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SUMMARY

We present an exceptional case of a patient with
high-grade serous ovarian cancer, treated with
multiple chemotherapy regimens, who exhibited
regression of some metastatic lesions with concom-
itant progression of other lesions during a treatment-
free period. Using immunogenomic approaches, we
found that progressing metastases were character-
ized by immune cell exclusion, whereas regressing
and stable metastases were infiltrated by CD8+ and
CD4+ T cells and exhibited oligoclonal expansion of
specific T cell subsets. We also detected CD8+

T cell reactivity against predicted neoepitopes after
isolation of cells from a blood sample taken almost
3 years after the tumors were resected. These find-
ings suggest that multiple distinct tumor immune
microenvironments co-exist within a single individual
and may explain in part the heterogeneous fates of
metastatic lesions often observed in the clinic post-
therapy.

INTRODUCTION

The majority of patients with ovarian cancer relapse despite

appropriate surgery and chemotherapy (Bowtell et al., 2015;

Cannistra, 2004). Ovarian cancer is characterized by a prepon-
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derance of DNA copy-number alterations and a modest somatic

missense mutation burden (�61 per exome) (Patch et al., 2015;

Cancer Genome Atlas Research Network, 2011). Analysis of

data from various cancer types studied by the Cancer Genome

Atlas (TCGA) consortium, including ovarian cancer, has demon-

strated that the number of somatic mutations and neoepitopes

(peptides resulting from somatic non-silent mutations that are

presented to the immune system) correlates with overall survival

(Brown et al., 2014). Together with the observation that chemo-

therapy in some cases may trigger immune activation in ovarian

cancer and other cancer types (Galluzzi et al., 2015; Gavalas

et al., 2010; Pfirschke et al., 2016), this highlights the importance

of investigating the host immune response in ovarian cancer.

However, the interplay between somatic mutations, prior ther-

apy, and the host immune response in this disease remains

largely unknown.

Several studies of smaller cohorts of patients with metastatic

ovarian cancer have found that primary and metastatic lesions

exhibit heterogeneity at the genomic level (Bashashati et al.,

2013; Lee et al., 2015; DeMattos-Arruda et al., 2014). Supporting

these findings, functional magnetic resonance imaging (MRI)-

based analysis has revealed that ovarian tumors and metastatic

peritoneal implants are already phenotypically heterogeneous at

diagnosis (Sala et al., 2012). As tumor heterogeneity increases

the likelihood of presence of subclones able to escape the

immune system (Bhang et al., 2015; Su et al., 2012; Turke

et al., 2010), immune control may be particularly challenging in

ovarian cancer due to extensive heterogeneity and the low

number of potential mutation-derived epitopes.
ugust 24, 2017 ª 2017 The Authors. Published by Elsevier Inc. 927
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The clinical challenge of tumor heterogeneity has been

demonstrated recently in the context of immunotherapy:

patients with less heterogeneous tumors, and hence with more

clonal neoepitopes, were more likely to respond to checkpoint-

blockade immunotherapy than patients with heterogeneous

tumors (McGranahan et al., 2016). Whether chemotherapy and

the immune system could work cooperatively is also being

explored. In some settings, chemotherapy promotes immune

cell homeostasis and activation (Carson et al., 2004; Gavalas

et al., 2010; Pfirschke et al., 2016), tumor antigen release (Zitvo-

gel et al., 2008), and decreased numbers of myeloid-derived

suppressor cells in the tumor microenvironment (Suzuki et al.,

2005). Furthermore, effector T cells have recently been impli-

cated to play a role in abrogating fibroblast-mediated chemore-

sistance in a mouse model of ovarian cancer (Wang et al., 2016).

Despite these findings, a unified model describing the effect of

chemotherapy on the tumor heterogeneity and immune-tumor

interactions has not yet been reached. A critical step toward

understanding the effect of chemotherapy on advanced meta-

static diseases and the immune response in humans is to

analyze intra-patient matched primary and metastatic tumors

(Brabletz et al., 2013). The ability to perform such analyses has

been limited by the fact that multiple tumor sites from a single

patient with advanced disease are rarely concurrently sampled,

mainly due to the lack of clinical indication.

Here we present a case study of a high-grade serous ovarian

cancer patient whose different metastases exhibited concomi-

tant regression and progression after treatment with multiple

types of chemotherapy. We used whole-exome sequencing,

RNA expression data, immunohistochemistry, neoepitope pre-

diction, in situ T cell receptor sequencing of tumor-infiltrating

immune cells, and T cell-neoepitope challenge assays with

intracellular cytokine staining (ICS) to investigate the genetic,

molecular, and cellular components that potentially underlie

this differential growth. In this heavily chemotherapy-treated

patient, immune cell infiltration with clonal expansion of T cells,

but not mutation or neoepitope number, correlated with tumor

progression/regression status. Our immunogenomic analysis

paints a portrait that immune infiltration and activation are

different in each tumor at 2 years post-chemotherapy. Inter-

site immune heterogeneity represents an important clinical chal-

lenge in the development of treatment modalities to overcome

intra-patient tumor heterogeneity.

RESULTS

The patient presented here was diagnosed with stage IV high-

grade serous ovarian adenocarcinoma, which typically exhibits

a 5 year survival of 17% (National Cancer Institute, SEER Data

Base), and underwent an optimal surgical debulking followed

by paclitaxel combined with first cisplatin and then carboplatin.

The patient experienced recurrence after 7 months, and during

a period of 3 years she was treated with multiple regimens of

chemotherapy with progression of disease after each therapy

(Figures 1A and 1B). Her cancer was growing radiographically,

and her CA125 was rising during treatment with topotecan

when she then transitioned to best supportive care and was

followed clinically with regular CA125 biomarker evaluation.
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After chemotherapy treatment was stopped, she experienced

an atypical course: her CA125 decreased, and after 2 years

of clinical follow up, CT scans showed evidence of differential

growth of metastatic lesions including a new complex cystic

mass in the vaginal cuff. Because of her long treatment-free

interval and abdominal discomfort, she opted to undergo

another debulking procedure, which found a substantial dis-

ease burden including tumor implants on the liver capsule,

the splenic hilum, right upper quadrant (RUQ), and recto-

vaginal space (Figures 1A and 1B). Samples of the primary

and four metastatic tumors were submitted for whole-exome

sequencing, microarray RNA quantification, staining for protein

markers by immunofluorescence, and in situ T cell receptor

sequencing.

Phylogenetic Analysis of Somatic Mutations in Tumors
We performed whole-exome sequencing of normal blood and

the resected samples to identify somatic mutations in the

primary tumor and the metastases. Of all samples, we detected

the highest mutation load in the liver and vaginal cuff metastases

(Figure 1C). To infer the evolutionary relationship between the

tumor samples, we used a binary presence/absence matrix of

the non-silent mutations to perform a phylogenetic reconstruc-

tion based on the parsimony ratchet analysis method with

branch lengths proportional to the number of non-silent muta-

tions (Nixon, 1999; Schliep, 2011) (Figures 1D and S1A). The liver

and vaginal cuff tumors were genetically more heterogeneous

and harbored more mutations.

To estimate the proportion of cancer cells identified with a

given mutation (cellular prevalence), we applied PyClone (Roth

et al., 2014) using CopywriteR-inferred (Kuilman et al., 2015)

DNA copy-number changes (Figures S1B and S1C) and

ABSOLUTE-inferred (Carter et al., 2012) tumor purity and abso-

lute copy numbers. As expected, truncal and shared mutations

were generally clonal with high cellular prevalence, whereas

private mutations had medium to low cellular prevalence indi-

cating subclonal status (Figure 1E). Focusing on the specific

genes that were mutated across all samples, we found among

the truncal mutations potential oncogenic driver alterations,

including WNK3P1728R, PAX4P287L, and TP53N247I (Figure 1D).

TP53N247Iwas detectedwith a high cellular prevalence indicating

loss of heterozygosity, which was supported by our DNA copy-

number analysis. Additionally, we identified other putative trun-

cal events, including deletion of BRCA1, BRCA2, and PTEN

and amplification of CCNE1 (Figure S1B), which are commonly

altered in serous ovarian cancer (Bowtell et al., 2015; Patch

et al., 2015). Among the private mutations we detected several

potential driver mutations including RUNX3P246S in the growing

splenic lesion and CSMD1G1770R in the primary tumor. Several

private and shared branch mutations were found in different

Rho GTPase-activating genes (ARHGAP), which inactivate Rho

and Rac signaling involved in the control of cellular motility

(Bernards and Settleman, 2004; Li et al., 2014).

Transcriptomic Analysis Reveals Immune-Related
Pathways Overexpressed in Regressing Tumors
To evaluate whether genes involved in chemotherapy resistance

were differentially altered between tumors and associated with
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Figure 1. Metastatic Tumors Exhibit Heterogeneous Growth and Somatic Mutation Patterns after Multi-line Chemotherapy

(A) Representative CT scans showing concomitant progression/regression of the different resected metastatic tumors. RUQ = right upper quadrant. ‘‘Spleen’’

refers to the tumor deposit adjacent to the spleen.

