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Understanding past and future changes in northern Fennoscandian snow cover. 

Rebecca Marianne Vignols 

Abstract 
In this project, a combination of field measurements, remote sensing data and regional climate 

model outputs were used to study recent and projected future changes in Northern Fennoscandian snow 

cover. The research questions considered in this thesis are: What are the uncertainties in remote sensing 

and climate modelling datasets used in snow studies? How has snow cover been changing since the 

1960s and how will it change over the next century, at a regional level over Northern Fennoscandia? 

Field measurements were made over two field seasons in the Khibiny Mountains in Arctic 

Russia. This ground data was used to gain an understanding of snow cover behaviour in the Western 

Mountain Regions (WMR) of the Kola Peninsula and to ground-truth 500 m resolution satellite data 

(MODIS: Moderate Resolution Imaging Spectroradiometer) snow products. The overall root mean 

square error (RMSE) for both MODIS instruments was found to be less than 10 %. The ground-truthed 

MODIS snow product was then used with station data to analyse past changes in snow cover in the 

WMR over the past 16 years. Though there is high inter-annual and spatial variability in the long-term 

snow cover trends in the WMR, overall, the duration of the snow cover season has increased at lower 

elevations and decreased at higher elevations. 

Field measurements and MODIS data were used in the sensitivity analysis of the Weather 

Research and Forecasting (WRF) regional climate model. Twelve experiments with different physics 

parameterisations were run over the first field season, and a statistical scores evaluation was undertaken 

to determine the optimised parameter setup for modelling snow in the region. Three CMIP5 (Coupled 

Model Intercomparison Project 5) models were used to force WRF in historical (1990 - 1999) and two 

future climate (2090 - 2099) emission scenarios over Northern Fennoscandia. Outputs from the 

historical runs were compared to data from 10 stations across Northern Fennoscandia in order to further 

validate WRF. WRF makes excellent temperature estimates, with a mean bias in the yearly mean 

temperature outputs of the runs of -1.89 °C. The precipitation outputs are less accurate with values often 

higher than observations, especially for extreme precipitation events (CMIP5 ‘ensemble’ mean RMSE 

of 24.0 mm for 20 + mm precipitation events).  

Finally, the future runs were compared to historical runs to study projected future changes in 

temperature, precipitation, snowfall and snow cover. The three models give a range of different future 

predictions for regional climate change over Northern Fennoscandia. However, all CMIP5 models agree 

that in both emission scenarios mean snow cover duration will be lower over 2090 to 2099 than it was 

between 1990 and 1999. Importantly, changes in temperature, precipitation and snowfall are all higher, 

and snow cover is most impacted, in the higher emission scenario. RCP 8.5 consistently sees a higher 

decrease in solid precipitation than RCP 4.5 at all stations, and for all models and seasons, for example. 

Thus, aiming to reduce greenhouse gas emissions is still crucial to reducing anthropogenic impact on 

Northern Fennoscandian snow. 
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Chapter 1 
Introduction 

1.1 Overview 

The overall aim of my dissertation is to study changes in snow cover over Northern Fennoscandia (Fig. 

1.1). Both past and future snow cover in the region are investigated by using a combination of field-5 

collected data, meteorological station data, remote sensing and climate model outputs.  

The main research questions I aim to answer in my dissertation are: 

1. What are the uncertainties in remote sensing and climate modelling datasets used in snow 

studies? 

2. How has snow cover been changing since the 1960s and how will it change over the next 10 

century, at a regional level over Northern Fennoscandia? 

 

Figure 1.1: Map showing the position of Northern Fennoscandia (outlined in red). 

1.2 Context and rationale for the project 

There is no doubt that the Earth’s climate is changing (e.g. Field et al., 2014). Temperatures are 15 

rising fastest over the Arctic (e.g. Overland et al., 2014; Serreze and Francis, 2006), and as a result snow 

cover is changing over these higher latitudes (e.g. Armstrong and Brodzick, 2011; Kitaev et al., 2010). 
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Northern Fennoscandia (which includes Northern Finland, Norway, Russia and Sweden) is an Arctic to 

sub-Arctic region and, as such, is undergoing these major climatic changes (e.g. Dankers and 

Christensen, 2005; Høgda et al, 2001; Kilpeläinen et al., 2010). Snow cover is extremely important 20 

through its impacts on the climate as a whole and on people (e.g. Armstrong and Brun, 2008; Robinson 

et al., 1993; Storvold et al., 2006). At a regional level, snow cover has a very important role within local 

communities in Northern Fennoscandia impacting transport, energy, winter tourism and indigenous 

communities reliant on reindeer herding for example (e.g. Rasmus et al., 2016). As a result, it is crucial 

to study how snow has been changing and model how it will change over the next century. In this section, 25 

some of the gaps in the current literature studying Northern Hemisphere snow cover are detailed and the 

steps taken in order to address these gaps are specified.  

As one of the few mountain ranges in the Kola Peninsula (the Russian part of Northern 

Fennoscandia), the Khibiny Mountains are a very interesting region in terms of snow cover, but snow 

studies there are rare, and the great majority are published in Russian (e.g. Glazovskaya, 2000; Vikulina, 30 

2009; Zaika et al., 2013). This is due to the limited access to the region for non-Russian citizens and is 

also partially a result of the local avalanche service being privately owned, which makes data-sharing 

more difficult. Having the opportunity to undertake two field seasons there meant that more valuable 

data could be collected for the analysis of snow in the region, and scientific collaborations were both 

prolonged (with Moscow State University) and initiated (with the Polar-Alpine Botanical Garden-35 

Institute), permitting data-sharing. 

Past studies of snow and climate in the Kola Peninsula have also focussed primarily on using 

field and station data (e.g. Zaika et al., 2013, Blinova and Chmielewski, 2014; Marshall et al., 2016). 

Though using these types of datasets is very valuable, combining them with remote sensing data or 

reanalysis data adds a spatial continuity to the analysis, which broadens the conclusions that can be 40 

reached. In my project, I use high-resolution (500 m) remote sensing data over part of the Kola Peninsula 

in order to study past changes in snow cover within a small mountainous region. Both the development 

of new field datasets and the use of remote sensing to study trends in snow cover over mountains are 

important pieces of work. Indeed, Bormann et al. (2018) in their review of work to be done studying 

snow from space identify both of these as major gaps in snow research. 45 

Bokhorst et al. (2016) identified gaps in the study of changes in Arctic snow cover specifically. 

One of the needs that they pinpointed is a better understanding of the detailed timing of changes in snow 

cover, including snow build-up and spring snow melt. In this dissertation, I aim to address this gap by 

studying the timing (which includes the snow cover start, end and duration) of the snow cover season 

over the Western Mountains Region (WMR) using remote sensing data from the past two decades and 50 

over the entirety of Northern Fennoscandia using regional climate model outputs covering the last 

decade of the 21st century.  
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Finally, there is considerable uncertainty in many snow studies, regarding the reliability of 

datasets used. Recently for example, Mudryk et al. (2017) have demonstrated the limitations of the 

National Oceanic and Atmospheric Administration (NOAA) climate data record (NCDR) which they 55 

find returns anomalous trends in snow cover extent over four months of the year. In this dissertation, a 

great emphasis is placed on validating the remote sensing dataset and climate model parameterisation 

used. The validation of the remote sensing dataset used was a particularly valuable contribution to snow 

research using satellite data, as it tested the effectiveness of a particular remote sensing instrument in a 

novel region with a lack of openly accessible ground data.  60 

1.3 Thesis organisation 

The organisation of this dissertation is as follows. This introductory chapter is followed by a 

literature review (Chapter 2). As a result of the breadth of the research methods used for this project, I 

chose not to include a methods chapter, but rather to include a methods section in each data chapter 

instead. My dissertation contains four data chapters (Chapters 3 to 6). I begin each of these with a short 65 

summary of what is included in the chapter and end each one with a ‘fit within thesis’ section in which 

I discuss the links between the data chapters and how results from each chapter are used in the next. 

Each chapter is otherwise divided into a standard publication structure: introduction, methods, results, 

discussion, conclusions and references. The main findings of my four data chapters are revisited in my 

conclusions chapter (Chapter 7).  70 

1.4 Chapter aims  

In the following paragraphs, the outline of the dissertation is given, and the main aims of each 

chapter are detailed. Chapter Two constitutes my literature review, the aim of which is to summarise the 

current understanding of snow research. In this chapter, the importance of studying snow in general and 

the role snow performs within the climate system are explained. A background review of the three 75 

aspects of snow research used in this dissertation is provided: modelling, remote sensing and field 

measurements, going from the larger scale to the smaller scale. I finish this chapter with a summary of 

the current understanding of past changes in snow cover over the Northern Hemisphere including over 

Northern Fennoscandia.  

Chapter 3 is the first data chapter. In this chapter, I present the results of two seasons of 80 

fieldwork in the Khibiny Mountains, Arctic Russia, which I undertook in the first two years of my PhD. 

The results presented can be broadly divided into two parts. First, the dataset that I collected in the field 

is presented, questioning the relationships between different snow parameters, and thus investigating 

the behaviour of snow in these mountains in Northern Fennoscandia. In the second part of the chapter, 

the albedo measurements made in the field are used to ground truth the MODerate resolution Imaging 85 

Spectroradiometer (MODIS) snow dataset, which is later used in the dissertation. It must be noted that, 
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due to the limited time spent in the field, very little error analysis was undertaken on the field 

measurements themselves. The main aims of this chapter are to present the dataset collected, to 

interrogate the data to gain a better understanding of snow in the region, and to test the reliability of the 

data used later in the dissertation to study past changes in regional snow cover.  90 

The aim of Chapter 4 is to study past changes in snow cover over the region surrounding the 

Khibiny Mountains in the Kola Peninsula. This new region was defined as part of this work to include 

all low mountain ranges near the Khibiny Mountains and to include the surrounding plains; it is referred 

to as the WMR. In this chapter, recent changes in the timing and duration of the snow cover season are 

investigated for the first time in the WMR using MODIS data, as well as station data. In addition, I try 95 

to reconcile opposing trends in the literature concerning snow cover season duration in the Kola 

Peninsula. 

In Chapter 5, I use the Weather Research and Forecasting (WRF) regional climate model. 

Parameter optimisation can be undertaken with this model to meet the requirements of the analysis or 

study area. The research question I aimed to answer was: How well can WRF model the climate in 100 

Northern Fennoscandia and, in particular, the snow cover extent and duration? In the first half of this 

chapter, I undertake a sensitivity analysis of WRF, running 12 experiments to find the optimised 

parameterisation for the five most important physics options. The experimentally-found optimised 

physics setup for WRF over the WMR is then used for all following climate model runs. In the second 

half of this chapter, historical (1990 - 1999) runs are performed over Northern Fennoscandia and their 105 

temperature and precipitation outputs are validated using data from ten meteorological stations 

distributed across the study region.  

Chapter 6 is the final data chapter of this dissertation. For this chapter, I ran WRF forced by 

data from three different CMIP5 (Coupled Model Intercomparison Project) models over the final decade 

of the 21st century. This dynamical downscaling process is explained in both chapters 2 and 5. The 110 

regional climate model outputs are analysed over Northern Fennoscandia for this 2090 - 2099 period. 

The research question I look to answer in this chapter is: What are the likely changes in snow cover over 

Northern Fennoscandia by the end of the 21st century? 

Finally, in Chapter 7, my dissertation aims are revisited, addressing to what extent I have met 

them. I also summarise the main conclusions of my dissertation and consider future research directions 115 

that could be undertaken to expand on my work.  
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Chapter 2 
Literature Review  

2.1 Why study snow? 

Snow is one of the most important variables on the Earth’s surface for many reasons. The presence or 

absence of snow impacts human societies on multiple levels. Snow cover also has a large influence on 5 

physical, chemical and biological processes (Gray and Prowse, 1993), including on the Earth’s climate, 

vegetation, atmosphere and oceans.  

2.1.1 The importance of snow cover on people 

Snow cover has a direct impact on human life in many parts of the world. It affects hydrology, 

engineering, farming, travel, recreation, and affects safety through floods and avalanches (Robinson et 10 

al., 1993; Tedesco, 2015).  

One of the most important impacts of snow on society is through its role in water resources and 

hydrology. The amount of winter snowfall, timing of snow melt and the fate of this melt water (Gray 

and Prowse, 1993) all have a large effect on the availability of the world’s water resources. More than 

half of the world’s drinking water is provided by rivers, which are sensitive to changes in snow melt 15 

(Barnett et al., 2005). As of 2008, it was estimated that over one billion people relied on snow 

accumulation for water resources worldwide (Armstrong and Brun, 2008). For example, 90 % of the 

annual water supply in the Colorado Rockies results from snowfall (Singh and Gan, 2000). Additionally, 

1.4 billion people rely on water supply from Himalayan rivers, themselves sustained by glacier and 

seasonal snow melt (Immerzeel et al., 2010). Hydrology also links with the role of snow in engineering. 20 

In 2006, 98 % of Norwegian electricity was produced by hydropower and about 50 % of that water 

comes from melted snow (Storvold et al., 2006). Further engineering and infrastructure impacts include 

the loading of snow on the roofs of buildings, costs of road clearance and the general vulnerability of 

human activities (e.g. air travel) as a result of extreme snow events (Kivinen et al., 2017).  Additionally, 

snow plays a role in urban emissions and urban pollution, with fuel consumption in urban areas 25 

estimated to increase by 50 % for as little as 5 cm of snowfall (Armstrong and Brun, 2008). 

The important role of snow in water management also has an impact on different types of 

farming. Crop-farming can be affected by both low snowfall years in semi-arid regions where lack of 

water may lead to crop failure, and high snowfall years in regions with higher water-supply whereby 

floods may be caused by high snowmelt, thus drowning crops (Armstrong and Brun, 2008). Extreme 30 

snow events can also have direct negative impacts on agriculture, with the 2008 snow storm in Southern 

China for example, which negatively impacted crops, forestry, animal husbandry as well as fisheries 

(Dawei et al., 2008). In Arctic regions, reindeer herding, a highly important and traditional livelihood, 

is highly dependent on winter conditions. Difficult snow years with extreme snowfall and snow storm 
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events have been shown to have long-term negative impacts on reindeer and caribou populations 35 

(Langlois et al., 2017), thus influencing the viability of indigenous populations (Rasmus et al., 2016). 

Aspects of human recreation and travel are also snow-dependant. Northern economies are 

reliant on tourism and, similar to reindeer herding, this snow tourism is very vulnerable to extreme 

winter conditions (Kietäväinen and Tuulentie, 2013). Lack of snow is obviously negative for ski resorts 

(Jÿlha et al., 2008) and high amounts of snow may hinder travel to and within snowy regions. There are 40 

also many risks associated with winter tourism activities caused by snow, such as avalanches in 

mountainous regions. Snow absence can also cause important hazards with, for example, the higher risk 

of forest fires associated with low snow years in semi-arid regions (Armstrong and Brun, 2008).  

2.1.2 The importance of snow cover on climate 

Another way in which snow is extremely important is through its role in the climate system. Snow is 45 

one of the fastest changing surface variables on Earth, with the proportion of snow-covered land ranging 

from 7 to 40 % over a year (Singh and Gan, 2000). Snow is also the largest component of the terrestrial 

cryosphere by area (e.g. Lemke et al., 2007) and 98 % of seasonal snow is located in the Northern 

Hemisphere (Armstrong and Brodzik, 2001). Over the Northern Hemisphere in winter, the average 

maximum terrestrial snow cover is approximately 47 × 106 km2 (Robinson et al., 1993) of approximately 50 

100 × 106 km2 land area. 

This large seasonal variation combined with the physical characteristics of snow results in snow 

having a large impact on the Earth’s energy balance (e.g. Flanner et al., 2011; Qu and Hall, 2014; 

Thackeray and Fletcher, 2016). Snow has a high albedo, high emissivity and low thermal conductivity. 

Importantly, snow's high albedo leads to a feedback loop (e.g. Thackeray and Fletcher, 2016). Indeed, 55 

snow reflects radiation back out to space and thus contributes to keeping a cool Earth surface. As the 

atmosphere warms, snow melts, which means more radiation can be absorbed by the surface. This effect 

on the Earth's albedo leads to further warming and so more snow melt: this is a positive albedo feedback 

loop. Snow albedo is the third most important climate feedback after water-vapour and cloud feedbacks 

(e.g. Bony et al., 2006). This snow-albedo feedback effect is strongest in spring (April and May), as this 60 

is when incoming solar radiation is strongest over snow-covered areas (Groisman et al., 1994). 

This positive feedback mechanism for climate change, caused by the large contrast between 

snow-covered and snow-free land, is not the only feedback due to changes in snow cover. Armstrong 

and Brun (2008) emphasized two other important feedbacks. Firstly, snow has a strong impact on the 

Earth's energy balance by altering the energy flux between the atmosphere and the material beneath the 65 

snow (e.g. Walland and Simmonds, 1997; Fields et al., 2014). A negative feedback is caused by the 

presence of snow cover, as the land surface temperature becomes limited to 0 °C, in turn limiting the 

outgoing longwave radiation. This has been shown in observation- (Dewey, 1977) and modelling-based 

studies (Vavrus, 2007). Secondly, the ‘warming – snow cover decrease – increased warming’ feedback 

is overly simplified. Indeed, some cold regions, where snowfall is currently limited by moisture supply 70 



 
  

9 

rather than temperature, are expected to undergo increases in snow cover rather than decreases as a result 

of warming (Armstrong and Brun, 2008).  

Seasonal snow has been shown to be responsible for the largest annual and interannual 

variability in albedo (Armstrong and Brodzik, 2001; Atlaskina et al., 2015; Thackeray and Fletcher, 

2016), however, other things like snow age and pollution are also important (e.g. Painter et al., 2010; 75 

Dumont et al., 2014; Skiles et al., 2018). The albedo of fresh snow, for example, ranges between 0.9 to 

0.95 whereas older snow can have an albedo as low as 0.5 (Wuttke et al., 2006). Hansen and Nazarenko 

(2004) suggested that as much as 25 % of the warming observed over the Northern Hemisphere between 

1880 and 2000 was caused by the presence of soot on snow and ice.  

Snow also has very important effects on other components of the cryosphere. Fresh snow has a 80 

thermal conductivity of approximately 0.1 W.m-1K-1, 10 to 20 times lower than the thermal conductivity 

of wet soil or ice. With this low thermal conductivity, snow also effectively insulates the underlying 

soil, thus only near-surface ground freezes and deep water draining can continue uninterrupted (Lynch-

Stieglitz, 1994). This means that snow also affects the extent of permafrost (Zhang, 2005; Lawrence and 

Slater, 2010; Gouttevin et al., 2012). All of these links between snow and climate mean that studying 85 

snow cover is crucial for climate modelling and cryosphere-climate feedback studies (Brown and 

Robinson, 2011). 

2.1.3 Importance of snow and vegetation interactions 

Making predictions for future changes in the planet's albedo clearly requires an understanding of snow 

cover, but also an understanding of future temperature, vegetation and precipitation (Atlaskina et al., 90 

2015). For example, Qu and Hall (2014) suggested that uncertainties in vegetation changes may be 

responsible for the large inter-model spread in CMIP5 in the estimates of the snow-albedo feedback. 

Indeed, another important aspect of snow are its interactions with vegetation. 

Snow affects mountainous ecosystems and plant survival (e.g. Keller et al., 2005). Snowmelt is 

often the source of water that enables the survival and governs the productivity of vegetation (Fagre et 95 

al., 2003; Trujillo et al., 2012). Additionally, the thermal barrier caused by thick snow cover may reduce 

or even prevent soil frost, thus protecting plants during winter (Vajda et al., 2006). However, too much 

snow in spring will tend to negatively affect plants by reducing the growing season length.  

Conversely, vegetation itself may also have an impact on snow cover (Broxton et al., 2015). 

From the 1930s to 2010, changes in forest cover explained 72 % and 57 % of the variance of relative 100 

changes in snow accumulation and ablation over Northern Europe and America, respectively (Varhola 

et al., 2010). Tree canopies can intercept significant amounts of falling snow in forested environments. 

This snow may then sublimate before reaching the snowpack on the ground (Essery et al., 2003; Molotch 

et al., 2007). In contrast, forests with lower canopy cover (Lundquist et al., 2013) and increased shrub 

vegetation (Myers-Smith et al., 2011) capture and hold more snow, thus lengthening the snow-covered 105 

period and extending the supply of melt-water (Vajda et al., 2006). Arctic “shrubification”, which is the 
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expansion of shrubs in some Arctic regions (Pearson et al., 2013; Urban et al., 2014), may thus have an 

important effect on snow distribution.  

Another impact of vegetation on snow accumulation patterns is through the interactions of trees 

and wind (e.g. Winstral et al., 2002). Indeed, as snow is scoured from highly exposed areas, it is 110 

deposited in more sheltered areas such as immediately downwind of trees (Broxton et al., 2015). 

Similarly, changes in vegetation patterns from forest fires or forest harvesting have been shown to 

influence the spatial variation of snow in northern Finland via winds (Vajda et al., 2006). Snow drifting 

occurs more on the open tundra from the altered surface roughness and associated increased wind 

velocity. This increase in drift leads to a 30 cm thinner snowpack and with almost 50 % lower snow 115 

water equivalent (SWE) than forest snowpacks (Vajda et al., 2006).  

Finally, complex interactions in surface albedo occur where snow and vegetation interact. In 

areas of short vegetation, light snow can easily submerge the dark plants, thus greatly increasing the 

albedo of the surface and also affecting surface roughness. However, in areas of dense forest, trees will 

typically only successfully intercept low amounts of snow, thus retain low albedos even when snow 120 

covered (Viterbo and Betts, 1999). 

As a result of these complex interactions, models can sometimes struggle to accurately represent 

snow in regions with different normalized difference vegetation indexes (NDVIs; indicator used to 

quantify vegetation in remote sensing). Research shows that surface models have issues simulating mid-

winter snow ablation in forests (Slater et al., 2001) and snow models perform less consistently in 125 

forested areas than in open ones (Essery et al., 2009; Rutter et al., 2009). 

2.1.4 Links between snow and atmospheric processes 

Snow cover is understood to have considerable effects on the atmosphere. By insulating the underlying 

surface, snow is able to modify the turbulent transfer of heat and moisture into the atmosphere above 

(Barry, 2002). Atmospheric thickness is expected to decrease as a result of reduction in air temperature 130 

itself caused by the presence of snow on the ground (e.g. Lamb, 1955; Davies, 1994). This results in a 

feedback loop with the change in atmospheric thickness influencing the steering of cyclones, which 

itself can modify the occurrence of snowfall (Williams, 1978; Barry, 2002).  

Larger-scale links between snow and atmospheric processes have also been demonstrated. 

Walland and Simmonds (1997) showed a link between snow cover variability in North America and 135 

Europe. The authors suggested that this could be due to teleconnections, i.e. when the climate system 

demonstrates covariance over large distances. Eurasian snow cover extent was shown to modify the 

downstream planetary wave structure, which in turn impacted the climate over the North Pacific and 

western North America (Clark and Serreze, 2000). Many, more recent, studies have linked large-scale 

atmospheric effects with snow cover changes (Bokhorst et al., 2016) and a better understanding of these 140 

teleconnections may help elucidate the causes of Arctic Amplification (see Section 2.5.1).  

The North Atlantic Oscillation (NAO) and Arctic Oscillation (AO), in particular, have been 

associated with snow cover changes (e.g. Zhong et al., 2018). The NAO is defined by the difference in 
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sea-level pressure between the Subtropical (Azores) High and the Icelandic Low. A positive NAO is 

characterised by below-normal pressure across the high latitudes of the North Atlantic and above-normal 145 

heights and pressure over the central North Atlantic, the eastern United States and western Europe. The 

AO is a climate pattern characterized by circumpolar winds circulating around the Arctic at around 55°N 

latitude. A ring of stronger than average winds circulates around the North Pole and confines colder air 

across polar regions in a positive AO. In a negative AO, these colder winds are able to reach further 

South (NOAA Teleconnections, 2016). Cohen et al. (2007) proposed a relationship between snow cover 150 

extent and the AO, whereby increased Eurasian snow cover extent during autumn leads to a negative 

AO-like response in the following winter through the enhanced upward propagation of planetary waves. 

More positive NAO and AO mean the colder circulation patterns do not reach as far south into 

the Northern Hemisphere; this has been linked with decreases in snow cover extent in March and April 

(Watanabe and Nitta, 1999; Overland et al., 1999). Brown and Robinson (2011) argued that the start of 155 

reductions in snow cover in the 1980s was linked with changes in atmospheric circulation associated 

with a positive NAO as well as the Scandinavia pattern (semi-permanent ridge of winter high pressure 

over Scandinavia and Northern Europe). Tedesco and Monaghan (2009) demonstrated that variability 

in the AO can explain 50 % of the melt onset variability in Europe and 10 % in North America. 

The extent of the influence of AO on Eurasian snow cover extent was studied by Yeo et al. 160 

(2017). They showed that the AO and Eurasian warming are differently and independently responsible 

for snow cover extent changes at different times of the year. In January, the correlation coefficient of 

snow cover extent with AO is 0.57, and 0.07 with the Eurasian warming. And in October, the correlation 

is 0.20 for the AO, and 0.67 for the warming. Overall, the snow cover extent variability over Europe 

during winter seems to be primarily related to AO variability. 165 

More recently, negative AO trends have been associated with Arctic winter cooling despite 

predictions of warming. Cohen et al. (2012) explained that summer and autumn warming led to higher 

moisture, which in turn has been causing an increase in snow cover. They argued that this has been 

causing the more negative AO trends, an example of how the AO can influence and be influenced by 

snow cover.   170 

Another atmospheric anomaly pattern associated with arctic snow cover is the Siberian High. 

This high-pressure centre is caused by temperature anomalies controlled by snow cover variability in 

Siberia: an anomalously high snow cover forces increased sea-level pressure (Cohen and Entekhabi, 

2001). Marshall et al. (2016) demonstrated that a positive Siberian High results in a colder and drier 

Kola Peninsula, which is the equivalent of a negative NAO.  175 

Therefore, snow cover is both strongly influenced and strongly influences atmospheric 

processes through many different climatic teleconnections. 

2.1.5 Links between snow and ocean processes 

Finally, snow indirectly influences some ocean processes. Snow impacts oceanic processes in coastal 

zones through its role in freshwater supply (Frei et al., 2012). The freshwater flux caused by melting 180 
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snow is particularly important in the Arctic Ocean. As a result, the timing of Arctic snowmelt and the 

magnitude of the resulting freshwater flux has an impact on biological and thermodynamic processes in 

this ocean. This in turn can have worldwide impacts through the role of cold freshwater in North Atlantic 

Deep Water (NADW) formation (Rahmstorf, 2000; Frei et al., 2012). NADW is a crucial driver of the 

ocean thermohaline circulation, which is key in the transport of nutrients and the storing of carbon in 185 

the oceans (e.g. Broecker et al., 1990). Very large freshwater influxes into the northern Atlantic Ocean 

have been shown to reduce or halt the formation of NADW formation in the past, by significantly 

decreasing surface water density (Rahmstorf, 2000). 

Additionally, snow affects sea-ice through loading (Field et al., 2014). A heavy snow load can 

push the sea ice surface below sea level which will speed up the transformation from snow to ice. Snow 190 

can also slow ice formation through its influences on heat flow through ice (sea-ice but also river and 

lake ice). The flux of heat through thin ice remains high until the ice reaches a thickness of 30 to 40 cm. 

The heat flux through thin ice will be greatly reduced with even just a thin layer of snow deposited on 

top. Therefore, a small amount of snowfall will greatly slow down the rate of ice growth (Armstrong 

and Brun, 2008).  Conversely, snow will retard ice melt in the melt period by slowing down warming, 195 

as a large amount of energy is needed to melt ice (Armstrong and Brun, 2008).  

For these many reasons, snowfall timing and snow cover persistence are very important. And it 

is crucial for us to have a good understanding of how snow has been changing over the past decades and 

how it is likely to change over the next century.  

2.2 Modelling of snow 200 

Many different types of model can be used to model snow on the ground. At a basic level, hydrological 

models can be used to model snow. For example, electricity consumption estimates are dependent on 

predicted runoff from hydrological models, which relies on predictions of snow onset, snow cover 

extent, snow wetness and SWE.  

Snow models are specialised numerical models that have been developed to represent 205 

snowpacks to a high standard. These models simulate snowpacks as homogenous, infinite area layers, 

which are parallel to the ground surface. These range from simple models, which model the snowpack 

as a single layer, intermediate models, which include several layers representing different types of snow 

at different depths, and very detailed, complex, snow-physics models, which deal with a larger number 

of layers of variable thickness. This accuracy in the latter models is needed in order to simulate the many 210 

physical processes at the snow surface and within the snowpack realistically (e.g. Brun et al., 1997). 

These are very high-resolution models and are not typically used for studies over large regions.   

For climate modelling, scientists usually rely on climate models to derive projections of future 

snow. The simulated response of the climate system to future emission scenarios, derived using climate 

models, is referred to as a climate projection (IPCC, 2013). Climate models can reproduce basic 215 

properties of snow well, such as snow cover extent, depth or SWE (e.g. Wang et al., 2009) and fit these 
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within the climate system. For this reason, climate models are used to predict future changes in snow 

cover. In this dissertation, outputs from General Circulation Models are used as input to a Regional 

Climate Model; therefore, for the rest of this section, I will focus on these two types of climate models. 

Future projections are typically made for the four main emission scenarios developed by the 220 

IPCC (Intergovernmental Panel on Climate Change); these are called the RCP (Representative 

Concentration Pathways) scenarios and represent a range of possible future anthropogenic greenhouse 

gas emission scenarios (van Vuuren et al., 2011). These range between radiative forcings of 2.6 to 8.5 

W.m-2 by the end of the 21st century. RCP 8.5 is the scenario that follows current emissions most closely 

(Peters et al., 2012) though, in the Arctic, observed warming trends are already greater than those 225 

predicted by climate models forced using this RCP scenario (Overland et al., 2014). In this section, two 

older emission scenarios are also discussed. These are the A2 and B2 scenarios, used by the IPCC until 

the Fourth Assessment Report (2007). To simplify, A2 refers to a world with higher population growth 

and higher emissions than B2 (Nakicenovic and Swart, 2000). 

2.2.1 General Circulation Models and the Coupled Model Intercomparison Project 230 

General Circulation Models (GCMs) are advanced numerical models that depict physical processes in 

the atmosphere, ocean, cryosphere and land surface. GCMs are highly advanced tools, which enable the 

simulation of global climate with both geographically and physically consistent estimates of climate 

change. These models are crucial to the scientific community in order to advise policy makers to mitigate 

and prepare for climate change. GCMs have a coarse horizontal resolution (between 100 and 600 km) 235 

and represent climate using a three dimensional grid over the planet. Vertically, GCMs usually include 

10 to 20 layers in the atmosphere and up to 30 layers in the oceans (ipcc-data.org). One of the main 

sources of uncertainty in GCM simulations is a result of mismatched scales. Physical processes that 

occur at smaller scales cannot be properly represented by these models. These include cloud processes, 

which play key roles in the climate system. In addition to this, certain feedback mechanisms are also 240 

poorly represented in GCMs, such as water vapour and warming, clouds and radiation, ocean circulation 

and ice and snow albedo (ipcc-data.org). 

The Coupled Model Intercomparison Project (CMIP) multimodel ensembles, developed by the 

IPCC, are collections of different models that are used in combination to make projections in an attempt 

to simulate the climate system. Indeed, an ensemble is useful in that it enables the questioning of why 245 

different models have different outcomes when they are forced in the same way (Taylor et al., 2012). 

This is explained by climate noise (natural variation in the climate system which has little to no structure) 

and the differences in model parameterisations and model resolutions. To separate signal from noise, it 

is possible to run all the members of the ensemble using the same conditions but with different initial 

conditions. Multiple versions of the CMIP ensemble have been created: CMIP5 is discussed in this 250 

chapter and used in this dissertation.  

CMIP5 aims to make climate projections on decadal timescales. Taylor et al. (2012) emphasized 

that correcting these runs for climate drift and bias is very complicated. The authors recommend that 
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users focus on the following variables in near-term decadal projections, as these have been bias corrected 

by the modelling groups: near-surface air temperature, surface temperature, precipitation rate, and sea 255 

level pressure. CMIP5 models collect 14 variables for land ice and snow (Taylor, 2012) and have been 

used to make projections of future snow cover (e.g. Brutel-Vuilmet et al., 2013). The grid cells of CMIP5 

models range from just under 100 to over 200 km across. These scales make comparison of outputs to 

observations difficult and are too large for regional studies. The CMIP5 model ensemble and its 

individual GCMs are nevertheless used for a range of global climate analyses. Some results are 260 

presented in section 2.2.4.  

2.2.2 Regional Climate Models  

Finer spatial resolution (than the scale of hundreds of kilometres of GCMs) is crucial when studying the 

impact of climate change at a local level. Regional climate models (RCMs) are usually used for these 

high-resolution simulations, as RCMs are designed to be higher resolution, limited area, counterparts to 265 

GCMs (metoffice.gov.uk).  

2.2.2.1 Dynamical downscaling 

Dynamical downscaling is a method of studying climate change at a higher resolution (Gao et al., 2012). 

This technique uses GCM outputs to provide the initial and boundary conditions for RCMs, enabling 

these to project globally consistent high-resolution local climate conditions (Caldwell et al., 2009). 270 

Dynamical downscaling is usually preferred to its alternative method, statistical downscaling, as climate 

is dependent on physical processes with the method chosen, as opposed to statistical correlations, and 

there is no need for an assumption of climate stationarity (Fowler et al., 2007). 

The use of downscaling increases the amount of information that can be gained about regional- 

and local-scale processes, which can’t be captured using the coarse GCM resolutions (Mayer et al., 275 

2015), such as the representation of winds over complex orography (Barstad et al., 2012). A higher 

resolution is also necessary for climate studies of extreme weather events and their impacts (Gao et al., 

2012). Scales of the order of 10 km and lower are needed to study the impacts of extreme precipitation 

events and their associated floods for example (Mayer et al., 2015). Indeed, scales below 4 km are 

needed in order to represent convective processes (Weisman et al., 1997). The coarse resolution of 280 

GCMs can cause their climate extreme outputs to exhibit large errors, especially in mountain ranges 

(Lader et al., 2017). Indeed, high resolution topography is needed for accurate climate projections and, 

as such, dynamical downscaling is particularly useful for regions with complex terrain such as 

mountainous areas or coastlines (Mayer et al., 2015). Bates et al. (2008), in the IPCC Climate Change 

and Water report, emphasized that improved modelling resolution through dynamical downscaling is 285 

particularly needed in studies looking at the effects of climate change on all aspects of the hydrological 

cycle, including the cryosphere. Finally, in addition to its use for improved resolution, dynamical 

downscaling of GCMs using regional climate models can provide outputs, such as wave or storm surge, 

that would usually not be simulated using GCMs (Marcos et al., 2011; Perez et al., 2014).  
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2.2.2.2 The Weather Research and Forecasting model 290 

The regional climate model used for the climate projections in this dissertation is the Weather Research 

and Forecasting model (WRF). WRF is a next-generation mesoscale forecasting model and assimilation 

system, which was developed by the National Centre for Atmospheric Research (NCAR) and multiple 

National Oceanic and Atmospheric Administration (NOAA) and U.S. Department of Defence partners. 

It was created for studying mesoscale precipitation systems to further our understanding and improve 295 

the prediction of these (Skamarock et al., 2008). This model has been applied in a wide variety of studies, 

from "idealized research to operational forecasting, with an emphasis on a horizontal grid in the range 

of 1-10 km" (Shi et al., 2010, pp2249). It is possible to choose the physics parameterisation of the WRF 

model and it can thus be finely tuned to best fit the needs of each study. A specialised version of the 

model, Polar WRF, exists to better model the energy balance over sea-ice at very high latitudes. In this 300 

project, ‘regular’ WRF was used as part of Northern Fennoscandia is sub-Arctic. WRF has successfully 

been used in many dynamical downscaling studies; some key examples are described here. 

Lader et al. (2017) dynamically downscaled the CMIP5 GFDL-CM3 model using WRF with 

spectral nudging in order to make projections of end-century temperature and precipitation extremes 

over Alaska. Spectral nudging is a way of feeding data into a model at the initial conditions and during 305 

the, usually long, model run, not only at the lateral boundaries but also over the entire domain in order 

to guarantee that the model develops realistic climate features. Climate extremes were studied at 20 km 

resolution and across 49 vertical levels. The authors found that cold extremes warm faster than warm 

extremes and that the greatest change is likely to occur in winter.  

Regarding snow, WRF has been used previously to model solid precipitation at a high 310 

resolution. Shi et al. (2010) used WRF at cloud-resolving resolution (≈ 1 km) for the first time at high 

latitudes to study two snowfall events. This very fine scale is needed to reproduce realistically the 

evolution of cold-cloud systems and requires very high computational resources. The authors looked at 

whether WRF can properly simulate the cloud systems and snowfall associated with high-latitude snow 

events occurring in continental environments. They tested this by comparing the model outputs to 315 

snowfall datasets from ground, aircraft and satellite high-frequency radiometer measurements and found 

a reasonably good fit. Wang et al. (2011) studied snowfall events at 15 km resolution over northeast 

China using WRF and found that the model does a good job at reproducing snowfall and both large-

scale and regional circulation anomalies. They concluded that WRF is effective at modelling extreme 

weather events. Skofronick-Jackson et al. (2013) took this high-resolution snowfall modelling further 320 

and studied the threshold of snowfall detection of multiple remote sensing sensors by comparing their 

retrievals to WRF predictions at 1 km resolution. They found that surface type has a large effect on the 

threshold of detection of snow, with the lowest detection values being over lakes.  

2.2.3 Validating model outputs against observations 

It is crucial to validate modelling work by comparing hindcast model outputs to observation datasets. 325 

This relies on the premise that, if a model is able to accurately model past or present-day climate 
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conditions, its results for future climate should be dependable. Additionally, such validation efforts 

make it possible to identify potential systematic biases within the models (Jacob et al., 2007). 

CMIP5 models are consistently tested and validated as part of the broader CMIP ensemble 

project. By validating them, model outputs and thus climate projections can be improved. Some 330 

examples of this broad validation effort follow. Several publications describe the performance of subsets 

of CMIP5 models for important climate variables (temperature, precipitation, sea-level pressure etc), 

for example: Nikulin et al. (2010) simulated results for maximum and minimum temperature and 

precipitation over Europe; Yin et al. (2012) studied precipitation over South America; Brands et al. 

(2013) analysed several variables in Europe and Africa, and Su et al. (2013) studied precipitation and 335 

temperature over the Tibetan Plateau. Perez et al. (2014) validated the skill of CMIP5 GCMs to model 

sea-level pressure over the north-east Atlantic region, which covers a small part of Scandinavia. The 

authors tested three aspects of the GCMs: their ability to reproduce synoptic situations, their ability to 

reproduce the historical inter-annual variability and the consistency of GCM experiments in the 21st 

century projections. All of these publications specified which CMIP5 model studied best represents the 340 

analysed variables over their respective study regions.  

Of particular relevance to my work, CMIP5 and other GCM model outputs have also been tested 

for their accuracy at modelling various aspects of snow cover. Brutel-Vuilmet et al. (2013) used field 

data (from Brown and Robinson, 2012) and a snowfall dataset (from Weedon et al., 2011) to test the 

accuracy of the modelling of recent snow cover extent using a CMIP5 model ensemble. The models 345 

were found to reproduce observed SCE well, though the 1979 - 2005 reduction in spring snow cover 

was underestimated in the model outputs, which is a key conclusion from this paper. A similar issue 

was found in the CMIP3 model simulations (Roesch, 2006). Mudryk et al. (2017) compared the 

observed (seven observational datasets) and modelled (25 CMIP models) relationship between land 

surface temperature and snow cover in the 1981 - 2010 interval. The authors concluded that observed 350 

snow cover extent sensitivity to temperature estimates over Arctic regions are consistent with simulated 

values, though modelled sensitivity to temperature is weaker than observed in mid-latitude and alpine 

regions. They found that the spread in modelled snow cover trends reflects roughly equal contributions 

from inter-model variability and from natural variability. Comparing modelled and observed snow cover 

extent trends is made difficult because of this natural variability. Indeed, for the same model and forcing, 355 

different trends in temperature and snow cover extent can be driven as a result of the natural variability 

(Mudryk et al., 2017). One way of tackling this issue is using large model ensembles as these will 

account for most natural variability. The authors also found that using multiple observation-based 

estimates of snow cover extent trends improves the agreement with simulated snow cover trends.  

