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Abstract 

Digital engineering workflows, involving physico-chemical 

simulation and advanced statistical algorithms, offer a robust and 

cost-effective methodology for model-based internal combustion 

engine development. In this paper, a modern Tier 4 capable Cat® 

C4.4 engine is modelled using a digital workflow that combines the 

probability density function (PDF)-based Stochastic Reactor Model 

(SRM) Engine Suite with the statistical Model Development Suite 

(MoDS). In particular, an advanced multi-zonal approach is 

developed and applied to simulate fuels, in-cylinder combustion and 

gas phase as well as particulate emissions characteristics, validated 

against measurements and benchmarked with respect to the predictive 

power and computational costs of the baseline model. The multi-

zonal SRM characterises the combustion chamber on the basis of 

different multi-dimensional PDFs dependent upon the bulk or the 

thermal boundary layer in contact with the cylinder liner. In the 

boundary layer, turbulent mixing is significantly weaker and heat 

transfer to the liner alters the combustion process. The integrated 

digital workflow is applied to perform parameter estimation based on 

the in-cylinder pressure profiles and engine-out emissions (i.e. NOx, 

CO, soot and unburnt hydrocarbons; uHCs) measurements. Four DoE 

(design-of-experiments) datasets are considered, each comprising 

measurements at a single load-speed point with various other 

operating conditions, which are then used to assess the capability of 

the calibrated models in mimicking the impact of the input variable 

space on the combustion characteristics and emissions. Both model 

approaches predict in-cylinder pressure profiles, NOx, and soot 

emissions satisfactorily well across all four datasets. Capturing the 

physics of emission formation near the cylinder liner enables the 

multi-zonal SRM approach to provide improved predictions for 

intermediates, such as CO and uHCs, particularly at low load 

operating points. Finally, fast-response surrogates are generated using 

the High Dimensional Model Representation (HDMR) approach, and 

the associated global sensitivities of combustion metrics and 

emissions are also investigated.  

Introduction 

Model-based engineering analyses support decision and policy 

making processes, reduce vehicular/machine and powertrain 

development costs, and speed up the progression of technology 

readiness levels (TRL). The adoption of innovative virtual or digital 

engineering workflows augmented with experimental data-based 

analyses is increasingly important given the degree of variability and 

complexities of the modern powertrains and the emissions (both gas 

phase and particulate phase) compliance requirements.  

Engine calibration, which relies on engine dynamometers and vehicle 

testing, offers a static tabular relationship between the engine-

controlled variables and the corresponding steady-state operating 

points within the operating map for incorporating into the Engine 

Control Unit (ECU) [1], and is aimed at maintaining performance 

optimality and reduction of engine-out emissions. The measurement-

driven calibration methodology involves the use of Design of 

Experiments (DoE), where the data point is processed to establish 

statistical response surface models for determining the variations and 

the measured response (i.e. engine performance, combustion 

characteristics, and emissions). The operation of the ECU actuators is 

guided by the actuator map settings from the engine calibrations, 

which are tuned with the help of optimisation techniques based on the 

responses at individual load-speed points and by interpolation for any 

points in-between. The poor extrapolative capabilities of purely 

statistical models provide the impetus to combine the advanced data-

driven statistics with adequately detailed yet computationally 

efficient physico-chemical simulators. Furthermore, a combination of 

measurements data and model-based digital workflows can be then 

used to populate data required for formulating fast-response 

calibration models.  

Such model-based methodologies utilising calibrated zero-

dimensional (0D) or multi-dimensional models have been largely 

applied toward the estimation of engine performance indicators such 

as indicated mean effective pressure (IMEP), or combustion 

characteristics such as maximum in-cylinder pressure, and crank 

angle degrees at 50 % fuel mass fraction burnt (CA50) [2,3]. 

Additionally, the predictions from the fast-response 0D models are 

then utilised for feed-forward control applications concerning the 

ECU [4,5,6,7]. The accuracy of the empirical model or a fit is a vital 

factor to the design of searching a system optimum. Here, physics-

based models not only offer higher level of accuracy, but also take 

into account a wide range of input variables [8]. Multi-dimensional 

Computational Fluid Dynamic (CFD) modelling can be applied to 

describe in detail the physical processes for the in-cylinder turbulent 

combustion and flow fields within the engine air and combustion 

systems. Such a 3D CFD model further supported by optimisation 

algorithm has been applied to populate the training datasets to 

construct response surfaces between design parameters and objective 

functions [9]. However, the 3D CFD models especially for turbulent 

combustion applications, remain computationally expensive and 

prohibit the evaluation of the whole design space (7-8 input 

variables) in tractable computational times. For operating an efficient 

and accurate model-based calibration, it is necessary to combine the 

predictive capability of simulation with practical computational 

power, so that multiple engine cycles and multiple load-speed engine 

operating points can be simulated. The present paper focuses on 

advancement and application of such an integrated digital 
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engineering workflow that combines adequately-detailed physico-

chemical models with advanced statistical algorithms.  

The physico-chemical simulator within the digital workflow is the 

stochastic reactor model (SRM) Engine Suite. This is then integrated 

with an advanced statistical toolkit, Model Development Suite 

(MoDS), and applied as a digital workflow to perform parameter 

estimation, surrogate model generation and global sensitivity 

analysis.  

The SRM Engine Suite component of the workflow is derived from a 

probability density function (PDF) transport equation assuming 

statistical homogeneity. The PDF approach offers a way to model in-

cylinder inhomogeneities in equivalence ratio Φ, and temperature T. 

The sub-processes in the context of an IC engine operation, such as 

the turbulent mixing, heat transfer to the cylinder walls, multiple 

direct injections, chemical kinetics, etc. are taken into account via the 

corresponding sub-models within the SRM Engine Suite. For variable 

density flows, a MDF (mass density function) transport equation is 

used which is solved using a Monte Carlo particle method with an 

operator splitting technique. Detailed derivations from first 

principles, parametric behaviour, and convergence studies has been 

published previously [10-16]. The SRM Engine Suite has been 

previously applied to the simulation of fuels [17, 18], various 

combustion operation modes such as spark ignition [19, 20], low 

temperature combustion [21-24] and compression ignition [25,26], as 

well as gas phase and particulate emissions [27-30].  

