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Abstract
There is a widespread belief that in the 1970s, two conflicting theories of the adhesion of a spherical particle to a substrate 
were published: the JKR and DMT theories. And that the dispute was resolved when Tabor introduced a parameter � , such 
that for small � , DMT was correct, while for large � , JKR was correct. We point out that there never were two theories of 
contact: the dispute was about the magnitude of the pull-off force (with an implication that since the DMT value was obtained 
by a thermodynamic method, it must be correct). And what Tabor actually said was simply that for large � , the neglect of 
surface forces in the JKR theory was acceptable, and that he distrusted the neglect of deformation by the large surface forces 
immediately outside the Hertzian contact in the DMT theory. We point out the errors in both the DMT/MDT thermodynamic 
method and the MDT force method (preferred by MDT) but also argue that once Derjaguin and his collaborators (MYD) 
established that Hertzian geometry does not occur, no theory based on that geometry should be taken seriously. Derjaguin’s 
well-merited fame rests on more important contributions.
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1  Introduction

It sometimes appears that there must be a law requiring any 
paper-linking adhesion with traditional contact mechanics to 
begin by explaining that there are two theories describing the 
“adhesive Hertz problem”; the JKR theory [1] and the DMT 
theory [2]; and that Tabor [3] reconciled the two conflicting 
theories by introducing a parameter (R�2∕E2�3)1∕3(Now usu-
ally modified to � ≡ (RΔ�2∕E∗2�3)1∕3 ) and explaining that 
for μ small, the DMT theory is correct, while for μ large, the 
JKR theory is correct.

Very little of this explanation is true!
There is indeed a complete JKR contact theory, which 

leads to equations relating the load to the approach and the 
contact radius: a convenient form1 being the parametric 
equations P̂ = (4∕3)â3 −

√

8𝜋 â3  ; 𝛿 = â2 −
√

2𝜋 âwhere 
P̂ ≡ P∕RΔ𝛾 ,   𝛿 = 𝛽2(𝛿∕R) ,  â ≡ 𝛽(a∕R) with �3 = E∗R∕Δ� . 
The pull-off force ( ̂P = −3𝜋∕2; T ≡ (3∕2)𝜋 RΔ𝛾 ) then fol-
lows immediately by differentiation. In contrast, but there is 
no contrast! There never was a DMT contact theory: all the 

DMT paper provided was a proof that the maximum tensile 
load occurred when the elastic indentation disappeared, so 
that contact reverted to the rigid body geometry, and that 
therefore, the pull-off force regained the value 2� RΔ� 
found previously by Derjaguin [4] (and Bradley [5]) for a 
contact between rigid spheres. No equations relating load 
to approach2 or to contact area, were given by DMT. They 
do indeed provide a table labelled “Total Force”, but this 
is misleading: the values given represent only the relation 
between the “adhesion force” and the approach: “total” 
referring merely to the addition of the contributions within 
and outside the contact area.

After the MYD [6] analysis appeared (1980), in 1983, the 
DMT “thermodynamic” method was specifically rejected as 
incorrect by its three authors (reordered as MDT [7]), so is 
now history.

But did Tabor give his blessing to the DMT theory as the 
correct description of contact behaviour for small values of 
his parameter? He did no such thing! Indeed he says rather 
little about the DMT model except commenting:
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1  The variables used in the self-consistent plots, a∗ and �∗ ≡ �∕� 
are such that a∗ = â but 𝛼∗ = 𝜇𝛿 . I would prefer the symbol � for 
approach (or displacement), but too many printers use the same sym-
bol for a and �.
2  An asymptotic force-approach relation could be constructed from 
information given, but it would be valid only for 𝛿∕𝜀 << 1.
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This analysis is interesting for its attempt to link up sur-
face forces with the use of the Hertzian elastic equations. 
Unfortunately, the shape of the deformed zone ignores the 
deformation due to the attractive forces close to the edge of, 
but outside, the Hertzian circle.

