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Industry-Academia Research towards Future Network Intelligence:  

The NG-CDI Prosperity Partnership 

1 Abstract 

Ever since the first automation provided by the introduction of the Strowger telephone 

exchange in the late 19th century, networks have been increasingly automated.  Fast 

forward to 2022, and the challenge facing network providers is scaling up this level of 

automation considering massive increases in complexity, new levels of agility to 

operate services, and rising demand from customers within the modern 

telecommunications ecosystem.  This paper describes a significant new industry-

academia partnership to address these challenges: Next Generation Converged Digital 

Infrastructure (NG-CDI) is creating a vision for the building and operation of a future-

proof network infrastructure and its autonomic management. In this paper we highlight 

three exemplar activities within the NG-CDI research programme that illustrate the 

benefits of taking a highly collaborative interdisciplinary approach and show how 

academia and industry working closely together has delivered a range of direct and 

positive impacts on the business.  

2 Introduction 

Network providers are predicting a huge growth in new services and applications, with 

tens of billions of devices, sensors, vehicles and people to become interconnected over 

the next 10 to 15 years. All of this will place unprecedented demand on the underlying 

infrastructure.  Traditionally, the deployment of new services has involved reinvestment 

in infrastructure, extensive pre-testing, and people-intensive service support in 

operation, requiring several hundred people to deliver. However, future services will 

change ever more rapidly – and unpredictably – and therefore organizations need to 

drastically reduce the time it takes for new services to be developed, trialled and 

launched. This requires radical improvements in the agility and responsiveness of the 

network infrastructure itself: the infrastructure will need to support near real-time 

monitoring of performance, self-diagnose problem states and enable rapid and informed 

human intervention when needed. The ambition is to reduce service costs as well as 

providing a framework to spin out innovation in days rather than years. The core 

infrastructure will not only provide huge capital and operational cost savings, 

significant in itself, but also greater growth potential, since the cost of innovation and 

experimentation will be reduced, and its speed increased. 

To address these challenges a new industry-academic partnership, Next Generation 

Converged Digital Infrastructure (NG-CDI), is creating a vision for the building and 

operation of a future-proof network infrastructure and its autonomic management. Such 

an infrastructure must be capable of fast and efficient service innovation and co-

creation with a wide variety of customers.  NG-CDI promises completely new ways of 

operating the infrastructure. Recent advances in programmable network interfaces, and 

model-driven networking provide the possibility of closed-loop, self- optimizing, and 

self-healing operations. NG-CDI builds on these breakthroughs to deliver greater 

economies and customer value. Operating changes of this scale need not only radical 

technological solutions, but also changes to the organisation itself. 

This paper highlights the benefit of taking a collaborate academia-industry approach to 

addressing future networking challenges based on real-world problems.  The paper 

starts by describing the business challenges that led to the formation of the NG-CDI 

industry-academia partnership, and then outlines the approach taken to conducting 

research between the stakeholders. This is followed by an overview of the NG-CDI 

research programme and architecture. We then describe in detail three research 

exemplar activities; each of which is at a different stage of maturity, but nevertheless 

each is having an impact within the industry at a different stage of the transformation 

journey.  Finally, we conclude the paper and identify a number of areas future work 
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based around the risk and governance implications associated with the introduction of 

the NG-CDI architecture. 

 
3 Business Challenges and Approach to Research 

NG-CDI is an ambitious collaboration, established between British Telecom (BT) and 

four of BT’s long-term strategic University partners, and supported by the UK’s 

Engineering and Physics Sciences Research Council ‘Prosperity Partnership’ scheme.  

The Prosperity Partnership scheme is designed to foster strategic, research-based 

partnerships between industry and academia through co-investment in shared research 

challenges. 

NG-CDI is directly addressing the challenges associated with the huge expansion in the 

scale and value of modern networks. In the past, routine human actions have been 

scaled up through automation. This has seen human effort transferred to engineering 

design, proposition development and other higher-level activities. The challenge now 
facing networks is to extend these activities to manage the massive increase in 

complexity, speed of change, and customer responsiveness demanded by the modern 

telecommunications ecosystem [1]. 

Addressing these challenges requires transformational research to broaden the 

understanding and knowledge base, not only of the capabilities underpinning any digital 

infrastructure but also the ability to manage and operate such a complex system.  

