the signal from peaks of the ions that elute from the chromatography column, with

an alignment and normalisation step that allows comparison across MS runs. Also,

a "match between runs" feature is present in the software to maximise the number

of peptides identified and decrease the noise in their quantification, by transferring

the information of peptide identity among runs in which the same aligned peak has

been found (with same mass and elution time) but was not fragmented. The protein

content of the sample is identified by mapping all detected and quantified peptides

sequences to a database of protein sequences, which is the proteome (or protein

mixture) of reference for the sample. The list of protein sequences in the reference is

usually given as an input from the user, as it is experiment-dependent (e.g. in terms

of organism or condition). In case of sequence degeneration, which occurs when a

group of peptides is found to map multiple proteins (e.g. in case protein isoforms),
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a single protein cannot be matched from the peptides and the ensemble of proteins

containing the peptide sequences is reported (protein group). Absolute quantities

for each protein (or protein group) can be estimated by summing up the intensities

from the peak volumes of all peptides identifying the protein and normalising with

respect to the number of theoretically expected peptides for that protein sequence

upon in silico digestion with the enzyme used in the experiment: this method is

called intensity-based absolute quantification (iBAQ) [203].

Overall, these recent advances in both instrumentation and downstream data

analysis now show the capability of the MS-based proteomics technologies to both

identify and accurately quantify proteins in large mixture, in either a labelled or

label-free environment [207, 208], which represent a key step for the large-scale

study of the proteome and of its interactions. In particular, it represents an invaluable

resource for the investigation of protein homeostasis and widespread aggregation

under various conditions, like ageing or neurodegeneration.

1.4 Overview

We described in section 1.2 the central role of protein homeostasis in ageing and

neurodegeneration, and the hypothesis of misfolded oligomers toxicity in the neu-

rodegenerative process. In this work, we studied these phenomena using MS-based

proteomics coupled with sequence-based prediction algorithms and bioinformatic

functional annotation analyses.

In Chapter 2, we will show how this approach can be applied to the identification

of the features and physico-chemical principles responsible for age-related protein

homeostasis impairment and widespread aggregation in the nematode C.elegans.

In Chapter 3, we will provide the first proteome-level support to the observation

that proteins are expressed in the cells at their solubility limits. This hypothesis

was firstly postulated by Tartaglia and co-workers based on a strong anticorrelation

between the aggregation rates measured in vitro of the limited group of proteins
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available in the literature at that time and the corresponding human mRNA expression

levels measured in vivo [130].

In Chapter 4, we perform MS proteomic analysis to identify and quantify the the

interaction of proteins with misfolded oligomers, the potential most toxic species of

the aggregation process. In this chapter, we couple the processing of MS data with

bioinformatic functional annotation analysis to obtain biological insights into the

interactions that oligomers can make, providing the functional oligomer interactome.

Both knowledge of the features of the proteome, its impairment with ageing,

and its potential interaction with misfolded oligomers represent key questions for

the understanding of neurodegeneration and may give rational insights for potential

prevention or therapeutic approaches. Mass spectrometry and the recent advances

in the technique are now allowing quantification of protein abundances in vivo on a

proteome-wide scale, therefore this technique combined to our algorithms can be

extremely useful in tracking upon aging the changes in the proteome system that

result into protein homeostasis impairment.

Lastly, Chapter 5 shows the ensemble of results obtained from this work and the

future perspectives that this study has opened.



Chapter 2

Protein homeostasis imbalance

and widespread aggregation

in ageing C. elegans
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2.1 Summary

The content of this chapter is a published research article [90], which has been

reprinted in section 2.3 with permission from Elsevier.

During my PhD studies, I contributed to the development of a computational

method, called CamSol intrinsic, to determine the aggregation propensity of a

protein/peptide, together with an array of other physico-chemical properties, from

the information of its primary sequence only (see section 2.2). In this work, I use

the CamSol instrinsic method and the s2D predictor [209] to understand physico-

chemical principles underlying the age-related disruption of protein homeostasis and

the widespread aggregation observed in nematode C.elegans.

The proteome in WT, long-lived and short-lived nematode strains was quantified

upon ageing with MS in the group of Prof. F. Ulrich Hartl at the Max Planck Institute

of Biochemistry, Germany. The main results of the analysis that I performed by

complementing the biological information of the absolute abundances and relative

changes in the both total protein concentration and the aggregated fraction with the

results from the sequence-based physico-chemical and secondary structure calcula-

tions are shown in Figure 5 (D to G) and in Figure S5 (B and C) of the article (see

section 2.3).

The analysis of physico-chemical properties from CamSol instrinsic and average

coil propensity calculated from s2D was able to provide insightful information on

the difference between the widespread aggregation observed in long-lived animals

compared to short-lived animals. This, in turn, led to the first formulation of the

hypothesis that the process of protein aggregation might be triggered by the cell as a

mechanism for restoring protein homeostasis or delaying proteostasis impairment, a

key novelty in the paper. Also, it revealed that the aggregation propensity of proteins

is modulated by their abundance distribution in the cell, prompting the investigation

of the proteome-wide evidence of the life on the edge hypothesis (see Chapter 3).
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2.2 The Camsol Intrinsic method

Camsol Intrinsic is a computational method developed in this thesis in collaboration

with Dr. Pietro Sormanni. Primarily, it is an extension of the Camsol method [210]

tailored to the in silico sequence-based prediction of the aggregation propensities of

proteins on a proteome-wide scale, but it also allows the calculation of an array of

other key physico-chemical properties related.

There are two main reasons behind the choice of developing a sequence-based

prediction method over a structure-based method for the analysis of proteome-wide

data:

1. the amount of information available

2. the presence of intrinsically disordered proteins (IDPs) and proteins with

intrinsically disordered regions (IDRs)

Regarding point 1, in fact, despite the great increase in the number of protein

structures resolved in the recent years, the number of protein structures available is

still an order of magnitude less than the number of protein sequences. To date, the

number of all sequences present in the Uniprot database of proteins and peptides

counts ∼ 109 entries of which more than 550000 manually reviewed [211, 212],

compared to the ∼ 130000 structures stored in the Protein Data Bank (PDB) database

[213, 214].

Also, it has become clear that not all proteins possess a stable structured fold

but some are naturally structurally disordered (IDPs) or contain long stretches of

disordered regions (IDRs) [215–218]. Such proteins play important functions in

the cell, such as signalling and regulation [219–221]. Most importantly, more and

more recent studies have highlighted that such proteins are extremely abundant in

cells and especially in eukaryotic systems, where they make up ∼ 30%−45% of the

proteome [217, 220, 222–228]. Given that about a third of the proteome consists



28 Proteostasis imbalance and widespread aggregation in ageing C.elegans

of IDPs, the choice of choosing a sequence-based prediction method should allow

consistent results to be obtained for high-throughput experimental data.

Given the amino-acid sequence, CamSol intrinsic evaluates the net charge, the

fraction of charged residues, the average and total hydrophilicity and predicts an

intrinsic aggregation propensity score, which represent the inherent predisposition of

the protein/peptide to aggregate. In particular, CamSol intrinsic allows to evaluate the

most/least vulnerable proteins of an ensemble (or a proteome) in terms of aggregation,

by ranking them according to their CamSol intrinsic aggregation score (called

zscore).

The method relies on the use the CamSol method [210] for the calculation

of the residue-specific properties profiles from which the global properties are

obtained with an optimisation strategy that allows comparison of the scores among

different proteins of a proteome, unlike the CamSol method itself which is optimised

for detecting differences in solubility from small variations in the sequence of

a given protein [210], or the Zyggregator method [229] which was developed to

specifically estimates amyloid aggregation rates of proteins. Details of the method are

found in the supplementary information, section "In Silico Aggregation Propensity

Calculation", in section 2.3.

2.3 Publication: Widespread Proteome Remodeling

and Aggregation in Aging C. elegans

Reprinted from [90] with permission from Elsevier.
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SUMMARY

Aging has been associated with a progressive
decline of proteostasis, but how this process affects
proteome composition remains largely unexplored.
Here, we profiled more than 5,000 proteins along
the lifespan of the nematode C. elegans. We find
that one-third of proteins change in abundance at
least 2-fold during aging, resulting in a severe prote-
ome imbalance. These changes are reduced in the
long-lived daf-2 mutant but are enhanced in the
short-lived daf-16 mutant. While ribosomal proteins
decline and lose normal stoichiometry, proteasome
complexes increase. Proteome imbalance is accom-
panied by widespread protein aggregation, with
abundant proteins that exceed solubility contributing
most to aggregate load. Notably, the properties by
which proteins are selected for aggregation differ in
the daf-2 mutant, and an increased formation of ag-
gregates associated with small heat-shock proteins
is observed. We suggest that sequestering proteins
into chaperone-enriched aggregates is a protective
strategy to slow proteostasis decline during nema-
tode aging.

INTRODUCTION

Protein homeostasis (proteostasis), the state in which the prote-

ome of a living organism is in functional balance, must be tightly

controlled within individual cells, tissues, and organs. Maintain-

ing proteome balance requires a complex network of cellular fac-

tors, including the machineries of protein synthesis, folding, and

degradation (Balch et al., 2008; Hartl et al., 2011), as well as

neuronal signaling pathways that regulate proteostasis at the

organismal level (Prahlad and Morimoto, 2009; Taylor and Dillin,

2013; van Oosten-Hawle and Morimoto, 2014). An important

function of these systems is to prevent the accumulation of

potentially toxic misfolded and aggregated protein species

(Knowles et al., 2014). However, as organisms age, quality con-

trol and the cellular response to unfolded protein stress become

compromised (Ben-Zvi et al., 2009; Douglas and Dillin, 2010),

and the defense against reactive oxygen species declines (Finkel

and Holbrook, 2000). Indeed, aging is considered the principal

risk factor for the onset of a number of neurodegenerative disor-

ders associated with aggregate deposition, such as Alzheimer’s,

Huntington’s, and Parkinson’s diseases (Knowles et al., 2014).

The accumulation of aberrant protein species in these pathologic

states in turn places a burden on the proteostasis machinery and

thus may accelerate aging by interfering with protein folding and

clearance, and other key cellular processes (Balch et al., 2008;

Gidalevitz et al., 2006; Hipp et al., 2014; Olzscha et al., 2011).

Understanding these relationships requires systematic analyses

of the changes that occur in proteome composition and balance

during aging.

The nematode C. elegans is one of the most extensively stud-

ied model organisms in aging research, owing to its relatively

short lifespan and the availability of genetic tools to identify path-

ways that regulate longevity. Inhibition of the insulin/insulin-like

growth factor 1 signaling (IIS) pathway in strains carrying muta-

tions in the DAF-2 receptor (or the downstream PI(3) kinase

AGE-1) activates the DAF-16/FOXO transcription factor and

leads to a dramatic lifespan extension (Kenyon et al., 1993;

Murphy et al., 2003). Several lines of evidence suggest that the

lifespan-prolonging effect of IIS reduction involves an improve-

ment in cellular stress resistance and proteostasis capacity

through upregulation of the machineries mediating protein

folding and preventing the formation of toxic aggregate species

(Morley et al., 2002; Cohen et al., 2009; Demontis and Perrimon,

2010). In addition to DAF-16 activation, the longevity phenotype

in daf-2mutants requires the function of HSF-1, the transcription

factor regulating the expression of multiple heat-shock proteins

and molecular chaperones (Hsu et al., 2003; Morley and Mori-

moto, 2004). These pathways of proteostasis maintenance

appear to be conserved in evolution from worms to mammals

(Cohen et al., 2009; Demontis and Perrimon, 2010).

Aging and the effect of the IIS pathway have been studied in

C. elegans by transcriptome analysis (Budovskaya et al., 2008;

Golden and Melov, 2004), but only limited information exists
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Figure 1. Proteomic Analysis of Aging in C. elegans

(A) Experimental design of total proteome analysis. Synchronized worm populations at different time points were lysed and mixed with a metabolically (SILAC)

labeled internal protein standard. After digestion, peptides were either analyzed directly or after fractionation by isoelectric focusing, followed by nano-HPLC

coupled MS.

(B) Proteome changes in WT animals 6, 12, 17, and 22 days of age relative to day 1 animals (Table S1B). The proportions of proteins that are at least 2-fold

increased or decreased in abundance are marked in yellow or blue, respectively.

(C) Contribution to the total proteome of the proteins that change at least 2-fold in abundance between young (day 1) and aged (day 22) animals, as displayed in (B)

and estimated by label free quantification (absolute LFQ) (Table S1B).

(D) Proteome changes in subcellular compartments. The fractions of the total proteome that increased (yellow) or decreased (blue) at least 1.5-fold in abundance

in old (day 22) versus young (day 1) animals are shown. The color grey represents proteins that remained within the indicated abundance thresholds. Numbers of

identified proteins are indicated. Protein subcellular localization was predicted using WoLF PSORT.

(legend continued on next page)
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about changes at the proteome level (Dong et al., 2007). Here,

we exploit the recent progress in mass spectrometry-based pro-

teomics, which now enables the identification and quantification

of thousands of proteins in complex mixtures (Bensimon et al.,

2012; Cox and Mann, 2011). We applied stable isotope labeling

with amino acids in cell culture (SILAC) (Ong et al., 2002) to pro-

file the abundance levels of more than 5,000 different proteins at

multiple time points during the lifespan of C. elegans. We then

extended our study to short-lived and long-lived strains carrying

mutations in the IIS pathway and performed a detailed analysis

of age-related protein aggregation. Our data show that during

aging, the proteome of the animal undergoes extensive remod-

eling, escaping proteostasis, and ultimately reaching a state of

marked proteome imbalance. These changes are accompanied

by widespread protein aggregation, with abundant proteins that

exceed their solubility limit making the major contribution to

aggregate load. Interestingly, the intrinsic aggregation propen-

sity of proteins is modulated in long-lived daf-2 mutant worms,

resulting in the enhanced formation of chaperone-containing

aggregates. Thus, protein aggregation may occur not just as a

consequence of proteostasis decline, but may also be induced

to improve proteostasis by sequestering surplus, potentially

harmful protein species.

RESULTS

Extensive Proteome Remodeling during Aging
To study proteome changes in aging nematodes in depth and

with high accuracy, we established a quantitative proteomics

approach using SILAC (Ong et al., 2002). Near-complete incor-

poration of 13C6-
15N2-lysine into the proteome was achieved

by feeding worms with SILAC labeled (‘‘heavy’’) E. coli cells

(Larance et al., 2011). We used a pool of lysates prepared from

labeled worms of different ages as internal standards for quanti-

fying protein expression. These standards were added to lysates

of synchronized worm populations, followed by digestion and

peptide analysis by mass spectrometry (MS) (Figure 1A). Repli-

cate analyses indicated a high degree of reproducibility between

individual experiments (Figure S1A; Table S1A). We analyzed the

proteomes of adult wild-type (WT) worms from 1 day up to

22 days of age, when less than 30% of the animals remain alive

(L4 larval stage defined as day 0). More than 5,000 different

proteins were identified and quantified at a false discovery rate

of 1% (Table S1B).

Our analysis reveals a broad remodeling of theC. elegans pro-

teome during aging. About one-third of the quantified proteins

increased or decreased in abundance by at least 2-fold, when

equal amounts of total protein were analyzed (Figure 1B; Table

S1B). The proteins that increased by at least 2-fold amounted

to approximately 50% of total protein in aged animals, as deter-

mined by label free absolute quantification (absolute LFQ values)

(Schwanhäusser et al., 2011) (Figure 1C). Protein abundance

changes were progressive until day 22 (Figures 1B and S1B;

Table S2A) and were observed in most cellular compartments

(Figure 1D). Thus, proteome composition and the relative stoichi-

ometries of proteins change dramatically during aging, presum-

ably impeding overall proteostasis. A similar mechanism of

proteostasis impairment has been suggested to occur as a result

of aneuploidy (Oromendia et al., 2012; Stingele et al., 2012).

Changes in transcript levels previously observed during aging

(Budovskaya et al., 2008; Golden and Melov, 2004) contribute

to the changes in protein abundance observed here, but the

overall correlation is only moderate (R = 0.3) (Figure S1C).

Thus, the age-dependent accumulation of a substantial fraction

of the proteome is likely to be largely due to posttranscriptional

processes. Taking into consideration that microRNA (miRNA)-

mediated translational repression of mRNAs is relieved during

aging and stress (Ibáñez-Ventoso et al., 2006), we compared

our proteome data with a published transcriptome analysis of

Dicer mutant worms with defective miRNA biogenesis (Welker

et al., 2007). We find that �30% of proteins that increased

more than 2-fold between day 6 and 22 (99 of 357 proteins),

i.e., after the worms have reproduced, have significantly

elevated transcript levels in dicer mutants, and this proportion

increases to nearly 40% for the subset of proteins with a more

than 4-fold abundance change (50 out of 133 proteins) (Fig-

ure S1D). Thus, miRNA-mediated translational derepression

is likely to contribute to the observed increase in protein

abundance.

We analyzed the proteomic changes in C. elegans aging in

terms of various criteria, including subcellular compartments,

pathways, and cell types. Among the proteins that increased

more than 2-fold in aged worms (22 days) were 183 extracellular

proteins (out of 490 extracellular proteins quantified) (Figure S1E;

Table S2B). These included multiple transthyretin (TTR)-like

factors, which increased up to 100-fold (Figure S1F), as well as

all six of the vitellogenin egg storage proteins, despite egg for-

mation having been completed before day 6. Likewise, proteins

involved in DNA replication and repair processes were upregu-

lated (Figure S1E), even though all somatic cells of adult

C. elegans are postmitotic. These examples suggest that many

changes in protein abundance during aging do not correlate

with biologically relevant activities but instead reflect proteome

dysregulation. Among the proteins that declined during aging

are nucleolar ribosome biogenesis factors, various peroxisomal

enzymes, and proteins involved in lipid glycosylation (Figure S1E;

Table S2C). The levels of many mitochondrial proteins also

decreased (Figure 1D). For example, subunits of respiratory

chain complex I declined gradually by up to 50% during the life-

span (Figure S1G), which may result in the production of reactive

oxygen species.

To discern cell-type specific patterns of change, we grouped

proteins into clusters using the fuzzy c-means method (Kumar

and Futschik, 2007) and analyzed these by tissue-specific

expression scores (Chikina et al., 2009) (Figure 1E). We find

that age-dependent changes in proteome composition affect

(E) Clustering of time course expression patterns in WT animals using the fuzzy c-means algorithm (Kumar and Futschik, 2007). Significantly enriched tissues

as determined by Wilcoxon rank sum test at 2% false discovery rate against predicted expression scores (Chikina et al., 2009) are indicated for each cluster.

Warm (red) and cold (blue) colors indicate low and high deviation from the consensus profile, respectively.

See also Figure S1 and Tables S1 and S2.
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a range of tissues. For example, proteins that are predominantly

expressed in the germline strongly increase during the first

6 days of adulthood (cluster 1), when the animals reproduce,

but surprisingly retain constant levels later in life. Proteins en-

riched in neuronal cells either increase in abundance throughout

the lifespan or after day 6 (clusters 2 and 3). In contrast, the levels

of many proteins enriched in intestine, muscle, and hypodermis

decline (clusters 4–6), consistent with an age-related deteriora-

tion of these tissues.

Age-Related Changes in Proteostasis Network
Components
Approximately 440 proteostasis network components involved

in protein synthesis, folding, and degradation were quantified

throughout the nematode lifespan (Figure S2A; Table S3).

A �25% reduction in the median level of cytosolic ribosomal

proteins occurred between day 1 and day 12 (Figure 2A, left).

This reduction correlates with a decrease in the transcript level

of ribosome proteins (Golden and Melov, 2004) and an overall

age-associated reduction in polysomes (Kirstein-Miles et al.,

2013). A similar decrease was observed for mitochondrial ribo-

somes between day 1 and day 6 (Figure 2A, right). Interestingly,

aged animals displayed a pronounced imbalance in the relative

subunit stoichiometry of cytosolic, but not mitochondrial, ribo-

somes, with several subunits decreasing more than 60% below

median subunit levels (Figure 2A, left).

Next, we employed SILAC to estimate protein synthesis in

aging C. elegans. Pulse labeling of worms with heavy bacteria

as the food source showed a sharp reduction in the incorporation

of labeled amino acids into protein between day 1 and day 4 of

adulthood (Figure S2B; Table S1C). This effect was not caused

by reduced food uptake, as eat-2 mutant animals, deficient in

A
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Figure 2. Abundance Changes in Specific Components of the Proteostasis Network

(A) Abundance changes of ribosomal proteins during the lifespan of C. elegans. There were 70 different cytosolic (left) and 34 mitochondrial ribosomal proteins

(right) that were quantified (see Table S3). Log2 values of fold-changes are shown in boxplot representation. Solid horizontal lines indicate the median values,

whisker caps indicate 10th and 90th percentiles, and circles indicate outliers. ****p < 4.35 3 10�13 for cytosolic ribosomal proteins and 1.17 3 10�10 for mito-

chondrial ribosomal proteins from Wilcoxon signed rank test. Only proteins quantified at both time points tested were considered.