MoDS has also been applied to study uncertainty propagation and 

parametric estimation in the context of internal combustion (IC) 

engines previously [31,32]. Recently, the integrated digital workflow 

comprising the SRM Engine Suite and MoDS has been applied to 

perform automated calibration based on measurements data for a 

C4.4 Diesel-fuelled compression ignition engine, covering the entire 

load-speed operating window [33]. The SRM Engine Suite was then 

validated against measurements data, and a reasonably good 

agreement was achieved between the model and experiments for in-

cylinder pressure profiles, NOx and soot emissions.  

From the perspective of intermediate emissions such as CO and uHC 

(unburned hydrocarbons), the near-wall reactive flows have shown to 

play a key role in determining the thermal efficiency of combustion 

systems and the formation of pollutants [34]. Within the combustion 

chamber, large temperature variations (~400 − 800 K) occur within 

a thin layer (~1.0 mm) next to the cylinder wall [35]. Within these 

turbulent boundary layers, chemical reactions cease to take place due 

to the enthalpy loss to the in-cylinder walls. The PDFs of scalar 

quantities, such as fuel mass fractions and temperature, are found to 

be significantly affected by the near-wall mechanism [36].  

The aim of this paper is to present an extension of the SRM Engine 

Suite in terms of a stochastic reactor model network (termed multi-

zonal SRM), in order to resolve the boundary layer and thus enhance 

the physical accuracy in addressing those near-wall phenomena and 

the ensuing formation of emissions. The integrated digital workflow 

containing the physico-chemical model advancements is then applied 

and validated against measurements performed as four sets of DoE 

data points within the load-speed map. The structure of this study is 

the following: 

1. To apply the single-zonal (SRM-SZ) and multi-zonal 

(SRM-MZ) PDF-based stochastic reactor model to the Cat® 

C4.4 ACERT turbocharged Diesel-fuelled Compression 

Ignition (CI) engine to evaluate combustion and emissions 

characteristics over the four sets of DoE points.  

2. To benchmark and demonstrate the benefits of the multi-

zonal approach relative to the single zonal approach. 

3. To formulate a fast-response HDMR surrogates to assess 

the global sensitivity of combustion metrics and emissions 

to the input variable space. 

Experimental Data 

The data used for model calibration and validation has been obtained 

from a Cat® C4.4 ACERT turbocharged Diesel-fuelled CI engine. 

Table 1 provides the basic engine geometry data. Four ‘design-of-

experiments’ (DoE) datasets are studied, comprising two ‘full-load, 

rated-speed’ DoEs (1800-100 % and 2200-100 %), and one ‘peak-

torque’ DoE (1400-100 %) on the power curve, as well as a ‘part-

load’ condition DoE (2200-27 %); the distribution of these four 

points in load-speed space is shown in Figure 1. Within each dataset 

there are around 60 distinct measurements of in-cylinder pressure 

profiles and engine-out emissions, corresponding to different engine 

operating conditions, with variations in the intake manifold pressure, 

intake manifold temperature, EGR, injected fuel mass, pilot injection 

timing and main injection timing. Hereafter the term ‘case’ is used to 

refer to a single set of these conditions. The measurement data from 

the test bed are pressure and emissions (i.e. NOx, CO, uHCs and 

Soot). The gas phase emissions are measured in units of parts per 

million by volume (ppmv) with a tolerance target of 3 % and soot 

indicates carbon fraction with a measurement tolerance of 5 %. 

Table 1 – Engine geometry for the Cat® C4.4 ACERT single-

turbocharged Diesel-fuelled Compression Ignition engine. 

Engine Type 4-stroke 

Bore 105 mm 

Stroke 127 mm 

Connecting rod length 219 mm 

Wrist pin offset 0.5 mm 

Compression ratio 16.5 

 

 

 
Figure 1 – The four sets of DoE data included in this analysis. 

Model description 

The components of the integrated workflow, i.e. the SRM Engine 

Suite and MoDS are explained in this section. This workflow was 

then applied to generate a calibrated model of a Cat C4.4 ACERT™ 

turbocharged Diesel-fuelled CI engine, and then to test the predictive 

power of the workflow using additional experimental data.  
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Stochastic Reactor Model (SRM) 

Based on the PDF transport equation approach, the SRM calculates 

the progression of scalar variables, such as the mass fraction of 

chemical species 𝑌𝑗  (𝑗 = 1,… , 𝑆, where 𝑗 denotes the species index 

and 𝑆 is the total number of chemical species), and temperature 𝑇 as a 

function of time 𝑡. The random scalar variables can be combined into 

a vector 𝝍 = (𝜓1, … ,𝜓𝑆, 𝜓𝑆+1) = (𝑌1, … , 𝑌𝑆, 𝑇), and the joint 

composition PDF is denoted by 𝑓(𝝍; 𝑡). 