The fundamental approach taken by NG-CDI was to bring together a multi-disciplinary 

team of academic and industry researchers to co-create the research programme and 

evolve it during the project. This enables the research agenda to develop as new 

discoveries were made and new business drivers identified. The BT researchers 

articulated challenges and use cases derived from co-working with the business areas of 

the company, provided masses of business and operational data for the development of 

models and algorithms, and added their own expertise and experiences. The academics, 

each pre-eminent in their field, were able to open up the range of techniques and 

approaches that could be applied, using research from other fields, or by developing 

new advanced methodologies. This approach maximises the value of the project by 

mixing exploratory high potential research from the universities with the problem-

focused research and exploitation opportunity from the industrial researchers. 

Given the wide scope and potential impact, it was important to identify and work with a 

wide range of relevant BT stakeholders, including research and business areas. 

Coherent visions of the value and potential impact of the work were generated to gain 

traction and co-operation. These interactions helped articulate concrete use cases to 

focus the work. Close co-operation in creating chosen “quick wins” using data provided 

by BT stakeholders helped demonstrate tangible benefits and build the enthusiasm to 

work with academics. Broader support and interest was achieved through a set of talks 

from the senior academics to company-wide audiences as part of BT’s Thought 

Leadership programme, each with around 100 attendees representing all the lines of 

business. At a more operational level, weekly meetings between BT personnel and the 

research team generated a sense of pace across the project through feedback and 

direction. Sub-groups would meet regularly to advance specific topics, and these 

interactions have aligned perspectives and established common languages across the 

different disciplines involved. This approach has been instrumental in cementing the 

overall vision, supported by the underlying detail. 

 
4 NG-CDI Research Overview 

Realizing the NGI-CDI vision required an intimate understanding of operating national 

and international digital infrastructure, and world-class expertise in the areas of data 

analytics, machine learning, cyber-physical systems, network functions virtualization, 
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networked systems, asset management and business innovation.  

Using a combination of approaches, enables improved efficiency and a more direct 

focus on customer and commercial benefits, combining intelligent infrastructure and 

autonomic control, based on customer and business targets.  Delivering “intents” rather 

than low-level technological specifications improves the level of automation.  An 

Intent-Based Networking (IBN) approach designates a high-level requirement that can 

be expressed from an external client, application, or owned by the network operator. 

Once an intent arrives into the system, it passes through different stages of translation 

before reaching the management plane. This process converts a high-level expression to 

something more technical and feasible within the management plane before being 

configured/enforced at the relevant network devices. 

Iterating the requirements through simulations results in machine-readable intents 

(formalised requirements) which can be used automatically to orchestrate software-

based network and service functions, and deployed into the infrastructure to deliver the 

service. The service capacity can be scaled up or down without needing to install 
dedicated equipment. The agreed service levels will need to be managed dynamically. 

In the real world there will be disturbances such as surges in traffic demand, equipment 

failures, data errors, engineering works. Some of these events will be manageable by 

self-learning software agent control, which in real time can find the best available new 

balance between the various requirements – such as maintaining certain service levels 

subject to cost constraints. The control algorithms use network events: traffic, telemetry 

etc., to learn about problem states and remaining useful life of network elements. This 

updates the agents accordingly to self-optimise the service-level intents. For this 

autonomous control, it is crucially important that we balance a new category of 

costs/risks. A learning algorithm needs to know what accuracy of decision is required, 

how fast the learning rates need to be, the required speeds of response – all of which are 

fundamentally related. This involves new ways of judging and making decisions on the 

extent of prognostic maintenance used to pre-empt service issues, based on the likely 

scale of consequences. NG-CDI is looking at model-supported business decision-

making processes and cultures that the industry will increasingly need.  

Autonomic capability will be distributed through different domains. For example, many 

aspects of a 5G network will be self-optimising. Centralised control will not scale and 

to support the key business functions we need a sufficient representation of the 

knowledge needed. This will be a mix of types. Some will be pre-stored scenarios built 

from modelling or machine-learning – which can be enacted when appropriate. Some 

will be selected or aggregated data and used in real-time monitoring, tuned to the right 

response rate and accuracy.  Real-time data streams will be used to diagnose network 

issues, or respond as necessary. This requires sophisticated new statistical techniques 

for detecting anomalies in massive real-time data flows, distinguishing them from 

normal statistics. 

