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Abstract  23 

Passerine salmonellosis is a well-recognised disease of birds in the order Passeriformes, 24 

including common songbirds such as finches and sparrows, caused by infection with 25 

Salmonella enterica serovar Typhimurium. Previous research has suggested that some 26 

subtypes of S. Typhimurium – definitive phage types (DT) 40, 56 variant, and 160 – are host-27 

adapted to passerines, and that these birds may represent a reservoir of infection for humans 28 

and other animals. Here, we have used whole genome sequences of 11 isolates from British 29 

passerines, five isolates of similar DTs from humans and a domestic cat, and previously 30 

published S. Typhimurium genomes including similar DTs from other hosts to investigate the 31 

phylogenetic relatedness of passerine salmonellae in comparison with other S. Typhimurium, 32 

and investigate possible genetic features of the distinct disease pathogenesis of S. 33 

Typhimurium in passerines. Our results demonstrate that the 11 passerine isolates and 13 34 

other isolates, including those from non-passerine hosts, were genetically closely related, 35 

with a median pairwise single nucleotide polymorphism (SNP) difference of 130 SNPs. 36 

These 24 isolates did not carry antimicrobial resistance genetic determinants or the S. 37 

Typhimurium virulence plasmid. Although our study does not provide evidence of 38 

Salmonella transmission from passerines to other hosts, our results are consistent with the 39 

hypothesis that wild birds represent a potential reservoir of these Salmonella subtypes, and 40 

thus, sensible personal hygiene precautions should be taken when feeding or handling garden 41 

birds.  42 

Importance 43 

Passerine salmonellosis, caused by certain definitive phage types (DTs) of Salmonella 44 

Typhimurium, has been documented as a cause of wild passerine mortality since the 45 

1950s in many countries, often in the vicinity of garden bird feeding stations. To gain 46 
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better insight into its epidemiology and host-pathogen interactions, we genome-sequenced a 47 

collection of eleven isolates from wild passerine salmonellosis in England and Wales. 48 

Phylogenetic analysis showed these passerine isolates to be closely related to each other and 49 

to form a clade distinct from other strains of S. Typhimurium, which included a multidrug 50 

resistant isolate from invasive non-typhoidal Salmonella disease which shares the same phage 51 

type as several of the passerine isolates. Closely related to wild passerine isolates and within 52 

the same clade were four S. Typhimurium isolates from humans as well as isolates from 53 

horses, poultry, cattle, an unspecified wild bird, and a domestic cat and dog with similar DTs 54 

and/or multi-locus sequence types. This suggests the potential for cross-species transmission 55 

and the genome sequences provide a valuable resource to investigate passerine salmonellosis 56 

further.  57 
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Introduction 58 

Passerine salmonellosis is a well-described disease caused by Salmonella enterica subspecies 59 

enterica serovar Typhimurium (S. Typhimurium) which has been reported in Europe, North 60 

America, Asia and Australasia, with the earliest reports in the 1950s (2, 11-13, 16, 18, 33, 45, 61 

50). Whilst the disease can occur year-round, passerine salmonellosis is highly seasonal in 62 

many countries; incidents are typically observed during the cold winter months, frequently in 63 

the vicinity of supplementary feeding stations for wild birds within domestic gardens (13, 64 

33). Gregarious and granivorous species in the finch (Fringillidae) and sparrow (Passeridae) 65 

families are primarily affected; in Great Britain, these include the greenfinch (Chloris 66 

chloris) and house sparrow (Passer domesticus) (33, 45). Affected birds exhibit non-specific 67 

signs of malaise, including lethargy and fluffed-up plumage, and therefore attract the 68 

attention of members of the public. Macroscopic lesions most commonly include focal to 69 

multifocal necrosis of the upper alimentary tract, liver and spleen, sometimes in combination 70 

with hepatomegaly and splenomegaly (11, 16, 33). 71 

 72 

Biotyping of passerine-derived S. Typhimurium isolates from Great Britain in recent decades 73 

has confirmed the majority (≥90%) to be definitive phage types (DT) 40, 56 variant (56v) and 74 

160 (33, 45): limited data indicate that DT56(v) isolates belong to multi-locus sequence type 75 