Tabor adds that these neglected forces are comparable 
with the forces inside the Hertzian circle, (in fact near pull-
off they are far larger). And Maugis, of all people, excuses 
the neglect as acceptable if the elastic modulus is high, 
forgetting that the Hertzian deformation uses the same 
modulus.

Tabor certainly accepted the need to consider non-contact 
surface forces (Recall that Tabor & Winterton [8] made one 
of the first measurements of van der Waals forces3!). He 
argues that (at zero applied load) the neck height in the JKR 
theory will be of order4 (R�2∕E2)1∕3 , so the JKR theory will 
be inapplicable unless this is substantially larger than the 
range of action of the surface forces. Thus, his actual assess-
ment is, in effect,”[ if � falls to O(1) ], the forces outside the 
contact zone can no longer be neglected”.

[Interestingly, this was precisely where Derjaguin himself 
went wrong in his early contribution5 [4]! DMT explain the 
need for their modification: “...because we disregarded the 
energy of the noncontact adhesion forces acting within the 
ring-shaped zone surrounding the contact area”].

If the rule which has gone into the literature: “DMT for μ 
small, JKR for μ large”, was not introduced by Tabor, where 
did it come from? From Derjaguin himself! To be precise, 
remarks equivalent to this are made by Muller, Yuschenko 
and Derjaguin in the MYD paper [6]. And as we argue 
below, this is wrong: what the Tabor parameter governs is 
the transition from rigid body behaviour to JKR behaviour.

But does that case need arguing? What can be clearer 
than DMT’s own abstract6: “In fact, it remains equal to the 
attractive force value that is determined when considering 
the point contact of a nondeformed ball with a plane”.

2 � The “Thermodynamic” Method

There is no difference in principle between the DMT paper 
and the thermodynamic part of the later MDT paper [7]. 
Neither paper actually calculates the energy; the force is 
found from the derivative of the energy, and the differen-
tiation of the energy integral is done analytically and the 

subsequent numerical integration uses only the derivative 
of the energy density: a surface force law. The difference 
is that the DMT paper uses the simple van der Waals law 
�(h) = (Δ�)(�∕h)3 , so the resulting surface force law is that 
the force/unit area between two half-spaces a distance h apart 
is f = (2Δ�∕�)(�∕h)3  (for h > 𝜀 ). MDT uses an improved 
law of adhesion energy in which a repulsive energy term 
is added to the attractive van der Waals energy. This gives 
the 3–9 surface force law introduced by Derjaguin et al. in 
their self-consistent numerical solution (MYD [6]. Based 
on the Lennard–Jones 6–12 potential between individual 
molecules, the new law is f = (8Δ�∕3�)[(�∕h)3 − (�∕h)9] : 
it will be referred to here as the DerjaguinLJ (or DLJ) law.

The change would of course lead to a different force-
approach law for the contact problem, but neither paper 
offers such a law: the significant result that the maximum 
tension occurs when the approach is zero, is unchanged.

But could the “thermodynamic” method really have 
given a force-approach law? It took Pashley [9], a year after 
the MDT paper appeared, to point out the limitation of the 
method: the answer is only correct if the configuration is 
correct.

The method used in both papers will be referred to as the 
DMT thermodynamic method.

But what is it?
The beginner, wishing to understand the famous theory, 

might be tempted to try reading the DMT paper [2]. Sadly, 
all he would find is a helpful reference to Derjaguin’s 1934 
paper: “At that time an approach also was suggested to solv-
ing this problem by using the virtual displacement (thermo-
dynamic) method taking into account the adhesion energy 
in combination with the Hertz theory”. And in that paper, 
he would find the only mathematical statement of the virtual 
displacement method: there we have

[� is the approach, our � : U is the elastic strain energy, 
S the contact area and f0 = −Δ�{Derjaguin’s � seems to be 
just a prefix, meaning small}].