  
Figure 1 - NG-CDI Architecture 

The project is supported by an underlying architecture (Figure 1).  The figure highlights 
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three exemplars of activity within the overall NG-CDI programme that are described in 

the remainder of the paper: 1) Anomaly Detection, 2) Prognostic Maintenance and 3) 

Business Intents. These three exemplars encompass representative technical challenges 

faced by BT towards future evolved network autonomics in different network 

management applications. 

 
5 NG-CDI Exemplar Activities 

Delivery of the full benefits of the project depends on building a range of outputs, 

encompassing different areas of impact and on different timescales. For example, a 

technological and business long-term vision needs to be developed across the industry 

to develop paths towards manufacture and implementation based on international scale 

economics. Alongside this long-term influence, immediate opportunities have been 

created, delivering benefits in the shape of smarter customer processes, and improved 

service levels. Medium term opportunities are developed through building 

conversations across the business. These are often stimulated by proof-of-concept 

demonstrations which show the art of the possible through real or simulated networks 

and data. 

Close co-working between university and BT researchers has enabled benefits across 

this range of impacts. Techniques have been developed based on massive operational 

data from BT’s network and processes. This means the solutions are bedded in reality 

and more readily assimilated by the business. BT researchers provide a bridge to 

relevant business and operational areas, translating their research knowledge to 

articulate the benefits and impacts in the language of relevant business domains. The 

existence of network testbeds provides further opportunities by enabling the 

deployment trial services in real-world environments, such as 5G O-RAN, from which 

operational and user experience can be tested.  

In this section we highlight examples of successful impact areas, which serve to 

illustrate the different types of business impact and their relationship to the ambitions 

for the converged digital infrastructure.  Devolving processes to autonomic control 

increases the responsivity to the dynamic network environment and changing 

requirements. It releases human effort to concentrate on higher value activities. 

NG-CDI has addressed these opportunities in the following topic areas. Anomaly 

Detection enables the business to discern whether a pattern of network events is one 

that the autonomic system needs to respond to, and if so without human intervention, or 

whether human expertise is needed. Systems which learn from network and service data 

can be used optimise business decisions and processes such as Prognostic Maintenance. 

This enables the business to continually balance between reactive and proactive 

maintenance to optimise the economics of service delivery. Enabling continuous change 

in this way can be extended to the customer through Business Intents. This enables a 

more direct translation between the language of business needs of balancing 

organisational risks, costs and performance to the technical ‘instructions’ necessary for 

effective orchestration of the service and the supporting autonomic processes. All the 

topics described play important roles in reducing the commercial risks inherent in 

automated systems as well as ensuring safe operation. The integration of these aspects 

to provide a rich interface to the key business decision processes is an active area of 

research. 

 

1) Anomaly Detection 

Within the current telecoms network environment, we face many data streams that need 

to be carefully monitored to help ensure the successful performance of the 

infrastructure. The collection of these streams is crucial to observing and understanding 

the behaviour of a network that is driven by the behaviour of millions of users and 

applications. However, the scale of even current-day networks, in terms of the 
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equipment and the number of metrics that can be monitored, means that it is no longer 

possible to rely on expert users visually reviewing data streams, except at the macro-

scale where many smaller problems may be missed. As we look to the data-driven, 

autonomic networks of the future, the volume and variety of these streams will increase.  

Nowhere is this more apparent than in the monitoring of network operational data 

streams. Here the aim is to rapidly, and accurately, analyse a stream as it is observed to 

identify those anomalous periods that may be indicative of operational challenges. 

Timely and accurate detection of such anomalies is critical to help minimise operational 

disruption and ensure the smooth running of the network. In essence, the problem we 

need to consider is how to identify anomalous periods efficiently and accurately from 

the baseline of everyday performance. Consequently, some of the simplest data analyses 

we might undertake consist of identifying in real-time whether anomalies have occurred 

and whether such anomalies are point, i.e., a single outlying observation, or collective 

anomalies. Figure 2 shows an example of this for a sample of network throughput data. 

 
Figure 2 – Analysis of sample network throughput data, identifying periods of typical and anomalous throughput.  

Note that both point (yellow dots) and collective (red band) anomalies are identified. 