(ST)568 and DT40 isolates to ST19 (21), which is one of the most common S. Typhimurium 76 

sequence types (1). Pulsed-field gel electrophoresis has identified high levels of genetic 77 

similarity amongst S. Typhimurium isolates from British passerines both within and between 78 

Salmonella DTs (34). Whilst these S. Typhimurium DTs account for a small proportion of 79 

Salmonella isolated from other species, infection has been found in livestock (17, 46), 80 

humans (2, 14, 32, 44, 57) and companion animals (e.g., cat) (48), and therefore appear not 81 
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wholly restricted in their host range. Little is known regarding the mechanisms of disease 82 

pathogenesis and only limited characterisation of passerine-derived S. Typhimurium isolates 83 

has been performed using PCR virulotyping. This has demonstrated the absence of both the 84 

fimbriae-related associated virulence gene, pefA, and the SPI-1 sopE gene (20), the latter 85 

having been associated with enteritis and epidemics in human isolates. Based on 86 

epidemiological and microbiological investigations, wild passerines are proposed to be the 87 

primary source of infection with these S. Typhimurium DTs for humans, livestock and 88 

companion animals, through a range of potential exposure routes including direct contact 89 

with sick and dead wild birds, indirect contact with wild bird faeces in outdoor environments 90 

and activities related to garden bird feeding, and predation of diseased birds (17, 32, 48).  91 

 92 

Whilst whole-genome sequencing (WGS) is increasingly being applied to human bacterial 93 

pathogens, and is offering profound insight into their biology (10, 27), few studies have 94 

utilised this approach for the study of bacterial infections in wildlife (5). Limited WGS data 95 

from passerine-derived S. Typhimurium isolates are available, and such information would 96 

offer considerable insight into the epidemiology and disease pathogenesis of these strains. 97 

Therefore, in this study, we used WGS to characterise eleven S. Typhimurium isolates from 98 

British passerines belonging to DT40 (four isolates), DT56(v) (five isolates), along with two 99 

isolates belonging to phage types DT81 and DT87(v). We include a further five DT40 and 100 

DT56(v) isolates from humans and a domestic cat, along with S. Typhimurium genomes from 101 

diverse geographical, temporal, and host backgrounds, to evaluate whether or not the 102 

salmonellae from passerines had a distinct phylogenetic signature, which has been suggested 103 

previously but not confirmed (32). We also determine the genetic content of the passerine 104 

isolates, including virulence factors and prophages, to identify if there are unique genetic 105 

features that may explain the distinct pathogenesis of the infection in passerines.  106 
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Materials and Methods 107 

Isolate selection  108 

A sample of eleven S. Typhimurium isolates derived from passerines with confirmed 109 

salmonellosis were selected for WGS from an available archive (Table 1). This culture 110 

collection was obtained through pathological investigations of wild birds found dead across 111 

Great Britain since the early 1990s that have been conducted at the Institute of Zoology (32, 112 

33).  Isolates were selected that had already been fully biotyped (serotype and phage type (3)) 113 

and for which pulsed-field gel electrophoresis (PFGE) groupings, using either the PulseNet 114 

Rapid Escherichia coli method with slight modifications (34), the PulseNet USA Salmonella 115 

method (32), or both, were available from previous studies. Selection focused on the two  116 

most common phage types known to cause passerine salmonellosis in Great Britain, S. 117 

Typhimurium DT40 and DT56(v). Two isolates of both these definitive phage types were 118 

selected from both 2001 and 2006, providing representation of a 5-year interval. Isolates were 119 

chosen from salmonellosis cases with a wide geographical distribution across England and 120 

Wales. In addition, to capture isolate diversity, three S. Typhimurium isolates derived from 121 

passerine salmonellosis cases with variant biotyping or PFGE grouping results were included 122 

in the study: these comprised a DT87(v) and DT81 isolate, and a DT56(v) isolate that had a 123 

distinct PFGE profile and was in a separate PFGE group, designated PFGE group 8 with the 124 

PulseNet E. coli protocol (34), and group 9 for the Salmonella protocol (32), and which did 125 

not cluster with the majority of DT56(v) isolates with either protocol. Isolates were selected 126 

from cases in the species most commonly affected by salmonellosis: greenfinch (n=6), house 127 

sparrow (n=4) and a single goldfinch (Carduelis carduelis), and with typical seasonality, 128 