(B) Abundance changes of proteasome subunits during lifespan. All 14 subunits of the 20S and 17 subunits of the 19S proteasome were quantified. Only subunits

quantified in at least two time points are displayed. ****p < 1.233 10�4 for 20S subunits and ****p < 1.533 10�5 for 19S subunits fromWilcoxon signed rank test.

(C–E) Abundance profiles of proteostasis network (PN) components along the lifespan of WT animals. Log2 relative changes in abundance are shown for HSP70

and HSP90 homologs (C), small HSPs (D), and proteins involved in oxidative stress defense (E). Only components quantified at day 1 and at least three

consecutive time points are displayed.

See also Figure S2 and Tables S1 and S3.
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pharyngeal pumping, showed protein labeling equivalent to WT

controls, despite their reduced food uptake (data not shown).

The reduction in protein synthesis between day 1 and 4 is greater

than the decrease in ribosomal levels (Figures 2A and S2B) and

probably reflects the reduction in growth of the animals.

In contrast to the effect on ribosomes, we observed an age-

dependent increase in 20S and 19S proteasomal subunits

(�2-fold at day 22 for 20S subunits) (Figure 2B), correlating

with an increase in proteasome activity measured in worm

lysates in vitro (Figure S2C). Many E3 ubiquitin ligases and other

components of the ubiquitin proteasome system (UPS) also

increased moderately (Table S3B), while there was no system-

atic change in the components of autophagy (Figure S2D).

Age-dependent changes in the levels of abundant cytosolic

chaperones of the HSP70 and HSP90 (DAF-21) families (Fig-

ure 2C) as well as their DnaJ (DNJ/HSP40) and tetratricopeptide

repeat (TPR) co-factors were limited (Figures S2E and S2F).

Similarly, the subunits of the TRiC/CCT chaperonin remained

unchanged (Figure S2G). In contrast, multiple small HSPs, chap-

erones that function by buffering aggregation, increased dramat-

ically (�13–90-fold), mainly between day 1 and day 6 (Figure 2D).

Several of these proteins are under regulation by DAF-16 and

HSF-1 (Hsu et al., 2003).

Several components mediating the defense against oxidative

stress, including glutathione peroxidase isoform GPX-5 and

superoxide dismutases (SOD), increased during aging (up to

12-fold) (Figure 2E; Table S3B). While changes in mitochondrial

proteostasis components were generally moderate (Figure S2H;

Table S3B), we observed diverse alterations in the proteostasis

network of the ER during the nematode lifespan (Figure S2I).

For example, protein disulfide isomerases (PDI-2 and C14B9.2),

the chaperone calreticulin (CRT-1), as well as the HSP70

homolog HSP-3 decreased �2-fold, and the pro-collagen

modifying enzymes lysyl hydroxylase (LET-268) and prolyl-4-

hydroxylase a (DPY-18 and PHY-2) decreased �3–10-fold.

These findings suggest an age-dependent decline in ER quality

control and collagen synthesis capacity.

In summary, the levels and activities of two main branches

of proteostasis control, protein synthesis and degradation,

change in opposite directions during aging. The decrease in

ribosomal subunit proteins is accompanied by a dysregulation

of cytosolic ribosome assembly, while the increase in protea-

some subunits is likely to reflect an attempt at removing surplus

or damaged proteins. Other notable changes in the proteosta-

sis system include an increase in the abundance of small HSP

chaperones and of components involved in the defense against

oxidative stress, as well as a decline in ER protein quality con-

trol machinery.

Proteome Changes in Long-Lived and Short-Lived
Mutant Strains
To understand in more detail the relationship between the

observed proteome changes during the lifespan and the aging

process, we next analyzed the proteomes of long-lived daf-2

(e1370), short-lived daf-16 (mu86), and hsf-1 (sy441) mutant

worms. The increase in levels of specific proteins observed dur-

ing aging of WT animals was considerably less pronounced in

daf-2 mutant animals and enhanced in daf-16 mutant animals

(Figure S3A, left), indicating that the long-lived daf-2 mutant

strain is more effective in controlling the accumulation of surplus

proteins. The extent to which proteins decreased in abundance

during agingwas also greater indaf-2mutantworms (Figure S3A,

right).

The changes in components of the proteostasis network

observed in the mutant strains occurred again predominantly

in the protein synthesis and degradation pathways, but at

different rates compared to WT. The upregulation of proteaso-

mal subunits commenced earlier during the lifespan of the

daf-2 mutant and was more pronounced than in the WT worms

(Figures 3A and 3B); such upregulation was instead less promi-

nent in the short-lived daf-16 and hsf-1 mutant strains (Figures

3C and 3D). These results are consistent with the DAF-16 depen-

dent regulation of some proteasome subunits, including RPN6,

which is required for 26S proteasome assembly (Vilchez et al.,

2012). The decrease in ribosomal proteins occurred at a similar

rate in daf-2mutant worms as inWT (Figure 3A), but was strongly

enhanced in daf-16 mutant worms (Figure 3C), suggesting that

DAF-16 is involved in ribosome maintenance.

Components involved in the oxidative stress response

showed marked differences in levels between WT and daf-2

mutant animals. For example, cytosolic (CTL-1 and CTL-3) and

peroxisomal (CTL-2) catalases were 4–8-fold higher in the

daf-2 mutant than in WT worms throughout their lifespans

(Figure S3B). SOD-1 (cytoplasmic) and SOD-2 (mitochondrial)

were elevated 2-fold compared to WT and short-lived mutant

animals (Figure S3C), consistent with their DAF-16-dependent

transcriptional regulation (McElwee et al., 2003; Murphy et al.,

2003). Among the small HSPs, SIP-1was alreadymore abundant

in young daf-2mutant worms (day 1) and HSP-16.48 was mark-

edly elevated in hsf-1 mutant animals (Figure S3D).

The earlier and more pronounced increase in proteasome

abundance in daf-2 mutant animals may improve the capacity

of the organism for the clearance of surplus proteins that accu-

mulate during aging. The elevated levels of catalases and SOD

may provide improved defense against oxidative damage.

Age-Dependent Protein Aggregation and Its Relation
to Protein Abundance
Declining proteostasis capacity is thought to result in the accu-

mulation of protein aggregates, consistent with recent reports

of age-dependent aggregate formation in C. elegans (David

et al., 2010; Reis-Rodrigues et al., 2012). To analyze this process

systematically, we developed a sensitive method for the quanti-

fication of aggregated proteins (see Experimental Procedures)

and validated it in animals expressing muscle specific FlucDM-

GFP, a conformationally unstable mutant of firefly luciferase

fused to GFP (Gupta et al., 2011) (Figures S4A and S4B). We iso-

lated insoluble proteins from total lysates of WT animals by

centrifugation and performed MS analysis using lysate from

labeled worms for quantification (Figure S4C). About 90% of

the proteins that were quantified in three out of four experiments

(975 of 1,083 proteins) accumulated significantly in the insoluble

fraction of day 12 animals relative to day 1 (Table S1D). Age-

dependent aggregation was most pronounced between day 6

and day 12 (Figure 4A), i.e., after the hermaphrodite animals

ceased to lay eggs. Proteins with predicted transmembrane
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segments were not enriched in the insoluble fraction (Fig-

ure S5A), indicating that lysis was efficient.

To measure the aggregation propensities of proteins during

aging, we quantified the insoluble amount of each protein as a

fraction of its total amount in aged WT worms (day 12) (Fig-

ure S4D; Table S1E). The aggregation propensities of >2,100

analyzed proteins varied by more than two orders of magnitude

(Figure 4B), with the median insoluble fraction per individual

protein amounting to �9%.

Previous studies reported a negative correlation between

computationally predicted aggregation propensities and protein

abundance (Tartaglia et al., 2009). To investigate this depen-

dency at the proteome scale, we grouped proteins according

to their aggregation propensities measured at day 12 and esti-

mated the total abundance of each protein in the whole cell

lysate by absolute LFQ (Figure 4C). The most abundant proteins

were 10-timesmore soluble than the least abundant proteins. An

analysis of the physicochemical properties of the abundant pro-

teins based on their amino acid sequences revealed that they

were more hydrophobic (Figure S5B) and more structured

(data not shown) than the less abundant ones. These results

suggest that abundant proteins increase their solubility, at least

in part, by stabilizing their native states through formation of a

more extensive hydrophobic core. Indeed, a calculation of the

aggregation propensities (Z scores) (Tartaglia et al., 2008; Sor-

manni et al., 2015a) (see Extended Experimental Procedures)

predicts that the more abundant proteins, if correctly folded,

are also more soluble (Figure S5C). This conclusion is consistent

A B

C D

Figure 3. Remodeling of the Proteostasis

Network during Aging

(A–D) Abundance changes in components of the

PN (see Figure S2A) during aging in daf-2 (A), WT

(B), daf-16 (C), and hsf-1 (D) mutant worms.

Concentric circles represent increasing age in

days from center to periphery. Circle size corre-

sponds with lifespan. Functional categories of

components are indicated in the center: green,

biosynthesis; red, degradation; and light blue,

conformational maintenance (see Figure S2A).

Abundance changes of components within these

categories relative to day 1 of each strain (yellow,

>1.5-fold up and blue, >1.5-fold down) are indi-

cated as bars, with the length of the bar repre-

senting the number of proteins undergoing

change. The total numbers of proteins quantified in

the respective categories are indicated. See also

Figure S3.

with the idea that the solubility of proteins

follows their abundance (Tartaglia et al.,

2009).

We found, however, that despite of

their lower intrinsic aggregation pro-

pensities, the most abundant proteins

contribute most to the total aggregate

load. A strong correlation (R = 0.75) was

observed between the abundance of

specific proteins in the aggregate fraction

and their level in the corresponding whole cell lysate (Figure 4D).

Apparently, the high solubility of abundant proteins is insufficient

to protect them from age-dependent aggregation, as eventually

these proteins exceed their critical concentrations, a phenome-

non referred to as ‘‘supersaturation’’ (Ciryam et al., 2013).

Notably, we also observed a medium correlation (R = 0.43)

between the age-dependent change in the total abundance of

proteins and their increase in the aggregate fraction (Figure 4E),

and this correlation became stronger as aging progressed (data

not shown). Thus, proteome remodeling during aging likely

drives the aggregation of numerous proteins.

We further investigated whether aggregation also correlates

with function. Gene ontology analysis showed that proteins

with a relatively high aggregation propensity in aged animals

are enriched in the nucleus, whereas abundant glycolytic

enzymes and mitochondrial proteins tend to be highly soluble

(Figure S5D; Table S4A). Interestingly, all identified small HSPs,

but not other chaperones, were highly insoluble at day 12 (Fig-

ure 4F), with a high rate of accumulation in the aggregate fraction

during aging (Figure S5E). The recruitment of these chaperones

into the insoluble fraction may reflect an attempt of the organism

to sequester protein aggregates.

Protein Aggregation in Long-Lived and Short-Lived
Mutant Strains
Is the age-dependent formation of insoluble aggregates merely

a reflection of declining proteostasis capacity, or is it a means

to improve proteostasis by sequestering surplus proteins?
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Consistent with the former possibility are findings that aggrega-

tion-prone model proteins increasingly aggregate in proteosta-

sis-compromised hsf-1 mutant strains (Ben-Zvi et al., 2009).

Indeed, compared to WT animals, the short-lived hsf-1 mutant

worms accumulated more insoluble proteins and aggregation

occurred earlier during aging (between day 1 and day 6) (Figures

5A and S6A). However, in support of a beneficial role for

aggregation, we found that the long-lived daf-2 mutant worms

also accumulated more insoluble proteins than age-matched

WT animals (Figures 5A, S6A, and S6B). This effect was not

observed in daf-16 mutant animals (Figures 5A and S6A),

suggesting that age-dependent aggregation is (at least in part)

an active process under regulation by DAF-16. The increased

aggregation in daf-2 mutant animals comprised preferentially

cytosolic proteins (Figure S6C; Table S4B) and initiated between

day 6 and day 12 as in WT (Figure S6A), i.e., when the long-lived

mutant worms are still youthful.

While there was a large overlap between the proteins identified

in the insoluble fractions, the extent to which specific proteins

aggregated varied greatly in a strain specific manner. Interest-

ingly, the proteins that showed increased aggregation in the

daf-2 mutant over WT are not generally more abundant at the

total proteome level (Figure 5B), indicating that abundance in

this case is not the main driver of aggregation. Similar findings

were made in the hsf-1 mutant (Figure 5C). On the other hand,

proteins that aggregated less in the daf-2 strain than in WT are

also generally less abundant (Figure 5B), which would allow

these proteins to maintain solubility.

Next, we compared the physico-chemical properties of the

insoluble proteins. Strikingly, the proteins that aggregate most

in the daf-2 mutant animals are predicted to have significantly

lower aggregation-propensity Z scores, are more charged,

display more structural disorder (coil average) (Sormanni et al.,

2015b), and are less hydrophobic compared to the proteins

A B C

D E F

Figure 4. Proteome-wide Analysis of Protein Aggregation during Aging

(A) Relative abundance of proteins in the insoluble fraction of WT animals during aging determined by SILAC quantification (see Figure S4C; Table S1D). At least

1,355 proteins were quantified at the different time points (�3,228 different proteins in total). ****p < 2.2 3 10�16 from Wilcoxon signed rank test.

(B) Distribution of aggregation propensities of proteins (insoluble protein as fraction of total protein) in WT animals at day 12 (median from three independent

experiments; Table S1E). Whole worm lysates and insoluble fractions were quantified against the same SILAC standard and ratios were calculated for each

protein in % of total (see Figure S4D).

(C) Relationship between aggregation propensity and total protein abundance. Proteins were divided into quantiles based on their measured aggregation

propensities (median values are indicated in %). LFQ was used to estimate total protein abundance (displayed as relative abundance values). ****p < 2.23 10�16

from Wilcoxon rank sum test.

(D) Protein abundance in the insoluble fraction is positively correlated with abundance in the total proteome (absolute LFQ values). Data for WT animals at day 12

are shown. The Pearson correlation coefficient R is indicated.

(E) Positive correlation between age-related protein abundance changes in the insoluble fraction and abundance changes for the same proteins in the total

proteome. Abundance differences measured by SILAC between aged (day 12) and young (day 1) WT animals are plotted. The Pearson correlation coefficient R is

indicated.

(F) Aggregation propensities of small HSP family members relative to the aggregation propensities of all quantified proteins in the proteome of day 12WT animals.

See also Figures S4 and S5 and Tables S1 and S4.
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A B C

D E

F G

Figure 5. Protein Aggregation in Lifespan Mutant Worms during Aging

(A) Increased aggregate load in daf-2mutant animals compared to WT, daf-16, and hsf-1mutant animals at day 12. Relative abundance values of proteins in the

insoluble fractionwere determined by SILACquantification. Therewere 1,367, 1,988, 1,449, and 1,485 proteins that were quantified inWT, daf-2, daf-16, and hsf-1

mutant animals, respectively (one representative out of four independent experiments is displayed; Table S1F). ****p < 2.23 10�16 fromWilcoxon signed rank test.

(B and C) Quantiled abundance of proteins in the insoluble fraction of daf-2 (352–354 proteins per quantile) (B) and hsf-1 mutant (292 proteins per quantile) (C)

relative to WT animals at day 12 plotted against differences in total protein abundance values. Quantile median values are indicated on the x axis. Proteins that

aggregated less in the mutant strains than in the WT have been grouped separately (91 proteins in daf-2 and 259 in hsf-1 mutant).

(D–G) Physico-chemical properties of proteins enriched in the insoluble fractions of daf-2 and hsf-1 mutant relative to WT animals at day 12.

(D) Aggregation propensity scores (intrinsic Z scores, see Extended Experimental Procedures). ***p < 1.4 3 10�4 and *p < 0:016, Wilcoxon rank sum test.

(E) Net charge. ****p < 4.9 3 10�11.

(F) Coil content. ***p < 1.1 3 10�4.

(G) Overall hydrophobicity. ****p < 2.9 3 10�7. Quantile median values are indicated on both axes and standard errors are reported on the y axis.

See also Figure S6 and Table S4.
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aggregating in WT (Figures 5D–5G). These findings support the

hypothesis of an extrinsic rescuing mechanism of aggregation

that is activated in the daf-2 mutant, modulating the intrinsic

properties of proteins that typically govern aggregation. As a

result, aggregation is enhanced for a set of proteins that have

certain properties resembling disease-associated proteins with

structural disorder (Knowles et al., 2014). By contrast, aggrega-

tion in the hsf-1 mutant correlates with intrinsic aggregation

scores (Figure 5D), consistent with a degeneration mechanism

arising from the premature decline of proteostasis.

Among the proteins that were strongly increased in the insol-

uble fraction of daf-2 mutant animals were several small HSPs

(Figure 6A). These proteins contribute �7% to total aggregate

load, suggesting that they may be involved in a ‘‘protective

aggregation response’’. Small HSPs were also enriched in

the insoluble fraction of hsf-1 mutant animals, although to a

lesser extent, but not in the aggregates of the daf-16 mutant

(Figure 6A). Besides small HSPs, 26S proteasome complexes

were enriched in the insoluble fractions (Figure 6B), most

A B

C

D E

Figure 6. Aggregation of Small HSPs and

Proteasome in Lifespan Mutant Worms

(A) Abundance of small HSPs in the insoluble

fraction of daf-2, daf-16, and hsf-1 mutant relative

toWT animals as determined by summed absolute

LFQ values. There were 6–11 different small

HSPs that were quantified. **p value < 0.0075 (WT

versus daf-2) and < 0.0022 (WT versus hsf-1) from

Welch’s t tests. Averages ± SD are given for four

replicate experiments.

(B) Abundance of 26S proteasome subunits in

the insoluble fraction of daf-2, daf-16, and hsf-1

mutant relative to WT animals. There were 19–27

subunits that were quantified. ***p < 2.1 3 10�4

(WT versus daf-2) and < 4.6 3 10�4 (WT versus

hsf-1) from Welch’s t tests. Averages ± SD are

given for four replicate experiments.

(C) Enrichment of the small HSPs HSP-16.1, HSP-

16.48, SIP-1, HSP-17, andQ9N350 in the insoluble

fractions of day 12WT (black circles), daf-2mutant

worms (red circles), and hsf-1 mutant worms

(purple circles). Data from two to four independent

experiments are shown.

(D and E) Formation of HSP-16.1 inclusions in

muscle cells is shown.

(D) Representative fluorescence images of muscle

cells of WT and daf-2 mutant animals expressing

HSP-16.1::GFP (top). Actin was stained with

rhodamine-phalloidin (bottom). Scale bar, 10 mm.

(E) Animals with HSP-16.1::GFP inclusions in

muscle cells were quantified (20 animals per

group). Averages ± SD are given in % of total.

*p < 0.01 from Welch’s t test.

See also Figure S6 and Table S1.

strongly in the daf-2 mutant strain, but

contributed only �1% to total aggregate

load.

Interestingly, the proportion of specific

small HSPs in the aggregates differed

between strains. SIP-1 and HSP-16.1

made the major contribution by mass to the aggregates in the

daf-2 mutant, while HSP-17 was most enriched in the aggre-

gates of hsf-1mutant animals (Figure 6C; Table S1F). To monitor

the behavior of HSP-16.1 during aging, we used strains express-

ing GFP-tagged HSP-16.1 (hsp-16.1::gfp) under its endogenous

promoter. HSP-16.1-GFP formed inclusions in muscle cells.

This phenomenon was strongly enhanced in daf-2 mutant

worms, with �60% of animals at day 12 containing inclusions,

compared to �20% in WT (Figures 6D and 6E). While the actin

architecture of muscle cells was well preserved in daf-2 mutant

animals, the muscles of day 15 WT animals showed a reduced

structural integrity (Figure 6D). Indeed, the daf-2mutant animals

displayed a higher proteostasis capacity, as reflected in their

ability to maintain the metastable FlucDM-GFP (Gupta et al.,

2011) expressed in muscle in a functionally active state. While

similar levels of total and soluble FlucDM-GFP protein were pre-

sent in day 12 WT and daf-2mutant worms, the latter contained

�4-fold more luciferase activity (Figure S6D). In contrast, a mus-

cle specific poly-glutamine (polyQ) protein construct (Q35-GFP)
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aggregated more extensively in daf-2 mutant worms already

early in adulthood (day 2), and semi-denaturing detergent

agarose gel electrophoresis (SDD-AGE) of worm lysates

revealed that the protein accumulated predominantly in higher

molecular weight, SDS-resistant oligomers (Figure S6E).

Taken together, these results suggest that daf-2 mutant ani-

mals drive a set of aberrant, potentially toxic proteins into insol-

uble aggregates, thereby sequestering them and improving

overall proteostasis. Small HSPs are likely to play a role in this

process.