Other studies have validated outputs from RCMs, including WRF. One example of RCM 360 

validation is Jylhä et al. (2008). The authors applied observational data to examine the model 

performance of eight RCMs forced by eight GCMs and found that, over northern European land areas, 

the snow cover duration was reasonably well simulated by the multi-model average. WRF is the RCM 

used in this dissertation and so only validation studies of this RCM are discussed further. Lader et al. 
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(2017) tested WRF performance at modelling extreme temperature and precipitation events over Alaska. 365 

They found that the ERA-Interim (ERA-I) reanalysis consistently has a lower root mean square error 

(RMSE) than the model outputs when compared to observations. This is not surprising as ERA-I 

assimilates station and satellite observations. Nevertheless, as a result of this validation, the authors were 

able to bias-adjust the WRF outputs used in their subsequent analysis. In other validation studies, WRF 

is sometimes shown to improve on reanalysis datasets. Jiménez et al. (2012) found that WRF model 370 

outputs at 2 km horizontal resolution were able to reproduce the observed spatio-temporal wind 

variability over the study area (Iberia), showing a clear added value with respect to the initial and 

boundary data they used (ERA-40).  

In the final example, Mayer et al. (2015) undertook a detailed validation study to identify the 

added value of high-resolution modelling over Scandinavia. The authors used two regional climate 375 

models, including WRF, and ran two 8 km resolution experiments (1990 - 2010) using ERA-I as initial 

conditions and forcing data. Due to the relevance of this publication for this dissertation in terms of the 

study region and model used, I focus on this publication more. This analysis was done by undertaking 

a ‘perfect boundary experiment’ (as defined by Rummukainen, 2010), which relies on the use of global 

reanalysis datasets as initial and lateral boundary data for RCMs. The authors used gridded observational 380 

and station data as ground truth and compared these datasets to daily mean, minimum, and maximum 

temperature and mean precipitation model outputs. They used skill score performance as a metric to 

evaluate the effectiveness of the models at reproducing observations. The results indicate systematic 

cold and wet biases on seasonal time scales for both models, with the largest precipitation bias being in 

the winter season (up to 100 % wet bias). However, the skill scores testing returned good results in terms 385 

of variability of daily temperature and precipitation. With the exception of a mountainous region with 

limited station data, both models studied returned values within the observational uncertainty for 

temperature (± 2 standard error). Like Jiménez et al. (2012), Mayer et al. (2015) found an improvement 

in the WRF outputs over the reanalysis in terms of wind speed representation, here over the North and 

Norwegian Seas. The authors also demonstrated improvements in terms of extreme precipitation 390 

(timing, intensity and location) over specific areas.  

2.2.4 Previous studies modelling future global and regional snow 

Terrestrial snow cover has been decreasing for the past few decades and this trend is expected to 

continue over the next century. Future changes in snow can be, and are, simulated using a range of 

climate models in order to make predictions. Many different studies have been published, focussing on 395 

various aspects of future changes in snow and many rely on predictions of precipitation changes. 

2.2.4.1 Precipitation 

One of the main challenges in modelling snow results from the difficulty of modelling solid precipitation 

(Bokhorst et al., 2016). Though recent progress has been made (Marks et al., 2013; Mizukami et al., 

2013), accurately partitioning precipitation into rain and snow remains a difficulty. As a result, 400 
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confidence in the quantitative estimates of future changes is lower for precipitation than for temperature 

(e.g. Nikulin et al., 2010). 

Climate change is projected to result in an increase in global mean evaporation and precipitation 

by approximately 1 to 3 % per 1 K increase in global temperature (Roeckner et al., 1999; Sun et al., 

2007; Shiogama et al., 2010). Precipitation over high latitude regions is mostly expected to increase, 405 

both in summer and winter (Houghton et al., 2001). GCMs suggest a global increase in the intensity of 

precipitation extremes, even over regions with a projected decrease in mean precipitation (Kharin et al., 

2007; Kharin et al., 2013).   

 

 410 
Figure 2.1: Key figure from Lehtonen et al., (2014). Projected multi-model mean change (%) in mean precipitation 
from 1971 - 2000 to 2081 - 2100 in (a) winter, (b) spring, (c) summer and (d) autumn under the A1B scenario. Hatched 
areas are significant to 95%.  

At a more regional level, Dankers et al. (2005) found that by the end of the century, mean annual 

precipitation in Northern Fennoscandia is also expected to increase, by 10 - 40 %. This is also predicted 415 

for Northern Europe, where mean precipitation and extreme short-term precipitation events are very 

likely to increase over the 21st century, particularly in winter (Christensen et al., 2007; Lehtonen et al., 

2014). Indeed, Lehtonen et al. (2014) analysed projected changes in European extreme precipitation 

indices from ten global and five regional climate model ensembles. Though the scatter in the simulations 

was overall much smaller for the RCM than for the GCM, the authors found no fundamental differences 420 

between the GCM and RCM projections. Indeed, both indicated a more extreme precipitation climate, 

characterized by increases both in indices representing wet conditions and also dry conditions (Figure 

2.1). Nikulin et al. (2010) analysed future projections of precipitation over Europe in an ensemble of 

regional climate simulations driven by six different global climate models. The simulated future changes 

in European precipitation extremes have a distinct seasonal pattern. In winter, the authors found an 425 

intensification of precipitation extremes over most of Europe consistent across the six models. The 



 
  

19 

recurrence time of intense precipitation reduces from 20 year in the control period to 6 - 10 year over 

northern and central Europe in summer and to 2 - 4 year in Scandinavia in winter.  

2.2.4.2 Snow cover 

Many studies have investigated what these futures changes in precipitation, as well as projected 430 

temperature changes, mean for changes in snow cover patterns. In the RCP 8.5 emission scenario, global 

spring snow cover is projected to decrease by 25 % by the end of the century (Collins et al., 2013). 

Figure 2.2: Key figure from Brutel-Vuilmet et al. (2013). Relative snow cover extent (RSCE; relative to 1986 – 2005 
reference period) in Northern Hemisphere until the end of the century as modelled by CMIP5 ensemble in the four 
RCP scenarios (blue: RCP 2.6; green: RCP 4.5; yellow: RCP 6.0; red: RCP 8.5). 435 

Brutel-Vuilmet et al. (2013) used the CMIP5 ensemble to model present and future snow cover 

extent. The interannual variability was only calculated from one of the models in the ensemble, as using 

the average between all of them would lead to an underestimate of the interannual variability. As 

discussed in Section 2.2.3, in spite of these precautions, the authors found that the models underestimate 

the interannual variability of Northern Hemisphere snow cover extent. They found that the lowest 440 

latitudes with seasonal snow cover will be the most affected, as the warming there will "immediately 

lead to a replacement of solid by liquid precipitation and to earlier melt" (Brutel-Vuilmet et al., 2013, 

pp74).  In all emission scenarios, the authors found that the observed and simulated spring snow cover 

extent and the spring surface air temperatures are strongly and linearly correlated. They hence suggested 

that it may be possible to study future snow cover extent solely by predicting the annual global mean 445 

temperature. Figure 2.2 shows the results of the CMIP5 modelling of Northern Hemisphere snow cover 

extent: snow cover extent is predicted to decrease over the next century for all four RCPs.  

Further validating this argument, Mudryk et al. (2017) found that simulated snow cover extent 

trends are principally, though not exclusively, controlled by the temperature response on both 

hemispheric and regional scales. The temperature response explains between 40 % and 85 % of the snow 450 

cover extent trend variability. The fraction of Arctic snow cover extent trend variability explained by 

Arctic temperature trends is higher during the spring (April–May) compared to the autumn (September–
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November). This is due to the fact that snow onset will be more weakly coupled to temperature trends 

since variability in both regional precipitation and temperature have a role in initiating snow cover. 

Regional climate simulations of the Nordic regions found that by the end of this century the 455 

mean annual temperature in Northern Fennoscandia may rise by 3 - 4 °C, which would lead to an 

extension of the growing season (number of days with daily mean temperature above 5 °C) by 30 - 60 

days and a shortening of the snow season by 50 days (SMHI, 1998) despite a predicted increase in 

precipitation. Dankers et al. (2005) studied the impact of climate change on snow coverage in the sub-

arctic Tana Basin in Finland and Norway, Northern Fennoscandia. They looked at spatial patterns using 460 

a distributed water balance model coupled to an RCM in order to study the former under the future 

conditions of the A2 scenario. The simulations were made for the 2071 - 2100 interval, as well as a 30-

year control run that corresponds to a greenhouse gas forcing of 1961. Results showed a much shorter 

snow season with decreased sublimation, an increase in evapotranspiration and a shift in annual runoff 

peak. As the snow free season is extended, the amount of solar radiation received during this period 465 

increases significantly: +16 %. 

Another study, simulating future changes in frost and snow in Europe used seven RCMs all 

forced by the same GCM, mainly in the A2 and B2 IPCC scenarios (Jylhä et al., 2008). By comparing 

the outputs of the RCMs, they were aiming to evaluate the confidence that can be placed in individual 

RCM model projections. In all model simulations and irrespective of the forcing scenario, the results 470 

showed fewer days with frost and snow, shorter frost seasons, a smaller liquid water equivalent of snow, 

and reduced sea ice. In spite of different sources of uncertainties, all models agreed about substantial 

decreases in snow cover duration (SCD) ranging from 5 to 15 % (Jylhä et al., 2008). Differences in the 

simulations were a result of different RCM design, uncertainties in future emissions and random effects 

of climate variability. Decreases of more than 60 snow cover days were projected to occur around the 475 

northern Baltic Sea, on the western slope of the Scandinavian mountains and in the Alps. In the sub-

domain of northern Europe, the projected seasonal mean decreases (in days) in SCD were almost as 

large in autumn and winter as in spring. The decrease in the SCD, despite a predicted increase in 

precipitation for the end of the century in Northern and central Europe, is explained by the authors as 

being caused by the coincident decrease in the occurrence of frost days. Finally, the authors emphasized 480 

that exceptions to the decreasing SCD trend, with negligible tendencies or trends of the opposite sign, 

have mainly been observed in mountains (Scherrer et al. 2004) and in cold areas with abundant snow 

(e.g., Hyvärinen 2003; Moberg and Jones, 2005). 
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2.2.4.3 Snow water equivalent 

 485 
Figure 2.3: Key figure from Shi and Wang (2015). Predicted changes in Northern Hemisphere snow water equivalent 

(SWE) until the end of the century as modelled by CMIP5 ensemble for three IPCC RCP scenarios. 

Modelling studies of future SWE have also been undertaken. It is likely that SWE will change over the 

next century as it responds both to precipitation and air temperature, both of which are projected to have 

positive trends (Collins et al., 2013). Shi and Wang (2015) investigated the changes in SWE in the 490 

Northern Hemisphere in three intervals of the 21st century: early (2016 - 2035), middle (2046 - 2065) 

and late (2080 - 2099) using 20 models from the CMIP5 ensemble (Fig. 2.3). The reliability of the results 

was tested by comparing model outputs with GlobSnow, a field and station measurement dataset (Luojus 

et al., 2010). Despite some uncertainty in the models, Shi and Wang (2015) found that it is clear that 

SWE will decrease over the next century in all three emission scenarios considered (Fig. 2.3). The 495 

differences between the scenarios increase with time and become clearer later, from mid-century. The 

authors found that the largest reductions in SWE will occur at lower latitudes and during spring. Eastern 

Siberia is the only exception to the SWE reduction with a predicted increase in SWE as high as + 60 % 

for the end of the century in the highest emission scenario.  

These findings agree with work from Räisänen (2008), who found that over the next century 500 

SWE will mostly decrease, but that increasing SWE will be observed in very cold regions. Indeed, 

Räisänen (2008) found that the sign of projected changes of SWE is spatially variable as it depends on 

the present local climate conditions. Maloney et al. (2014) found that the largest decreases in SWE will 

occur at low altitudes. Finally, Shi and Wang (2015) demonstrated that the predicted decrease in 

Northern Hemisphere SWE is mainly due to the projected decrease in snowfall resulting from warming.  505 

It has also been shown that the seasonal percentage reductions were smaller for SCD than for 

SWE (Putkonen and Roe, 2003), especially in northern Europe (Rasmus et al., 2004; Jylhä et al., 2008). 



 
  

22 

A possible explanation for this is that rain-on-snow events and the partial melting of snow will become 

more common, leading to a larger proportion of days with only a thin snow cover (Jylhä et al., 2008).  

2.2.4.4 Other variables 510 

Multiple studies focus on modelling projections of snowfall in Scandinavia because of the potential 

impacts of snow loading on forests. One example, Kilpelainen et al. (2010), studied the impacts of snow 

cover change on forest damage in Finland, by looking at the number of days with high-risk amounts of 

snow (exceeding 20 kg.m2). Over the whole country, the mean annual number of risk days decreased by 

11 %, 23 % and 56 % in the first (1991 - 2020), second (2021 - 2050) and third (2070 - 2099) 30-year 515 

period, respectively, compared to the baseline period (1961 - 1990). This suggests a large decrease in 

extreme snowfall over the next century. 

2.3 Remote sensing of snow 

In this section, the use of remote sensing in snow cover studies is discussed. The sensor used in this 

dissertation is considered in detail and a brief summary of the literature of using remotely sensed data 520 

to study snow is given. 

 
 Visible and 

Near-IR 

Passive 

microwave 

Active 

microwave 

LiDAR Gamma 

Radiation 

Gravity data 

Extent       

Grain size       

Albedo       

Pollution       

Depth       

SWE       

Wetness       
 

Table 2.1: The different snow parameters that can be retrieved by different available remote sensing sensors 
(Guneriussen, 2000; Tedesco, 2015; Engen et al., 2004).  525 

 

It is possible to map snow extent using remote sensing as it has a unique and spectrally varying 

reflectance (Nolin, 2010). Using remote sensing is a way of obtaining data over inaccessible areas, on 

local or global scales (Nolin, 2010; Tedesco and Miller 2007). It also provides regular measurements, 

which means snow cover trends can be studied. Another advantage of using remote sensing to study 530 

snow cover variation is that there is now an archive of this data that extends over multiple decades. 

Some of the main difficulties in the use of satellite data are in combining sensors with different scales, 

vegetation and scaling issues (Nolin, 2010). The snow parameters that can be investigated using 
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remotely sensed data are given in Table 2.1. Different types of sensors can be used to obtain information 

about discrete snow parameters by using different parts of the electromagnetic spectrum (Fig. 2.4). In 535 

this project, I only use Visible and Near-Infrared (VNIR) data. 

 
Figure 2.4: The electromagnetic spectrum (https://www.kullabs.com/classes/subjects/units/lessons/notes/note-

detail/1823). 

2.3.1 Visible and near infrared: MODIS 540 

VNIR sensors use the portion of the electromagnetic spectrum between 400 and 1400 nm wavelength 

to image the Earth's surface. The main advantage of this data is its high spatial resolution (e.g. Tedesco 

and Miller, 2007), however, it also has limitations. The optical data is only useful in daylight and in the 

absence of clouds. Clouds not only block the view of the surface below, but they add an extra difficulty 

due to their resemblance to surface snow (e.g. Hall et al., 2010). VNIR remote sensing only gives 545 

information on the snowpack surface and usually ignores surface inhomogeneity (Tedesco, 2015). This 

is especially problematic in the case of sastrugi (wave-like ridges on the snow surface). If the incoming 

sunlight is perpendicular to these, then the snow albedo will decrease; this may be falsely interpreted as 

an increase in grain size or in the amount of soot in the snow (Zuravleva and Kokhanovsky, 2011). 

Mountain slopes, blowing snow and forested areas also impact the accuracy of snow data derived from 550 

remote sensing. The latter is an important source of uncertainty in the use of remote sensing over the 

Northern Hemisphere. Indeed, boreal forests are found in almost 1/5 of the seasonally snow-covered 

land in the Northern Hemisphere (Rutter et al., 2009) and thus snow retrievals over these parts have 

greater errors as snow is less well represented under trees. 

 Snow maps from visible imagery have been available since the 1960s in the form of the NOAA 555 

Climate Data Record maps (Robinson et al., 1993). However, these maps are not global and had to be 

"fine-tuned" by analysts, so it is not a purely objective data-set (Hall et al., 2002). Additionally, these 

snow maps are weekly and have very low resolution with cells ranging from 16 000 to 42 000 km2 as 
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of 1993 (Robinson et al., 1993) and only reaching ~580 km2 from 1997. The sensors on the Landsat 

satellites have an excellent spatial resolution with 80 m for Landsat 1 (Rango and Martinec, 1979) and 560 

as fine as 15 m for Landsat 8 (2013). However, the Landsat repeat pass intervals are of 16 to 18 days. 

In this project, a high temporal resolution was needed for my analysis. Therefore, the Moderate-

Resolution Imaging Spectroradiometer, MODIS, was preferred despite its 500 m resolution (Hall et al., 

2002) because although it has the same orbital repeat period as Landsat, its much larger swath width 

means that daily snow cover extent maps are available (Hall et al., 2002).  565 

 MODIS instruments operate onboard both the NASA Earth Observing System (EOS) Terra and 

Aqua satellites and collect Earth observations in 36 spectral bands ranging from 0.4 - 14.4 μm at spatial 

resolutions of 250 - 1000 m (Barnes et al., 1998). MODIS data are available from December 1999 for 

Terra and May 2002 for Aqua and data from both Aqua and Terra satellites are often combined in studies 

to maximise the number of pixels without cloud cover. When a pixel is cloud covered in the product of 570 

one satellite, but not the other, the pixel data of the latter can be used (Dietz et al., 2012; Foppa and Seiz, 

2012; Hüsler et al., 2014; Malnes et al., 2016). MODIS calibrations are updated periodically to reflect 

new understanding of instrument changes, with the entire data record reprocessed as a new ‘Collection’. 

The version of the data used in this project is Collection 6 (C6), described in Sayer et al. (2015). 

C6 contains significant revisions of the calibration and aims to address the long-term drift in the 575 

calibration of the MODIS instruments, which is most pronounced on the Terra sensor (e.g. Franz et al., 

2008; Wang et al., 2012; Lyapustin et al., 2014). The impact of this sensor calibration update was 

analysed by Casey et al. (2017). They studied the MODIS products over the period 2001 - 2016 and 

found that the C6 data products reduce the magnitude of the surface reflectance and albedo decline 

trends obtained from previous MODIS data. Overall, this new calibration was shown to be successful 580 

and C6 was found to be “suitable for quantitative scientific analyses” (Sayer et al., 2015, pp157).  

2.3.1.1 Snow cover extent 

Both binary snow/no-snow or fractional snow cover maps can be derived from MODIS data. The latter 

provide more information, especially regarding areas of patchy snow and so are usually preferred (Nolin, 

2010). The fractional snow cover classification is still imperfect. Fractional snow cover will still be 585 

underestimated in forested areas for example, where only part of the snow is visible (Nolin, 2010; Rutter 

et al., 2009). This is an important uncertainty in this thesis as a great proportion of Northern 

Fennoscandia is covered in boreal forest. Painter et al. (2003, 2009) developed a method for fractional 

snow-cover mapping. This method, entitled MODIS Snow Covered-Area and Grain size retrieval 

algorithm (MODSCAG), assumes that the spectral reflectance of the snow end-member varies with 590 

surface grain size. More recently, MODIS outputs include Normalised Difference Snow Index (NDSI). 

This is a snow cover index that is directly related to the presence of snow in a pixel and is a more 

accurate description of snow detection compared to fractional snow cover products (Riggs et al., 2016). 
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2.3.1.2 Snow grain size 

MODIS also generates grain size data (e.g. Zege et al., 2011). In remote sensing, the snow grain size 595 

measured is the optical-equivalent grain size and is related to the Specific Surface Area (SSA) (see 

section 2.4.6), which is the surface area to volume ratio of a snow grain (Wiscombe and Warren, 1980; 

Grenfell and Warren, 1999). The grain size value represents the particle size distribution of grain sizes 

in the surface layer of the snow (Nolin, 2010). 

Snow reflectance is hardly influenced by the grain size in the UV-visible region of the 600 

electromagnetic spectrum (Tedesco, 2015). However, in the near-infrared, the relative importance of 

grain size increases as larger grain sizes result in enhanced scattering. This means that by measuring 

reflectance, grain size can be determined (e.g. Stamnes et al., 2007; Zege et al., 2011). Aoki et al. (2007) 

found a good fit between satellite derived grain size and ground measurements. Painter et al. (2009) 

used a radiative transfer model to map snow grain size in MODIS images, thus creating the MODSCAG 605 

dataset. This dataset was not used in this project as a result of its limited cover and lack of accessible 

albedo product. Finally, it is possible to use different wavelength channels to penetrate to various depths 

in order to obtain information on grain size within the top few layers of the snowpack (Tedesco, 2015). 

2.3.1.3 Albedo 

The MODIS instruments also provide snow albedo data. A snow albedo algorithm was developed to 610 

determine daily snow albedo for cloud-free pixels mapped as snow by the MODIS snow-mapping 

algorithm (Klein and Hall, 1999; Klein et al., 2000). Importantly, the albedo measured in multispectral 

remote sensing is not the broadband albedo, but the narrowband albedo. This is the albedo integrated 

over the spectral range of a single channel, which then needs to be integrated over the entire solar 

spectrum to give the broadband albedo that is of interest (Nolin, 2010). It is important to note that albedo 615 

also depends on the solar zenith angle and the relative proportions of direct beam and diffuse solar 

irradiance (Nolin, 2010). For this reason, Schaaf et al. (2002) produced the MODIS Bidirectional 

Reflectance Distribution Function/Albedo Product. This is a 16-day composite, which results in the 

acquisition of reflectances at multiple viewing angles and, through model inversion, produces surface 

albedo. This 16-day composite is not used in this project, as daily data was needed.  620 

2.3.1.4 Ground truthing 

Ground truthing or validation of MODIS grain size, albedo and impurities retrievals has been performed 

in various studies (e.g. Nolin and Dozier, 2000; Stroeve et al., 2005; Aoki et al., 2007). Most of the 

albedo analyses are not specific to snow products and find high correlation coefficients between ground 

albedo and the MODIS product (Liang et al., 2005; Liu et al., 2009). For example, a comparison of 625 

MODIS albedo data to ground data from Greenland found that the difference was less than 2 % (Stroeve 

et al., 2005) and Stroeve et al. (2013) performed a direct validation of the MODIS snow albedo product 
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and found an RMSE of 0.067. The authors found that using both Terra and Aqua albedo products in 

combination increases the potential for retrieval of high-quality albedo (Stroeve et al., 2013).  

2.3.2 Previous remote sensing studies of snow 630 

In this section, a selection of remote sensing studies of snow are described to demonstrate some of the 

key snow parameters that can be obtained using satellite data.  

Firstly, examples of the use of VNIR data in snow studies are considered. Atlaskina et al. (2015) 

looked at Northern Hemisphere snow albedo changes in spring using MODIS data. The Northern 

Hemisphere was divided into six smaller areas based on their climate and geographical position. Snow 635 

cover extent was shown to be the parameter with the strongest influence on albedo. Snow cover extent 

itself is often studied using VNIR data, commonly NOAA maps (e.g. Armstrong and Brodzick, 2001; 

Brown and Robinson, 2011; Derksen and Brown, 2012; Estilow et al., 2015) or MODIS (e.g. Brown et 

al., 2010; Maskey et al., 2011). Brown and Robinson (2011), for example, looked at Northern 

Hemisphere snow cover extent variability between 1922 - 2010, using station data from 1922 onwards 640 

and NOAA data over the 1966 - 2010 interval. They included an uncertainty assessment and found a 95 

% confidence in the NOAA data used. 

VNIR data can also be used to study snow climatology. The following examples all use MODIS 

datasets in their analyses. Saavedra et al. (2016) studied the snow climatology of the Andes using the 

MODIS 8-day maximum binary snow cover product. This dataset provides the maximum snow cover 645 

and minimum cloud cover during that 8-day period from the daily time step product. The authors used 

data for the 2000 to 2014 interval to identify regions with similar snow patterns, i.e. where snow 

accumulates at similar elevations and times of the year and to identify snow persistence zones within 

these regions. Their definition of the snow regions is based on the following three parameters: minimum 

elevation of snow cover, rate of change of snow persistence with elevation and timing of the minimum 650 

elevation snow cover. To evaluate annual snow patterns, they used snow zones (as defined in Moore et 

al., 2015): little or no snow, intermittent, transitional and persistent snow zones. 

Studies of the timing and duration of the snow cover seasons have also been undertaken using 

VNIR remote sensing datasets (e.g. Wang and Xie, 2009; Dietz et al., 2012; Malnes et al., 2016). The 

two most recent of these papers extracted the first and last snow-free day over the entirety of Europe 655 

(2000 - 2011) and the boreal Arctic transition of Northern Norway (2000 - 2010), respectively. Dietz et 

al. (2012) used a combination of both Terra and Aqua data and applied a temporal cloud filter. By doing 

so, the authors were able to reduce the combined cloud percentage from 47.7 % to 39.9 %. Malnes et al. 

(2016) used a similar method though they only used MODIS data from the Terra satellite. From this 

processed dataset, both studies derived the start and end of the snow season for their regions of interest, 660 

though neither publication investigated trends as a result of the short period of analysis.  

It is not uncommon for snow studies using one type of remote sensing data to rely on another 

as ground truth. The sensor used to validate the other remote sensing instrument usually has a much 

higher spatial resolution. Singh and Gan (2000) retrieved SWE data using Passive Microwave (PM) 
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brightness temperature products. In 2000, most of the retrieval algorithms were statistically rather than 665 

physically based due to a lack of snow field data. In this paper, the authors used airborne gamma-ray 

measurements of SWE as the ground truth. Similarly, Che et al. (2008) used PM data from the Scanning 

Multichannel Microwave Radiometer (SMMR) and the Special Sensor Microwave/Imager (SSM/I) to 

study snow depth in China and modified a pre-existing algorithm by including vegetation and water 

body distribution maps of China. This algorithm was validated using meteorological observations as 670 

well as MODIS data. MODIS was considered as the "truth" here as it has a higher spatial resolution and 

a more comprehensive snow-cover algorithm (Che et al., 2008). The authors found a good agreement 

between PM and MODIS snow cover extent for a definition of snow-covered ground as 2 cm depth for 

PM and more than 50 % snow fraction for MODIS retrievals. 

Researchers also often assimilate other datasets, such as observations, in order to improve snow 675 

parameters extracted from remote sensing datasets. Takala et al. (2011) assimilated weather station data 

into satellite PM data to help deal with the problem of multiple solutions fitting a single brightness 

temperature value and found an improvement compared to using only PM data. Brown et al. (2010) 

used MODIS along with nine other datasets (including observations and other remote sensing types) to 

study Arctic monthly snow cover extent in the May–June melt period for 1967 to 2008. In their 680 

subsequent publication, the authors showed there can be large differences in retrievals made by different 

sensors depending on "spatial resolution, cloud cover and wavelength specific interactions with the 

atmosphere, snowpack, terrain and land cover" (Brown et al., 2011, pp219). It is hence useful to combine 

data from different sensors in order to improve the retrieval. For example, Tedesco and Miller (2007) 

studied snow depth in the Northern Hemisphere between 1999 and 2004 using a combination of active 685 

and passive microwave systems for high temporal resolution and large spatial scale. The satellite data 

was ground-truthed using station data and the authors found that using a combination of active and 

passive data improved the snow depth retrievals.  

Hallikainen et al. (2003) also found that combining active and passive data improves the 

retrieval accuracy of using only PM data. However, they also emphasized that combining those two 690 

methods is problematic for two reasons. Firstly, they have very different spatial resolutions, with active 

microwave instruments having a resolution three orders of magnitude higher. Secondly, the two sensors 

are not spatially and temporarily coincident. Armstrong and Brodzick (2001) compared the use of visible 

(NOAA weekly maps) and passive microwave (SMMR) remote sensing in the study of snow cover 

extent. The sensors yield similar trends, though the passive microwave data consistently undermeasure 695 

during autumn, with improved agreement during winter and spring. The authors explained this by 

arguing that, as the winter season progresses, the amount of area covered by deeper snow increases, 

which facilitates the detection of snow by the PM algorithm. They thus argued that it is useful to combine 

VNIR and PM data. An example of this is described by Huang et al. (2016), who looked at trends in 

snow in the 2000 to 2014 interval in all areas of China in a similar manner to Dietz et al (2012) and 700 

Malnes et al (2016). However, in this study, the authors used the MODIS daily snow cover product 

alongside PM snow depth data to produce a daily cloudless snow cover area product and a downscaled 
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snow depth product with a 500 m spatial resolution. They then combined these two products to extract 

the dates of the snow season over China.  

2.4 Field measurements of snow 705 

As discussed in the Section 2.3.1.4, remote sensing data needs to be ground truthed in order to calibrate 

algorithms and validate the output data (Tedesco, 2015). Furthermore, it is important to use ground 

measurements to gain an understanding of the variability at a spatial scale below that of the remote 

sensing sensor. This requires the measurement of the snow parameters of interest in the field. In-situ 

measurements give the most reliable data but are very time consuming, usually expensive and 710 

destructive. For these reasons, these will often be restricted to small areas and short periods of time 

(Tedesco, 2015). Denoth et al. (1984) emphasized that in the case of snow, measurements must be made 

quickly and, where possible, non-destructively as the snowpack will change fast when disturbed. Most 

snow parameters are collected in snow pits. These are often dug to the ground and measurements are 

made along the wall facing away from the sun, which is thus in the shade. 715 

2.4.1 Snow depth 

Snow depth can be measured using probes, up to approximately 10 m depth (Schaffhauser et al., 2008). 

Stake arrays are also used at some stations, whereby graduated stakes are left in place and snow depth 

is recorded manually (Tedesco, 2015). Another method is to use an ultrasonic depth sensor which 

enables the measurement to be continuous at a fixed point (DeWalle and Rango, 2008; Schaffhauser et 720 

al., 2008). The time it takes for an ultrasonic pulse to reach the ground and return to the surface is used 

to calculate the snow depth. This method is much more expensive, but longer-term datasets can be 

obtained more easily. 

2.4.2 Snow density 

The main method for measuring snow density in the field is straightforward: a sample of a known 725 

volume of snow is weighed in a cutter and the density can then be calculated. The size of the cutters can 

vary between 100 to 1000 cm3 (Tedesco, 2015), with the larger cutters being used to sample the average 

density and the smaller one for more precise structural density measurements. In some cases, density is 

measured on a larger scale using small coring instruments which are typically 0.5 m long (Fig. 2.5).  

Older instruments for measuring snow wetness and density were developed in the 1980s with 730 

the Denothmeter (Denoth et al., 1984) and the Snowfork (Sihvola and Tivri, 1986). Stähli et al. (2004) 

proposed a new technique for measuring snow density and SWE using an in-situ dielectric sensor which 

measures the transmission of radio frequencies in the snow. Though this technique was found to agree 

well with traditional snowpack measurements, it was not adopted by the snow science community. 

Proksch et al. 2015 wrote that "we still lack a convenient retrieval of density" (pp247) and that there are 735 

no objective methods of measuring this parameter yet. 
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Figure 2.5: Use of a density coring instrument, Khibiny Mountains, 2017 (Photo credit: Ilona Blinova). 

2.4.3 Snow water equivalent 

SWE is calculated using the snow density and depth measurements. When an average SWE 740 

measurement is needed for an area, as snow depth is often more spatially variable than density, many 

depth measurements are used with a few density measurement (Tedesco, 2015). 
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with ,(-) the snow density, ,.	the density of water, -	the direction normal to the surface. 745 

 

2.4.4 Snow temperature 

Measuring the temperature of the snow surface and within the snowpack is important as it is an 

indication of whether the snow is melting. It also provides information on the emitted radiation, as 

temperature is its main control (Tedesco, 2015). Snow temperature is easily measured in the field using 750 

a thermometer, usually by making temperature measurements every 5 or 10 cm down the wall of a snow-

pit.  

2.4.5 Snow albedo 

Albedo is the ratio of outgoing to incoming solar radiation. As such, there is a range of instruments 

available for its measurement; radiometers, both broadband and narrowband, can be used. The former 755 

are often used in automated weather stations as they measure downwelling and upwelling radiative 

fluxes directly. Narrowband radiometers on the other hand measure these in specific frequency bands, 

which can be directly compared to satellite data or the data can be converted to the broadband albedo. 

Spectrometers can also be used: their advantage is that they are hand-held and measure a wide spectrum 
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of electromagnetic reflectance (Tedesco, 2015). These instruments are calibrated in the field using 760 

standards with known albedos.  

2.4.6 Snow grain size 

 
Figure 2.6: Measuring snow grain size on a measurement card with a 2 mm grid. Here, depth hoar grains are measured 

at Davos, Switzerland. 765 

Grain size has been shown to be the most sensitive parameter of all the physical snow properties in 

microwave radiative transfer models (Montpetit et al., 2012; Sandells et al., 2017). The traditional 

method for measuring grain size is very simple: snow is placed on a measurement card with a millimetre 

grid (Fig. 2.6). The grain size is then estimated by looking at the snow grains relative to the spacing of 

the grid lines (Fierz et al., 2009). The average size and the maximum size are often recorded, though the 770 

snow grain size is usually taken as the largest size recorded, Dmax (Fierz et al., 2009). It can be difficult 

to identify individual grains as the boundaries are not often clear (Domine et al., 2008). This means that 

this method of grain size measurement is very subjective (Painter et al., 2007). 

Thus, many techniques have been suggested to measure an objective grain size in the field.  

Furthermore, the grain size given by remote sensing sensors is the optical-equivalent grain size (OGS) 775 

and not the grain size measured by traditional measurements (Fierz et al., 2009). To a first 

approximation, OGS can be estimated from the branch width of dendrites, the thickness of either thin 

plates or dendrites, the diameter of needles, or the shell thickness of hollow crystals (Mätzler, 2002; 

Aoki et al., 2003). Traditional measurements of the grain size and SSA cannot be directly compared to 

these measurements of OGS (Seidel et al., 2016). However, a conversion has been derived by Gallet et 780 

al. (2009) and Leppänen et al. (2015):  

 

(2.2)													;<' = 	 3
''> ×	,@45

 

where ,@45	is the density of ice (917 kg.mDE	). 
 785 

OGS and SSA have been estimated using many different non-traditional methods: spectroscopy 

(Nolin and Dozier, 2000; Painter et al., 2003; Painter et al., 2007), stereology (Matzl and Schneebeli, 

2010), shortwave-infrared (SWIR) photography (Matzl and Schneebeli, 2006; Montpetit et al., 2012), 
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SWIR reflectance (Gallet et al., 2009) etc. Proksch et al. (2015), for example, developed a high-

resolution penetrometer, to extract SSA information from the snowpack at a millimetre resolution in 790 

less than one minute. This technique measures SSA with a 23.1 % error; though this is not as accurate 

as other methods, this technique offers the advantage of speed as it does not require the digging of a 

snow-pit. All of these non-traditional techniques however rely on the use of very expensive instruments, 

often unique, built by the researchers themselves.  

 795 

2.4.7 Field measurement campaigns 

Many major campaigns of data collection have been undertaken in recent years, oftentimes as part of 

larger remote sensing of snow studies. One such data collection campaign is the Cold Land Processes 

Field Experiment (CLPX; Elder and Goodbody, 2004). A high-quality observational dataset was 

collected in a series of nested domains from 1 ha to 160,000 km2 in the central Rocky Mountains, 800 

Colorado. Snow density, temperature, stratigraphy, grain size and SWE were measured at a total of 

~2000 snow pits. Snow wetness and surface roughness were also measured at some of these snow pits. 

The CLPX project also includes meteorological observations such as air temperature, relative humidity, 

radiation, wind speed and direction, solar and longwave radiations, soil temperature, and soil moisture. 

The measurements were made under varied topography and vegetation coverage (alpine tundra, boreal 805 

forest, coniferous forest). These snowpack measurements, which cover a wide area but at a high 

resolution, are crucial to monitoring spatial and temporal variations in the growth and melting of the 

snowpack over this region. This dataset has been used in many studies with, for example, Feng et al. 

(2008) using this observational dataset to test the skill of five snow models with varying levels of 

complexity.  810 

A more recent campaign is the Nordic Snow Radar Experiment (NoSREx) which covers four 

seasons from 2009 to 2013 (Lemmetyinen et al., 2016). As the name suggest, the purpose of this project 

was to study snow cover radar products in the Nordic region using frequent in situ observations to 

support this work (e.g. Lemmetyinen et al., 2014). The main site of the NoSREx study was in Sodankyla 

in northern Finland and is representative of snow in boreal forest/taiga environments. Weekly snow pit 815 

measurements were undertaken in a forest clearing within 10-20 m of the radiometers. Snow depth and 

density profiles were collected, from which SWE was calculated. Temperature profiles of the snow were 

also made and snow grain size and shape were recorded using macro-photography. In addition to manual 

snow data, automated snow data was also collected. These automated measurements focussed on snow 

microstructure including grain size, with SSA measurements undertaken using near infrared 820 

photography (Matzl and Schneebeli, 2006) and snow micropenetrometry (Proksch et al., 2015). A 

similar project is SnowPEx, funded by the European Space Agency. The aim of this campaign is to 

determine and quantify the uncertainty in existing snow cover extent (Metsämäki et al., 2016) and SWE 

(Luojus et al., 2016) products (e.g. GlobSnow and SSM/I). Ground measurements of snow made in the 

former Soviet Union, Russia and Finland are used as “truth” for this uncertainty assessment campaign. 825 
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2.5 Changes in snow cover in the Northern Hemisphere over the past century 

Now that the wide range of methods for studying snow cover have been discussed, past changes in snow 

over the past century are presented. Studying Arctic snow is especially difficult due to its high spatial 

variability (Liston, 2004) and the rarity of long-term ground measurements. As snowpack thickness and 

‘behaviour’ varies greatly in relation to terrain, orography and wind (Serreze and Barry, 2014), a high 830 

spatial coverage of data is needed to study regional trends in snow cover. However, lack of good 

coverage of ground measurements and issues with accessibility and accuracy of other datasets limit the 

amount of data available. Arctic precipitation specifically is difficult to assess, and this impacts our 

understanding of Arctic snowfall and associated snow cover. Some of the major issues of measuring 

mean precipitation totals over the Arctic are described in Serreze and Barry (2014). Firstly, measurement 835 

gauges and practices vary greatly between countries and hinder the interpretation of precipitation 

recordings, specifically those of solid precipitation which are often underestimated by gauge 

measurements. Secondly, the network of stations in the Arctic is very limited as a result of access 

difficulties. And finally, satellite-based and reanalysis-based precipitation estimates are subject to large 

biases (e.g. Marshall et al., 2018). 840 

Arctic snow has nevertheless been the subject of many studies, which have used a range of 

observational and remote sensing data, as well as combinations of both. In this section, the literature 

that focusses on the trends in snow cover over the past century will be discussed. The focus of this 

section is on the results of these studies rather than methods used.  

2.5.1 Why study past changes in snow cover? 845 

Arctic amplification is the name given to the fact that Northern Hemisphere high-latitudes have 

undergone a much larger magnitude and more rapid warming than the globe as a whole (e.g. Serreze 

and Francis, 2006). In fact, the Arctic is warming at twice the rate of the Northern Hemisphere (Bekryaev 

et al., 2010; Pithan and Mauritsen, 2014). Defining the particular causes of Arctic amplification is 

difficult (Crook et al., 2011), but it has been suggested that declining terrestrial spring snow cover in the 850 

Arctic is contributing to Arctic amplification (Serreze and Barry, 2011; Matsumura et al., 2014). Other 

processes contributing to this amplification are: reductions in sea-ice extent, changes in atmospheric 

circulation that lead to atmospheric heat flux convergence, changes in clouds and water vapour, 

decreases in snow albedo as a result of soot deposition and increases in black carbon aerosols (Serreze 

and Barry, 2011; Serreze and Barry, 2014). 855 

For the Arctic, the interval between October 2015 and September 2016 was the warmest year 

on record since 1900 (Lader et al., 2017).  There is variation in the magnitude and patterns of warming 

and changes in associated precipitation across polar and circumpolar regions, but the rise in temperatures 

over Northern Europe including Northern Fennoscandia is expected to continue to be much larger than 

the global mean (Kivinen et al., 2017). Therefore, it is important to understand how snow has been 860 

changing over the past few decades in order to better predict how it will respond to climate change over 

the next century. 
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2.5.2 Large-scale snow cover changes 

Many studies analysing changes in snow over the past century have focussed on the trends in snow 

cover extent. These trends have been negative in the Northern Hemisphere for the past few decades (e.g. 865 

Dye, 2002; Déry and Brown, 2007; Lemke et al., 2007), especially in spring (Brown and Robinson, 

2011; Peng et al., 2013). Scientists have been aware of these negative trends for some time; Robinson 

et al. (1993) used NOAA snow cover maps to study trends in snow cover extent and noted the reduction 

in the 1988 to 1993 interval. More recently these trends have been quantified: Brown and Robinson 

(2011) showed that, in the 1979 to 2005 interval, there has been a decrease in the average snow cover 870 

extent of March and April of –3.4 ± 1.1 % per decade. The longer trend since 1922 is weaker: –1.0 ± 

0.3% per decade. Flanner et al. (2011) showed that terrestrial snow cover feedbacks are strongest in 

April and May. Brown and Robinson's (2011) findings support this as they found a larger decrease in 

April than in March with a decrease in snow cover extent of 2.00 × 106 km2 and 1.44 × 106 km2, 

respectively, for each 1 °C of warming in the Northern Hemisphere. Tedesco and Monaghan (2009) 875 

found that, in the 1979 to 2008 interval, the duration of the melt season in the Northern Hemisphere has 

been shortening by 0.6 days/year. The inter-year variability is mostly due to fluctuations over relatively 

small areas (Robinson and Frei, 2000). The annual extent of snow cover over the Northern Hemisphere 

has declined by nearly 10 % during the period 1972 - 2003 (Diaz et al. 2003; Walsh et al. 2005), 

accompanied by lower springtime SWE (Mote et al. 2005),  880 

Some studies look at the timing and duration of the snow season. One example, Peng et al. 