The last term is never referred to again but (verbally) 
is replaced by the total adhesion energy Ws found as the 
integral of the surface energy. Neither the original U nor 
Ws appears to be small quantities, as required by the virtual 
displacement equation. But it soon becomes clear that the 
reference should have been ignored, and that the relevant 
principle, never stated, is that

(the adhesion energy is tensile, so negative).
If our beginner, seeking clarification, consults the later 

MDT paper, he will then find

(1)P1 �� = U + f0 �S

(2)P1 =
dU

d�
+

dWs

d�
3  Derjaguin himself was earlier (1954).
4  Tabor uses � to denote surface tension, so we have Δ� = 2� (or 
Δ� = �

1
+ �

2
− �

12
).

5  But how could he, in 1934, have calculated the external contribu-
tion for his elliptical geometry?.
6  Note the”it”: the DMT paper is only interested in the pull-off force.
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“This force is obviously equal to the sum of the external 
load, P1 and the molecular interaction of the sphere with the 
substrate, Fs, over the whole surface. In accordance with [1] 
[ie Derjaguin 1934], the latter is defined as the derivative 
of the total energy of molecular interaction, W, with respect 
to the approach.” Yes, that is indeed the method of Eq. (2) 
but is certainly not in accordance with [1].

2.1 � Evaluation of the derivatives

Since the strain energy is found as the integral giving 
the work done in producing the Hertzian indentation, 
U = ∫ Pd� , the derivative dU∕d� = P,the Hertz load, and 
we may forget its origin and simply offset the adhesion force 
by the Hertz load for the relevant indentation.

Calcula t ing the  adhesion force  is  harder: 
Fs =

dWs

d�
=

d

d�

[

2� ∫ ∞

0
�(h) r dr

]

, where h = h(r, a) + � with 
h (r, a) = (1∕� R)(a

√

r2 − a2 + (r2 − 2a2) ⋅ arctan
√

(r2∕a2 − 1).
For the Hertzian geometry postulated, we know7 that 

a2 = R� : so that d

d�
≡ R

2a

�

�a
 and Fs =

2� R

2a
∫ ∞

0

d�(h)

dh

�h

�a
r dr .  

d�

dh
 is just the surface force f (h) and after some alge-

bra �h
�a

=
4a

� R
arctan

√

r2∕a2 − 1 (and is zero for r < a ). 
T h u s ,  Fs(�) = 2� R

2a
4a
� R

∫ ∞
a f (h) ⋅ arctan

√

r2∕a2 − 1 r dr
= 4a2 ∫ ∞

0 f (h) ⋅ arctan(t) t dt.
After setting t2 = (r2 − a2)∕a2.
This, however, was not the route DMT took, for now Derjagu-

in’s past caught up with him: he already knew how to calculate 
the contribution from the contact area! So DMTs partition the 
energy into  W i

s
+We

s
= 2� ∫ a

0
�(h) r dr + 2� ∫ ∞

a
�(h) r dr and 

differentiate the two terms separately. But over the contact area, 
h = � and �(�) = Δ� , so Wi

s
= � a2Δ� . And for the Hertzian 

geometry postulated, we have a2 = R� : so that W i
s
= (� RΔ�) � , 

and differentiating gives the contribution to the adhesion force as 
Fi
s
= � RΔ� , avoiding the need for numerical integration.
But this had to be paid for! For the integral for the contri-

bution outside the contact area no longer has fixed limits, 
and DMT (not knowing how to differentiate an integral wrt. 
its limits !!) made a change of variable x2 = (r2 − a2) to 
bring the lower limit to zero before differentiating the inte-
gral. They, therefore, needed not �h(r,a)

�a
 but �h(x,a)

�a
 . Using this 

led them (correctly) to the external contribution to the pull-
off force dW

e
s

d�
= 2� ∫ ∞

0
f (h)

[

xa

x2+a2
− arctan (x∕a)

]

x dx.
Adding to this, the internal contribution Fi

s
= � RΔ� 

gives exactly the same answer as before, with the maximum 
2� RΔ� as � → 0 and we regain the rigid indenter configu-
ration. But for a rigid indenter, the external contribution, 
found directly, is the whole 2� RΔ� , not the � RΔ� we have 
just found for the same configuration! This seems worth 
repeating:

The contribution to the adhesive force from the region 
outside the contact area

(a)	 tends to � RΔ� as the indentation � → 0

(a)	 tends to 2� RΔ� as the gap h0 → 0

Perhaps this is the correct place to emphasise the other 
half of perhaps the same problem: the contribution from 
the contact area is � RΔ� , whatever, the size of the con-
tact. The mean (tensile) stress over the contact is, therefore, 
� RΔ�∕�a2 = Δ�∕� : embarrassing when � → 0.