DISCUSSION

Age-Dependent Deterioration of Proteome Balance
Organisms allocate considerable resources toward maintaining

proteome composition, including the relative balance of subunits

of multi-protein complexes (Li et al., 2014). Using quantitative

mass spectrometric methods, we have shown here that aging

in C. elegans is associated with the progressive failure to main-

tain protein homeostasis, resulting in extensive proteome re-

modeling and protein imbalances. These imbalances are largely

due to changes at the level of protein translation and turnover

and give rise to the accumulation of potentially harmful, aggrega-

tion-prone species (Figures 7A and 7B). Our analysis revealed

that the sequestration of such proteins in insoluble aggregates

is a protective strategy that contributes to maintaining proteome

integrity during aging.

The extensive proteome remodeling during aging inC. elegans

is contrary to observations in tissues of aged mice, where

comparatively minor proteomic changes were detected with a

similar experimental approach (Walther and Mann, 2011).

Evidently, mammals devote greater resources to maintaining

proteome balance, resulting in a more protracted proteostasis

decline. These differences correlate with different reproductive

strategies in worms and mice, in which the former display a

more extensive, time-restrained burst of reproduction, followed

by a rather rapid and massive decline of somatic functions.

Future studies on a range of metazoans will be necessary to

establish whether deterioration of proteome integrity during

aging or proteome stability is more typical.

Changes in the Proteostasis System during Lifespan
We showed that aging inC. elegans affects multiple components

of the proteostasis system, most prominently protein bio-

synthesis and protein degradation. A decrease in the levels of

cytosolic and mitochondrial ribosomal proteins was accompa-

nied by an overall reduction in protein synthesis. In contrast,

we observed an increase in the abundance of proteasome

subunits and a corresponding increase of in vitro proteasome

activity. These changes may initiate as a response to the altered

physiological requirements of the aging organism (Shore and

Ruvkun, 2013), but ultimately may prove insufficient or even

detrimental (Figure 7B). The reduction of the levels of cytosolic

ribosomes was associated with a pronounced imbalance in

the stoichiometry of ribosomal proteins. Thus, attenuating the

translational machinery as an adaptive measure imparts the

danger of dysregulation of the essential machines that ensure

balance of the proteostasis network, which in turn may promote

aging. In contrast, the increase in proteasomal subunits is likely

to represent an attempt of the organism to remove aberrant

protein species. Whether this proteasome upregulation is effec-

tive in vivo is unclear, however, given that proteasome function

is generally thought to decline as a result of aging and protein

aggregation (Hipp et al., 2014).

Protein Aggregation and Lifespan Extension
Previous studies demonstrated the formation of insoluble protein

aggregates in aged worms (David et al., 2010; Reis-Rodrigues

et al., 2012). Here, we performed an in-depth quantitative anal-

ysis of aggregation along the lifespan of C. elegans. We found

that aggregation is a proteome-wide process which initiates

mainly after day 6 of adulthood. Highly abundant proteins are

generally more soluble and display lower intrinsic aggregation-

propensities than less abundant ones, as previously predicted

(Tartaglia et al., 2009). However, this higher solubility is still not

sufficient in the end, as abundant proteins make by far the major

contribution by mass to the age-dependent aggregate load.

Importantly, proteome remodeling acts as a driver of aggrega-

tion by raising the level of a subset of proteins beyond a critical

solubility limit (supersaturation) (Ciryam et al., 2013) (Figure 7D).

While protein aggregation may be merely a consequence of

declining proteostasis capacity, our results provide evidence

that a protective aggregation response is also an important

mechanism of the aging organism to improve proteostasis and

mitigate the effects of proteome imbalance. We observed that

long-lived daf-2mutant animals accumulate increasing amounts

of insoluble proteins during aging and that such accumulation

correlates with a more effective maintenance of proteome

composition (Figure 7C). Whereas the proteins that aggregate

most in the short-lived hsf-1 mutant are predicted to be more

aggregation-prone, the enhanced aggregation in the long-lived

daf-2 mutant is much less dependent on intrinsic properties:

the proteins that are most enriched in the insoluble fraction

have lower aggregation scores, are less hydrophobic, more

charged, and contain more structural disorder, arguing for the

existence of an active, proteome-wide mechanism in promoting

aggregation. This conclusion is consistent with the view that

soluble oligomers are the major proteotoxic species in neurode-

generative diseases and that their sequestration into insoluble

aggregates reduces proteotoxicity (Arrasate et al., 2004; Cohen

et al., 2006, 2009). Interestingly, several highly toxic disease-

associated proteins are rich in disordered structure and have

low overall hydrophobicity (Knowles et al., 2014; Vendruscolo

et al., 2011), properties resembling those of the proteins with

enhanced aggregation in the daf-2mutant. Indeed, amechanism

of aggregate deposition under regulation of the insulin signaling

pathway has been proposed for disease-related protein species,

such as toxic Ab peptide (Cohen et al., 2006). However, that

an overall protective aggregate response operates at the

proteome-scale during aging was not anticipated.

We assume that this protective aggregation response is only

partially activated during normal C. elegans aging. As a result,

WT worms are expected to accumulate a larger soluble pool of

aberrant, potentially toxic proteins than daf-2 mutant animals,

eventually exhausting the available chaperone capacity needed

for protein folding and conformational maintenance and the
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clearance of misfolded polypeptides (Figures 7B and 7C).

Formation of insoluble aggregates may also be an, albeit insuffi-

cient, rescue attempt in the short-lived hsf-1 mutant strain.

Among the proteostasis components with strongly enhanced,

age-dependent insolubility were multiple small HSPs, a specific

class of chaperones known to associate with aggregation-prone

A B C

D

Figure 7. Proteome Maintenance during Aging in C. elegans

(A) The proteome of young adult WT worms is maintained in balance by the proteostasis system. Aberrant protein species, including metastable conformers and

soluble aggregates (red) are efficiently cleared.

(B) In aged WT animals, numerous proteins increase in abundance and normal protein stoichiometries are lost due in part to a relief of miRNA-mediated

translational repression. The amount of aggregation-prone species exceeds clearance capacity and insoluble aggregates associated with small HSPs

accumulate. Mechanisms of protective aggregate formation are partially activated, and proteostasis is strongly reduced.

(C) Proteostasis collapse is delayed in aged daf-2mutant worms. Proteome imbalance and the soluble aggregate pool are reduced relative to age-matched WT

animals, as clearance by protein degradation may be more effective and protective aggregate formation is fully activated.

(D) Protein aggregate loads increase proportionally to protein abundance. Although abundant proteins have lower aggregation propensities, they contributemore

to aggregate load (see Figure 4). The age-dependent increase in expression level affects the subproteome of supersaturated proteins, which fail to maintain

solubility as their levels increase and proteostasis capacity declines.
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proteins (Haslbeck et al., 2005). The small HSPs were most en-

riched in the insoluble fraction of daf-2mutant worms, consistent

with the view that they may play a role as ‘‘extrinsic’’ promoters

of aggregation. In support of this possibility, individual RNAi

knockdown of several small HSPs, including SIP-1, caused a

25% shortening of lifespan in WT and daf-2 mutant worms

(Hsu et al., 2003) and overexpression resulted in lifespan exten-

sion (Walker and Lithgow, 2003). Having multi-valent binding

ability for aberrant proteins, the small HSPs may act to seed

and concentrate aggregate material, consistent with findings

in vivo (Escusa-Toret et al., 2013; Kaganovich et al., 2008;

Specht et al., 2011) and in vitro (Haslbeck et al., 2005; Jiao

et al., 2005). The co-existence of multiple small HSPs suggests

that different forms may vary in their structural specificity for

endogenous proteins. Notably, small HSPs are also transcrip-

tionally induced in the aging brain, while most other major

chaperone components are downregulated (Brehme et al.,

2014). The association of the 26S proteasome with the aggre-

gates may also be functionally relevant. Although aggregates

can inhibit the proteolytic activity of the proteasome (Andersson

et al., 2013; Hipp et al., 2014), evidence has been presented that

the ATPase chaperones of the 19S proteasome may promote

aggregation (Rousseau et al., 2009).

Collectively, our data suggest that aging in C. elegans is

associated with a progressive loss of proteome balance, which

drives the accumulation of surplus and aberrant protein species

that overburden the proteostasis system. As the maintenance

of protein solubility imposes stringent constraints on proteome

composition, effective aggregate management appears to be

critical in determining lifespan.

EXPERIMENTAL PROCEDURES

C. elegans Strains and Growth Conditions

A list of strains used in this study is provided in the Extended Experimental

Procedures. The Bristol strain N2 was used as WT. The L4 larval stage was

considered as day 0. Bacterial cultures (ET505) for SILAC labeling were grown

in 13C6-
15N2-lysine (heavy lysine) containing M63 minimal media (Krijgsveld

et al., 2003) (see Extended Experimental Procedures for details).

Sample Preparation for Total Proteome Measurements

Briefly, worms were suspended in lysis buffer (4% SDS, 0.1 M Tris/HCl pH 8.0,

and 1 mM EDTA), incubated at 95�C for 5 min, and further treated by ultra-

sonication. Typically, an aliquot of lysate containing 40 mg of protein wasmixed

with an equal amount of a heavy lysine labeled lysate pool (Figure 1A).

Proteins were reduced, alkylated, and digested with endoproteinase LysC

using the filter-aided sample preparation (FASP) method (Wi�sniewski et al.,

2009). Peptide mixtures were either analyzed without fractionation or after

fractionation by isoelectric focusing, as described in the Extended Experi-

mental Procedures.

Isolation of Protein Aggregates

Worms were resuspended in lysis buffer (50 mM Tris/HCl pH 8.0, 0.5 M NaCl,

4 mM EDTA, 1% volume/volume (v/v) Igepal CA630, and complete protease

inhibitor cocktail; Roche Diagnostics), disrupted by sonication, and clarified

by low-speed centrifugation (1 min, 1,000 relative centrifugal force [rcf]). Insol-

uble proteins were sedimented by ultracentrifugation (500,000 rcf at 4�C,
10 min), washed twice with lysis buffer containing 0.15 M NaCl and 0.5%

sodium deoxycholate, and solubilized in SDS sample buffer for 10 min at

95�C. For quantitative proteome measurements of aggregated proteins, an

aliquot of pooled total lysate from heavy lysine labeled animals was added

prior to ultracentrifugation. For experiments measuring aggregation propen-

sities, unlabeled worm lysates were first fractionated and subsequently sup-

plemented with SILAC-labeled whole cell lysate.

MS and Data Analysis

Peptides were separated by reversed phase nano-high-performance liquid

chromatography (HPLC) and sprayed online into LTQ-Orbitrap Velos or

Orbitrap-Elite mass spectrometers (Thermo Fisher). In each scan cycle, frag-

mentation spectra of the ten most intense peptide precursors in the survey

scan were acquired in the higher-energy collisional dissociation (HCD) mode.

Raw data were processed using the MaxQuant software environment (Cox

and Mann, 2008) and peak lists were searched with Andromeda (Cox et al.,

2011) against a database containing the translation of all predicted proteins

listed in UniProt (release January 15, 2012), as well as a list of commonly

observed contaminants and the National Center for Biotechnology Information

(NCBI) protein database of E. coli strain K12. The minimal required peptide

length was set to seven amino acids and both protein and peptide identifica-

tions were accepted at a false discovery rate of 1%. To identify aggregation-

prone proteins that were significantly affected by aging, those proteins that

were quantified in at least three out of four biological replicate experiments at

day 1 and day 12 were subjected to a Welch’s t test and filtered based on a

5% permutation-based false discovery rate threshold.

Miscellaneous

Proteasome activity assays, detection of polyQ aggregates by SDD-AGE, light

microscopy, and methods used for bioinformatic analyses are described in

the Extended Experimental Procedures.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Strains
C.elegans strains were maintained by standard methods (Brenner, 1974). The Bristol strain N2 was used as wild-type. The following

mutants and transgenic strainswere used: CB1370 [daf-2 (e1370)III], CF1038 [daf-16 (mu86)I], PS3551 [hsf-1 (sy441)I], DA1113 [eat-2

(ad1113)II], AM140 [rmIs132 [P(unc-54) q35::yfp]], FUH135 [marIs135 [P(unc-54) Fluc-DM::gfp]+rol-6 (su1006)], FUH139 [marIs139

[P(unc-54) Fluc-DM::gfp]+rol-6 (su1006)], FUH179 [daf-2 (e1370); marIs139 [P(unc-54)Fluc-DM::gfp]+rol-6 (su1006)], FUH219

[(daf-2 (e1370); rmIs132 [P(unc-54) q35::yfp]], FUH236 [[P(hsp-16.1) hsp-16.1::gfp]+rol-6 (su1006)] and FUH237 [(daf-2 (e1370);

[P(hsp-16.1) hsp-16.1::gfp]+rol-6 (su1006)].

Growth Conditions
Bacterial cultures (ET505) for SILAC labeling were grown in 13C6-

15N2-lysine (heavy lysine) containing M63minimal media, harvested

by centrifugation and washed. Suspensions were spotted onto nitrogen-free agarose plates (Krijgsveld et al., 2003). The incorpora-

tion of heavy lysine into the proteome was more than 99% after four reproductive cycles. Worm eggs were collected and synchro-

nized populations of L1 larvae were obtained by overnight growth in M9medium. The L4 larval stage was considered to be day 0 and

larvae were transferred at this time point to new plates with or without 10 mM fluorodeoxyuridine (FUdR). For total proteome mea-

surements FUdR was omitted and progeny was removed by repeated sedimentation. Dead worms were removed manually before

harvesting.

Sample Preparation for Total Proteome Measurements
Wormswere rinsed off plates andwashedwithM9 salt solution tominimize bacterial contamination.Worm pellets were resuspended

in lysis buffer (4% SDS, 0.1 M Tris/HCl pH 8.0, 1 mM EDTA), incubated at 95�C for 5 min and sonicated in a Bioruptor (Diagenode,

Liège, Belgium) ultrasonication bath for 10min at high energy setting. Lysates were clarified by centrifugation (20,000 x g, 10min) and

protein concentration was quantified using the BCA assay kit (Pierce, Rockford, IL). In a typical experiment, 40 mg of total protein

lysate wasmixed with an equal amount of a 13C6-
15N2-lysine labeled lysate pool consisting of equal parts of lysates fromWT animals

aged 1, 6, 12 and 17 days. Proteins were reduced, alkylated and digested with endoproteinase LysC (Wako Bioproducts, Richmond,

VA) using the FASPmethod (Wi�sniewski et al., 2009). Peptide mixtures were either analyzed without fractionation or desalted via C18

solid phase extraction (SPE) cartridges (3M, St. Paul, MN) and subjected to isoelectric focusing on anOFFGEL system (Agilent, Santa

Clara, CA) using 13 cm linear immobilized pH gradient strips with a pH range from 3 to 10 according to published procedures (de

Godoy et al., 2008; Hubner et al., 2008). Fractionated or unfractionated peptides were purified via StageTips (Rappsilber et al., 2007).

Biochemical Isolation of Protein Aggregates
Approximately 600 worms were resuspended in 550 ml lysis buffer (50 mM Tris/HCl pH 8.0, 0.5 M NaCl, 4 mM EDTA, 1% (v/v) Igepal

CA630, Complete proteinase inhibitor cocktail (Roche Diagnostics, Mannheim, Germany)) and sonicated for 8 min at 0�C in a Bio-

ruptor sonication bath at high energy setting. Lysates were clarified (1,000 g, 1 min, 4�C) and protein content was adjusted to equal

levels. For proteomemeasurements, a lysate pool of 13C6-
15N2-lysine labeled animals wasmixed with each of the samples. Insoluble

proteins were sedimented by ultracentrifugation (500,000 rcf, 4�C, 10min) and subsequently washed twice with modified RIPA buffer

(50 mM Tris/HCl pH 8.0, 0.15 M NaCl, 4 mM EDTA, 1% (v/v) Igepal CA630, 0.5% sodium deoxycholate, complete protease inhibitor

cocktail) before solubilization in 2% SDS containing sample buffer for 10 min at 95�C. Proteins were resolved by SDS-PAGE and

either analyzed by Coomassie staining or immunoblotting, or processed for MS analysis by in gel digestion and StageTip purification.

MS and Data Analysis
Peptides were separated on C18 reversed phase nano-HPLC columns (Nagaraj et al., 2011; Walther and Mann, 2011) with gradient

durations of 140 or 280 min for fractionated or unfractionated samples, respectively, and sprayed online into LTQ-Orbitrap Velos or

Orbitrap-Elite mass spectrometers (Thermo Fisher Scientific, Bremen, Germany) (Michalski et al., 2012; Olsen et al., 2009). In each

scan cycle, fragmentation spectra of the 10 most intense peptide precursors in the survey scan were acquired in the higher-energy

collisional dissociation (HCD) mode (Olsen et al., 2005). Raw data was processed in the MaxQuant software environment (Cox and

Mann, 2008) and peak lists were searched with Andromeda (Cox andMann, 2011) against a database containing the translation of all

predicted proteins listed in Uniprot (release January 15, 2012) as well as a list of contaminants including commonly observed human

keratins as well as the NCBI protein database of E. coli strain K12 (release date January 25, 2010). The minimal required peptide

length was set to seven amino acids and both protein and peptide identifications were accepted at a false discovery rate of 1%.

Proteomics raw data and selected MaxQuant output files have been deposited to the ProteomeXchange Consortium (Vizcaı́no

et al., 2014) via the PRIDE partner repository with the dataset identifier PXD001364.

Proteasome Activity Assays
Worms were lysed by ultrasonication in the presence of 2 mM ATP and proteasomal activity was performed as previously described

using the fluorogenic substrate Z-Gly-Gly-Leu-AMC (Kisselev and Goldberg, 2005; Vilchez et al., 2012).
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Immunostaining and Microscopy
WT or daf-2 mutant worms expressing HSP-16.1::GFP were mounted on a 2% agar pad in 0.25 mM levamisole. A minimum of 20

wormswere scored for each strain. To visualize actin, wormswere fixed in acetone and stained with rhodamine-phalloidin (Molecular

Probes R415). Fluorescence imaging was performed on a Zeiss Axiovert fluorescence microscope.

In Silico Aggregation Propensity Calculations
As the observed insoluble aggregates are unlikely to be all of amyloid nature, to predict the intrinsic aggregation propensity of

proteins we adopted the recently developed CamSol method (Sormanni et al., 2015a), which avoids the bias of the Zyggregator

method of predicting specific amyloid aggregation rates (Tartaglia and Vendruscolo, 2008). We started from the CamSol intrinsic

solubility profile, which consists of a score for each residue along the sequence, and used it as a starting point to calculate a single

aggregation propensity score (‘Z-score’) for each protein. The main principle defining this Z-score from the CamSol intrinsic profile is

that the overall aggregation propensity of the protein should be proportional to the contribution given by the regions of the sequence

that are aggregation-prone, attenuated by the regions that are aggregation-resistant, and normalized with respect to the protein

length.

The CamSol intrinsic profile is calculated using a linear combination of physico-chemical properties of amino acids that have

generally been associated with the solubility of proteins (Chiti et al., 2003, Fernandez-Escamilla et al., 2004, Pawar et al., 2005, Pech-

mann et al., 2009), namely hydrophobicity, electrostatic charge, and a-helical and b sheet propensities. The Wimley-White scale

(Wimley and White, 1996) is selected as hydrophobicity scale and a-helix and b sheet propensities are calculated from the Protein

Data Bank (PDB) using representative structures with a filter of 50% sequence identity (Sormanni et al., 2015a). The linear combina-

tion results in the position-dependent score si, which for a given residue i, is thus:

si = ahydp
hyd
i + aCp

C
i + aap

a
i + abp

b
i (1)

where phyd
i , pC

i , p
a
i and pb

i are the hydrophobicity, the charge (at neutral pH), the a-helical and the b sheet propensities, respectively,

while the a values represent the constants of the linear combination (Sormanni et al., 2015a). The si values are then smoothed over a

seven amino-acid window in order to account for the effects of neighboring residues, and corrected with two additional terms to pro-

vide the intrinsic solubility profile Si

Si =
1

7

X3

j =�3
si + j + apatI

pat
i + agkI

gk
i (2)

where Ipati is the correcting term that takes into account the presence of specific patterns of alternating hydrophobic and hydrophilic

residues and Igki is the correcting term that takes into account the gatekeeping effect of individual charges, defined as

Igki =
X5

j =�5
e� j4

200 ci + j: (3)

where ci + j is the charge of the amino acid i+j.

Once the intrinsic CamSol profile Si is obtained, the overall aggregation propensity score (Z-score) can be defined as

Z = �
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where
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is the residue-specific aggregation-prone contribution, which is dependent on the parameter thdown, that represents a minimum

‘aggregating score threshold’ filtering the regions of the profile that contribute to the overall aggregation propensity,

~S
up

i ðthupÞ=
�
Si � thup if Si > thup

0 if Si % thup

is the residue-specific aggregation-resistant contribution, which is dependent on thup parameter, which is the threshold that filters the

regions of the profile that act to attenuate the overall aggregation propensity, uup
i and udown

j are the soluble-region weights and ag-

gregation-prone region weights respectively, L is the length of the protein and g and d are two constants that specify the functional

law of the Z-score with respect to the protein length. The minus sign in the formula refers to our sign convention for which

higher Z-scores represent higher aggregation propensity, while lower Z-scores indicate higher solubility. The parameters

thup; thdown; uup
i ;udown

j ; g and d, have been tuned with aMonte Carlo simulation aimed at maximizing both the correlation coefficient

S2 Cell 161, 919–932, May 7, 2015 ª2015 Elsevier Inc.