(2013), found a decrease in the overall snow cover duration in the Northern Hemisphere over the turn 

of the century (1980 to 2006). They found that the snow cover start date has become increasingly later 

in both North America and Northern Europe, but that the snow season end has stayed stable over North 

America and has become earlier in Northern Europe. The snow cover season has thus shortened more 885 

over Northern Europe than over North America. The duration of the snow cover season is also indirectly 

represented in studies focusing on the duration of the growing season. The thermal potential growing 

season has lengthened by about 10.5 days (1982 – 2011), with the overall lengthening being stronger 

and more significant in Eurasia (12.6 days, p < 0.01) than North America (6.2 days, p > 0.05) 

(Barichivich et al., 2013), which supports the results found by Peng et al. (2013). 890 

Changes in snow cover have also been investigated using changes in albedo. Li et al. (2018) 

studied trends in albedo to understand snow and vegetation changes between 2002 and 2016 over the 

entire Northern Hemisphere. They found that albedo has widely decreased over the high latitudes of the 

Northern Hemisphere and regression analysis identified a greening trend over the northern Eurasian 

continent. These are both partially explained by an observed decrease in snow cover in the Arctic as a 895 

result of warming climate (e.g. Bintanja & Krikken, 2016; Lutz et al., 2016). 

Finally, changes in snow depth over Eurasia between 1966 and 2012 were investigated by 

Zhong et al. (2018). The authors used a very large observational dataset in order to avoid the limitations 

of low-resolution remote sensing instruments (passive microwave) and numerical models. They used 

daily or 10-day interval ground-based measurements of snow depth from 1814 stations across Eurasia. 900 
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At a seasonal level, they found that snow depth increased in both winter and spring but decreased slightly 

in autumn. However, overall results show that both annual mean and maximum snow depth increased 

by 0.2 and 0.6 cm/decade respectively with the highest increases in snow depth occurring in regions 

north of 50 ºN. 

2.5.3 Regional snow cover changes 905 

The previous section summarises the large-scale trends across the Northern Hemisphere. At a smaller 

regional scale, the snow cover trends are not uniform. Snow cover duration has been found to be 

increasing in many areas in Eurasia (Bulygina et al., 2009; Shmakin, 2010). Ye and Ellison (2003) found 

a slight increase in the duration of the snow cover season over northern Eurasia between 1937 and 1994. 

A similar increase in snow season duration has occurred between 1936 and 2000 over Northern Europe 910 

(particularly Scandinavia and the north eastern European plains), caused by increases in precipitation 

(Kitaev et al., 2006). Ye and Ellison (2003) identified an increasingly early end to the snow cover season 

in northern European Russia and found that the length of continuous snow cover has nevertheless 

increased slightly over this area, as well as western Siberia. They explained this increase in duration by 

the much earlier onset of snow cover. Kitaev et al., (2004) also found an overall increase in snow cover 915 

duration between 1966 and 1990 throughout most of Northern Eurasia. This trend is also explained by 

an increasingly early start of the snow season over this period. 

Using phenology (the study of the cycle of plants), Kozlov and Berlina (2002) found that the 

length of the summer in the Kola Peninsula decreased by 15 to 20 days in the 1930 to 1998 interval. 

Here, the plant growth season is used as a proxy for the snow season. Indeed, plants will start growing 920 

as the snow start to melt thus providing water and eventually sunlight to the plants below. This is not a 

direct and exact proxy but is a useful indication of the duration of the snow season and has been used in 

previous phenological studies (e.g. Jönsson et al., 2010). The decrease in the length of the plant growth 

season identified by Kozlov and Berlina (2002) thus implies an extension of the duration of snow season 

over this time period. This is supported by the 44 % increase in winter precipitation recorded over the 925 

Northern taiga forests in the Kola Peninsula (Høgda et al., 2001).  

However, Bulygina et al. (2009) found high spatial variability over Russia in the number of 

days per year with more than 1 cm snow cover (Fig. 2.7). The snow cover duration has been decreasing 

in north-west and southern Russia since 1966 reaching -6 days/decade. Additionally, the Russian Arctic 

coast and northern (65 - 85°N) islands in Eurasia (Kitaev et al., 2004) and the southern Scandinavian 930 

Peninsula (Kitaev et al., 2006) have also been found to have undergone weak decreases in snow cover 

duration between 1966 and 1990. Finally, the only region with a decrease in snow cover duration 

between 1937 and 1994 is southern Siberia (Ye and Ellison, 2003). Thus, trends in snow cover in Eurasia 

are both regionally and temporally variable. 
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 935 
Figure 2.7: Spatial distribution of linear trend coefficients (days/decade; 1 - 5 % significance level) showing the number 
of days with snow cover exceeding 1 cm for 1966 - 2007, from Bulygina et al. (2009). 

 

Concerning snow depth, mean and maximum winter snow depth have been increasing in Eurasia 

in the 1966 to 1996 period (Bulygina et al., 2007). Many studies on snow depth have focused on local 940 

and regional scales over Russia (Ye et al., 1998; Brasnett, 1999; Kitaev et al., 2005; Bulygina et al., 

2009; Bulygina et al., 2011; Zhong et al., 2018). Bulygina et al. (2011) looked at snow duration and 

snow depth over 1966 to 2010 by using a very large dataset of 1000 stations distributed over the Russian 

territory. One aspect of snow studied is the number of days in winter with more than 20 cm snow depth. 

They find that across the Russian territory the number of days exceeding this depth has increased 945 

between 1966 and 2010, the exception being over southern- and western-European Russia. Overall, 

mean snow depth in Russia has increased over the past century. Ye et al. (1998) and Zhong et al. (2018) 

found a significant increase in snow depth over Russia in the 1936 - 1986 and 1966 - 2012 intervals 

respectively. Zhong et al. (2018) explained that the main cause of this increase is increased precipitation, 

rather than changes in air temperature. Mean SWE has also been shown to have increased in Russia, 950 

particularly over western Siberia, northern and eastern European Russia over the 1966 to 1996 period 

(Bulygina et al., 2010). Positive trends in maximum SWE (Krenke et al., 2001) have also been identified 

over this period, with the largest increases occurring over the Urals (1.9 mm.yr−1) and the Far East (1.5 

mm.yr−1). 

Kitaev et al. (2005) studied the distribution of snow cover over the entirety of Northern Eurasia 955 

but analysed results within six sub-regions. Over the 1936 to 2000 interval, for the whole region of 

Northern Eurasia, the analysis indicated positive trends of both snow depth (+0.91 cm/decade), snow 

cover duration (+1.19 days/decade in number of days with ≥ 50 %  snow cover) and winter air 

temperature (+0.15 °C/decade).  At a regional level, Kazakhstan has the highest increase in temperature 

+0.44 °C/decade and the only recorded decrease in the number of snow-covered days (-1.91 960 

days/decade) between 1936 and 2000. Eastern Siberia has the lowest change in temperature with no 
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change recorded (0.00 °C/decade), but an increase in snow covered days of +1.43 days/decade. The 

smallest change in number of snow-covered days is in the Russian Far East with +0.94 days/decade. 

Finally, they identified a low increase in winter air temperature (+0.05 °C/decade) in Fennoscandia and 

an increase in the snow cover duration of +1.45 days/decade. They found that across the northern part 965 

of Northern Fennoscandia, the long-term increase in snow cover duration is higher over the eastern 

parts. This is linked with decreasing autumn temperatures and increasing winter precipitation from West 

to East (Kitaev et al., 2005).  

In the second half of the 20th century, the number of thaw days in winter increased by 35 % (1.2 

days/decade) in Fennoscandia as a whole (Groisman et al., 2011). Venäläinen et al. (2005) studied 970 

Finnish climate and found that the average temperature in Finland in the 1991 - 2000 interval has 

increased by 0.5 °C relative to the 1960 - 2000 interval; the monthly mean precipitation also increased 

in this time by +13 to +36 % and winds have weakened over this period (Venäläinen et al. 2005; Gregow 

et al., 2008). As a result, extreme snow events and the associated risk of heavier snow loads in Finland 

have increased over the 1961 - 2000 interval.  975 

Finally, two publications focus on climatic changes in Northern Fennoscandia: Kivinen et al. 

(2017), who used data from nine stations to study climate trends over this entire region between 1914 

and 2013 and Marshall et al. (2016) who studied meteorological data (surface air temperature, 

precipitation and sea level pressure) from 10 stations between 1966 and 2015 over the Kola Peninsula, 

the Russian part of Northern Fennoscandia. Both publications found that the most significant changes 980 

in all variables occurred in spring and autumn. Kivinen et al. (2017) found that temperatures in these 

two seasons and, to a lesser extent, in summer increased significantly in the study region, with the 

greatest increase affecting daily minimum temperatures. The warming trend was largest in spring with 

a significant increase in mean maximum air temperature by 0.4 °C/decade between 1950 and 1995. The 

authors suggested that the warming over north-eastern Fennoscandia is likely driven by reductions in 985 

sea-ice of the Barents and White seas. Over the Kola Peninsula, Marshall et al. (2016) found that yearly 

surface air temperature has increased by 2.3 ± 1.0°C over the past 50 years (0.46 °C/decade). Seasonally, 

statistically significant warming has taken place in spring (+0.54 °C/decade) and autumn (+0.47 

°C/decade) with large increases in winter also (+0.54 °C/decade). Precipitation was shown to increase 

over Northern Fennoscandia as a whole in Kivinen et al. (2017), and extreme high precipitation events 990 

were shown to become more extreme (higher precipitation) towards the end of the study period. The 

authors also found significant declines in extreme cold climate events in all seasons and increases in 

extreme warm events, in spring and autumn. Marshall et al. (2016) found that, although there has been 

no significant change in annual PPN, spring has become significantly wetter (+1.0 mm/decade) and 

autumn drier (-1.6 mm/decade) over the Kola Peninsula between 1966 and 2015. Of the two studies, 995 

only Kivinen et al. (2017) considered changes in snow cover. Their results indicated that the snow 

season duration in Northern Fennoscandia has decreased over the past hundred years. The authors 

explained this change in snow cover with the increases in temperature and precipitation. Indeed, spring 

and autumn are transitional periods of melting and formation of continuous seasonal snow in Northern 
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Fennoscandia respectively. Therefore, increases in temperature in these two seasons will lead to a later 1000 

start and earlier end to the snow cover season. In addition to this, the combined increases in precipitation 

and in temperature are likely to result in increases in rainfall and decreases in snowfall (Kivinen et al., 

2017). 

In conclusion, though most snow cover characteristics (snow cover duration, depth and SWE) 

have been increasing over northern Eurasia and Russia as a whole, trends are not so uniform regionally 1005 

(e.g. Fig.2.7 from Bulygina et al., 2009) and there is high spatial variability in these characteristics. Of 

relevance to this dissertation, Northern Fennoscandia has undergone decreases in snow cover duration 

between 1914 and 2013 (Kivinen et al., 2017) and increases between 1936 and 2000 (Kitaev et al., 

2005). Thus, high temporal variability also affects snow in this study region. 
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Chapter 3 

Fieldwork results and MODIS validation 

 
In this chapter, I discuss my two field seasons and present the results of my work in Arctic Russia. This 

chapter is divided into two parts. In the first part, the various snow parameters measured in the field are 5 

discussed, and the relationships between these different parameters are analysed. In the second part, 

field albedo measurements are used to ground truth the MODerate resolution Imaging 

Spectroradiometer (MODIS) snow products.  

3.1 Introduction 

Snow has a crucial impact on both human environments and natural ecosystems (Jones et al., 2001; 10 

Armstrong and Brun, 2008), and as a result the study of snow has been part of human culture for 

centuries. Biswas (1970) described some of the first known snow measurements, which were recorded 

in China in the 13th century using snow gauges made of bamboo. Measurements of different snow 

parameters did not become systematic until the late 19th century (Armstrong and Brun, 2008), with the 

first snow depth measurements in Russia being made in the 1870s (Barry et al., 1993). Today, snow and 15 

climate scientists have access to high-resolution remote sensing data and multi-layer physical snowpack 

models (e.g. Bartlett and Lehning, 2002). Therefore, in a chapter focussing on field measurements of 

snow, it is relevant to consider the place of ground measurements in modern snow science. 

Ground measurements can be made directly by people or using intermediary instruments. As 

such, these measurements are subject to human and instrument error, in both calibration and recordings. 20 

Another limitation of field measurements is their low temporal and spatial coverage (e.g. Lundberg et 

al., 2010). Ground measurements, unless automated, can be time-consuming and costly to make and, as 

a result, the density of measurements in space and time is very low when compared to remote sensing 

datasets. The spatial density of ground measurements is also highly region-dependent. For example, a 

much greater number of snow pit data are available in the Swiss Alps than in an equivalent-sized area 25 

in the Arctic, as a result of the easier access and financial incentives provided by the tourism industry 

for measurements to aid the safety of skiers. Automated ground measurements usually have a much 

higher temporal coverage but must be maintained well in order to avoid increases in measurement errors 

over time. This maintenance is both costly and adds a constraint regarding where these instruments may 

be placed, as they must be accessible to technicians. The spatial coverage of automated instruments is 30 

further limited by cost, as they are usually left in one location and a large number of instruments must 

be purchased in order to increase the spatial coverage of available measurements. Due to these various 

constraints, the number of Arctic field stations is low and their presence has actually decreased since 

the 1990s (Serreze and Barry, 2014). 
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However, in spite of their limitations and the significant advances in remote sensing instruments 35 

and modelling over the past few decades, snow science still depends heavily on field measurements of 

snow. Indeed, though human and instrumentation errors do occur in the field, ground measurements are 

the closest values to “truth” that can be recorded. These errors are understood to be much lower than 

those of remote sensing instruments or model outputs. Another reason for the necessity of ground 

measurements is a result of the remaining limitations of remote sensing and modelling. Both of these 40 

techniques struggle to either record or model snow in forested areas for example. For this reason, snow 

studies in highly vegetated or forested environments still rely heavily on ground measurements of the 

snowpack under trees. 

Finally, one of the main reasons why ground measurements are still key in cryospheric science 

is their role in the validation of remote sensing instruments. Indeed, in order to develop and improve 45 

remote sensing algorithms and then assess the accuracy and effectiveness of the associated remote 

sensing retrievals, “true” measurements on the ground must be made and compared to the remote 

sensing datasets.  This “ground truthing” of remote sensing instruments is a necessary part of using 

satellite data and has previously been undertaken for the MODIS remote sensing instruments I use here. 

Importantly, not only snow products, but also general surface albedo, can be retrieved from MODIS 50 

data. And though ground truthing of the MODIS retrievals of grain size, albedo and impurities has been 

performed (e.g. Nolin and Dozier, 2000; Stroeve et al., 2005; Aoki et al., 2007), most of the albedo 

analyses are not specific to snow products (Liu et al., 2009; Liang et al., 2005). These ground-truthing 

studies find high correlation coefficients between ground albedo and the MODIS product. For example, 

studies have undertaken comparisons of MODIS albedo to ground data from Greenland; these found 55 

RMSEs of the MODIS albedo product of 0.07 (Stroeve et al., 2005), 0.04 (Liang et al., 2005) and, in a 

direct validation of the MODIS snow albedo product, 0.067 (Stroeve et al., 2013). However, many of 

the snow albedo product validation studies use areas with 100 % snow cover, i.e. homogenous pixels 

(e.g. Stroeve et al., 2013). This is the best way to test the accuracy of the MODIS albedo retrieval 

algorithm, as the measurements of snow albedo on the ground can be directly compared to the MODIS 60 

pixel values. However, in this thesis, MODIS is used to study heterogeneous areas, with less than 100 

% snow cover, and so a heterogeneous validation of MODIS is necessary. This is particularly important 

as previous studies have shown that MODIS does less well with heterogeneous targets (Stroeve et al., 

2013). In this project, the MODIS snow datasets were ground truthed over heterogeneous pixels using 

field measurements made over two field seasons in the Khibiny Mountains of the Kola Peninsula.  65 

In this chapter, methods and results from my two field seasons are described. This is a 

comprehensive, experimental review of snow parameters in the region with the aim of giving an insight 

into the variability of snow in the region as well as adequately describing the dataset collected as part 

of this thesis. In section 3.2, details of the two field seasons undertaken for this project are given, as well 

as the methods used in the field to make snow parameter measurements, the processing of the albedo 70 

field measurements and the methods developed for the ground truthing of MODIS data over the Khibiny 

mountains. Section 3.3 will present the results of this work, showing both the behaviour of the range of 



65 
 

snow parameters measured over the course of the field seasons as well as the results of the ground 

truthing process.  

3.2 Data collection and methods 75 

3.2.1 Field seasons 

 
Figure 3.1: Location of the Khibiny Mountains in Russia; the red outline on the Landsat image shows the field research 

area. 

Ground data were collected in the Khibiny Mountains of the Kola Peninsula (see Fig. 3.1), Arctic Russia, 80 

in 2016 and 2017. The two field seasons were undertaken in spring, in April and May of both years. The 

first data collection lasted 41 days and the second was 30 days long. I undertook this work with a field 

assistant from the British Antarctic Survey, Dr Iain Rudkin. We were based at the Khibiny Educational 

and Scientific Station of the Moscow State University Geography department. Dr Gareth Rees was 

present for the first two days of the 2016 expedition, during which we undertook the reconnaissance of 85 

the area in order to select the measurement areas (see Fig. 3.2). One of the main safety concerns of this 

fieldwork was the high avalanche risk in the mountains. We were nevertheless able to find many 

workable areas that could be accessed without avalanche risk. Some of these field areas were extended 

(B, F and G) and one abandoned (E) during the rest of the 2016 season, and a new area (H) was added 

in 2017 (Fig. 3.2). The structure of the work was the following: each day, Iain and I would hike out to 90 

make measurements in the mountains before returning to the station each night. Measurements were 

made in valleys, along slopes and on mountaintops in snow pits in the southern part of the Khibiny 

Mountains (see Fig. 3.1). The snow parameters measured were: snow cover, albedo, depth, density, 

surface grain-size and shape, as well as both air and snow temperature (surface and temperature 

profiles).  95 
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Figure 3.2: Distribution of the different areas visited in the field for measurement collection. 

 

Area Air Temperature Albedo Density Depth Grain size Snow Temperature 

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 

A 32 29 24 5 32 30 32 30 32 30 32 30 

B 34 31 30 12 36 21 36 31 36 31 34 31 

C 20 12 16 0 20 9 21 13 20 13 20 13 

D 5 4 3 0 5 2 5 4 5 4 5 4 

E 13 0 10 0 13 0 13 0 13 0 13 0 

F & F’ 36 50 28 4 36 12 37 50 36 50 36 50 

G 25 16 18 0 25 8 25 17 25 16 25 16 

H 0 40 0 12 0 14 0 40 0 40 0 40 
Table 3.1: Number of snow parameter measurements in regions A to H in the 2016 (season 1 – S1) and 2017 field seasons 

(season 2 – S2). 100 

 

Table 3.1 shows the number of measurements of each snow parameter for each of the nine areas 

of measurement collection (Fig. 3.2). Timelines of the field seasons are included in the Appendix and 

show the frequency with which the areas were visited. The expeditions were a success in terms of the 

data collection, accessibility of the region and its weather; however, there were some limitations and 105 

issues that bear mentioning. I was only able to access a 1:100 000 map; anything at a higher resolution 
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was kept from us because of Russian secrecy law. Data for area E was only obtained for four weeks due 

to an access restriction imposed late in the 2016 season. Finally, two instruments were slightly damaged 

in the field: a thermometer in 2016 and a radiometer in 2017. Temperature measurements were not 

affected in 2016 as I had a back-up thermometer, but the issues with the radiometer in 2017 led to a lack 110 

of measurements for the period until a new measurement methodology was developed (see Section 

3.2.1.2). 

3.2.1.1 2016 field season 

The 2016 field season was undertaken between 09/04 and 21/05. Despite some very low temperatures 

and many days warm enough for it to rain, the weather was always good enough for us to be able to 115 

work outside all day. Only two rest days were taken over the six weeks of data collection. In total, we 

were able to collect data at 169 snow pits, the deepest of which was 290 cm.  

3.2.1.2 2017 field season 

In 2017, field measurements were made between 16/04 and 15/5. The weather in 2017 was characterised 

by heavy snowfall for most of the season. This hindered albedo measurements quite significantly, due 120 

to the fact that the radiometer could not be used while it was snowing as it could be damaged. However, 

the weather was not sufficiently bad to prevent us making snow pit measurements, so we were still able 

to collect a large amount of data. We made measurements at 187 snow pits over 30 days, thus collecting 

more snow parameter data (excluding albedo) than in the 2016 season. This was a result of three factors. 

Firstly, having worked as a team before, Iain and I were able to divide the work to maximise 125 

productivity. We were making the same measurements as the previous year, so we had lots of practice 

which made for high efficiency during pit measurements. Secondly, as the weather was often bad in 

terms of visibility and very high winds at high altitudes, we ended up climbing a lot less than the previous 

year, which meant the time between measurement points was much shorter. Finally, on days when we 

were able to make albedo measurements, we did not dig all snow pits, favouring albedo readings over 130 

density measurements. This saved a lot of time and meant we were able to obtain data at more 

measurement points. 

3.2.2 Snow parameters 

Snow parameter measurements were made in snow pits. These were dug all the way to the ground with 

the clean edge kept facing away from the sun to avoid the temperature increasing rapidly during the 135 

measurements. Six different snow parameters were collected: depth, temperature, grain size, grain 

shape, density and albedo. These were selected as they are key snow characteristics and are commonly 

recorded in snow studies. A particular emphasis was placed on maximising the number of albedo 

measurements as these were to be used to ground truth MODIS (see Section 3.2.3). 
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3.2.2.1 Snow depth 140 

Snow depth was initially measured using a probe. Approximate depth needed to be known in advance 

in order to evaluate how big the snow pit needed to be made and how many steps to build in. A more 

precise depth was then marked down once in the pit, using a graduated ruler (pits under 2 m depth) or 

avalanche probe (pits over 2 m depth). Depth was measured to the nearest centimetre. 

3.2.2.2 Temperature 145 

Multiple temperature measurements were made at each field site using a Traceable Waterproof 

Thermometer. First air temperature, and snow surface temperature were noted. A temperature profile 

was then recorded for the entirety of the snow pit wall. In 2016, temperature was measured every 5 cm 

for the top 20 to 30 cm, before moving to 10 cm increments. In 2017, all temperature measurements 

were made every 10 cm. 150 

3.2.2.3 Snow surface grain size 

Snow surface grain size was measured by placing snow grains on a granulometer and comparing their 

size against the millimetre grid using a hand-lens. In order for the grains not to change shape during the 

few seconds of observation, the card was pre-cooled by burying it in snow. The grain size was recorded 

by giving the range in size of the grains or, only when the shape was very uniform, giving the average 155 

grain size.  

3.2.2.4 Surface grain shape 

The grain shape of the snow surface was also recorded. The grain shape was analysed on a mm-gridded 

card using a hand-lens. The grain shape codes were taken from Fierz et al. (2009)’s classification for 

seasonal snow on the ground. These data were collected in the field but will not be presented in this 160 

chapter.  

3.2.2.5 Snow density 

Snow density measurements were made along the snow pit walls (see Fig. 3.3). Density was measured 

by cutting out a known volume of snow from the wall using a custom-made density cutter (96 cm3 or 

250 cm3) and weighing this volume on an electronic balance, accurate to 0.1 g. In 2016, two density 165 

measurements were made for every 5 cm layer using a density cutter 3.5 cm thick (96 cm3) for the 

majority of snow pits. For very deep snow pits, the 250 cm3 cutter was occasionally used every 10 cm 

for the deepest parts of the pit in order to speed up the time needed for this part of the measurements. In 

2017, all measurements were made for every 10 cm layer, with a 5 cm thick cutter (250 cm3) and, as 

previously, two measurements were obtained for each layer. This decision was made to increase the 170 

speed of snow pit measurements in order to maximise the number of measurement sites. 



69 
 

 
Figure 3.3: Technique for snow density measurements used in the field. (a) spacing of the density measurements in the 

snow pit wall, and (b) instrument used to extract known volumes of snow. Photo Credit (b): Iain Rudkin. 

 175 

3.2.2.6 Snow surface albedo 

Channel 

number 
Band 

Centre 

Wavelength 

(nm) 

Bandwidth 

(nm) 

1 Blue 481 52 

2 Green 557 107 

3 Red 682 64 

4 Infra-Red 845 125 
 

Table 3.2: Skye radiometer details of the four bands recording narrowband albedo. 

 

Snow surface albedo measurements were made using a Skye radiometer, Spectrosense 2+ (SKL 910 /2) 180 

on a handheld pole lent to me by Dr Olga Tutubalina. This is an automatic data logger that measures 

incident and reflected radiation in four bands (see Table 3.2). A diffuser was applied to the upward-

looking sensor (1 on Fig. 3.4), in order to measure the incident radiation coming from all angles. No 

diffuser was applied to the downward-looking sensor (2 on Fig. 3.4), in order to measure the radiation 

reflected from a relatively small area (shown in Fig. 3.4). The narrowband albedo of the snow surface 185 

was then calculated from the ratio of these two measurements (see Section 3.2.3.2). The instrument 

could only be used in dry conditions (not snowing or raining), but measurements were made for all-sky 

conditions, not only blue-skies.  
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Figure 3.4: Simplified figure showing the two sensors and the angle of measurement on the downward facing sensor of 

the automatic data logger (from the Skye documentation). 190 

The Skye radiometer was calibrated using a Spectralon reflectance standard before the 

fieldwork in 2016 and before and after the field season in 2017, by Dr Olga Tutubalina. The second 

calibration, carried out after the 2017 season, was necessary due to some issues using the radiometer in 

the field. Indeed, in the first week of the second field season, there was a failure in sensor 2 (Fig. 3.4). 

This led to a loss of data for the few days it was broken. There was no way to fix these measurements 195 

retrospectively. A new methodology was designed to be able to make some measurements over the rest 

of the season. Sensor 1 (see Figure 3.4) was used to make both the downwelling and upwelling radiation 

measurements, by physically swapping its position with sensor 2 and reconnecting the cables as 

required. This could only be done when illumination conditions were stable, because it relied on them 

staying the same for the 10 seconds it took to swap round the sensors. A combination of this equipment 200 

issue and the poor weather conditions led to no albedo measurements being recorded between 

19/04/2017 and 08/05/2017. 

 

 
Figure 3.5: Using the radiometer in the field. Photo Credit: Iain Rudkin. 205 
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3.2.3 MODIS ground truthing 

3.2.3.1 MODIS data 

The satellite data used in this study are the MODIS snow products from both satellites: Terra 

(MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6) and Aqua (MODIS/Aqua Snow 

Cover Daily L3 Global 500m Grid, Version 6). The datasets were downloaded from 210 

http://reverb.echo.nasa.gov/reverb on 21/02/17. Both the albedo and Normalised Difference Snow Index 

(NDSI) snow cover products were used for the ground truthing. The NDSI is a snow cover index that is 

directly related to the presence of snow in a pixel and is a more accurate description of snow detection 

compared to Fractional Snow Cover (FSC) products (Riggs et al., 2016). NDSI is calculated from 

MODIS Band 4 (B4) and Band 6 (B6) (see Table 3.3):  215 

 

(3.1) NDSI = (B4 – B6) / (B4 + B6) 

 

MODIS 

band 

number 

MODIS 

Band 

Centre 

Wavelength 

(nm) 

Bandwidth 

(nm) 

4 Green 555 20 

1 Red 645 50 

2 Infra-Red 856.5 37 

6 Infra-Red 1640 24 
 

Table 3.3: Band number and wavelength interval of MODIS instrument (from Greuell and Oerlemans, 2004). 220 

 

Salomonson and Appel (2004) presented the three main equations relating NDSI and FSC, one 

of which (the Kauffman et al., 2002 equation) relies on corrected surface reflectance values and so 

cannot be tested with our field measurements. The other two are given in equations 3.2 (Barton et al., 

2000) and 3.3 (Salomonson and Appel 2004): 225 

 

(3.2) FSC = 0.18 + 0.37 * NDSI + 0.26 * (NDSI)2 

(3.3) FSC = 0.06 + 1.21 * NDSI 

 

The relationships between NDSI and FSC as described by these two equations are presented in 230 

Figure 3.6. Since the span of these includes the simple 1:1 correspondence (FSC = NDSI) and because 

the average of the two equations over the NDSI values measured in the field is close to 1:1, we simply 

adopt the NDSI as a straightforward proxy for FSC. 
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 235 
Figure 3.6: Relationship between the NDSI MODIS snow product and the snow cover fraction within the MODIS pixel, 

as defined by Barton et al. (2000), Salomonson et al. (2004) and the average of these two equations.  

3.2.3.2 Narrowband to broadband conversion 

MODIS is a remote sensing instrument that obtains data in the visible and near-infrared parts of the 

electromagnetic spectrum. The MODIS albedo product is given as broadband albedo (BB). The albedo 240 

measurements made in Russia were of the narrowband albedo (NB) of the snow in the four bands shown 

in Table 3.1. In order to ground truth the MODIS snow product, the ground albedo values need to be 

directly comparable to those recorded by the remote sensing instrument. The ground NB albedo was 

thus converted to BB. The equations used were from Greuell and Oerlemans (2004), who derived 

equations specifically for the NB to BB conversion for measurements of glacier ice and snow, based on 245 

modelling. These were preferred over those published by Liang (2000), as the latter were calculated to 

fit all surfaces, and so do not match snow as well as equations derived specifically for cryospheric 

applications. Two of the Greuell and Oerlemans (2004) equations are shown as equations 3.4 and 3.5. 

Both of these should give similar results for broadband albedo and the equation number to be used 

should be selected based on the bands of the NB measurement. The bands of the Skye radiometer 250 

matched those of Landsat TM and ETM+ sensors, and are thus slightly broader than the MODIS bands, 

but there is a good match between the two nevertheless. The equations for the NB to BB conversion that 

have been developed for MODIS (3.4 and 3.5) are hence applicable to the measurements made with the 

Skye radiometer. 

 255 

(3.4) αBB = 0.734 αMODIS1 – 0.717 α2
MODIS1 + 0.428 α2

MODIS2 + 0.458 α2
MODIS4  

(3.5) αBB = 0.714 αMODIS1 – 0.110 α2
MODIS1 + 0.286 α2

MODIS2  

 

The snow BB was calculated for all sites with albedo measurements using both equations 3.4 and 3.5. 

For the 2016 values, the average difference between the BB albedos calculated using the two equations 260 
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is 0.88% and with a median of 0.71 %. This supports the use of the equations interchangeably as 

suggested by Greuell and Oerlemans (2004). 

3.2.3.3 Ground truthing method developed 

 
Figure 3.7: MODIS snow cover fraction product on April 15th 2016. (a) all 2016 measurement sites and (b) data points 265 
from April 15th 2016 i.e. those used in the ground truthing on this date. Points 1 and 3 are within a MODIS pixel, point 

4 is between two pixels and point 2 is between three pixels. 

 

The MODIS data were ground-truthed specifically for the region using the field data. Thus, the MODIS 

error is determined for the local topography and solar zenith angles typical of the spring season. Both 270 

the albedo and NDSI MODIS products were validated. The field measurement sites were overlaid on 

the appropriate daily MODIS products using the QGIS software (QGIS, 2017), and the albedo value 

and snow fraction (NDSI value) were then recorded for each site. When a measurement site was located 

exactly between two or three pixels, all values were noted and the mean of the two or three values was 

taken (see points 2 and 4 in Fig. 3.7b). When there was cloud cover over the pixel containing the 275 

measurement site, it was impossible to compare MODIS and the field data (see Fig.3.7a). This is a result 

of MODIS being a visible and near-infrared instrument and, as such, it does not “see” through clouds. 

Table 3.4 shows the total number of measurement sites at which albedo measurements were made and 

the total number of pixels that were ground truthed using this data. The difference between the two 

values is due to cloud cover. 280 

All points with both a ground measurement of albedo and values in the MODIS snow products 

were used as part of the validation (Table 3.4). Stroeve et al. (2013) tested the effects of using clear-sky 

only ground measurements of albedo, as these are directly comparable to the MODIS products, and 

found that there is very little difference between the clear-sky and all-sky conditions in the recorded 

ground albedo. Because of this and in order to maximise the number of measurements, all albedo ground 285 

measurements were used for this study regardless of whether they were made in clear-sky or white-sky 

conditions. 
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 2016 2017 

Total number of measurement sites 169 187 

Total Ground Albedo measurements 129 42 

Ground measurements with non-cloudy 

MODIS data 

Aqua Terra Aqua Terra 

43 32 21 22 
 

Table 3.4: Total number of measurement sites in the 2016 and 2017 field seasons; the number of sites at which ground 290 
albedo measurements were made, and the total number of Terra and Aqua pixels that could be ground truthed using 

the field albedo data. 

 

The MODIS NDSI data, used as fractional snow cover data, provide the fraction of snow in a 

500 ´ 500 m2 pixel and the albedo product is a mean for the total pixel, not only of the snow. A method 295 

was designed to ground truth the MODIS snow products despite this mismatch of scales between the 

ground measurements and the data products. This combined ground-truthing is possible as the MODIS 

albedo product is calculated separately from the snow cover fraction product: the algorithms are 

completely independent (albedo algorithm: Klein and Stroeve, 2002).  

Thus: 300 

 

(3.6) αsnowFsnow + αotherFother = αtot   

(3.7) αsnowFsnow + αother(1 – Fsnow) = αtot   

 

where αsnow is the snow albedo measured in the field, Fsnow the MODIS NDSI product, αtot the albedo of 305 

the entire pixel and αother the albedo for non-snow (average of 43 field values). 

 

The value of αother used in this study is based on ground measurements. In the 2017 field season, 

a total of 43 albedo measurements were made on a variety of non-snow elements including trees, roads, 

rocks, water and infrastructure. An average of these was taken and used as αother. By using a ground 310 

value for the snow and non-snow albedos (αsnow and αother), and the fractional snow cover value given by 

the NDSI MODIS product, the snow albedo of the total pixel could be calculated and compared to the 

MODIS-derived total pixel albedo. The comparison of these values yields the error in the combined 

MODIS snow products. Using this method, it is not possible to identify whether the source of the error 

between the MODIS product and ground measurements was due to the albedo and/or snow cover 315 

fraction product. Nevertheless, it is a very useful indicator of how well the algorithms work on 

heterogeneous pixels.  
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3.3 Results and discussion 

3.3.1 Snow parameter variability 

 Mean Standard deviation Minimum Maximum 

Ait Temperature (°C) 1.3 3.9 -9.9 13.4 

Albedo 0.65 0.15 0.40 0.99 

Density (g.cm-3) 0.389 0.052 0.263 0.520 

Depth (cm) 129 54 0 290 

Elevation (m) 450 188 318 1080 

Grain size (mm) 0.9 0.6 0.1 3 

Snow temperature (°C) -1.8 2.1 -10.8 0 
Table 3.5: Summary of variability of field measurements (five snow parameters, air temperature and site elevation). 320 

 

In this section, the various snow parameters measured in the field are discussed. Table 3.5 summarizes 

the variability of the five snow parameters measured in the field as well as the air temperature and 

elevation of the measurement sites. These demonstrate the high spatial variability of snow over the small 

(~8 x 10 km) field area. Additionally, due to the importance of the effects of air temperature on snowfall 325 

and on the snowpack, the air temperature measurements made over both the 2016 and 2017 field seasons 

are shown in Figure 3.8. The field seasons were very different and give a rough indication of annual 

variability in weather and timing of snow melt in the Khibiny Mountains. Thus, the field results indicate 

high spatial and temporal variability in snow over the mountains.  

 330 

 
Figure 3.8: Air temperature measurements made over the course of the 2016 and 2017 field seasons.  
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3.3.2 Snow parameter correlations 

Studying the interactions of different snow and weather parameters as well as topography provides an 335 

indication of what may promote variability in regional snow. This is useful to our broad understanding 

of snow in the Khibiny Mountains and will become particularly relevant in Chapter 4, in which past 

changes in snow in the Western Mountain Regions of the Kola Peninsula are studied. Additionally, two 

of these snow parameters (albedo and snow depth) are used in two different validation studies, that of 

MODIS (Section 3.3.4) and WRF (Chapter 5), in this thesis. Checking that these parameters follow 340 

expected trends with other variables is useful to gain an indication of the reliability of these observations 

being used as ground truth.  

 

Spearman’s Rank Correlation Test is used to quantify the degree of correlation of variables, by 

testing whether they are associated by a monotonic function. This test was chosen as it is one of the 345 

most basic statistical tests of relationship between variables. This test assumes a null hypothesis that the 

variables are uncorrelated and proceeds to either prove or disprove this assumption. Two samples are 

found to be correlated for p values of less than 0.05, equivalent to 95 % confidence that the null 

hypothesis was not erroneously rejected. A summary of the findings using the Spearman Test is given 

in Table 3.6 and these are discussed further in the text. 350 

 

Data included Snow parameter 1 Snow parameter 2 ρ 

All values Elevation Snow depth  0.096  

 2016 only  0.411* 

 2017 only -0.008 

2017 only Air Temperature Snow Surface Temperature  0.717* 

All values Elevation Snow Density  0.314* 
 

Table 3.6: Results of Spearman’s Rank Correlation test on all parameter relationships presented in section 3.3. 
Statistically significant results of the test are marked with an asterisks: * = p < 0.5. 



77 
 

3.3.2.1 Snow depth 355 

 
Figure 3.9: Spatial distribution of snow depth over the 2016 field season. Snow depth recorded between (a) April 9th 

and April 20th; (b) April 21st and April 30th; (c) May 1st and May 10th; (d) May 11th and May 21st.  
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Figure 3.10: Spatial distribution of snow depth over the 2017 field season. Snow depth recorded between (a) April 9th 360 
and April 20th; (b) April 21st and April 30th; (c) May 1st and May 10th; (d) May 11th and May 21st.  
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Figures 3.9 and 3.10 show the distribution of snow depth in the field area over the duration of the two 

field seasons, with these divided into four time periods of similar lengths. By comparing the two figures, 

it is clear that overall the 2017 season had greater snow depth across the entire fieldwork area and 

duration, and that overall snow depth changed more during the 2016 season than in 2017. 365 

Firstly, the changes in snow depth over time during the two field seasons are considered. The 

snow depth distribution over the field area is very similar across the four time periods of the 2017 season. 

Indeed, similar snow depths (≥ 150	cm) can be seen in all four subplots in Figure 3.10 and the majority 

of measured snow depths across all time periods were greater than 100 cm. Overall, mean snow depth 

increased over the field season with a mean snow depth of 145 cm in the first quarter of the field season 370 

and of 162 cm in the final quarter. This is a result of the weather conditions not changing much over the 

weeks: the air temperatures remained low (see Fig. 3.8) and snowfall continued throughout the season. 

Contrastingly, the distribution of snow depth over the 2016 field season changes over time. The mean 

snow depth in the first quarter of the season (Figure 3.9a; 110 cm) is considerably higher than in the 

final quarter (Figure 3.9d; 86 cm). One clear example is on the sampled mountain furthest east (Area B 375 

in Fig. 3.2), with snow depths ranging from 120 cm to 240 cm in both Fig. 3.9a and 3.9b, from 60 to 

240 cm in 3.9c and from 40 to 140 cm in the final quarter (May 11th to May 21st). 

Typically, the largest snow accumulations are found in gullies and valleys and the lowest are 

on exposed mountain or hill tops (Woo et al., 1983). Over its entire duration, the 2017 measurements 

follow the expected trend of having shallower snow on exposed mountain-tops and deeper snow in the 380 

large valleys. However, the 2016 field season saw the opposite behaviour whereby ridges on the tops of 

mountains often represented the deepest snow depths on the maps. Another control on snow depth is the 

combined effects of slopes and ridge shapes (concave/convex) and wind conditions. Though topography 

shape was obviously identical between the two field seasons, wind conditions were not. Wind plays a 

key role in snow distribution in the Khibiny Mountains (Demin, personal communication). The closest 385 

station to my field area with wind measurement is Apatitovaya station (67.44 °N, 33.36 °E). This station 

recorded mean wind speeds of 6.0 m.s-1 over my 2016 season and 6.9 m.s-1 over my 2017 season. Hence, 

2017 was a windier year and this could explain, in part, the difference in snow depths on exposed 

mountain tops between the two seasons. Another factor to consider when studying snow depth is 

vegetation, as tree canopies can significantly reduce snow depth by intercepting snowfall. For example, 390 

boreal forests may intercept up to 60 % of winter snowfall (Pomeroy and Schmidt, 1993). However, 

forests do not directly impact the snow depth measurements made in this case study as the measurement 

sites were selected carefully to be in non-covered areas in order to obtain good albedo measurements.  