December to February inclusive, for the disease. No DT160 isolates were available in the 129 

archive. 130 
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 131 

Five S. Typhimurium isolates submitted to and genome sequenced by Public Health England 132 

(PHE) in 2014 that matched the passerine isolates (DT40 or DT56(v)/ST568), were also 133 

included in the analysis. These comprised two DT56(v)/ST568 isolates from humans, one 134 

DT56(v)/ST568 isolate from a domestic cat, one DT40/ST19 isolate from a human and one 135 

DT40/ST568 isolate from a human (Table 1). To place the passerine, human and feline 136 

isolates in phylogenetic context, additional S. Typhimurium genomes were included in the 137 

analysis (Supplementary Table 1). These included seven genomes with their associated 138 

plasmids: LT2 (40), SL1344 (29), DT104 (38), A130 (41), SO4698-09 (47), D23580 (26), 139 

and DT2 (25) (hereafter called ‘reference’ genomes); the A130 (26) isolate is a DT56(v) 140 

multiple drug resistant isolate from human non-typhoidal Salmonella-associated invasive 141 

disease in Malawi. In addition, a ‘context’ collection of genomes was included, comprising 142 

42 S. Typhimurium genomes from a broad temporal, host and geographical range described 143 

in Okoro et al (41), and nine genomes from Petrovska et al (47), which were either ST568 144 

(five genomes), or of the same definitive phage types as those associated with passerines 145 

(DT40: two genomes, DT160: two genomes). 146 

 147 

Antimicrobial susceptibility testing 148 

The 11 passerine strains were raised from the -80
o
C archive and grown at 37

o
C on blood agar 149 

plates with 5% horse blood (Oxoid, Basingstoke, UK) or in Luria-Bertani (LB) broth (Sigma-150 

Aldrich Company Ltd., Gillingham, UK). Antimicrobial susceptibility testing was performed 151 

with Vitek 2 Compact using the Standard Enterobacteriaceae Card AST-N206 (bioMérieux, 152 

Basingstoke, UK).  153 

 154 
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Whole genome sequencing 155 

Genomic DNA was extracted from overnight cultures of the 11 passerine strains using the 156 

MasterPure™ Complete DNA and RNA Purification Kit (Cambio Ltd, Cambridge, UK). 157 

Illumina library preparation was carried out as described (49) and sequencing performed 158 

using the HiSeq 2000 technology following the manufacturer’s standard protocols (Illumina 159 

Inc., Little Chesterford, UK), generating 100bp paired end reads. The five isolates from PHE 160 

were sequenced as described in (4); short read data can be found at the PHE Pathogens 161 

BioProject PRJNA248792 at NCBI.  162 

 163 

Sequence analysis 164 

Draft de novo assemblies of each isolate were constructed using Velvet (63), then scaffolded 165 

using SSPACE (6) and GapFiller (7), as described in (43). For the passerine and PHE 166 

genomes, in silico PCR virulotyping was performed for the virulence-associated genes 167 

examined in Hughes et al. (20) and the non-redundant genes examined in Skyberg et al. (54), 168 

along with a number of fimbriae-related genes (Supplementary Table 2), by searching for the 169 

forward and reverse primer sequences in the draft assemblies; results were confirmed by 170 

mapping sequence reads to the genes of interest using BWA-MEM (35). These results were 171 

compared to those of the reference Typhimurium genomes. Prokka (53) was used to annotate 172 

the draft genomes, and a pan-genome was constructed using Roary as described in (42), using 173 

a blastp percentage identity threshold of 95%, distinguishing between core genes - defined as 174 

found in at least 95% of isolates - and the accessory genome. The accession numbers of 175 

annotated assemblies of the 11 passerine, four human and one feline isolates are listed in 176 

Supplementary Table 3. A phylogenetic tree was reconstructed using the concatenated core 177 

gene alignment, aligned with MAFFT (24) within Roary (42), using RAxML (55) with a 178 
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gamma correction for among site rate variation. To assess the presence or absence of the S. 179 