(B) CT-based volume of metastatic lesions represented with the solid vertical lines and dynamics of quantified CA125 levels with the red line indicating the CA125

upper limit of normal (35 units/ml). The x axis at the bottom shows a timeline of therapeutic interventions and clinical follow up.

(C) Number of missense, silent, and nonsense mutations.

(D) The phylogenetic tree represents the relationship of the samples based on binary calls of non-silent point mutations (Table S1A). Length of the branches is

proportional to the number of mutations. Potential driver mutations are indicated.

(E) Hierarchical cluster analysis (Euclidean distance metric and ‘‘average’’ linkage method) of the cellular prevalence of point mutations (n = 299) estimated with

PyClone (Roth et al., 2014) (Table S1B).
regression and progression status, we analyzed somatic alter-

ations and gene-expression data (Affymetrix transcript array)

across the samples. After analyzing chemotherapy-resistance

genes identified in HGSOC (Patch et al., 2015), as well as gene

sets for multidrug resistance (ABC transporters), apoptosis,

and DNA-damage response, we found no clear evidence of

gene-expression or somatic-alteration patterns (mutations,
DNA amplification, and deep deletion) that differed between

progressing (primary, vaginal cuff, and spleen) and regressing/

stable tumors (RUQ and liver) (Figures S2A–S2C). Interestingly,

there was a trend that the ABC transporter TAP1, which is known

for its function as a transporter of cytosolic peptides to the endo-

plasmic reticulum for HLA class I presentation (Bahram et al.,

1991; Neefjes et al., 1993; Powis et al., 1991; Suh et al., 1994),
Cell 170, 927–938, August 24, 2017 929
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Figure 2. Differential Expression of Immune-Related Pathways in Heterogeneously Growing Tumors
(A) Expression levels and genetic alterations of genes associated with chemotherapy resistance in HGSOC (Patch et al., 2015) and multidrug resistance.

Amplification and deep deletion were defined as at least ± 2 median absolute deviations of copy-number alterations for each sample (Figure S1C).

(B) Single-sample gene set enrichment analysis (Barbie et al., 2009; Subramanian et al., 2005) of upregulated pathways using the KEGG (Kanehisa and Goto,

2000; Kanehisa et al., 2016) and REACTOME (Fabregat et al., 2016) databases (Tables S2D and S2E). Significantly enriched pathways (q < 0.05) with at least ± 1

log2 change relative to the median of the other samples are colored (Table S2G). False-discovery rate adjusted p value (q value) was calculated using the

Benjamini-Hochberg method.
was expressed at a higher level in the regressing tumors

(Figure 2A).

To further identify potential differences between samples we

analyzed gene sets and pathways in an unbiased manner with

single-sample gene set enrichment analysis (ssGSEA) (Barbie

et al., 2009; Subramanian et al., 2005). Using permutation-based

false-discovery rate, we estimated the significance of the enrich-

ment score for each pathway and performed an outlier analysis

relating gene-set significance to the relative change in enrich-

ment score between a given sample and the rest of the samples

(Figure 2B; Tables S2D–S2G). The most significant and differen-

tially enriched pathway found was the immune system pathway
930 Cell 170, 927–938, August 24, 2017
with a higher enrichment in the spleen and RUQmetastases and

a lower enrichment in the primary and vaginal-cuff tumors (Table

S2H). Further indicating immune activation, the systemic lupus

erythematosus pathwaywas highly enriched in the RUQ and liver

metastases (Table S2I), whereas TCR signaling pathways were

preferentially enriched in the RUQ sample alone (Table S2J).

Cancer and proliferation pathways, as well as Wnt signaling,

were more enriched in the primary and vaginal-cuff tumors

(Table S2K). No outlier gene sets were identified for the nega-

tively enriched pathways (Figure S2E; Tables S2D–S2F).

To investigate the gene-expression differences between the

samples on an unbiased individual gene level, we calculated



the coefficient of variation of the expression levels for each gene

across samples (Table S2A). We found that among the most

variably expressed genes, besides lipid metabolic process-

related genes in the liver, the T cell chemo-attractant CXCL9

was predominantly expressed in the RUQ and liver metastases,

as well as STAT1, which has been implicated in the regulation of

CXCL9 expression (Liao et al., 1995; Satoh and Tabunoki, 2013)

(Figure S2D). No relevant mutations in immune-related mole-

cules were identified except for truncal mutations in the MHC

class I polypeptide-related sequence B (MICB) (Table S1A),

which is a stress-induced ligand recognized by NKG2D recep-

tors on CD8ab and gd T cells, as well as NK cells (Bauer et al.,

1999; Groh et al., 1999).

Heterogeneous Immune Cell Infiltration in Growing and
Regressing Lesions
To investigate the immune infiltration status of the tumors, we

used ESTIMATE to analyze tumor purity and overall stromal

and immune components (Yoshihara et al., 2013). The lowest

tumor purities and highest immune infiltration scores were found

in the RUQ, liver, and spleen samples (Figure 3A). Furthermore,

we deconvolved the gene-expression data using CIBERSORT

(Newman et al., 2015) as a first approach to dissect infiltration

of specific immune cell subsets in the tumors. We found that

the largest immune cell components corresponded to CD8+

and CD4+ T cells in RUQ, liver, and spleen tumors, although the

overall CIBERSORT deconvolution p value was only significant

for RUQ and liver tumors (Figure 3B). In contrast, the primary

and vaginal-cuff tumors had low immune cell ESTIMATE scores

and insufficient levels of immune cell transcripts to confidently

apply CIBERSORT (Tables S3A and S3B), together suggesting

a low or absent immune component present in these tumors.

Following this analysis, samples were immuno-fluorescently

co-stained for T cell markers CD4, CD8, and the T regulatory

cell marker FOXP3, double stained for PD-L1 and macrophage

marker CD68, as well as double stained for PD-L1 and the

T cell marker CD3 (Figures 3C and S3A). Consistent with the

transcriptomic deconvolution analyses, the primary tumor

demonstrated no T cell infiltration and was negative for PD-L1

and CD68 (Figures 3C, 3D, and S3A; Table S3C). The vaginal-

cuff lesion, which was growing at the time of surgical resection,

did display a T cell population; however, these cells bordered but

did not infiltrate the tumor. The splenic lesion, which was also

progressing at the time of resection, albeit at a much more

modest rate than the vaginal-cuff lesion, demonstrated a CD8+

infiltrate. Finally, the RUQ and liver metastases, which were re-

gressing and stable, respectively, at the time of surgical resec-

tion, displayed a strong CD4+ and CD8+ infiltrate. In summary,

the transcript and IF analyses suggested that each tumor site

displayed a unique tumor-immune microenvironment ranging

from immune cell inclusion to exclusion.

Regressing Metastases Show T Cell Oligoclonal
Expansion
It is known that genetic alterations in HLA-I molecules are asso-

ciated with escape of cancer cells from CD8+ T cell recognition

(Shukla et al., 2015). The patient’s HLA alleles were determined

experimentally by conventional PCR-based HLA typing and
computationally on exome data by OptiType (Szolek et al.,

2014) and POLYSOLVER (Shukla et al., 2015) independently,

yielding the same results (Table S4A). We searched copy-num-

ber alterations as well as mutations by applying POLYSOLVER,

a specific computational pipeline for HLA-I typing and mutation

detection in the HLA-I genes; however, no genetic alterations

were detected. We then assessed gene expression and found

that all HLA-I genes were expressed in the tumors (Tables

S2A–S2C); however, compared to primary and vaginal-cuff sam-

ples, an overall higher expression of HLA genes was observed in

the RUQ and liver samples, with a lesser extent seen in the

spleen sample (Figure 4A).

We next estimated the neoepitope landscape of the samples

by mapping missense mutations to their amino acid sequences,

in silico generating the mutant peptide sequences, and predict-

ing the mutant peptide-HLA binding affinities to the patient’s

HLAs. The predictions were performed using the NetMHC algo-

rithm with HLA specific cut-offs for HLA-I (Lundegaard et al.,

2008; Nielsen et al., 2003; Paul et al., 2013) and consensus

scores for HLA-II (Kim et al., 2012; Kreiter et al., 2015). The

tumors with the highest mutation and neoepitope loads for

both HLA class I and HLA class II were the liver and vaginal

cuff, which also had the highest number of missense mutations

(Figure 4B). We also investigated whether there were shared

neoepitopes or mutations present in the RUQ (regressing) and

liver (stable) metastases alone, i.e., not present in the other

tumors. No shared mutations between RUQ and liver alone

were detected (Figure S4A); therefore, it did not appear that a

shared neoepitope or mutation alone explained the behavior of

the non-progressing tumor sites.