Finally, in figures 3.10b and 3.10c, the snow depths on south facing slopes appear to be lower 

than on slopes facing other directions. However, this is not seen across all time periods and in both 395 

seasons, so it is not clear whether slope orientation has a significant effect on snow depth. 
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Figure 3.11: Snow depth as a function of elevation of the snow pit measurements of both the 2016 and 2017 field seasons. 

Differing relationships between snow depth and elevation are observed in the 2016 and 2017 field 

seasons. When looking at the results from both field seasons together, snow depth and elevation are 400 

found to be uncorrelated (& = 0.096;	p value > 0.05). However, the results from the 2016 season show 

statistically significant positive correlation between the two variables (& = 0.411;	p value < 0.001).  In 

this first field season, the spread in snow depths is much greater at high altitudes relative to the lower 

altitudes and snow also reaches much greater depths with increased elevation (Figure 3.11a). The results 

from the 2017 season indicate that the two variables are uncorrelated (& = −	0.008;	p value > 0.05).  405 

The weather conditions in 2017 were much worse than in 2016, with very high winds preventing us 

from making many high-altitude measurements. Thus, the 2017 season sees an underrepresentation of 

snow depth measurements at high elevations (Figure 3.11b).  

Interestingly, the two field seasons have a very different range in snow depth at low elevations, 

reaching much higher values in 2017 than in 2016. This is a result of two factors. Firstly, 2017 saw a lot 410 

of late season snowfall, indeed snow kept falling for the entirety of the collection time. Secondly, the 

air temperature in the Khibiny Mountains in 2016 had already reached positive values at the start of the 

field season (see Figure 3.8). It is thus possible that some snow melt had already occurred before the 

start of the measurement collection in the first field season. Additionally, in 2016, snow depths as low 

as 0 to 50 cm were recorded. This is due to the fact that snow melted out entirely over the majority of 415 

the mountains in 2016, but did not start to melt at all in 2017. Indeed, in 2016, the six weeks of fieldwork 

coincided with the complete melt out from the lower altitudes and up to the higher altitudes. In contrast, 

no noticeable melting occurred during our four weeks of fieldwork in 2017.  
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Figure 3.12: Snow depth as a function of time over the 2016 and 2017 field seasons at the MSU Khibiny field station 420 
(67.6376 °N, 33.7236 °E). 

In both field seasons, measurements of all snow parameters were made at snow pits outside the MSU 

field station every day or until snow melted out. Figure 3.12 shows the evolution of snow depth there 

over April and May in the two field seasons. The measurements made in 2016 demonstrate how fast 

snowmelt occurs in the Khibiny Mountains. At the MSU station, complete meltout of the snowpack 425 

occurred over one month, at the longest. If the start of the melt season is taken as the tipping point seen 

on April 24th, then meltout may have occurred as fast as in 17 days. This fits well with the current 

understanding of Arctic snow melt wherein, typically, the snowmelt season is short in the Arctic Tundra, 

usually lasting less than two weeks (Weller et al., 1972). This is a result of the speed-up of snow melt 

once some bare ground becomes exposed, as this lowers the surface albedo, leading to the ground 430 

absorbing more heat, thus melting more snow (Serreze and Barry, 2014).  

Figure 3.12 also clearly shows how high inter-annual variability can be in this region. Before 

the tipping point of the start of the melting on April 24th in the 2016 data, the snow depths of the 2017 

snowpack were consistently 50 cm deeper at the same location. Furthermore, as previously discussed, 

no snow melt was seen in the 2017 field season which points to a minimum of 21 days of inter-annual 435 

difference in the start of the snow cover melting period.  
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3.3.2.2 Snow surface temperature 

 
Figure 3.13: Dependence of snow surface temperature on air temperature measured at snow pit sites of the 2017 field 

season. 440 

Figure 3.13 shows the correlated, positive (& = 0.717	and p value = < 0.001) relationship between air 

temperature and snow surface temperature. Only results from the 2017 field season are plotted here as 

2016 results were affected by a positive temperature bias in the thermometer. Though the energy balance 

of an open snowpack is a complex system, these results clearly show that as air temperature increases, 

so does surface temperature. Here, it is worth considering whether these results fit within our 445 

understanding of snowpack systems. The details of the energy and mass balance of a snowpack can be 

found in Armstrong and Brun (2008). To simplify, radiation exchange dominates the heat exchange at 

the surface of the snowpack. Diffusion from still air has very little effect on snow surface temperature, 

however wind (warm or cold) can supply or draw sensible heat from the surface (Jamieson and Shirmer, 

2016). This diffusion may explain the relationship between snow surface temperature and air 450 

temperature (Fig. 3.13). Thus, these results fit within the general understanding of the energy balance 

of snow.  
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3.3.2.3 Snow density 

 
Figure 3.14: Snow density as a function of elevation measured at snow pit sites of both the 2016 and 2017 field seasons. 455 

Figure 3.14 shows the relationship between average snowpack density and the elevation of the 

measurement site. Snow density and elevation are found to be correlated (p value = < 0.001) with a r 

of 0.314. However, both 2016 and 2017 field seasons sample different parts of the relationship. It 

appears that in 2016, higher elevations were associated with denser snow: however, in 2017 higher 

elevations saw a broader range of densities, with the majority of measurements representing lower 460 

densities than in 2016. Higher densities occur in warm, wet snow and wind-packed snow (Armstrong 

and Brun, 2008). The reason for the higher overall density in 2016 is likely a result of higher 

temperatures and associate snowmelt. 
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3.3.3 MODIS validation using field results 

3.3.3.1 Effect of the value of non-snow albedo 465 

 
Figure 3.15: Error in the MODIS snow products as a function of the albedo values used for the non-snow component 

of the MODIS pixel. See equations 3.6 and 3.7. 

As described in Section 3.2.3.3, the ground truthing of the MODIS snow data is dependent on a value 

for the albedo of the non-snow component (αother) used in equation 3.7. In Figure 3.15, the effect of the 470 

value used for αother is shown. Between 0 and 0.1 approximately, the value of the αother makes very little 

difference in the overall error in the MODIS snow products. For values greater than 0.1, the greater the 

value of αother, the greater the error in MODIS. As discussed in section 3.2.3.3, the non-snow albedo 

(αother) value used for the calculation of the error in the MODIS snow products is based on ground 

measurements. The distribution of these measurements is shown in Fig. 3.16. They give an average 475 

value for non-snow albedo in the Khibiny region of 0.093. Though there is some spread in these 

measured values (the higher values reflecting the presence of some snow in the non-snow 

measurements), the fact that the majority of the values fall under 0.1 means that the values of αother has 

little impact on the overall MODIS error calculated. 
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 480 
Figure 3.16: Distribution of non-snow albedo values from ground measurements made in 2017 field season. 

3.3.3.2 Calculated MODIS error 

 
Figure 3.17: Correlation between the MODIS snow albedo product and the full pixel albedo calculated using field point 

measurements and the MODIS snow fraction dataset.  485 

 

Using this average value for αother and field values for αsnow, full pixel albedo values were calculated and 

the correlation between the MODIS snow albedo product and the calculated full pixel albedo was tested 

using linear regression analysis (Fig. 3.17). The Terra and Aqua regression lines have gradients of 0.66 

and 0.61, respectively. MODIS tends to slightly underestimate albedo for low total-pixel albedos and 490 
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over-estimate albedos for high total-pixel albedos but, overall, the bias in the data is low (0.028 for Aqua 

and 0.037 for Terra). The RMSEs, determined in this analysis, in the MODIS retrievals from the 

instruments on the Aqua and Terra satellites are 0.081 and 0.089 respectively (see Table 3.7). These 

errors are of the same order of magnitude as those found in homogenous pixel studies (e.g. Stroeve et 

al., 2013). As the errors are low (less than 10 % on average), the MODIS snow products can be used 495 

reliably in the subsequent analysis of snow cover. 

It is interesting to consider why the Terra MODIS retrievals consistently underperform 

compared to the Aqua retrievals in these results. Casey et al. (2017) found that since the MODIS 

calibration update in 2014, increasing Terra-Aqua discrepancies have appeared in the MODIS version 

6 data. This more recent update was not able to sufficiently correct the calibration issues resulting from 500 

the large degradation of the solar diffuser (Lyapustin et al., 2014). This long-term drift in calibration, 

more pronounced in the Terra instrument, could explain the difference in errors between the Terra and 

Aqua satellite retrievals. 

 

 Aqua Terra 

Total number of points ground truthed 62 43 

RMSE – all values 0.0807 0.0894 

RMSE - 2016 values 0.0702 0.0895 

RMSE - 2017 values 0.0982 0.0894 

 505 

Table 3.7: Number of data points used in the ground truthing, overall (2016 & 2017) RMSE and respective 2016 and 

2017 RMSEs of the Aqua and Terra albedo retrievals. 

3.3.3.3 Effects of solar zenith angle on albedo 

 

Figure 3.18: Schematic showing the definition of the Solar Zenith Angle (Z on the figure). 510 

It is commonly agreed that the Solar Zenith Angle (SZA; see Fig. 3.18) at the time of measurement has 

a high impact on the reliability of albedo measurements. Higher SZAs impact albedo retrievals as a 

result of the associated decreases in solar radiation and signal-to-noise ratio. Many studies have shown 
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that with SZA higher than 70 - 75 º degrees, MODIS albedo products become unreliable (e.g. Stroeve 

et al., 2005). Wang and Zender (2010) found that the accuracy of the MODIS retrievals starts to 515 

deteriorate for SZA > 55 º and become physically unrealistic above 65 º. However, later studies directly 

addressed this paper (Schaaf et al., 2011; Stroeve et al., 2013) and demonstrated that Wang and Zender 

(2010) ignored quality flags in their analysis and their conclusions could not be applied to high-quality 

MODIS retrievals. Additionally, Stroeve et al. (2013) demonstrated realistic and accurate MODIS 

retrievals for SZA as high as 75 º at 17 stations in Greenland. For this reason, the error of the MODIS 520 

snow products should be calculated only for points with SZA less than 75 º.  

As my field seasons took place in April and May, all the field measurements were made for 

SZA values under 70º, so all can be used in the validation of MODIS (Fig. 3.19). In this project, only 

testing the accuracy of MODIS at these lower angles is valid, as the main use of this MODIS data is to 

study the start and end dates of the snow season (see Chapter 4). These fall within the March to October 525 

interval which have lower solar zenith angles, so all the retrievals in this time will be of the accuracy 

found for SZA < 75 º. The effects of SZA on the error in the MODIS retrieval over the field season are 

shown in Fig. 3.20. There is no clear relationship between SZA and the accuracy of the MODIS 

retrievals; using Spearman’s rank correlation test, it is shown that these samples are uncorrelated (& =
0.105;	p value = > 0.05). However, my results support the work of Stroeve et al. (2013) and show that 530 

MODIS retrievals for SZA > 65 º are not physically unrealistic. Indeed, all but one measurement point 

for SZA > 65 º have errors of less than 9 % and one of the lowest individual retrieval errors of the entire 

field season (0.25 %) is for a measurement with 66.6 º SZA (Fig. 3.20). 

 
Figure 3.19: Solar Zenith Angles of all ground measurements used in ground truthing as a function of the date the 535 
ground measurement was made. 
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Figure 3.20: Error in the MODIS snow product as a function of Solar Zenith Angles. 

3.3.3.4 Effects of elevation on MODIS retrieval accuracy 

Previous studies have suggested that MODIS retrievals are less accurate at high elevations (Stroeve et 540 

al., 2005; Liang et al., 2005; Painter et al., 2009). Figures 3.21 and 3.22 suggest that errors in the MODIS 

snow products over the Khibiny Mountains are lower for higher elevations than for lower altitudes. 

Using Spearman’s rank correlation test however, it is shown that elevation and MODIS error are 

uncorrelated (& = 0.148;	p value = > 0.05). In the case of the Khibiny Mountains, lower elevations are 

associated with higher spatial heterogeneity in albedo. The lower measurement sites were indeed closer 545 

to roads, mining buildings and, in many cases, vegetation. Therefore, it is possible that MODIS retrievals 

are more accurate at higher altitudes in this case, as higher altitude pixels are also more homogenous. 

Finally, the range in elevation in the Khibiny Mountains is low (ranging from 300 m to 1005 m) and 

thus perhaps elevation is only an issue for retrievals at greater altitude ranges or purely at higher 

elevations. The example of high-elevation MODIS-retrieval bias in Painter et al. (2009) is the 550 

Himalayas, a very different region to the small Khibiny Mountains.  
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Figure 3.21: Error in the MODIS snow product as a function of altitude. 

 
Figure 3.22: Distribution of MODIS errors according to measurement site.  The errors are from both the Aqua and 555 
Terra satellites and for both 2016 and 2017 field season. Points have been artificially separated to limit overlap. 

3.4 Conclusions 

In this chapter, the fieldwork undertaken for this project was described and the results gained from this 

work were analysed.  
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• A large snow parameter dataset was collected over two field seasons in the southern Khibiny 560 

Mountains.  

• From two field seasons in a remote-access area, it is clear that inter-annual differences can be 

very large in this region. The two seasons contrasted strongly in terms of weather, temperature 

and snow melt.  

• The MODIS ground truthing effort was a success despite the significant high cloud cover 565 

limiting the number of pixels that could be ground truthed over the two field seasons. Overall 

62 and 43 albedo measurements could be used for the Aqua and Terra snow datasets, 

respectively.  

• The overall RMSE in the albedo retrievals was demonstrated to be less than 10% for both 

MODIS instruments, at 8.1 % and 8.9 % for Aqua and Terra, respectively.  570 

• However, MODIS retrievals are demonstrated to be accurate up to SZA < 70 º, supporting work 

done by Stroeve et al. (2013), which demonstrated inaccuracies in the conclusions of Wang and 

Zender (2010). 

3.5 Fit within thesis 

The key result from this chapter is the low uncertainty in the MODIS snow products. This is crucial to 575 

this thesis as MODIS snow products are used in the following chapter to study past changes in snow 

cover over a small region surrounding the Khibiny Mountains. MODIS is also used in Chapter 5 as 

ground ‘truth’ for the sensitivity analysis of the Weather Research and Forecasting model. Thus, the 

clear relationship demonstrated between the MODIS imagery and the field-measured snow parameters 

gives confidence in its use for these studies. Additionally, the demonstrated high variability of snow at 580 

a sub-km scale is important in that it presents the difficulties in using point measurements to determine 

broader-scale patterns, such as the use of station data in chapters 4 and 5 to look at regional trends and 

validate model outputs respectively. 
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Chapter 4 
Assessing snow cover changes in the Kola Peninsula, Arctic 
Russia, using a synthesis of MODIS snow products and station 
observations. 
 5 

In this chapter, I examine recent changes in snow cover (2000 - 2016) in the western mountain regions 

(hereinafter WMR) of the Kola Peninsula in Arctic Russia, an area that has undergone significant 

climate change in recent decades. For this analysis, a combination of meteorological observations and 

remote sensing data is used. This is the first time that remote sensing data have been used to assess snow 

cover in this region. These snow products were processed to maximise the number of cloud-free days. 10 

First and last days of snow cover were derived for each year from snow depth observations at 

meteorological stations. MODIS-derived snow cover dates were compared to these station-derived dates 

to look for systematic biases in the satellite data. These ‘locally-calibrated’ MODIS data were then used 

to determine the trends and variability in the duration of the snow season in the WMR between 2000 

and 2016, and data from meteorological stations were used to extend the study to the past half century.  15 

4.1 Introduction 

Snow cover has a direct impact on human life and the natural environment in many parts of the world. 

It is the largest component of the terrestrial cryosphere by area (e.g. Lemke et al., 2007) and 98 % of 

seasonal snow is located in the Northern Hemisphere (NH) (Armstrong and Brodzik, 2001), with the 

proportion of snow-covered land ranging from 7 to 40 % over an annual cycle (Singh and Gan, 2000). 20 

Importantly, snow's albedo leads to a positive feedback loop. Fresh snow has a very high albedo, 

meaning it reflects solar radiation back out to space, thus maintaining a cool Earth's surface. As snow 

melts from a warming of the atmosphere, more radiation can be absorbed by the surface, leading to 

further warming and so more snow melt. Snow albedo is the third most important climate feedback after 

water-vapour and cloud feedbacks (e.g. Bony et al., 2006). Therefore, studying trends in snow cover in 25 

a warming climate is important. Studying arctic snow is problematic due to its high spatial variability 

(Liston, 2004) and the relative scarcity of ground-based measurements. As a result, remote sensing 

datasets are often used in Arctic snow studies as they provide spatially continuous information. 

However, these bring in new uncertainties with the difficulties of snow-mapping algorithms to 

distinguish snow from clouds (e.g. Hall et al., 2010) and to represent snow in forested areas (e.g. Rutter 30 

et al., 2009; Rittger et al., 2019).  

Studies of changes in snow during the past century have focussed predominantly on the trends 

in snow cover extent. These trends have been negative across the NH as a whole for the past few decades 

(e.g. Dye, 2002; Lemke et al., 2007, Peng et al., 2013), especially in spring (Brown and Robinson, 2011). 

Tedesco and Monaghan (2009) noted that, in the 1979 to 2008 interval, the duration of the melt season 35 
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in the NH was shortening by 6.0 days/decade. However, these are the large-scale trends and at a smaller, 

regional, scale, snow cover trends are not uniform and have greater inter-annual variability (Robinson 

and Frei, 2000; Bormann et al., 2018). Here, I focus on the WMR of the Kola Peninsula in Arctic Russia 

(Fig. 4.1). These mountains are extremely rich in mineral resources and also make the WMR a popular 

winter sports tourist destination, making it a very economically valuable Russian region. Increases in 40 

the duration of the snow cover season may adversely impact the mineral extraction undertaken in the 

Khibiny Mountains and decreases in the snow season may result in a reduction in the local winter sports 

economy. Therefore, any changes in snow cover in this region will have a socio-economic impact. For 

this reason, the Kola Peninsula and parts of the WMR have been the focus of multiple Russian studies. 

Indeed, the work in this chapter follows on from a strong culture of Russian snow research in north-45 

west Russia (e.g. Kitaev et al., 2007) and in the Khibiny Mountains (Glazovskaya, 2000; Sapunov et al 

2006; Troshkina et al., 2005; Troshkina et al., 2009; Vikulina, 2009; Zyuzin et al., 2006), mainly 

focussing on snow microphysics and avalanche processes. This regional Russian snow research was 

summarised in 2013 with a comprehensive analysis of past changes in the Khibiny Mountains (Zaika et 

al., 2013). In addition to this, some chapters published in English have studied past climatic variations 50 

in the area (Kozlov and Berlina, 2002; Demin and Zyuzin, 2006; Demin and Zyuzin, 2009; Blinova and 

Chmielewski, 2014; Marshall et al., 2016) but none specifically focussed on snow cover. This work 

distinguishes itself by its wider spatial scope, comparing the snow cover in the mountains to the 

surrounding region, and, importantly, is the first to use remotely-sensed snow cover data to expand upon 

the availability of data from meteorological stations in the area. In this chapter, I focus on the rate of 55 

change of the snow season and its spatial variability in the WMR. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product has been 

used to study snow cover changes in many regions (Zhang et al., 2010; Dietz et al., 2012; Huang et al., 

2016; Malnes et al., 2016). Here, the MODIS Normalised Difference Snow Index (NDSI) snow cover 

data is employed to study snow cover in the WMR of the Kola Peninsula. The MODIS snow product 60 

lends itself well to snow cover studies within mountainous regions due to its high spatial (500 m) and 

temporal (daily) resolution (Bormann et al., 2018). We utilise a similar methodology to Malnes et al. 

(2016), demonstrate that it is applicable to WMR and extend it by analysing trends in the resultant 16-

year long time series of regional snow cover data. 

In section 4.2, I provide a brief introduction to the climate of the WMR, including a summary 65 

of the current understanding of the region’s snow cover and opposing findings published in the literature. 

In section 4.3, the methods employed in this analysis are detailed, focussing on the validation of the 

MODIS data and the processing used to derive MODIS snow cover maps. In sections 4.4 and 4.5, the 

results are presented and discussed: trends in the snow cover start (SCS), snow cover end (SCE) and 

snow cover duration (SCD) are given for all of the available meteorological stations as well as SCS, 70 

SCE and SCD datasets of the entire WMR derived from MODIS data. Finally, section 4.6 comprises 

the conclusions. 
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4.2 Climate of the Western Mountain Regions (WMR) 

 

Figure 4.1: The WMR in relation to Fennoscandia. The WMR is the area delimited in red by the four grid lines. Red 75 
crosses show the locations of the ten meteorological stations with readily available snow data. 

The WMR (see Fig. 4.1) is part of Murmansk Oblast (Region) (66 - 70° N), which essentially comprises 

the Kola Peninsula. The WMR, as defined for this chapter, contains both lower elevation plains and the 

highest orography of the Kola Peninsula. The definition of these high altitude areas is based on Blinova 

and Chmielewski (2014): three main high altitude areas are included in the WMR (see Fig. 4.1) and 80 

these are the Khibiny Mountains (1,191 m), the Lovozero Mountains (1,120 m) and the combined 

Volchji (955 m), Monche (965 m) and Chuna Tundras (1,114 m) hereafter the VMC Tundras (Blinova 

and Chmielewski, 2014). Almost all of the Murmansk Oblast is situated north of the Arctic Circle, but 

the Gulf Stream makes its climate milder than in nearby areas east of the Kola Peninsula (Blinova and 

Chmielewski, 2014). Temperatures in Russia are rising faster than average, especially in its northern 85 

Arctic regions (Olofinskaya et al., 2009). A number of chapters have analysed climatological trends in 
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the Kola Peninsula (Anisimov and Reneva, 2006; Demin, 2012; Demin et al., 2014; Demin et al., 2015; 

Blinova and Chmielewski, 2014; Marshall et al., 2016). 

The Kola Peninsula is climatically heterogeneous. The regional mean annual air temperature is 

~0 °C (Marshall et al 2016) and falls to −2 °C in the WMR (Blinova and Chmielewski, 2014) due to 90 

higher average altitude and the lack of warming oceanic influence. The snow cover period extends from 

the middle of October until the end of May, and the thermal growing season from early June until the 

middle of September (Koroleva, 1994; Blinova and Chmielewski, 2008; Blinova, 2011). Annual surface 

air temperature in the Kola Peninsula has increased by 2.3 ± 1.0 ºC over the past 50 years (Marshall et 

al., 2016). Seasonally, statistically significant warming has taken place in spring and autumn, although 95 

the largest trend has occurred in winter (Marshall et al., 2016). Spring has become significantly wetter 

and autumn drier, though annual precipitation has not undergone any significant change (Marshall et 

al., 2016). There has also been an overall trend towards stronger winds (Roshydromet, 2005). Within 

the WMR, at the highest altitudes of the Khibiny Mountains, air temperature increased in all the seasons 

by 0.22 to 0.54 °C per decade between 1965 and 2015 (Demin and Volkov, 2017). 100 

Using phenology (the study of the seasonal development of plants), Kozlov and Berlina (2002) 

found that the length of the summer in the Kola Peninsula decreased by 15 to 20 days in the 1930 to 

1998 interval. This is supported by the 44 % increase in winter precipitation recorded over the Northern 

taiga forests in the Kola Peninsula (Høgda et al., 2001). However, Bulygina et al. (2009) argued that 

snow cover duration has been decreasing in north-west Russia since 1966. Additionally, Blinova and 105 

Chmielewski (2014) demonstrated shifts in the timing of the growing season and its mean prolongation 

by 18.5 days in the 1951 to 2012 interval. In this period, the onset of the growing season advanced by 

1.1 days/decade, while the end was extended by 1.8 days/decade. This matches the pattern observed in 

Fennoscandia, but it has not been detected in the rest of Europe (Karlsen et al., 2009; Høgda et al., 2013). 

These seemingly contradictory findings are investigated in section 4.4.1.2.2, in order to test whether 110 

these differing conclusions are a result of the different time intervals studied. 

4.3 Data and methods 

4.3.1 Station data 

4.3.1.1 WMR stations 

There are six meteorological stations with readily available snow data in the WMR (see Table 4.1), 115 

although only two of these stations have records that cover the entire period of MODIS availability 

(2000 - 2016). Data from the Khibiny Avalanche service is difficult to obtain and, as a result, I only use 

the maximum annual snow depth recorded at Centralnaya between 1962 and 2005, as used by Zaika et 

al. (2013). It is worth noting throughout this study that snow depth measurements from the stations 

within higher altitude areas (MSU Khibiny and PABGI Khibiny) are likely affected by false 120 

precipitation issues as a result of wind-blown snow (Demin, personal communication).  However, as 
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this chapter focuses on spatial and temporal changes in snow distribution rather than snow depth, this 

markedly lessens the impact of such errors on our findings. 

 

Station Name Number 
on Fig. 4.1 

Latitude 
(°N) 

Longitude 
(°E) 

Elevation 
(m) 

Dates Data used in this 
study 

Apatitovaya 2 67.55 33.36 135 2010 - present Daily snow depth. 
 

Centralnaya 5 67.63 33.88 1050 1962 - 2005 Yearly maximum 
snow depth. 
 

Lovozero 6 68.00 35.03 162 1992 - present Daily snow depth. 
 

Monchegorsk 1 67.97 32.88 131 2005 - present Daily snow depth. 
 

Moscow State 
University (MSU) 
Khibiny Research 
and Education  

4 67.64 33.72 330 1984 - 2016 Monthly average 
and maximum 
snow depth. 
Snow cover start 
and end dates. 

Polar-Alpine 
Botanical Garden 
Institute (PABGI) 
- Khibiny 

3 67.64 33.67 310 1991 - 2014 Monthly snow 
depth. 

Table 4.1: Description of the WMR stations and available snow depth data.  125 

 

4.3.1.2 Western Murmansk Oblast stations 

Snow depth data from additional stations with longer records in the western Murmansk Oblast (Table 

4.2) are used for the validation of the MODIS data (Sect. 4.3.3.2) and for a wider understanding of snow 

cover changes in the western Kola Peninsula. 130 

 
Station Name Number on 

Fig. 4.1 
Latitude 

(°N) 
Longitude 

(°E) 
Elevation 

(m) 
Dates Data used in 

this study 
Kandalaksha 7 67.13 32.43 40 1936 - present 

 
Daily snow 

depth. 
Kovda 8 66.70 32.88 18 2005 - present 

 
Daily snow 

depth. 
Murmansk 10 68.98 33.09 96 1945 - present 

 
Daily snow 

depth. 
Umba 9 66.68 34.35 1 1966 - present Daily snow 

depth. 
Table 4.2: Description and available snow depth data of the four additional stations used in this study, the western 
Murmansk Oblast stations.  

 

Station observations were checked for gross errors simply by plotting the data. Potentially 135 

incorrect values in the 21st century were cross-checked against other available sources (e.g. 

https://rp5.ru) and changed if confirmed as incorrect. Earlier likely incorrect values and recent values 
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where a more likely alternative could not be located were considered to be missing data. However, very 

few values were removed in this process so it will not have significantly impacted the calculated trends. 

Snow depth observations at the stations were made to the nearest centimetre. 140 

4.3.1.3 Station data processing 

Only one station (MSU Khibiny) recorded the start and end dates of the snow cover season (see Table 

4.1), so a method of extracting SCS and SCE dates from snow depth data was used for the other stations. 

This method was based on that used to extract these dates from the MODIS data (see Section 4.3.2.2). 

SCS (/SCE) was defined as the first day with more than 5 (/10) days in a row with snow cover depth 145 

higher(/lower) than 1 cm at a station.  

4.3.2 MODIS 

4.3.2.1 General information 

The satellite data used in this study comprise the MODIS snow product from both satellites (Terra and 

Aqua). These data were used from their earliest availability, 2000 for Terra and 2002 for Aqua, until 150 

August 31st 2016, taken as the end of the 2015/2016 snow cover season. The specific dataset used in 

this study is the NDSI snow cover dataset and, as discussed in Chapter 3 (section 3.2.3.1), this product 

is used as a straightforward proxy for FSC. 

4.3.2.2 Data processing  

The MODIS data were processed for long-term trend analysis. Before any data processing, the Aqua 155 

and Terra data comprised 52.6 % and 50.97 % cloud cover respectively. Merging both datasets together 

is the first step to replacing cloudy pixels with snow cover data (Dietz et al., 2012, Foppa and Seiz, 

2012; Husler et al., 2014; Malnes et al., 2016). As the satellites have slightly different overpass times, a 

cloudy pixel in the data of one of the satellites may contain valid NDSI data in the other. For each pixel, 

each day, if there existed an NDSI value in one of the Aqua or Terra data sets, then this value was 160 

inserted. If a value existed in both satellite data sets then the average of the two was used. When a pixel 

had no value in either Aqua or Terra, a weighted average of the two nearest values within the previous 

five and following five days from either satellite was used to determine an NDSI value. If only one value 

could be found pre- or post- empty pixel, then this value was applied. Using this technique, over half of 

missing NDSI data were filled and the resulting combined dataset comprises only 23 % missing data as 165 

a result of cloud cover.  

The first and last snow-free days for each year in the 2000 to 2016 interval were calculated 

following the method used by Malnes et al. (2016). A cutoff value for the NDSI data of 50 (equivalent 

to 50 % pixel FSC) was taken to evaluate the start and end of the snow cover. The SCS is defined as the 

first day when an NDSI value reached at least 50 for more than 5 days in a row. The SCE is defined as 170 

the first snow-free day when an NDSI value falls below 50 for more than 10 days in a row. This 
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difference in cutoff time is due to the high cloud cover in autumn which hinders MODIS’ snow cover 

retrieval ability over longer periods of time than in spring.  

Earliest and latest SCS and SCE dates were set for the analysis (Malnes et al., 2016). These 

dates were selected based on snow cover start and end dates at stations and on the dates of the Polar 175 

night in the region (Dec 2nd to January 10th) to avoid problems due to low solar angles. The SCS was set 

as being able to occur between September 1st and November 17th. The SCE was set as being able to 

occur between March 15th and August 31st. The SCD is the number of days with snow cover and the 

MODIS SCD was calculated from the SCS and SCE maps, following equation 4.2, with DiY being the 

number of days in the year (365 or 366). 180 

 

(4.1) SCD = (DiY – SCS) + (SCE – 1) (as the end of snow cover is the first day with no 

snow) 

 

4.3.3 Statistical methodology 185 

Trends were calculated using standard least squares methodology. These trends were tested for statistical 

significance using the standard t-test and p values were extracted. Three degrees of significance are 

used: p < 0.1, p < 0.05, p < 0.01. 

4.4 Results  

4.4.1 Station data 190 

4.4.1.1 Snow cover depth 

Figure 4.2 shows plots of daily snow depth at the Apatitovaya, Lovozero and Monchegorsk stations 

located in the WMR for the entirety of their available record (see Table 4.3). The inter-annual range in 

snow depth at these three stations is considerable, especially for the two latter stations, with longer 

records. The largest inter-annual differences in snow depth can be seen at the end of the snow season. 195 

For example, in some years, such as 2016/17, the snow depth was at its highest peak or only just starting 

to melt out at the median time of disappearance of snow (Fig. 4.2). Thus, at Lovozero station, the highest 

inter-annual depth range can be seen in late April when the snow depth ranges from 0 to 88 cm. 

However, at Apatitovaya and Monchegorsk stations the maximum inter-annual difference is observed 

in early May, where the range is just over and just under 80 cm, respectively. Note that late season 200 

snowfall can be observed at Lovozero station, where a renewed snow depth peak appears at the end of 

the snow season. This is not seen at the other two stations but is likely to be simply a result of the longer 

record at Lovozero station, as all late season snowfall on record there occurred between 1996 and 2001. 

The inter-annual difference in the dates of the appearance of the snow (> 0 cm depth) and the 

disappearance of the snow (= 0 cm depth) dates at these three stations is also clearly seen in these figures 205 

and is summarized in Table 4.3.  



102 
 

 
Figure 4.2: Snow depth range at (a) Apatitovaya station, (b) Lovozero station, (c) Monchegorsk station. 
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Station Dates of available data Range in the date of 

appearance of snow  
Range in the date of 

disappearance of snow  
Apatitovaya 2011 - 2017 October 13th - November 5th April 30th - May 24th 
Lovozero 1992 - 2017 October 1st - November 5th April 22nd - June 6th 
Monchegorsk 2005 - 2017 October 14th - November 16th April 30th - June 4th 

Table 4.3: Inter-annual differences in SCS and SCE dates at the Apatitovaya, Lovozero and Monchegorsk stations. 210 

 

 

Figure 4.3: Maximum snow depth in centimetres at the Centralnaya station, MSU Khibiny station, PABGI Khibiny 
station, Lovozero station, Monchegorsk station and Apatitovaya station. The data from Centralnaya station was 
collected by the Khibiny avalanche service. 215 

Figure 4.3 shows a comparison of yearly maximum snow depth at all six stations from the WMR 

used in this study. The maximum snow depth at the stations within the Khibiny Mountains (Centralnaya, 

PABGI Khibiny and MSU Khibiny stations) is on average higher than those in the surrounding plains 

(Apatitovaya, Lovozero and Monchegorsk stations). The station at the highest altitude, Centralnaya 

station, also has the greatest snow depth. Over the common period of 1991 to 2005, the Centralnaya 220 

yearly average maximum snow depth is 13.3 cm deeper than at PABGI Khibiny station. At Centralnaya 

station, maximum snow depth varies markedly, from 100 to 300 cm, between 1962 and 2005 but does 

not have a statistically significant trend over this long time period. The inter-annual variability in 

maximum snow depth is less for stations at lower altitudes, and there are no statistically significant 

trends here either. 225 

It is interesting to compare the MSU Khibiny and PABGI Khibiny stations, as both are at similar 

altitudes in valleys within the Khibiny Mountains and are located only 2 km apart (see Fig. 4.1). Yearly 
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maximum snow depth is consistently much higher at PABGI Khibiny station than for MSU Khibiny 

station, by 56.5 cm on average.  

4.4.1.2 Seasonal snow cover trends 230 

4.4.1.2.1 Full time series  

Station Dates of available data Parameter Trend 
full time series 
(days/decade) 

Apatitovaya 
 

2011 - 2017 SCS -1.7 
SCE 11.1 
SCD 11.4 

Lovozero 
 

1992 - 2017 SCS 3.8 
SCE -4.4 
SCD   -9.4** 

Monchegorsk 
 

2005 - 2017 SCS -5.1 
SCE -3.6 
SCD 2.9 

MSU Khibiny 
 

1984 - 2016 SCS -2.3 
SCE 2.4 
SCD 4.6 

Kandalaksa 1936 - 2017 SCS -1.0 
  SCE 1.2*** 
  SCD 2.3*** 
Murmansk 1945 - 2017 SCS -0.4 
  SCE 1.8** 
  SCD 2.9** 
Umba 1966 - 2017 SCS 1.9 
  SCE -2.8*** 
  SCD -5.4*** 

Table 4.4: Trends in days per decade, and their significance, of the Snow Cover Start (SCS), Snow Cover End (SCE) 
and Snow Cover Duration (SCD) at the WMR and the western Murmansk Oblast stations over their full available time-
series. Statistically significant trends are marked with asterisks: * = p < 0.1, ** = p < 0.05, ***= p < 0.01.  

 235 

From the daily snow depths recorded at the meteorological stations, I calculated the start, end and 

duration of each snow season. Least-squares linear regression was applied to estimate trends over time 

(see Table 4.4). It is important to note that the trends in SCS and SCE do not always add up to the trends 

in SCD. This is a result of missing years of data in the start or end of the snow cover, but not in the 

other. This means that the SCS and SCE trends contain more years of data than the SCD which will 240 

miss a year in any year missing SCS or SCE.  

Over the 2005 to 2017 interval of data collected at Monchegorsk, the snow cover season has not 

undergone any statistically significant trends. Data from the MSU Khibiny station show a notable 

increase in the duration of the snow cover season since the start of the record in 1984, but none of the 

trends at MSU Khibiny are statistically significant. Finally, the Lovozero data show an increasingly late 245 

start and increasingly early end of the snow season over the past 25 years, but only the trend in its SCD 

is statistically significant (p < 0.05): the SCD has been shortening by 9.4 days/decade since 1992. 
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It is also interesting to look at trends at some of the longer datasets in the western Kola Peninsula 

in order to set the trends in the WMR in a longer temporal context (see Table 4.4). The daily snow depth 

dataset from Kandalaksha station is one of the longest available from the region and shows significant 250 

trends in SCE and SCD since 1936: overall the snow season has lengthened by 2.3 days/decade. At 

Murmansk station, the trends in the SCE and SCD are significant over the entire time-series. The snow 

cover season has been lengthening over the past 71 years at the rate of 2.9 days/decade. The SCS has 

changed very little over time (-0.4 days/decade; not statistically significant), so the extension of the 

snow cover season is primarily due to a much later end to the average snow cover season (1.8 days 255 

days/decade; significant at p < 0.05)., In contrast, at Umba station the snow cover season has been 

getting shorter over the past 39 years, at the rate of 5.4 days/decade. The delay in the start of the snow 

cover is not statistically significant, however the increasingly early end to the snow cover season (-2.8 

days/decade) is (p < 0.01). 

4.4.1.2.2 25-year common time series 260 

 
Station Parameter 25-year trend 

1992-2016 (days/decade) 
Kandalaksha SCS 4.2 

SCE -4.0** 
SCD -8.2*** 

Lovozero 
 

SCS 3.8 
SCE -5.6 
SCD -9.4** 

MSU Khibiny 
 

SCS -2.6 
SCE 1.2 
SCD 3.8 

Murmansk SCS 6.2** 
SCE -1.3 
SCD -7.5* 

Umba SCS 3.1 
SCE -4.2** 
SCD -7.3** 

Table 4.5: Trends in days per decade and their significance of the Snow Cover Start (SCS), Snow Cover End (SCE) and 
Snow Cover Duration (SCD) at the five stations with available data over the 25-year common interval (1992-2016). 
Statistically significant trends are marked with asterisks: * = p < 0.1, ** = p < 0.05, ***= p < 0.01.  

 265 

By comparing changes in snow cover variability at the WMR stations to those in the wider 

western Murmansk Oblast over a common period, I can relate our findings to the broader regional spatial 

variability. Table 4.5 shows the trends (estimated by least-squares linear regression) in the SCS, SCE 

and SCD over a common 25-year time interval (1992 - 2016) for the five stations of both the WMR and 

the wider western Murmansk Oblast with available data for that time. Data at four of the five stations 270 

show a positive trend in the SCS (increasingly late start to the snow cover), a negative trend in the SCE 

(increasingly early end of the snow season) and an overall decrease in the duration of the snow cover 

season. The station showing opposite results is MSU Khibiny station, located within the Khibiny 
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Mountains and at a higher altitude than the other stations. Importantly, this opposite trend is also the 

only SCD trend that is not statistically significant. These results indicate a uniform regional signal of 275 

reduced SCD snow cover across the lower altitudes of the western Murmansk Oblast between 1992 and 

2016. They also imply an opposite trend in the snow cover season at higher altitudes, although more 

long-term data in the mountainous areas are needed to make robust conclusions on these higher-altitude 

zones. To resolve the issue of spatial variability in station data, MODIS was used to obtain spatially 

continuous data over the WMR in order to identify the spatial variability of the snow there. 280 

4.4.2 MODIS processed datasets 

4.4.2.1 Missing data  

 
Figure 4.4: Number of years with missing a. SCS, b. SCE and c. SCD data over the 2000/2001 to 2015/2016 interval in 
the WMR. White pixels have 100 % missing data.  285 

Despite processing efforts to minimise missing data described in section 4.3.2.2, cloud cover remained 

a hindrance to the extraction of SCS, SCE and SCD dates in the WMR. The number of missing years in 

each of the SCS, SCE and SCD datasets are shown in Fig. 4.4. Pixels of missing data make up 22.6 %, 

5.9 % and 24.6 % of the SCS, SCE and SCD respectively. Water bodies (see Fig. 4.1) have missing data 

in the SCS datasets for 12 to 16 years out of a possible 16 years. This can be explained by the fact that 290 

these areas will only return a SCS date when they have frozen over and started accumulating snow on 

this surface. The freezing process is slow and usually does not occur in time for the ice to be covered in 

snow before November 17th. In the dry land section of the region, there is very little missing data in the 
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SCE dataset and more missing data in the SCS data, especially for the plains. This is a result of the 

increased cloud cover in the autumn associated with the high snowfall. SCD is calculated from SCS and 295 

SCE and, as a result, has a combination of the missing data in those two datasets. 

4.4.2.2 Station validation 

 
  SCS SCE 

Mean 
difference 

Mean 
offset 

Positive 
or 
negative 
offset  

Number 
of 
missing 
years 

Mean 
difference 

Mean 
offset 

Positive 
or 
negative 
offset 

Number 
of 
missing 
years 

Apatity -3.5 3.5 Negative 2 4.4 4.4 Positive 0 
Lovozero -4.0 5.3 Both 4 11.1 11.1 Positive 1 
Monchegorsk 0.7 10.4 Both 4 15.6 15.6 Positive 0 
MSU Khibiny 7.9 12.4 Both 3 -1.6 6.2 Both 2 
Murmansk -3.6 10.5 Both 7 -5.9 12.9 Both 6 
Kandalaksha    16 20.9 20.9 Positive 2 
Kovda 7.4 10.4 Both 3 -8.0 8.0 Negative 0 
Umba -0.8 4.0 Both 7 -0.2 2.8 Both 0 

Table 4.6: Summary statistics of the difference between dates determined from data collected at meteorological stations 
and from the MODIS processed datasets in the 2000/2001 to 2015/2016 interval for the SCS and SCE. This difference 300 
is taken as the station dates minus the MODIS dates, and the unit for the mean and mean offset columns are number 
of days.  