Typhimurium virulence plasmid in the passerine and PHE isolates, the reads were mapped 180 

against the LT2 chromosome and virulence plasmid (pSLT) using SMALT (61), and 181 

coverage over the plasmid was visually inspected.  182 

The presence of acquired antimicrobial resistance (AMR) genes was assessed using the 183 

ResFinder-2.1 Server (http://cge.cbs.dtu.dk/services/ResFinder-2.1/) (62). The multi-locus 184 

sequence type (MLST) was extracted from the assemblies using the Centre for Genomic 185 

Epidemiology server, (www.cbs.dtu.dk/services/MLST) (31); MLST of the five PHE isolates 186 

were determined by a modified version of SRST (22). The draft de novo assemblies of the 187 

passerine, PHE and reference Typhimurium genomes were searched for prophage sequences, 188 

using the PHAST server (64).  189 

 190 

Accession numbers 191 

Accession numbers for the short reads of the 11 passerine isolates are ERS217356 – 192 

ERS217366. The accession numbers for the five isolates from Public Health England are 193 

SRR1968278, SRR1969075, SRR1967749, SRR1969317 and SRR1965151. These 194 

accessions, and those for the annotated assemblies for the passerine and PHE isolates, are 195 

found in Supplementary Table 3. 196 

 197 

Results  198 

Whole genome analysis and phylogeny 199 

Comparative whole genome analysis of the 74 isolates included in this study showed that the 200 

core genome consisted of 3,890 genes, encompassing 11,724 variable polymorphic sites. 201 

http://cge.cbs.dtu.dk/services/ResFinder-2.1/
http://www.cbs.dtu.dk/services/MLST
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Based on these variable sites, we constructed a core gene phylogenetic tree (Figure 1) 202 

demonstrating that the ST568 isolates clustered together, whereas the ST19 isolates were 203 

found in multiple clades of the phylogenetic tree. Three of the four PHE human isolates as 204 

well as the feline isolate clustered with the 11 passerine isolates, hereafter called ‘Clade A’; 205 

the human isolate (H142780372) from south east England in 2014 was phylogenetically 206 

closer to sample DT177, isolated from a human in the UK, and is in the same clade as the UK 207 

bovine SO4698-09 reference monophasic S. Typhimurium genome. Also clustering within 208 

Clade A were the other ST568s from the context genomes, along with two DT40/ST19 and 209 

one DT160/ST19 isolates (Supplementary Table 1), which included one human, one canine, 210 

one bovine, three equine, one chicken, and two other bird isolates, one of which is from a 211 

passerine and the other an unspecified wild bird (without further information). Between these 212 

24 isolates of Clade A, there was a median pairwise distance of 130 SNPs (range 18 – 406) 213 

between isolates in the 3,890 genes included in the core gene alignment. Between isolates 214 

within Clade A and those outside Clade A, there was a median pairwise distance of 766 SNPs 215 

(range 306 – 1603) in the core genes.  216 

In addition to the 3,890 core genes identified, there were 829 genes found in 15 - <95% of 217 

isolates, and 4,575 genes that were found in fewer than 15% of isolates. An analysis of Clade 218 

A identified that there were 1,306 genes that were uniquely found in a Clade A isolate, but 219 

the majority of these genes (1,303) were found in four or fewer of the 24 isolates. There were 220 

no genes that were both unique to Clade A and found in each of the 24 isolates, at the cut-offs 221 

examined.  222 

 223 

In silico PCR typing, prophage identification, presence/absence of pSLT 224 
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Most of the various virulence and fimbriae-related genes, with some exceptions, were found 225 

in the 23 passerine, PHE, and reference genome isolates. The genes found in all isolates were 226 

prgH, sopB, invA, spiC, sifA, misL, pipD, sitC, orfL, iroN, lpfC, msgA, orgA, pagC, sipB, 227 

spaN (all isolates with one change in the spaN primer sequences), spiA and tolC. No isolate 228 

was found to carry cdtB. The exceptions, where genes were variably found in the isolates, are 229 

listed in Table 2. The majority of genes were found with no changes in the primer sequences, 230 

with a few exceptions (‘costs’) as marked in Table 2. The number of intact, incomplete, and 231 

questionable prophages, as well as the identity of the intact prophages, are reported in 232 