As an active CD8 T cell infiltration can exert a selective pres-

sure at the neoepitope level (DuPage et al., 2012; Matsushita

et al., 2012; Teng et al., 2015; Tran et al., 2016; Verdegaal

et al., 2016), we further interrogated the neoepitope landscape

by analyzing potential evidence of neoepitope depletion using

an approach adopted from a report analyzing TCGA data (Roo-

ney et al., 2015). Relative to the other samples from the patient,

the regressing RUQ tumor showed a consistent—yet non-signif-

icant—tendency of neoepitope depletion (p < 0.1 by two-sided

empirical p value; Figures S4B and S4C). This result is in line

with a recent report showing neoepitope depletion in tumors

with higher levels of immune signatures in colorectal cancer

(Davoli et al., 2017). We then predicted the intrinsic immunoge-

nicity of neoepitopes by analyzing the biochemical properties

of peptides that are predicted to be associated with T cell-

epitope recognition (Calis et al., 2013). We observed that there

was a significant effect of neoepitope clonality on the probability

of a neoepitope having immunogenic properties, with clonal neo-

epitopes being predicted as less immunogenic (p = 0.02 by

chi-square test; Figures S5A–S5D). Using the predicted non-

binders instead of binders in a control analysis, the opposite

trend was observed as there was a small but significant effect

of clonal mutations being predicted as more immunogenic

(p = 0.003 by chi-square test; Figure S5F). Although preliminary,

these analyses indicate a potential negative selection process at

the neoepitope level.

To evaluate a T cell response in the tumors, we investigated

whether T cell clonal expansion could be detected in the tumor
Cell 170, 927–938, August 24, 2017 931
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Figure 3. Immune Infiltration Status Shows Heterogeneous Microenvironments across Tumor Samples

(A) Tumor purity and immune component estimated by analyzing Affymetrix-based transcriptomics (Table S3A) (Yoshihara et al., 2013).

(B) Fractions of immune cell subsets in tumor samples inferred from gene-expression data using CIBERSORT (Newman et al., 2015). Width of bars is proportional

to the �log10 p value of the deconvolution (Table S3B). CIBERSORT empirical p value, *p < 0.05.

(C) Representative images of hematoxylin and eosin staining of tumor samples and immunofluorescence staining for DAPI, cytotoxic T cells (CD8+), helper T cells

(CD4+FOXP3�), T cells (CD3+), T-regs (CD4+FOXP3+), macrophages (CD68+), and immune-checkpoint PD-L1. Complete slides are shown in Figure S3.

(D) Image-based cell quantification of whole slides (Table S3C).
samples. To this end, we performed in situ TCR sequencing on

each sample and on peripheral blood from the patient sampled

550 days after tumor resection (Figures 4C and S6A; Table

S5A). We detected a T cell expansion in the RUQ metastasis

with a dominant clone accounting for 13% of all productive
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T cell receptors sequenced. The expanded clone was also

detected in the liver and spleen metastases and strikingly also

in the blood of the patient. Though, the clonal frequency in the

RUQ metastasis was significantly higher than that in the other

samples (q < 0.001 by two-sided binomial tests with BH
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Figure 4. Higher HLA Expression and T Cell Oligoclonal Expansion

Detected in Regressing Tumors

(A) HLA-I and II gene differential expression across samples (Table S2A).

(B) Number of predicted neoepitopes per sample (Tables S4B–S4D).

(C) TCR sequencing of FFPE tumor samples and blood. The most prevalent

TCR clonotypes (top 5 for each sample and blood) are shown (Table S5A). The

blood sample was collected from the patient 550 days after secondary

debulking (Figure S6A). Inset shows detection of the most frequent TCR

rearrangement (CASSNDEYRGPTYEQYF) and its abundance comparison

between samples (two-sided binomial tests with Benjamini-Hochberg multiple

test correction, *** q < 0.001).
correction). In contrast, no T cell receptors were detected in the

primary and vaginal-cuff tumors, further supporting their lack of

T cell infiltrate.

Peripheral Blood CD8+ T Cells React against Predicted
Neoepitopes
Since expandedTcell clones detected in the tumorswere still de-

tected in the patient’s blood sampled 1 year 6 months (550 days)

after resection, we decided to test whether circulating T cells

could react against any of the predicted neoepitopes. We

sampled blood from the patient again, this time at 2 years

8 months (978 days) after resection, and isolated peripheral

blood mononuclear cells (PBMCs) (Figure S6A). We performed

an ICS assay lasting 21 days, where PBMCs were cultured with

each of the mutant peptides (n = 43) predicted to have at least

one HLA-I neoepitope, as a mutant peptide (17-mer) can have

more than one predicted binder (9-mer) (Figure S6B). Impor-

tantly, the likelihood of observing T cell reactivity by the ICS as-

says is low due to the low frequency of T cell precursors in the

blood and the limited representation of the total TCR repertoire

in each peptide challenge experiment (5 3 105 cells per well)

(Rizvi et al., 2015). Despite the high false-negative rate generally

observed with the ICS assay, we found CD8+ T cells reactive

against several mutant peptides showing cytokine activation

levels (IFN-g and TNF-a) similar to the positive control consisting

of a mixture of viral-derived epitopes (Figures 5A and 5B; Table

S5A). Of the top five reactive peptides detected, all had a higher

mutant to wild-type predicted HLA-I binding affinity (inset, Fig-

ure 5B). With limited material available, we focused on the top

hits and repeated the ICS experiment and again found reactivity

with peptide 12, which was derived from a clonal mutation in

FLG2E1608K (Table S1A), and peptide 6, which was derived from

a private mutation in LRRC8EC629Y in the splenic tumor.

DISCUSSION

The natural history of ovarian cancer typically features remis-

sions of decreasing length, leading to premature death (Bowtell

et al., 2015). In this unusual case, the divergent fates of the

tumors show an overall association with multiple molecular

and cellular features at the tumor-immune interface (Figure S7).

For example, the shrinking RUQ tumor was heavily infiltrated

with CD4 and CD8 T cells and had evidence of active CD8

T cell surveillance with expansion of specific TCR clonotypes.

The stable liver tumor also exhibited immune infiltration, but at

a lower level and with fewer expanding T cell clones. The spleen

tumor was growing modestly at the time of resection and pre-

sented with intermediate tumor-immune microenvironment fea-

tures. Finally, the growing vaginal-cuff and the primary tumor

exhibited complete immune cell exclusion. The TCR clone

most prevalent in the non-progressing tumors was also detected

in the blood of the patient 18 months after the metastases were

resected, and clonal neoepitopes induced a CD8+ T cell

response from PBMCs obtained nearly 3 years after surgery.

The two most extreme tumors, the RUQ and the vaginal cuff,

had a consistently divergent pattern of molecular features

associated with immune activation (HLA expression, IFN-g,

CXCL9, TAP1, etc.) and immune suppression (Wnt signaling).
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Figure 5. Predicted Neoepitopes with Higher Mutant than Wild-Type HLA-I Binding Affinity Elicit a T Cell Response

(A) Representative scatterplots of TNF-a and IFN-g intracellular cytokine staining of CD8+ T cells after 21 days of culture with CEF peptides or DMSO as positive

and negative controls or the predicted mutant peptides (Figure S6B). CEF = Cytomegalovirus, Epstein-Barr virus, Influenza virus.

(B) Percentage of CD8+ T cells with double-positive intracellular staining (TNF-a and IFN-g) after incubation with each of the 43 predicted HLA-I neoepitopes,

and HLA-I predicted binding affinity wild-type to mutant ratio (Table S5B). Mutation in gene FLG2E1608K (P12) was found to be clonal after manual inspection in

IGV (Table S1A).
Importantly, the observed features that relate to progression/

regression status are correlative and do not per se prove any

bona fide mechanism nor negate the fact that chemotherapy

could have influenced the divergent fates. In sum, we find evi-

dence of distinct tumor-immune microenvironments among

differentially growing metastases within the same individual.

Particular findings of this study may have important clinical

implications if they are corroborated in large cohorts. In this

patient with advanced HGSOC we observed distinct tumor-im-

mune microenvironments in the five sampled tumors (primary

and four recurrent tumors). The mutation and predicted neoepi-

tope space alone did not explain the different regressing/

progressing behavior of the metastatic samples. In contrast to

recent studies of resistance to immunotherapy, no mutations

were detected in the antigen presentation machinery (Giannakis

et al., 2016;Rooney et al., 2015;Shukla et al., 2015),B2-microglo-

bulin (Challa-Malladi et al., 2011; Rooney et al., 2015; Zaretsky

et al., 2016), the IFN-g pathway (Benci et al., 2016; Zaretsky

et al., 2016), or HLA-I genes (Rooney et al., 2015; Shukla et al.,

2015; Tran et al., 2016) in the growing tumors. Instead of spe-

cific neoepitopes present in regressing samples, T cell reactivity

against clonal neoepitopes was detected. Interestingly, all neoe-

pitopes that elicited a CD8+ T cell response had higher mutant to

wild-typeHLA-I predicted binding affinity. The lack of tumor-spe-

cific somatic alterations in the regressing andstable tumors alone

puts forward the idea that non-somatic factors in the tumor

microenvironment may have been playing a critical role in the

immune response and overall fate of the tumors. For example,

STAT1 and CXCL9 were highly expressed in the RUQ and liver

metastases; CXCL9 is well known as a potent T cell chemokine

(Liao et al., 1995; Rainczuk et al., 2012), and high expression of
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CXCL9 and CXCL10 correlate with enhanced T cell infiltration

of tumors and better survival of ovarian cancer patients (Bronger

et al., 2016). In contrast, the vaginal cuff growingmetastasis hada

higher enrichment score in the Wnt pathway, which has been

implicated as a mechanism that impairs recruitment of dendritic

cells and prevents T cell infiltration in autochthonousmousemel-

anoma models via a CXCL9- and CXCL10-dependent mecha-

nism (Spranger et al., 2015, 2017). Although a direct link between

tumor fate and the observations found in this patient cannot be

proven with the available samples, this case emphasizes the

importance of an integrative approach to understand the molec-

ular mechanisms governing the interaction between the tumor

and its immune microenvironment (Miao and Van Allen, 2016).

