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Abstract

A finite form of de Finetti’s representation theorem is established using elementary
information-theoretic tools: The distribution of the first k random variables in an exchange-
able binary vector of length n ≥ k is close to a mixture of product distributions. Closeness
is measured in terms of the relative entropy and an explicit bound is provided.
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1 Introduction

A finite sequence of random variables (X1, X2, . . . , Xn) is exchangeable if it has the same distri-
bution as (Xπ(1), Xπ(2), . . . , Xπ(n)) for every permutation π of {1, 2, . . . , n}. An infinite sequence
{Xk ; k ≥ 1} is exchangeable if (X1, X2, . . . , Xn) is exchangeable for all n. The celebrated rep-
resentation theorem of de Finetti [8, 9] states that the distribution of any infinite exchangeable
sequence of binary random variables can be expressed as a mixture of the distributions corre-
sponding to independent and identically distributed (i.i.d.) Bernoulli trials. For discussions of
the role of de Finetti’s theorem in connection with the foundations of Bayesian statistics and
subjective probability see, e.g, [10, 5] and the references therein.

Although it is easy to see via simple examples that de Finetti’s theorem may fail for finite
binary exchangeable sequences, for large but finite n the distribution of the first k random
variables of an exchangeable vector of length n admits an approximate de Finetti-style repre-
sentation. Quantitative versions of this statement have been established by Diaconis [10] and
Diaconis and Freedman [13]. The approach of Diaconis’ proof in [10] is based on a geometric
interpretation of the set of exchangeable measures as a convex subset of the probability simplex.

The purpose of this note is to provide a new information-theoretic proof of a related finite ver-
sion of de Finetti’s theorem. For each p ∈ [0, 1], let Pp denote the Bernoulli probability mass func-
tion with parameter p, Pp(1) = 1−Pp(0) = p, and write D(P‖Q) =

∑
x∈B P (x) log[P (x)/Q(x)]

for the relative entropy (or Kullback-Leibler divergence) between two probability mass functions
P,Q on the same discrete set B; throughout, ‘log’ denotes the natural logarithm to base e.
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Theorem. Let n ≥ 2. If the binary random variables (X1, X2, . . . , Xn) are exchangeable, then
there is a probability measure µ on [0, 1], such that, for every 1 ≤ k ≤ n, the relative entropy
between the probability mass function Qk of (X1, X2, . . . , Xk) and the mixture Mk,µ :=

∫
P kp dµ(p)

satisfies:

D(Qk‖Mk,µ) ≤ 5k2 log n

n− k
. (1)

By Pinsker’s inequality [7, 19], ‖P −Q‖2 ≤ 2D(P‖Q), the theorem also implies that,

‖Qk −Mk,µ‖ ≤ k
(10 log n

n− k

) 1
2
, (2)

where ‖P −Q‖ := 2 supB |P (B)−Q(B)| denotes the total variation distance between P and Q.
This bound is suboptimal in that, as shown by Diaconis and Freedman [13], the correct rate
with respect to the total variation distance in (2) is O(k/n). On the other hand, (1) gives an
explicit bound for the stronger notion of relative entropy ‘distance.’

Rather than to obtain optimal rates, our primary motivation is to illustrate how elementary
information-theoretic ideas can be used to provide an alternative proof strategy for de Finetti’s
theorem, following a long series of works developing this point of view, including information-
theoretic proofs of Markov chain convergence [21, 16], the central limit theorem [4, 2], Poisson
and compound Poisson approximation [18, 3], and the Hewitt-Savage 0-1 law [20].

Before turning to the proof, we mention that there are numerous generalisations and exten-
sions of de Finetti’s classical theorem and its finite version along different directions; see, e.g., [11]
and the references therein. The classical de Finetti representation theorem has been shown to
hold for exchangeable processes with values in much more general spaces than {0, 1} [15], and
for mixtures of Markov chains [12]. Recently, an elementary proof of de Finetti’s theorem for
the binary case was given in [17], a more analytic proof appeared in [1], and connections with
category theory were drawn in [14].

2 Proof of the finite de Finetti theorem

We first need to introduce some notation. Let n ≥ 2 be fixed. For any 1 ≤ i ≤ j ≤ n, write Xj
i

for the block of random variables Xj
i = (Xi, Xi+1, . . . , Xj). Denote by Ni,j the number of 1s in

Xj
i , so that Ni,j =

∑j
k=iXk, and for every 0 ≤ ` ≤ n write A` for the event {N1,n = `}.

The main step of the proof is the estimate in the lemma below, which gives a bound on the
degree of dependence between Xi and Xk

i+1, conditional on A`. This bound is expressed in terms
of the mutual information. Let (X,Y ) be two discrete random variables with joint probability
mass function (p.m.f.) PXY and marginal p.m.f.s PX and PY , respectively. Recall that the
entropy H(X) of X, often viewed as a measure of the inherent “randomness” of X [6], is defined
as, H(X) = H(PX) = −

∑
x PX(x) logPX(x), where the sum is over all possible values of X

with nonzero probability. Similarly, the conditional entropy of Y given X is,

H(Y |X) = −
∑
x

PX(x)
∑
y

PY |X(y|x) logPY |X(y|x),

where PY |X(y|x) = PXY (x, y)/PX(x).
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The mutual information between X and Y is I(X;Y ) = H(Y ) − H(Y |X), and it can also
be expressed as:

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ) = D(PXY ‖PXPY ).

For any event A, we write I(X;Y |A) for the mutual information between X and Y when all
relevant p.m.f.s are conditioned on A.