Supplementary Table 4. For all isolates in Clade A, there was no mapping coverage over the 233 

entire virulence plasmid, pSLT, of the S. Typhimurium LT2 reference genome, indicating 234 

that they do not carry the virulence plasmid commonly found in Typhimurium isolates and 235 

present in 42 out of 50 non-Clade A isolates in this study. 236 

  237 

Antimicrobial resistance  238 

All 11 passerine isolates sequenced here were susceptible in vitro to all of the antimicrobials 239 

tested; ampicillin, amoxicillin/clavulanic acid, amikacin, aztreonam, ceftazidime, cefalotin, 240 

ciprofloxacin, cefotaxime, cefuroxime, cefuroxime axetil, ertapenem, cefepime, cefoxitin, 241 

gentamicin, meropenem, tigecycline, tobramycin, trimethoprim and piperacillin/tazobactam. 242 

Analysis of acquired resistance genes found that all possessed aac(6')-Iaa (NC_003197); 243 

although able to confer resistance to certain aminoglycosides (37, 52), it has been shown to 244 

be a cryptic resistance gene which is not expressed (37, 51). No SNPs in gyrA, gyrB, parC or 245 

parE, known to confer resistance to quinolones, were identified in these isolates. Thus, the 246 

phenotypic susceptibility profile of the isolates is in congruence with the absence of AMR 247 
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determinants in the genomes. No antimicrobial resistance determinants were found in the 248 

other Clade A genomes.  249 

 250 

Discussion 251 

Salmonellosis is a well-known cause of mortality in some wild passerine species, and 252 

represents a potential zoonotic reservoir. Specific DTs of S. Typhimurium are believed to be 253 

host-adapted to garden birds, and their isolation from humans has been taken as indicative of 254 

transmission from garden birds (32). WGS currently provides the highest resolution available 255 

to investigate the relatedness and gene content of bacteria, and to our knowledge, this study 256 

represents the first comparison of multiple genome sequences of S. Typhimurium from 257 

passerines. We have also included four human and one feline isolates with the same phage 258 

types as the passerine isolates, as well as 58 S. Typhimurium obtained from multiple different 259 

host species, multiple countries, and over a 72-year period, to compare and contrast the 260 

bacteria from the different host species to investigate further if wild birds are a plausible 261 

reservoir of infection. 262 

 263 

All of the 11 passerine isolates clustered together, with three of the four PHE human isolates, 264 

the PHE feline isolate, and with six ST568, two DT40/ST19 and one DT160/ST19 context 265 

isolates from previously published Typhimurium studies (Figure 1). The passerine isolates 266 

included the two commonest DTs found in garden birds, DT56(v) and DT40, but also isolates 267 

representing less common DTs. The DT81 passerine isolate clustered with DT56(v) isolates, 268 

as did the DT56 and DT141 isolates from the context collection. The DT87(v) isolate 269 

clustered with the passerine DT40 isolates. Sample PM1422/05, selected as it was DT56(v) 270 

but had a variant PFGE grouping, clustered with the other DT56(v) isolates. There was no 271 
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evidence of clustering by passerine host species or by year of isolation. The feline isolate and 272 

three of the four human isolates from PHE also clustered with the passerine isolates, adjacent 273 

to those with the same DT. The one exception was sample H142780372 from a human, which 274 

was DT40/ST19, but genetically more similar to the S. Typhimurium reference genomes than 275 

to the other isolates with phage type DT40. One DT160/ST19 context isolate, a common DT 276 

found in passerines but isolated from a horse in the UK in 1998, clustered with the 277 

DT40/ST19 isolates in Clade A; the second DT160 isolate in the context collection, which 278 

was ST2866, was outside of Clade A. There was relatively low genetic variability in the core 279 

genomes of the isolates in Clade A, which included isolates over an 18-year period and from 280 

different hosts, with a median pairwise difference of 130 SNPs. In contrast, there were 784 281 

SNPs different between the A130 and D23580 isolates, which are both ST313 from Malawi, 282 

and sampled seven years apart (26). Here, neither ST nor DT were predictive of inclusion in 283 