We have developed a new suite of computationally efficient anomaly detection methods 

including [4-5]. Built upon the rigorous foundations of statistical inference, the resulting 

anomaly methods can be run in real-time to identify whether the raw data might, for 

example, be a fleeting point anomaly or a more persistent collective anomaly from the 

typical `baseline’. Within this suite, the sequential collective and point anomaly 

(SCAPA) approach [4], provides a highly effective mechanism to detect anomalies 

within univariate data sequences.  

SCAPA is based on a dynamic programming algorithm, analysing each new data point 

as it is received. Broadly speaking, the approach works as follows: Firstly, SCAPA 

assumes that all the data is drawn from the same distribution and assigns a cost to this. 

The methods then seeks to segment the data, to reduce this cost. Individual points are 

also removed in order to further reduce the cost. When this occurs, the point is flagged 

as a point anomaly.  

One particular novelty of SCAPA, as a method, is that it re-assesses these anomalies 

each time a new observation is received. In addition to discerning the nature of the 

change, the theory developed also provides understanding of key questions such as (i) 

when is it appropriate to use this approach; (ii) the likely delay between anomaly 

occurrence and detection and (iii) the amount of data needed before an anomaly is 

randomly observed. 
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Figure 3 – Sequential CAPA in action within the BT network operations dashboard during the US Open tennis championship final 

Through the programme’s close collaboration between the academic team and BT’s 

researchers at Martlesham the anomaly methods developed in the programme have been 

embedded in a number of different operational areas, including BT’s Internet Peering 

Platform. Here, the anomaly tools [3] developed in [4] are used to monitor the platform 

in real time, triggering anomalies to BT’s network operations teams to help them 

monitor and assure the performance of this critical digital infrastructure that connects 

millions of users with other network and content providers. 

This can be seen in Figure 3, where the operator has drilled down from aggregate views 

of network anomalies to focus on the data rate through a single network interface. The 

top part of the dashboard shows how SCAPA is reacting to the emerging anomaly, 

increasing severity and duration of the collective anomaly with both the rate of increase 

of the data rate and the duration of the event. The lower part of the dashboard shows the 

data rate telemetry and the predicted median based upon historical data. This is used in 

conjunction with the predicted standard deviation of the residuals to normalise the data 

rate telemetry before presentation to SCAPA. We can see that these steps form a 

pipeline of processing with both batch (recalculating the predicted median and standard 

deviation of residuals) and streaming (normalisation of the telemetry and anomaly 

calculation) operations. In the current implementation the streaming operations are 

performed using Apache Beam with side-inputs to receive periodic updates to the 

predictions. 

BT is actively working on applying SCAPA and other anomaly detection algorithms to 

further network and service platforms including the UK core network, Fixed and Radio 

Access Networks, Content Delivery Networks and IP Voice services. 

2) Prognostic Maintenance 

Reliability of network equipment is critical to maintaining high levels of service 

assurance to customers. One of the key benefits of digitalization is the ability to monitor 

critical metrics that helps understand the health of equipment and to use the data for 

their effective management and maintenance. In this context, the ability to move from 

reactive to predictive maintenance practices have become popular across different 

industry sectors, driven by emerging data-centric approaches for failure diagnosis and 
prognosis. In particular, the use of advanced machine learning algorithms has improved 

our ability to exploit monitoring data and predict equipment failures. 

However, the main problem with data-driven prognostics is that they rely on large 

amounts of historical failure data to estimate model parameters effectively.  The 
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availability of historical failure data is limited due to two major reasons: (i) over-

protective maintenance and replacement regimes; and (ii) highly reliable equipment. 

This causes failures to be rare, and leads to the problem of limited failure data 

availability for data-driven prognostics of network equipment, which causes prognostics 

predictions to be associated with high uncertainty. This was identified by BT network 

operations as a significant limitation in their ability to determine which event alarms 

should have priority attention. The manufacturers’ equipment alarms include, 

effectively, very high volumes of false positives, and determining which need to be 

acted upon is a skilled and time-consuming activity. The operations centre provided 

high-volume telemetry data from network nodes to enable the research. 