44 Proteostasis imbalance and widespread aggregation in ageing C.elegans



of the Z-score with an ensemble of protein aggregation rates measurements available in the literature (DuBay et al., 2004), and the

efficiency in the separation of the Z-score distributions of two datasets of known non-aggregating and aggregating peptides respec-

tively, obtained from a systematic literature search.

Accuracy in the binary prediction of aggregate and non-aggregate peptide datasets has been tested upon finishing the optimiza-

tion, and an additional correlation control has been performed with the solubility of a set of protein mutants (Sormanni et al., 2015a).

Statistics and Bioinformatic Analysis
Prediction of subcellular localization, signal sequences and transmembrane segments were performed using WoLF PSORT (Horton

et al., 2007), SignalP (Petersen et al., 2011) and TMHMM v. 2.0 (Krogh et al., 2001) algorithms, respectively. Further annotation

included predicted tissue specificity of expression (Chikina et al., 2009), analysis of Pfam protein families (Finn et al., 2008) and

gene ontology databases (Ashburner et al., 2000). Benjamini-Hochberg FDR-controlled Fisher Exact test as well as one- and two-

dimensional annotation enrichment analysis was performed in the Perseus data analysis suite (Cox andMann, 2012). Fuzzy c-means

clustering of time course profiles was carried out using the Mfuzz package in the statistical programming language R (Kumar and

Futschik, 2007).

In time course analyses of individual proteins inWT animals, only those proteins were displayed that were quantified at day 1 and at

least at three consecutive time points. Statistical significance of abundance differences of protein subsets across different time

points or strains were generally performed using the Wilcoxon signed rank test in which only those proteins were considered that

were quantified in both conditions. To identify aggregation-prone proteins that were significantly affected by aging, those proteins

that were quantified in at least 3 out of 4 biological replicate experiments at day 1 and day 12 were subjected to a Welch’s t test

and filtered based on a 5% permutation-based false discovery rate threshold.
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Nagaraj, N., Wisniewski, J.R., Geiger, T., Cox, J., Kircher, M., Kelso, J., Pääbo, S., and Mann, M. (2011). Deep proteome and transcriptome mapping of a human

cancer cell line. Mol. Syst. Biol. 7, 548.

Olsen, J.V., de Godoy, L.M., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., Horning, S., and Mann, M. (2005). Parts per million mass ac-

curacy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021.

Olsen, J.V., Nielsen, M.L., Damoc, N.E., Griep-Raming, J., Moehring, T., Makarov, A., Schwartz, J., Horning, S., and Mann, M. (2009). Characterization of the

Velos, an Enhanced LTQ Orbitrap, for Proteomics. Mol. Cell. Proteomics 8, S40.

Pawar, A.P., Dubay, K.F., Zurdo, J., Chiti, F., Vendruscolo, M., and Dobson, C.M. (2005). Prediction of ‘‘aggregation-prone’’ and ‘‘aggregation-susceptible’’ re-

gions in proteins associated with neurodegenerative diseases. J. Mol. Biol. 350, 379–392.

Cell 161, 919–932, May 7, 2015 ª2015 Elsevier Inc. S3

2.3 Publication 45



Pechmann, S., Levy, E.D., Tartaglia, G.G., and Vendruscolo, M. (2009). Physicochemical principles that regulate the competition between functional and dysfunc-

tional association of proteins. Proc. Natl. Acad. Sci. USA 106, 10159–10164.

Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8,

785–786.

Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using

StageTips. Nat. Protoc. 2, 1896–1906.

Tartaglia, G.G., and Vendruscolo, M. (2008). The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev. 37, 1395–1401.

Vizcaı́no, J.A., Deutsch, E.W., Wang, R., Csordas, A., Reisinger, F., Rı́os, D., Dianes, J.A., Sun, Z., Farrah, T., Bandeira, N., et al. (2014). ProteomeXchange pro-

vides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226.

Wimley, W.C., and White, S.H. (1996). Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842–848.

S4 Cell 161, 919–932, May 7, 2015 ª2015 Elsevier Inc.

46 Proteostasis imbalance and widespread aggregation in ageing C.elegans



Figure S1. Proteomic Analysis of Aging in C. elegans, Related to Figure 1

(A) Reproducibility of SILAC-based proteomic analyses. Four biological replicates of WT animals at the indicated ages were collected independently and their

proteomes were analyzed by quantification against the same SILAC spike-in standard. Each one of the four replicates (open circles) was prepared on a different

day than the remaining three (closed circles). Principal component analysis shows that different individuals of the same age cluster closely together in the two-

dimensional plot, demonstrating that the sum of technical and biological variation is much smaller than the age-related changes in theC. elegans proteome (Table

S1A). On a whole proteome level, this allows analyzing results as a function of age only, and to disregard technical variation and differences between individual

worms.

(B) Comparison of GO categories of proteins that changed in abundance in the early (day 6 versus day 1) and late stage in life (day 22 versus day 6) of WT animals

(Table S2A). All terms that were significantly affected in either of the two periods are displayed (Wilcoxon rank sum test at 5% Benjamini Hochber FDR) and their

relative changes were plotted against each other. The dashed gray line indicates the position of categories which are equally affected early and late in life.

Selected outliers are indicated in the plot.

(C) Correlation between transcriptome data (Golden andMelov, 2004) and the proteomics dataset of this study. The Pearson correlation R between both datasets

is displayed.

(D) Proteins that increase in abundance during aging are targets for dicer-mediated miRNA repression (Welker et al., 2007). The fractions of dicer (dcr-1) targets

(transcriptionally upregulated in dcr-1mutants) among proteins that increased > 4-fold (50 of 133 proteins) or > 2-fold (99 of 357 proteins) in abundance from day 6

to day 22 of aging as well as proteins that decreased < 4-fold (6 of 66 proteins) or < 2-fold (25 of 325 proteins) in abundance or remained within threshold (less than

2-fold change in either direction) (173 of 3307 protein) are shown.

(E) Significantly affected functional categories among the proteins that increased 2-fold (left panel) or decreased 2-fold (right panel) in abundance in aged (day 22)

animals. The enrichment factors of gene ontology (GO) terms are plotted against the p-value derived from Fisher Exact tests. Each term is represented by a circle.

The size of the circle reflects the number of proteins affected. Only categories with at least 4 members are displayed. Selected categories are indicated (Tables

S2B and S2C).

(F) Abundance change of TTR-like proteins during aging.

(G) Abundance change of quantified subunits of the mitochondrial respiratory chain complex I during aging. At least 17 subunits were quantified at each time

point. ****p-value < 1.53 3 10�15 from Wilcoxon signed rank test.
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Figure S2. Abundance Changes in Components of the Proteostasis Network during Aging in WT Animals, Related to Figure 2

(A) The proteostasis network (PN) is divided into three main categories: protein synthesis (green), comprising transcription factors, translation factors and

ribosomal components; conformational maintenance (blue), comprising components involved in folding and stress response; and degradation (red), comprising

components involved in the ubiquitin proteasome system and autophagy (Table S3A).

(B) Decline of protein synthesis during aging determined by SILAC pulse labeling. Animals aged 1, 4, 6 or 12 days were transferred to a heavy lysine-labeled food

source for 24 hr. Boxplot shows the distribution of heavy lysine incorporation into proteins. At least 500 proteins were quantified at each time point (Table S1C).

p-value < 2.2 3 10�16 from Wilcoxon signed rank test.

(C) Chymotryptic proteasome activity in lysates of old (day 12) and young (day 1) worms, as measured with fluorogenic synthetic peptide as substrate in the

presence of ATP (see Extended Experimental Procedures). Assays were performed in the absence (DMSO) or presence of proteasome inhibitors lactacystin

(100 mM) or MG132 (25 mM). Error bars represent standard deviations from 6 replicate experiments. p-value < 7.4 3 10�13 from Welch’s t test.

(D–I) Abundance change of proteins involved in protein folding and stress response in WT. Autophagy-related components (D), DnaJ/Hsp40 homologs (E), TPR

domain proteins that potentially interact with chaperones (Haslbeck et al., 2013) (F), subunits of the TRiC/CCT chaperonin (G), components of the mitochondrial

PN (H), components of the endoplasmic reticulum PN (I) (Table S3B).
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Figure S3. Proteome Changes in WT and IIS Mutant Worms, Related to Figure 3

(A) Proteome imbalance in WT, daf-2, daf-16 and hsf-1 mutant animals expressed as proteome imbalance index. Abundance differences of proteins that

increased (left) or decreased (right) in abundance during aging relative to day 6 were summed up for each strain and normalized to the number of quantified

proteins. The total number of quantified proteins was similar in the different worm strains and ranged from �3743 to �4700 proteins (Table S1B).

(B–E) Abundance profiles of catalases (B), SOD proteins (C), and small HSPs (D) along the lifespan of WT, daf-2, daf-16 and hsf-1 animals. Log2 changes in

abundance are shown relative to WT animals at day 1.

Cell 161, 919–932, May 7, 2015 ª2015 Elsevier Inc. S7

2.3 Publication 49



A

Before HS After HS Recovery

In
so

lu
bl

e 
Fl

uc
D

M
-G

FP
 (A

U
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 ** **

B

Day 01 Day 19

In
so

lu
bl

e 
Fl

uc
D

M
-G

FP
 (A

U
)

0.0

0.5

1.5

1.0

D

Ratio/ratio comparison and data analysis

Day 12

SolubleInsoluble

Aggregate isolationTotal 
lysate

Total lysate

Mix 1:1

C

Day 1 Day 6 Day 12....

in-gel digestion, nLC-MS

Ratio/ratio comparison and data analysis

SILAC-standard

Mix 1:1

Aggregate isolation

m/z m/z m/zIn
te

ns
ity

Total 
lysate Total lysate

in-gel digestion, nLC-MS

m/z m/z m/zIn
te

ns
ity

**

SILAC-standard

Figure S4. Isolation of Insoluble Aggregates from Worm Lysates, Related to Figure 4

(A and B) Validation of the biochemical procedure for the isolation of insoluble protein aggregates was performed with WT worms expressing FlucDM-GFP, a

destabilized double mutant of firefly luciferase fused to GFP (Gupta et al., 2011) in body wall muscle cells.

(A) FlucDM-GFP expressing worms (day 1) were exposed to heat shock (33�C for 90 min), followed by recovery for 90 min at 20�C. Insoluble fractions were

isolated from worm lysates by centrifugation (see Experimental Procedures), analyzed by immunoblotting with anti-luciferase antibodies, and quantified by

densitometry. Error bars represent standard deviations from three independent experiments. **p-value < 0.01, Welch’s t test.

(B) Fraction of insoluble FlucDM-GFP in young (day 1) and old (day 19) WT worm populations analyzed as above. Error bars represent standard deviations from

four independent experiments. **p-value < 0.01, Welch’s t test.

(C) Experimental design for the quantitative analysis of insoluble proteins. Synchronized worm populations at different ages were lysed and mixed with a

metabolically (SILAC) labeled internal protein standard. Insoluble proteins were isolated, separated by SDS-PAGE, subjected to in gel digestion and analyzed by

nano-HPLC coupled MS.

(D) Experimental design for the analysis of protein aggregation propensities. Lysates from aged worms (day 12) were fractionated. Total lysates as well as

insoluble and soluble fractions were quantified against an identical SILAC standard to determine the insoluble and soluble fraction of each protein.
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Figure S5. Proteomic Analysis of Protein Aggregation during Aging, Related to Figure 4

(A) Procedure for aggregate isolation does not enrich for membrane proteins. Proportions of identified proteins in total and insoluble fractions for soluble proteins

and proteins that were predicted to contain at least one transmembrane segment (TMS) are shown. TMS were predicted with THMM.

(B andC) Physico-chemical properties of proteins that affect aggregation behavior. The overall hydrophobicity (B) of proteins (which is associatedwith a tendency

of forming a stabilizing hydrophobic core) increases with their abundance, and the aggregation propensity score (Z-score; see Extended Experimental Pro-

cedures) of the proteins (C) decreases with their abundance, indicating that highly abundant proteins tend to be more soluble.

(D) GO annotation distribution among proteins with high and low intrinsic aggregation propensities in WT animals at day 12. Enrichment scores and p-values of a

Wilcoxon rank sum test are plotted against each other. Only categories with a cutoff of 5% Benjamini-Hochgerg FDR and at least 4 proteins are displayed

(Table S4A).

(E) Members of the small HSP family of molecular chaperones display a high aggregation rate compared to the overall distribution of aggregation propensities of

all quantified proteins in the proteome of day 12 WT animals (Wilcoxon rank sum test p-value: 3.4 e-3).
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Figure S6. Protein Aggregation in Lifespan Mutant Worms during Aging, Related to Figure 5

(A) Time course analysis of protein aggregation in daf-2, daf-16 and hsf-1mutants, compared to WT. Boxplots of SILAC ratios as in Figure 5A are shown. In this

experiment fractionation of hsf-1 mutant animals of 12 days of age was not reliable due to the limited number of live worms recovered. Number of quantified

proteins: WT day 1, 2010; day 6, 1698; day 12, 1987; day 17, 1355; daf-2mutant day 1, 1093; day 6, 1103; day 12, 2660; day 17, 1599; day 22, 1572; day 28, 1759;

daf-16mutant day 1, 1120; day 6, 993; day 12, 1366; hsf-1mutant day 1, 1318; day 6, 1739 (Table S1D). ****p-value < 2.23 10�16 fromWilcoxon signed rank test.

(B) Analysis of differential aggregation between aged daf-2mutants andWT animals (day 12). Worm samples were separated into soluble and insoluble fractions

and analyzed by SDS-PAGE and Coomassie staining. Note that only 25% of total and soluble fraction is loaded. One representative out of 3 independent ex-

periments is shown.

(C) Annotation distribution analysis of differential aggregation between daf-2 and WT animals at 12 days of age. Enrichment scores and p-values of a Wilcoxon

rank sum test are plotted against each other (Table S4B).

(D) Increased proteostasis capacity in daf-2 mutant worms. Fluc-DM-GFP and luciferase activities were measured by immunoblotting with anti-luciferase

antibody and luminescence assay, respectively, in 12 days old WT and daf-2mutant worms expressing muscle-specific Fluc-DM-GFP. Protein levels, activities

and specific activities (activities per amount of FlucDM-GFP protein) are given in arbitrary units with values in WT set to 1. Results from 7 independent mea-

surements ± SD are shown. ***p-value < 0.0001; **p-value < 0.001, Welch’s t test.

(E) SDD-AGE analysis of WT and daf-2 mutant worms expressing muscle-specific Q35-GFP. Worm extracts from 2 days old animals were analyzed with and

without incubation at 95�C for 10min. Q35-GFP was visualized by immunoblotting. Note that total amounts of Q35-GFP detected after heat treatment are similar

in WT and daf-2 mutant extracts.
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2.4 Importance of the analysis

Experimental data of MS-based protein abundances shows that widespread protein

aggregation occurs upon ageing in WT nematodes as the proteostasis machinery

gets impaired and the proteome remodelled (Figure 4 and 1 in section 2.3). The

phenomenon of protein aggregation was already largely associated with pathological

events, namely misfolding and neurodegenerative diseases [59, 62, 67, 96, 230].

Intuitively, since we observe in WT animals that the amount of protein aggregates

increases upon ageing (Figure 4A, section 2.3), we would expect the long-lived

strain daf-2 to show a lower amount of inclusions than the WT when comparing age-

matched data points. Conversely, we would logically expect the short-lived mutant

strain, hsf-1, to accumulate more aggregates than the WT upon ageing. However,

both long-lived and short-lived mutants exhibit the presence of more insoluble protein

deposits than the WT strain as the animals grow older instead (Figure 5A and S6A,

section 2.3). Aggregation is also widespread in long-lived and short-lived strains,

with more than a thousand proteins forming insoluble aggregates. This translated

in a large overlap between the proteins identified as forming deposits, however the

extent by which each protein would aggregate was very diverse across the strains

(Figure 5 and S6, section 2.3).

To understand the differences in the aggregation observed in WT, short-lived

and long-lived strains, we asked whether the overall extent of insoluble material

accumulated differently across the strains could be explained in terms of some

specific, general physico-chemical principles. Since both short-lived and long-lived

animals were forming more aggregates than WT at day 12 of adulthood (when

proteostasis decline is observed in the WT strain), we separated in the analysis the

proteins forming less aggregates in hsf-1 (short-lived) compared to WT and daf-2

(long-lived) compared to WT. For all the remaining proteins in daf-2 or hsf-1 forming

more aggregates than WT at day 12, we looked for a collective differential behaviour

in terms of aggregated mass reflected in a given physico-chemical property. For each

mutant strain, long- or short-lived, we grouped the proteins forming more aggregates
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into four quartile groups, according to the fold difference in their aggregated mass

with respect to the WT strain. In each group, we then evaluated aggregation-related

physico-chemical properties using the Camsol Intrinsic method discussed in section

2.2 and 2.3 and the s2D predictor of secondary structure populations [209]. This

enabled us to highlight which kind of properties may drive the accumulation of

insoluble aggregates in the long-lived and short-lived strains compared to the WT

animals.

In Figure 5 D-G of section 2.3 we report the physico-chemical properties that we

found were significantly modulated by the amount of insoluble aggregates present in

either the long- or short-lived strains compared to the WT. Strikingly, a completely

different pattern emerges when we compare the aggregation increase in the daf-2

strain and in the hsf-1 strain against the WT in terms of physico-chemical principles.

While proteins aggregating the most in the short-lived strain compared to the WT

are the most aggregation prone (Figure 5D, right scatter plot with violet points),

this pattern is reversed in the long-lived strain (Figure 5D, left scatter plot with red

points). Also, proteins forming increasingly more aggregates in the daf-2 strain

compared to the WT are more charged, disordered and hydrophilic (Figure 5E-G,

section 2.3), suggesting that the enhanced aggregation observed in this long-lived

strain is not the result of an intrinsic pathological process accompanying proteostasis

decline. Instead, it could be the result of an extrinsic mechanism triggered by the

organism to remove soluble, toxic oligomeric species by assembling them into larger

insoluble deposits, in order to restore protein homeostasis.

Combining the experimental information of the protein aggregate abundances

with the in silico physico-chemical properties predictions thus represented a key

step in understanding the molecular bases of proteostasis disruption and its restoring.

Furthermore, it provided the first pieces of evidence, in a living organism, of a protec-

tive proteome-wide aggregate response activated upon ageing to restore functional

protein balance.



Chapter 3

Life Over the Solubility Edge

in ageing C. elegans
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3.1 Introduction

Almost a decade ago, Tartaglia and co-workers proposed the existence of a strong

anticorrelation between the aggregation rates, which were measures in vitro of the

limited group of proteins available in the literature at the time, and the corresponding

human mRNA expression levels measured in vivo [130]. This anticorrelation was

explained as a net result of two opposing effects on the primary sequence of a

protein. On one side, the effect of random mutations, which tend to increase the

aggregation propensity of the protein; and on the other side the effect of evolution,

which push to keep the protein soluble at the concentration required in the cell for

their biological roles [231–235]. Hence, proteins would have co-evolved with their

cellular environment to be sufficiently soluble at the levels at which they need to

be expressed in the cell for optimal functioning, therefore not much affected by the

cellular macromolecular crowding [236], but with almost no margin of safety to

respond to genetic or environmental factors that either decrease their solubility or

increase their cellular concentration [130]. This co-evolution involves the presence

of a complex network of cellular machineries, the protein homeostasis network,

responsible for maintaining proteome functional balance against aberrant folding and

aggregation, processes that can generate toxic species in the cell [72, 74, 77, 237].

As organisms grow old, however, the protein homeostasis network becomes impaired

and widespread aggregation occurs [90, 94, 95, 238]. Protein aggregation in turns

further disrupt protein homeostasis [68], forming a vicious circle of degeneration

[65, 67, 72, 74, 77, 82]. As already seen in Chapter 1, age is considered to be the

greatest risk factor for a variety of neurocognitive disorders, which represent the most

debilitating, expensive, and common medical conditions in recent times [24, 34] and

whose nearly universal hallmark is the formation of protein aggregates [61–63].

The concept by which proteins are expressed close to their solubility limits has

been referred to as the "life on the edge hypothesis" [130]. Suggested on the basis

of the limited experimental data available at the time, whether this concept could

have general validity for proteins in the cell remains an open question, which could
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help rationalize a number of observations on protein aggregation in ageing and

neurodegenerative diseases.

Using mass spectrometry data [90], here we provide the first proteome-wide

evidence for the life on the edge hypothesis in the nematode C. elegans, and we

show that proteins in the adult worm are actually living just over the edge of their

solubility. To determine to what extent proteins cross the solubility limit, we classify

three measured physical quantities related with protein levels, namely abundance,

aggregation and supersaturation, and we link them to the life on the edge hypothesis.