As in any case study, the present study has notable limitations.

It involves only onepatient, and thus further studies are needed to

determine whether the principles discovered here apply to other

patients. Furthermore, the interplay between treatment, somatic

mutations, the immune system, and heterogeneous fates of the

tumors cannot be untangled in this clinical case. For example, it

is feasible that the multiple chemotherapy interventions for this

patient contributed to shaping the somatic mutations and the

microenvironment of the tumors, but due to the availability of

samples and descriptive nature of the study this could not be

explored further. Despite such limitations, this case provides

evidence for differential tumor-immune responses existing in

metastases of the same individual, related not only to genetic al-

terations but also to the tumor-immunemicroenvironment, which

to our knowledge has not yet been demonstrated in patients

with ovarian cancer. Also, most studies on the tumor-immune

microenvironment have been conducted in primary tumors

(Teng et al., 2015), with the exception of a study of matched



primary and metastatic tumors, which concluded that the im-

mune contexture globally recapitulates that of the primary

(Remark et al., 2013). In contrast, the case of recurrent HGSOC

presented here clearly shows the opposite: that tumor-immune

microenvironments, between primary tumor and metastases,

andbetweenmetastases, canbeheterogeneouswithin apatient.

Previous genomic and immune profiling of multiple lesions in

patients have also shed light on tumor heterogeneity and its

implications on tumor evolution (Gerlinger et al., 2012), disease

progression (Ascierto et al., 2017), and immune control

(McGranahan et al., 2016; Sxenbabao�glu et al., 2016; Sridharan

et al., 2016). For example, tumors that are genetically more het-

erogeneous have less immune infiltrates (Sxenbabao�glu et al.,

2016) and less benefit from checkpoint-blockade immunother-

apies (McGranahan et al., 2016). It has been shown that T cell

infiltration and gene expression of immune-related genes corre-

late with response to checkpoint-blockade immunotherapy in

melanoma (Chen et al., 2016). Additionally, analyses of syn-

chronous resected metastases with differential progression in

patients withmelanoma has shown that intra-patient metastases

present not only genetic heterogeneity but also immune-infiltra-

tion heterogeneity of immune cell types and T cell clonality

between samples (Reuben et al., 2017). A rapid autopsy study

of a patient with metastatic melanoma treated with anti-PD-1

therapy showed that resistant metastases overexpressed genes

related to extracellular matrix and neutrophil function (Ascierto

et al., 2017). Interestingly, association between Wnt signaling

and lack of T cell infiltration was also observed in a patient with

adenoid cystic carcinoma where serial biopsies from the same

patient were analyzed, and different expression profiles between

primary and metastatic deposits were also detected (Sridharan

et al., 2016). Finally, a plethora of molecular mechanisms and

types of cells influencing the tumor-immune microenvironment

have been described in different tumor types, leading to impor-

tant advances in immunotherapy (Joyce and Fearon, 2015;

Melero et al., 2014; Sharma et al., 2017). Unfortunately, the

promise of immunotherapy has not been as successful in ovarian

cancer as it has been in other tumor types (Homicsko et al., 2016)

despite the fact that it was recognized more than a decade ago

that T cell infiltration is a key element for patient outcome in this

disease (Zhang et al., 2003). We believe that the growing

evidence of differential genomic, transcriptomic, and immune

profiles between and within patients will eventually provide

new key elements to target in ovarian cancer and other tumor

types. However, this task will require extensive and deep

systematic analyses along with longitudinal data, as the differ-

ences between metastases and coexistence of tumor-immune

microenvironments within a patient are likely to be dynamic

and sensitive to intrinsic (e.g., mutations and cell-cell communi-

cation) and extrinsic perturbations (e.g., prior treatment and

microbiome; Sivan et al., 2015; Vetizou et al., 2015).

In conclusion, this case study provides evidence of divergent

tumor genetics, tumor microenvironments, and immune activa-

tion within a single patient with advanced ovarian cancer. If this

phenomenon proves generalizable, then the inter-site heteroge-

neity described here bespeaks a profound clinical challenge for

the use of cytotoxic, targeted, and immuno-therapies. This obser-

vation, although made in an exceptional long-term survivor pa-
tient, may explain the frequent heterogeneous responses seen

clinicallybut insufficiently documentedby the limited radiographic

measurements provided by the Response Evaluation Criteria in

Solid Tumors (RECIST). Given the data presented in this study, it

will be essential to understand not only how to therapeutically

target genomic heterogeneity between and within metastases

but also how to successfully mobilize an anti-tumor immune

response able to control all metastases in advanced cancers.
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Bowtell, D.D., Böhm, S., Ahmed, A.A., Aspuria, P.-J., Bast, R.C., Jr., Beral, V.,

Berek, J.S., Birrer, M.J., Blagden, S., Bookman, M.A., et al. (2015). Rethinking

ovarian cancer II: reducing mortality from high-grade serous ovarian cancer.

Nat. Rev. Cancer 15, 668–679.

Brabletz, T., Lyden, D., Steeg, P.S., and Werb, Z. (2013). Roadblocks to trans-

lational advances on metastasis research. Nat. Med. 19, 1104–1109.
936 Cell 170, 927–938, August 24, 2017
Bronger, H., Singer, J., Windmüller, C., Reuning, U., Zech, D., Delbridge,

C., Dorn, J., Kiechle, M., Schmalfeldt, B., Schmitt, M., and Avril, S.

(2016). CXCL9 and CXCL10 predict survival and are regulated by cycloox-

ygenase inhibition in advanced serous ovarian cancer. Br. J. Cancer 115,

553–563.

Brown, S.D., Warren, R.L., Gibb, E.A., Martin, S.D., Spinelli, J.J., Nelson, B.H.,

and Holt, R.A. (2014). Neo-antigens predicted by tumor genomemeta-analysis

correlate with increased patient survival. Genome Res. 24, 743–750.

Calis, J.J.A., Maybeno, M., Greenbaum, J.A., Weiskopf, D., De Silva, A.D.,

Sette, A., Kesxmir, C., and Peters, B. (2013). Properties of MHC class I pre-

sented peptides that enhance immunogenicity. PLoS Comput. Biol. 9,

e1003266.

Cannistra, S.A. (2004). Cancer of the ovary. N. Engl. J. Med. 351, 2519–2529.

Carson, W.E., 3rd, Shapiro, C.L., Crespin, T.R., Thornton, L.M., and Andersen,

B.L. (2004). Cellular immunity in breast cancer patients completing taxane

treatment. Clin. Cancer Res. 10, 3401–3409.

Carter, S.L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., Zack, T., Laird,

P.W., Onofrio, R.C., Winckler, W., Weir, B.A., et al. (2012). Absolute quantifica-

tion of somatic DNA alterations in human cancer. Nat. Biotechnol. 30,

413–421.

Challa-Malladi, M., Lieu, Y.K., Califano, O., Holmes, A.B., Bhagat, G., Murty,

V.V., Dominguez-Sola, D., Pasqualucci, L., and Dalla-Favera, R. (2011). Com-

bined genetic inactivation of b2-Microglobulin and CD58 reveals frequent

escape from immune recognition in diffuse large B cell lymphoma. Cancer

Cell 20, 728–740.

Chen, P.L., Roh, W., Reuben, A., Cooper, Z.A., Spencer, C.N., Prieto, P.A.,

Miller, J.P., Bassett, R.L., Gopalakrishnan, V., Wani, K., et al. (2016). Analysis

of immune signatures in longitudinal tumor samples yields insight into bio-

markers of response and mechanisms of resistance to immune checkpoint

blockade. Cancer Discov. 6, 827–837.

Cibulskis, K., Lawrence,M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez,

C., Gabriel, S., Meyerson, M., Lander, E.S., and Getz, G. (2013). Sensitive

detection of somatic point mutations in impure and heterogeneous cancer

samples. Nat. Biotechnol. 31, 213–219.

Davoli, T., Uno, H., Wooten, E.C., and Elledge, S.J. (2017). Tumor aneuploidy

correlates with markers of immune evasion and with reduced response to

immunotherapy. Science 355, eaaf8399.

De Mattos-Arruda, L., Bidard, F.C., Won, H.H., Cortes, J., Ng, C.K.Y., Peg, V.,

Nuciforo, P., Jungbluth, A.A., Weigelt, B., Berger, M.F., et al. (2014). Establish-

ing the origin of metastatic deposits in the setting of multiple primary malig-

nancies: the role of massively parallel sequencing. Mol. Oncol. 8, 150–158.

DuPage,M., Mazumdar, C., Schmidt, L.M., Cheung, A.F., and Jacks, T. (2012).

Expression of tumour-specific antigens underlies cancer immunoediting.

Nature 482, 405–409.

Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus:

NCBI gene expression and hybridization array data repository. Nucleic Acids

Res. 30, 207–210.

Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw,

R., Jassal, B., Jupe, S., Korninger, F., McKay, S., et al. (2016). The reactome

pathway knowledgebase. Nucleic Acids Res. 44 (D1), D481–D487.

Fisher, S., Barry, A., Abreu, J., Minie, B., Nolan, J., Delorey, T.M., Young, G.,

Fennell, T.J., Allen, A., Ambrogio, L., et al. (2011). A scalable, fully automated

process for construction of sequence-ready human exome targeted capture

libraries. Genome Biol. 12, R1.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Anti-CD4 Monoclonal Antibody Ventana Cat# 790-4423; RRID: AB_2335982

Goat Anti-rabbit IgG Antibody Vector Laboratories Cat# PK6101; RRID: AB_2336820

Mouse Anti-FoxP3 Monoclonal Antibody abcam Cat# ab20034; RRID: AB_445284

Biotinylated Horse Anti-mouse IgG Vector Laboratories Cat# MKB-22258; RRID: AB_2336180

Rabbit Anti-CD8 Monoclonal Antibody Ventana Cat# 790-4460; RRID: AB_2335985

Rabbit Anti-PD-L1 Monoclonal Antibody Cell Signaling Cat# 13684

Mouse Anti-CD68 Monoclonal Antibody Dako Cat# M0814; RRID: AB_2314148

Rabbit Anti-CD3 Polyclonal Antibody Dako Cat# A0452; RRID: AB_2335677

Mouse Anti-CD8 Monoclonal Antibody,

Phycoerythrin Conjugated, Clone SK1

BD Biosciences Cat# 340046; RRID: AB_400005

CD4 Monoclonal Antibody (OKT4 (OKT-4)),

PerCP-Cyanine5.5, eBioscience

Thermo Fisher Scientific Cat# 45-0048-42; RRID: AB_10804390

Mouse Anti-CD3 Monoclonal Antibody,

Pacific Blue Conjugated, Clone UCHT1

BD Biosciences Cat# 558117; RRID: AB_397038

Mouse Anti-Human CD45 Monoclonal

Antibody, APC-H7 Conjugated

BD Biosciences Cat# 560178; RRID: AB_1645479

LIVE/DEAD Fixable Aqua Dead Cell Stain Thermo Fisher Scientific L34957

TNF-a Monoclonal Antibody (MAb11),

PE-Cyanine7, eBioscience

Thermo Fisher Scientific Cat# 25-7349-82; RRID: AB_469686

IFN-g Monoclonal Antibody (GZ-4), FITC,

eBioscience

Thermo Fisher Scientific Cat# BMS107FI; RRID: AB_10596520

Biological Samples

Primary High Grade Serous Ovarian Cancer MSKCC N/A

Spleen metastasis MSKCC N/A

Right Upper Quadrant metastasis MSKCC N/A

Liver metastasis MSKCC N/A

Vaginal Cuff metastasis MSKCC N/A

Blood samples MSKCC N/A

Chemicals, Peptides, and Recombinant Proteins

Fixation/Permeabilization Solution Kit BD Biosciences Cat# 554714

17-mer custom peptides (n = 43) GenScript Cat# SC1487

CEF peptide pool ‘‘classic’’ C.T.L. Cat# CTL-CEF-001

Recombinant human IL-2, Proleukin Chiron N/A

Recombinant human IL-15 Peprotech Cat# 200-15

Deposited Data

Raw whole-exome sequencing primary

sample

This paper BioSample: SAMN06199513

Raw whole-exome sequencing primary

sample

This paper BioSample: SAMN06199514

Raw whole-exome sequencing primary

sample

This paper BioSample: SAMN06199515

Raw whole-exome sequencing primary

sample

This paper BioSample: SAMN06199516

Raw whole-exome sequencing primary

sample

This paper BioSample: SAMN06199517

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Raw whole-exome sequencing primary

sample

This paper BioSample: SAMN06199518

Raw microarray data (all samples) This paper GEO: GSE92780

Software and Algorithms

MuTect v1.1.4 Broad Institute http://archive.broadinstitute.org/cancer/cga/

mutect

Integrative Genomics Viewer v2.3.61 Broad Institute http://software.broadinstitute.org/

software/igv/

Phangorn v2.0.2 CRAN https://cran.r-project.org/web/packages/

phangorn/index.html

CopywriteR v2.2.0 Bioconductor http://bioconductor.org/packages/release/

bioc/html/CopywriteR.html

ABSOLUTE v1.0.6 Broad Institute http://archive.broadinstitute.org/cancer/cga/

absolute

PyClone v2.7.11 Shah Lab http://compbio.bccrc.ca/software/pyclone/

GSVA v1.24.1 Bioconductor https://bioconductor.org/packages/release/

bioc/html/GSVA.html

Affymetrix Expression Console

Software

Affymetrix https://www.thermofisher.com/uk/en/home/

life-science/microarray-analysis/microarray-

analysis-instruments-software-services/

microarray-analysis-software/affymetrix-

expression-console-software.html

Affymetrix Transcriptome Analysis

Console

Affymetrix https://www.thermofisher.com/uk/en/

home/life-science/microarray-analysis/

microarray-analysis-instruments-

software-services/microarray-analysis-

software/affymetrix-transcriptome-

analysis-console-software.html

ESTIMATE v1.0.13 MD Anderson

Bioinformatics

http://bioinformatics.mdanderson.org/main/

ESTIMATE:Overview

CIBERSORT Jar v1.05 Stanford University https://cibersort.stanford.edu/

OptiType v1.0 GitHub https://github.com/FRED-2/OptiType

POLYSOLVER Broad Institute http://archive.broadinstitute.org/cancer/cga/

polysolver

Samtools v0.1.19 SAMtools http://samtools.sourceforge.net/

Novocraft v3.02.05 Novocraft http://www.novocraft.com/

MuTect Broad Institute http://archive.broadinstitute.org/cancer/cga/

mutect

NetMHC v3.4 Immune Epitope Database

and Analysis Resource

http://tools.iedb.org/mhci/download/

NetMHC II v2.2 Immune Epitope Database

and Analysis Resource

http://tools.iedb.org/mhcii/download/

Sturniolo Immune Epitope Database

and Analysis Resource

http://tools.iedb.org/mhcii/download/

Immunogenicity Immune Epitope Database

and Analysis Resource

http://tools.iedb.org/immunogenicity/

download/

immunoSEQ ANALYZER v3.0 Adaptive biotechnologies http://www.adaptivebiotech.com/

immunoseq/analyzer

FlowJo v10.3 FlowJo, LLC https://www.flowjo.com/solutions/flowjo

BD FACSDiva v8.0 BD Biosciences http://www.bdbiosciences.com/us/

instruments/clinical/software/flow-

cytometry-acquisition/bd-facsdiva-

software/m/333333/overview
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Alexandra

Snyder (snyderca@mskcc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects research
Patient samples were collected and analyzed after informed consent to the institutional tissue collection protocol, and approval by

the Internal ReviewBoard (IRB) of Memorial Sloan Kettering Cancer Center. The biological sex of the patient is female (XX). The age of

the patient at the time the primary sample was resected was 53 years old, and 60 years old at the time the metastatic samples were

resected.

Distribution and availability of blood and tissue used in this study
The tissue and peripheral blood used for this work are nearly exhausted. Investigators interested in their use should contact the Lead

Contact and a Material Transfer Agreement (MTA) put in place as per MSKCC Standard Operating Procedures.

METHOD DETAILS

Whole exome sequencing
Whole exome sequencingwas performed using the Illumina protocol at the Broad Institute ofMIT andHarvard, Cambridge,MA, USA.

Illumina sequencing of exomes was employed targeting approximately 37.7Mb of mainly exonic territory made up of all targets from

Broad Institute’s Agilent exome design (Agilent SureSelect All Exon V2), all coding regions of Gencode V11 genes, and all coding

regions of RefSeq gene andKnownGene tracks from the UCSCgenome browser (http://genome.ucsc.edu). Data was analyzed using

the Broad Picard Pipeline which includes de-multiplexing and data aggregation.

The Illumina exome sequencing uses Illumina’s in-solution DNA probe based hybrid selection method that uses similar principles

as the Broad Institute-AgilentTechnologies developed in-solution RNA probe based hybrid selection method (Fisher et al., 2011;

Gnirke et al., 2009) to generate Illumina exome sequencing libraries. Pooled libraries were normalized to 2nM and denatured using

0.2NNaOHprior to sequencing. Flow cell cluster amplification and sequencing were performed according to themanufacturer’s pro-

tocols using either theHiSeq 2000 v3 or HiSeq 2500. Each runwas a 76 bp paired-endwith a dual eight-base index barcode read. The

sequencing depths of the samples were: normal blood sample (90%at 20X), primary (82%at 50X), spleen (78%at 50X), RUQ (60%at

50X), liver (89% at 50X), and vaginal cuff (77% at 50X) tumors.