Clade A, as ST19, a common S. Typhimurium ST (1), was found in multiple clades of the 284 

tree, as were DT56(v), DT40 and DT160 (Figure 1). Even though non-ST19 isolates clustered 285 

more closely based on ST than by DT, the STs represented in this collection are all single-286 

locus variants of ST19, and thus offer minimally informative data to distinguish isolates. 287 

Therefore, the core genome SNPs provided the greatest information about the relatedness of 288 

isolates.   289 

 290 

Antimicrobial resistance in non-typhoidal Salmonella is common, and in some places it has 291 

been increasing in recent years (9). In a report examining antimicrobial sales and AMR in UK 292 

food-producing animals, the prevalence of S. Typhimurium resistant to at least one 293 

antimicrobial ranged between 65.6 – 88.6% in the years 2004 – 2013 (59). Whilst a growing 294 

body of research has found evidence of AMR in Salmonella sp. isolates derived from free-295 

living wildlife including birds (8, 23), this study, as with others on S. Typhimurium derived 296 
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from British passerines (20, 32), found no phenotypic evidence of AMR. This was supported 297 

by an absence of acquired resistance genes or known SNPs conferring resistance in the 298 

passerine isolates. This was also true for the Clade A isolates from the context collection 299 

from non-passerine hosts. Only limited incidents of AMR in salmonellae from passerines 300 

have been reported previously all outside of the UK, involving Corvidae (36) and Thraupidae 301 

(39) species, and a single isolate from a Fringillidae species with phenotypic resistance to 302 

sulphamethoxazole (19). This is in contrast to the A130 isolate from a human in Malawi (26), 303 

which although also DT56(v), is resistant to ampicillin, kanamycin, trimethoprim and 304 

sulphonamides, and is phylogenetically distinct from the DT56(v) cluster in Clade A. This is 305 

unsurprising, as all of the Clade A DT56(v) isolates in this study are ST568, whereas A130 is 306 

ST313, part of the epidemic of multi-drug resistant S. Typhimurium ST313 that is a major 307 

cause of invasive salmonellosis in humans in sub-Saharan Africa (26). Whilst four of the 308 

passerine isolates and two of the context isolates were DT40/ST19, there was one human 309 

isolate (H142780372) that was also DT40/ST19, but was not part of Clade A. These results 310 

further highlight the advantage of utilising the higher resolution of WGS over PFGE and 311 

phage typing in understanding the patterns of disease in Salmonella.    312 

 313 

The results of the in silico PCR virulotyping were broadly similar to those observed by 314 

Hughes et al. (20). None of the isolates in Clade A had either the SPI-1 sopE gene or the 315 

virulence-plasmid located pefA and spvB genes, the latter two being expected as these isolates 316 

did not carry pSLT. The DT40/ST19 human isolate H142780372, which was not in Clade A, 317 

did contain a gene similar to sopE, which had 37 SNPs compared to the reference sopE 318 

nucleotide sequence but 99% amino acid identity. All 11 passerine isolates contained prgH, 319 

sopB, invA, spiC, sifA, misL, pipD, sitC and orfL, which are all found within Salmonella 320 

Pathogenicity Islands, and also iroN, a siderophore. This is in agreement with the passerine-321 
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derived S. Typhimurium examined previously (20). Also positive for these genes, but lacking 322 

sopE and pefA, were the three human and one feline isolates in Clade A. The seven reference 323 

Typhimurium isolates contained all examined genes from Hughes et al (20), with the 324 

exception of sopE, which was found only in SL1344 and SO4698-09, and pefA, which was 325 

not found in SO4698-09. For the non-redundant genes examined using the Skyberg et al. 326 

primers (54), lpfC, msgA, orgA, pagC, sipB, spaN, spiA and tolC were found in all isolates, 327 

whereas pSLT-associated spvB was only found in six of the reference Typhimurium 328 

sequences (excluding SO4698-09), and cdtB, a cytolethal distending toxin found in S. Typhi, 329 

was not found in any isolate. These results are in contrast to Krawiec et al. (28), who found a 330 

more variable presence of virulence genes in the Salmonella isolates from wild birds they 331 

examined.  332 

 333 

The virulence plasmid, pSLT, was absent in all Clade A isolates, as well as the ST19 isolate 334 