The observation that proteins are found in the adult nematode just over the solubility

limit prompts the question of how this limit is crossed upon ageing and if it is a

general threshold over which any protein would aggregate. To tackle these questions,

we show that with age there is a proliferation in the aggregate levels, which is not due

to an increase in the overall protein content in the worm, suggesting that the critical

concentration is a threshold that is protein-specific and that aggregation upon age

may be due to a decrease in the solubility rather than an increase in the expression

levels. By looking at the different contributions that supersaturation, abundance and

aggregation give to this age-dependent proliferation in aggregate levels, we suggest

that supersaturation plays a key role, specifically for the most abundant proteins, in

the process of healthy ageing, as the largest contribution to the total aggregate mass

is provided by the most abundant proteins. Further studies will be needed to establish

how these principles can be extended from healthy ageing to neurodegenerative

disorders, and from worms to humans.

3.2 Results

3.2.1 Life on and over the solubility edge in adult C. elegans

In order to test whether the life on the edge hypothesis holds true at a proteomic

level in an eukaryotic organism, we took advantage of recent in vivo proteome-wide

mass spectrometry data acquired in wild-type strain nematodes C. elegans focusing
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on one set up experiment in which total, soluble (supernatant) and insoluble (pellet)

protein abundances were measured in the adult worm [90]. By looking at the proteins

detected in at least two out of three replicas, we found that in the adult wild-type

worm (day 12 of adulthood from L4 stage), about 75% of the proteins detected are

found in the pellet fraction (Figure 3.1A, 2792 proteins). This observation implies

that nearly three quarters of all proteins detected is expressed at least at the critical

concentration. Of these proteins, we evaluated and normalised the total, supernatant

and pellet abundance in terms of mass spectrometry absolute LFQ values (see section

3.4.1). Defining the solubility as the supernatant abundance in the presence of a

pellet fraction, we observe that in adult worms nearly all proteins are lying on, or in

fact just above, the edge of their solubility (Figure 3.1B).

The findings that we have reported here, therefore, suggest that these data repre-

sent experimental evidence for the life on the edge hypothesis in an eukaryotic model

organism and indicate that widespread aggregation occurs, although the amounts of

aggregates are small in comparison to the total abundance. Such finding is also in

agreement with the trend previously observed for the E. coli proteome in a cell-free

reconstituted system [239].

3.2.2 Life over the solubility edge: the relationship between

aggregation, supersaturation and abundance of proteins

Since nearly all detected proteins in the adult worm are expressed on and just above

their solubility limits (Figure 3.1) widespread aggregation occurs, thus compromising

protein homeostasis. We next asked how can we measure, from the data, the extent

and the way in which a protein is exceeding the solubility limit. To tackle this

question, we define three main ways in which the landscape over the solubility

edge, represented by the Pellet-Soluble abundance plane (Figure 3.2) can be spanned

and analysed in terms of risk to the cellular protein homeostasis. Each way is

characterised by the evaluation of a physical quantity whose value increases in a

different direction with respect to the solubility limit.
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Fig. 3.1
Validation of the Life on the Edge hypothesis in adult worms

(A) Pie chart showing the percentage and number of aggregating (red filling) and
non-aggregating proteins detected in aged (day 12) wild-type worms. (B) Scatterplot
of protein total abundance (T ) plotted against soluble abundance (S) in log10 scale
for each protein quantified (see section 3.4.1). The colour code is matching the pie
chart choice. The unity line, corresponding to the solubility limit for all proteins

detected with an aggregated fraction (red points), is shown in black. For the proteins
that do not form insoluble deposits (grey points), we do not have an estimate of the

solubility limit, but only a lower bound for it (i.e. the total abundance).

The first quantity is supersaturation (σ), which is defined as the ratio between

the total abundance (T ) of a protein and its critical concentration C∗, which can be

approximated as the supernatant abundance (S) in the presence of a non-negligible

pellet fraction (P):

σ =
T

C∗
=

T
S
|P̸=0 (3.1)

With such a definition, supersaturation represents an experimental index of

aggregation propensity for a protein. The more the protein is supersaturated, the

more it is prone to aggregate.
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The second quantity is the protein aggregate load, defined as the pellet abundance

P (see section 3.4.1) and satisfying

P = T −S (3.2)

This variable gives information on the total mass of the aggregates of a given

protein. The third observable is the total protein abundance in presence of a detectable

aggregate load, (T |P ̸=0), which is a quantity proportional to the cellular protein

expression.

We evaluated supersaturation σ , aggregate abundance P and total abundance

T for all the 1828 proteins (see section 3.4.1) reported in the life on the edge plot

(Figure 3.1B, red points). These values refer to the proteome situation in the adult

day-12 nematode.

Since each quantity is maximised in a different direction with respect to the

solubility edge, different regions can be identified in the life over the solubility edge

landscape where proteins populate high values of supersaturation, aggregate or total

abundance. In order to show these regions and their overlaps, we highlighted the

20% most saturated, 20% most aggregated and 20% most abundant proteins (365

proteins in each set) with different colours in Figure 3.2 and used a subtractive

colour mixing model for their overlap, reporting a Venn diagram with the number of

proteins present in each intersection. Supersaturation, aggregation and abundance

have blue, yellow and red as base colours respectively.

We identified six different classes from the overlaps of the most supersaturated,

aggregated and abundant groups. We found that 290 proteins are only most super-

saturated (blue points in Figure 3.2), 34 proteins are only most aggregated (yellow

points in Figure 3.2) and 81 proteins are only most abundant (red points in Figure

3.2). Most abundant and most aggregated but not highly supersaturated proteins are

represented in orange in Figure 3.2 (256 entries), while 47 proteins appears to be

most supersaturated and most aggregated but not highly abundant (green points in
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Fig. 3.2
Visualisation of the most supersaturated, aggregated and abundant proteins

in the life over the edge solubility landscape

Scatterplot of pellet abundance (P) versus soluble abundance (S) in log10 scale (see
section 3.4.1) showing in colours the three classes of top 20% most supersaturated,

most abundant and most aggregated proteins and their intersections. Each class
contains 365 proteins. Number of proteins in each subgroup and relative colour code
are reported in the Venn diagram. Abundance data refer to day 12 wild-type worms.
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Figure 3.2). The black points in Figure 3.2, corresponding to 28 proteins, belong

to the region in which all the quantities have maximal values. Of the 1828 proteins

shown in the scatterplot of Figure 3.2, 1092 do not belong to any of the three sets,

and are shown in grey.

The overlaps between the most abundant, supersaturated and aggregated sets

provide information about the relationship between our physical quantities. While

there is a high overlap between the most aggregated and the most abundant proteins,

the most supersaturated set does not share a high number of proteins. Since super-

saturation represent an index of the aggregation propensity, we suggest that a vast

majority of the high abundant proteins have evolved to be less aggregation prone,

which is in agreement to what we predicted with our sequence-based algorithm

[90]. This trend is in agreement with previous findings that report an evolutionary

conserved trend of aggregation-prone proteins to be low abundant and subject to

decrease synthesis and high turnover [240]. However, the degree by which they are

more soluble is not high enough to avoid them from aggregating more than the low

abundant proteins.

On the other hand, the black proteins of Figure 3.2 (28 points) are highly abundant

and highly aggregation prone, therefore they also end up aggregating the most. Such

proteins, thus, represent a metastable subproteome in which the evolutionary pressure

might not be applied in the adult worm.

3.2.3 Aggregate proliferation in ageing C. elegans

Having established that proteins can cross over the solubility edge in terms of

supersaturation, abundance or aggregation, we now wish to probe if the critical

concentration is a property that is protein dependent, or if there is an overall critical

concentration over which all proteins aggregate. To address this question, we

used SILAC and absolute LFQ measurements of mass spectrometry total and pellet

protein abundance data upon ageing [90] to evaluate both the total and insoluble mass

variation of the proteome in the ageing C. elegans (Figure 3.3). Proteins predicted to
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be extracellular (see section 3.4.2) were excluded from the calculations, since being

functional in the extracellular space should have induced less evolutionary pressure

on them to evolve to higher solubilities relative to the intracellular proteins.

Fig. 3.3
Evolution of total and pellet amounts in ageing worms

Bar charts of the variations in intracellular proteome amounts upon ageing in
wild-type worms. The sum of the contributions of intracellular proteins relative

abundances are estimated at various time points with respect to day 1 of adulthood
(see section 3.4.2). (A) Total load variation upon ageing; 3078 proteins were
detected and quantified in the total fraction, for all the time points shown. (B)

Aggregate load variation upon ageing; 965 proteins were detected and quantified in
the insoluble fraction at all time points measured. (C) Correspondent total load

variation upon ageing calculated only for the subset of proteins having a detected
pellet fraction (965 proteins). Errors were calculated with a bootstrap method.
Eppendorf pictures are shown for each bar charts for better visualisation of the

quantity used for the analysis: Eppendorf in (A) and (C) imply the use of protein
total abundance measurements, while the Eppendorf in (B) indicates the use of
protein pellet fraction measurements. Bar charts are coloured according to the

proteins involved in the calculation: black for the 3078 proteins, and red for the 965
proteins.

We estimated the total amount of intracellular protein material (see section 3.4.2)

from the set of proteins detected in the total fraction at all time points (3078 proteins)

(Figure 3.3A). We do not observe any significant change in the overall intracellular

proteome amount upon ageing, even if about a third of proteins are found to change

in abundance of at least 2-fold upon age [90]. Using the data of insoluble abundances,

taking all proteins detected to form pellet in day 01 to day 17, we evaluated with

the same procedure the whole intracellular aggregate amount with respect to day
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01. Interestingly, we observe a sharp aggregate amount proliferation from day 12 of

adulthood (Figure 3.3B), which is not reflected by an increase in the total amount of

protein (Figure 3.3A). Also, this aggregate proliferation is not due to an increase in

the total amount of proteins having a detected insoluble amount either, namely the

supersaturated total amount. In fact, evaluating the total amount relative to day 01

for the 965 proteins forming aggregates throughout the days, we do not observe any

change upon ageing (Figure 3.3C).

We have shown that the worm undergoes a reshaping of its proteome composition

upon ageing without altering the total protein amount available in the cell. Even if

the reshaping of the proteome does not involve a change in the total protein amount,

it causes an overall change in the cellular environment that results into a boost

of the total aggregate fraction. We estimated that between day 6 and day 12 the

total aggregate load obtained by the contribution of each one of the 965 proteins

detected with insoluble fraction is almost doubled (Figure 3.3B). Taken together, our

results suggest that the mechanism by which proteins are further pushed far from

the solubility edge with ageing is not due to an overall increase in their abundance

content, but by some other mechanism, which reduces their solubility, which could

be the disruption of a protein control machinery. Also, since the aggregates are

increasing regardless of the total amount, this represents evidence that the critical

concentration is not a general threshold that proteins might overcome, but it is a

principle that is protein dependent, confirming the concept of the life on the edge.

3.2.4 Age-dependent aggregate proliferation in terms of

supersaturation, aggregation and abundance

Having established that there is a proliferation of the insoluble protein amount

starting from day 12 of adulthood, we now wish to probe which proteins and physical

parameters are responsible for such behaviour. To this extent, we estimated the

total (Figure 3.4A) and average (Figure 3.4B) contribution to the aggregate amount

relative to day 01 considering all the six subsets of proteins we defined in Figure
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3.2 from the overlaps of the 20% most supersaturated, abundant and aggregated

proteins at day 12. A Venn diagram showing the screened mapping of the most

supersaturated, abundant and aggregated proteins using the time-course insoluble

fraction data of Figure 3.2, where intracellular proteins have been removed, is shown

in Figure 3.4A. The total contribution to the aggregate amount relative to day 01

(Figure 3.4A, scatter plot) for each of the six resulting subsets was obtained by

summing up the values calculated for the Pellet amount of Figure 3.3B only from

the group of proteins belonging to the subset, whose number is indicated in the Venn

diagram. The average contribution to the aggregate amount relative to day 01 (Figure

3.4B), was obtained from the total contribution of Figure 3.4A by normalising to the

protein number in each subset.

Notably, proteins that are most supersaturated, abundant and aggregated on

average contribute the most to the aggregate proliferation we detect in the old worm

(black triangles, Figure 3.4B). Such proteins though are very few in numbers, hence

they do not contribute much to the overall total aggregate amount (black triangles,

Figure 3.4A). On the other hand, most abundant and most aggregated proteins

(orange triangles in Figure 3.4), contribute the most the total aggregate amount and

quite significantly to the average aggregate amount, despite their high number (182

proteins). Most interestingly, supersaturated proteins (blue squares, green circles,

and black triangles in Figure 3.4) are not contributing to the aggregate proliferation

unless they are abundant. Hence, taken together, our results indicate that upon

ageing, supersaturation does not seem to play a role in the disruption of the solubility

threshold. Since the present work is focused on the process of healthy ageing of the

nematode, we do not exclude that supersaturation may play a key role in case or

neurodegeneration [76, 131].
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Fig. 3.4
Contribution of supersaturation, aggregation and abundance to aggregate

amounts in ageing worms

Scatterplots of the contribution of the proteins belonging to the most supersaturated,
aggregated and abundant proteins and corresponding overlaps to the variations in
intracellular aggregate amounts upon ageing in wild-type worms of Figure 3.3B.

Dashed lines are shown between points only as a guide to the eye. (A) Total pellet
amount relative to day 01 of adulthood measured at different time points evaluated

for the subset of intracellular proteins belonging to the classes of top 20% most
supersaturated, most aggregated and most abundant and their intersections of Figure

3.2. Total contribution to the aggregate load for each subgroup is shown in a
different colour and marker. Number of proteins in each subgroup and relative

colour code are reported in the Venn diagram. (B) Average contribution, per protein,
of to the aggregate load variation relative to day 01 for each class shown in (A).

Errors were calculated with the bootstrap method used for Figure 3.3 (see section
3.4.2).
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3.2.5 Functional protein classes responsible for the age-dependent

aggregate increase

Finally, we identified the proteins most responsible for the increase in the aggregate

levels upon ageing of Figure 3.3, and report the list in Table 3.1. These 32 proteins

are the proteins that have the highest weight in the calculation of the change of

aggregate amount relative to day 01, and which can account for the fold change in

the aggregate levels. We found three major functional classes are associated with

these proteins: molecular chaperones (small heat-shock proteins sip-1 and hsp-25

and heat shock proteins hsp-90 and hsp-70), RNA-binding and translation (ribosomal

components and elongation factors); and structural activity (intermediate filaments,

actin, tubulin).

Small heat shock proteins have been previously detected to co-aggregate and

drive aggregation of proteins [241–245], in accordance with the hypothesis that in

vivo aggregation may have a cytoprotective function by sequestering potentially

toxic protein species [90, 245–247].

Ribosomal proteins and proteins related to translation functions have been previ-

ously observed to be significantly enriched in aggregate inclusions of older nema-

todes compared to younger nematodes [95], with implications on the lifespan of the

organism. Proteins belonging to this functional class, also, have been predicted to

be at the highest risk for oxidative destabilization, a suggested dominant source of

protein stability and solubility loss upon ageing [248].
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Table 3.1
List of proteins contributing the most to the aggregate proliferation

Protein ID, protein name, corresponding gene name and the protein family
according to the Uniprot database [211] are shown for the 32 proteins found most

responsible for the aggregate proliferation.

Protein ID Protein names Gene names Protein families
Q20363 Stress-induced protein 1 sip-1 F43D9.4 Small heat shock protein

(HSP20)
P53013 Elongation factor 1-alpha

(EF-1-alpha)
eft-3 F31E3.5;
eft-4 R03G5.1

TRAFAC class translation
factor GTPase
superfamily, Classic
translation factor GTPase,
EF-Tu/EF-1A subfamily

Q19286 Intermediate filament
protein ifb-2 (Cel IF B2)
(Intermediate filament
protein B2) (IF-B2)

ifb-2 F10C1.7 Intermediate filament

Q18688 Heat shock protein 90
(Abnormal dauer
formation protein 21)

daf-21 C47E8.5 Heat shock protein 90

Q19289 Intermediate filament
protein ifb-1 (Cel IF B1)
(Intermediate filament
protein B1) (IF-B1)

ifb-1 F10C1.2 Intermediate filament

Q45EJ8 Lin-5 (Five) Interacting
protein

lfi-1 CELE_ZC8.4
ZC8.4

Q21067 Intermediate filament
protein ifc-2 (Cel IF C2)
(Intermediate filament
protein C2) (IF-C2)

ifc-2 M6.1 Intermediate filament

P29691 Elongation factor 2 (EF-2) eef-2 F25H5.4 TRAFAC class translation
factor GTPase
superfamily, Classic
translation factor GTPase,
EF-G/EF-2 subfamily

Q9TY23 Prion-like-(Q/N-rich)-
domain-bearing
protein

pqn-22 C46G7.4
CELE_C46G7.4

O02056 60S ribosomal protein L4 rpl-4 B0041.4 Ribosomal protein L4P
Q5H9M9 Heat Shock Protein hsp-25 C09B8.6

CELE_C09B8.6
Small heat shock protein
(HSP20)

P27604 Adenosylhomocysteinase
(AdoHcyase) (EC 3.3.1.1)
(Protein dumpy-14) (S-
adenosyl-L-homocysteine
hydrolase)

ahcy-1 ahh dpy-14
K02F2.2

Adenosylhomocysteinase

Continued on Next Page. . .
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Protein ID Protein names Gene names Protein families
P09446 Heat shock 70 kDa

protein A
hsp-1 hsp70a
F26D10.3

Heat shock protein 70

O45815 ACTin act-5
CELE_T25C8.2
T25C8.2

Actin

Q9XW17 Cytokinesis, Apoptosis,
RNA-associated

car-1
CELE_Y18D10A.17
Y18D10A.17

Q93572 60S acidic ribosomal
protein P0

rpa-0 F25H2.10 Ribosomal protein L10P

Q20206 Ribosomal Protein, Small
subunit

rps-11
CELE_F40F11.1
F40F11.1

Ribosomal protein S17P

Q27389 60S ribosomal protein
L13a

rpl-16 M01F1.2 Ribosomal protein L13P

P04255 Histone H2B 1 his-11 ZK131.5;
his-15 ZK131.9;
his-29 F35H10.11;
his-34 F17E9.9;
his-44 F08G2.1

Histone H2B

G5EFP2 Uncharacterized protein CELE_ZK1321.4
ZK1321.4

P90900 Intermediate filament
protein ifa-4 (Cel IF A4)
(Intermediate filament
protein A4) (IF-A4)

ifa-4 K05B2.3 Intermediate filament

O17921 TuBulin, Beta tbb-1
CELE_K01G5.7
K01G5.7

Tubulin

Q9BKU5 Uncharacterized protein CELE_Y37E3.8
Y37E3.8

Ribosomal protein L15P

P10984 Actin-2 act-2 T04C12.5 Actin
Q93573

Translationally-controlled
tumor protein homolog

tct-1 F25H2.11 TCTP

Q27535 Probable arginine kinase
ZC434.8 (AK) (EC
2.7.3.3)

ZC434.8 ATP:guanido
phosphotransferase

B3WFT8 Uncharacterized protein C14F11.4
CELE_C14F11.4

P49405 60S ribosomal protein L5 rpl-5 F54C9.5 Ribosomal protein L18P
O17687 NASP (Human Nuclear

Autoantigenic Sperm
Protein) homolog

nasp-2 C50B6.2
CELE_C50B6.2

Continued on Next Page. . .
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Protein ID Protein names Gene names Protein families
P91917 Obg-like ATPase 1 ola-1 tag-210

W08E3.3
TRAFAC class
OBG-HflX-like GTPase
superfamily, OBG
GTPase, YchF/OLA1
subfamily

P54412 Probable elongation factor
1-gamma (EF-1-gamma)
(eEF-1B gamma)

eef-1G F17C11.9

Q20751 Eukaryotic translation
initiation factor 5A-2
(eIF-5A-2) (Initiation
factor five protein 2)

iff-2 F54C9.1 EIF-5A

Notably, the protein contributing the most to the aggregate proliferation is sip-

1, a small heat shock protein that becomes active under acidic conditions and is

essential for nematode development and reproduction [249]. Interestingly, RNA

binding proteins and cytoskeletal proteins have been identified as more specific

and prominent substrates of sip-1 with respect to other molecular chaperones [249].

Cytoskeletal proteins, indeed, have also been suggested to be specific substrates of

the Hsp20 molecular chaperone family [250].

3.3 Conclusions

We find first evidence of the general validity of the life on the edge hypothesis in the

adult wild-type nematode C. elegans, and show that supersaturated abundant and

aggregated proteins escape the evolutionary pressure. Also, we found that the way

proteins exceed the solubility edge reflects a sudden proliferation in the aggregate

levels which is independent of the intracellular total content, and which is not due to

supersaturation. Proteins most responsible for such an increase can be mapped into

three main functional classes, which have been previously associated with the protein

homeostasis machinery: structural proteins, proteins involved in translation, and

heat shock and small heat shock proteins. The findings that we have reported here,

therefore, suggest that critical concentration is a principle that is protein-specific

and not a general threshold which proteins might overcome to aggregate, and that
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the way proteins cross the edge is not by an increase in their overall expression

levels, but by decreasing their solubility due to some other cellular factors, such as

disruptions in the protein control machinery.