In order to address this issue, we developed a technique for generating failure data that 

realistically reflect the behaviour of degrading equipment (i.e., real-valued failure data) 

for prognostics under the conditions of limited failure data availability. It allows 

training datasets used for data-driven prognostics to be augmented so that an increased 

number of failure data samples is available for prognostics modelling. The methodology 

generates real-valued failure data using a conditional generative adversarial network 

(CGAN) by controlling and directing the failure data generation process using auxiliary 

information pertaining to the failure mode that needs predicting. More specifically, the 

noise being added to the newly generated failure data samples is conditioned on 

auxiliary information to prevent different modes of data being generated. Auxiliary 

information is additional information that adds value to the understanding of failure 

dynamics of the equipment of interest (e.g., equipment similarity information, expert 

knowledge on failure causes and failure modes and quality of equipment use).  

We applied this technique for predicting the Time-To-Failure (TTF) of 

telecommunications broadband lines under the conditions of limited failure data 

availability. To this end, we used the methodology to use expert knowledge on VDSL 

and ADSL broadband line failure causes (e.g., water ingress into electrical junctions, 

joints and DPs) to generate real-valued broadband line failure data. Performance was 

assessed in terms of an “F-score”. This is a useful measure in practical decision 

systems, as it represents the mean of two metrics: precision and recall. Precision is the 

proportion of true positive predictions amongst all positive (e.g. failures) predictions, 

and recall is the proportion of true positive predictions with respect to actual positives. 

Therefore the F-score can be considered as the “risk” of believing in the algorithm as it 

determines impacts such as customer service levels and cost: i.e. the proportion of real 

faults intercepted and the wasted effort in responding to false positives. The prognostics 

performance obtained when prognostics models are trained on the augmented training 

datasets and evaluated on the test datasets showed significant improvement – an 

increase of 25% in the F-score for ADSL lines and 13% for VDSL lines compared to 

the best available existing techniques (Figures 4 and 5). 

 

 
Figure 4: Prognostics performance using best available current technique 
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Figure 5: Prognostics performance using our methodology 

3) Business Intents 

To ensure the adoption of our architecture in production, we opted from the start of the 

project to use a flexible intent-based approach to expose autonomic control to users and 

customers. During the early design stages, we conducted a series of interviews with key 

BT stakeholders (e.g. BT Global Services, Strategic Planning) to better understand 

business requirements for our architecture and to collect automation use-cases. In our 

initial requirements analysis, we identified two key design goals: the need for 

automation in internal business processes and the ability for non-technical users to 

interact with the autonomic framework. Although several standardized intent models 

exist, they focus on customer connectivity-based intents and the automatic translation of 

those intents into appropriate device configurations. Nonetheless, connectivity services 

depend on “human-centric” business processes, currently unsupported by existing intent 

models (i.e., billing, logistics).  Finally, existing model-based intent systems require 

high precision in policy expression, which frequently confuses non-technical users, who 

rely on network managers to eliminate ambiguity when specifying network 

requirements.  

To meet our first design goal, we developed a new intent system which supports control 

for new resource domains (e.g. orchestration) and provides new types of intents that 

abstract business processes, including equipment upgrades and service protection.  

Figure 6 presents an example execution of an equipment upgrade intent [2] as a 

representative use-case. The use case was developed in collaboration with BT Global 

Services and allows the network administrator to automatically replace network 

equipment with a short TTF, estimated by the prognostic maintenance model. Existing 

equipment upgrade processes typically rely on manual configuration and testing of 

devices by network administrators, experienced with vendor-specific configuration 

interfaces. The process usually is repetitive, and human supervision essentially ensures 

the timely detection of sporadic hardware failures and misconfigurations. Nonetheless, 

critical upgrades can take several days due to the inability to extensively parallelize the 
upgrade process, due to limited human resources. In parallel, equipment upgrades lead 

to unnecessarily long service downtimes to accommodate potential delivery and 

installation delays.  
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Figure 6: Equipment Health monitor and upgrade intents 

The intent uses an Operations Support System (OSS) driver to procure the new 

equipment, and to schedule infrastructure engineers site visits, once delivery dates are 

confirmed. In parallel the intent layer can schedule a re-routing operation to the 

management layer, in order to drain traffic a-priori from the failing equipment. The re-

routing process can result in QoS degradation, due to a temporary lack of network 

resources or further stretched rerouting paths, and the intent layer can negotiate with the 

network manager possible QoS relaxation windows. Finally, infrastructure engineers 

can signal the start and end time of the upgrade process to the intent layer, to minimize 

downtimes, while SDN interfaces can be used for automatic device configuration and 

fault checking. It is worth highlighting that the integration of the intent and knowledge 

plane allows risk management strategies specification during the intent planning phase. 