From the definition, an obvious interpretation of I(X;Y ) is as a measure of the amount
of “common randomness” in X and Y . Additionally, since I(X;Y ) is always nonnegative and
equal to zero iff X and Y are independent, the mutual information can be viewed as a universal,
nonlinear measure of dependence between X and Y . See [6] for standard properties of the
entropy, relative entropy and mutual information.

Finally, we record an elementary bound that will be used in the proof of the lemma. Write
h(p) = −p log p − (1 − p) log(1 − p), p ∈ [0, 1], for the binary entropy function. Then a simple
Taylor expansion gives:

|h(p)− h(q)| ≤ |p− q| ×max

{∣∣∣ log
(1− p

p

)∣∣∣, ∣∣∣ log
(1− p

p

)∣∣∣} , p, q ∈ (0, 1). (3)

Lemma. For all 1 ≤ k ≤ n, all 1 ≤ i ≤ k − 1, and any 0 ≤ ` ≤ n:

I(Xi;X
k
i+1|A`) ≤

5k log n

n− k
.

Proof. We assume without loss of generality that k ≤ n/2, for otherwise the result is trivially
true since the mutual information in the statement is always no greater than 1. Also, if ` = 0 or n
the conditional mutual information is zero and the result is again trivially true. Let Qn denote
the p.m.f. of Xn

1 . By exchangeability, conditional on A`, all sequences in {0, 1}n with exactly `
1s have the same probability under Qn, so Xn

1 conditional on A` is uniformly distributed among
all such sequences. This implies that for all 1 ≤ k ≤ n/2, 1 ≤ i ≤ k − 1, and 1 ≤ ` ≤ n− 1,

P(Xi = 1|N1,n = `,Ni+1,k) =

( n−(k−i)−1
`−Ni+1,k−1

)
( n−(k−i)
`−Ni+1,k

) =
`−Ni+1,k

n− (k − i)
.

For the mutual information we have:

I(Xi;X
k
i+1|A`) = E

(
h
( `
n

)
− h
( `−Ni+1,k

n− (k − i)

)∣∣∣∣N1,n = `

)
≤ E

(∣∣∣h( `
n

)
− h
( `−Ni+1,k

n− (k − i)

)∣∣∣I{`+k−i−n+1≤Ni+1,k<`}

∣∣∣∣N1,n = `

)
+ h

( `
n

)
P(Ni+1,k = `

∣∣A`) + h
( `
n

)
P(Ni+1,k ≤ `+ k − i− n

∣∣A`). (4)

If the probability in the third term above is nonzero, then necessarily ` ≥ n − k + 1 and thus,
using n ≥ 2k, h(`/n) ≤ 2 k

n−k log n. On the other hand, if ` + k − i − n + 1 ≤ Ni+1,k < `, then
both `/n and (` − Ni+1,k)/(n − (k − i)) are between 1/n and (n − 1)/n, so from (3) the first
term in (4) is bounded above by,

`(k − i) + nE(Ni+1,k|N1,n = `)

n(n− (k − i))
log n =

2`(k − i)
n(n− (k − i))

log n.
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Finally, by Markov’s inequality, the probability in the second term is no more than k/n, while
the binary entropy is always bounded above by 1. Combining these three estimates yields,

I(Xi;X
k
i+1|A`) ≤

2`(k − i)
n(n− (k − i))

log n+
k

n
+ 2
( k

n− k

)
log
( n

n− k

)
.

The result follows. �

We are now ready to prove the theorem. By the bound in the lemma,

k−1∑
i=1

I(Xi;X
k
i+1|A`) ≤

5k2 log n

n− k
.

Also, by definition of the mutual information, using the obvious notation H(X|A) for the entropy
of the conditional p.m.f. of X given A,

k−1∑
i=1

I(Xi;X
k
i+1|A`) =

k−1∑
i=1

[
H(Xi|A`) +H(Xk

i+1|A`)−H(Xk
i |A`)

]
=

[
k∑
i=1

H(Xi|A`)

]
−H(Xk

1 |A`)

= D
(
QXk

1 |A`

∥∥QX1|A`
× · · · ×QXk|A`

)
,

where we write Q
Xj

i |A`
for the conditional p.m.f. of Xj

i given A`. Since QXi|A`
= P`/n, we have,

D
(
QXk

1 |A`

∥∥P k`/n) ≤ 5k2 log n

n− k
.

Finally, writing µ for the distribution of `/n = (1/n)
∑n

i=1Xi on {0, 1/n, 2/n . . . , 1}, averaging
both sides with respect to `, and using the joint convexity of relative entropy, yields the claimed
result. �

Remarks. The mixing measure µ = µn in the theorem is completely characterised in the proof
as the distribution of (1/n)

∑n
i=1Xi, and it is the same for all k. Moreover, if {Xn ; n ≥ 1} is an

infinite exchangeable sequence then it is also stationary, so by the ergodic theorem (1/n)
∑n

i=1Xi

converges a.s. to some X, and the µn converge weakly to the law, say µ, of X. For fixed k, since
P kp is a bounded and continuous function of p ∈ [0, 1], we have for any xk1 ∈ {0, 1}k,

Mk,µn(xk1) =

∫
P kp (xk1)dµn(p)→Mk,µ(xk1) =

∫
P kp (xk1)dµ(p),

and by our theorem, ‖Qk −Mn,k‖ = O(
√

(log n)/n). Therefore, we can conclude that,

Qk =

∫
P kp dµ(p),

for each k ≥ 1, and thus recover de Finetti’s classical representation theorem.
Finally we note that the argument used in the proof of the lemma as well as the proof of

our theorem can easily be extended to provide corresponding results for exchangeable vectors
taking values in any finite set. But as the the constants involved become quite cumbersome and
our main motivation is to illustrate the connection with information-theoretic ideas (rather to
obtain the most general possible results), we have chosen to restrict attention to the binary case.
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