3.4 Materials and Methods

3.4.1 Calculations of total, soluble and pellet abundances in the

adult nematode

Data of protein abundances (absolute LFQ values) from proteomic-wide mass spec-

trometry measurements of WT strain nematode C. elegans were obtained from Table

S1F of Ref. [90]. The data contained up to three replicas of supernatant, pellet and

total fraction measurements per protein taken at day 12 of the nematode life with

respect to the exit of the L4 larval stage. For each type of measurement (either total,

supernatant or pellet) only proteins found in at least two replicas were considered in

the calculations, and average and standard error were evaluated.

To be consistent with the definition of protein solubility considered as the maxi-

mum soluble fraction in present of a non-negligible amount of pellet, we defined the

total (T), soluble (S) and pellet (P) abundance as follows

T =
2tav + sav + pav

3
(3.3)

S =
2sav + tav − pav

3
(3.4)

P =
2pav + tav − sav

3
(3.5)

where tav, sav, pav are the total average, supernatant average and pellet average

of the mass spectrometry LFQ values respectively. Proteins resulting with negative S
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and P values were excluded in the calculation. With this normalisation, no preference

is given to any specific quantity detected by mass spectrometry, and the Eq. 3.6

T = S+P (3.6)

holds true. Errors on T , S and P were obtained using the law of error propagation

of the independent variables tav, sav and pav. Only proteins satisfying the condition

of having a resulting percentage error not over 20% in all quantities were retained in

the analysis. This resulted in 1828 proteins, whose total abundance (T ) and soluble

abundance (S) are reported in log10 scale in Figure 3.1B with red filling markers.

Pellet abundance (P) and soluble abundance (S) of these 1828 proteins are plotted

in log10 scale in Figure 3.2. Also, we evaluated T and S for protein not having a

detectable pellet fraction, i.e. having pav = 0. Using the same percent error threshold

(⩽ 20%) for the sake of signal reproducibility, we show the 674 proteins not having

aggregates in Figure 3.1B (grey points).

3.4.2 Calculation of total and aggregate load variation

upon ageing

Data of protein absolute and relative abundances (absolute LFQ values and SILAC

values) for total and aggregate protein measurements in wild-type strain worms at

day 1, 6, 12 and 17 of adulthood were retrieved from Tables S1B,E of Ref. [90].

Amounts relative to day 1 of adulthood reported in Figure 3.3 for total (panel A),

total having pellet (panel B) and pellet (panel C) were calculated with the same

procedure, described as follows.

Only proteins detected and quantified in all the days and for both SILAC and

LFQ datasets were considered in the calculations. This resulted into 3694 proteins

with total measurements, of which 1083 also reporting pellet measurements. This

common ensemble was then filtered to remove proteins known, or predicted, to be



3.4 Materials and Methods 73

extracellular. We relied on both the UniProt classification of extracellular proteins

(Subcellular location entry) [251], the outcome of the Signal P predictor of signal

peptides [252] and the WoLF PSORT [253] predictor of subcellular locations for the

removal of all possible extracellular proteins.

The remaining intracellular ensemble consisted in 3078 proteins with detected

total abundance at all time points (used for Figure 3.3A) and a subset of 965 having

also a detected pellet fraction (used for Figure 3.3B,C). For each protein, two

quantities were estimated: the abundance weight W of the protein pn to the whole

ensemble at a given time point di, defined as the ratio of the absolute LFQ value of

the protein and the sum of all the proteins absolute LFQs at the given di day

W (pn)|di =
LFQ(pn)|di

∑
N
n=1 LFQ(pn)|di

(3.7)

where N is the number of proteins in the ensemble; and the abundance change

of the protein ∆A(pn)|
d j
di

between this given time point and any other time point

measured (d j). For calculation of ∆A(pn)|
d j
di

, we relied on the SILAC labelled data

∆A(pn)|
d j
di
=

SILAC(pn)|d j

SILAC(pn)|di

(3.8)

Protein loads change ∆L between time point d j, and time point di, are obtained

by summing the contribution from each protein of the weighted abundance increase

obtained by combining W (pn)|di and ∆A(pn)|
d j
di

∆L|d j
di
=

N

∑
n=1

W (pn)|di ·∆A(pn)|
d j
di

(3.9)

To obtain loads variation relative to day 1 of adulthood without imposing a

preferential bias on the absolute LFQ data measured at day 1, load variations relative

to any day detected were normalised to the correspondent value for day 1 and

subsequently averaged
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Load change|d j
d01

=

4

∑
n=1

∆L|d j
di

∆L|d01
di

4
(3.10)

Using Eq. 3.10 total abundance load change upon age with respect to day 1 was

calculated for the detected intracellular proteome (3078 proteins) and is reported in

Figure 3.3A. Total amounts in presence of pellet and pellet amounts changes were

also calculated from the subset of 965 proteins, and are reported in Figure 3.3B,C.

Errors on each time point reported in Figure 3.3 were obtained using a bootstrap

method on the weighted abundance change ensemble.



Chapter 4

The interactome of misfolded protein

oligomers
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4.1 Introduction

Misfolded oligomers formed at the early stage of the aggregation process are thought

to play a central role in the onset and progression of neurodegenerative diseases, as

they have been found to be the most toxic aggregated species to the cell [62, 98, 115,

146–151] (see Chapter 1, section 1.2.5). It is still unclear how these oligomers cause

the cell damage and their contribution to neurodegeneration. Experiments, aimed at

revealing the molecular mechanism of toxicity of the oligomers, have shown that:

• these aggregates can interact with and disrupt membranes [149, 150, 254–257];

• they are able to recruit and affect the functionality of proteins [82, 258];

• they can form pores on the cell membrane causing an uncontrolled exchange of

compounds between the intracellular and extracellular space [257, 259–262].

The mechanism of toxicity that involves the interaction with the lipid membrane

has been observed for oligomers formed with the HypF-N protein [150]. Even if this

protein is not associated with any disease, it can form amyloid-like aggregates which

have been shown to mimic the synaptotoxicity of Aβ aggregates in Alzheimer’s

disease [152]. HypF-N oligomers, when placed outside cells, are found to interact

with the lipid membrane [149, 150]. The cell viability is measured by quantifying

the damage upon disruption of the membrane, that leads to a calcium intake and

ultimately to apoptosis [149, 150]. Upon given conditions two types of HypF-N

oligomers can be formed, which are stable and have been well characterised in

structure. These two types of oligomers (type A and type B, see Figure 4.1) are

structurally different and result into a very different biological activity in terms of in-

teraction with the lipid membrane. Oligomers that expose to the surface hydrophobic

and structurally disorganised patches are able to penetrate the membrane, and cause

an influx of calcium ions that can lead to apoptosis, while oligomers characterised by

buried and structured hydrophobic regions cannot readily permeate the membrane

and remain attached to the outer surface [150].
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Fig. 4.1
Schematic representation of the two structurally different HypF-N oligomer

types

The known mechanism of toxicity is mediated by the interaction with the lipid
membrane cellular component. Type A oligomers, which show structurally

disorganised and solvent-exposed hydrophobic regions are able to penetrate the
membrane, while type B oligomers, which are more structured and have

hydrophobic patches buried in the core, cannot.
Adapted from [150].

While the interaction of extracellular oligomers with the membrane of cells has

been studied quite extensively, little is known about what happens when oligomers are

formed intracellularly, like the case of α-synuclein and tau, or when they penetrate

into the cells. Also, a recent study reported the existence of oligomeric species that

induce membrane leakage, but are not cytotoxic, showing hence the absence of one-

to-one relationship between the induction of cellular toxicity and the disruption of

membranes [263]. Given more than half of the cell dry mass is constituted by proteins

[167], characterising the interaction of the oligomers with the proteome cellular

component could provide a framework for discovering an alternative mechanism of

toxicity which could be relevant in the neurodegeneration process. The aim of this

work was therefore to identify protein binders of oligomers, by taking advantage of

the two structurally different type A and type B HypF-N oligomers. To address this

study, we used MS-based proteomics and bioinformatic analyses to characterise the
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interactome of misfolded oligomers (Figure 4.2), i.e. the pool of proteins that can

bind the oligomers.

Fig. 4.2
MS-based proteomic schematic workflow

Cultured murine microglia cells were lysed to extract the proteome which was then
subject to the presence of either type of oligomers. Proteins that bound to the

oligomers in the pulldown assay were then analysed by Liquid Chromatography
Tandem-mass Spectrometry (LC-MS/MS). Four biological replicas were performed
for each type of oligomer interactome. Resulting MS raw data were processed with

the MaxQuant software for quantitative proteomics, for identification and
quantification of the proteins in the samples. Processed data were subject to data
analysis and complemented with bioniformatics functional annotation analysis.

The two interactomes of type A and type B oligomers were obtained by using

quantitative proteomics. We find that the structural difference of the two oligomers

leads to a great difference in the degree of binding to proteins. The oligomers

with a small number of hydrophobic-exposed patches, type B, bind proteins much

more strongly than type A. The number of proteins that are pulled down with the

oligomers accounts for more than 2000 entries. Interestingly, the two pools of pro-

teins are basically the same, meaning that the structural difference of the oligomers
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is not responsible for binding specificity. Among the proteins found to interact with

the oligomers, we detect a significantly high enrichment in mitochondrial proteins,

molecular chaperones, ribosomal components and RNA binding proteins. Interest-

ingly, some of the proteins falling in these categories have previously been reported

to co-aggregate and be enriched in aggregate inclusions during ageing [95, 241–245].

4.2 Results

4.2.1 Reproducibility of MS data

To study the ability of type A and type B oligomers to interact with the protein

component of the cell, we extracted proteins from N13 murine culture cells and

we incubated them in vitro in the absence or in the presence of type A and type

B oligomers. After the incubation each sample was centrifuged to pull down the

oligomers and the resulting pellet fraction were subjected to MS-based proteomics

(see Materials and Methods, section 4.4). In order to ensure statistical significance of

the results, four biological replicas were performed. The resulting MS raw data from

all the replicas in the two conditions were processed with the MaxQuant software

(see Materials and Methods, section 4.4.2) and subsequent protein identities and

abundance data (iBAQ values in log10 scale, see Material and Methods section 4.4.2)

were retrieved.

To verify the consistency of the interactomes and the biological variability,

we report in Figure 4.3 the matrix of 6 correlation plots obtained comparing the

iBAQ intensities (in log10) of the 4 biological replicas per oligomer type (Figure

4.3A for type A oligomers and Figure 4.3B for type B oligomers respectively).

In each scatterplot of two compared replicas, green points represent abundance

data of proteins detected in both replicas, while red points at the corner of the plot

indicate abundances of proteins that have been detected only in one of the two

replicas considered. We observe very high correlations between the replicas for

both conditions, with Pearson’s coefficient of correlation ranging between 0.73 and
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(A) (B)

Fig. 4.3
Reproducibility of the MS data of the biological replicas

The matrix of 6 correlation plots between the iBAQ intensities of the 4 biological
replicas, for both oligomers types is shown. For each scatterplot (bottom left triangle

of the matrix) green points represent proteins that have been detected in both
replicas, while red points at the corners of the plot represent proteins that have been
detected only in one of the two considered replicas, and hence possessing only one

abundance value. Abundances values are iBAQ intensities in log10 units.
In the upper right triangle of the matrix, Pearson correlation coefficients of the

corresponding transposed scatterplots are shown, with colour code (from red to blue)
following the indicated values of correlation coefficient.

Along the diagonal, histogram of the log10 iBAQ abundances distribution of each
replicas are shown in grey with a gaussian fit line in black. Number of proteins

detected in the replica (N) are indicated in the top left corner of each distribution
plot. (A) Correlation matrix for the 4 biological replicas of the proteins interacting
with type A oligomers. (B) Correlation matrix for the 4 biological replicas of the

proteins interacting with type B oligomers.
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0.82 for the proteins found interacting in the sample with type A oligomers (Figure

4.3A), and ranging between 0.76 and 0.85 for the proteins pulled down with type B

oligomers (Figure 4.3B).

The results show that measurements of the abundances of the protein pulled

down with the oligomers are very reproducible and slightly more consistent against

B oligomers, mainly due to the presence of a stronger MS signal given by the higher

abundances of proteins detected after the incubation with with type B oligomers

(discussed in section 4.2.2). Also, more proteins have been detected in each replica

to bind type B oligomers than type A, as we can see from the number of proteins

shown in the distribution histogram of abundances of the correlation plots: 1957

to 2675 proteins detected with type A, (Figure 4.3A) and 2472 to 2787 proteins

detected with type B (Figure 4.3B).

4.2.2 The structural difference of the oligomers modulates the

binding strength to proteins

To get insights into the ability of the two different oligomers to bind proteins,

intensity-based absolute quantification (iBAQ) values of protein abundances (see

Materials and Methods, section 4.4.2) of type A and type B binders were compared

using MaxQuant. The iBAQ value is proportional to the amount of the protein in the

sample. This amount is the result of the contribution of two independent quantities:

the physiological abundance of the protein in the lysate, and the binding affinity of

the protein to the oligomer. Therefore, the iBAQ value can be considered a function

of the physiological abundance and the binding affinity to the oligomer.

In each biological replica, the physiological abundance of the protein in the lysate

is approximately conserved between the two different oligomeric samples, since the

oligomers were incubated with the same batch of extracted proteins. Hence, in a

given biological replica the comparison, for any protein binder, of the iBAQ values

of type B oligomers versus type A oligomers represent the difference in binding that

the oligomers exert on that protein.
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(A) (B)

Fig. 4.4
Difference in binding power of type A and type B oligomers

(A) Scatterplot matrix of the replica-specific pairwise comparison of log10 iBAQ
values of proteins bound to B oligomers versus those bound to A oligomers. Black
points in each scatterplot represents proteins quantified in the biological replica both

in the sample of A interactors and in that of B interactors. Red points represent
proteins that have been detected only in one condition (either B bound or A bound)
in that specific replica. The presence of the greatest fractions of proteins above the
bisector line in all 4 replicas shows that B oligomers have much higher capacity in
binding proteins than do have A oligomers. (B) Volcano plot showing the average of
the ratios of B binders versus A binders taken per biological replica, in log2, and

their significance (see Material and Methods, section 4.4.2 for evaluation). The 2651
points are the number of proteins detected at least twice in the corresponding sample

of A binders and B binders.
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Figure 4.4A show the scatterplot matrix of the iBAQ values (in log10) of B

binders versus those of A binders per biological replica. Each black point represent

a protein quantified by MaxQuant to be in the sample of both oligomers (after the

incubation), in that biological replica. Red points are abundances detected only

for one condition, either binding to A oligomers (horizontal points) or binding B

oligomers (vertical points) again in that replica. Since nearly all points lie over

the bisector line (black line in each plot) in all replicas, type B oligomers bind all

proteins much more strongly that do type A oligomers. Therefore, the structural

difference of the two oligomers induces a different degree of binding to the proteome

cellular component.

This difference in binding affinity becomes even more clear in the volcano plot

shown in Figure 4.4B. Each black point in the plot is a protein which has been

detected to bind both B oligomers and A oligomers in at least two corresponding

biological replicas. On the x axis, the averaged ratio in log2 of the intensities from

iBAQ values of B binders over A binders is shown, and its corresponding significance

is plotted on the y axis (see section 4.4.2 for evaluation). Positive values on the x

axis indicate proteins able to bind more to B oligomers than A oligomers, while

negative values implies that these proteins bind stronger A oligomers. The clear cut

asymmetry of the plot towards positive values means that the cellular component

represented by proteins have much stronger affinity to bind B oligomers, which

have more structured and buried hydrophobic patches. Hence, structurally different

oligomers can lead to a different biological activity in terms of the interaction with

the proteome cellular component and the structural differences in the oligomers can

be responsible of the binding affinity to proteins.

4.2.3 The two types of oligomers interact with similar pools of

proteins

To shed light on the proteins contained in the interactomes of each oligomer, we

combined the results of all biological replicas per condition by estimating the median
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abundance fraction that each binder protein contributes to with respect to all the

binders found in the sample (see Materials and Methods, section 4.4.2). The median

abundance fraction represents a measure of the abundance weight that each protein

has with respect to the total mass of proteins that have been found to bind the

concentration of oligomers.

We define as shared binders between the two types of oligomers proteins detected

in at least three biological replicas in both conditions. Complementarily, we define

as specific binders proteins that have been detected at least thrice in one condition,

but have never been detected in the other.

We found that 2280 proteins are common binders of the two types of oligomers

(blue points, Figure 4.5), while only 18 protein are found only in one conditions (17

bound to type B oligomers and 1 bound to type A oligomers, red points in Figure

4.5). 17 of these 18 proteins, however, have been detected in the lowest range of

abundance values ( log10 percentages in abundances « -2 ), hence we cannot exclude

the possibility that the signal in the other condition was present but:

1. resulted lower than the detection threshold of the mass spectrometer

2. was discarded due to the partial stochasticity of the peptides quantification in

the MS process, in which only the top 20 peptides that are eluting in a given

time frame are kept for MS/MS analysis (see Materials and Methods, section

4.4.1)

Therefore, the abundance percentage of these 17 specific binders is statistically

not high enough for them to be considered exclusive binders of the given oligomer

type.

Only one protein that binds only to type B oligomers is found in the upper

range of the abundance fraction, more than one standard deviation above the average

logged-abundance of the ensemble of B binders, and can be considered a specific

binder. This protein, SET, which accounts for 0.066% of the total abundance of

proteins in the sample (see Figure 4.5, highest red point in the vertical stack), is a
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Fig. 4.5
Oligomers bind the same pool of microglia proteins

Scatterplot of the median percentage in abundance of proteins binding type B
oligomers versus protein binding type A oligomers (in log10). Blue points in the

plot represent proteins detected binding both oligomers in at least three replicas out
of four. Red points at the corners are proteins that have been detected at least three
times bound to one oligomer type and never detected to bind to the other oligomer
type. Errors are median absolute deviations (see Materials and Methods, section

4.4.2 for calculations). Abundance percentage data span about 6 orders of
magnitude and are highly correlated in the two conditions (binding to A oligomers
and to B oligomers). The Pearson’s correlation coefficient for the shared binders of

the two types of oligomers in indicated on the upper left of the scatterplot.
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multitasking protein which has been reported to be involved in transcription, histone

chaperoning, nucleosome assembly and apoptosis [211, 264].

Given that more than 99% of the proteins detected are binding both the two

types of oligomers types and that the signal of specific interactors is not statistically

significant, we can conclude that despite their different binding strength, the two

structurally different oligomers bind the same pool of proteins, therefore defining a

single interactome. The number of interactors from this in vitro experiment is more

than 2200 and spans about six orders of magnitude in the ensemble of abundance

fractions, ranging from ∼ 10−5% up to ∼ 2.7% abundance weight in the oligomer

samples (0.44 in log10 scale, Figure 4.5).

Also, Figure 4.5 shows that the relative abundances of binders are conserved in

the two conditions, since the correlation between the abundance percentages in the

two conditions is about 0.897. Such strong correlation implies that, regardless of the

overall intensity of binding, proteins bind the two structurally different oligomers in

the same proportions. The different relative abundance among the proteins in the

sample is therefore independent of the structure of the oligomer. The type of oligomer

influences the total amount of protein that bind the oligomer, but not the relative

abundances within the oligomers interactome neither the specificity of the proteins.

In terms of relative abundances, we can conclude that the two oligomers bind similar

proteins in similar proportions and hence result into a similar interactome.

In the next sections, we characterise the biological features of the constituents

of the interactome. We used relative abundance data from the sample of type B

oligomers as reference for the interactome as they are more accurate (see correlations

in Figure 4.3 and section 4.2.1), but the results of the biological features (e.g.

biological processes, pathways and functions enriched) are to be considered general

for the two types of oligomers (see Material and Methods, section 4.4.3).
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4.2.4 The biological constituents of the misfolded oligomers

interactome

Next we characterised the interactome of the misfolded oligomers, by calculating the

enrichment of protein groups belonging to specific biological categories with respect

to the reference mouse proteome (23619 proteins) used in the processing of MS data

(see Materials and Methods, section 4.4.3). Annotation terms in protein families,

KEGG pathways and GO categories that resulted significantly enriched are plotted

in Figure 4.6. We find that RNA binding proteins (pink coloured bars in Figure 4.6)

appear in many annotation terms and are the most overrepresented in the oligomers

interactome. In this class, the strongest signal comes from ribosomal components

or translation-related proteins, which have in most annotations a relative maximum

enrichment (RME, see Materials and Methods, section 4.4.3) higher than 0.6, an

enrichment ratio (ER) bigger than 4 and corrected p-values smaller than 10−4. Class

I and II aminoacyl-tRNA synthetase, splicing factor SR and the spliceosome terms

are also greatly enriched in this class.