Specifically, risk metrics can quantify the impact of possible actions (e.g. quantify the 

real service degradation based on previous traffic patterns) and the intent will select 

execution plans that reduce operational risks (e.g. schedule upgrades during quiet 

periods).  In parallel, the intent model allows network administrators to associate 

automatic risk management processes with risk metric thresholds to automate failure 
response (e.g. if the equipment configuration action fails, the intent must automatically 

inform an engineer). 

To improve the accessibility of our intent system we developed a new prototype 

interface which helps users to reduce the level of ambiguity during the process of 

capturing intents. Specifically, we implemented a conversational interface, that uses 

natural language techniques to analyse and extract user goals. Our prototype interface 

implementation allows users to interact with our intent layer via popular services, such 

as Google Assistant and Slack [6]. The interface system explains interactively the 

impact of an expressed intent, thus allowing users to correct mistakes and reduce 

ambiguity. In parallel, users can inspect the intent state and receive error notifications 

throughout the lifecycle of an intent. Our approach enables intent systems to put the 

user in the loop of the intent process and, in the future, we aim to explore how user 

input can improve intent validation and re-planning. For example, users can suggest 

ways to resolve intent conflicts, or provide tiebreakers to the intent optimization 

Intent Layer

0. “Monitor Router Health”

1. Risk 

Assessment

4. Procure

Equipment

9. Configure 

Router

8. Installation

7. Reroute 

Traffic

2. “Router X has high fail risk” 

3. “Upgrade Router X” 

10. Restore 

Routing

Knowledge Layer

TelemetryPrediction
Prognostic

Maintenance

Business Layer

Finance Maintenance

Plan

Deploy

Optimize

Monitor

Validate

Management Layer 

SDN 

Control

Compute 

Control

Orchestration

Network 

Administrator

5. “Propose QoS degradation bounds” 

6. “Tolerate 50% QoS degradation” 

Page 9 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



   

 

process.  

 
6 Conclusions and Future Work 

We believe that NG-CDI is a perfect example of effective collaboration between 

academia and industry in an effort to drive a future networking research agenda based 

around real-world problems. On the one hand, the osmosis of academic research with 

network business processes allows the project to identify novel challenges and use-

cases for research. On the other hand, academic partners are able to access operational 

data and even explore opportunities for deployment of models and system in production 

environments.  

The areas of work highlighted in the paper illustrate the benefits of this highly 

collaborative interdisciplinary approach. The business impacts range from specific 

applications of ground-breaking new techniques being trialled in volume business 

processes; through demonstrated visions of how smarter business and network 
processes could bring customer and business benefit. In addition, the consortial 

approach has brought thought leadership to help develop strategies in the business as a 

whole, and the telecoms industry beyond.  In each area of work the ongoing 

collaboration between academia and industry is resulting in a direct and positive impact 

on the business, as well as benefitting the research community.   

We are acutely aware that whilst the introduction of an automated, knowledge-based 

management architecture promises huge potential for greater and more timely control 

over our environment, the introduction of such an architecture also introduces new 

risks.  As the technology becomes more complex, we need to avoid it becoming less 

transparent and accountable.   

As part of our Future Work, we are examining the risk and governance implications 

associated with the introduction of such an architecture. Firstly, we are examining the 

risks within the architecture itself, covering the development of technologies from 

design to deployment, testing, re-calibration and revision, and to map the risks involved 

at each stage. Our approach is informed by research in model risk management.  A 

second aspect of risk concerns governance.  Ensuring the elements of the architecture 

are managed for risk is highly important, and so too is the integration of this 

architecture into the wider systems and organisation of the business as a whole.  

Through working with business and risk management areas of the company we are 

developing the vision and new approaches that aim not only to maintain robust 

operations, but also take advantage of the technology to reduce the existing business 

risks associated with legacy technologies. The introduction of the architecture has 

strong potential to deliver the future strategy for managing future digital infrastructures. 

Our integration of model risk management and enterprise risk management will provide 

a new and integrated framework to assess the introduction of advanced technology and 

the balance of risks it entails. 
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