Gene expression
RNA was extracted from FFPE samples using the RecoverAll Total Nucleic Acid Isolation from Thermo Fisher Scientific (Catalog

Number: AM1975). RNA expression was assessed using the human Affymetrix Clariom D Pico assay. Arrays were analyzed using

the SST-RMA algorithm in the Affymetrix Expression Console Software. Expression was determined by using the Affymetrix Tran-

scriptome Analysis Console, and for genes displaying inconsistent expression between probes, the SRY gene signal was used as

a cutoff. LOESS normalization across samples was implemented before differential expression analysis and ssGSEA (Tables S2A

and S2C) using:

# R 3.4.0

library(affy) # version 1.54

data_nom<-normalize.loess(data, family.loess=’’gaussian’’)

Immunofluorescent staining
The immunofluorescent staining and cell counting were performed at Molecular Cytology Core Facility of Memorial Sloan Kettering

Cancer Center using Discovery XT processor (Ventana Medical Systems) by a cytologist blinded to the sample identifiers and con-

ditions. The tissue sections were deparaffinized with EZPrep buffer (Ventana Medical Systems), antigen retrieval was performed with

CC1 buffer (Ventana Medical Systems). Sections were blocked for 30 min with Background Buster solution (Innovex) followed by

avidin/biotin blocking for 8 min. Pseudocolors were applied as follows: CD4 A594, FOXP3 A488, CD8 A647; CD68 and CD3 A594

and PD-L1 A488. Cells were detected using the DAPI image, which was processed and segmented using ImageJ/FIJI (NIH). Appro-

priate threshold valueswere set for all othermarkers, and the number of cells with positive signal above the thresholdwas counted for

all single and double staining.

For multiplex staining, eachmarker was added consecutively in separate staining runs as follows. CD4/FoxP3/CD8: Sections were

incubated with anti-CD4 (Ventana, cat#790-4423, 0.5 mg/ml) for 5 hr, followed by 60 min incubation with biotinylated goat anti-rabbit

IgG (Vector Laboratories, cat # PK6101) at 1:200 dilution. The detection was performed with Streptavidin-HRPD (part of DABMap kit,

Ventana Medical Systems), followed by incubation with Tyramide Alexa 488 (Invitrogen, cat# T20922) prepared according to manu-

facturer instruction with predetermined dilutions. Next, slides were incubated with anti-FoxP3 (Abcam, cat#ab20034, 5 mg/ml) for
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4 hr, followed by 60 min incubation with biotinylated horse anti-mouse IgG (Vector Laboratories, cat# MKB-22258) at 1:200 dilution.

The detection was performed with Streptavidin-HRP D (part of DABMap kit, Ventana Medical Systems), followed by incubation with

Tyramide Alexa Fluor 568 (Invitrogen, cat# T20914) prepared according to manufacturer instruction with predetermined dilutions.

Finally, sections were incubated with anti-CD8 (Ventana, cat#790-4460, 0.07 mg/ml) for 5 hr, followed by 60 min incubation with

biotinylated goat anti-rabbit IgG (Vector, cat # PK6101) at 1:200 dilution.

PDL1/CD68 or CD3: First, sections were incubated with anti-PDL1 (Cell Signaling, cat#13684, 5 mg/ml) for 5 hr, followed by 60 min

incubation with biotinylated goat anti-rabbit IgG (Vector, cat # PK6101) at 1:200 dilution. The detection was performed with

Streptavidin-HRP D (part of DABMap kit, Ventana Medical Systems), followed by incubation with Tyramide Alexa 488 (Invitrogen,

cat# T20922) prepared according to manufacturer instruction with predetermined dilutions. Next, slides were incubated with

anti-CD68 (DAKO, cat#M0814, 0.02 mg/ml) for 5 hr, followed by 60 min incubation with biotinylated horse anti-mouse IgG (Vector

Labs, cat# MKB-22258) at 1:200 dilution, or with anti-CD3 (DAKO, cat#A0452, 1.2 mg/ml) for 4 hr, followed by 60 min incubation

with biotinylated horse anti-rabbit IgG (Vector Labs, cat# PK6101) at 1:200 dilution. The detection was performed with Streptavi-

din-HRP D (part of DABMap kit, Ventana Medical Systems), followed by incubation with Tyramide Alexa Fluor 568 (Invitrogen,

cat# T20914) prepared according tomanufacturer instruction with predetermined dilutions. After staining slides were counterstained

with DAPI (Sigma Aldrich, cat# D9542, 5 mg/ml) for 10 min and coverslipped with Mowiol.

Sequenced-based HLA typing
HLA class I and class II 6-digit typing was performed at the NewYork BloodCenter by sequence-based typing and specific sequence

primers.

TCR sequencing
High-throughput sequencing of the T cell receptors present in the samples and blood of the patient was done using the immunoSEQ

assay platform (Adaptive biotechnologies).

PBMC–neoepitope assay
The predicted peptides were synthesized (Genscript Corporation). PBMCswere cultured in complete RPMI (Core Media Preparation

Facility MSKCC) with peptides at 1 mg/mL, peptide vehicle (DMSO, Sigma-Aldrich) and CEF peptide pool (2 mg/ml, C.T.L) for 21 days

with peptide restimulation at day 7 and day 14. IL-2 (Proleukin, Chiron) and IL-15 (Peprotech, cat#200-15) were added every 3 days at

10 IU/mL and 10 ng/mL respectively. Intracellular Cell Staining (ICS) was performed at day 14, and day 21 after 6 hr re-stimulation in

the presence ofmonensin for 5 hr (GolgiStop, BD). Cells were then stained for 15minwith viability dye (LIVE/DEADFixable AquaDead

Cell Stain Kit, ThermoFisher) at 4�C followed by 30min incubation with CD45-APC-H7 (BDPharMingen, clone 2D1), CD3-Pacific Blue

(BD PharMingen, clone UCHT1), CD4-PerCP-Cy5.5 (eBioscience, clone OKT4), CD8-PE (BD Biosciences, clone SK1). Cells were

then fixed and permeabilized with BD Cytofix/Cytoperm (BD Biosciences) for 20 min at 4�C and washed with BD Perm/Wash

(BD Biosciences). The ICS was performed in BD Perm/Wash with IFN-g-FITC (eBioscience, clone GZ-4) and TNF-a-PE-Cy

(eBioscience, clone MAb11) at 4�C for 30 min. Samples were acquired on a BD LSRII flow cytometer (BD Biosciences) and the anal-

ysis was performed on FlowJo software (FlowJo, LLC).

QUANTIFICATION AND STATISTICAL ANALYSIS

Tumor volume calculation
The two axes CT scan measurements and the equation for the ellipsoid volume were used to estimate tumor volumes:

V =
4

3
p3 a3b3 c

Where a and b are the two axes and c is their mean.

Mutation calling
Reads with mapping quality below 30 in the BAM files were filtered out before mutation calling. Somatic single nucleotide variants

(SNVs) were called using MuTect version 1.1.4 (Cibulskis et al., 2013). Identified missense mutations were manually reviewed using

the Integrative Genomics Viewer version 2.3.61 (Robinson et al., 2011; Thorvaldsdóttir et al., 2013).

Phylogenetic tree inference
The phylogenetic tree was generated as described in Murugaesu et al. (2015). A binary presence/absence matrix of all non-silent

mutations was used as input for the R package phangorn version 2.0.2 (Schliep, 2011). UPGMA hierarchical clustering followed

by the parsimony ratchet analysis (Nixon, 1999) were implemented to build the unrooted tree, and the acctran function was used

to determine branch lengths.
e4 Cell 170, 927–938.e1–e8, August 24, 2017



Relative copy-number alterations
To extract copy number information based on the sequenced exomes of the samples, CopywriteR version 2.2.0 (Kuilman et al., 2015)

was employed in R version 3.2.3. To perform the analysis, mappability information based on the hg19 human reference genome,

20 kb bin size, and default parameters were used.

Absolute copy-number alterations and tumor purity
The absolute copy number profiles and the tumor content of the samples were inferred using the computational method ABSOLUTE

version 1.0.6 (Carter et al., 2012) in R version 3.2.3. ABSOLUTE integrates segmented copy number data, pre-computed statistical

models of recurrent cancer karyotypes, allelic fractions of somatic SNVs, and a probabilistic model framework to jointly estimate

candidate tumor purity, ploidy values, absolute copy number data, and subclonal single nucleotide variants (Carter et al., 2012).

Tumor purity and absolute copy numbers were obtained using ABSOLUTE default parameters, segmented copy number data

derived fromCopywriteR, and variant allele frequencies estimated byMuTect (Cibulskis et al., 2013). Bestmodel selectionwas based

on the guidelines provided by GenePattern and the Broad Cancer Genome Analysis group (http://www.broadinstitute.org/cancer/

software/genepattern/analyzing-absolute-data). Amplifications and deep deletions were defined as copy-number alterations with

at least ± 2 median absolute deviations for each sample copy-number distribution as shown in Figure S1C.

Mutation cellular prevalence
Variant allelic cellular prevalence was estimated using PyClone version 0.13.0 (Roth et al., 2014) in Python version 2.7.11. The

PyClone pipeline analysis was performed jointly on all samples with their tumor purity and absolute copy number alterations esti-

mated by ABSOLUTE. Total copy number prior probability estimate and the PyClone binomial model were used in the analysis.