Proteins belonging to the protein homeostasis network (orange coloured bars

in Figure 4.6) are also at the top of the significantly highly enriched terms. In

terms of protein families, we find all components of the peptidase T1A family and

nearly all of the peptidase T1B (RME=0.82, p<10−4), together with the 14-3-3, the

TCP-1 chaperonin and the Hsp 70 family (RME of 0.86, 0.73 and 0.44 respectively,

with p-values p<10−3, p<10−4 and p<0.01). In terms of KEGG pathways, the

strongest signal comes from the proteasome and protein export pathways, both

highly significant.

Another group of enriched annotation categories that are among the most over-

represented in the interactome is constituted by mitochondrial proteins and protein

involved with energy metabolism (green bars in Figure 4.6). Indeed, the mitochon-

drion is the cellular component that is mostly enriched after the ribosome, with an

enrichment ratio of 3 and a pvalue p<10−4. The citrate cycle, fatty acid metabolism

and oxidative phosphorylation are the most relevant pathways overrepresented for



88 The interactome of misfolded protein oligomers

Fig. 4.6
Functional enrichment of the proteins in the oligomers interactome

Enrichment of protein families, KEGG pathways and GO categories of proteins in
the oligomers interactome. The interacting proteins were grouped and categorised

according to their functional annotations, see section 4.4.3. Highly significant
(p<0.01) overrepresented annotation terms are bar-plotted according to their
enrichment ratio (ER). Values of relative maximum enrichment (RME) (see

Materials and Methods, section 4.4.3) are shown inside the bars. Stars next to the
bars indicate the significance of the enrichment, calculated with the Fisher exact test

and corrected with the Benjamin- with the following scheme: **=p<0.01,
***=p<10−3, ****=p<10−4.
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this class in the interactome. Also, all the members of the Acyl-CoA dehydrogenase

family have been detected to bind the oligomers, hence having an ER>0.75 and a

RME of 1 (with p<10−4).

Notably, among the KEGG pathways enriched in the interactome, we find the oc-

currence with high significance of Parkinson’s, Alzheimer’s and Huntington diseases,

the most important neurodegenerative disorders (yellow bars in Figure 4.6).

4.2.5 Mitochondrial and ribosomal proteins are the preferential

binders of misfolded oligomers

Figure 4.6 and Figure Figure 4.5 show which are the main biological components of

the oligomers interactome and what are the different abundance fractions within the

single binders respectively.

In order to understand if the difference in abundance between two given binders

is due to a different binding affinity or just to a difference in their natural abundance

in the cell, we compared the abundances of the binders in the interactome with

their natural abundances in microglia obtained using proteome-wide MS abundance

data of mouse microglia cells recently published by Sharma and co-workers [207].

Proteins IDs of the interactome sets were mapped and matched to the available

set of data of the proteome of microglia cells. iBAQ values in log10 scale (to

ensure a normal distribution) from both sets were zscored, resulting into abundances

distributions shifted to have mean value centered in 0 and standard deviation equal

to 1. With this transformation, the distributions of protein abundances in the two sets

were directly comparable. Figure 4.7 shows the result of this comparison. We do not

observe a correlation between the two abundances, which suggests that misfolded

oligomers have some preferential binders, to which they interact with more affinity.

Also, protein cellular levels are not sufficient to reproduce the different abundance of

the protein binders in the interactome sample.
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Fig. 4.7
Difference of natural abundance of proteins in microglia is not sufficient to

explain the abundance percentages in the interactome

Scatterplot of zscored iBAQ abundances of B binders versus proteins in microglia
taken from [207]. Errors are obtained from MAD (median absolute deviation) with

normalisation for the zscore transformation.

Hence, we asked if there are any biological categories that can significantly

differentiate the degree of binding of their components to the oligomers with respect

to their natural abundance. Using the mathematical method of 2D functional anno-

tation enrichment developed by Cox and Mann [169] (see Materials and Methods,

section 4.2.5), we were able to quantitatively identify which biological properties

are differentially expressed in the oligomers sample with respect to the microglia
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proteome sample. We tested the 2D enrichment to all functional annotation terms

of protein families (1553 entries), KEGG pathways (287 entries), GO biological

processes (5192 entries), GO cellular components (950) and GO molecular functions

(1809 entries) that were present in the interactome. To calculate the enrichment

score in each sample, we used the rankings of abundances of the proteins in the

interactome set, and the corresponding ranking of abundances in the microglia set.

Only terms that resulted significant (p<0.05 after multiple hypothesis correction with

the BH method) from the MANOVA test on the paired 2D enrichment scores were

kept. This resulted into 6 protein families, 32 KEGG pathways and 78 GO categories,

of which: 16 GO biological processes (GOBP), 39 GO cellular components (GOCC)

and 23 GO molecular functions (GOMF), (see legend of Figure 4.8, containing the

list of significant terms found for each group).

These annotation terms represents pathways, processes, families, functions or

components whose constituents are systematically more abundant or less abundant

with respect to all the other proteins, in either the interactome sample or the microglia

sample. In particular, we wanted to characterise which functional terms, if any,

define sets of proteins that can be considered the most vulnerable species in the cell

for the interaction with misfolded oligomers. Vulnerability could come from two

behaviours:

• from group of proteins that are not particularly abundant, but have specific char-

acteristic which make them have the strongest affinity to bind the oligomers,

and hence would be preferentially chosen as interactors

• from group of proteins which are abundant, so even if their binding affinity is

not as high, they would have many more chances to bind the oligomers

Hence, we are interested in characterising which functional terms include pro-

teins that are highly binding the oligomers and low abundant in the microglia (second

quadrant in Figure 4.8) as these proteins group would have potentially the strongest

affinity to bind the oligomers, and which functional terms define sets whose compo-

nents are highly binding the oligomers but are also naturally very abundant in cells
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Fig. 4.8
Misfolded oligomers preferentially bind mitochondrial and ribosomal proteins

2D functional annotation enrichment from abundance rankings of the proteins in the
oligomers interactome (B binders) with respect to cellular occurrences in microglia.
Terms of protein families (FAMILIES, circles with black borders), KEGG pathways
(KEGG, squares with yellow borders) and GO categories (triangles) are present. GO
biological processes (GOBP) are triangles with red borders, GO cellular components
(GOCC) are inverted triangles with green borders, while GO molecular functions
(GOMF) are sideways triangles with blue borders. Only significant terms in the
enrichment are reported in the plot (p-value<0.05, obtained with MANOVA and

only relevant regions are highlighted, see section 4.2.5 for explanation). Legend of
the annotation terms is found in the next page, with bold labels corresponding to
terms found in the relevant regions. Filling colours of relevant terms are matched

with the classification of Figure 4.6.
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(values over the bisector in the first quadrant of Figure 4.8). Annotation terms in

the area of the second quadrant and upper triangle of the first quadrant in Figure 4.8

define ensemble of proteins that are most vulnerable to the oligomers. We found

that overall, RNA-binding proteins (especially involved in translation), protein of the

mitochondrion or involved in energy metabolism, proteins associated with neurode-

generative pathways and one family of proteins belonging to the protein homeostasis

category are the only categories most vulnerable to the oligomers, compared to all

the categories found overrepresented in the sample (Figure 4.6).

In particular, we find that mitochondrial proteins, in particular mitochondrial

ribosomal components (numbers 42, 58, 79 and 90 in Figure 4.8) and the respiratory

complex I (numbers 75 and 106 in Figure 4.8, 30 protein components) are preferential

binders of oligomers, since they are highly abundant in our sample but highly

depleted in the microglia one. Indeed, not only we found so many significant

annotation terms for mitochondrion in the 2D enrichment, but nearly all these terms

are found in the second quadrant, so they are consistently over-abundant in the

oligomers with respect to their cellular abundance. One protein family is also found

in this area of the 2D enrichment plot, with a low, negative enrichment score in

microglia but a positive enrichment in the oligomers sample, which makes it another

strong affinity potential binder: it is the short chain dehydrogenases/reductases (SDR)

family, also involved in energy metabolism (number 1 in the second quadrant of

Figure 4.8), a family of enzymes [265–267] of which we found 24 proteins members

in the oligomers interactome. Notably, we do not find any term belonging to this class

in the opposite region, i.e. where proteins are abundant in the cell but do not bind

strongly to the oligomers (4th quadrant). In this region we find mainly annotation

terms related to proteins involved in the structure of the cell, e.g. leukocyte cell-cell

adhesion, actin filaments binding, stress fiber and the DOCK family (number 38,

105, 54 and 3 respectively, see Figure 4.8).

Beside the mitochondrion (number 61 in Figure 4.8), another cellular component

found depleted in the microglia but upregulated in the oligomers is the membrane:

integral components of membrane (number 91), mitochondrial membrane proteins
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(number 85 and 86) and proteins of the ER membrane (number 76) are all the

remaining annotation terms of the second quadrant.

The only two mitochondrial terms not found in the second quadrant are the

KEGG oxidative phosphorylation pathway and the proton-transporting ATP synthase

complex (number 12 and 57 respectively in the first quadrant of Figure 4.8), which are

extremely overexpressed in the oligomers sample and with medium-high abundance

values in microglia respectively. In this region, where only the oligomers binders

are highly enriched (see Material and Methods, section 4.2.5) we find 6 of the 7

KEGG pathways (squares in Figure 4.8) that resulted as vulnerable to the oligomers,

one of which is the oxidative phosphorylation pathway. Interestingly, four of these

pathways are disease-related pathways (yellow squares in the figure), three of which

are neurodegenerative: Parkinson’s, Alzheimer’s and Huntington, number 36, 13

and 15 respectively. The remaining disease pathway is the non-alcoholic fatty liver

disease (NAFLD) (number 29 in the figure), which is also connected with oxidative

phosphorylation. Also, we find another of the three protein families vulnerable to

the oligomers: the Rab family of small GTPases (number 5, light blue circle in the

figure).

The last protein family found to be highly enriched in the oligomers is also

extremely abundant in the microglia: it is the TCP-1 chaperonin family (8 members

found in the sample out of the 8 present in mouse, number 2 in Figure 4.8), involved

in the folding and chaperoning of some cytosolic proteins such as actin and tubulin

[268–270]. Together with ribosomal components or protein involved with translation

(RNA binding proteins, pink filled terms in the first quadrant of Figure 4.8, numbers

43, 68, 94, 8, 45, 87, 89 and 82) and the citrate cycle (TCA, energy metabolism,

number 52 and 37 in Figure 4.8) these classes represent the strongest binders to the

oligomers, probably mostly due to their high cellular abundance.

Notably, ribosomal components and RNA-binding proteins, while being known

to be impaired in Huntington’s pathogenesis and other neurodegenerative pathologies

[271–273], have also been recently reported to interact with oligomers of Huntingtin
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[258]. Our finding from the HypF-N systems hence suggest the presence of a general

predisposition of these kind of proteins to bind oligomeric species, and potentially im-

ply another general mechanism of toxicity induced by misfolded oligomers. This is

also the case of molecular chaperones, which have been both detected to co-aggregate

with aggregated species in vivo [90] and to modulate the process of protein aggre-

gation itself [87, 274–280]. Most interestingly, we find evidence of high binding

affinity with mitochondrial proteins, from the ribosomal components to the respi-

ratory complex I in the oxidative phosphorylation pathway. Even if mitochondrial

impairment and dysfunction has been associated with neurodegeneration, especially

in terms of oxidative stress [281–288], the potential interaction of mitochondrial

proteins with oligomers was previously unknown. The possible binding to these

varied key cellular classes suggest the idea of a multi-hit model of neurodegeneration,

in which toxicity might be the result of the gain of function of these vulnerable, key

proteins from the direct interaction with the oligomers, or might arise from the loss

of function of these protein homeostasis/energy related components upon interaction

with the oligomeric species. In both scenarios, this aberrant interaction with multiple

protein components could lead to a direct impairment of the protein homeostasis

machinery, and a subsequent homeostasis collapse.

4.3 Conclusions

In this chapter, we have characterised the interaction of two structurally different

soluble oligomeric species with the protein component of the cell. We have found

that the two types of oligomers bind a common pool of proteins, while their structural

difference only result into a different binding power to the protein molecules. Type

B oligomers, with their hydrophobic patches buried and structured in the assembly,

bind much stronger proteins than do type A oligomers, which have the hydrophobic

patches unstructured and exposed to the solvent.

More than 2000 proteins are pulled down with the oligomers, defining the shared

oligomers interactome. Only one protein resulted as a specific binder to type B
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oligomers, while no proteins resulted specific to type A. Of all the biological cat-

egories found among the set of oligomers interactors, the most outnumbered ones

belong to the classes of RNA-binding and ribosomal proteins, mitochondrial proteins

and proteins involved in the energy metabolism or disease pathways, lipid-binding

and DNA binding proteins and protein homeostasis components. However, in terms

of a quantitative preferential binding and vulnerability of proteins to oligomers, by

comparing the natural abundances of proteins in microglia with the abundances of

proteins in the oligomers sample, we have found that among the proteins found to

interact with the oligomers, we detect a significantly high enrichment and affinity to

mitochondrial proteins, ribosomal/RNA-binding components, the TCP-1 chaperonin

family and proteins involved in neurodegenerative pathways. The potential aberrant

interaction of these key proteins with the oligomers suggest a general mechanism

of toxicity induced by the interaction of misfolded oligomers with these protein

components of the cell. This mechanism could hold true for the ribosomal compo-

nents, since interaction with other oligomeric species with ribosomal components

has been reported previously this year and impairment of ribosomal biogenesis had

been previously associated with neurodegeneration. We do not have evidence yet

for a toxicity induced by interaction with mitochondrial proteins, but many studies

highlight mitochondrial dysfunction during neurodegeneration.

Taken together, this work provide powerful insights into the relationship between

proteins and misfolded oligomers. Also, the information contained in the interac-

tome could represent a valuable reference tool for other kind of studies focused

on the interplay between oligomeric species and specific pathways of biological

components.



98 The interactome of misfolded protein oligomers

4.4 Materials and Methods

4.4.1 Sample preparation and MS run

The sample preparation involves the steps of the processing of the biological sample

until the proteins that bound the oligomers are loaded into the gel, and was carried

out by Dr. Benedetta Mannini in the Vendruscolo group. Steps of the process are

briefly described in the subsections below.

Preparation of HypF-N oligomers

Protein expression and purification were carried out as described previously [150].

The content of endotoxins in HypF-N protein solution samples was determined by

toxin sensor Limulus Amebocyte Lysate (LAL) assay kit (Genscript, Piscataway, NJ,

USA) and resulted to be ∼ 0.02EU/ml. Oligomeric aggregates of HypF-N were

prepared by incubating the protein for 4 h at 25 °C and at a concentration of 48µM

in two different experimental conditions:

1. 50mM acetate buffer, 12% (v/v) TFE, 2mM DTT, pH 5.5 (condition A)

2. 20mM TFA, 330mM NaCl, pH 1.7 (condition B)

The oligomers were centrifuged at 16100g for 10 min and resuspended in buffer.

Cell cultures

Murine N13 microglia cells were cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM) F12 supplemented with 10% fetal bovine serum (FBS), 1.0% non-essential

amino acids, glutamine and antibiotics. The cell culture was maintained in a 5.0%

CO2 humidified atmosphere at 37 °C and grown until 80% confluence for a maximum

of 20 passages.
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Pull down assay

Proteins from N13 cell cultures were extracted using the ProteoExtract Native

Membrane Protein Extraction Kit (Calbiochem, Darmstadt, Germany) according to

the manufacturer’s protocol. 10000000cell/ml of microglial cell lysate and 24µM

type A or type B oligomers were incubated in isolation or in combination in a final

volume of 400µL for 1 h at 37 °C under gentle shaking and then centrifuged at

16100g for 10 min. Aliquots of the pellet fractions were subjected to SDS-PAGE

using 4-12% Bis-Tris polyacrylamide gels.

MS experiment

The MS experiments were carried out at the Cambridge Centre for Proteomics, which

provided us the final mass spectrometry raw files. 1D gel bands were excised and

transferred into a 96-well PCR plate. The gel bands were cut into 1mm2 pieces (10

fractions), destained, reduced (DTT) and alkylated (iodoacetamide) and subjected to

enzymatic digestion with trypsin overnight at 37 °C. After digestion, the supernatant

was pipetted into a sample vial and loaded onto an autosampler for automated

LC-MS/MS analysis.

All LC-MS/MS experiments were performed using a nanoAcquity UPLC (Waters

Corp., Milford, MA) system and an LTQ Orbitrap Velos hybrid ion trap mass spec-

trometer (Thermo Scientific, Waltham, MA). Separation of peptides was performed

by reverse-phase chromatography using a Waters reverse-phase nano column (BEH

C18, 75µm i.d. x 250mm, 1.7 µm particle size) at flow rate of 300nL/min. Peptides

were initially loaded onto a pre-column (Waters UPLC Trap Symmetry C18, 180µm

i.d x 20mm, 5 µm particle size) from the nanoAcquity sample manager with 0.1%

formic acid for 3 minutes at a flow rate of 5µL/min. After this period, the column

valve was switched to allow the elution of peptides from the pre-column onto the

analytical column. Solvent A was water + 0.1% formic acid and solvent B was

acetonitrile + 0.1% formic acid. The linear gradient employed was 3-30% B in 40

minutes (the total run time, including wash/equilibration steps was 60 minutes). The
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LC eluant was sprayed into the mass spectrometer by means of a nanospray ion

source.

All m/z values of eluting ions were measured in the Orbitrap Velos mass analyzer,

set at a resolution of 30000 and scanned from m/z 380-1500. Data dependent scans

(Top 20) were employed to automatically isolate and generate fragment ions by

collision-induced dissociation (NCE:30%) in the linear ion trap, resulting in the

generation of MS/MS spectra. Ions with charge states of 2+ and above were selected

for fragmentation.

4.4.2 MS data processing and analysis

MaxQuant processing

Mass spectrometry raw files were processed with the MaxQuant software [205]

(version 1.5.3.17). As a protein reference sequence database, we used the swissprot

mouse reference proteome (only reviewed entries) obtained on 09 June 2015 from the

Uniprot database [211, 251, 212]. Peak lists search were performed automatically

with the Andromeda search engine [204] within the MaxQuant environment, which

uses a reversed-decoy version of the specified FASTA database to adjust the false

discovery rates (FDR) of peptides and proteins. Peptides and proteins false discovery

rates (FDR) were kept at default values of 0.01.

The iBAQ quantification was switched on to allow quantification of protein

abundances with the iBAQ (intensity-based absolute quantification) method [203].

Only "unique" peptides were used for the quantification, i.e. every peptide detected

was used only in one protein group for quantification. This ensures, to a good approx-

imation, independence of the resulting protein abundances, while the independence

assumption would not hold if we used non-unique peptides present in several protein

groups.

The 10 fractions in each of the 4 biological replicas in each condition (i.e. in the

sample with type B or type A oligomers) were processed altogether in the MaxQuant
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environment. The feature "Match between runs" was set to True in order to maximise

the chances of identification of peptides in case of a low signal, which is the case for

the proteins treated with type A oligomers.

The iBAQ method for measuring protein abundance

We define as protein abundance in the oligomers sample of a given biological

replica the iBAQ value calculated by MaxQuant for the protein. In the iBAQ

quantification, the abundance signal of a given protein is the sum of all the intensities

of its detected peptides, divided by the number of theoretically expected peptides

for the protein. This normalisation is required for fixing the dependency of the

resulting intensity of the protein signal towards its size, as bigger proteins will result

in higher abundances. The number of theoretically expected peptides is automatically

calculated by MaxQuant with an in silico digestion of the protein with the protease

used in the experiment.

Proteins in the cell span a wide range of abundances, from few copies to millions

copies per cell. This wide distribution of abundances seems to follow a power law,

and it is maintained with the intensity-based iBAQ quantification. Hence, when

dealing with absolute iBAQ abundances or variables derived from iBAQ values and

representing abundances of proteins (abundance percentage, see next section), given

the log-normality of the distribution, we apply the logarithmic scale to the data

(usually log10) for a better visualisation of the scatterplots (see Figure 4.3, Figure

4.4A and Figure 4.5).

Evaluation of binding differences

The volcano plot in panel B of Figure 4.4B shows she difference in binding that

the two types of oligomers exert on proteins (x axis) and its corresponding p-value,

calculated with a dependent t-test. The difference in binding, per protein, was

calculated as follows. iBAQ abundances were obtained from four biological replicas

in the two conditions (binding to type B and type A oligomers). In a given biological
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replica, the same batch of proteins from the microglia cells were subjected to interact

with type B (condition B) or type A (condition A) oligomers. Hence, we calculated,

per biological replica, the pairwise ratio rk
i of the iBAQ abundances in condition B

(iBAQB) over condition A (iBAQA) for the replica k of the protein i

rk
i =

iBAQB|ki
iBAQA|ki

(4.1)

which give us the binding difference between B and A in a specific biological

replica for a given protein. To obtain the difference in binding strength that the two

types of oligomers exert on a given protein (B/A)|i, we subsequently averaged the

ratios rk
i over the replicas. When dealing with proteomic data, mean values and stan-

dard deviations to represent average behaviours of quantities are not recommended,

since they are very sensitive to outliers. Hence, to average the ratios we used the

median value of the rk
i and considered as its error the median absolute deviation

(MAD), two measures that are more robust to outliers. Finally, we computed the

log2 on the (B/A)|i to show in Figure 4.4B the fold difference in binding between

type B and type A oligomers F(B/A)|i. The median fold binding difference that

oligomers B have with respect to oligomers A, for a given protein i, is therefore:

F(B/A)|i = log2

(
mediank

[
iBAQB|ki
iBAQA|ki

])
(4.2)

where positive values indicates a protein is binding type B oligomers stronger

than type A, while negative values indicate the opposite behaviour.