SARA3 and the seven isolates in the clade containing the monophasic Typhimurium 335 

reference genome SO4698-09. An early estimate was that 88% of S. Typhimurium carry the 336 

virulence plasmid (15), although there are notable exceptions where it is less common, such 337 

as in the European monophasic Typhimurium epidemic strains (47). There was some 338 

mapping over part of the plasmid for the isolate XT1456/06, which, when compared to the 339 

reference genome SL1344, was identified as similar to colicin plasmid pCol1B9 (29). This 340 

plasmid is associated with horizontal gene transfer via conjugation to E. coli during infection 341 

in mice (56). At least part of the shufflon region encoding the variable pilus tip antigen in the 342 

XT1456/06 plasmid was rearranged compared to the plasmid in SL1344, which is thought to 343 

be related to sex pilus binding specificity (56).  344 

 345 
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The PHAST analysis (Supplementary Table 4) indicated that the 15 passerine and PHE Clade 346 

A isolates had intact Gifsy-1 (similar to that in SO4698-09) and ST64B prophages, in 347 

common with several of the reference genomes. However, long-read sequencing is necessary 348 

to identify the exact composition and orientation of the prophages in these isolates. Whilst 349 

there are no individual genes present uniquely in every Clade A isolate, it is also possible that 350 

pseudogenes or SNPs may be related to adaptation to specific hosts or a systemic rather than 351 

gastrointestinal infection lifestyle, as has been identified previously (26, 30, 60). The loss of 352 

diverse metabolic pathways that allow persistence in the gastrointestinal tract of the chicken 353 

during experimental infection is a feature common to the galliform-adapted serovar S. 354 

Gallinarum (30), S. Typhimurium DT2 associated with feral pigeons (25) and S. 355 

Typhimurium African ST313 isolates (26); this shared signature appears to be an early stage 356 

in host adaption. In addition, passerine salmonellosis has a global distribution and the 357 

comparison of WGS data of passerine-derived S. Typhimurium isolates from continental 358 

Europe, Asia, Australasia and North America would be worthwhile to investigate the genetic 359 

relationships between international isolates.  360 

 361 

This analysis has demonstrated the genomic similarity of the 11 S. Typhimurium obtained 362 

from passerines in this study. It has also identified that 13 other isolates, from humans, 363 

companion animals (cat and dog), horses, cattle, chicken, a finch and another unspecified 364 

wild bird and all from the UK, were also genetically related to the passerine isolates. What 365 

this has shown is that, in addition to forming a separate phylogenetic cluster, the isolates 366 

appear also to be defined by the lack of a virulence plasmid and antimicrobial resistance 367 

determinants. Previously, it has been stated that wild bird populations could act as a reservoir 368 

of human infections with some S. Typhimurium subtypes (32). Multiple studies have shown 369 

infection in domestic cats with passerine-associated S. Typhimurium subtypes, with exposure 370 
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believed to occur when they predate diseased wild birds: indeed, the condition in cats is 371 

colloquially known as “songbird fever” (58). The genomic analyses presented here are 372 

consistent with wild birds acting as a potential reservoir of these particular Salmonella 373 

subtypes, but the data do not represent true transmission events, as the passerine isolates were 374 

obtained from 2001 – 2006, whereas only two of the remaining 13 Clade A isolates were 375 

obtained during this period. This study provides the basis to pursue an active collection of 376 

contemporaneous isolates from humans and passerines to identify more conclusively the 377 

sources and sinks of these particular DTs. Whilst it is important from a public health 378 

perspective to recognise that this reservoir exists, the risk should be kept in context: a 379 

previous study (32) found that passerine-associated S. Typhimurium phage types (DTs 40, 380 

56(v) and 160) accounted for only 1.6% of S. Typhimurium isolates and 0.2% of all 381 

Salmonella isolates recovered from humans in England and Wales over the period 2000-382 

2010. Nevertheless, awareness of this potential health risk should be raised and the public 383 

who feed garden birds encouraged to take sensible personal hygiene precautions when 384 

handling or feeding wild birds. The genome sequences investigated here demonstrate the 385 

relatedness between Salmonella strains infecting wild passerines, and some of those found in 386 

other hosts including humans. Furthermore, they provide an important resource to investigate 387 

further the epidemiology, disease pathogenesis and putative host-adaption of these 388 

salmonellae.   389 
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 618 

 619 

Figure legends 620 

 621 

Figure 1. Maximum-likelihood mid-point rooted phylogeny based on 3,890 core genes of 622 

Salmonella Typhimurium from passerines and other host species, with S. Typhimurium 623 

reference and context genomes; black blocks represent data not known. Scale bar represents 624 

the number of substitutions per site in the core gene alignment. 625 
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Table 1. Identity and source of new Salmonella Typhimurium genomes investigated in this study. 