3 � The MDT Paper Part II: The “Force” Method

The MDT paper [7] carefully describes the thermodynamic 
method, the very essence of the DMT paper and of its 
own first half, and then rejects it in favour of a direct force 
method (and so relegates the DMT paper to join phlogis-
ton and the æther as interesting history). Not because the 
thermodynamic method gives only an approximate answer 
and not for the glaring discontinuity described above, but 
because where the force–approach curve for elastic contact 
meets Derjaguin’s equation for the adhesion force before 
contact takes place, it meets it in a cusp, instead of joining 
smoothly as found in the full numerical solutions of MYD 
[6] (and surely expected by common sense?). This funda-
mental decision is illustrated by MYD in Fig. 3, in which the 
important information is confined to a small corner: Fig. 1 
shows the problem more clearly.

The force method simply integrates the surface forces for 
the assumed geometry, just as is done for the out-of-contact 
rigid body (using Derjaguin’s approximation that the force 
between two curved, inclined surface elements is the same as 
if they were elements of two parallel half-spaces). The new 
answer is now only an estimate and obviously only correct 
if the assumed geometry is correct.

The calculation of the total adhesive force, now from 
entirely outside the contact area (which now contributes 
none, instead of � RΔ� !), is a straightforward numerical 
integration: it produces a curve which after a slow start very 
close to 2� RΔ� , then rises rapidly when the indentation 
increases. � = 0 gives the minimum value of the adhesion 
force, not the maximum as found in the thermodynamic 
method. Figure 2 shows the result of subtracting the Hertz 
load P̂ = (4∕3𝜋)(𝛿∕𝜇)3∕2 . For 𝜇 < 0.27 the tensile load is 
again a maximum at zero approach, so as MDT happily 
reports (ignoring the limitation on � ), we again get the rigid 
body configuration at pull-off. But for larger values of � , 
as Pashley [9] first pointed out (overlooked(?) by MDT), 
for 𝜇 > 0.27 the pull-off force exceeds the rigid solid value 
of 2� RΔ� , and increases monotonically with � , the value 
2.06� RΔ� shown for � = 1 being relatively minor. For � = 5  

7  WE know, but one fifth of the DMT paper is spent on proving this 
Hertzian relation. Does that make it a DMT equation?



	 Tribology Letters (2022) 70:61

1 3

61  Page 4 of 9

the pull-off force is 2.68� RΔ� , and it increases indefinitely 
as � rises. None of the “self-consistent” solutions pio-
neered by Derjaguin and his colleagues (MYD [6] has ever 

exceeded 2� RΔ� (or indeed, even quite reached it). (See, 
for example, Greenwood [10]) or Feng [11], or the Maugis 
“Dugdale” analytical solution [12]).

Fig. 1   Goodbye to DMT? The 
rigid body curve (Derjaguin 
1934) is of course independ-
ent of Tabor’s parameter. The 
elastic curves are typical curves 
for 𝜇 < 0.3

Fig. 2   The MDT (force) solu-
tion
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3.1 � The Maugis (M‑DMT) Theory

Buried in the beautiful Maugis (Dugdale) paper [12] is 
a quite separate theory describing the adhesive contact 
between a sphere and an elastic half-space. Rejecting the 
attempts to calculate the adhesive force either as the deriva-
tive of the adhesive energy or by direct integration of the 
surface forces, Maugis postulates that it has a constant 
value of 2� RΔ� , and that we then have Hertzian contact 
under a load P as if the load was {P + 2� RΔ�} , so that 
a3 = (3∕4)(P + 2� RΔ�)R∕E∗ . With the notation used in the 
introduction, P̂ ≡ P∕RΔ𝛾 , 𝛿 = 𝛽2(𝛿∕R) , â ≡ 𝛽(a∕R) with 
�3 = E∗R∕Δ� , we get the M-DMT equations:

widely, but incorrectly, quoted as due to DMT.
It is interesting to relate this to the MDT force method. 