 

The MODIS data processing algorithm was tested by comparing the derived SCS and SCE dates with 

those recorded at meteorological stations (Section 4.3.1.3). SCS and SCE dates were extracted from the 305 

SCS and SCE MODIS processed datasets for each of the following stations: Apatitovaya, Lovozero, 

Monchegorsk, MSU Khibiny, Murmansk, Kandalaksha, Kovda and Umba. The results of the 

comparison of these to the station data are shown in Table 4.6. The difference (in number of days) 

between the SCS and SCE end dates from station data and MODIS processing was calculated for all 

years at all stations. This difference is taken as the station dates minus the MODIS dates and the results 310 

are shown in Table 4.6. The offset represents the magnitude of this difference and the offset direction is 

presented (positive: MODIS is always early; negative: MODIS is always late). All annual ‘maps’ have 

missing data (see Fig. 4.4) and as a result, there is no MODIS data for some years at all stations. In one 

extreme case. No SCS dates could be extracted at all for Kandalaksha (Table 4.6). 

On average, the difference is 8.6 and 10.4 days between the station and MODIS SCS and SCE 315 

dates, respectively. There is a slight bias in the MODIS dates with higher errors being positive, so 

finding an earlier date than the station data. On average the mean bias of the SCS and SCE dates are + 

1.2 days and + 5.0 days respectively.  

In the WMR, the MODIS dates are most representative of the Apatitovaya station data. The 

differences are uniform and quite low for the MSU Khibiny station for the SCE; however, errors are 320 

more inconsistent and reach higher values for the SCS. The Lovozero station is the opposite, with 
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consistent low differences in the SCS dates and higher more varied differences in the SCE dates. In the 

WMR, the deviation between station and MODIS dates is largest at the Monchegorsk station.  

In the wider western Murmansk region, the MODIS dates best replicate Umba station data, 

where MODIS is neither consistently early nor late. At Kovda station, the deviation between MODIS 325 

and station data SCS is highly variable between years, reaching high values of over 30 days. The MODIS 

SCE dates there are all later than those recorded at the station (negative offset). Kandalaksha station 

values follow the opposite trend with the MODIS SCS dates being much earlier than the station values 

for all years (positive offset). The differences are highest for Kandalaksha station with an offset of up 

to 41 days.  330 

 
Figure 4.5: Graph showing the proportion of pixels with a deviation of lower than 0 to 41 days between the MODIS-

derived and station data-derived SCS and SCE dates.  

4.4.2.3 Mean SCS, SCE and SCD 

Figure 4.6 shows the mean SCS, SCE and SCD dates over the entire MODIS period (2000 -2016) and 335 

illustrates the high spatial variability in the long-term snow cover distribution in the WMR. 

Clear climatological differences between the mountainous areas (>400 m altitude) and the 

surrounding plains (<400 m altitude) can be seen (see Fig, 4.1 for topography of the region). The snow 

cover season starts much earlier in the mountains than in the plains and, as expected, it starts at the 

highest elevations first (around September 22nd on average) and then gradually moves to lower altitudes. 340 

For most years, the delay in the SCS in the mountain valleys is ~30 days later than the highest elevations. 

The snow cover season then begins in the north-east of the WMR as defined in this study before arriving 
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in the plains further south, surrounding the mountains. The SCS date for the plains surrounding the 

higher elevations of the WMR is usually similar to those of the larger valleys within the mountains 

(~October 21st). 345 

 

Figure 4.6: Three MODIS maps showing the (a) mean snow cover start, (b) mean snow cover end, and (c) mean snow 
cover duration of the WMR. Scales on (a) and (b) are the day of year, and for (c) the scale is of the number of days.  

The SCS is slightly more uniform across the whole Khibiny and Lovozero mountains than the 

SCE, which is more gradual and follows altitude. The SCE is earliest at the lowest altitudes (~May 20th) 350 

while it occurs at the highest elevations around June 29th on average. This results in a very clear link 

between altitude and SCD, with the highest altitudes having the longest snow cover season in the entire 

area (~180 days) and the duration of the snow cover season decreasing with lower elevation. Thus, the 

snow season in the plains surrounding the mountains is much shorter than in the higher altitude areas 

(by approximately 50 days). Within the plains, the SCE is earliest on the western side of the two high 355 

mountain ranges and VMC Tundras. As a result, this area has the shortest snow cover season in the 

region, between 95 and 100 days long. 

Finally, the water bodies have a very noticeable difference with the land around them, which 

sees them having a much later snow cover start than any other area in the region, but also have a later 

snow cover end. In 2015, the water bodies did not return snow cover end dates (see Fig. 4.A1o in the 360 

Appendix). In most other years, the water bodies which had frozen and were covered in snow, remained 

so until later in the year (~May 30th) than the surrounding plains (~May 15th). This is probably due to 

the snow on ice taking longer to melt out than the surrounding snow on top of ground, due to the higher 

heat capacity and reflectance of ice than soil.  



110 
 

4.4.2.4 SCS, SCE and SCD inter-annual variability 365 

 

Figure 4.7: Standard deviation in days of the a. SCS, b. SCE and c. SCD over the 2000/2001 to 2015/2016 interval in the 
WMR. 

Figure 4.7 shows the standard deviation from the mean in the SCS, SCE and SCD datasets. The two 

dark streaks south of the Khibiny Mountains in Fig. 4.7a (see arrows) are the result of a processing 370 

artefact in the original MODIS data in the year 2006 (see Fig. 4.A1g in the Appendix). 

Most aspects of snow cover in the WMR have been characterised by high inter-annual 

variability over the past few decades. Figure 4.7 shows this particularly clearly where the standard 

deviation from the mean in SCS is consistently over 15 days across the region, and where the standard 

deviation reaches over 30 days in many pixels in the SCE and SCD datasets. Overall, for all three 375 

parameters the standard deviation is larger in the high-altitude areas, reaching over 30 days for SCE and 

SCD. The standard deviation is also high on the western edges to all topographical features in both the 

SCE and SCD, consistently reaching over 20 days. In the SCE and SCD parameters, the plains have 

very low standard deviations of under 10 days. At lower altitudes, the mean standard deviation is highest 

for the SCS. Indeed, the dates of SCS vary considerably from year to year, with a very noticeable 380 

difference between the consecutive years 2008 and 2009 for example, where the snow cover in the plains 

surrounding the mountains started on average 20 days later in 2009 than it did in 2008 (see Fig. 4.A1i 

and 4.A1j in the Appendix).  



111 
 

4.4.2.5 Trends in SCS, SCE and SCD 

 385 
Station Dates of common period 

with MODIS 
Parameter Trend 

Station data 
(days/decade) 

Trend 
MODIS data 
(days/decade) 

Lovozero 
 

2000 - 2016 SCS -4.1 -4.8 
SCE -3.4 -1.4 
SCD 2.7 -2.8 

Monchegorsk 
 

2005 - 2016 SCS -9.9 24.2 
SCE -14.5*** -11.6* 
SCD -5.4 -10.7 

MSU Khibiny 
 

2000 - 2016 SCS -3.6 1.9 
SCE 5.3 -1.4 
SCD 8.7 2.6 

Table 4.7: Trends in days per year and their significance of the Snow Cover Start (SCS), Snow Cover End (SCE) and 
Snow Cover Duration (SCD) at the four WMR stations from both data collected at those stations and from the MODIS 
processed dataset. Statistically significant trends are marked with asterisks: * = p < 0.1, ** = p < 0.05, ***= p < 0.01.  

 

It is possible to investigate trends in the snow cover using the SCS, SCE and SCD dates extracted from 390 

the MODIS processed dataset. These can be compared to those recorded at the meteorological stations 

by calculating the trends over the common period of 2000 - 2016; Table 4.7 shows these trends. In 

section 4.4.1.2.1, I demonstrated that over the 2005 to 2017 interval of data collected at Monchegorsk, 

the snow cover season has not undergone any statistically significant trends. However, over the time 

period also covered by MODIS (2005 to 2016), a statistically significant trend is identified in the SCE 395 

(p < 0.01), wherein the snow cover season has been ending earlier at a rate of 14.5 days/decade. This is 

a result of the year 2017 being a very anomalous year (see Fig. 4.2), thus the inclusion of such an outlier 

year decreases the statistical significance of the trend. Importantly, the only statistically significant trend 

at a station location in the MODIS data is at Monchegorsk station, similar to the observations, where 

the snow cover season has been ending 11.6 days/decade earlier.  400 

Figure 4.8 shows the high spatial variability of trends in snow cover in the WMR, as calculated 

from the MODIS processed dataset. Figure 4.9 shows the statistical significance of these trends, with 

statistically significant trends shown in colour, matching the direction of the trend.  

The SCS trend figure (Fig. 4.8a) shows a clear orographic influence. The western side of the 

Khibiny Mountains has a positive SCS trend, in other words the SCS has been increasingly later in the 405 

year over the 2000 - 2016 period. Conversely, the eastern side of the mountains has a negative trend of 

less than 20 days/decade. The snow season in the Lovozero Mountains has also started later by 10 to 20 

days/decade, as has the western edge of the VMC Tundras. The proportion of statistically significant 

trends in these two high-altitude (> 400 m) areas however is quite low (Fig. 4.9a). The plains do not 

show a consistent trend in Fig. 4.8a, but the majority of the statistically significant trends there (Fig. 410 

4.9a) are negative.  

In Fig. 4.8b, the plains have a consistent positive trend in SCE (of less than 10 days/decade). 

These positive trends are not so clear in Fig. 4.9b, as the majority of the trends in the plain are not 
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statistically significant. However, the main clusters of significant trends in the low altitude zones are 

negative over water bodies and are positive along the eastern edges of the mountain ranges (see Fig. 4.1 415 

for topography). Trends in the SCE in the higher altitude areas are not so clear in Fig. 4.8b. Some of the 

high-altitude zones have had a delay in the end of the snow cover (positive trend) and others, such as 

the northern Khibiny and Lovozero Mountains, have had an increasingly early SCE (negative trend). 

The picture becomes clearer in Fig. 4.9b, where it is possible to see that parts of the northern Khibiny 

and Lovozero Mountains as well as the VMC Tundras are characterised by statistically significant 420 

negative trends, and that the only statistically significant positive trends in SCE at high elevations are 

in the southern and eastern Khibiny and Lovozero Mountains.  

 
Figure 4.8: Trends in days per decade in the a. SCS, b. SCE and c. SCD over the 2000/2001 to 2015/2016 interval in the 
WMR. 425 

The SCD has shortened statistically significantly by 10 to 20 days/decade within the mountains 

at the higher altitudes in the northern Khibiny, northern Lovozero Mountains as well as the lower 

elevation topography of the VMC Tundras. The very south-eastern areas of the Khibiny and Lovozero 

Mountains are the only regions of high elevation that have undergone statistically significant positive 

trends. Contrastingly, the SCD has undergone small, positive and statistically significant trends (less 430 

than 10 days/decade extension) in mountain valleys and widespread areas of the plains in the WMR. 

The plains to the north-west of the Khibiny Mountains are the only low elevation zone with an 
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increasingly short snow cover season, due to an earlier end of the snow season by approximately 20 

days/decade.  

 435 
Figure 4.9: Statistical significance of positive (red) and negative (blue) trends in the a. SCS, b. SCE and c. SCD over the 
2000/2001 to 2015/2016 interval in the WMR. Grey pixels show trends that are not statistically significant.  

4.5 Discussion 

4.5.1 Variability 

In this section, the results presented in section 4.4 are discussed and placed in a broader context. As 440 

demonstrated in Chapter 3, there is large spatial variability in the Khibiny Mountains at a scale under 5 

km2 (fieldwork area). This spatial variability is also demonstrated in this chapter at the scale of the 

WMR. Mountains typically have large variations in climate zones (Beniston et al., 1997) and, 

consequently, snow (Immerzeel et al., 2009) as a result of the larger differences in elevation and slope 

aspects over small horizontal distances. Thus, snow cover is highly spatially variable in mountain 445 

ranges: e.g. in the Alps (Scherrer et al., 2013), Andes (Cornwell et al., 2016), Himalayas (Immerzeel et 

al., 2009), Pyrenees (López‐Moreno and Vicente-Serrano, 2007; Buisan and López‐Moreno, 2015) etc. 

This is seen in the result of this study, in particular, with the large differences in snow depth between 

two nearby stations (PABGI Khibiny and MSU Khibiny) within the Khibiny Mountains. This difference 

is likely explained by wind scouring. The MSU Khibiny station is situated at a highly exposed point in 450 
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the central-east valley, to the east of the largest lake in the mountains. In contrast to this, the PABGI 

Khibiny station is located on the lee side of the western Khibiny Mountains and has more cover from 

surrounding vegetation, and, as such, is shielded from the predominant westerly winds. This spatial 

variability in snow depth shows the importance of orography and other local factors in determining snow 

cover characteristics in the WMR. Additionally, it is important to be aware of how variable snow cover 455 

is, as it affects the scale needed to study changes in snow. In the modelling part of this thesis (Chapter 

5 and 6), the resolution of the analysis is made as high as possible as a result of this high spatial 

variability.  

As well as spatial variability, snow depth is shown to be variable at an inter-annual level in the 

WMR (see Fig. 4.2). This inter-annual variability in snow depth is likely explained by differences in air 460 

temperature, wind speed and solid precipitation (Demin, personal communication). The temporal 

variability of snow cover changes is also shown at a higher scale in the results of snow studies in the 

Kola Peninsula. Bulygina et al. (2009) found that snow cover duration has been decreasing in north-

west Russia since 1966 and Blinova and Chmielewski (2014) demonstrated the mean growing season 

has been prolonged since 1951 in the Murmansk Oblast. Similar patterns have been found in 465 

Fennoscandia (Karlsen et al., 2009; Høgda et al., 2013). In contrast to these findings, using phenological 

evidence, Kozlov and Berlina (2002) found that the length of the summer in the Kola Peninsula 

decreased by 15 to 20 days in the 1930 to 1998 interval. Extracting the trends in the SCD at Kandalaksha 

station over comparable timescales to these two studies demonstrates that the contrasting conclusions 

of these previous studies can be explained by the different time periods analysed. Kandalaksha station 470 

shows a statistically significant lengthening of the snow cover season in the 1936 to 1998 interval of 4.5 

days/decade, thus a decrease of the length of summer similar to Kozlov and Berlina (2002). In the 1966 

to 2007 interval, a shortening of the snow cover season of 1.9 days/decade is found, though it is not 

statistically significant. This trend supports the conclusions of Bulygina et al. (2009).  

Such temporal variability if typically found in mountainous regions. High temporal variability 475 

was found in Scherrer et al. (2013) in the Alps. In particular, they found high inter-decadal variability 

over a ~150-year data record. Immerzeel et al. (2009) found very high inter-annual, as well as seasonal, 

variability in snow coverage in the Himalayas. Another example of regional variability in the response 

of snow cover to climate change is an increase in the number of snow-covered days each year in China 

since 2000, where the average snow depth increased annually despite snow depth decreasing in all 480 

seasons but spring (Huang et al., 2016). This study also emphasized the significant regional differences 

in the variation of snow cover in China. Due to such high spatial and temporal variability in the response 

of snow cover to climate change, studying snow cover at a regional level is clearly essential. 

4.5.2 Causes of observed changes 

In this chapter, the causes of the identified trends in snow cover in the WMR were not studied 485 

as a result of the lack of available data. The most frequent causes of changes in snow cover (extent, 

timing and duration) can be divided into three. Firstly, changes in mean air temperature and precipitation 
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have a large impact on snowfall and snow melt and, thus, on snow cover (e.g. Alps – Beniston, 1997 

and Scherrer et al., 2013; Himalayas – Immerzeel et al., 2009; Northern Hemisphere – Brown and 

Robinson, 2011; Russia – Bulygina et al., 2011). Secondly, the variability in snow depth and duration 490 

in the Arctic has also been associated with more localised features such as the characteristics of the 

underlying surface and the wind regime (e.g. Arctic – McBean et al., 2005 and Callaghan et al., 2011; 

Russia – Kopanev, 1971). Thirdly, as explained in Chapter 2 (section 2.1.4), atmospheric circulation 

changes can impact snow depth, extent and duration (e.g. Alps – Beniston, 1997; Andes – Rubio-Álvarez 

and McPhee, 2010; Pyrenees – Buisan and López‐Moreno, 2015).  495 

The main results regarding changes in snow cover start, end and duration are briefly considered 

in this section and their potential causes are discussed. In the WMR, the SCS trends show a clear 

orographic influence. The western side of the Khibiny Mountains has a positive SCS trend, in other 

words the SCS has been increasingly later in the year over the 2000 - 2016 period. The plains do not 

show a consistent SCS trend. The delay in the start of the snow season in the high altitudes is probably 500 

in part explained by the decrease in autumn precipitation in the Kola Peninsula (Marshall et al., 2016). 

The positive SCE trends found in the plains may be explained by the fact that spring has become 

increasingly wet (Marshall et al., 2016), so increased snowfall would delay the end of the snow season. 

The increasingly early end to the snow cover in the higher altitudes may be due, in part, to increased 

blowing snow (Demin, personal communication) as a result of the overall trend towards stronger winds 505 

in the Kola Peninsula (Roshydromet, 2005). This earlier end to the snow season at higher altitudes is a 

concerning trend in terms of water supply. Barnett et al. (2005) warned that even no changes liquid 

precipitation over spring and summer, earlier SCE in mountains leads to a shift in peak river runoff to 

winter and early spring, away from summer and autumn when water demand is highest. 

In the plains, SCD is the most inter-annually uniform snow cover parameter. Station data 510 

suggests that this is a result of SCS and SCE moving in the same direction, and thus counter-balancing 

each other. The SCD has nevertheless shortened statistically significantly by 10 to 20 days/decade within 

the mountains at the higher altitudes in the northern Khibiny, northern Lovozero Mountains as well as 

the lower elevation topography of the VMC Tundras. Contrastingly, the SCD has undergone small, 

positive and statistically significant trends (less than 10 days/decade extension) in mountain valleys and 515 

widespread areas of the plains in the WMR. Farlaz (2004) found similar results over Poland in the 1948 

- 1998 interval. Indeed, they found a decreasing trend in SCD over the majority of the country, but found 

that snow duration has increased over mountain ranges. These changes are cause by the increased 

frequency of western advection over Poland, as well as changes in air temperature, though the changes 

in snow do not scale proportionally with temperature. Beniston (1997) similarly explained SCD changes 520 

over the Alps, with changes in mean air temperature as well as large-scale atmospheric variation (NAO).  

4.5.3 Uncertainty 

Finally, the uncertainty of the MODIS products and its impact on the results are discussed. The 

effects on the results of the boreal forest cover in the WMR are considered. As discussed in Chapter 2, 
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forests hinder the retrieval of snow using VNIR satellite products. The MODIS algorithm makes use of 525 

the Normalized Difference Vegetation Index (NDVI) over forested areas (Klein et al., 1998). “Using a 

threshold on the NDVI it is possible that a forested pixel is classified as snow even if the NDSI is lower 

than 0.4” (Immerzeel et al., 2009; p44); the MODIS algorithm thus addresses some of the issues VNIR 

instruments face regarding snow cover mapping in forests. Parajka et al. (2012) studied the snow cover 

mapping accuracy of MODIS in both open and forested sites in a small mountain catchment in Northern 530 

Slovakia. They found that the respective errors of the combined Terra and Aqua MODIS products in 

open and forested land are 1.7 % and 7.3 % respectively (Parajka et al., 2012). These results, along with 

those of the MODIS ground truthing undertaken in Chapter 3 in the partly forested Khibiny Mountains, 

indicate that, though MODIS has higher uncertainty in forested areas, it is still a reliable dataset to 

analyse snow cover changes in the WMR.  535 

Furthermore, the uncertainty in the MODIS products and results extracted from those was tested 

throughout section 4.4. The offsets between the recorded SCS and SCE dates at stations and those 

extracted from the MODIS processed dataset are calculated in section 4.4.2.2. The offsets are high, but 

not unprecedented. Indeed, Dietz et al (2012) found that 10 % (/3 %) of their study area was 

characterised by 34 to 72 (/72+) days deviation between station data and MODIS SCD. In this analysis, 540 

I find that for 85.8 % of pixels investigated (SCS and SCE combined) the deviation in the MODIS-

derived dates is less than 20 days, 9.9 % of pixels have a deviation between 20 to 30 days and only 4.3 

% of pixels are characterised by a deviation between 30 and 41 days (Fig. 4.5). Thus, despite the large 

magnitude of some errors, the difference between the station data and MODIS-derived snow cover 

season dates are in fact lower than some previous studies. Additionally, though these errors are still 545 

high, the focus of this chapter was in analysing trends and patterns of change, thus these errors in exact 

dates of SCS and SCE are not debilitating.  

Importantly, the only statistically significant trend found at a station location in the MODIS data 

is at Monchegorsk station, similar to the observations, where the snow cover season has been ending 

11.6 days/decade earlier. This result, and the lack of spurious statistically significant trends at the other 550 

stations, provides further evidence that MODIS can be used to analyse snow-cover trends in the WMR 

with a high degree of confidence. 

4.6 Conclusions 

In this chapter, I have used a combination of remote sensing data and meteorological observations to 

analyse past changes in snow cover in the WMR of the Kola Peninsula, Arctic Russia. MODIS snow 555 

products were processed in order to create SCS, SCE and SCD datasets. Although for some areas and 

some years, the start and end of the snow season could not be detected due to long overcast periods (Fig. 

4.4), this MODIS post-processing reduced the number of missing pixels by more than half.  

 

• MODIS is able to provide a highly reliable snow parameter dataset in the WMR of the Kola 560 

Peninsula, Arctic Russia. We have validated it through a comparison of the timing and trends 
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of the snow cover season with station data. The average difference between the station data and 

MODIS processed dataset-derived SCS and SCE dates is 8.6 and 10.4 days respectively, both 

relatively low errors. In this analysis, I find that for 85.8 % of pixels investigated (SCS and SCE 

combined) the deviation in the MODIS-derived dates is less than 20 days.  565 

• It is possible to extract realistic trends from the MODIS processed dataset. Indeed, MODIS-

extracted trends are identical to observed station trends in that MODIS was able to identify the 

only statistically significant trend while not giving spuriously significant trends elsewhere. 

• There is high inter-annual and spatial variability in the long-term snow cover trends in the WMR 

of the Kola Peninsula. Overall, between 2000 and 2016, the snow cover duration has been 570 

decreasing at higher altitudes and increasing at lower altitudes. The end of the snow cover 

season has become increasingly later in the plains that surround the WMR, but there is not such 

a clear trend in SCE in the higher altitude areas. Snow depth was also found to be highly 

spatially variable and the difference in maximum yearly snow depth was found to be over 50 

cm between two stations (PABGI Khibiny and MSU Khibiny) only 2 km apart at very similar 575 

altitudes in valleys within the Khibiny Mountains. These differences in snow depth as well as 

some of the trends in the snow cover season are probably explained by wind scouring that occurs 

in the WMR. 

• Three of four meteorological stations in the WMR with SCS and SCE data were found to have 

recorded an increasingly long snow cover season across their differing lengths, but the only 580 

statistically significant trend was negative. This spatial variability is also found to exist on larger 

scales over longer periods.  

• A uniform, statistically significant, regional decrease in the duration of the snow cover season 

between 1992 and 2016 has occurred across the lower altitudes of the western Murmansk 

Oblast. 585 

4.7 Fit within thesis 

Following from Chapter 3 where all measured snow parameters were shown to be highly variable at a 

sub-fieldwork area scale, snow continues to be highly spatially variable at the scale of the WMR. This 

is important for Chapter 5 where point measurements are used to validate model outputs and must be 

considered in this highly spatially variable context. As well as having low (< 10%) overall errors as 590 

demonstrated in Chapter 3, MODIS processed outputs are demonstrated to have a reasonably low 

uncertainty in the timing of the snow season and to have good skill in extracting trends. In this chapter, 

trends in the timing and duration of the snow cover season in a warming climate have been extracted. 

These trends will be put in a broader context in Chapter 6 where century scale changes in snow cover 

will be investigated in an increasingly warmer climate. 595 
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4.9 Appendix 

 

Figure 4.A1: SCS maps for the WMR showing the last day of the snow-free season from the year 2000 (a) to 2015 (p). 
The colourbar shows the day of the year. The WMR is outlined in (a) for scale. 
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 950 

Figure 4.A2: SCE maps for the WMR showing the first day of the snow-free season from the year 2001 (a) to 2016 (p). 
The colourbar shows the day of the year. The WMR is outlined in (a) for scale. 
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Figure 4.A3: SCD maps for the WMR showing the duration of the snow season from the snow year 2000/2001 (a) to 
2015/2016 (p). The colourbar shows the number of days. The WMR is outlined in (a) for scale. 955 
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Chapter 5 
Sensitivity study and validation of the Weather Research and 
Forecasting model 
 
In the first part of this chapter, a sensitivity test of the Weather Research and Forecasting model is 5 

described. Different physics parameterisations of the model were tested by running it over the period of 

my first field season and comparing the outputs of the different parameterisations to both field 

measurements and remote sensing data. The optimal physics parameterisation was determined (i.e. the 

one for which the model best reproduced the observations) and used for all further WRF model runs. 

The second part of this chapter concerns the validation of the outputs of long historical runs made using 10 

WRF. The effectiveness of WRF at modelling temperature and precipitation over Northern 

Fennoscandia was tested and the different forcing datasets were compared.  

5.1 Introduction 

Downscaling is the process through which large-scale climate datasets are used to make projections at 

smaller scales. Two downscaling techniques exist: statistical and dynamical. Statistical downscaling 15 

relies on the application of statistical, observed and calibrated relationships between different variables 

at large scales on the same variables at smaller scales (Tang et al., 2016). One main limitation of 

statistical downscaling is its dependence on the assumption that relationships will remain the same in a 

changing climate system (Soares et al., 2012). Dynamical downscaling is the use of regional climate 

models (RCMs) forced by reanalysis or general circulation model (GCM) data to make high-resolution 20 

climate projections (Soares et al., 2012). RCMs require initial and boundary conditions in order to 

represent the system’s relationship with its surroundings. 

In this research, I used the Weather Research and Forecasting model (WRF; version 3.8.1) RCM 

to dynamically downscale both reanalysis and Coupled Model Intercomparison Project 5 (CMIP5) data 

in order to model snow cover over Northern Fennoscandia. The Advance Research WRF, developed as 25 

a collaboration between the National Center for Atmospheric Research (NCAR), the National Oceanic 

and Atmospheric Administration (NOAA), the National Center for Environmental Prediction (NCEP), 

and others, was used. WRF is a next-generation mesoscale, limited-area, non-hydrostatic, primitive-

equation numerical weather prediction (NWP) model, with a range of options for various physical 

parameterisation schemes (Skamarock et al., 2008).  30 

It is essential that models accurately describe the evolution of seasonal snow, because of the 

large effects of snow on land and atmospheric processes (Liston, 1999). Thus, it was crucial to test and 

optimise WRF outputs for my analysis. The effectiveness of WRF has often been tested in the literature. 

Heikkilä et al. (2011) downscaled ERA-40 using WRF over the complex terrain of Norway to 30 and 

10 km resolution and assessed WRF’s accuracy by comparing outputs to meteorological temperature, 35 
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wind and precipitation datasets. The authors found that WRF performs better than the mean and the 

individual RCMs at 25 km resolution used in the ENSEMBLES project (ENSEMBLES members, 2009). 

They also showed that WRF performs comparably well in terms of the quality of the modelled wind and 

precipitation. Soares et al. (2012) undertook a high-resolution dynamical downscaling of the ERA-

Interim (ERA-I) reanalysis using WRF over Portugal over 20 years (1989 - 2008). Model outputs at 9 40 

km resolution were compared with continuous records from 32 stations for temperature and 308 for 

precipitation. They found that, in all analysed variables, downscaled WRF outperformed the ERA-I 

reanalysis data, with good results in the representation of annual cycles as well as a considerable 

improvement in the representation of both extreme temperature and extreme precipitation. The authors 

emphasized that this improved modelling of extreme events is of major importance to policy makers in 45 

order to develop adequate mitigation and adaptation strategies. 

However, there are limitations to regional climate modelling even at high resolutions. In 

mountainous regions, precipitation rates along windward slopes are often over-predicted and snowfall 

tends to be under-predicted. This effect is usually cited as orographic bias (Leung and Qian, 2003). It 

has also been shown that higher spatial resolution does not always improve model performance. Zängl 50 

(2007) showed that outside of mountainous regions, higher spatial resolution does not necessarily 

improve precipitation estimates. It is thus important to validate model outputs before using them, by 

both testing multiple physics settings in order to find the optimal model parameterisation and validating 

final model outputs in order to take model bias into account when interpreting model outputs. 

Detailed sensitivity studies of the effectiveness of regional climate models in high-resolution 55 

modelling, specifically of snow cover, have previously been undertaken and the sensitivity study in this 

chapter was carried out in a similar manner to Maussion et al. (2011) and Shreshtha et al. (2011), 

themselves based on Yang and Tung (2003) and Rakesh et al (2007). Shrestha et al. (2012) validated 

the snow cover extent and snow depth outputs of a hydrological model (Wang et al., 2009) with 

improved snow physics (WEB-DHM-S; Shrestha et al. 2010) over the Dudhkoshi region of the Nepali 60 

Himalayas. Maussion et al (2011) assessed the effectiveness of WRF precipitation (rain and snow) 

simulations at 2 km resolution over the Tibetan Plateau over one month. The aim of these sensitivity 

analyses was to compare where snow had been simulated by the WRF model relative to observational 

data. Both of these studies used MODIS snow data as a validating dataset, as well as other ground data 

and used statistical evaluation scores to check the effectiveness of the NWP models using different 65 

physical parameters. In Shrestha et al. (2012), snow depth was evaluated at point-scale and snow extent 

was validated using a pixel-to-pixel comparison between model outputs and MODIS 8-day composite 

data. This snow extent validation showed that the hydrological model used agrees with the MODIS data 

to an accuracy of 90%. In their study, Maussion et al. (2011) carried out eight experiments, applying 

two of the commonly used physics schemes for each of the cumulus, microphysics, surface layer and 70 

planetary boundary layer parameterisation schemes. Though the results of this research show good 

accuracy in the simulated precipitation, they found that there is no fully optimal physics set-up for high-

altitude modelling: compromise is always needed.  
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In this chapter, I detail the sensitivity study that was undertaken to optimise the WRF 

parameterisation for high resolution modelling of snow cover over the western mountain regions 75 

(WMR) in the Kola Peninsula. In the second part, I describe the in-depth validation of decadal WRF 

runs using the ERA-I reanalysis as well as CCSM4, GFLD-CM3 and CNRM-CM5 historical data, as 

forcing data. 

5.2 Sensitivity study 

5.2.1 Objectives 80 

The main objective of the sensitivity study was to find the optimal physics parameterisation for 

modelling snow cover at a high spatio-temporal resolution in the WMR. Indeed, WRF has been designed 

as a highly ‘tunable’ model, with multiple potential physics setups. I therefore focused on optimising 

the snow depth and snow extent outputs of WRF forced by ERA-I, by comparing these model outputs 

to those derived from station and MODIS data, respectively. The secondary objective was to find out 85 

how well WRF performs in representing snow on the ground with this optimised setup. 

5.2.2 Design of the sensitivity experiment  

5.2.2.1 Domain and resolution selection 

 
Figure 5.1: Nested domain setup of this study. Domain 1, the parent domain, makes up the entire figure with 45 km 90 
resolution. The nested domains 2, 3 and 4 have resolutions of 15, 5 and 1 km respectively. 
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The target of this study was to improve and assess the effectiveness of WRF downscaling over the WMR 

in the Kola Peninsula. A series of nested domains was used in the downscaling of ERA-I (see section 

5.2.2.4) creating an inner domain over the WMR (Fig. 5.1). The ratio of the resolution of the parent 

domain to the nest has to be 1/3 or 1/5 for optimal results of downscaling. For this reason, four domains 95 

were used to downscale the ~70 km resolution ERA-I data to a 1 km resolution inner domain. The grid 

sizes were 45 km, 15 km, 5 km and 1 km for domains D1, D2, D3 and D4 respectively (Fig. 5.1). Due 

to the very high resolution of the inner domain, its size needed to be kept as low as possible in order to 

keep the model run-time low. For the boundary between the nest and mother domain, a minimum of 5 

grid points is encouraged (Giorgi et al., 1994) and so, similarly to Gao et al. (2012), I used a minimum 100 

of 10 grid points to ensure a sufficient buffer zone. The detailed sensitivity analysis was performed 

primarily on D4, the domain with the highest resolution. Only a basic analysis is undertaken for D2 in 

this section, the domain with the resolution used for our long-term climate analysis (see chapter 6), as a 

detailed validation of runs at 15 km resolution is described in section 5.3. 

5.2.2.2 Simulation period 105 

A validation period of 5 weeks, with an additional 8 days of spin-up time was chosen for the sensitivity 

analysis. Spin-up is the time needed for the model to reach physical equilibrium after being forced by a 

set of initial conditions (see section 5.2.2.4). The model was run from 2016-04-02-12:00:00 (year-

month-day-time) to 2016-05-23-12:00:00, with the analysis period starting on 2016-04-10-00:00:00 and 

ending 2016-05-23-00:00:00. This period was chosen to coincide with my 2016 field season, in order to 110 

add field measurements to the available observational dataset. Additionally, a validation performed for 

a period of over a month enabled the analysis of a range of weather conditions. When using MODIS as 

ground truth for snow extent, this is particularly important as analysing only a short period of time runs 

the risk of having the area covered by cloud for the entire time, thus making the validation impossible.  

5.2.2.3 Experiment parameterisation 115 

Pre-WRF steps were undertaken using the WRF Pre-processing System (WPS) on the ERA-I data in 

order to prepare it to be used as lateral boundary conditions by WRF (Skamarock et al., 2008). The 

ERA-I surface variables were horizontally interpolated in this step to the four spatial resolutions of the 

selected WRF domains. Model physics is not involved in this process and so the forcing data were 

identical for all the sensitivity runs. This data is used as initial boundary conditions for all four domains 120 

but, as WRF runs, each domain is driven at its boundaries by its parent domain. In total, ten model runs 

were created to test five different physics settings (see Tables 5.1 and 5.2). The different physics 

parameters were chosen to test the most commonly used WRF settings. The physics configurations with 

their respective codes are given in Table 5.1 as these details are often missing from publications, making 

reproducibility difficult. Runs 2 through 10 were compared to the initial baseline run with the basic 125 

WRF setup. These runs were analysed (see section 5.2.3) and, as a result, two more runs (11 and 12) 
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were created that combined different physics parameterisations with more accurate results than the Base 

Run (Table 5.2).  

 

Physics 

WRF 

Code Configuration Reference 

Microphysics 3 WSM3 Hong, Dudhia and Chen (2004) 

 
8 Thompson Thompson, Field, Rasmussen and Hall (2008) 

 
10 Morrison 2-mom Morrison et al. (2009) 

Planetary Boundary 

Layer (PBL) 
1 YSU Hong, Noh and Dudhia (2006) 

 
2 MYJ Janjić (1994) 

Surface Layer 1 YSU 
 

 
2 MYJ 

 
Radiation 1 RRTM Dudhia (1989) 

 
4 RRTMG Iacono et al. (2008) 

 
5 New Goddard Chou and Suarez (1999) 

Cumulus 1 Kain-Fritsch Kain (2004) 

 
2 Betts-Miller-Janjic Janjić (1994; 2000) 

 
5 Grell 3D Grell and Dévényi (2002) 

Table 5.1: Description of the different physics options tested in the sensitivity analysis. 130 

 

In addition to altering the model physics, the effect of changing the number of vertical levels 

was also tested. Usually, an increase in the number of vertical levels is associated with an improved 

performance of the model. Heikkilä et al. (2011) used 40 vertical levels to run WRF over Norway with 

its high orography and a domain that partly covered high northern latitudes like those of the Kola 135 

Peninsula. The use of 40 levels was tested in this sensitivity analysis in addition to the basic setup of 30 

vertical levels. Given that the 60-day model-run took approximately 9 days to run with 30 levels (~0.28 

model days per wall-clock hours) and approximately 13 days with 40 levels (~0.19 model days per wall-

clock hours), a set-up of 49 vertical levels, as used in Bieniek et al. (2016) over Alaska, was not included 

in the interest of minimising model run time.  140 

Finally, the effects of spectral nudging were investigated at 1 km and at 15 km resolution. 

Nudging is a way of feeding data into a model not only at the initial conditions but also during the, 

usually long, model run in order to guarantee that the model develops realistic climate features. Spectral 

nudging is a dynamic downscaling method that passes the nudging data, not only onto the lateral 

boundaries, but also into the interior of the regional domain of interest (Waldron et al., 1996). This 145 

method has been used in long-term analyses over the Arctic (Barstad et al., 2009; Heikkilä et al., 2011; 

Bieniek et al., 2016). The analysis in Chapter 6 required decade-long WRF runs and, as such, spectral 
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nudging was needed to keep the large-scale circulation of the regional model in phase with the global 

models.  

While spectral nudging has clear positive impacts, such as to reduce the sensitivity to the chosen 150 

model domain or grid size (Alexandru et al., 2009; Miguez-Macho et al., 2004), the advantages of some 

other aspects of spectral nudging are less clear. For example, some studies suggested that it can affect 

extreme precipitation by artificially increasing intense precipitation (Radu et al., 2008) and limits 

internal variability (Alexandru et al., 2009). Conversely Heikkilä et al. (2011) found that, with their set-

up, “nudging does not constrain the model’s ability to develop small scale features” and nudged runs 155 

reproduce extreme precipitation better than free runs. I followed the nudging methods used in Heikkilä 

et al., (2011), itself based on Miguez-Macho et al. 2005 and Radu et al. (2008). Nudging was only 

applied to the outer domain in order to let the regional model create its own structures in the higher 

resolution nests. For the same reason, I applied nudging only on vertical levels above the boundary layer. 

The threshold for wavelengths over which atmospheric waves were nudged was 1,000 km. This means 160 

the model is nudged at the synoptic scale, in order to guarantee that the broad scale circulation is 

modelled correctly. The nudging was applied to u and v winds (zonal and meridional wind components 

respectively), temperature, geopotential height and humidity. Humidity is sometimes excluded from the 

nudging process (Heikkilä et al., 2011), but Radu et al. (2008) were able to remove the only detrimental 

impact of spectral nudging that they identified by nudging humidity. Thus I nudged humidity in this 165 

study.   

 
 

 
Run number 

Base 

Run 
2 3 4 5 6 7 8 9 10 11 12 

Physics Microphysics 3 10    10 10   8 8 8 

 PBL 1   2       2 2 

 Surface Layer 1   2       2 2 

 Radiation 1    5 5 4    5 4 

 Cumulus 1       2 5    

Grid Vertical levels 30  40          

 

Table 5.2: Model parameterisations of all options which were changed from the basic WRF setup in the sensitivity 
analysis. The Base Run setup is detailed fully and, for all other runs, only the options modified from that Base Run are 170 
included. The numbers refer to the physics configuration codes (see Table 5.1). 

 

5.2.2.4 Model boundary forcing data 

ERA-I is a global reanalysis dataset with a horizontal resolution of approximately 70 km (Dee et al., 

2011). This dataset is provided by the European Centre for Medium-Range Weather Forecasts 175 

(ECMWF). ERA-I was chosen as the forcing data for the initial boundary conditions. Marshall et al. 
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(2018) showed that this reanalysis is one of the best over Fennoscandia. Indeed, over 1979 - 2013 the 

correlation in monthly SAT between ERA-I and data from 32 stations across the region is 0.9970 and 

the Root Mean Square Error (RMSE) was found to be the lowest (1.17 °C) of the four reanalyses 

investigated. Equivalent values for monthly precipitation are 0.8355 and 22.61 mm, respectively. 180 

Additionally, ERA-I has previously been successfully used in combination with WRF as a tool for 

dynamical downscaling over many regions (e.g. Bieniek et al., 2016; Gao et al., 2015; Liu et al., 2014; 

Soares et al., 2012). 

5.2.2.5 Case study validation datasets 

5.2.2.5.1 MODIS snow fraction dataset 185 

The processed MODIS Normalised Difference Snow Index (NDSI) dataset (see Chapter 4) was used in 

this analysis as ground truth for snow extent. The resolution of the original remote sensing dataset is 

500 m, which was converted into 1 km2 grids using the iris package in python 

(https://scitools.org.uk/iris/docs/latest/). Nearest neighbour analysis was used to regrid the MODIS data 

as in Maussion et al. (2011). For the validation, the processed MODIS data had to be converted into a 190 

binary (snow/no-snow) dataset. This transformation was done by setting any pixels above or equal to 50 

% snow fraction (NDSI ≥ 0.5) to 1 (snow) and anything below 50 % snow fraction (NDSI < 0.5) to 0 

(no-snow), following the original MODIS binary algorithm (Hall et al., 2002; Rittger et al., 2013). 