In order to account for density variations in the in-cylinder turbulent 

combustion, it is convenient to apply a MDF. The MDF is related to 

the PDF, and can been written as: 

ℱ(𝝍; 𝑡) ≡ 𝜌(𝝍)𝑓(𝝍; 𝑡)   (1) 

The MDF transport equation for the SRM can be expressed as 

follows: 

𝜕

𝜕𝑡
ℱ(𝝍; 𝑡) = −∑

𝜕

𝜕𝜓𝑗
[𝐺𝑗(𝝍)ℱ(𝝍; 𝑡)]

𝑆+1

𝑗=1⏟                
chemical reaction

+∑
𝜕

𝜕𝜓𝑗
[𝐴(𝝍)ℱ(𝝍; 𝑡)]

𝑆+1

𝑗=1⏟              
turbulent mixing

 

−
1

𝑉

𝑑𝑉

𝑑𝑡
ℱ(𝝍; 𝑡)

⏟          
piston movement

−
𝜕

𝜕𝜓𝑆+1
[𝑈(𝜓𝑆+1)ℱ(𝝍; 𝑡)]

⏟                
convective heat transfer

 

+
ℱ𝑐(𝝍; 𝑡)

𝜏𝑐𝑟𝑒𝑣
−
ℱ(𝝍; 𝑡)

𝜏𝑐𝑦𝑙⏟        
crevice flow

+
ℱ𝑓(𝝍; 𝑡)

𝜏𝑓⏟  
fuel injection

  (2) 

where 𝐺𝑗(𝝍) is the chemical kinetic operator, A(𝝍) is the turbulent 

mixing function, 𝑉 is sweep volume, 𝑈(𝜓S+1) is the heat transfer 

function, ℱc and ℱf are the MDFs corresponding to the crevice flow. 

The characteristic residence time of in-cylinder gas, crevice gas and 

fuel are denoted by 𝜏cyl, 𝜏crev and 𝜏f. The terms on the right-hand 

side of Equation 2 describe the physical in-cylinder processes of 

chemical reactions, turbulent mixing, heat transfer, piston movement, 

crevice flow and fuel injection respectively.  

The multi-dimensional MDF transport equation is then solved using a 

Monte Carlo particle method with a second-order operator splitting 

algorithm [16]. The initial MDF, ℱ(𝝍; t) is approximated by a 

stochastic particle ensemble (discrete measures) denoted by 

ℱ𝑁(𝝍; t).  

A backward differentiation formula (BDF) of the ordinary 

differentiation equations (ODEs) solver is used for adaptive time 

stepping to control the accuracy of the chemistry solution. A third-

order low storage Runge-Kutta scheme is adopted for explicit time 

advancement of the 𝑘 − 𝜀 turbulence transport equation used within 

the turbulent mixing sub-model which is explained next. 

The turbulent mixing source term is particularly important in case of 

CI engine modelling, since it determines how molecular diffusion 

affects composition and scalar micro-mixing. In this analysis, mixing 

is computed using a combination of concepts originally proposed by 

the coalescence-dispersion (Curl) mixing model [37] and the EMST 

(Euclidean minimum spanning tree [38]) model. The Curl model 

randomly selects and mixes stochastic particle pairs towards their 

mean composition. However, it does not take localness into account; 

that is, nothing prevents a ‘cold’ particle, which might represent a 

fluid parcel near the cylinder liner, mixing directly with a ‘hot’ or 

reacting parcel having a higher probability to be located in the 

combustion chamber core. The EMST model accounts for localness 

by defining neighbouring particles in composition space.  For an 

ensemble of size N, each particle has 𝑁 − 1 neighbours (termed 

“edges”). The evolution of the composition vector 𝝍(𝑖) is given by: 

𝑤(𝑖)
𝑑𝝍(𝑖)

𝑑𝑡
= −𝛼𝛴𝑣=1

𝑁−12𝑤𝑣[(𝝍
(𝑖) −𝝍(𝑛𝑣))𝛿𝑖,𝑚𝑣

+ (𝝍(𝑖) −

𝝍(𝑚𝑣))𝛿𝑖,𝑛𝑣]   (3) 

where each particle pair (𝑚𝑣, 𝑛𝑣) is connected by the 𝑣th edge, 𝛿𝑖𝑗 is 

the Kronecker delta, 𝛼 is the decay rate of the scalar variances, 𝑤(𝑖) 
is the weighting of the particle index, 𝑖, and 𝑤𝑣 is the minimum of the 

sum of the particle weights on either side of the edge. The hybrid 

model applied in this study utilises both Curl model as well as a 

localness mixing model based on the EMST approach to account for 

inhomogeneities in the charge composition.  

The more detailed parameterisation is required to capture the engine 

flow field like swirl, tumble squish, injection etc., and it integrates 

these sub-models into SRM to achieve predictive capability. The 

turbulent mixing time, 𝜏 = 𝐶𝜏 𝑘/𝜀, measures the rate of variations in 

the composition variance for each model, where 𝐶𝜏 is the mixing 

model constant, 𝑘 is the turbulent kinetic energy and its dissipation 

rate 𝜀. The turbulent kinetic energy 𝑘 is evaluated using a quasi-

dimensional turbulence modelling approach [39], which amounts to 

solving the 𝑘 − 𝜀 turbulence transport equation 

𝑑𝑘

𝑑𝑡
=
𝑑𝑘𝑝𝑟𝑜𝑑

𝑑𝑡
+
𝑑𝑘𝑑𝑒𝑛

𝑑𝑡
+
𝑑𝑘𝑖𝑛𝑗

𝑑𝑡
+
𝑑𝑘𝑠𝑞𝑢𝑖𝑠ℎ

𝑑𝑡
− 𝜀     (4) 

where the terms on the R.H.S are production terms due to the initial 

tumble and swirl, density variation, injection, and squish volume 

respectively, and a sink term due to viscous dissipation. For a 

comparison between mixing times in a stochastic reactor model 

approach with those calculated in 3D CFD simulations, the reader is 

referred to Franken et al. [40]. 

A modified Woschni correlation [34] is adopted in this analysis in 

order to calculate the heat transfer coefficient ℎ𝑔 [41, 42]. It is 

defined as: 

ℎ𝑔 = 3.26𝐵
−0.2𝑃0.8𝑇−0.55𝑤0.8  (5) 

where 𝐵 is the cylinder bore, 𝑃 is the in-cylinder pressure, 𝑇 is the in-

cylinder temperature and 𝑤 is the average in-cylinder gas velocity. 𝑤 

is defined as: 

𝑤 = 𝐶1𝑠̅𝑃 + 𝐶2
𝑉𝑑𝑇𝑟

𝑃𝑟𝑉𝑟
(𝑃 − 𝑃𝑚)   (6) 

where 𝑠̅𝑃 is the mean piston speed, 𝑉𝑑 is the displaced volume and 

the subscript ‘r’ refers to a reference state at the instant of inlet valve 

closure (IVC). The motored cylinder pressure is denoted by 𝑃𝑚 and 

𝐶1 and 𝐶2 are model parameters. Interested readers can find further 

details in Ref. [42].  