MDT (as DMT) starts by choosing the indentation � , 
which for a Hertzian contact is equivalent to choos-
ing a ≡

√

�∕R . The Hertz solution (rederived by DMT) 
gives the gap shape outside the contact, and using a sur-
face force law, the adhesion force Fs(�∕�) is calculated. 
The Hertz force is Fh = (4∕3)a3E∗∕R , and the (tensile) 
load is the difference of these: T = Fs(�∕�) − Fh(a) , or 
T∕RΔ� = Fs∕RΔ� − (4∕3)a3 E∗∕R2Δ� , which in the nota-
tion above is T̂ = F̂s − (4∕3)â3 . Changing from a tensile 

(3)
â
3 = (3∕4)(P̂ + 2𝜋 )

â
2 = 𝛿̂

force T̂  to a compressive load P̂ = −T̂  , this is approximately 
Eq. (3a). Since in the force method Fs  remains very close 
to 2� RΔ� for 𝛿∕𝜀 < 0.27 , Maugis’ hypothesis just corrects 
the suspicious increase in F̂s (perhaps due to the omission of 
a negative contribution from the contact area?), and so, for 
the whole range where “DMT” might be considered, satis-
factorily represents the MDT force answers.8

The equations are the same, but the point of view differs: 
MDT starts from the approach � and finds the geometry and 
hence the load: M-DMT takes the load T as fundamental and 
finds the approach.

But do either describe the adhesive contact of a sphere 
and a half-space?

3.2 � The Defects of the MDT(Force) Method

Has the introduction of Hertzian geometry into the analy-
sis been a useful step? It was indeed a very natural one 
in 1934 when Derjaguin first raised the question of how 
adhesive forces might affect a Hertzian contact. But to 

Fig. 3   Qualitative agreement. 
The indenter shape at zero load 
shows no signs of a Hertzian flat

8  A pause to think is needed here. I have no difficulty with the signs 
in the equation T̂ = F̂

s
− (4∕3)â3 . But when this is reversed and 

becomes â3 = (3∕4)(F̂
s
− T̂) , I suddenly realise that the tensile sur-

face stresses have applied a compressive load to the sphere. Well, 
thanks be to Newton!T̂ = F̂

s
− (4∕3)â3
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continue after the MYD numerical solutions showed no 
signs of a Hertzian flat?

Feng [13] accepts the MDT claim that the DMT(f) 
approach gives qualitative agreement for the grad-
ual shrinking of the contact area as the tensile load is 
increased. Figure 3, produced using the MYD self-con-
sistent numerical method, suggests otherwise. Even for 
zero load, the shape of the sphere is qualitatively still as 
for a rigid sphere: the indenter curvature is reduced, but 
there is no sign of a Hertzian flat. For this value of the 
approach, using the M-DMT equation â2 = 𝛿 , the approach 
�∗ = 0.347 found by the self-consistent solution implies 
a Hertzian flat of radius 1.86 as shown. For T = 0, the 
M-DMT theory predicts a contact radius a = 1.68  and an 
approach �∗ ≡ �∕� = 0.281 . In fact, the contact pressure 
falls to zero much further out, at the intersection of the 
elastic shape curve with the green line. [The maximum 
tensile stress (the preferred definition of a contact area 
by MYD (and Greenwood)) occurs at a = 3.301 [second 
vertical line (H = 0.201)].

The inset shows more clearly the relation of the 
deformed shape to the initial rigid shape. (The rigid curve 
is placed purely to show this: its vertical position should 
be ignored).

If we leave the DMT region, by moving to � = 1 , incipient 
flattening can be seen [13] but only by zooming the y-axis. 