The mutation variant allele frequencies, closest integer copy number alterations, and tumor purity were used as input. Mutations

not present or called in the sample were set to 0. Agglomerative hierarchical cluster analysis with Euclidean distance metric and

average linkage clustering was performed on the cellular prevalence values and samples. The SREBF2S120* nonsense mutation

was not included in the PyClone pipeline because its copy number data was closest to 0.

Single-sample gene set enrichment analysis
Single-sample GSEA (Barbie et al., 2009), a modification of standard GSEA (Subramanian et al., 2005), was performed on RNA

measurements for each sample using the GSVA package version 1.24.1 (Hänzelmann et al., 2013) in R version 3.3.2 with parameters:

method = ‘ssgsea’, and tau = 0.25. Normalized enrichment scores were generated for gene sets belonging to KEGG (Kanehisa and

Goto, 2000; Kanehisa et al., 2016) and Reactome (Fabregat et al., 2016). The gene sets were obtained fromMSigDB database version

5.2 (Liberzon et al., 2011). In order to identify significantly up- and downregulated gene sets, a p-value was calculated for each gene

set based on comparison of the enrichment score with 10,000 permutations of randomly sampled gene sets of the same size. All

genes listed in the expression array were used to derive the permutated gene sets. Finally, the p values were corrected using

Benjamini and Hochberg (BH) method. Enrichment scores were normalized across samples (Tables S2D and S2F) using:

# R 3.4.0

m<-glm(data=data,immunogenicity�clonality+hla_binding,family=binomial)

Immune cell gene-expression signatures
Tumor purity and total immune component in the tumor sampleswere analyzed using the ESTIMATE algorithmmethod version 1.0.13

(Yoshihara et al., 2013) on the gene expression data using the option: platform = affymetrix in R version 3.4.0. Then, selection of

probes with the highest variance for each gene was performed to deconvolute cell type specific immune signatures. The deconvo-

lution was achieved using CIBERSORT Jar version 1.05 (https://cibersort.stanford.edu/) with the standard LM22 signature gene file,

and 1000 permutations to calculate deconvolution p values (Newman et al., 2015).

Whole-exome sequencing-based HLA inference
The HLA genotyping algorithms OptiType version 1.0 (Szolek et al., 2014) and POLYSOLVER version 1.0 (Shukla et al., 2015) with

default parameters were employed for HLA class I 4-digit inference. POLYSOLVERHLA-I typing andmutation callingwere performed

using samtools version 0.1.19 and novocraft 3.02.05 for the alignment, and MuTect version 1.1.7 for the variant calling.

Neoepitope predictions
In silico mutant peptide generation

To predict neoepitopes, ‘‘wild-type’’ petide 17mers (for HLA-I) and 29mers (for HLA-II) with the affected amino acid in the middle for

each missense mutation were retrieved from the GRCh37.74 human reference proteome (http://ftp.ensembl.org/pub/release-74/

fasta/homo_sapiens/pep/). To generate ‘‘mutant’’ peptides, the affected amino acid was replaced in silico with the corresponding

mutant amino acid.

HLA class I epitope binding predictions

Mutant peptides were used as input for the T Cell Epitope Prediction Tools included in the Immune Epitope Database and Analysis

Resource (IEDB) 3.0 (http://www.iedb.org/) (Vita et al., 2015). The HLA class I epitope binding predictions were performed using the
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HLA-I IEDB algorithms Consensus (Kim et al., 2012) and the artificial neural network (NetMHC) version 3.4 (Lundegaard et al., 2008;

Nielsen et al., 2003) independently yielding same conclusions. For Consensus method – which combines NetMHC, the stabilized

matrix method (Peters and Sette, 2005), and the combinatorial peptide libraries method (Sidney et al., 2008) – 9 mers with a relative

percentile rank% 1% for each HLA-I allele were considered binders to cover most of the potential immune responses as previously

suggested (Kotturi et al., 2007; Moutaftsi et al., 2006). For NetMHC, different cut-off values were evaluated independently and

compared between each other. 9mers with absolute IC50 affinity values % HLA-I specific cutoffs were considered binders (http://

help.iedb.org/entries/23854373) (Paul et al., 2013). HLA-I specific cut-offs were not available for HLA-I C alleles, therefore an

IC50 % 500nM was used instead. All mutant predicted binders were considered for the analyses, i.e., for each missense mutation,

up to six binders for HLA-I (A, B, C alleles) and up to four binders for HLA-II (DQ and DR alleles). Since NetMHC gives actual nM bind-

ing affinities, and HLA-I specific cutoffs have been estimated, we used NetMHC predictions throughout the manuscript.

HLA class II epitope binding predictions

HLA class II epitope binding predictions on 15mers were performed using the HLA-II IEDB algorithms Consensus (Wang et al., 2008,

2010), NetMHCII version 2.2 (Nielsen and Lund, 2009), and Sturniolo (Sturniolo et al., 1999) since these were the only available

methods for the patient HLA-II alleles. The Consensus method used the relative percentile ranks of NetMHCII and Sturniolo, and

15mers with percentile ranks % 1% were considered binders. 15 mers with NetMHCII IC50 % 500nM or Sturniolo percentile

rank % 1% were considered binders, which are more stringent cut-off values than the IEDB recommended 1000 nM for NetMHCII

and % 10% percentile rank for Sturniolo. In the authors’ knowledge, HLA-II specific NetMHCII cut-offs have not been reported.

Neoepitope depletion analysis
TCGA ovarian cancer null model

To analyze neoepitope depletion across the different samples, we followed the method developed by Rooney and colleagues using

only expressed mutations. Commonly mutated genes were not included as indicated (Rooney et al., 2015). The method compares

the samples to a data driven null model. To generate the null model and estimate neoepitope depletion, the nucleotide sequences

flanking each mutation (context of the mutation) are taken into account, thus 192 possible codon mutations are considered

ð64 codons33 possible mutations= 192 possible changesÞ. To control for tumor type differences, we used TCGA ovarian cancer

samples to generate the null model (Cancer Genome Atlas Research Network, 2011). Context of the mutations for the TCGA ovarian

cancer samples and the case study tumor samples were obtained from the assembly of the Genome Reference Consortium Human

Reference 37. Only TCGA ovarian cancer samples with mutation context in all missense and silent mutations were included (n = 150).

We predicted HLA-I neoepitopes of TCGA ovarian cancer samples using the same approach as for the case study samples

described above.

Neoepitope depletion for each sample was calculated as follows. First, the expected number of missense mutations per silent

mutation ðNsÞ and the expected number of predicted neoepitopes per missense mutation ðBsÞ were calculated using all samples

(TCGA ovarian cancer samples and the patient’s samples), where Ns and Bs are vectors with 192 components each:

Ns =

�
missenseAAA/ACA

silentAAA/ACA

;
missenseAAA/AGA

silentAAA/AGA

;/;
missenseTTT/TGT

silentTTT/TGT

�

Bs =

�
neoepitopeAAA/ACA

missenseAAA/ACA

;
neoepitopeAAA/AGA

missenseAAA/AGA

;/;
neoepitopeTTT/TGT

missenseTTT/TGT

�

Therefore, each component of the vector Ns corresponds to the fraction of missense mutations per silent mutation, and each

component of the vector Bs corresponds to the number of predicted neoepitopes per missense mutation. In both vectors, Ns and

Bs, each component corresponds to the ratio of a particular codon change. The components of Ns can be computed because

the counts of the mutations take into account the three possible reading frames.

Second, the count of silent mutations for each codon change ðSsÞ was calculated for each sample. Thus, Ss is a vector with

192 components where each component is the number of silent mutations with a particular type of codon change for a given sample:

Ss = ðsilentAAA/ACA; silentAAA/AGA;/; silentTTT/TGTÞ
Third, the expected number of missense mutations ðNpredÞ and the expected number of neoepitopes ðBpredÞ were calculated for

each sample.

Npred =
XSilent
m

SsðmÞ3NsðmÞ
Bpred =
XSilent
m

SsðmÞ3NsðmÞ
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m˛ðAAA/ACA; AAA/AGA;/;TTT/TGTÞ
Where Silent represents the number of silent mutations.

Fourth, the expected and observed numbers of neoepitopes per missense mutation for each sample were calculated as follows:

Expected =
Bpred

Npred
Observed =
Bobs

Nobs

Where Nobs is the observed number of missense mutations and Bobs the predicted number of neoepitopes for each sample.

Finally, for each sample these ratios were compared and the ratio or observed versus expected neoepitopes calculated:

R=
Observed

Expected

Each sample has a ratio R, thus a distribution of log2 ratios is generated as shown in Figure S4C top panel. Empirical two-sided

p-value thresholds were calculated because the ratios do not follow a normal distribution (Shapiro-Wilk test, D’Agostino-Pearson’s

test, and Kolmogorov-Smirnov test). The calculations can be found in Tables S4E–S4G.