The chemical surrogate model for the Diesel fuel [43] adopted in this 

study is summarised in Table 2. The surrogate mechanism has been 

applied to the modelling of combustion and emissions for Diesel 

fuelled HCCI, PPCI and CI engines [44]. The level of detail in the 

fuel oxidation and emissions formation pathways model is 

characterised by the number of species and chemical reactions. 

Increasing the number of species results in a more accurate solution, 

but at the cost of increased computational time [45]. 
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Table 2 – Chemical model and computational time 

Fuel oxidation and 

emissions formation 

model 

CMCL diesel surrogate 

with NOx v1.2 

Number of species 38 

Number of reactions 50 

Operating system Windows 

Processor Intel 3GHz 8 cores 

Computational 

time/cycle [s] 
~160 

 

The Model Development Suite (MoDS) 

MoDS is a highly flexible software package designed to 

simplify model development using an advanced suite of numerical 

and statistical tools. It has been designed to couple closely with the 

SRM, automatically extracting the necessary data to perform (e.g.) 

parameter estimation based on experimental data and construct 

surrogates for the model outputs.  Of the many algorithms available 

in MoDS, two in particular are used throughout this study, and are 

summarised below. 

Sobol Sequences 

 
Sobol sequences [46] are designed to produce points distributed in a 

K-dimensional space such that they have low discrepancy*.  The 

resulting points are more uniformly distributed than pseudo-random 

points (see Figure 2), but avoid the symmetries and inefficiencies 

associated with points on a grid. 

 

Figure 2 – A comparison between random and Sobol sampling with 

500 points in a 2D (𝜃1, 𝜃2) parameter space.

 
 

An additional advantage of Sobol sequences is that they are easily 

extensible; existing points do not need to be adjusted in order to 

maintain the low discrepancy when new points are added. 

 

MoDS uses Sobol sequences for two main applications:  

1. To make initial guesses when performing optimisation (e.g. 

model parameter estimation).  

2. As the fitting points for surrogate models that span large-K input 

parameter spaces. 

 

                                                 

* Discrepancy measures the difference between the fraction of all points 
contained in a subspace and the fraction of the total volume occupied by that 

subspace [46]. 

A comprehensive description of the mathematics used to generate a 

Sobol sequence can be found in [47]. The key elements of that work 

are summarised below for the reader’s convenience. 

 
The kth element of the vector θ generated from the nth term of a Sobol 

sequence can be calculated as 

𝜃𝑘(𝑛) = ∑ 𝑒𝑙(𝑛)𝐷𝑙
(𝑘)𝐿

𝑙=1 ,  (7) 

where the sum uses digit-by-digit mod-2 binary addition, D is an 

array of ‘direction numbers’ and el is the lth digit of n in its binary 

representation, n=(eL eL-1…e2 e1). In order to define Dl
(k) we must first 

introduce the order-mk binary difference operator, Lk: 

𝐿𝑘𝑢𝑖 ≡ 𝑢𝑖+𝑚𝑘
+ 𝑎1

(𝑘)
𝑢𝑖+𝑚𝑘−1 +⋯+ 𝑎𝑚𝑘−1

(𝑘)
𝑢𝑖+1 + 𝑢𝑖 = 0, 

 (8) 

where all of the ui and ai belong to the field ℤ2 ≡ {0,1}. All of the 

solutions to Equation 8 are periodic; any sequence u0, u1, …, um will 

eventually repeat.  The Lk which cycle over of all of the 2m-1 possible 

non-trivial sequences (i.e. all except ui=0,Ɐi) before they repeat are 

called ‘monocyclic’. The Dl
(k) are generated using a set of these 

monocyclic operators via the equation 

𝐿𝑘𝐷𝑙
(𝑘)
= 2−𝑚𝑘𝐷𝑙

(𝑘)
,  (9) 

where Dl
(k)=2-l for 1 ≤ l ≤ mk 

 

The choice of the D, and therefore L, completely determines the 

sequence and its properties. The one-dimensional projections are 

guaranteed to possess a low discrepancy, but by choosing L such that 

the D satisfy certain further conditions, the discrepancy of the points 

in higher dimensional subspaces can also be minimised [48]. 

High Dimensional Model Representation (HDMR) 

HDMR is a method for surrogate model generation that is particularly 

well suited to input vector spaces with a large number of dimensions. 

It involves the decomposition of each output into a sum of terms, 

each of which depend on only a subset of the inputs, that is 

𝑦 = 𝑓(𝒙) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖) +
𝑁𝑥
𝑖=1

∑ ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) +
𝑁𝑥
𝑗=𝑖+1

𝑁𝑥
𝑖=1

𝑓12…𝑁𝑥(𝑥1, 𝑥2, … , 𝑥𝑁), 

(10) 

where Nx is the number of input parameters and f0 is the mean value 

of f(x). For most practical applications, terms involving more than 

two inputs make a negligible contribution [49, 50], so y can be 

approximated as: 

𝑦 ≈ 𝑓0 +∑ 𝑓𝑖(𝑥𝑖) +
𝑁𝑥
𝑖=1

∑ ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)
𝑁𝑥
𝑗=𝑖+1

𝑁𝑥
𝑖=1    (11) 

Whilst it is possible to evaluate each term directly using numerical 

integration, a more efficient method is to approximate 𝑓𝑖(𝑥𝑖) and 

𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) using analytic functions, 𝜙𝑘(𝑥𝑖) [50]: 
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𝑓𝑖(𝑥𝑖) = ∑ 𝛼𝑖,𝑘𝜙𝑘(𝑥𝑖)
𝑀
𝑘=𝑙    (12) 

𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = ∑ ∑ 𝛽𝑖𝑗,𝑘𝑙𝜙𝑘(𝑥𝑖)𝜙𝑙(𝑥𝑗)
𝑀′
𝑙=𝑘+1

𝑀′
𝑘=𝑙  (13) 

where 𝝓𝒌(𝒙𝒊) are orthonormal functions, that is  

∫𝜙𝑘(𝑥𝑖)𝑑𝑥𝑖 = 0   (14) 

and 

∫𝜙𝑘(𝑥𝑖)𝜙𝑙(𝑥𝑖)𝑑𝑥𝑖 = 𝛿𝑘𝑙   (15) 

The coefficients can then be calculated as 

𝛼𝑖,𝑘 = ∫𝑓(𝒙)𝜙𝑘(𝑥𝑖)𝑑𝑥   (16) 

 𝛽𝑖𝑗,𝑘𝑙 = ∫ 𝑓(𝒙)𝜙𝑘(𝑥𝑖)𝜙𝑙(𝑥𝑗)𝑑𝑥   (17) 

An added benefit of the decomposition technique described above is 

that the global sensitivities are straightforward to obtain. The 

contribution of each input, or combination of inputs, to the total 

variance is described by ([49]) 

𝜎𝑦̅
2 =∑∫ 𝑓𝑖

2(𝑥𝑖)𝑑𝑥𝑖 +∑ ∑ ∫ ∫ 𝑓𝑖𝑗
2(𝑥𝑖 , 𝑥𝑗)𝑑𝑥𝑖𝑑𝑥𝑗

1

−1

1

−1

𝑁𝑥

𝑗=𝑖+1

𝑁𝑥

𝑖=1

1

−1

𝑁𝑥

𝑖=1

 

= ∑ 𝜎𝑦̅𝑖
2 + ∑ ∑ 𝜎𝑦̅,𝑖𝑗

2𝑁𝑥
𝑗=𝑖+1

𝑁𝑥
𝑖=1

𝑁𝑥
𝑖=1   (18) 

The sensitivities are then trivially computed by dividing by the total 

variance, 𝝈𝒚̅
𝟐. 

Results and Discussion 

Single-Zonal and Multi-Zonal SRM 

The PDF transport equation (Equation 2) characterises the single 

zonal SRM (SRM-SZ), wherein 𝑁 stochastic particles are used to 

represent the distributions of fluid parcels in the cylinder or 

combustion chamber. The mean quantities of the PDF are 

approximated by:  

⟨𝜓(𝑡)⟩ ≈
1

𝑁
∑ 𝜓(𝑖)(𝑡)𝑁
𝑖=1     (19) 

A stochastic particle can be understood as a homogeneous region 

inside the combustion chamber containing a certain amount of mass, 

but without any geometrical shape or location. The stochastic particle 

ensemble as a whole is a discrete representation of the distribution of 

the composition space, from which various moments, such as means 

and standard deviations can be derived. The number of stochastic 

particles governs the precision of SRM calculations. In this study, a 

nonlinear statistical weighting for stochastic particles is used with a 

ratio of 15 between the weights of the largest and smallest particles. 

Convergence was obtained with 100 stochastic particles.  

The evolution of the stochastic particles in local equivalence ratio-

temperature (𝛷 − 𝑇) space can be seen in Figure 3 for the SRM-SZ. 

Figure 3 (a) uses the in-cylinder pressure profile to illustrate where 

the four snapshots lie in the compression-expansion cycle.  Note that 

the profile has been normalised by a reference value 𝑃ref. In Figure 3 

(b), each circle represents an individual stochastic particle within the 

cylinder. The colours of the circles encode the concentration of 

hydrocarbons. Greyscale contours identify regions in Φ− 𝑇 space 

where soot and NOx are produced.  Interested readers can refer to 

Ref. [51] for further details. Figure 4 shows that, prior to the 

injection, the mixture is largely homogeneous, with 𝛷 = 0.0 and 𝑇 

close to the IVC temperature. After the injection, stochastic particles 

are spread out in the lean region (𝛷 < 1.0) and gradually move 

toward the fuel-rich region (𝛷 > 1.0) as they receive more fuel.  The 

initial inhomogeneity generated by the injection evolves further 

through the combined effects of heat release due to chemical 

reactions and turbulent mixing. Note that the evolution of the 

ensemble in temperature space can be seen more clearly in the PDFs 

in Figure 4 (a). The most fuel-rich stochastic particles, where 

oxidation rates are low, are responsible for the formation of soot and 

unburned hydrocarbons. As the end of the expansion stroke, the 

temperature decreases and oxidation rates reduce further, allowing 

soot and hydrocarbons to survive until Exhaust Valve Opening 

(EVO). 

(a) 

 
(b) 

 
Figure 3– (a) Variation of normalised pressure P/P_ref with crank 

angle (CAD aTDC). Vertical broken lines indicate the time 

instants at CAD= -80, -10, 20 and 40 respectively. (b) 

Instantaneous scatter plots of the stochastic particles in Φ-T space 

for the SRM-SZ at four different crank angles. The colour 

indicates the uHC concentration, horizontal dashed lines indicate 

stoichiometric conditions (𝛷 = 1.0). Greyscale contours show the 

regions where soot and NOx production is expected (see Ref. [51] 

for numeric values). 