Strain name Region Host species Sample type Date of 
isolation 

DT PFGE E. 
coli 

protocol 

PFGE 
Salmonella 

protocol 

MLST Reference for 
information/ 

genomes 

PM1402/06 Cheshire, UK Greenfinch Post mortem liver Nov-06 40 6 1 19 (34); this study 

XT1456/06 Gwent, UK Goldfinch Post mortem liver Dec-06 81 5  568 (34); this study 

PM108/01 Powys, UK Greenfinch Post mortem 
spleen 

Feb-01 56v 5 5 568 (34); this study 

PM1422/05 Glamorgan, UK Greenfinch Post mortem liver Dec-05 56v 8 9 568 (34); this study 

PM65/01 Lancashire, UK House sparrow Post mortem 
kidney 

Jan-01 40 6 1 19 (34); this study 

PM132/06 Leicestershire, UK Greenfinch Post mortem liver Feb-06 56v 5 5 568 (34); this study 

XT062/01 Cheshire, UK Greenfinch Post mortem liver Jan-01 87v 5  19 (34); this study 

PM1377/06 Kent, UK House sparrow Post mortem 
small intestine 

Nov-06 56v 5 5 568 (34); this study 

PM100/01 Shropshire, UK Greenfinch Post mortem 
spleen 

Feb-01 40 6 1 19 (34); this study 

PM54/01 Nottinghamshire, 
UK 

House sparrow Post mortem crop Jan-01 56v 5 5 568 (34); this study 

PM1356/06 Devon, UK House sparrow Post mortem liver Nov-06 40 6 1 19 (34); this study 

H144540642 West Midlands, UK Human Faeces 05/11/2014 56v   568 Public Health England 

H143320447 West Midlands, UK Human Faeces 12/08/2014 56v   568 Public Health England 

H143540876 Sussex, Surrey and 
Kent, UK 

Domestic cat  27/08/2014 56v   568 Public Health England 

H142780372 Sussex, Surrey and 
Kent, UK 

Human Faeces 04/07/2014 40   19 Public Health England 

H143120429 West Midlands, UK Human Faeces 29/07/2014 40   568 Public Health England 
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Table 2. Results showing differences between the passerine and PHE isolates in Clade A and 

the reference S. Typhimurium genomes of the in silico PCR virulotyping analysis and 

confirmatory mapping for the Hughes et al (20) and Skyberg et al (54) primers and the 

fimbriae-associated primers; ‘cost’ refers to a mismatch in the primer sites. 

Isolate sopE pefA fimA msgA spvB 

PM1402/06 0 0 1 1 0 

XT1456/06 0 0 1 1 0 

PM108/01 0 0 1 1 0 

PM1422/05 0 0 1 1 0 

PM65/01 0 0 1 1 0 

PM132/06 0 0 1 1 0 

XT062/01 0 0 1 1 0 

PM1377/06 0 0 1 1 0 

PM100/01 0 0 1 1 0 

PM54/01 0 0 1 1 0 

PM1356/06 0 0 1 1 0 

H142780372 1* 0 1 1 0 

H143120429 0 0 1 1 0 

H143320447 0 0 1 1 0 

H143540876 0 0 1 1 0 

H144540642 0 0 1 1 0 

SO4698-09 1 0 1 1 0 

A130 0 1 1 1 1 

DT104 0 1 1 1 1 

SL1344 1 1 1 1 1 

D23580 0 1 1^ 1 1 

DT2 0 1 1 1^ 1 

LT2 0 1 1 1 1 
                                       * cost of 2 

                                       ^ cost of 1 