5.2.2.5.2 Meteorological station snow depth data 

Three stations within the WMR record 6-hourly snow depth and were used for validating this parameter 195 

in WRF (Table 5.3). These are the Apatity, Lovozero and Monchegorsk stations. No processing was 

needed as these data could be directly compared to the snow depth outputs of the model runs. 

 

 

Table 5.3: Details of the station data used to validate snow depth in the sensitivity study. 200 

 

5.2.2.5.3 Field snow depth data 

In addition to the station data in the WMR, one additional validation location was created using 

data collected in the field (Table 5.3). Daily snow parameter measurements (including depth 

measurements) were made in the grounds of the Moscow State University (MSU) Khibiny Research and 205 

Education station between April 16th and April 23rd 2016.  

  

Station Name Data type Latitude (°N) Longitude (°E) Elevation (m) 
Apatitovaya Met station 67.55 33.36 135 
Lovozero Met station 68.00 35.03 162 
Monchegorsk Met station 67.97 32.88 131 
Moscow State University (MSU) 
Khibiny Research and Education Field 67.64 33.72 330 
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5.2.2.6 Case study validation method 

In this sensitivity analysis, I used a combination of six statistical evaluation scores taken from Maussion 

et al. (2011) and Shrestha et al. (2012) to test the efficacy and bias of the model runs using different 210 

model parameterisations. Following these two studies, I used a two by two contingency table (Table 

5.4) to compute these evaluation scores. Codes in this table define: A - a successful identification of 

snow by the model; B - an over prediction of snow by the model (‘false alarm’); C - a ‘miss’ of the 

model; D - a successful prediction of a lack of snow. Six indices are derived from these four variables 

(total number of pixels of A, B, C or D), so they are not independent from each other. However, there 215 

are subtle differences between the indices and are thus all informative in different ways. 

 

 MODIS data 

Snow No snow 

WRF model output 
Snow A B 

No snow C D 
 

Table 5.4: Contingency table used to compute the evaluation scores (Shrestha et al., 2012). 

 220 

The indices used in this study are the following: 

• BIAS – bias in the modelling of snow. The closer to 1 the better. 

#$%& = A + B
A + C 

 

• FAR – false alarm rate, the fraction of predicted events that were not observed. The lower this 225 

score the better. 

,%- = B
A + B 

 

• POFD – probability of false detection of snow, the fraction of falsely predicted snow events 

relative to the total number of no-snow events.  The lower this score the better. 230 

./,0 = B
B + D 

 

• POD – probability of detection. The higher this score the better, though this should be compared 

to the POFD and FAR as many model runs hugely over predict snow, making the POD high, 

but making POFD extremely high also. 235 

./0 = A
A + C 
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• KSS – Hanssen-Kuipers skill score (Woodcock, 1976). This is the score combining the 

probability of detecting snow and the probability of detecting no snow. Thus the higher the score 

the better. 240 

2&& = A
A + C +	

D
B + D − 1 

 

• PC – proportion correct. This score assesses the overall accuracy of the model. The higher the 

score the better. 

.6 = A + D
A + B + C + D 245 

 

5.2.3 Results of the sensitivity study 

5.2.3.1 Fit with MODIS data 

5.2.3.1.1 Statistical evaluation scores 

 250 
WRF 

Run 

Base 2 3 4 5 6 7 8 9 10 11 12 

BIAS 1.726 1.710 1.721 1.683 1.159 1.289 1.107 1.764 1.797 1.777 1.280 1.165 

FAR 0.421 0.415 0.419 0.406 0.165 0.240 0.145 0.433 0.444 0.437 0.233 0.173 

POFD 0.910 0.890 0.903 0.855 0.239 0.387 0.201 0.922 0.931 0.877 0.373 0.252 

POD 0.999 1.000 0.999 0.999 0.968 0.980 0.947 0.999 0.999 1.000 0.982 0.963 

KSS 0.089 0.110 0.096 0.144 0.729 0.593 0.746 0.077 0.068 0.123 0.609 0.711 

PC 0.596 0.605 0.598 0.620 0.876 0.817 0.881 0.582 0.570 0.588 0.824 0.868 
 

Table 5.7: Statistical evaluation scores of all the different sensitivity runs. The optimal model parametisation for each 
index is highlighted in purple. 

 

The results of the statistical evaluation are given in Table 5.7. Runs 5, 6 and 7 have much lower BIAS 255 

than the other physics setups. Of these three runs, Run 7 has the best BIAS score, which is very close to 

1. These three runs also have the lowest POD. This means that they actually do not model snow in some 

of the instances in which MODIS retrieved snow cover. These POD scores, however, are still high, with 

the lowest POD being 0.947. Additionally, runs 5, 6 and 7 have considerably lower FAR and POFD 

scores than the other runs (Base run to Run 10). This means that runs 5, 6 and 7 do not over-predict 260 

snow as much as the other runs. The perfect or near-perfect POD in the lower performance runs (base, 

2, 3, 4, 8, 9 and 10) is partly explained by their high POFD: these runs over-model snow cover which 

means they are more likely to successfully predict snow.  Runs 5, 6 and 7 also have the highest KSS and 

PC scores, and thus are overall the more accurate model parameterisations. Run 6’s KSS score is clearly 
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the lowest of the three and Run 7 has the best KSS and PC scores. Overall, Run 7 has the best 265 

combination of scores, with the best score in five of the six indices (Table 5.7).  

These results show that the radiation scheme, tested in runs 5, 6 and 7 (see Table 5.2), has the 

highest impact on the skill of the model at modelling regional snow. These runs do the best at 

reproducing the snow cover over the study period. Radiation scheme 4 especially appears to improve 

the performance of WRF. Other runs do better than the Base Run overall, but by a much smaller margin 270 

than 5, 6 and 7. These are Run 4, which tested the PBL and Surface layer schemes, and Run 10, which 

tested the microphysics scheme. A combination of all these best physics options was tested in runs 11 

and 12 to attempt to maximise the efficiency of WRF. Settings from runs 4, 5, 6, 7 and 10 were combined 

(see Table 5.2). Run 3’s settings were not chosen for these ‘optimised’ setups, as increasing the number 

of vertical levels increased the model run-time and only very slightly improved the results relative to 275 

the Base Run. Runs 11 and 12 both perform better than the majority of the other runs, but do not do 

better overall than Run 7 (see Table 5.7). Thus, using the statistical evaluation scores, the physics 

parameterisation of Run 7 appears best. 

5.2.3.1.2 Spatial comparison 

In addition to using statistical evaluation scores, I used the spatial extent of snow cover to test the 280 

increased performance of Run 7 relative to the Base Run (see Fig. 5.2). The PC score of each weekly 

dataset was added onto Figure 5.2 as a quantitative measure of the overall accuracy of the model. In the 

first instance, both models perform identically and represent snow on the ground well (PC ≥	0.93). The 

main difference with the MODIS data in the first three dates (April 10th, 17th and 24th) is a result of WRF 

modelling snow on the ground everywhere, whereas MODIS identifies a few areas of patchy non-snow 285 

where snow has started to melt out at the lowest altitudes. 

The difference between the two model parameterisations (Base and 7) is much greater in the 

second half of the simulation period and coincides with the melting of the snow cover. The start of the 

melting season begins much too late in the WRF Base Run, only really commencing between May 15th 

and May 23rd compared to between April 24th and May 1st in the MODIS data. As a result, the PC number 290 

for the Base Run between May 1st and May 23rd is low (PC = 0.12 to 0.72). Interestingly, data from May 

15th and May 23rd in the Base Run are very similar to those in the MODIS dataset on April 24th and May 

1st. Thus, the rate of the melting in the Base Run is similar to the observed melt rate. 

The lowest PC number for WRF Run 7 is for May 1st (0.72), when the snow has already started 

melting on the ground in the MODIS dataset, but not yet in the WRF 7 outputs. In WRF Run 7, melting 295 

started before May 1st only in the south-east corner of the region and a considerable amount of melting 

then occurs between May 1st and May 8th in Run 7. Most of the plains and the Khibiny Mountains, with 

the exception of the highest altitudes, are modelled to melt out in one week. From then, the MODIS and 

Run 7 binary maps look much more similar again, with the PC number rising back to 0.87. Snow melt 

occurs faster in Run 7 than in the MODIS dataset, and on May 15th and 23rd the sign of the difference 300 

between the two datasets is now opposite, with WRF modelling less snow on the ground than was 
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observed. However, overall WRF Run 7 does a much better job on those two weeks with PC numbers 

over 0.94. 

Though actual snow melt rate is modelled more closely by the Base Run than Run 7, the outputs 

of the latter are seen as more successful as they match the timing of the snow melt considerably better, 305 

with a delay of one week compared to an approximately four-week delay in the Base Run. This fits with 

Maussion et al. (2011)’s conclusion that no physics setup can be perfectly optimal and that it is necessary 

to compromise. 
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Figure 5.2: Spatial distribution of binary snow/no-snow on the ground in the WMR from the Base Run, MODIS binary 310 
1 km data and Run 7. The PC number for each day is given for both runs in red. 



143 
 

5.2.3.2 Fit with station data 

5.2.3.2.1 Temperature data 

 
Figure 5.3: 6-hourly surface air temperature from April 10th to May 23rd at (a) Apatity station, (b) Lovozero station and 315 
(c) Monchegorsk station. Data are from four WRF runs (Base Run, Run 7, Run 11 and Run 12) as well as from 
measurements at the stations.  
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Model performance was also tested using point measurements. In this section, I look at the performance 

of three of the best model parameterisations (7, 11 and 12) as well as the Base Run in their representation 

of surface air temperature (SAT) at the three Khibiny stations. Figure 5.3 shows the 6-hourly station 320 

data and the WRF outputs at the Apatity, Lovozero and Monchegorsk stations between April 10th and 

May 23rd. 

In the first part of the simulation period, from April 10th to May 7th, all WRF runs underestimate 

SAT, but overall reproduce the shape of the SAT time series effectively. The only instances in which 

the Base Run does the best job at reproducing observed SAT are for anomalously low values, such as 325 

on the night of May 11th.  Overall, of the WRF outputs represented in Figure 5.3, Run 7 underestimates 

the SAT the least. The WRF runs struggle the most to reproduce the large jump in SAT, which is seen 

between April 25th and May 4th. In the second part of the simulation, from May 7th onwards, there is a 

huge improvement in the SAT representation in the outputs from runs 7, 11 and 12. These fit the station 

data much more closely and Run 7 seems to give the best fit. In this second part, the Base Run continues 330 

to consistently model SAT much too low.  

 
 Base 7 11 12 

Slope 0.72 0.94 0.81 0.90 

RMSE 7.71 4.35 5.51 4.65 
 

Table 5.7: Result of statistical analysis and RMSE study for the SAT outputs of each run compared to station data. All 
relationships were significant. 335 

 

To further test the skill of WRF at modelling SAT, diagnostic statistical analyses were 

undertaken on the model outputs, comparing these to measured temperatures, and these results are 

presented in Table 5.7. Overall the Base Run has the slope furthest from 1 and the highest RMSE. Run 

7 has the slope closest to 1 and also the lowest RMSE, thus it does best at modelling SAT. Run 12 has 340 

the second closest slope to 1 and the second to lowest RMSE. Run 12 thus appears to be the second-best 

model parameterisation in terms of temperature modelling. 
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5.2.3.2.2 Snow depth 

 
Figure 5.4: Daily snow depth from April 10th to May 23rd at (a) Apatity station, (b) Lovozero station, (c) Monchegorsk 345 
station and (d) MSU Khibiny stations. Data are from all WRF sensitivity runs as well as from ground measurements at 
the stations. 

Figure 5.4 shows the snow depth simulated in the 12 sensitivity runs compared to those recorded at the 

four stations used in this analysis. The results show clumping of the output curves into two groups. The 

base run along with runs 2, 3, 4, 8, 9 and 10 all model similarly high snow depths with slow melt rates. 350 

Runs 5, 6,7, 11 and 12 model lower snow depths, with earlier melt onset and faster melt rates. This 

clumping of results suggests that the radiation scheme which separates these two groups (see Table 5.2) 

makes the biggest difference in the skill of the model at simulating snow depth and snow melt rate.  

The ability of WRF to model snow depth accurately varies considerably depending on the 

station. For Apatity station (Fig. 5.4a), Run 7 represents the shape of the snow depth curve the best; it 355 

models snow melt best. However, it fails to reproduce the high snow depths early on in the simulation 

period. Run 8 models the early high snow depths the best at this station; however, it fails to reproduce 

the early melting of the snow pack. At the Lovozero and Monchegorsk stations (see Fig. 5.4b and 5.4c), 

WRF is able to reproduce snow depth relatively well. At Lovozero station, Run 7 is closest for almost 

the entire simulation period, modelling the higher snow depths well and modelling the melting of the 360 

snow pack with only a slight delay. At Monchegorsk station, for the period from April 10th until April 
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23rd, runs 5 and 6 best reproduce the average snow depth. However, all runs fail to reproduce the large 

variations in snow depth. This is not surprising as the station data is a point measurement and the WRF 

output is a 1 km square average. From April 23rd onwards, Run 7 best models the snow depth at this 

station by both matching the values very well between April 23rd and April 29th, and then modelling the 365 

snow melt from April 29th with only a small delay. Run 7 models temperature best (see Sect 5.2.3.2.1), 

thus it is not surprising that it models snow best. The delay in the onset of melting and the lower melt 

rate modelled at Apatity, Lovozero and Monchegorsk can be partly explained by the delay in the model 

outputs to reproduce the sudden jump in temperatures that was observed in late April (see Figure 5.3).  

Finally, at MSU station, the snow depth outputs do not match ground values (Fig. 5.4d). Runs 370 

5 and 7 have the worse snow depth simulations at this station. WRF is unable to represent the high snow 

depths there and thus snow depth over the entire simulation period, in all runs, is inaccurate at this 

station. A test was undertaken to find whether this is caused by an altitude mismatch between the station 

and the pixel in the model at that latitude/longitude and whether one of the adjacent 8 pixels would 

represent snow depth better for the MSU station. I found that the original pixel corresponding to the 375 

MSU station has the smallest difference in altitude with the real MSU station altitude (18 m). Thus, no 

adjacent pixels would better represent the altitude of the station. The large underprediction of snow 

depth is probably partly explained by the fact that a point measurement within a mountain range will be 

less representative of its 1 km pixel, compared to stations in plains for example. This could also be a 

result of orographic bias which usually sees predicted snowfall less than measured values (Leung and 380 

Qian, 2003). In any case, it is impossible to choose an optimal parameterisation for this station. 

Overall, run 7 does not perform ideally when it comes to modelling snow depth. For the three 

lower altitude stations investigated, it does not match the maximum snow depth well and does not model 

the melt onset as well as other runs. It does, however, simulate snow melt-out best and, along with run 

5, it simulates the closest melt rate at these stations.  385 

5.2.3.3 Optimised model parameterisation 

The physics parameterisation from run 7 has been shown to be consistently best for modelling binary 

snow cover, snow cover extent, temperature and snow depth across the Khibiny Region. Thus, the 

following setup is used for all following WRF modelling: the microphysics scheme used is Morrison 2-

mom (Hong and Pan, 1996); the PBL and surface layer schemes are YSU (Hong et al., 2006); the 390 

radiation scheme is RRTMG (Iacono et al., 2008); the cumulus scheme is Kain-Fritsch (Kain, 2004); 

and 30 atmospheric vertical levels are used. 

The PBL, surface layer and cumulus schemes are the same as in the base run. The two schemes 

responsible for the improved results are the microphysics and the radiation schemes. The microphysics 

scheme used in run 7, Morrison 2-mom (Morrison double-moment scheme; Morrison et al., 2009), is a 395 

double-moment scheme which represents “ice, snow, rain and graupel for cloud-resolving simulations” 

(Run and Case, 2015, pp5-4). This scheme was added to WRF more recently than the other two 

microphysics schemes tested. These are: the simple and single-moment WSM3 (WRF Single-Moment 
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3-class) with snow and graupel at mesoscale levels, and the Thomson single-moment scheme with “ice, 

snow and graupel processes suitable for high-resolution modelling” (Run and Case, 2015, pp5-3). 400 

Double-moment schemes have been shown to better simulate ice-crystal aggregation (Molthan and 

Colle, 2012). The main difference between single- and double-moment schemes is that multi-moment 

water microphysics schemes are able to simulate the development of cloud water particles as well as 

their interactions, growth and precipitation. Hence the main difference between the microphysics 

schemes of run 7 and the other run is in the specialisation of the multi-moment Morrison 2-mom in 405 

cloud-resolving simulations. The radiation scheme (representing both the longwave and shortwave 

radiation) which returns the best results is the RRTMG scheme (Iacono et al., 2008). This scheme is an 

updated version of the RRTM (Rapid Radiative Transfer Model; Dudhia, 1989) scheme and the main 

improvement is in the representation of subgrid-scale cloud variability (Iacono et al., 2008). One 

important difference between RRTMG and the other tested radiation scheme, the New Goddard scheme, 410 

is the trace gas content. RRTMG includes a high content of CO2 (379.10-6) compared to New Goddard 

(337.10-6). In summary, the main reasons for the success of the parameterisation of run 7 are its improved 

representation of cloud processes (in both the microphysics and radiation schemes) and its higher, more 

representative CO2 content. 

 415 

The other schemes unchanged between the base run and run 7 are: 

- The surface layer scheme (MM5 similarity): “based on Monin-Obukhov with Carslon-Boland 

viscous sub-layer and standard similarity functions from look-up tables” (Run and Case, 2015, 

pp11). 

- PBL (Yonsei University scheme): “non-local-K scheme with explicit entrainment layer and 420 

parabolic K profile in unstable mixed layer” (Run and Case, 2015, pp14).  

- Cumulus Kain-Fritsch scheme: “Deep and shallow convection sub-grid scheme using a mass 

flux approach with downdrafts and CAPE removal time scale” (Run and Case, 2015, pp17). 

5.2.3.4 Nudging 

The results of sensitivity testing of nudging for the inner domain are shown in Table 5.7. Spectral 425 

nudging was tested only for the optimised physics parameterisation in order to reduce modelling time. 

For this short simulation period, nudging makes very little difference in the statistical evaluation scores, 

with no difference in the PC numbers of the two runs. Nudging should increase model accuracy over 

long simulations (Heikkilä et al, 2011; Radu et al., 2008), and this test on a short simulation was designed 

only to check that it would not dramatically decrease the accuracy of WRF. The results indicate that 430 

spectral nudging can be used in our simulations. 

In addition to the validation of the WRF outputs from the 1 km inner domain, a test of the 

accuracy of WRF over the 15 km domain (D2) was also undertaken. The statistical evaluation scores 

described in section 5.2.2.6 were applied to the outputs of Run 7 and for nudged Run 7 (Table 5.8). This 

was done in order to gain an idea of the accuracy of WRF at this resolution, in preparation for Chapter 435 
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6. Overall, the statistical evaluation scores are much lower for the 15 km domain. The overall accuracy 

of the model, represented by the PC number, is lower by almost 20 %. This is unsurprising as regional 

climate models have been demonstrated to be more effective when run at higher resolution (e.g. Heikkilä 

et al., 2011). Further validation of 15 km resolution runs is undertaken in the following section using 

long-term model outputs, which will be directly used in Chapter 6. 440 

 

 
Optimal model parameterisation - Run 7 

Not Nudged 

Optimal model parameterisation - Run 7 

Nudged 

BIAS 1.107 1.117 

FAR 0.145 0.148 

POFD 0.201 0.208 

POD 0.947 0.951 

KSS 0.746 0.744 

PC 0.881 0.881 

 

Table 5.7: Statistical evaluation scores for Run 7 for both non-nudged and nudged settings over D4. 

 

The impact of spectral nudging was also assessed for D2 and it is confirmed that, for short 445 

simulations, spectral nudging has no strong impact on outputs. Indeed, nudging makes very little 

difference in all statistical scores (Table 5.8) and the difference in the PC number in this case is less than 

2 %. 

 

 

Optimal model parameterisation - Run 7 

15 km 

Not Nudged 

Optimal model parameterisation - Run 7 

15 km 

Nudged 

BIAS 0.452 0.415  
FAR 0.135 0.129  
POFD 0.075 0.066  
POD 0.391 0.362  
KSS 0.316 0.296  
PC 0.630 0.618  

 450 

Table 5.8: Statistical evaluation scores for Run 7 for both non-nudged and nudged settings over D2. 

5.3 WRF long-run validation 

5.3.1 Objectives 

In this section, decade-long historical WRF model runs are validated against observations. The objective 

of the validation analysis was to gain an understanding of how well WRF models the basic parameters 455 

controlling snow cover over a historical period. This section enables an assessment of the difference in 
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the accuracy of runs forced by different data (see Section 5.2.2.4) as well as to test the spatial variability 

of WRF accuracy. Gaining a better understanding of biases in WRF is crucial to interpreting outputs 

and coming to conclusions about future climate, needed for the next chapter in this thesis (Chapter 6). 

5.3.2 Validation experiment set-up 460 

5.3.2.1 Domain and resolution selection 

 

 
Figure 5.6: Nested domain setup of the long-runs study. Domain 1, the parent domain, makes up the entire figure and 
has a resolution of 45 km. The nested domain D2 has a resolution of 15 km.  465 

The model was set up with two domains, an outer domain at a 45 km resolution and an inner, higher-

resolution, domain (Fig. 5.6). Leung and Qian (2003) studied the impacts of model resolution on 

precipitation and snowpack simulations in RCM nesting studies over regions of complex terrain. These 

authors found that, though orographic bias may still affect high-resolution projections, using higher 

spatial resolution usually results in an improved precipitation and snowpack simulation. Higher spatial 470 

resolution, through its association with an improved representation of elevation, usually leads to a better 

modelling of temperature. This was demonstrated for the WRF model specifically by Heikkilä et al. 

(2011). The authors showed in their downscaling study of ERA-40 using WRF that a resolution of 10 

km showed much smaller biases in modelled temperature, precipitation and wind, than at 30 km 

resolution. Thus, in this project the inner domain spatial resolution was lowered as much as possible 475 
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whilst keeping the model run-time low. This was necessary as I wanted to maximise the number of 

models used to force WRF (see Section 5.3.2.3) and emission scenarios for the future runs used in the 

following analysis (see Chapter 6). I followed the advice of the WRF developers and used the 

recommended 1/3 resolution ratio and restricted the model to two domains in order to keep run-time 

low. Following these steps, I chose a resolution of 15 km for the inner domain. 480 

I focused the study on Northern Fennoscandia and ensured that the entirety of the Kola 

Peninsula was included in this domain.  

5.3.2.2 Simulation period and model parameterisation 

The simulation period was chosen in order to represent the changes to have occurred over a century in 

northern Fennoscandia. For this purpose, the historical WRF long runs were undertaken for one decade 485 

over the end of the 20th century (1990 - 1999). Runs were sent in one-year steps with 9 days spin-up 

time in order to keep running time minimal and to be able to model multiple years at the same time.  

The physics parameterisation optimised in the sensitivity analysis (section 5.2.3.3) and spectral 

nudging were used for these long runs.  

5.3.2.3 Model boundary forcing data 490 

In order to model climate variability, it is best to use a multiple model approach (ENSEMBLES 

members, 2009). Indeed, multi-model studies enable the reduction of over-confidence which is 

associated with single-model studies. The ensemble spread will increase, but by doing so, will reduce 

the ensemble-mean error. In this work, a single RCM (WRF) is used, but this model is forced by multiple 

datasets. This enables the modelling of a range of different outputs, which mimic the advantages of 495 

using multi-model ensembles.  

 

 Frequency 

Variable Monthly Daily 6 - hourly 3 - hourly 

Soil Moisture Content x    

Soil Temperature x    

Sea Surface Temperature  x   

Air Pressure at Sea Level   x  

Specific Humidity   x x 

Air Temperature   x x 

Zonal Wind   x x 

Meridional Wind   x x 
 

Table 5.9: Range of variables needed as boundary conditions for running WRF. 

 500 

Three CMIP5 models were chosen as forcing datasets for this project. They were selected based 

on a number of parameters. Firstly, the CMIP5 data needed to be converted into a format that could be 
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used as boundary conditions for WRF. Thus, they needed to contain the correct variables needed for 

running this model (see Table 5.9) over the historical period and over the two RCP scenarios selected 

for future analysis (see Chapter 6). This removed the option of using the Norwegian CMIP5 model 505 

(NorESM1-ME; Bentsen et al., 2012), which would likely have been one of the most accurate over the 

Northern Fennoscandia region. 

Within the models available that suited this selection criteria, those that had been shown to 

effectively model climate over Northern Fennoscandia were selected. CCSM4 was selected at this stage 

for being one of the best CMIP5 models for modelling climate over Northern Europe (Perez et al., 2014). 510 

Additionally, models that represent the spectrum of climate variability were selected in order to best 

represent the range of possible precipitation and snow cover changes that may occur over the next 

century. For this point, the GFDL-CM3 and CNRM-CM5 datasets were selected to represent the higher 

and lower side of temperature change, respectively. None of the CMIP datasets contained data for 

February 29th. Leap-year runs forced with the CMIP datasets were performed using a version of WRF 515 

which had been recompiled to ignore February 29th.   

Finally, data from ERA-I (see Section 5.2.2.4) was used to force a fourth historical WRF run 

from 1990 to 1999 in order to compare the performance of CMIP-forced WRF to a reanalysis-forced 

WRF. 

5.3.2.3.1 CCSM4 data 520 

Data from version 1 of NCAR’s Community Earth System Model (CESM; Hurrell et al., 2013) were 

used. Perez et al. (2014) tested three aspects of CMIP5 GCMs: their ability to reproduce synoptic 

situations, their ability to reproduce the historical inter-annual variability and the consistency of GCM 

experiments in the 21st century projections. They demonstrated that CCSM4 is one of the best models 

in all three of these tests. Additionally, the CCSM4 data had already been prepared to force WRF and 525 

could be readily downloaded. The data were downloaded from the NCAR online Research Data Archive 

available at https://rda.ucar.edu/datasets/ds316.1/. This dataset consists of bias-corrected CMIP5 CESM 

data which has been processed into WRF-compatible format (Bruyère et al., 2015). These data are 

available at 6-hourly intervals, have a horizontal resolution of one degree and have been interpolated to 

26 pressure levels. This dataset has been bias corrected by Bruyère et al. (2015) following the methods 530 

described in Bruyère et al. (2014) by using ERA-I data for the 1981 to 2005 interval.  

 

5.3.2.3.2 GFDL-CM3 data 

Data from the latest coupled climate model from the Geophysical Fluid Dynamics Laboratory (GFDL; 

Donner et al., 2011) was used. GFDL-CM3 was selected for its good precipitation estimates and slightly 535 

high temperature projections for the end of the century. It has been used, for example by Lader et al. 

(2017), because of the fact that Arctic warming and sea-ice loss are occurring more rapidly in this model 

than in most CMIP5 simulations, which makes it a good model to obtain a “worst-case-scenario” 
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estimate. In their work, Lader et al. (2017) did a bias adjustment of the GFDL-CM3 model using ERA-

I reanalysis data. Indeed, they found that ERA-I consistently has a lower RMSE than GFDL-CM3 in 540 

terms of statistical distribution of variables compared to observations. In this work, bias correction was 

not undertaken as a result of the time limitations of the project (see Section 5.5). Therefore it is necessary 

to discuss the performance of this model. Donner et al., (2011) found that annual mean precipitation is 

generally well modelled by GFDL-CM3 when compared to a large observation dataset (GPCP; Adler et 

al., 2003). This version of the model has an improved representation of Arctic sea-ice concentration 545 

compared to its predecessor, GFDL-CM2 (Griffies et al., 2011). Johanessen et al. (2004) demonstrated 

that arctic temperature projections are highly impacted by the skill of sea-ice simulations. Thus, 

improvements in the representation of Arctic sea-ice should improve Arctic temperature outputs also. 

GFDL-CM3 has been shown to be one of the top-performing CMIP5 models in terms of summer sea 

ice concentration estimates when compared to passive microwave data (Laliberté et al., 2016). CM3 is 550 

also an improvement on CM2 in terms of sea-level pressure (SLP). However, there is still a slight 

positive bias in SLP over Northern Fennoscandia. This bias is lower on the western side of the region 

and increases further east over the northern part of the Kola Peninsula (Figure 12 in Griffies et al., 2011). 

Additionally, at high latitudes, the magnitudes of temperature anomalies are larger in the model outputs 

than in the observations (Donner et al., 2011). At atmospheric pressure levels lower than 5 – 10 hPa, 555 

temperatures modelled by GFDL-CM3 are generally higher than reanalysis data (ERA-40) in the polar 

regions. 

5.3.2.3.3 CNRM-CM5 data 

The third CMIP5 model used for forcing data in this project was CNRM-CM5, developed by the Centre 

National de Recherches Météorologiques (CNRM) as described in Voldoire et al. (2013). CNRM-CM5 560 

was chosen for this project as it has successfully been used in snow studies (e.g. Derksen et al., 2012; 

Lehtonen et al., 2016) and is on the colder CMIP5 spectrum, thus will help represent the range of 

potential future climate variability well when used in combination with CCSM4 and GFDL-CM3. As 

with GFDL-CM3, this model was not bias-corrected before its use in this project. It is thus important to 

note that, though this model is an improvement on its previous version, it still has significant biases in 565 

many regions, including over Northern Fennoscandia. Voldoire et al. (2013) found a slight negative bias 

in precipitation over the Norwegian mountains in DJF when compared to observational data (GPCP; 

Adler et al., 2003). In Räisänen and Ylhäisi (2015), CNRM-CM5 is the only model that disagrees with 

all 31 other CMIP5 models by not predicting an increase in annual mean precipitation in the Northern 

Europe Land Area between 1981 and 2010. A positive bias in SLP over Northern Fennoscandia was 570 

demonstrated in both winter and summer (Brands et al., 2013; Voldoire et al., 2013). CNRM-CM5 has 

a negative bias in near-surface temperature over Northern Fennoscandia, with a lower bias in summer 

than in winter. In summer, the cold bias over the region of interest is strongest over the Scandinavian 

Mountains (Brands et al., 2013). 
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5.3.2.4 Validation datasets 575 

Daily SAT and precipitation data from ten stations were used in the validation (see Table 5.10). These 

have been selected for their distribution across the entire Northern Fennoscandian domain (see Fig. 5.7). 

They represent a range of different altitudes and include stations on the coast and inland. 

 
Number Station Name Latitude (°N) Longitude (°E) Altitude (m) 

1 Abisko 68.36 18.82 394 

2 Andøya	 69.31 16.13 13 

3 Kandalaksha 67.13 32.43 26 

4 Krasnoscel’e 67.35 37.05 155 

5 Kvikkjokk-Årrenjarka 66.89 18.02 315 

6 Murmansk 69.84 21.89 51 

7 Nordstraum i Kvaenangen 69.84 21.89 6 

8 Šihččajávri  68.76 23.53 384 

9 Sodankylä ARC 67.37 26.63 179 

10 Vardø Radio 70.37 31.10 15 
 580 

Table 5.10: Details of the stations used in the validation experiment as ground truth.  

 

 
Figure 5.7: Location of the ten stations used in the validation analysis. 

5.3.3 Results 585 

5.3.3.1 SAT validation 

Box plots showing the spread of mean SAT over the 10 years between 1990 and 1999 as recorded at the 

stations and as modelled by WRF are shown in Figure 5.8.  The plots show the distribution of yearly 

and seasonal mean SAT and enable an assessment of the skills of WRF in reproducing SAT and a 
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comparison of the effectiveness of the four different forcing datasets (CCSM4, CNRM-CM5, GFDL-590 

CM3 and ERA-I). 

At all stations and for all forcing data, WRF does an excellent job at modelling mean SAT and 

SAT variability (Fig. 5.8). There is a small cold bias in the WRF model outputs, wherein WRF very 

slightly underestimates the mean yearly and seasonal SAT at almost all stations. The mean bias in the 

yearly mean temperature outputs of the CCSM4, CNRM, GFDL and ERA runs is -1.89 °C, and -2.68 595 

°C when excluding the previously bias-corrected CCSM4 outputs. Indeed, the outputs of WRF forced 

by the CCSM4 data are the closest to the observation data. Thus the CCSM4 runs are the best in terms 

of SAT modelling. ERA-I-forced WRF is the least accurate in terms of mean SAT modelling, though 

not by much. The CNRM-CM5 and ERA-I runs consistently underestimate SAT in the spring. In autumn 

however, both CCSM4 and CNRM-CM5 give good SAT estimates but GFDL-CM3 and ERA-I slightly 600 

underestimate the SAT. Overall, the best estimates are made in summer; this is most likely due to the 

lower variability of SAT in this season.  
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Figure 5.8: Mean SAT at (a) Abisko, (b) Andøya, (c) Kandalaksha, (d) Krasnoscel’e, (e) Kvikkjokk-Årrenjarka, (f) 
Murmansk, (g) Nordstraum i Kvænangen, (h) Šihččajávri, (i) Sodankylä ARC and (j) Vardø Radio, for station 605 
data (black) and WRF forced by CCSM4 (blue), CNRM-CM5 (yellow), GFDL-CM3 (red) and ERA (grey) data. The 
box represents the upper and lower quartiles, with the mean value shown as an orange horizontal line, and the whiskers 
the range of data. 
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5.3.3.2 Precipitation validation 

Figure 5.9 shows the spread of total yearly and seasonal precipitation over the 10 years between 1990 610 

and 1999 from observational data and WRF model outputs. These plots enable the assessment of the 

precipitation modelling skills of WRF which are crucial for snow modelling and the comparison of the 

effectiveness of the four different forcing datasets (CCSM4, CNRM-CM5, GFDL-CM3 and ERA). 

WRF precipitation modelling is much less accurate than its temperature modelling (Fig.5.8). As a result, 

a stronger emphasis is given to the precipitation validation and more effort is undertaken to understand 615 

which precipitation aspects are most affected. 

At all stations but Andøya (#2, Fig. 5.7), the precipitation is overestimated. This overestimate 

can be quite large with, for example, the total yearly precipitation modelled at Nordstraum i Kvænangen 

(#7) in the CCSM4 run being almost three times higher than that recorded in the station data. The large 

error at this station is explained in part by the mismatch in altitude of the WRF grid cell compared to 620 

that of the station measurements. In WRF, the Nordstraum i Kvænangen grid cell is at 396 m altitude, 

as opposed to the 6 m altitude of the Nordstraum i Kvænangen station. This station is at very low altitude, 

just by the sea but is surrounded by high topography. Thus the station measurements are not an accurate 

representation of the entire 15 km grid cell. The error in WRF is thus possibly not as high as it seems 

were it to be compared to higher altitude observations. Precipitation at Andøya is strongly 625 

underestimated and also has the highest RMSE (see Table 5.11 to 5.14). This is also probably primarily 

a result of the location of this station (Fig. 5.7). As this station is on a very narrow piece of coast, its 

orography is more imprecise. The WRF grid cell on which the Andøya station lies is at 66 m altitude as 

opposed to the 13 m station altitude. While this difference is not as great as for Nordstraum i Kvænangen, 

it probably still has a significant effect on the WRF precipitation estimate.  630 

There is a clear seasonality in the precipitation errors (Fig 5.9). For most stations, the difference 

between the modelled and the observed total precipitation is highest in summer. Indeed, in this season, 

WRF greatly overestimates the total precipitation at all stations but Andøya, similar to the annual data 

At most stations, the second highest seasonal difference is in autumn, and winter and spring have the 

lowest errors. This is encouraging for my studies of snow cover in Chapter 6, wherein seasons where 635 

solid precipitation is likely to be the prevailing form of precipitation have the lower modelling errors. 

Additionally, it is important to note that spring precipitation is more reliable than autumn precipitation. 

Indeed, this means that snow cover start projections will be less reliable than snow cover end projections. 

When looking at seasonal differences, once again, Andøya is the station that fits least well with the other 

stations. Indeed, not only does this station have the lowest error in summer precipitation, both the mean 640 

summer total precipitation and its variability are well modelled. Additionally, the highest difference 

between the modelled and observed precipitation at this station are in autumn and winter.  
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Figure 5.9: Total precipitation at (a) Abisko, (b) Andøya, (c) Kandalaksha, (d) Krasnoscel’e, (e) Kvikkjokk-Årrenjarka, 
(f) Murmansk, (g) Nordstraum i Kvænangen, (h) Šihččajávri, (i) Sodankylä ARC and (j) Vardø Radio, for 645 
station data (black) and WRF forced by CCSM4 (blue), CNRM-CM5 (yellow), GFDL-CM3 (red) and ERA (grey) data. 
The box and whiskers are as in Fig. 5.8. 
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Tables 5.12 to 5.14 provide details about the RMSE for all stations in different precipitation 

bins. Across all precipitation values, CCSM4 and GFDL-CM3 have the same RMSE (RMSE = 5.05 

mm) and this value is lower than that of the CNRM-CM5 runs (RMSE = 5.45 mm). CNRM-CM5 is thus 650 

the least accurate CMIP-forced model run for precipitation estimates. The difference in overall RMSE 

comes from the low precipitation bin. Indeed, the RMSE for the CNRM-CM5 run in the 0 – 5 mm 

precipitation bin is 0.40 to 0.41 mm higher (~ 10 %) than for the CCSM4 and GFDL-CM3 runs. This 

bin makes up 90.3 % of the precipitation values and thus a higher error here has a large impact on the 

overall RMSE.  655 

 

 
All PPN 
values 0-5 mm 5-10 mm 10-15 mm 15-20 mm 20+ mm 

Abisko 4.45 3.93 5.82 10.27 14.64 26.02 
Andøya 6.94 4.76 6.26 9.76 14.69 28.63 
Kandalaksha 4.37 3.51 6.28 10.85 15.42 22.81 
Krasnoscel’e 4.33 3.37 6.06 10.56 15.98 23.66 
Kvikkjokk-Årrenjarka 5.76 4.82 6.35 10.50 15.22 22.63 
Murmansk 4.27 3.52 6.28 10.81 14.95 22.98 
Nordstraum i Kvænangen 6.26 5.98 6.45 9.98 14.50 22.04 
Šihččajávri 4.23 3.65 6.09 10.56 14.66 22.57 
Sodankylä ARC 5.11 4.21 6.59 10.51 15.55 26.32 
Vardø Radio 4.73 3.75 5.81 10.88 15.37 24.17 

All Stations 5.05 4.15 6.20 10.47 15.10 24.18 
 

Table 5.11: RMSE of precipitation (PPN; mm) in five precipitation bins and for all precipitation values at all 10 stations 
for CCSM4-forced WRF. 

 660 

 
All PPN 
values 0-5 mm 5-10 mm 10-15 mm 15-20 mm 20+ mm 

Abisko 4.54 4.07 5.83 10.69 15.19 23.70 
Andøya 7.04 4.43 6.41 11.18 15.42 29.53 
Kandalaksha 5.37 4.74 7.03 10.40 16.83 21.49 
Krasnoscel’e 5.42 4.68 7.22 11.15 15.04 24.59 
Kvikkjokk-Årrenjarka 5.98 5.09 6.38 10.71 15.87 22.10 
Murmansk 4.88 4.21 7.59 10.49 15.95 21.67 
Nordstraum i Kvænangen 5.25 4.81 6.29 9.94 14.88 22.23 
Šihččajávri 4.93 4.39 6.88 10.16 16.38 23.95 
Sodankylä ARC 5.66 4.92 6.24 10.85 15.45 26.82 
Vardø Radio 5.13 4.20 6.48 11.35 15.54 23.91 
All Stations 5.42 4.55 6.63 10.69 15.65 24.00 

 

Table 5.12: RMSE of precipitation (mm) in five precipitation bins and for all precipitation values at all 10 stations for 
CNRM-forced WRF.  
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All PPN 
values 0-5 mm 5-10 mm 10-15 mm 15-20 mm 20+ mm 

Abisko 4.13 3.57 5.45 10.83 14.90 24.96 
Andøya 6.80 4.24 6.12 10.48 14.89 29.53 
Kandalaksha 5.04 4.44 6.36 10.75 14.87 20.93 
Krasnoscel’e 4.78 3.74 7.84 10.78 15.74 24.26 
Kvikkjokk-Årrenjarka 5.87 5.03 6.14 10.55 15.36 20.95 
Murmansk 4.22 3.47 6.22 11.72 14.90 21.46 
Nordstraum i Kvænangen 5.48 5.09 6.23 9.82 14.69 22.98 
Šihččajávri 4.64 4.13 6.05 10.25 16.13 22.54 
Sodankylä ARC 4.89 4.01 6.14 10.33 14.43 25.91 
Vardø Radio 4.62 3.65 5.87 10.24 14.58 24.07 
All Stations 5.05 4.14 6.24 10.57 15.05 23.76 

 

Table 5.13: RMSE of precipitation (mm) in five precipitation bins and for all precipitation values at all 10 stations for 665 
GFDL-forced WRF. 