In the present work, The SRM-MZ has been developed in order to 

capture the effects of near-wall, non-premixed combustion in modern 

diesel engines and improve the prediction of engine-out uHCs 

emissions. The stochastic particle ensemble is divided into two zones: 

the boundary and the bulk. In the boundary, a PDF is introduced to 

mimic the physics of the thermal boundary region (see Figure 4 (b)), 

and it encapsulates all walls inside the combustion chamber. The bulk 
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zone remains similar to the SRM-SZ, except that there is no longer 

any heat transfer directly to the cylinder liner: it can only exchange 

heat with the boundary zone. In contrast, the boundary layer is 

characterised by greatly diminished turbulent mixing, and a narrow 

distribution of temperatures, both due to the proximity of the wall. It 

has been demonstrated in both numerical [52] and experimental [53, 

54] analyses that the zone of influence of the wall can extend to ~1 

mm in the normal direction to the wall. This equates to around four 

per cent of the combustion chamber in the engine considered for the 

present study. For simplicity, and as a relatively conservative 

estimate, we assign one per cent of the total charge mass to the wall 

zone in the SRM-MZ. The importance of the boundary layer is 

disproportionate to its size: it mediates heat transfer to the walls and 

acts as a sink for species that would otherwise be oxidised. The mean 

temperature of the boundary layer particles (represented by the blue 

curve in Figure 4) is closely coupled to that of the wall, where the 

wall temperature is determined by experimental measurements.  

Since particles within the boundary tend to be of similar composition, 

the full localness mixing submodel is not necessary. Instead, the Curl 

model is employed for pair-wise mixing of mass and enthalpy 

between zones, with the rate of inter-zonal mixing determined as part 

of the model calibration.  

 

(a) SRM-SZ 

 

(b) SRM-MZ 

 

  
Figure 4 - The temperature PDFs in the (a) SRM-SZ and (b) SRM-

MZ at four different crank angles. 

In the SRM-MZ, the PDF-based injection sub-model is modified such 

that boundary zone stochastic particles receive liquid fuel directly 

from the injection pulses. A reduced evaporation rate is set for the 

boundary zone in order to mimic the time lag associated with injected 

fuel reaching the wall. Figure 5 illustrates the PDF during the 

injection period(s). Boundary zone particle indices start from 𝑖 = 90, 

the rest of the particles lie within the bulk zone. The majority of the 

fuel goes into the bulk zone; however, a relatively small amount of 

the fuel is present in the boundary zone.  

Figure  6 shows that fuel-rich particles within the boundary layer 

travel along the vertical direction in 𝛷 − 𝑇 space after the start of 

injection. The loss of enthalpy to the ‘cold’ walls limits combustion 

within the boundary zone, such that particles are not able to burn, or 

have large deviations in temperature due to chemical heat release. 

Figure 4 (b) shows that the boundary zone has a monomodal PDF, 

with mean temperature close to that of the wall. Significant amounts 

of fuel-rich mixture remain late in the engine cycle (see Figure 6), 

contributing to the statistics of the gas phase uHCs emission at 

engine-out.  

 

 

Figure 5 – The injection PDF as a function of crank angle for the 

SRM-MZ. The surface colour indicates the PDF magnitude. 

Calibration and Validation Procedure 

In order to calibrate the SRM to match the measured in-cylinder 

pressure profiles and emissions, MoDS was set up to estimate 

optimal values for a number of model inputs.  

The values of those inputs calibrated for the 2200-14% DoE dataset 

are listed in Table 3. Parameters are divided between five categories: 

turbulent mixing, direct injection, heat transfer, the empirical soot 

model and the boundary zone (SRM-MZ only). 

The turbulent mixing parameters are constants in the 𝑘 − 𝜀 
turbulence transport equation (𝐶inj, 𝐶den, 𝐶diss)  (see Equation 4). 

The direct injection parameters include: 

i. a term that is directly related to the injection spray angle 

within the cylinder (𝛼inj) 

ii. the Sauter Mean Diameter constant (SMDA) and 

iii. the liquid fuel evaporation coefficient (λevap), which 

influences the atomisation of the spray injected into the 

turbulent flow. 

The heat transfer model controls heat flux between the combustion 

chamber surface and the cylinder charge. 𝐶1 determines the piston 

speed dependence in the Woschni correlation, while 𝐶2 controls the 

extent to which heat transfer is modified during combustion (see 

Equation 6). The rates of soot formation and oxidation in the 

Hiroyasu-NSC empirical sub-model [55, 56] are controlled by pre-

exponential multipliers (Csfpe and Csope respectively) and exponential 

multipliers (Csfe and Csoe respectively). 

For the MZ-SRM, several additional parameters were estimated: 
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i. The relative size of the boundary zone (𝜆MZ) 
ii. The mass fraction of injected fuel that impinges on the 

cylinder walls (𝛼Wall) 
iii. A constant to control inter-zone mixing (𝐶MZ), which imply 

the mass and heat transfer from bulk and boundary zone. 

Table 3: Parameters estimated for the 2200-14% DoE dataset. 

 

 Parameter 
SRM-

SZ 

SRM-

MZ 

Turbulent Mixing 

𝐶inj 5.95 4.7 

𝐶Den 0.01 0.01 

𝐶Diss 3.76 4.0 

Direct Injection 

𝛼inj 875 1430 

SMDA 6156 6719 

𝜆evap 0.388 0.388 

Heat Transfer 
𝐶1 1.13 1.33 

𝐶2 0.03 0.03 

Empirical Soot 

Model 

𝐶sfpe 0.15 0.46 

𝐶sope 0.24 0.62 

𝐶sfe 3.91 7.67 

𝐶soe 0.16 0.43 

Boundary Zone 
𝜆MZ - 0.032 

𝛼Wall - 0.034 

𝐶MZ - 0.41 

 

The full set of input values were calibrated independently for each of 

the four DoE datasets, with 18 randomly selected cases included in 

the calibration each time, equating to approximately 30 per cent of 

the available data. The best parameters were estimated by minimising 

the objective function, defined by: 

 

𝜙(𝜽) = ∑ (
𝑦𝑖−𝑓(𝒙𝒊,𝜽)

𝜎𝑖
)
2

𝑁
𝑖    (20) 

Where yi is the experimentally measured value of output i, 𝜎𝑖 is the 

measurement uncertainty, 𝑥𝑖 is the vector of process conditions 

associated with the measurement and 𝜃 is the vector of model 

parameters. 