Permutation null model

To compare the levels of neoepitope depletion only between the patient’s samples, we generated sample specific null models based

on 150 random unique permutations (redundant permutations excluded) of the samples and their mutations (Table S4H). The number

of permutations was selected based on the number of samples used in the TCGA ovarian cancer neoepitope depletion analysis

(n = 150). Permutated and real samples were analyzed together using the same approach as for the TCGA ovarian cancer neoepitope

depletion analysis described above. A permutation-based null model for each sample was used to control for the number of muta-

tions. Empirical two-sided p-value thresholds were calculated for each distribution because the ratios do not follow a normal distri-

bution (Shapiro-Wilk test, D’Agostino-Pearson’s test, and Kolmogorov-Smirnov test). The calculations can be found in Figure S4C

and Table S4I.

Immunogenicity predictions
Immunogenic properties of HLA class I epitopes were estimated in silico using the IEDB resource tool ‘‘MHC I Immunogenicity’’

(http://tools.iedb.org/immunogenicity/), which combines the chemical and physical properties of the amino acids, their position in

the epitope, and the HLA-I subtype allele to estimate the immunogenicity of a given neoepitope-HLA complex (Calis et al., 2013).

To compare clonal and sub-clonal predicted immunogenic properties, we used two approaches:

Absolute score comparison
Two-sided Mann-Whitney rank tests were calculated to compare absolute scores between clonal and sub-clonal predicted binders

and non-binders. In Figures S5A–S5C, n refers to the number of peptides in each category. The Mann-Whitney rank test was

employed because the absolute score distributions do not follow a normal distribution (Shapiro-Wilk test, D’Agostino-Pearson’s

test, and Kolmogorov-Smirnov test), and because the number of peptides in each category is different a Wilcoxon signed-rank

test could not be calculated.

Binomial immunogenicity comparison
Generalized linear models (GLM) were used to compare the probability of a peptide having immunogenic properties or not according

to it clonal status and HLA binding affinity. The binomial GLM approach was considered appropriate for this setting because immu-

nogenicity can be considered a binomial process, immunogenic or non-immunogenic. In this scenario, however, the binomial

process corresponds to whether an epitope has biochemical properties associated with immunogenicity (score R 0) that outweigh

properties associated with no immunogenicity (score < 0). Importantly, predicted immunogenicity scores < 0 can still elicit an immu-

nogenic response, but overall they have less immunogenic properties than positive scores (Calis et al., 2013). To further explain

variation in the intrinsic immunogenic predictions we included HLA-I binding affinity (nM) as an explanatory variable. We then calcu-

lated the probability of a peptide having a positive immunogenic score or not based on the samples’ neoepitope data. No interaction

between clonality and HLA-I binding affinity was found, thus the interaction was excluded from the model. The final binomial GLM

formula used is:

# R 3.4.0

m<-glm(data=data,immunogenicity�clonality+hla_binding,family = binomial)
Cell 170, 927–938.e1–e8, August 24, 2017 e7
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TCR sequencing analysis
Analysis of the sequences was performed on the immunoSEQ ANALYZER 3.0 (Adaptive biotechnologies). T cell rearrangements that

are differentially abundant between samples were detected using the Differential Abundance tool by two-sided binomial tests with

Benjamini and Hochberg multiple test correction, q value < 0.01 was considered statistically significant.

DATA AND SOFTWARE AVAILABILITY

Requests for additional data and custom code should be directed to the corresponding authors.

Whole-exome sequencing data
The accession numbers for the whole exome sequences reported in this paper are BioSample: SAMN06199513, SAMN06199514,

SAMN06199515, SAMN06199516, SAMN06199517, and SAMN06199518.

Microarray data
The microarray data discussed in this study have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002), and the

accession number is GEO: GSE92780.

TCR sequencing data
The TCR sequencing data discussed in this study will be provided upon request to the Lead Contact in the Data and Software Avail-

ability section.
e8 Cell 170, 927–938.e1–e8, August 24, 2017
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Figure S1. Non-Silent Somatic Mutations and Copy-Number Alterations, Related to Figures 1 and S2 and Table S1

(A) Binary matrix of present/absent non-silent point mutations (n = 188) used for the phylogeny tree reconstruction in Figure 1D (Table S1A).

(B) Relative copy-number alterations inferred from WES data of the primary and metastatic samples using CopywriteR (Kuilman et al., 2015).

(C) Relative copy number profiles and tumor purity inferred after ABSOLUTE (Carter et al., 2012) analysis. Amplified and deep deleted DNA segments were

defined as copy number alterations with at least ± 2 median absolute deviations for each sample. MAD = median absolute deviation.
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Figure S2. Gene Set Analysis of Transcript Abundance and Somatic Alteration Patterns across Samples, Related to Figure 2 and Table S2

(A–C) Gene-expression levels and genetic alterations of the DNA damage, apoptosis pathways, and caspases.

(D) Expression levels of the 50 most variant genes according to their coefficient of variation (Table S2A).

(E) Differential enrichment scores and enrichment q values of downregulated pathways between tumor samples (Tables S2D and S2E). No significantly enriched

pathways (q < 0.05) with at least ± 1 log2 change relative to the median of the other samples were detected (Table S2G). False-discovery rate adjusted p value

(q value) was calculated using the Benjamini-Hochberg method.



Figure S3. Complete Slide Hematoxylin and Eosin and Immunofluorescent Staining, Related to Figure 3 and Table S3

Hematoxylin and eosin staining of tumor samples. Immunofluorescence staining for cytotoxic T cells (CD8+), helper T cells (CD4+FOXP3�), and regulatory T cells

(CD4+FOXP3+).
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Figure S4. Neoepitope Distributions and HLA-I Neoepitope Depletion Analysis, Related to Figure 4 and Table S4

(A) Number of unique and overlapping expressed missense mutations, HLA-I and II neoepitopes between samples (Table S4D).

(B) Correlations between expressed missense mutations and predicted HLA-I neoepitopes using NetMHC applied to TCGA ovarian samples (n = 150) and the

primary and metastatic tumors (Tables S4E–S4G). KDE = kernel density estimate.

(C) Top: Estimated neoepitope deviation from expected in the five tumor samples compared to TCGA ovarian cancer samples (n = 150). The expected number of

neoepitopes was calculated by taking into account the expected number of missense mutations and the number of silent mutations according to Rooney et al.,

2015 (see STAR Methods). Bottom: Neoepitope depletion analysis of 150 random unique permutations of the patient’s tumors (primary, spleen, RUQ, liver, and

vaginal cuff) and their mutations. Each sample was compared against its own 150 unique permutations to control for the number of mutations (Tables S4H and

S4I). Two-sided empirical p values were calculated from each distribution.
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Figure S5. Predicted Immunogenicity of HLA Class I Neoepitopes, Related to Figures 1 and 4 and Tables S1 and S4

(A) Predicted immunogenic properties of trunk (clonal) and private HLA-I neoepitopes. Positive immunogenicity scores have biochemical properties associated

with higher immunogenicity that outweigh properties associated with lower immunogenicity, and vice versa for negative scores (Calis et al., 2013). Horizontal lines

within violin plots show the median and interquartile range of the data distribution.

(legend continued on next page)



(B and C) Comparison between clonal and sub-clonal (including shared between two or more samples but not all) predicted immunogenicity of predicted binders

and non-binders (two-sided Mann-Whitney rank test). Horizontal lines within violin plots show the median and interquartile range of the data distribution.

(D–F) Probability of an HLA-I neoepitope having immunogenic properties considering its clonality and HLA-I binding affinity using the neoepitope data in (A), (B),

and (C), respectively. Clonal neoepitopes have a lower probability of having immunogenic properties than sub-clonal predicted binders (chi-square test, p = 0.02).

For non-binders (NetMHC score > HLA-I specific cutoff), clonal neoepitopes have a higher probability of having immunogenic properties (chi-square test,

p = 0.003), as well as peptides with higher HLA-I affinities (chi-square test, p = 0.0001), although the absolute differences are minor. No significant interaction

between clonality and predicted HLA-I binding affinity was detected for either binders or non-binders. GLM = generalized linear model.
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Figure S6. PBMCs Sample Timeline and T Cell-Neoepitope Recognition Assay, Related to Figures 4 and 5 and Table S5

(A) Blood samples obtained from the patient 550 and 978 days after resection were used for TCR sequencing and T cell – neoepitope recognition assays

respectively.

(B) Experimental setup and flow cytometry gating strategy for the T cell –neoepitope recognition assays (intracellular cytokine staining assay) with surface staining

of CD3, CD4, CD8, CD45, and intracellular staining of IL-4, IFN-g, TNF-a. PBMC = peripheral blood mononuclear cells.
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Figure S7. Overall Associations between Tumor Fates and Tumor-Immune Microenvironmental Features, Related to Figures 1, 2, 3, and 4

and Tables S1, S2, S3, and S4

Cellular and molecular associations with change in tumor growth. Change in tumor growth (y axis) was calculated by dividing the tumor volume at CT scan 11 by

the tumor volume at CT scan 10 (Figure 1B). Fitted curves are 2nd order polynomial regression lines plotted for trend visualization rather than prediction purposes.

Capase 1 and 4 are considered inflammatory caspases involved in a type of apoptosis related to immune response called pyroptosis. The enrichment score x axis

and the q-values come from the ssGSEA analysis. HLA-I genes include HLA-A, B,C, E, and F. HLA-II genes include HLA-DPA1, DMA, DRA, DQA1, DMB, DPB1,

DQB2, DRB5, DRB1, DQB1, and DOA.
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