 

Overall, WRF models low precipitation days (0 – 5 mm) well. The mean difference between the 

modelled and observed values are ~4 mm for all forcing datasets (Fig. 5.10; Tables 5.11 to 5.13). CMIP-

forced WRF is not as successful at modelling higher precipitations events. Indeed, all three CMIP-forced 670 

runs show a high under-prediction of precipitation for the high-precipitation bins (Fig. 5.10). On 

average, all three CMIP-forced runs under-estimate precipitation by over 20 mm for precipitation days 

of 20 mm or more, but do generally model low precipitation on those days. This matches results from 

validation studies of the CMIP5 models themselves. Donner et al. (2011), for example, find that the 

most intense precipitation (0.2 %) occurs less often in the atmospheric component of the GFDL-CM3 675 

historical runs.  

ERA-I-forced WRF runs do the best at modelling higher-precipitation events (Fig. 5.10). The 

largest error in the ERA-I run for high-precipitation events is the same as those from the other three 

models (e.g. approximately –20 mm for 15 – 20 mm precipitation). However, ERA-I successfully 

modelled some of the higher, observed, precipitation values as is demonstrated by the positive whisker 680 

on the box plots. The mean difference is also much closer to zero for the four higher-precipitation 

boxplots (5 – 10, 10 – 15, 15 – 20, and 20 + mm plots). 
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Figure 5.10: Difference between the modelled and observed precipitation for all values, and for five precipitation bins 685 
(0 – 5 mm, 5 – 10 mm, 10 – 15 mm, 15 – 20 mm and over 20 mm). The number of days associated with each precipitation 
bin is given on each plot. The box and whiskers are as in Fig. 5.8. 

5.4 Discussion 

5.4.1 Limitations of sensitivity study 

Three potential sources of error in the sensitivity study and validation exercise are discussed in this 690 

section. Firstly, there is uncertainty in the sensitivity study undertaken in this chapter as a result of the 

limitations of using MODIS as ground truth. This is a result of the Khibiny region being partly under 

boreal forest which limits the skills of VNIR remote sensing datasets, such as MODIS. However, 

previous work in this thesis demonstrates the skill of MODIS snow retrievals over the Khibiny region. 

In chapter 3, MODIS was demonstrated to be a reliable dataset over the Khibiny Mountains specifically 695 

with RMSEs lower than 10 %. And in Chapter 4, MODIS was shown to accurately represent trends in 

snow cover in the WMR, which is reliant on MODIS retrieving accurate snow data. It is important to be 

aware that models are also limited in their skill at modelling snow cover under boreal forests (Essery et 

al., 2009; Rutter et al., 2009). This obviously adds uncertainty to the model outputs over the Khibiny 

Mountains, but both a sensitivity study and a straightforward validation exercise are undertaken in this 700 

chapter to demonstrate the skill of the WRF model over the region of interest.   

Secondly, the use of binary snow/no-snow pixels in this analysis is a source of uncertainty. 

Selkowitz et al. (2014) demonstrated that in mountainous environments, 67 to 100 % of all 500 m pixels 

investigated were mixed (snow and no-snow). Thus, using the binary classification for snow in pixels 

of 500 m (MODIS) or more (WRF 1 km resolution) has limitations. Selkowitz et al. (2014) emphasised 705 

that this is of particular importance when an accurate representation of the spatial distribution of snow 

cover is needed, which is the case in the sensitivity study. This issue is overcome here by basing the 

binary classification on fractional snow cover datasets. Both the MODIS data and the model outputs are 
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originally composed of fractional snow, and the same cap (50 %) is used to convert these into binary 

pixels. 710 

Finally, related to the previous issue described, there are inherent issues in comparing point 

measurements to spatial fields (e.g. Painter et al., 2016; Wang et al., 2014). Indeed, points are usually 

not representative of their surroundings, especially in the case of snow in mountains which is 

characterised by very high spatial varaibility (e.g. Immerzeel et al., 2009; Scherrer et al., 2013). If only 

point-to-pixel comparison was used in this sensitivity study (section 5.2.3.2), run 7 would not have been 715 

identified as the best parameterisation, and a sub-optimal parameterisation would have been selected. 

The uncertainty of using point-to-pixel comparisons in the sensitivity study was thus considered in the 

choice of methodology for this study and MODIS was used as a more representative ground truth over 

a resolution much closer to that of the model. The issue of point-to-pixel cannot always be avoided 

however, as is shown in section 5.3.3 of this chapter. The 15 km resolution, long-run, outputs were 720 

compared to observations at ten stations (point measurements). This discrepancy in resolution leads to 

a level of uncertainty in the results, with some of the coastal model outputs not matching coastal stations 

well (e.g. Andøya and Nordstraum i Kvænangen). These are discussed in a case-by-case basis in the 

results to address this issue. 

5.4.2 Optimised parameterisation choice 725 

In this section, the skill of the optimised model parameterisation is discussed. In the comparison of the 

model outputs and the MODIS data, the base run parameterisation models a slow snow-melt, close to 

that observed in the MODIS dataset. The optimal model parameterisation models a faster reduction in 

snow extent than observed. Run 7 thus is not the best parameterisation for melt-rate modelling. It does, 

however, model the timing of the end of the snow cover season much more accurately. The end of the 730 

snow season in the base run is much too late. Run 7 also demonstrates variable skill when it comes to 

modelling snow depth, often not modelling maximum depth as well as other parameterisations. 

However, it does simulate snow melt-out best, i.e. it reaches snow depths of 0 cm most accurately when 

compared to the point data. Therefore, in both of these validation exercises (MODIS data and station 

depth data) run 7 demonstrates the greatest skill in modelling the end of the snow cover. This is one of 735 

the most important variables for the analysis undertaken in this dissertation. Bokhorst et al. (2016) 

identified gaps in the study of Arctic snow cover and emphasised the need to improve the understanding 

of the detailed timing of the snow cover season, including snow melt-out. In this thesis, I aim to address 

this knowledge gap and, in Chapter 6, there is a large focus on the WRF-modelled timing of the snow 

cover season (including its end) by the end of the 21st century. Thus, run 7 proves itself the most optimal 740 

parameter based, not only on the indices, but also based on its skill in modelling snow melt-out. As 

described in section 5.2.3.3, the main reasons for the success of the parameterisation of run 7 are its 

improved representation of cloud processes (in both the microphysics and radiation schemes) and its 

higher, more representative CO2 content. 
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5.4.3 Model precipitation skill 745 

In this chapter, it is demonstrated that high precipitation is modelled less accurately than low 

precipitation. This matches results from validation studies of the CMIP5 models themselves. Donner et 

al. (2011), for example, found that the most intense precipitation (0.2 %) occurs less often in the 

atmospheric component of the GFDL-CM3 historical runs. This is an important conclusion from this 

analysis, as modelling very high precipitation events is crucial to the study of extreme events. Climate 750 

extremes are the focus of an increasing number of publications. This is a consequence of the negative 

impacts of extreme events and their likely increase in frequency with climate change (e.g. Lader et al., 

2017). Extreme precipitation and extreme snowfall events can have significant impacts on human 

activity and the natural environment in Northern Fennoscandia (e.g. Callaghan et al., 2010). Extreme 

precipitation events have negative impacts on both wildlife and vegetation. Indeed, extreme precipitation 755 

has been associated with increases in mortality of lemmings (Callaghan et al., 2013), reindeer (Hansen 

et al., 2014) and birds (Lamarre et al., 2018) for example. Concerning vegetation, heavy liquid and solid 

precipitation can flatten grasslands and cause the breaking of trees through loading respectively (Bjerke 

et al., 2014). Extreme precipitation also impacts human activity in Northern Fennoscandia through its 

role in triggering nature hazards, such as avalanches, landslides and floods (Jedicke et al., 2008, Dyrrdal 760 

et al., 2012). Additionally, extreme precipitation has been demonstrated to have negative impacts on 

infrastructure, damaging bridges in Sweden (Beylich and Sandberg, 2005, Callaghan et al 2010) and 

electrical equipment in ports in Artic Russia. For these reasons, extreme precipitation events have been 

identified as a key challenge for economic development in the Russian Arctic (Khlebnikova et al., 2018, 

Zolotokrylin et al., 2018). It is therefore crucial to be able to model extreme precipitation events with 765 

confidence. The results of the validation exercise presented in this chapter indicate that further work is 

needed to improve extreme precipitation modelling in WRF using CMIP5 forcing data over Northern 

Fennoscandia. 

5.5 Conclusions 

Twelve different model parameterisations were tested in WRF by modelling climate at 1 km resolution 770 

over my six-week long 2016 field season. The outputs from these runs were tested by comparing them 

to remote sensing and field data using statistical evaluation scores; the model set-up was optimised. 

With this optimal set-up, WRF outputs were shown to be reliable for both temperature and snow 

modelling. This model is thus appropriate for the modelling work undertaken in Chapter 6. 

 775 

• With the optimised model parameterisation, WRF has low bias (1.107, close to 1), high 

Probability of Detection of snow (0.947), a low Probability of Over Detection (0.201) and an 

overall excellent Proportion Correct score (0.881) compared to the other tested physics 

parameterisations.  
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• WRF’s skill at reproducing snow extent over the WMR was tested. Though the base run 780 

parameterisation models a slow snow-melt, close to that observed in the MODIS dataset, the 

timing of this melt was very late. The optimal model parameterisation, although modelling a 

faster reduction in snow extent than observed, modelled the timing of the end of the snow cover 

season much more accurately. Thus, improved representation of cloud subgrid variability and 

higher CO2 concentration both contribute to increased skill in modelling snow melt-out.   785 

• The WRF runs have a delay (~ 8 days) in modelling the sudden jump in temperature that 

occurred in late April. Before the increase in temperature in the station data and after the jump 

in temperature in the model outputs, the WRF model does a good job at modelling SAT 

variability over the field season. 

• For the stations situated on the plains, WRF does a good job at modelling early-season snow 790 

depth, but the start of the melting of the snow season is a little late and the melt rates are slightly 

slower than those observed. Within the mountains, WRF considerably underestimates the early-

season snow depth, though a significant part of this error is probably a result of the mismatch 

of scales. 

• The effects of spectral nudging were tested and were found not to have a strong negative impact 795 

on the model outputs.  

 

Output from three CMIP5 model historical runs and the ERA-I reanalysis were used as lateral boundary 

conditions for forcing WRF over Northern Fennoscandia using the optimal model parameterisation, with 

CCSM4, CNRM-CM5, GFDL-CM3 and ERA-I forcing data. These historical WRF runs were validated 800 

by comparing the outputs to observations from ten meteorological stations. 

• WRF forced by any of the three CMIP models or by ERA-I data does an excellent job at 

modelling SAT over the 1990 – 1999 interval at all ten stations used for the validation. 

• Out of the four historical runs, CCSM4-forced WRF does the best at modelling SAT. The 

original CMIP5 dataset had been bias adjusted before being used to force WRF, thus this result 805 

is not surprising. 

• At all but one station, ERA-I- and CMIP-forced WRF overestimate total precipitation.  

• All models do better at modelling low precipitation than high precipitation events.  

• ERA-I-forced WRF is more effective than the other models at modelling high-precipitation 

events, with an RMSE of 14.4 mm compared to a CMIP5 ‘ensemble’ mean RMSE of 24.0 mm 810 

for 20 + mm precipitation events. 

• The lowest precipitation bin (0-5 mm) makes up 90.3 % of the precipitation values at the ten 

stations studied and thus even low errors in this bin have a large impact on the overall RMSE. 

• CNRM-CM5 has the highest RMSE for all precipitation amounts. Thus, in terms of 

precipitation, for this region, CNRM-forced WRF is the least reliable model analysed.  815 
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5.6 Fit within thesis 

After showing the low uncertainty and thus reliability of the MODIS dataset in chapters 3 and 4, MODIS 

was used as ground truth in the sensitivity analysis of WRF in this chapter. The optimal model 

parameterisation for snow modelling was determined over the WMR and WRF outputs using this 

parameterisation were validated over Northern Fennoscandia. WRF was thus shown to be reliable for 820 

modelling temperature, precipitation and snow projections over Northern Fennoscandia. This is crucial 

for chapter 6 in which century-scale projections of temperature, precipitation, snowfall and snow cover 

changes are undertaken.  
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Chapter 6 
Snow cover predictions for the end of the 21st century 
 

In this chapter, changes in climate over Northern Fennoscandia are studied using future (2090 - 2099) 

WRF runs, forced using three different CMIP5 models and in two emission scenarios. I focus on 5 

studying changes in snowfall and snow cover over the region, looking at the timing and duration of the 

snow cover season in detail. 

6.1 Introduction 

Modelling future changes in regional snow is important because of the key role of snow in the Earth’s 

changing climate system and its direct impact on both the natural and human environment. This can 10 

only be done in a context of modelling future climate. The Intergovernmental Panel on Climate Change 

(IPCC), an international scientific collaboration, makes extensive predictions of future climate and, as 

such, is a key institution in future climate modelling. The IPCC has organised the Coupled Model 

Intercomparison Project (CMIP), a crucial foundation in modern climate science. CMIP coordinates the 

design and distribution of past, current and future global climate model simulations (Eyring et al., 2016). 15 

In this thesis, I use CMIP5, which is the most recent CMIP ensemble as CMIP6 data is not yet widely 

available. Overall, the CMIP5 models have been shown to outperform the earlier CMIP3 models when 

compared to observations in the recent past: CMIP5 had fewer models with large cold temperature biases 

or high snow cover biases compared to CMIP3 (Fletcher et al., 2015) and Arctic sea-ice trends over the 

satellite era (1979 - 2011) were more consistent with observations in CMIP5 than CMIP3 (Stroeve et 20 

al., 2012). A detailed validation of the three specific CMIP5 models used is given in Chapter 5 and 

demonstrates the reliability of CMIP5 outputs when downscaled using WRF. 

However, there are still limitations in the use of CMIP5. For example, Bruitel-Vuilmet et al. 

(2013) modelled Northern Hemisphere snow cover extent and found that the CMIP5 models 

underestimate the significant decrease in spring snow cover extent over 1979 - 2005. Additionally, 25 

despite an improvement in the model outputs, most CMIP5 models still underestimate trends in Arctic 

sea-ice over 1979 - 2011 compared to observed values (Stroeve et al., 2012). Cattiaux et al. (2013) 

assessed the present-day biases in temperatures in CMIP5 under the RCP 8.5 scenario over Europe. 

They found that the CMIP5 models exhibit a cold bias in winter and found that this bias is especially 

marked in north-eastern Europe, including over Northern Fennoscandia.  30 

The origin of the uncertainty in the CMIP5 model projections is threefold. It is a result of inter-

model spread, natural variability and the choice of emission scenario (Hawkins and Sutton, 2009; 

Overland et al., 2011). Inter-model spread is, itself, due to the different parameterisations of physical 

processes in the various models. Internal variability is a result of the Earth’s climate and its chaotic 

nature, which leads to different model outputs for similar initial conditions (Overland et al., 2014). 35 



174 

 

Finally, the uncertainty in emission scenario results from the existence of a range of different outcomes 

of how the future may evolve, based on future socioeconomic, technological, energy, land use and 

greenhouse gas emission changes (Overland et al., 2014).  

 

Figure 6.1: The globally averaged surface temperature change since preindustrial times; individual lines are individual 40 

CMIP5 model projections and thick lines are the multimodel mean, from Forster et al. (2013). 

Overall, the importance of internal variability is higher for near-term projections and increases 

at smaller spatial scales (Hawkins and Sutton, 2009). For long-term projections, like in this project, the 

two main sources of uncertainty are the inter-model spread and emission scenario choice. It is thus 

important to use a range of different CMIP5 models and emission scenarios. The inter-model spread, as 45 

well as the uncertainty stemming from emission scenario choice, can be seen in Figure 6.1. This figure 

from Forster et al. (2013) shows the range of temperature change projections from the different CMIP5 

models as well as the different means in the four RCP scenarios. This spread is also seen in other 

parameters such as precipitation, sea level pressure etc. This shows that the different CMIP5 models 

simulate very different results and so will predict very different future trends in various climate 50 

parameters. However, this inter-model spread does not make the various CMIP5 models any less 

reliable. Knutti and Sedláček (2013) emphasized that progress in climate modelling is not necessarily 

limited to narrowing inter-model uncertainties. Indeed, an improvement in climate models does not 

necessarily imply an increased convergence between different models. However, as the representation 

of climate processes in the models becomes more detailed, so does the confidence in their projections. 55 

The CMIP5 ensemble has been used in many studies to model future climate over the next 

century. The future of Arctic amplification (more pronounced warming between 67.5 N° to 90°N 
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relative to the global mean) has been studied many times and CMIP5 outputs demonstrate a seasonal 

aspect of this amplified warming (e.g. Lu and Cai, 2009; Kumar et al., 2010). Future Arctic amplification 

(2081 - 2100 compared to 1986 - 2005) was projected to be highest in early winter (November to 60 

December) with a mean warming of the Arctic region four times greater than the global mean in the 

CMIP5 ensemble in RCP 4.5 (Collins et al., 2013). Using the CMIP5 multi-mean ensemble, Overland 

et al. (2014) predict an Arctic-wide increase in mean surface temperature of +3 (/ +5) °C in spring and 

+7 (/ +13) °C in autumn in RCP 4.5 (/RCP 8.5). Finally, Cattiaux et al. (2013) found in an analysis of 

daily temperature extremes over Europe that temperature variability is projected to decrease in winter 65 

and slightly increase in summer by the end of the 21
st
 century.  

Regarding snow cover specifically, there is a relative lack of literature investigating future 

changes in snow cover over the Arctic by the end of the century. Both CMIP3 (Roesch, 2006; Brown 

and Mote, 2009) and CMIP5 (Brutel-Vuilmet et al., 2013) model outputs project a widespread reduction 

in the snow cover extent, especially in spring, by the end of the 21
st
 century. These changes in snow 70 

cover extent are coherent across all CMIP5 models, though there is considerable inter-model spread 

(Collins et al., 2013). CMIP5 models are General Circulation Models (GCMs) and, as such, climate 

projections using these models are made at large scales (~ 100 - 200 km grid-cells). In this thesis, I focus 

on future changes in regional snow over northern Fennoscandia and a higher spatial resolution is 

required. Thus, using a Regional Climate Model (RCM) is vital at this stage in order to better understand 75 

the impact that climate change will have at a local scale. As in Chapter 5, the Weather Research and 

Forecasting model (WRF) is used to downscale CMIP5 data, in order to make end-of-century projections 

in northern Fennoscandian snow cover.  

In this chapter, the methods used in the downscaling of CMIP5 data using WRF are given in 

section 6.2. The experimental set-up is detailed, and data analysis methods are provided. In sections 6.3 80 

and 6.4, the results are given and discussed. Finally, the conclusions of this work are summarized in 

section 6.5. 

6.2 Methods 

6.2.1 Experiment design 

6.2.1.1 Model setup 85 

The Weather Research and Forecasting model (WRF; Skamarock et al., 2005) was used to downscale 

CMIP5 data over Northern Fennoscandia in order to produce high-resolution projections over this 

region. The WRF model was set up in the same manner as in Chapter 5 section 5.3, including the same 

physics and domain setup. The higher resolution domain is thus at 15 km resolution. Six future model 

runs were performed. These were run over one decade at the end of the 21
st
 century (2090 - 2099). Runs 90 

were performed in one-year increments with 9 days of spin-up, starting on December 23
rd

 at 00:00:00 

of the previous year and running until January 1
st
 at 00:00:00 of the following year.  
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6.2.1.2 Emission scenarios 

In order to run climate models over future time periods, it is necessary to use initial and boundary forcing 

data, which must make assumptions about the future greenhouse gas conditions of the planet. The IPCC 95 

(2014) defines four Representative Concentration Pathways (RCP), which represent four possible 

futures in which different greenhouse gas concentrations are reached. I decided to focus on two RCP 

scenarios for the future runs. The aim was to establish a realistic spread of results for end-of-21
st
-century 

conditions so the RCP 2.6 scenario was discarded as it is highly unlikely that emissions will be reduced 

to this level over the next few decades. RCP 4.5 was selected as the lowest emission scenario. This is 100 

supported by the Paris agreement signed internationally in 2016, in which countries agreed to aim for a 

target of 1.5 degree warming. RCP 4.5 sees a mean temperature increase of 1.8 °C for the 1981 to 2100 

interval, with a likely range of 1.1 to 2.6 °C (IPCC, 2013). The second RCP scenario selected for this 

study is RCP 8.5 which is the “business as usual” scenario. This scenario will likely result in a global 

increase in mean surface temperature of 3.7 °C, with a likely range of 2.6 to 4.8 °C, for 2081 - 2100 105 

relative to 1986 - 2005 (IPCC, 2013).  

6.2.1.3 Forcing data 

The same three CMIP5 models described in Chapter 5 were used to force WRF over the last decade of 

the 21
st
 century. These are CCSM4 from version 1 of the National Center for Atmospheric Research 

(NCAR) Community Earth System Model (CESM; Hurrell et al., 2013), CNRM-CM5 developed by the 110 

Centre National de Recherches Météorologiques (CNRM; Voldoire et al., 2013) and GFDL-CM3 from 

the latest coupled climate model from the Geophysical Fluid Dynamics Laboratory (GFDL; Donner et 

al., 2011). 

6.2.1.4 WRF output variables 

The different WRF output variables used in this chapter are presented in Table 6.1.  115 

 

Parameter WRF name Unit 

Temperature at 2 m (SAT) T2 K 

Convective liquid precipitation RAINC kg.m
-2

.s
-1

 

Non-convective liquid precipitation RAINNC kg.m
-2

.s
-1

 

Total precipitation RAINC + RAINNC kg.m
-2

.s
-1

 

Convective snowfall SNOWC kg.m
-2

.s
-1

 

Non-convective snowfall SNOWNC kg.m
-2

.s
-1

 

Total snowfall SNOWC + SNOWNC kg.m
-2

.s
-1

 

Snow depth SNOWH m
 

 

Table 6.1: WRF output variables used in the analysis with their WRF names and units.  
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6.2.1.5 Stations 120 

Stations are used in this chapter as locations of interest to compare model outputs in detail (see Table 

6.2). A smaller selection of stations is used in this chapter compared to the previous chapter, as the 

majority of the analysis is undertaken using the WRF data across the entire Northern Fennoscandia 

region. Three stations were chosen to cover the latitude and longitude of the region as well as possible 

(Fig. 6.2), as well as encompass a range of altitudes. 125 

 

Number Station Name Latitude (°N) Longitude (°E) Altitude (m) 

1 Abisko 68.36 18.82 394 

2 Kandalaksha 67.13 32.43 26 

3 Vardø Radio 70.37 31.10 15 

 

Table 6.2: Details of the stations used in the validation experiment as ground truth.  

 

 130 

 

Figure 6.2: Map showing the location of the stations used in this analysis.  

6.2.2 Decadal changes in climate 

In this chapter, century-scale changes in climate over Northern Fennoscandia are investigated. The 

historical runs used in this analysis as those performed in Chapter 5, described in section 5.3.2.2. These 135 

were run for one decade between 1990 and 1999, using CCSM4, CNRM-CM5 and GFDL-CM3 as 

forcing data. It has been shown that key aspects of snow cover respond to both temperature and 

precipitation (solid and liquid), with snow cover duration, snow cover extent and snow water equivalent 

for example (Brown and Mote, 2009). Therefore, changes in surface air temperature (SAT), precipitation 

and snowfall are investigated in this chapter. Changes in mean SAT, total precipitation and total snowfall 140 

are calculated by taking the decadal mean or total for each individual run and subtracting the historical 

runs from the future runs. These changes are analysed for the entire year (annual) as well as in the four 
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seasons: spring (March, April and May), summer (June, July and August), autumn (September, October 

and November) and winter (December, January and February:). Differences between the 1990 - 1999 

and 2090 - 2099 decades are calculated using a t-test, defined as significant at p < 0.05 with these areas 145 

indicated on the difference or change plots.  

6.2.3 Extracting snow cover season dates 

A similar method to that described in Chapter 4 was implemented here to extract snow cover start (SCS), 

snow cover end (SCE) and snow cover duration (SCD). The method described in Chapter 4, itself based 

on Malnes et al. (2016), was modified to fit the different dataset used in this analysis.  150 

The SCS is defined here as the first of ten consecutive days with at least 1 cm snow cover. The 

snow cover end (SCE) is defined as the first snow-free day when the snow depth value falls below 1 cm 

more than 10 days in a row. A cap of 1 cm was used, as with the station data in Chapter 4, as an 

intermediate value between 0 cm used by Dietz et al (2012) and 2 cm used by Malnes et al. (2016). 

Unlike when using MODIS data, the same number of days was used to define the SCS and SCE because 155 

of there being no limitation in retrieval resulting from cloud cover. Similarly, lack of sunlight at higher 

latitudes resulting from polar night, and very low solar zenith angles associated with low daylight hours, 

were no longer a hindrance to the dataset. These points meant that with a visible and near infra-red 

dataset, the dates of SCS and SCE had to be limited to not overlap with the polar night (Chapter 4 Section 

3.2.2). In this study, which uses model outputs instead of remote sensing data, any dates could be found 160 

to be the SCS or SCE. As a result of the range in latitude and topography over the study area, the earliest 

possible SCS date and the latest SCE date were selected experimentally, by running multiple tests and 

finding the best time of year to set as the start and end of possible snow cover seasons. August 15
th
 was 

selected as the date that matched best with results for an earliest possible SCS date, and thus August 14
th
 

of the following year was selected as the last possible SCE date.   165 

6.3 Results and discussion 

6.3.1 Mean surface air temperature  

The changes in annual mean SAT between the future (2090 - 2099) and historical (1990 - 1999) 

projections are given in figure 6.3 for the six future runs forced by three CMIP5 models and in two RCP 

scenarios. Figures 6.4 to 6.7 give these changes in decadal mean values for the individual seasons.  170 

 



179 

 

 

Figure 6.3: Projected change in mean annual SAT over Northern Fennoscandia in RCP 4.5 (left) and RCP 8.5 (right). 
Model outputs from the three CMIP5 models are shown. All areas are statistically significant. 

For all forcing models and in both emission scenarios, WRF predicts an increase in annual mean 175 

SAT over the entirety of Northern Fennoscandia in 2090 - 2099 compared to 1990 - 1999 (Fig 6.3). 

Mean annual SAT changes in all models and emission scenarios are statistically significant. The 

minimum projected SAT increase is found in the CNRN-CM5-forced run over the south-western part 

of the domain and is +1.5 °C (Fig 6.3c). The largest annual mean SAT increase is simulated by the 

GFDL-CM3 RCP 8.5 run over the Kola Peninsula and is of 9 °C (Fig 6.3f). For all models and seasons, 180 

the increase in mean SAT is greater in RCP 8.5 than in RCP 4.5. The difference between the two 

emission scenarios is greatest in the GFDL-forced runs. 

 

Model run RCP 4.5 RCP 8.5 

CCSM4 + 2.6 °C + 4.9 °C 

CNRM-CM5 + 3.1 °C + 5.2 °C 

GFDL-CM3 + 5.0 °C + 7.8 °C 

‘Ensemble’ mean + 3.6 °C + 6.0 °C 

 

Table 6.3 Mean annual SAT increase over the entire domain in all model projections.  185 

 

The mean annual SAT change over the entire domain is shown in Table 6.3 for all model runs. 

The mean increase ranges between 2.6 and 5.0 °C in RCP 4.5 and between 4.9 and 7.8 °C in RCP 8.5. 

These values can be compared to the global mean annual SAT increase modelled by the CMIP5 

ensemble, as published in the IPCC reports (IPCC, 2013). These predict a global increase of 1.1 to 2.6 190 
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°C in RCP 4.5 and of 2.6 to 4.8 °C in RCP 8.5. The results of my model runs clearly demonstrate Arctic 

Amplification with the ‘ensemble’ mean value over Northern Fennoscandia (3.6 °C) being double the 

global ensemble mean (1.8 °C) in RCP 4.5, and nearly 40 % greater in RCP 8.5 (domain: 6.0 °C; global: 

3.7 °C).  

The mean annual SAT change projected over Northern Fennoscandia is very similar in the 195 

CCSM4 and CNRM-CM5 runs, and is much higher in both emission scenarios in the GFDL-CM3 runs. 

This results in a small overlap between the two emission scenarios in the distribution of mean 

temperature increase. Indeed, the SAT rise projected in GFDL-CM3 RCP 4.5 (+ 5.0 °C) is greater than 

that projected in CCSM4 RCP 8.5 (+ 4.9 °C). Additionally, model spread is greater in RCP 8.5 (2.9 °C) 

than in RCP 4.5 (2.4 °C). The difference between the ‘ensemble’ mean values is of 2.4 °C, which is the 200 

same (RCP 4.5) or less (RCP 8.5) than the model spread. Thus, even with an ensemble of only three 

models, the model uncertainty contributes the greatest uncertainty in these projections as expected by 

Hawkins and Suttons (2009).  

GFDL-CM3 models the greatest SAT increases over land in all seasons. The highest seasonal 

SAT increase occurs in winter with a warming up to 9.5 °C over a majority of the Kola Peninsula and 205 

the coastal regions around the Gulf of Bothnia, and greater than 9.5 °C over the small part of 

Arkhangelsk Oblast included in the south-east of the domain. In both emission scenarios, CCSM4 and 

CNRM-CM5 runs both predict the largest mean annual SAT increase (+4 to 8 °C) over the Barents Sea 

in the north-eastern corner of the domain. The large increase in SAT predicted over this north-eastern 

region is probably explained by a sudden decrease in sea-ice. Indeed, this warming originates from 210 

changes in SAT in spring (Fig. 6.4) and winter (Fig. 6.7), which fits sea-ice melting timelines and is 

consistent with Johannessen et al.’s (2004) finding that large Arctic warming events are often associated 

with sea-ice variability.  

In all models and scenarios except for GFDL-CM3 RCP 4.5, the greatest annual mean SAT 

increases over land are over the Kola Peninsula. The largest SAT change since 1990 - 1999 over the 215 

Kola Peninsula is +2.5 °C, +3.0 °C, +5.5 °C in RCP 4.5 and +5.5 °C, +5.5 °C, +9.0 °C in RCP 8.5, for 

the CCSM4, CNRM-CM5 and GFDL-CM3 models, respectively. In CCSM4 RCP 4.5, the largest land 

SAT increase covers almost the entirety of the eastern half of Northern Fennoscandia and in GFDL-

CM3 RCP 8.5, the largest increase over land is also over the coastal region surrounding the Gulf of 

Bothnia.  220 

The majority of the outputs of mean seasonal SAT change are statistically significant, and 

project an increase in SAT by the end of the 21
st
 century (Fig. 6.4 to 6.7). The CNRM-CM5 runs have 

the most areas of statistically insignificant change, comprising a low increase in SAT (up to +1.5 °C) 

over the region surrounding the coast along the Gulf of Bothnia in spring of both emission scenarios 

(Fig. 6.4c and 6.4d), a small increase over the southern half of the Scandinavian Mountains in summer 225 

RCP 4.5 (Fig. 6.5c) and finally low change (including a decrease in SAT by up to -1 °C) over all land 

in winter RCP 4.5 (Fig 6.7c). This statistically insignificant decrease in SAT is the only negative SAT 

change projected across all models, emission scenarios and seasons. Thus the models are consistent with 
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regard to significant changes in mean SAT on a seasonal and annual basis. These projected changes in 

SAT are likely to affect snowfall and Northern Fennoscandian snow cover, as discussed in in Sections 230 

6.3.3 to 6.3.5. 

 

Figure 6.4: Projected change in mean SAT over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in spring. Model 
outputs from the three CMIP5 models are shown. All areas but those enclosed in cyan dashed lines are statistically 
significant. 235 

 

Figure 6.5: Projected change in mean SAT over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in summer. Model 
outputs from the three CMIP5 models are shown. All areas but those enclosed in cyan dashed lines are statistically 
significant. 
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 240 

 

Figure 6.6: Projected change in mean SAT over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in autumn. Model 
outputs from the three CMIP5 models are shown. All areas but those enclosed in cyan dashed lines are statistically 
significant. 

 245 

Figure 6.7: Projected change in mean SAT over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in winter. Model 
outputs from the three CMIP5 models are shown. All areas but those enclosed in cyan dashed lines are statistically 
significant. 
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6.3.2 Total precipitation 

The changes in annual total precipitation between the future (2090 - 2099) and historical (1990 - 1999) 250 

runs are given in figure 6.8, similar to figure 6.3. Figures 6.9 to 6.12 show these changes in total 

precipitation for individual seasons. It must be noted that there is a linear artefact on the western edge 

of the domain in the CNRM-CM5 annual and seasonal outputs. This does not negatively impact my 

results as this effect persists for only a few 10s of kilometres at the very edge of the domain.  

 255 

Model run RCP 4.5 RCP 8.5 

CCSM4 + 53 mm + 139 mm 

CNRM-CM5 - 100 mm - 49 mm 

GFDL-CM3 + 68 mm + 234 mm 

‘Ensemble’ mean + 7 mm + 108 mm 

‘Ensemble’ RMSE 76 mm 118 mm 

 

Table 6.4 Mean annual precipitation change over the entire domain in all model projections.  

 

Table 6.4 shows the projected mean annual precipitation change over the entire domain for all 

three CMIP5 models used to force WRF. There is very high inter-model variability between the outputs 260 

using the three different models (Fig. 6.8) as represented by the high “ensemble’ RMSEs in Table 6.4. 

CNRM-CM5 stands out for projecting an overall decrease in precipitation over Northern Fennoscandia 

in both emission scenarios, though it does model increased total precipitation over the western part of 

the study region: up to +200 mm in RCP 4.5 and +300 mm in RCP 8.5 over the coast. CCSM4 and 

GFDL-CM3 both project an increase in precipitation by the end of the next century in both emission 265 

scenarios. The mean annual precipitation change over the entire domain is very similar for both CMIP5 

models in RCP 4.5, but they show very different magnitudes of change in RCP 8.5 with GFDL-CM3 

having almost 100 mm more mean annual precipitation over the entire domain than CCSM4 (Table 6.4). 

CNRM-CM5 is the only model which depicts a decrease in mean annual precipitation by the end of the 

21
st
 century. This decrease is lower in 8.5 than in 4.5 however; thus, all CMIP5 models show a wetter 270 

projection in RCP 8.5 than in RCP 4.5. 

Overall, the projected changes in mean total precipitation have a considerably lower proportion 

of statistically significant change compared to the projected changes in mean SAT (Fig. 6.8). In all 

model runs, the eastern region, particularly over the Barents Sea, is projected to undergo a statistically 

significant change in precipitation by the end of the 21
st
 century. This statistically significant region 275 

reaches the Kola Peninsula in four of the six future runs. In the GFDL-CM3 RCP 4.5 run, the northern 

part of the Kola Peninsula is projected to undergo a significant increase in total annual precipitation 

reaching +200 mm. In GFDL-CM3 RCP 8.5, the majority of the outputs over Northern Fennoscandia 

indicate a statistically significant change, including an increase of up to +300 mm over the Kola 

Peninsula. CNRM-CM5 reveals a strong, statistically significant, decrease (–100 to –300 mm) in 280 
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precipitation over the Kola Peninsula in the lower emission scenario (Fig. 6.8c). In the higher emission 

scenario, the eastern half of the Kola Peninsula undergoes a decrease in total precipitation (–50 to –200 

mm; not statistically significant). However, the western side sees a slight, statistically significant, 

increase in precipitation reaching +100 mm (Fig 6.8d). Only very small statistically significant areas of 

low increase in precipitation are seen in the two CCSM4 runs (Fig. 6.8a and 6.8b). Thus, future changes 285 

in total precipitation in the Kola Peninsula are highly emission-dependent and different GCM models 

give very different projections. 

 

 

Figure 6.8: Projected change in total annual precipitation over Northern Fennoscandia in RCP 4.5 and RCP 8.5. Model 290 

outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant areas – 
significant side marked by arrowhead.  

The largest magnitude changes in the two emission scenarios are in the outputs of different 

GCM models.  In RCP 4.5, the largest magnitude changes are in CNRM-CM5 over the eastern Kola 

Peninsula, where precipitation is projected to decrease by up to –300 mm (Fig. 6.8c).  Whereas in RCP 295 

8.5, the largest magnitude changes are in both the CCSM4 (Fig. 6.8b) and GFDL-CM3 (Fig. 6.8f) where 

the increase in precipitation reaches values up to +1100 mm over the Barents Sea (see Fig. 6.3) and the 

Scandinavian Mountains, respectively. These high magnitude changes are statistically significant in all 

three CMIP5 models.  

Scenario choice makes the largest difference in the GFDL-CM3 runs where the western coastal 300 

zone goes from undergoing a (statistically insignificant) reduction in precipitation up to –200 mm in 

RCP 4.5 (Fig. 6.8e) to undergoing the strongest (and statistically significant) increase in total annual 

precipitation of the entire region in RCP 8.5, reaching values as high as +1100 mm (Fig. 6.8f).  
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 305 

Figure 6.9: Projected change in total precipitation over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in spring. 
Model outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant 
areas – significant side marked by arrowhead. 

 

 310 

Figure 6.10: Projected change in total precipitation over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in summer. 
Model outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant 
areas – significant side marked by arrowhead. 
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Figure 6.11: Projected change in total precipitation over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in autumn. 315 

Model outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant 
areas – significant side marked by arrowhead. 

 

Figure 6.12: Projected change in total precipitation over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in winter. 
Model outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant 320 

areas – significant side marked by arrowhead. 

Figures 6.9 to 6.12 show the projected change in mean precipitation in all four seasons. The 

lowest changes in precipitation in all forcing models occur in spring (Fig. 6.9) and in summer (Fig. 

6.10), with the majority of changes being between –100 and +100 mm. The majority of the statistically 
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significant changes in spring occur over the east of the region. The projected change in summer total 325 

precipitation in RCP 8.5 is very similar between CCSM4 and CNRM, with small total precipitation 

increases over the western and central land and with a slight decrease in precipitation covering the 

eastern part of the study region. However, these changes are mostly statistically insignificant. GFDL-

CM3 shows a spatially consistent increase in precipitation over the entirety of the region, with 

statistically significant changes projected over the east. 330 

All RCP 8.5 WRF runs have an increase in precipitation over the western coast of Northern 

Fennoscandia in autumn (Fig. 6.11). However, this west-coast increase is only statistically significant 

in the GFDL-CM3 RCP 8.5 run. The GFDL-CM3 run has by far the greatest increase, up to +500 mm, 

compared to +150 mm in the CNRM-CM5 output.  

The inter-model spread is most striking in winter (Fig. 6.12), where the CCSM4 and GFDL-335 

CM3 models indicate an increase in total precipitation across most of the domain whereas CNRM-CM5 

has a decrease in precipitation over all but a small region of north-western Fennoscandia. In winter, 

there is a statistically significant increase in total precipitation in the north-eastern corner of the domain, 

over the Barents Sea, in the CCSM4 (in RCP 4.5 and 8.5) and GFDL-CM3 (in RCP 8.5) outputs (Fig. 

6.12). This is possibly linked to the large SAT increases projected over this region (Fig. 6.7). In the 340 

CNRM-CM5 runs, only a few areas are projected to undergo significant change, including the majority 

of the Kola Peninsula in RCP 4.5 (Fig, 6.12c). Finally, annually and in all seasons but summer, the 

emission scenario makes very little difference to the projected changes in total precipitation from 

CNRM-CM5. 

6.3.3 Total snowfall 345 

The changes in annual total snowfall between the future (2090 - 2099) and historical (1990 - 1999) 

model projections are given in figure 6.12 for the six future runs forced by three CMIP5 models and in 

two RCP scenarios. Figures 6.13 to 6.16 give these changes in total snowfall for individual seasons.  

 

Model run RCP 4.5 RCP 8.5 

CCSM4   - 59 mm   - 94 mm 

CNRM-CM5 - 124 mm - 143 mm 

GFDL-CM3 - 119 mm - 179 mm 

‘Ensemble’ mean - 101 mm - 139 mm 

 350 

Table 6.5 Mean annual snowfall change over the entire domain in all model projections.  

 

The inter-model spread is smaller in the snowfall projections compared to total precipitation 

changes. There is good agreement between the three sets of future projections forced by the three CMIP5 

models. Table 6.5 shows the mean annual snowfall change over the entire domain for all models. All 355 

three models agree on an overall decrease in annual total snowfall over Northern Fennoscandia. Indeed, 

all models project a mean annual decrease in snowfall by the end of the century with an ‘ensemble’ 
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mean of –101 mm in RCP 4.5 and –139 mm in RCP 8.5. However, there is some inter-model spread in 

the magnitude of snowfall decrease. CCSM4 reveals a lower decrease in snowfall, projecting a decrease 

more than 50 % lower than the other two models (Table 6.5). Both CNRM-CM5 and GFDL-CM3 agree 360 

well on the magnitude of decrease.  

This agreement between models is also seen regionally (Fig. 6.13), with the greatest projected 

decrease being over the Scandinavian Mountains (–400 to –1100 mm maximum decrease) closely 

followed by the decrease in snowfall over the Barents Sea (–200 to –500 mm maximum decrease). 