Each MoDS run consisted of the following stages: 

1. Coarsely sample the input parameters space by evaluating 

the SRM at 2𝑁input+1 Sobol points. 

2. Use the Sobol point with the lowest objective function to 

set the initial values of 𝜃. 

3. Perform a local optimisation using the Hooke and Jeeves 

algorithm [57] in order to minimise 𝜙(𝜃). 

While MoDS provides several other choices of optimisation 

algorithm, including gradient-based methods, Hooke and Jeeves was 

selected due to its superior performance when applied to similar 

problems in the past [33]. 

Having calibrated the SRM for the 18 randomly selected cases, the 

input values are then frozen (independently for each DoE dataset) and 

the model is evaluated for the remaining cases (40-45 depending on 

the dataset). This validation procedure provides a way to gauge the 

predictive capacity of the model. 

 

Figure 6 – Instantaneous scatter plots of the stochastic particles in Φ-

T space for the SRM-MZ at four different crank angles. The colour 

indicates the uHC concentration, horizontal dashed lines indicate 

stoichiometric conditions (Φ=1.0). Greyscale contours show the 

regions where soot and NOx production is expected (see Ref. [51] for 

numeric values). 

Calibration Results 

Figure 7 and Figure 8 show in-cylinder pressure profiles, apparent 

heat release rate and emissions for each DoE dataset, comparing the 

calibrated SRM-SZ and SRM-MZ with experimental data. In each 

case, only the 18 sets of process conditions used to calibrate the 

models are considered. While an excellent agreement between the 

measured and simulated pressure profiles is obtained, only marginal 

differences are observed between the single and multi-zonal 

approaches. 

Figure 8 shows the concentrations of NO𝑥 (i.e. NO + NO2), CO, 

uHCs, and soot measured from the C4.4 engine versus those 

predicted by the SRM-SZ and SRM-MZ. In each panel, both 

experiment and model values are normalised by the maximum 

experimental value. Points where the model evaluations match the 

experimental data exactly would lie on the diagonal dashed line. The 

calibrated SRM-SZ and SRM-MZ are both able to match the 

measured NOx concentrations for all four DoEs; with the vast 

majority of cases consistent within experimental uncertainty. While 

the SRM-SZ gives a satisfactory match to the CO and uHCs data, the 

SRM-MZ improves results for all four DoEs, most notably at low 

load (2200-27%), where the scatter about the 1:1 line is substantially 

reduced. These results are driven by the modelling of the thermal 

boundary layer in the SRM-MZ: retaining fuel-rich parcels near the 

wall gives rise to a wider possible range of CO and uHCs 

concentrations, meaning higher values can be matched without 

degrading the agreement for lower values. Over all four datasets, the 

most challenging data for the models to reproduce are the most 

extreme values of soot, and to a lesser extent, CO. 
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Figure 7 – Comparison between the pressure (solid lines) and apparent heat release rate (dash lines) profiles from measurements and from the 

calibrated SRM-SZ and SRM-MZ. A single representative case was selected for each of the four DoE datasets; the full set of profiles can be found in 

the appendix (Figure A1). Note that both pressure and heat release rate values have been divided by a fixed reference value.   

1400-100 % 1800-100 % 

  
  

2200-27 % 2200-100 % 

  

Validation Results 

This section presents the results of applying the calibrated SRM-SZ 

and SRM-MZ to those DoE cases that were not included in the 

calibration: around 40 cases for each dataset. As such, it is a clean 

test of the predictive capability of the models. For the sake of brevity, 

in-cylinder pressure profiles are not plotted here, but we note that the 

degree of agreement with the experimental data is similar to that seen 

in Figure 9. The capacity of the calibrated SRM-SZ to predict in-

cylinder pressure has also been previously demonstrated in Figure 19 

of [33]. 

Validation results for CO, NOx, soot and uHCs can be seen in Figure 

. Both models predict the measured NOx concentrations satisfactorily 

well. The SRM-SZ shows a small systematic overprediction for both 

full-load, rated-speed DoEs, although we note that the magnitude of 

the discrepancy is comparable to the uncertainty in the experimental 

data. For other emissions, the pattern is similar to that seen in the 

calibrated cases. For uHCs, the multi-zonal approach provides more 

accurate predictions across all four DoES, but particularly at higher 

torque (1400-100% and 1800-100%). The performance of the two 

models for CO is similar, although there are a small number of cases 

for which the SRM-SZ overpredicts the measured value by a factor of 

1.5-2.  For soot, both models perform well for the majority of cases, 

but fail to predict the highest values seen in the data. 
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1400-100 % 

 

1800-100 % 

 

  

2200-27 % 

 

2200-100 % 

 

  
Figure 8 – Gas and particulate phase emissions for the 18 randomly selected sets of operating conditions used to calibrate the SRM-SZ and SRM-MZ 

to each of the four DoE datasets. Values are normalised by the maximum experimental value for each emission. The dashed line indicates a 1:1 

relation. The correlation coefficient, 𝑅2, is listed for the SZ and MZ below each plot. 
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1400-100 % 

 

1800-100 % 

 

  

2200-27 % 

 

2200-100 % 

 

  
Figure 9 – Gas and particulate phase emissions for the ~40 sets of operating conditions used to validate the SRM-SZ and SRM-MZ for each of the 

four DoE datasets. Values are normalised by the maximum experimental value for each emission.  The correlation coefficient, R2, is listed for the SZ 

and MZ below each plot. 
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1400-100 % 

 

1800-100 % 

 

  

2200-27 % 

 

2200-100 % 

 

  
Figure 10 – Comparison between the gas and particulate phase emissions predicted by the SRM-MZ and by HDMR surrogates fitted to each output. 