Evaluation of percentages in abundance

From the distribution of protein abundances (iBAQ values) of the oligomers binders,

we can estimate the average abundance fraction that each protein contributes to with

respect to all the others. We define as binders only proteins detected in at least three

replicas. For each oligomeric condition (A or B) we calculated, per biological replica

k, the percentage of abundance (%A and %B) of a protein i with respect to the sample:
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%A|ki =
iBAQA|ki

∑
Nk

A
j=1 iBAQA|kj

·100 (4.3)

%B|ki =
iBAQB|ki

∑
Nk

B
j=1 iBAQB|kj

·100 (4.4)

where Nk
A and Nk

B are the number of proteins in the k biological replica in the

sample A and B respectively. The average abundance percentage is then obtained,

for each protein i, by taking the median of the %|ki over the 4 k biological replicas.

The error on each abundance percentage is the median absolute deviation (MAD). In

a log10 scale, the resulting abundance percentages distributions for all the proteins

in the two conditions show a gaussian behaviour. The comparison of the average

abundance percentages in the two conditions is reported in the scatterplot of Figure

4.5.

4.4.3 Functional annotation enrichment analysis

To complement the MS analysis with relevant biological insights, we used five

functional annotation classes :

• Protein families, from the Uniprot database [211, 289, 251]

• KEGG pathways, from the Kyoto Encyclopedia of Gene and Genomes [290–

292]

• and the Gene Ontology (GO) annotation [293–295], subdivided into:

– Biological processes

– Cellular components

– Molecular functions

These functional classes contain lists of protein families, pathways, biological

processes etc. which are referred to as "annotation terms" and can contain from one
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single protein (very specific term, e.g. "mnmg family" protein family, which has a

single protein in mouse) to thousands of proteins (very broad term, e.g. "cytoplasm"

cellular component, which nearly reaches 6000 protein).

The most common procedure for enrichment analysis of functional annotations

from -omics type of data consist in the calculation of the enrichment ratio (ER) of

a given annotation term with its significance [296–299]. The ER is based only on

the number of proteins found in the sample belonging to the annotation term, with

respect to the number of proteins belonging to the term present in a wider reference

ensemble and the relative sizes of the sample and the reference ensemble. In a

specific example where the annotation term chosen is the GO cellular component

"ribosome", the enrichment ratio will tell how much over-numbered ribosomal

components are among the proteins in the interactome (compared to the number of

all ribosomal proteins in the proteome of a mouse), and what is the probability to

obtain such a number of ribosomal components in the sample by chance.

Calculation of the ER with its significance is a valuable approach for under-

standing how many and who are the biological constituents of the interactome of

oligomers, but it does not provide information on the different contributions that

the different terms give when it comes to binding to the oligomers. To this regard,

a recent method has been suggested (1D and 2D annotation enrichment, [169]), to

evaluate statistical enrichment not only in terms of number of components found

for a given annotation term in the sample, but in terms of the values found for the

components of the annotation term in the sample. While this method was developed

to compare transcriptomics with proteomics data, we extended its formalism to

our comparison of protein abundances bound to the oligomers with physiological

abundances of proteins in microglia.

The abundance-specific enrichment score with its statistics is described in the sub-

section "2D enrichment analysis for the preferential binders of oligomers". The next

section, "Enrichment ratios for the biological constituents of the interactome", de-
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scribes the usual procedure for calculating number-specific enrichment ratios. These

analyses were implemented and performed in the python language environment.

Both enrichment calculations of protein binders to the oligomers are reported

from the type B oligomers sample. Indeed, we have already shown that we can

address the binding of proteins to the two oligomeric types as a single interactome

since there is no significant difference in the proteins enriched selectively in the two

oligomers. Also, the functional terms significantly overrepresented in the ensemble

of proteins detected in at least three replicas for both oligomers types are highly

conserved and do not increase if we use as as reference set for the interactome of

oligomers the ensemble of proteins that bind at least 3 times type B oligomers binders.

Therefore, since abundance data are required for 2D enrichment calculations, for

the sake of consistency we consider proteins detected in at least 3 experiments in

the type B oligomers sample to be representative of the oligomers interactome in all

enrichment calculations (both for enrichment ratio and for 2D enrichment, described

below).

Enrichment ratios for the biological constituents of the interactome

The enrichment ratio (ER) measures the overrepresentation of a specific annotation

term in the sample under study, compared to a reference population. Our proteome

of reference, which we used in the input of MaxQuant as a reference database of

protein sequences (see Materials and Methods, section 4.4.2), is the swissprot mouse

proteome, containing 23619 entries.

For every protein entry (protein ID), both in the interactome sample (protein

binders to type B oligomers in at least 3 replicas) and in the reference proteome, we

retrieved all the annotation terms containing the protein, for all five annotation classes.

The Uniprot search database [251, 289, 300] was used to obtain the annotation terms

associated to each protein (whether existent) for both the protein family class and

the GO categories. The Bioservices python package [301] was implemented in the

analysis to match a protein ID with all its KEGG pathways.
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For the interactome sample, this resulted in 1553 protein families, 287 KEGG

pathways and 8125 GO terms, of which: 5192 biological processes (GOBP), 1809

molecular functions (GOMF) and 950 cellular components (GOCC), which were all

tested for enrichment.

Next, since we are interested in highlighting in Figure 4.6 the main ontology

content enriched in our interactome, we mapped the 8125 GO terms to their corre-

sponding SLIM GO terms [302]. SLIM go terms offer a high-level view on the three

gene ontologies (GOBP, GOMF and GOCC) by collecting the most important terms

for a proteome without going to the details of the specific fine grained terms. Using

the Bioservices python package [301], the GO terms of the reference proteome were

mapped to 136 SLIM GO categories, of which 67 SLIM GO biological processes,

40 SLIM GO molecular functions and 29 SLIM GO cellular components.

For of all the annotation terms of the 1553 protein families, 287 KEGG path-

ways and 136 SLIM GO categories, we calculated the enrichment ratio (ER), the

relative maximum enrichment (RME) and the significance with a fisher exact test

with adjusted p-values from the Benjamini-Hochberg (BH) correction for multiple

hypothesis testing [303]. For a given annotation term t, the ER is calculated as

the number of observed components #obs(t)|sample, with respect to the number of

expected components #pred(t)|sample, namely:

ER(t) =
#obs(t)|sample

#pred(t)|sample
=

#obs(t)|sample
#obs(t)|re f

tot|re f
· tot|sample

=
f (t) in sample

f (t) in re f
(4.5)

where f (t) is the frequency of the annotation term, #obs(t)|re f is the number of

components of t in the reference, and tot|sample and tot|re f are the sample size and

reference size respectively.

Given the finite sizes of the sample ensemble and the reference ensemble for a

specific annotation term, the ER is bound to have a maximum value. Hence, it can

be very informative to evaluate the relative maximum enrichment (RME), which we
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define as the ratio between the calculated ER and the maximum ER (ERmax) that

could be obtained for the specific annotation term. The RME is a quantity in the

[0,1] range, where 0 indicates no enrichment, and 1 indicates that the annotation

term has reached its maximum value possible in the sample.

The maximum enrichment ERmax can differ among annotation terms depending

on one condition. If the size of the annotation term t in the reference, i.e. #obs(t)|re f ,

is bigger than the sample size tot|sample, then the maximum number of components

that can be observed for t in the sample are equal to the sample size tot|sample, and

ERmax(t):

i f tot|sample < #obs(t)|re f :

ERmax(t) =
1

#obs(t)|re f
tot|re f

=
tot|re f

#obs(t)|re f

(4.6)

depends only on the ratio of the reference size and the size of the annotation term

t. The relative maximum enrichment then becomes:

RME(t) =
ER(t)

ERmax(t)
=

#obs(t)|sample
#obs(t)|re f

tot|re f
· tot|sample

·
#obs(t)|re f

tot|re f
=

#obs(t)|sample

tot|sample
(4.7)

which is simply the frequency f (t) of the annotation term in the sample.

On the contrary, if the size of the annotation term in the reference is smaller than

the sample size, then ERmax(t) becomes independent of the number of components

in the reference:
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i f tot|sample ≥ #obs(t)|re f :

ERmax(t) =

#obs(t)|re f
tot|sample

#obs(t)|re f
tot|re f

=
tot|re f

tot|sample

(4.8)

and remains the simple ratio of the dimension of the two ensembles (the reference

and the sample). The relative maximum enrichment in this case becomes the fraction

of the components of t in the sample:

RME(t) =
ER(t)

ERmax(t)
=

#obs(t)|sample
#obs(t)|re f

tot|re f
· tot|sample

·
tot|sample

tot|re f
=

#obs(t)|sample

#obs(t)|re f
(4.9)

Figure 4.6 reports a barchart of the ERs of the annotation terms that resulted

very significant (p<0.01) in the protein families, KEGG pathways and SLIM GO

terms. Near the edge inside each bar, the RME is shown for each term, and the

significance of the ER is indicated with the star notation (**=p<0.01, ***=p<10−3,

****=p<10−4 ).

2D enrichment analysis for the preferential binders of oligomers

The 2D annotation statistics procedure [169] was adapted to our study and im-

plemented within a python script in the analysis workflow. The 2D annotation

enrichment method formulated in [169] is a statistical method that wish to test from

two paired distribution whether a subset of entries exhibits a deviated behaviour

in at least one of the two distribution. It is a 2-dimensional generalisation applied

to the joint distribution of two numerical quantities of the 1D enrichment statistics

method, which tests for every subset of a population (in our case an annotation term)

whether the corresponding numerical values (in our case protein abundances) tend to

be systematically smaller or larger than the global distribution of the population (i.e.
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the abundance distribution of all the protein abundances in the sample) (see Figure

4.9A). In this work, protein abundances in microglia and in the interactome were

the two numerical quantities for the joint distribution. In particular, we refer to the

median percentage in abundances described in section 4.4.2 and section 4.2.5 for

both the protein binders sample (type B, at least 3 replicas) and the microglia sample

from [207] (mapped to the oligomers, at least 3 replicas), which are plotted after

zscore normalisation in Figure 4.7).

The 2D annotation enrichment p-value [169] is defined as the result on the

multivariate analysis of variance (MANOVA, e.g. [304]) of the ranked multivariate

abundance data, where the data are replaced by ranks in each dimension separately,

from 1 to N where the value 1 is given the least abundant protein, and N to the most

abundant protein being N the number of proteins in the sample. Another assumption

of the formalism, beside the requirement of the ranking transformation for the 2D

generalisation non-parametric two-sample test [305], is independence of the values

in the distribution [169]. Since both our MS data and the microglia MS data from

[207] use unique peptides for protein quantification during the MS processing (see

section 4.4.2), the assumption is fulfilled and the method can be applied.

In this work, the 2D annotation enrichment p-value on the ranked abundances

of microglia and oligomers binders for a give annotation term t represents the

probability for t to be globally over-abundant or depleted in either the microglia

sample or the oligomers sample (see Figure 4.9B). While it is also possible to only

look for enrichment in large values (one-sided test), we chose to perform a two-sided

test and test significance also for deviation to lower abundances since we are also

interested in proteins that bind preferentially to the oligomers despite being naturally

low abundant.

Since we are now interested in determining the preferential binders of oligomeric

species, we considered the full GO categories in the calculations, which comprises

broad and fine-grained ontologies. We tested the 1553 protein families, 287 KEGG

pathways, 5192 biological processes (GOBP), 1809 molecular functions (GOMF)
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(A)

(B)

Fig. 4.9
Scheme of the 2D annotation abundance enrichment analysis

(A) Example scheme of the position-based enriched score which is calculated for
each abundance data distribution in the 2D enrichment plot. The enrichment score
ranges from -1 to +1 and is calculated for a given annotation term. A value near -1
indicates that the components of the annotation term (green distribution) under study
have abundance values that are systematically lower than the remaining values of the
distribution. A value close to +1 indicate that the annotation term consists of entries
whose abundances are systematically larger than the remaining distribution, while a

value of 0 indicates that the term is not distributed differently than the rest of the
data. (B) Scheme of the relevant regions of 2D enrichment in our study. The
enrichment score for abundance in oligomers binders is plotted against the

corresponding enrichment score of abundance in microglia. The empty region near
the origin, represented by a void circle, is the result of the cut-off imposed by the
significance. The remaining part of the plane rectangle can be subdivided into 8

areas corresponding to correlating, non-correlating and anti-correlating regions, of
which we highlighted the 5 most relevant for the purpose of this study. These
regions are highlighted to display the general possible behaviour of annotation
terms, so shapes and limits should not be taken literally but only as a reference.
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and 950 cellular components (GOCC) of the interactome sample. Resulting p-

values for the MANOVA of the 2D enrichments were adjusted using the Benjamini-

Hochberg method [303] for multiple hypothesis testing in each functional class

separately.

Fo annotation terms that result as significantly deviating the abundance oligomers

and microglia level joint distribution, we evaluated a position-enrichment score

s which quantifies the abundance deviation in both distributions. Per abundance

distribution (either microglia or oligomers), s calculates how much a given annotation

term t is ranked higher (or lower) as as group, compared to the ranking of all proteins,

hence quantifying the systematical over-abundance or depletion of its components

(see Figure 4.9A). It is defined as:

s =
2(Rt −Rc)

n
(4.10)

where Rt is the average abundance ranking of the proteins belonging to the anno-

tation term t, Rc is the average ranking of the remaining proteins of the distribution,

i.e. the complementary ensemble, and n is the sample size. With such a definition, s

ranges from -1, in case of terms present at systematically lower abundances, to +1,

for terms made of components with the highest abundances in the sample.

Combining the position-enrichment scores of the microglia distribution and the

oligomers distribution, we obtain for each annotation term a number pair (sx,sy),

which is the coordinate-wise difference of average abundance ranks in the single

distributions. sx quantifies the enrichment in abundance of the microglia, while sy

is the enrichment in abundance for the oligomers. The resulting 2D enrichments

s = (sx,sy) are confined to the square −1 ≤ sx ≤ 1 and −1 ≤ sy ≤ 1, where the point

(sx,sy) = (0,0) corresponds to annotation terms that are not distributed differently

from the global distribution of value pairs. Figure 4.9B shows a scheme of the 2D

enrichment oligomers/microglia plan with the different regions relevant for our study

highlighted in violet, orange and blue. The violet region represents annotation terms

that identify sets of proteins that are highly binding the oligomers but also naturally
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highly abundant in microglia. The orange areas correspond to terms that are only

at the top or at the bottom of the abundance distribution in either one of the two

variables. In particular, we are interested in the regions where either proteins are

quite strongly binding the oligomers, so they have average values for binding despite

being very rare in microglia (left orange circle), or proteins that are just top binders

of the oligomers without them being particularly abundant in microglia (top orange

circle). Last, the blue regions represent annotation terms showing anti-correlating

behaviour: either proteins with the highest affinity to bind the oligomers while

being present in low copies naturally, so that the are found extremely enriched in

the oligomers sample nonetheless (second quadrant), or proteins that despite being

extremely abundant, are not affine to the oligomers and hence are depleted in the

interactome (fourth quadrant).

Figure 4.8 in section 4.2.5 shows the results positional enrichment scores of

protein abundances in the oligomers sample with respect to protein abundances in

microglia, for all the annotation terms that resulted significant.



Chapter 5

Conclusions and Perspectives

In this dissertation I presented a quantitative and high-throughput approach of MS-

based proteomics complemented with bioinformatic computational methods. Quanti-

tative proteomics is emerging as a very powerful tool for the direct description at the

molecular level of complex biological systems, as it allows en masse information on

proteins, which perform most of the functions in the cell. The computational methods

I used, implemented and contributed to the development of, enable the prediction of

the physico-chemical properties of proteins from the knowledge of their amino acid

sequences, and characterise the collective proteins behaviour in terms of biological

properties like cellular pathways and molecular functions. Combining MS-based

experimental data with these biophysical analyses is a strategy that can be used to

tackle many biological questions. In this work, I applied this strategy for the study of

protein homeostasis and protein aggregation, two major related key concepts in the

studying of ageing and neurodegenerative disorders. In order to provide insights into

the molecular basis of ageing and neurodegeneration, we rely on the choice of key

model systems. The first system is the nematode C. elegans, a model organism for

ageing research. In chapter 2 and 3 we analysed MS data from nematode C. elegans

to quantify proteome changes upon ageing and characterise them in terms of physico-

chemical principles. We found that ageing in C. elegans results in a significant

proteome remodelling implicating protein stoichiometry imbalances and widespread
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aggregation, which is differently modulated in long-lived and short-lived strains.

Although most abundant proteins are less aggregation prone, they contribute the

most to the aggregate load, as we found that nearly all the proteins in the adult worm

are expressed just above their solubility limits. Despite the wide protein remodelling,

we found that the total intracellular protein amount remains constant upon ageing.

Nonetheless, aggregate levels are nearly dubbing in the same time interval, suggest-

ing that aggregation in the adult nematode is not caused by an increase in abundance,

but is a result of a protein-dependent decrease in solubility due to extrinsic factors

like disruption of the protein homeostasis network and unbalance in stoichiometries.

Also, widespread aggregation occurs in both long-lived and short-lived strains, but

proteins in the bigger insoluble deposits of the long-lived strain are more charged,

hydrophilic and less aggregation prone than those found in the smaller insoluble

deposits of the short-lived strain, suggesting the presence of an extrinsic regulatory

mechanism that enhances the aggregation process into forming insoluble inclusion

to potentially sequester cytotoxic oligomeric and prefibrillar species. The hypothesis

that misfolded oligomers formed at the early stage of the aggregation process may

play a key role in the cytotoxicity of neurodegeneration prompted the second part

of this work. We performed MS based proteomics to characterise the interaction

of proteins with misfolded oligomers. In particular, our model system were two

stabilised and well-characterised, structurally different types of oligomers (HypF-N

type A and type B). We took advantage of their structural difference to investigate

the different biological response upon interaction with proteins. We found that this

structural difference modulates the strength of the binding with proteins, but not

the specificity. Hence, our model oligomers bind the same pools of proteins, with

preferential binding towards mitochondrial and ribosomal proteins, and molecular

chaperones.

I believe that the study of the interactome I performed for HypF-N oligomers can

bring many advantages. First, it represents a useful collection of information which

could be used as a starting point for investigating specific processes mediated by the

interaction of oligomers. On this note in particular, it is in my interest to investigate
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in the future the interaction of oligomers with mitochondria. To this regard, I am

interested in understanding whether the interaction of oligomers with mitochondrial

proteins, especially ribosomal components and proteins of the respiratory complex I,

can occur in vivo and if it can induce cytotoxicity. Also, in order to understand if

interaction with proteins intracellularly can be a general mechanism of toxicity for

misfolded oligomers, I have planned to study, in collaboration with Dr. Benedetta

Mannini, the interactome of other misfolded oligomeric species. Specifically, I am

interested in testing the stable oligomers of the proteins mostly involved in neurode-

generation: α-synclein, A-β40 and A-β42 oligomers. I believe that characterising

these interactomes will also help us gaining molecular insights into the similarities

and differences of neurodegenerative disorders and dementia, and hopefully pointing

to a targetable pathway for disease intervention. Lastly, I would like to address

not only the interactions these oligomers have with proteins, but also the different

response the organism would give to the presence of different misfolded oligomers.

To tackle this question, I would like to investigate in collaboration with Michele Perni

and Dr. Benedetta Mannini, again with MS based proteomics complemented with our

computational methods, the proteome changes in C. elegans with time upon exposure

to the different oligomers, especially in term of the protein homeostasis network.

Also, it would be interesting to check if widespread aggregation can be induced

in worms by the presence of the oligomers, and which are the physico-chemical

features of the induced aggregates.

From the point of view of the development of computational methods, I would

like to develop a method that would take into consideration the uncertainties in

the MS data for the functional enrichment analyses, as I believe it could be very

important in reducing the presence of potential false positives arising from noisy data.

Furthermore, I would like to upgrade the CamSol intrinsic method in order to be able

to account for structural correction in the sequence-based aggregation propensity

calculations. Such an upgrade would allow the possibility of estimating, indeed,

not only the aggregation propensity from the unfolded state, as CamSol intrinsic is

giving at the moment, but also the aggregation propensity from the folded state.
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In conclusion, I anticipate that proteome-level studies of the type that I have

described in this thesis will become increasingly capable of revealing the network

of interactions that maintain the proteome in its functional state, and the specific

processes that become impaired in ageing and in misfolding diseases. This endeavour

will keep me, as well as many other researchers, occupied for several years to come!
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