GFDL-CM3 has a third area of high decrease in precipitation, over the coastal region surrounding the 365 

Gulf of Bothnia, where decreases of up to –400 mm are projected in RCP 8.5. All these areas of strong 

decrease are statistically significant. Across all models, emissions scenarios and in most seasons (spring, 

autumn and winter), the region to the east of the Scandinavian Mountains (15 to 25 °E and 65 to 69 °N) 

is projected to undergo statistically insignificant change. The main difference between the models is in 

this region: a statistically insignificant increase in snowfall in region is shown by CNRM-CM5 in both 370 

emission scenarios, while other models have low decreases in snowfall there. 

 

Figure 6.13: Projected change in total annual snowfall over Northern Fennoscandia in RCP 4.5 and RCP 8.5. Model 
outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant areas – 
significant side marked by arrowhead. 375 
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Figure 6.14: Projected change in total snowfall over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in spring. Model 
outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant areas – 
significant side marked by arrowhead. 380 

 

 

Figure 6.15: Projected change in total snowfall over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in summer. Model 
outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant areas – 
significant side marked by arrowhead. 385 
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Figure 6.16: Projected change in total snowfall over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in autumn. Model 
outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant areas – 
significant side marked by arrowhead. 390 

 
Figure 6.17: Projected change in total snowfall over Northern Fennoscandia in RCP 4.5 and RCP 8.5 in winter. Model 
outputs from the three CMIP5 models are shown. Red dashed lines enclose or exclude statistically significant areas – 
significant side marked by arrowhead. 

Spring has the largest inter-model spread in the projected change in total snowfall (Fig. 6.14). 395 

Indeed, CCSM4 reveals very low changes in total snowfall with a maximum of –200 to +25 mm in RCP 

4.5 and of –150 to +75 mm in RCP 8.5. CNRM-CM5 has a similar range of total snowfall (–150 to +75 
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mm in RCP 4.5), but the increases in total snowfall cover a much wider area of the Scandinavian 

Mountains than in CCSM4. Finally, GFDL-CM3 demonstrates a large decrease in total snowfall over 

the entire western coast of Norway, with values reaching –350 mm, and a low increase in snowfall over 400 

the eastern half of the domain. Therefore, the CNRM-CM5 and GFDL-CM3 RCP 4.5 projections are 

near-opposite. However, the projected increase in the CNRM-CM5 run is not statistically significant. 

As expected, very little change in total snowfall occurs over the summer season, as a result of 

there being very little solid precipitation in summer in the first place. In CCSM4, there is a very low 

decrease in snowfall over the Scandinavian Mountains, which is projected at a slightly higher degree in 405 

the GFDL-CM3 RCP 4.5 and RCP 8.5 outputs. This decrease over the Scandinavian Mountains is 

statistically significant. Conversely, CNRM-CM5, shows a very small snowfall increase (up to 25 mm) 

over the northern part of the Scandinavian Mountains and around the Gulf of Bothnia coast in RCP 4.5: 

however, neither of these changes are statistically significant.  

The change in total snowfall projected in the six model outputs is very similar in both autumn 410 

and winter. In both these seasons, a statistically significant decrease in total snowfall is projected over 

the entirety of northern Fennoscandia except in very small areas in the CCSM4 outputs. All models 

agree that the largest change in total snowfall will take place over the Scandinavian Mountains. GFDL-

CM3, has the largest projected change in total snowfall in autumn and winter, and also has the largest 

areas of statistically significant change, with the entire region undergoing statistically significant change 415 

in autumn in RCP 8.5 (Fig. 6.16f).  

6.3.4 Solid precipitation percentage 

Figures 6.18 to 6.20 show the proportion of solid precipitation modelled at three stations in all seasons 

in the WRF runs forced by the three CMIP5 models. All figures show the solid precipitation proportion 

in the historical, RCP 4.5 and RCP 8.5 runs side-by-side, in order to permit straightforward comparisons.  420 

A slight increase in solid precipitation is projected in summer at Abisko station in the RCP 4.5 

CNRM-CM5 run (Fig. 6.18). However, in all other models and emission scenarios, a decrease in the 

percentage of solid precipitation is indicated by the end of the 21
st
 century in all seasons. With one 

exception (Fig. 6.18a, annual), this decrease in solid precipitation is greater in RCP 8.5 than RCP 4.5. 

This is consistent with SAT predictions in these two emission scenarios. High emissions result in higher 425 

SATs (see Section 6.3.1) and thus a higher proportion of liquid precipitation. Annually, the range of 

decrease in the proportion of precipitation falling as snowfall for the three stations is 8 - 41 % in RCP 

4.5 and 16 - 73 % in RCP 8.5, for all three models. At all stations, GFDL-CM3 projects the largest 

decrease in solid precipitation, with a mean annual decrease greater than 25 % (26 - 41 %) in RCP 4.5 

and greater than 50 % (53 - 73 %) in RCP 8.5. Figures 6.18 to 6.20 suggest a greater decrease in the 430 

coastal north of the region compared to the coastal west and inland areas (see Figure 6.3). No such clear 

conclusions can be drawn about the relative decreases between the east and west of Northern 

Fennoscandia, due to the greater inter-model spread. 
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Summer has the highest decrease in solid precipitation as a proportion of the total, with close to 

100 % decrease in all models and all stations (except at Abisko station, RCP 4.5, CNRM-CM5). At 435 

Vardø Radio, summer solid precipitation is projected to decrease by 100 % and so disappear entirely in 

all future model runs. When excluding summer, the highest decrease in solid precipitation occurs in 

autumn, closely followed by spring. At all three stations, the lowest decrease is in winter. In the CNRM-

CM5 outputs, the difference in the percentage of winter solid precipitation between RCP 4.5 and 8.5 is 

quite low. The station with the highest winter decrease in solid precipitation is Vardø Radio in the north 440 

where both CCSM4 and GFDL-CM3 project a decrease of more than 50 % in RCP 8.5. 

Thus, despite large increases in total precipitation predicted at Abisko in all but the CNRM-

CM5 RCP 4.5 outputs and at Kandalaksha and Vardø Radio in the CCSM4 and GFDL-CM3 runs (see 

Fig. 6.8), the proportion of solid precipitation at these stations is projected to greatly decrease in all the 

model runs.  445 

 

Figure 6.18: Abisko station percent of solid precipitation annually and across all seasons in (a) CCSM4, (b) CNRM-
CM5 and (c) GFDL-CM3. 
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Figure 6.19: Kandalaksha station percent of solid precipitation annually and across all seasons in (a) CCSM4, (b) 450 

CNRM-CM5 and (c) GFDL-CM3. 

 

 

Figure 6.20: Vardø Radio station percent of solid precipitation annually and across all seasons in (a) CCSM4, (b) 
CNRM-CM5 and (c) GFDL-CM3. 455 
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6.3.5 Mean SCS, SCE and SCD change 

6.3.5.1 Snow cover start 

Figure 6.21 shows the difference in mean SCS between the future and historical runs. In both emission 

scenarios and for all three CMIP5 models, the WRF outputs indicate a delay in the start of the snow 

season across the entire Northern Fennoscandian region. There are no areas with an increasingly early 460 

SCS.  

The modelled delay in the SCS is very similar in the CCSM4 and the CNRM outputs. In RCP 

4.5, all delay is between 0 and 30 days in these two model projections (Fig. 6.21a and 6.21c). The main 

difference between the two models is over the central Kola Peninsula where CNRM projects a 30-day 

delay in the SCS and CCSM4 projects a delay of less than 10 days over this same area. In the future 465 

projections, the delay in the start of the snow cover season increases with increased emissions. In both 

CCSM4 and CNRM, the SCS in the RCP 8.5 run is only slightly more delayed than in RCP 4.5, with 

approximately one to two week’s difference between the two.  

 

Figure 6.21: Difference in mean snow cover start between RCP 4.5 and historical runs for (a) CCSM4, (c) CNRM-CM5 470 

and (e) GFDL-CM3, and between RCP 8.5 and historical runs for (b) CCSM4, (d) CNRM-CM5 and (f) GFDL-CM3. 
White data gaps on land are water bodies. 

The largest projected change is observed in the GFDL-CM3 model. This is unsurprising as the 

GFDL-CM3 projections have the largest change in mean SAT and snowfall in autumn and winter (Figs. 

6.6, 6.7, 6.16 and 6.17). In RCP 4.5, the delay in the SCS is projected to be between 20 and 40 days 475 

across Northern Fennoscandia. In RCP 8.5, the delay in the start of the snow season is between 35 to 70 

days across the majority of the study region, with the larger changes projected to occur in the coastal 

areas. One point over the Scandinavian Mountains is projected to undergo a much larger delay in SCS 
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than the rest of the study region. This delay is of 90 and 100 days in RCP 4.5 and RCP 8.5 respectively 

and is over the only permanent snow cover zone identified in the WRF GFDL historical run.  480 

6.3.5.2 Snow cover end 

Figure 6.22 shows the difference in mean SCE between the future and historical runs. Little 

change in future SCE dates is indicated by the CNRM-CM5 projections (Fig. 6.22c and 6.22d). Indeed, 

the projected SCE change over Northern Fennoscandia is between -5 to +10 days in RCP 4.5 and 

between -10 and +5 days in RCP 8.5, with the majority of values being constrained between -5 and +5 485 

in both emission scenarios. This fits with previous findings from these projections, in which only small 

changes in SAT over land are shown in spring and summer (Fig. 6.4 and 6.5). It is worth noting, 

however, that the majority of the region is projected to undergo a positive SCE change (a later end to 

the snow season) in RCP 4.5 and a negative change (an earlier end to the snow season) in RCP 8.5. 

 490 

 

Figure 6.22: Difference in mean snow cover end between RCP 4.5 and historical runs for (a) CCSM4, (c) CNRM-CM5 
and (e) GFDL-CM3, and between RCP 8.5 and historical runs for (b) CCSM4, (d) CNRM-CM5 and (f) GFDL-CM3. 
White data gaps on land are water bodies. 

An increasingly early end to the snow cover season is revealed in both the CCSM4 and GFDL-495 

CM3 projections. In RCP 4.5, CCSM4 shows low changes (-5 to -10 days) in mean SCE over the 

majority of the region (Fig. 6.22a). Larger changes are projected on the west coast of the region and 

over the Scandinavian Mountains reaching -25 days there. CCSM4 sees an overall larger change in mean 

SCE in RCP 8.5 over the plains. Indeed, the SCE becomes increasingly earlier over the majority of the 

centre of Northern Fennoscandia, with SCE dates earlier by 10 to 15 days in RCP 8.5 compared to 4.5. 500 
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The mean SCE change over the western coast and the Scandinavian Mountains in CCSM4 is more 

similar in both RCP 4.5 and RCP 8.5, though the SCE is slightly earlier in the higher emission scenario.  

The changes in SCE in the GFDL-CM3 future projections are the greatest of all three CMIP5 

forcing models (Fig. 6.22e and 6.22f). In both emission scenarios, GFDL-CM3 outputs project an earlier 

end of the snow season. In RCP 4.5, the majority of Northern Fennoscandia is projected to see a SCE 505 

20 (over the Scandinavian Mountains) to 35 (around the Gulf of Bothnia) days earlier than over the 

historical period. A difference as high as 60 days is projected over a very small area: the edge of the 

western coast. In the RCP 8.5 GFDL-CM3 projections, there is a more extreme advance in the SCE over 

the entirety of Northern Fennoscandia compared to RCP 4.5, which includes a greater advance in the 

SCE over the western part of the region, in contrast to the CCSM4 RCP 8.5 projection. The advance in 510 

the SCE over the west coast is between 55 and 90 days; this is the largest projected change in SCE in 

all runs. The SCE advance over the rest of the region is greater in RCP 8.5 compared to 4.5 by 10 to 20 

days. The lowest change in SCE projected in the “business-as-usual” scenario is 35 days.  

6.3.5.3 Snow cover duration 

Figure 6.23 shows the difference in mean SCD between the future and historical runs. All CMIP5 models 515 

agree that in both emission scenarios mean SCD will be lower over 2090 to 2099 than it was between 

1990 and 1999. Only a very small area is projected to have a longer SCD in CNRM RCP 4.5 and this 

increase is of less than 5 days (see Fig 6.23c). All CMIP5 forcing models agree that the higher the 

emissions over the next century, the larger the negative impact on the duration of the snow cover season.  

 520 

Figure 6.23: Difference in mean snow cover duration between RCP 4.5 and historical runs for (a) CCSM4, (c) CNRM-
CM5 and (e) GFDL-CM3, and between RCP 8.5 and historical runs for (b) CCSM4, (d) CNRM-CM5 and (f) GFDL-
CM3. White data gaps on land are water bodies. 
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Table 6.6 shows the mean difference in SCD over the entire region of Northern Fennoscandia 

projected in the different WRF runs. Though the CMIP5 models agree on the direction of change, the 525 

magnitude of decrease in SCD is subject to important inter-model spread. GFDL-CM3 projects the 

greatest decrease in the SCD with a 50-day decrease and 74-day decrease projected on average in RCP 

4.5 and RCP 8.5 respectively. These projections are much higher than those of the CCSM4 and CNRM 

runs. CCSM4 models a decrease almost twice as great as those projected by CNRM, and GFDL projects 

changes more than four times greater than that of CNRM in RCP 4.5 and more than three times greater 530 

than of CNRM in RCP 8.5. 

 

Model run RCP 4.5 RCP 8.5 

CCSM4 - 21 days - 36 days 

CNRM-CM5 - 12 days - 20 days 

GFDL-CM3 - 50 days - 74 days 

‘Ensemble’ mean - 28 days - 43 days 

 

Table 6.6 Mean difference in SCD between future and historical runs over the entire domain.  

This inter-model spread is also found in the maximum decrease in SCD projected over the Northern 535 

Fennoscandian region. CNRM-CM5 projects a maximum difference in SCD of 30 and 40 days for the 

lower and higher emission scenarios respectively; CCSM4 models a maximum change in SCD of 45 

and 70 days in RCP 4.5 and 8.5 respectively; the GFDL outputs see a maximum difference in SCD of 

80 and 110 days in RCP 4.5 and 8.5 respectively. 

6.4 Discussion 540 

In this section, the previously described results are revisited, with a focus on the causes for these changes 

and what this means for the future of snow cover in a warming world. It is not straightforward to 

determine causes of changes in snow cover characteristics. In fact, Bulygina et al. (2011) found that, in 

Northern Eurasia, nonlinearity is a key feature of changes of the thermal and hydrological regimes over 

the past century. They explain that snow cover characteristics also change nonlinearly as they are a 545 

product of multiple climate factors that simultaneously affect them. However, it is possible to look at 

these various climate factors for some explanation for changes in snow.  

In this chapter, both changes in temperature and precipitation are considered. There is a clear 

directional change for temperature: for all forcing models and in both emission scenarios, WRF projects 

an increase in annual mean SAT over the entirety of Northern Fennoscandia in the 2090 - 2099 interval 550 

compared to 1990 - 1999. Contrastingly, there is very high inter-model variability in the total 

precipitation change projections. CNRM-CM5 reveals an overall decrease in precipitation over Northern 

Fennoscandia, while CCSM4 and GFDL-CM3 both have an increase in precipitation by the end of the 

next century but with different magnitudes of change. CNRM-CM5, however, was found to have the 

highest RMSE for modelling precipitation in Chapter 5 and was originally selected for being a slight 555 
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outlier CMIP5 model. For example, Voldoire et al. (2013) found a slight negative bias in precipitation 

over the Norwegian mountains for CNRM-CM5 outputs when compared to observational data. A study 

published in 2014 made projections of future changes in annual mean temperature and total annual 

precipitation over Europe, including Northern Fennoscandia for 2071 - 2100 compared to 1971 - 2000 

(Jacob et al., 2014). Though they did not make any projections of future changes in snowfall or snow 560 

cover, it is useful to compare their findings regarding temperature and precipitation as they used more 

models (seven RCMs and five GCMs). Jacob et al. (2014) found that in RCP 8.5, the majority of 

Northern Scandinavia will be exposed to a warming greater than 4.5 °C compared to 1971 - 2000, which 

would be avoided in RCP4.5. The authors also found changes in total annual precipitation across Europe. 

The ensemble-mean projects a statistically significant increase in Northern Europe of up to about 25 %. 565 

Dankers et al. (2005) also found that by the end of the century, mean annual precipitation in Northern 

Fennoscandia is expected to increase, by 10 to 40 %. As results from these studies point towards a 

significant increase in precipitation over Northern Europe (including Northern Fennoscandia) by the end 

of the 21
st
 century, this reaffirms the that CNRM is an outlier CMIP5 model, and that an overall increase 

in precipitation by the end of the 21
st
 century is most likely.  570 

However, despite this projected increase in precipitation a considerable decrease in snowfall is 

found in all model runs. This counter-intuitive change is not the only one associated with future changes 

in snow in a warming world. Mussleman et al. (2017) investigated spring snow melt in the western USA. 

They found that slower snow melt will occur in a warmer climate. This is due to the reduction of spring 

snow cover extent, resulting in less snow being exposed to sufficiently high energy fluxes to drive 575 

moderate to high snow melt rates. Thus, counter-intuitive changes may be a defining characteristic of 

the future of snow cover in a warming world. The large, projected decreases in snowfall in spite of 

considerable increases in precipitation are explained by the shift from solid to liquid precipitation, likely 

caused by the projected increases in mean temperature in all seasons (e.g. Ye et al., 2008; Mudryk et al., 

2017), suggesting that increased temperature outcompetes increased precipitation. Indeed, for all 580 

stations investigated and, in all models and emission scenarios except for the summer season in CNRM-

CM5 RCP 4.5, a decrease in the percentage of solid precipitation (up to 100 % in summer) is projected 

to occur by the end of the 21st century in all seasons. Understanding the likelihood and degree of such 

shifts from solid to liquid precipitation is key in snow studies due to the importance of rain-on-snow 

events. Indeed, rain-on-snow events have been shown to lead to accelerated snow metamorphism, 585 

increased runoff in heavy rain and increased snow melt (Singh et al., 1997). Following rain-on-snow 

events, snow cover is slightly reduced in forested areas and a more significant reduction occurs in open 

areas, though in both cases rain-on-snow events increase snow melt (Marks et al., 2001). Increasing 

liquid precipitation over solid precipitation would thus potentially lead to increasing snow melt and, as 

a result, a decrease in SCD.  590 

Future snow cover timing, including SCS, SCE and SCD, are analysed in this chapter and a 

decrease in SCD is indeed projected. All CMIP5 models agree that in both emission scenarios mean 

SCD will be lower over 2090 to 2099 than it was between 1990 and 1999. All CMIP5 forcing models 
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agree that the higher the emissions over the next century, the larger the negative impact on the duration 

of the snow cover season. The ensemble mean SCD change is of -28 days and -43 days in RCP 4.5 and 595 

RCP 8.5 respectively. This matches the overall large projected increase in temperature, associated 

decrease in snowfall and likely increases in rain-on-snow events. In both emission scenarios and for all 

three CMIP5 models, the WRF outputs indicate a delay in the start of the snow season across the entire 

Northern Fennoscandian region. The largest projected change in SCS is observed in the GFDL-CM3 

model. This is unsurprising as the GFDL-CM3 model projections have the largest increase in mean SAT 600 

in autumn and winter. An increasingly early end to the snow cover season is revealed in the CCSM4 

projections, GFDL-CM3 projections, and in the majority of the region in CNRM-CM5 RCP 8.5. This 

projected earlier SCE matches results from Mussleman et al. (2017) who found that there is a tendency 

towards earlier melt for all melt rate categories and snowpacks in a warming world. Understanding 

future changes to the end of the snow season is important in terms of understanding future water supply. 605 

Barnett et al. (2005) demonstrated that an earlier end to the snow season, regardless of whether it is 

associated with changes in precipitation, will lead to a shift in peak river runoff to winter and early 

spring, away from summer and autumn when water demand is highest. These conclusions are relevant 

to Northern Fennoscandia, as all areas investigated in this chapter, including the Scandinavian 

Mountains, are projected to see earlier SCE in the majority of the model runs. The snow cover season 610 

ending consistently earlier in a warming world is of great concern at a global level, as more than half of 

the world’s drinking water is provided by rivers (Barnett et al., 2005), which are sensitive to changes in 

snow melt. 

In summary, the results of this chapter communicate a message of increased temperature 

outcompeting increased precipitation (for some models), leading to large decreases in snowfall causing 615 

decreased snow cover duration. Importantly, in the lower emission scenario changes in temperature, 

precipitation and snowfall are less, and snow cover is least impacted compared to the higher emission 

scenario. Therefore, aiming to reduce greenhouse gas emissions is still crucial to reducing the negative 

impacts of a warming world on Arctic snow cover. 

6.5 Conclusions 620 

Across all aspects of future climate investigated in this chapter, it is clear that the CMIP5 forcing model 

makes a huge difference in the projections: inter-model spread is the largest uncertainty in my results. 

Nevertheless, some interesting conclusions can be extracted from the results of this analysis.  

 

Relating to changes in climate over Northern Fennoscandia: 625 

• For all forcing models and in both emission scenarios, WRF projects an increase in annual mean 

SAT over the entirety of Northern Fennoscandia in the 2090 - 2099 interval compared to 1990 

- 1999. Model results clearly indicate Arctic Amplification over Northern Fennoscandia with 

the ‘ensemble’ mean SAT increase over the domain (3.6 °C) being double the global ensemble 
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mean (1.8 °C; IPCC, 2013) in RCP 4.5, and nearly 40 % greater in RCP 8.5 (domain: 6.0 °C; 630 

global: 3.7 °C). 

• There is very high inter-model variability in the total precipitation change projections. CNRM-

CM5 reveals an overall decrease in precipitation over Northern Fennoscandia, while CCSM4 

and GFDL-CM3 both have an increase in precipitation by the end of the next century but with 

very different magnitudes of change. This is unsurprising as CNRM-CM5 was selected as an 635 

outlier in the CMIP5 models. The lowest changes in precipitation in all forcing models occur in 

spring and in summer.  

• The inter-model spread in the snowfall projections is small when compared to total precipitation 

changes. All three model projections agree on an overall decrease in annual total snowfall over 

Northern Fennoscandia, with the greatest decrease over the Scandinavian Mountains closely 640 

followed by the decrease in snowfall over the Barents Sea. 

• Except for the summer season in CNRM-CM5 RCP 4.5, in all models and emission scenarios, 

a decrease in the percentage of solid precipitation (up to 100 % in summer) is projected to occur 

by the end of the 21
st
 century in all seasons. Additionally, RCP 8.5 consistently sees a higher 

decrease in solid precipitation (16 - 73 % annual decrease) than RCP 4.5 at all stations (8 – 41 645 

% annual decrease), and for all models and seasons. 

• Finally, despite the large increases in total precipitation projected over the majority of 

Fennoscandia in both the CCSM4 and GFDL-CM3 output, both models indicate a significant 

contemporaneous decrease in total annual snowfall in both emission scenarios. 

Relating to changes in the timing of the snow cover season: 650 

• The start of the snow cover season is delayed in future projections and is increasingly delayed 

with greater greenhouse gas concentrations. Little to no change in future in SCE is shown in the 

CNRM-CM5 model outputs while an increasingly early end to the snow cover season is shown 

in both CCSM4 and GFDL-CM3 projections. 

• All CMIP5 models agree that in both emission scenarios mean SCD will be lower over 2090 to 655 

2099 than it was between 1990 and 1999. All CMIP5 forcing models agree that the higher the 

emissions over the next century, the larger the negative impact on the duration of the snow cover 

season. The ensemble mean SCD change is of -28 days and -43 days in RCP 4.5 and RCP 8.5 

respectively. 

 660 

In summary, large changes in climate and, especially, snow cover are projected to occur in Northern 

Fennoscandia by the end of the 21
st
 century in both a mitigation and a ‘business-as-usual’ scenario. 

Importantly, in the lower emission scenario changes in SAT, precipitation and snowfall are less, and 

snow cover is least impacted. Thus, aiming to reduce greenhouse gas emissions is still crucial to reducing 

the anthropogenic impact on Arctic snow cover. 665 
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Chapter 7 
Conclusions 

7.1 Introduction 

In this dissertation, I have studied Arctic to sub-Arctic snow in Northern Fennoscandia by using a 

combination of field measurements, station data, remote sensing data and regional climate model 5 

outputs. The overarching aim of my dissertation was to answer the following two research questions: 

1. What are the uncertainties in remote sensing and climate modelling datasets used in snow 

studies? 

2. How has snow cover been changing since the 1960s, and how will it change over the next 

century, at a regional level over Northern Fennoscandia? 10 

7.2 Summary of answers to research questions 

7.2.1 Question 1: Uncertainties in remote sensing and climate model datasets 

The first aspect of my dissertation was assessing the accuracy of the datasets I used to study snow, 

namely the Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing product and the 

Weather Research and Forecasting (WRF) regional climate model. Assessing the uncertainty of these 15 

datasets was crucial due to the difficulties of retrieving snow data from remote sensing and modelling 

snow in boreal forest environments. The evaluation of the MODIS dataset was twofold. MODIS was 

directly ground truthed using field data (Chapter 3) and the processed version of this remote sensing 

data was also evaluated by comparing its predictions to those of meteorological stations in the western 

mountain regions (WMR; Chapter 4). 20 

A combined ground truthing of both MODIS snow products, albedo and Normalised Difference 

Snow Index (NDSI; used as fractional snow), was undertaken using data collected in the Khibiny 

Mountains over two field seasons. The MODIS ground truthing effort was a success despite the cloud 

cover limiting the number of pixels that could be ground truthed. Overall 62 and 43 albedo 

measurements were used from the Aqua and Terra snow datasets respectively. The overall RMSE (root 25 

mean square error) for both MODIS instruments was found to be less than 10 % (8.1 % and 8.9 % RMSE 

for Aqua and Terra respectively). This is a low error and is of the same order of magnitude as RMSEs 

found in MODIS ground truthing studies undertaken over homogenous pixels (Stroeve et al., 2013).  

For the evaluation of the processed MODIS dataset, I compared the MODIS-derived timing of 

the snow cover season and snow trends to those recorded at local stations. The average differences 30 

between the snow cover start (SCS) and snow cover end (SCE) dates derived from the station data and 
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the processed MODIS dataset are 8.6 and 10.4 days, respectively, both relatively low errors. I also found 

that for 85.8 % of pixels investigated (SCS and SCE combined) the deviation in the MODIS-derived 

dates is less than 20 days which is an improvement on previous studies of this kind (Dietz et al., 2012). 

I also demonstrated that it is possible to extract realistic trends from the processed MODIS dataset. 35 

MODIS-extracted trends were shown to be identical to observed trends in that MODIS was able to 

identify the only statistically significant trend while not giving spuriously significant trends elsewhere. 

Thus, MODIS was shown to be a highly reliable snow dataset for the WMR of Northern Fennoscandia. 

 

The skill of the WRF regional climate model at modelling snow and temperature was tested in 40 

Chapter 5. First a sensitivity analysis was undertaken, testing twelve different physics setups in order to 

find the best setup of the model for snow studies over the WMR. This sensitivity test of WRF was done 

at very high resolution (1 km) over my six-week long 2016 field season. The outputs from these runs 

were tested by comparing them to remote sensing and field data using statistical evaluation scores. WRF 

outputs using the best setup found were shown to be reliable for both temperature and snow modelling, 45 

with a high overall Proportion Correct score (88.1 %) for its representation of snow on the ground. WRF 

was also shown to have a high Probability of Detection of snow (94.7 %) and low Probability of Over 

Detection of snow (20.1 %). One of the main issues with the WRF modelling of snow was over 

mountains, where WRF considerably underestimated the early-season snow depth. At the low-elevation 

stations, WRF modelled snow depth and melt rates well.  Overall, the WRF model does an excellent job 50 

at modelling the variability of the temperature over the field season. Finally, the effects of spectral 

nudging were tested and were found not to have a strong negative impact on the model outputs. Spectral 

nudging was then used in the decadal WRF runs later in the dissertation.  

In addition to a WRF sensitivity test, a validation of WRF historical outputs over Northern 

Fennoscandia was undertaken. The validated runs were forced by three CMIP5 models (CCSM4, 55 

CNRM-CM5 and GFDL-CM3) and one reanalysis (ERA-I) in order to test the CMIP5-forced WRF skill 

relative to a reanalysis dataset shown to be very reliable over Northern Fennoscandia (e.g. Marshall et 

al., 2018). Observations from ten meteorological stations were used as truth in this validation study. 

Overall, this validation confirmed the findings of the sensitivity study, in that WRF modelled 

temperature very well, and was less accurate at modelling precipitation. WRF forced by all three CMIP 60 

models and ERA-I data does an excellent job at modelling temperature and out of the four historical 

runs, CCSM4-forced WRF does the best at modelling temperature. The original CMIP5 dataset had 

been bias adjusted before being used to force WRF, thus this result is not surprising. At all but one 

station, ERA-I- and CMIP-forced WRF overestimate total precipitation. In all runs, WRF models low 

precipitation better than high precipitation events. ERA-I-forced WRF was shown to be more effective 65 

than CMIP5-forced WRF at modelling high-precipitation events. However, the lowest precipitation bin 

(0-5 mm) makes up 90.3 % of the precipitation values at the 10 stations studied and thus higher errors 

in the high-precipitation events have less of an impact on the overall RMSE. CNRM-CM5 was shown 

to be the least reliable model in terms of precipitation. Overall, WRF was demonstrated to model snow, 
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temperature and precipitation well, thus showing that WRF is reliable for the modelling work undertaken 70 

in Chapter 6. It is nevertheless useful to bear in mind the higher error in the precipitation projections 

when considering those results. 

7.2.2 Question 2: Past and Future snow cover changes in Northern Fennoscandia 

The second question addressed in this dissertation can be divided into two sections: past and future 

changes. In this dissertation, I used a combination of field, station and remote sensing data to study past 75 

and recent snow in the Khibiny Mountains and the broader WMR, as defined in Chapter 4. Results from 

my field seasons in the Khibiny Mountains indicate that inter-annual variability is high in the region in 

terms of temperature, wind and snow. Station snow depth data and MODIS NDSI data were converted 

into SCS and SCE dates and from these snow cover duration (SCD) was calculated. 

Although for some areas and some years, the start and end of the snow season could not be 80 

detected due to long overcast periods, the MODIS post-processing reduced the number of missing pixels 

by more than half. Both high inter-annual variability and spatial variability were identified in the long-

term snow cover trends in the WMR of the Kola Peninsula. Between 2000 and 2016, the end of the snow 

cover season has become increasingly later in the plains of the WMR, but there is not such a clear trend 

in SCE in the higher altitude (> 400 m above sea level) areas. However, overall, the snow cover duration 85 

has been decreasing at higher altitudes and increasing at lower altitudes between these dates. 

Contrastingly, a uniform, statistically significant, regional decrease in the duration of the snow cover 

season has occurred between 1992 and 2016 across the lower altitudes of the western Murmansk Region. 

Snow depth was also found to be highly spatially variable and the difference in maximum yearly snow 

depth was found to be over 50 cm between two stations only 2 km apart at very similar altitudes in 90 

valleys within the Khibiny Mountains (PABGI Khibiny and MSU Khibiny). These differences in snow 

depth as well as some of the trends in the snow cover season are probably explained by a combination 

of changes in air temperature, wind and, potentially, atmospheric patterns over the WMR (Farlaz, 2004). 

The second part of this research question concerns future changes in snow. In order to make 

predictions of future snow over Northern Fennoscandia, a regional climate model, WRF, was used to 95 

downscale three CMIP5 models (CCSM4, CNRM-CM5 and GFDL-CM3). Predictions were made for 

two RCP scenarios: a mitigation scenario (RCP 4.5) and a “business-as-usual” scenario (RCP 8.5). 

Future runs were made for the 2090 to 2099 interval and WRF runs were also performed over a historical 

period (1990 - 1999) to enable a comparison between past and future climate. As predicted by Hawkins 

and Sutton (2009) and by Overland et al. (2014), inter-model spread had a large impact on my results. 100 

Nevertheless, some interesting conclusions were extracted from the results of this analysis.  

Both total snowfall and the fraction of solid to liquid precipitation are projected to change by 

the end of the 21st century. The inter-model spread is smaller in the snowfall predictions compared to 

the total precipitation changes. All three CMIP5 models agree on an overall decrease in total annual 
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snowfall over Northern Fennoscandia, with the greatest decrease occurring over the Scandinavian 105 

Mountains and over the Barents Sea. With the exception of the summer season in CNRM-CM5 RCP 

4.5, in all models and emission scenarios, a decrease in the percentage of solid precipitation is predicted 

by the end of the 21st century in all seasons. RCP 8.5 consistently sees a higher decrease in solid 

precipitation than RCP 4.5 at all stations, and for all models and seasons. The large decreases projected 

in the percentage of solid precipitation explain the decreases in total annual snowfall modelled despite 110 

the large increases in total precipitation modelled over a majority of Fennoscandia in both the CCSM4 

and GFDL-CM3 outputs. 

The future runs also project changes in the timing and duration of the snow cover season. The 

start of the snow cover season is modelled to be later between 2090 - 2099 compared to 1990 - 1999. 

Importantly, SCS is increasingly delayed with increasing greenhouse gas concentrations. Little to no 115 

change in future in SCE is predicted in the CNRM model runs, but both other models (CCSM4 and 

GFDL) predict an increasingly early end to the snow cover season by the end of the century. Finally, all 

CMIP5 models agree that in both emission scenarios mean SCD will be lower over 2090 to 2099 than 

it was between 1990 and 1999. All CMIP5 forcing models agree that the higher the emissions over the 

next century, the larger the negative impact on the duration of the snow cover season. The ensemble 120 

mean SCD change is of -28 days and -43 days in RCP 4.5 and RCP 8.5 respectively. 

To summarise, snow cover duration and depth have been undergoing changes over the past few 

decades in the WMR and large changes in both climate and snow cover are expected to occur in Northern 

Fennoscandia by the end of the 21st century in both a mitigation and a ‘business-as-usual’ scenario.  

7.3 Summary of novel work  125 

7.3.1 Novel outputs 

The main novel outputs of the work done in this dissertation are summarised in the following points: 

1. Ground truthed MODIS snow products for the first time over the Khibiny Mountains in Arctic 

Russia. 

2. Focused on a new area (WMR) in Northern Fennoscandia to study past changes in snow.  130 

3. Used remote sensing for high resolution study of timing of snow cover, including start, end and 

duration, for the first time over the WMR. 

4. Experimentally determined the optimal model parameterisation for WRF over the WMR which 

includes the double-moment Morrison et al. (2009) microphysics scheme and the Iacono et al. 

(2008) radiation scheme which improves the representation of subgrid-scale cloud variability. 135 

5. Validated CMIP5-forced WRF across Northern Fennoscandia for the first time. 

6. Made regional, high-resolution predictions of climate (temperature and precipitation) and snow 

(snowfall, timing and duration of the snow cover season) using WRF over the entirety of 
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Northern Fennoscandia. This is the first time such snow predictions have been performed in this 

region. 140 

7. Created two new datasets: 17-years of combined Aqua and Terra MODIS data processed to 

remove as much cloud cover as possible over the WMR and nine decades of model runs can 

now be used for further study by my team with three decadal historical runs (1990 - 1999) and 

six future decadal runs (2090 - 2099) covering two RCP scenarios (RCP 4.5 and 8.5) and three 

CMIP5 models.  145 

7.3.2 Results relevant to debates in the literature 

Some of my results are pertinent to some debates in the literature. In Chapter 3, I demonstrate that 

MODIS retrievals are accurate up to SZA of just below 70 º supporting work done by Stroeve et al. 

(2013) which demonstrated inaccuracies in the conclusions of Wang and Zender (2010). The literature 

also contains disagreements regarding the impacts of liquid water on albedo retrievals. Wang and Zender 150 

(2010) argued that MODIS retrievals are less accurate for wet snow and Painter et al. (2009), 

contrastingly, explained that MODIS retrievals are not affected by the presence in liquid water in the 

snow surface. My results in Chapter 3 support neither of these findings. Indeed, I found that as snow 

wetness increases, MODIS errors decrease, though it is possible that MODIS retrieval date is an 

insufficient proxy for snow wetness. 155 

Finally, my results in Chapter 4 have reconciled seemingly contradictory findings concerning 

the length of the snow-free season in the Kola Peninsula (Bulygina et al, 2009; Kozlov and Berlina, 

2002). Extracting the trends in the snow cover duration at Kandalaksha station over comparable 

timescales to these two studies demonstrates that the contrasting conclusions of these previous studies 

can be explained by the different time periods analysed. Kandalaksha station shows a statistically 160 

significant lengthening of the snow cover season in the 1936 to 1998 interval of 4.5 days/decade, thus a 

decrease of the length of summer similar to Kozlov and Berlina (2002). However, in the 1966 to 2007 

interval, a shortening of the snow cover season of 1.9 days/decade is found, though it is not statistically 

significant. This trend supports the conclusions of Bulygina et al. (2009). 

7.4 Future direction 165 

Overall, there is much potential to expand on the work done in this dissertation. Firstly, there is potential 

for further work to enhance the existing datasets created in this study. The principal example of this is 

the possibility of further analysis on the rich modelling dataset described in Chapter 6. Investigating 

changes in atmospheric circulation patterns could help explain the changes in climate and snow 

described in this chapter. Another potential direction of study would be to analyse climate extremes, 170 

such as the frequency of extreme precipitation and extreme snowfall events, which can have significant 

impacts on human activity and the natural environment in Northern Fennoscandia (e.g. Callaghan et al., 

2010).  
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The second type of further work would be to improve the datasets obtained in the field, both in 

terms of increasing the amount of data and the quality of the data used. It would be useful to undertake 175 

another field season in the Khibiny Mountains in order to collect additional data: collecting more albedo 

point measurements for validation would likely improve the significance of my conclusions in Chapter 

3. In addition to this, measurements of snow wetness over the entire melting season would be useful to 

test my conclusions regarding the impact of snow wetness on MODIS retrievals. A second example of 

greater data improving results would be to increase the interval of time of analysis of the past changes 180 

in snow using MODIS data (Chapter 4). Indeed, as of 2019, a 20-year MODIS dataset is available. A 

study of trends in snow cover over this longer period would be a more robust analysis (Bormann et al., 

2018). 

To improve the quality of the results, two different sets of data used could be refined. First, with 

more time and resources, an error analysis could be undertaken on field measurements by completing 185 

another field season with an emphasis on spatial variability of albedo at a sub-500 m scale. By doing 

this, it would be possible to add an interval of variability in the observations used as ground truth in the 

validation of the MODIS snow data, and thus make the ground truthing more precise (Chapter 3). 

Another step to increase the reliability of results would be to bias-correct the CNRM- and GFDL-forced 

WRF precipitation (Chapter 5). This would improve results in terms of reliability of future projections 190 

and would make comparisons between the outputs of these two models to the already bias-corrected 

CCSM4 outputs more straightforward. Bias correction can be done by using station data as ground truth 

and spatially nudging the WRF outputs in the direction of the known regional precipitation.  

Finally, in addition to further analysis on pre-existing datasets and additions and improvements 

to the datasets used, spatial extrapolation of some of the work undertaken would be valuable. Indeed, 195 

the work done in Chapter 4 could be expanded to a wider area. In this chapter, the study area was small, 

as I was studying regional changes at a very high resolution. With more time, this analysis could be 

performed on the entirety of Northern Fennoscandia whilst keeping the high resolution. This would 

provide high-resolution information on the recent changes in the timing and duration of the snow cover 

season over Northern Fennoscandia.  200 

7.5 Overview 

In conclusion, I believe the research described in this dissertation was successful for two 

reasons. Firstly, this dissertation contributes novel science, including the creation of two new datasets: 

a processed 17-year MODIS dataset with reduced cloud cover over the WMR and nine decades of 

climate model outputs over Northern Fennoscandia. Secondly, the overarching aims of my dissertation 205 

were met and I was able to answer my two main research questions, as described above. The remote 

sensing dataset used proved to be highly reliable to study snow in the WMR. And by undertaking a 

sensitivity analysis of WRF, an optimised model parameterisation was used which showed excellent 
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skill in modelling temperature over Northern Fennoscandia and good skill as modelling precipitation, 

both key parameters in the modelling of snow. Using these datasets, snow cover was shown to have 210 

changed over the past few decades over the WMR, with a decrease in SCD in the low elevations between 

1992 and 2016 and an increase there between 2000 and 2016. Regarding the future of snow cover over 

Northern Fennoscandia, despite high inter-model spread in the results, large changes in climate and 

snow cover are expected to occur in Northern Fennoscandia by the end of the 21st century in both a 

mitigation and a ‘business-as-usual’ scenario. Importantly, changes in temperature, precipitation and 215 

snowfall are all higher, and snow cover is most impacted, in the higher emission scenario. RCP 8.5 

consistently sees a higher decrease in solid precipitation than RCP 4.5 at all stations, and for all models 

and seasons, for example. Thus, aiming to reduce greenhouse gas emissions is still crucial to reducing 

anthropogenic impact on Northern Fennoscandian snow.  
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