Values are normalised by the maximum SRM-MZ value for each emission. 
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Figure 11 – Contributions to the variance in several combustion metrics for all four DoE datasets. Terms contributing less than five per cent of the 

total variance are grouped together in the "Other" category. Arrows indicate instances where the variances have been scaled in order to reveal trends 

and details in other datasets. 
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Figure 12 – Contributions to the variance in each emissions output for all four DoE datasets. Terms contributing less than five per cent of the total 

variance are grouped together in the "Other" category. Arrows indicate instances where the variances have been scaled in order to reveal trends and 

details in other datasets. 

 

Surrogate and Sensitivity Analysis 

As discussed in previous sections, the generation of surrogate models 

using the HDMR method automatically yields the variance of each 

surrogate output to every (combination of) models input(s). In 

practice, surrogates were constructed by evaluating the SRM at 

2Ninput+1=1024 Sobol points and determining the coefficient values 

using Equations 16 and 17. One surrogate was generated for each of 

the SRM emissions outputs and each point on the in-cylinder pressure 

profile, as well as for a number of combustion metrics: the crank 

angle at which ten, fifty and ninety per cent of heat release is 

complete (CA10,CA50,CA90) the brake mean effective pressure 

(BMEP), the maximum in-cylinder pressure  (Pmax), the maximum 

rate of pressure change (dP/dt)max, and the ignition delay.  Due to its 

superior performance in predicting CO and uHCs, the multi-zonal 

SRM was used as the basis for all surrogates considered in this 

section. 

In order to determine the sensitivity of the model to different inputs, 

and by extension, the influence of different operating conditions on 

real-world engine performance and emissions, it is important to test 

and ensure that the surrogates provide an accurate approximation to 

the detailed model. To verify the quality of the generated surrogates, 

these were evaluated at the input values (operating conditions) 

corresponding to each experimental case and directly compared to 

output from the SRM.  Figure 10 plots model versus surrogate for 

CO, NOx, soot and uHCs for each DoE dataset.  In general, the 

surrogates capture the model behaviour effectively.  The biggest 

discrepancies are seen in CO at part load and in the uHCs, though 

even in those cases differences are typically less than 20 per cent.  

These results give a degree of reassurance that sources of significant 

variance in the surrogate are also influential in the physical model, 

and therefore are important for real-world applications. 

To assess the influence of different operating conditions, the absolute 

variances due to the most significant inputs, or combination of inputs, 

are plotted in Figure 11 and Figure 12, for combustion characteristics 

and emissions respectively. Each column corresponds to one of the 

DoE datasets and each category on the z-axis to an input/input 

combination. All terms that contribute less than five per cent in total 

are grouped into the “Other” category. Note that category names of 

the form A x B indicate the effects of varying inputs A and B at the 

same time. For several outputs, the part-load DoE has intrinsically 

more variance than the other DoEs, so is scaled down in order not to 

obscure interesting trends in the other datasets (indicated by arrows). 

Many of the panels in Figure 11 support results that one might have 

guessed intuitively. For instance, for CA10, the start of the main 

injection (main SOI) is a substantial and often dominant contributor 

to the total variance. Cross terms associated with the pilot and main 

injection timings also contribute. For CA50, the end point of the main 

injection (main EOI) plays a more significant role, as well as the 

injection pressure. As one might expect, CA90 in general shows 

much less dependence on the main SOI but is influenced by other 
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parameters that effect the burn rate, such as the initial pressure, 

injection pressure and EGR fraction. 

For all four DoEs, the BMEP variance is largely controlled by the 

mass of the main fuel injection event. Several terms involving the 

injection timings are also significant, particularly the combination of 

main SOI and main EOI, which can be interpreted as the injection 

duration. 

The capacity of EGR to reduce NOx emissions has been known for 

several decades [58, 59], so it is perhaps unsurprising that the SRM 

shows a strong link between the two. The only other significant input 

is the main SOI, which is the largest source of variance in the part 

load DoE. For both CO and uHCs, the initial pressure tends to be the 

most important input; injection pressure, EGR and the main injection 

timings also contribute.  Soot is found to have the most complex set 

of dependencies, with typically at least six terms in the HDMR 

decomposition accounting for more than five per cent of the variance. 

Typically, the most important input variables are the main SOI, EOI 

and fuel mass. We note that the two high-speed DoEs (2200-

27%,2200-100%) show much less soot variation overall, a trend that 

is also seen in the uHCs concentration.  

 

Summary and Conclusions 

An automated model calibration workflow, has been demonstrated 

and applied to predict in-cylinder pressure and engine-out emissions 

for a Cat C4.4 ACERT turbocharged Diesel-fuelled Compression 

Ignition (CI) engine.  The workflow combines a new multi-zonal 

variant of the SRM with an advanced statistical toolkit, MoDS. The 

performance of SRM-MZ has been analysed in terms of the 

calibration quality and validation (predictive) results, comparing 

directly to the fiducial single zonal model. Both the SRM-SZ and 

SRM-MZ match the experimentally measured pressure profiles, NOx 

and soot emissions well. In addition to this, the SRM-MZ gives more 

accurate predictions of uHCs, and to a lesser extent, CO. This 

improvement is driven by the inclusion of a boundary layer zone 

PDF, which provides a better description of the physics/causal 

relationship of near-wall emissions formation. 

Finally, the statistical toolkit was used to generate HDMR surrogates 

for engine-out emissions and a number of combustion characteristics.  

The variances derived as part of the surrogate construction process 

were compared in order to examine the influence of different 

operating conditions on each of the model outputs, and by extension, 

on measurable quantities in the physical engine. 

In addition to the analysis of the four datasets in this study, further 

investigation will be necessary to ensure that the SRM-MoDS 

calibration workflow produces robust results across the entire engine 

operating map.  
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Figure A1 - Pressure profiles for each of the 18 randomly selected sets of operating conditions used to calibrate the SRM-SZ and SRM-MZ for the 

four DoE datasets. Pressure values have been normalised by a fixed reference pressure 𝑃𝑟𝑒𝑓. 
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