Recognisable flats require � ≥ 2 , and flats with definite edges 
need � ≥ 3 . Indeed, Tabor’s concern at neglecting the defor-
mation due to attractive forces immediately outside the Hertz-
ian flat is seen to be a minor one: there is no Hertzian flat! [We 
might note that this is not an inadequacy in the numerical solu-
tions: good approximations to a flat are found, but for � ≥ 3.

It might also be noted (see [14]) that Derjaguin’s tension 
curve for � ≤ 0 , (which by virtue of the assumption of Hertz-
ian geometry, and so, for � ≤ 0 of zero Hertz force) is just the 
rigid body adhesion force curve, is wrong even for � = 0.1 , 
predicting contact areas before contact! Locally the sphere is 
attracted towards the half-space, resulting (for � = 0.1 ) in a 
“ �max ” contact area when 𝛼∗ > −0.28 , and a “ p > 0 ” contact 
area when 𝛼∗ > −0.07.

Qualitative is a very loose term!].

4 � The “Semi‑Rigid” Theory [14, 15]

If even for the substantial deformation of the zero-load 
contact, there is no sign of a Hertzian flat appearing, the 
obvious response is to forget Hertz. But what can we do 
instead? Fig. 4 provides a possible answer: use the origi-
nal rigid shape! Certainly there has been elastic deforma-
tion but is the rigid shape perhaps better than the Hertzian 
shape? The semi-rigid model ignores the geometry changes, 

Fig. 4   Comparison of the 
models (i) [M-DMT + rigid] 
and (ii) semi-rigid, with “exact” 
solution
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so uses Derjaguin’s equation for the load (Derjaguin 1934, 
MDT1983). The central displacement due to the same 
stresses is calculated to find the approach. Thus, starting 
from the minimum gap h∗

0
≡ h0∕� the equations9 are

Figure  4 shows a comparison of the force/approach 
curves for the three theories (M-DMT, semi-rigid, and self-
consistent) for � = 0.05.

Both models predict that the pull-off force is the tradi-
tional 2�RΔ� for all values of μ, which is not serious here 
where the true answer is only 4% lower (but would matter 
for � = 1 where the answer should be 17% lower). The semi-
rigid model finds the approach at pull-off rather well and is 
good over the whole range. Indeed, not surprisingly, it, not 
either of the MDT models, is the correct limit as � → 0 . 
But in fact, rather soon the M-DMT model becomes far the 
better of the two. It gives an excellent answer for � = 0.2 . 
Greenwood’s conclusion [14] that the semi-rigid model is 
generally the better seems wrong (and conflicts with his own 
Fig. (10) see [14]): perhaps, it was based on the correct pre-
diction of the approach at pull-off.

5 � Discussion

The most important consequence of the appallingly badly 
named M-DMT theory seems never to have been noticed. 
Perhaps it is necessary to re-state the basic hypothesis in 
words. The pull-off force for a rigid sphere, independently 
of the surface force law, is 2�RΔ� (Bradley [16], Derjaguin 
[4]). Assume that this same value of the adhesion force oper-
ates; whenever, there is contact. Then if the geometry is 
Hertzian, we get Eqs. (3): â3 = (3∕4)(P̂ + 2𝜋 ); â2 =

↼

𝛿  . 
There is no need to choose a surface force law, and, vitally, 
there is no need for any numerical integrations. The need for 
MDT to choose between the thermodynamic method and the 
force method is now simple: do neither! And forget both?

The objections to this theory are those made above in 
the discussion of Fig. 4. It consistently predicts a pull-off 
force of 2�RΔ� instead of the decreasing values found as 
� increases, and, except for � near 0.2, it either underes-
timates the zero-load approach ( � small) or overestimates 
it ( 𝜇 > 0.2 ). And worst of all, it predicts a non-existent 

(4)

T∕�RΔ� = (8∕3)
�

H−2
1

− (1∕4)H−8
1

�

where (H1 = (h0∕� + 1))

w∗(0) = � �3∕2
√

2H1

�

H−3
1

− 0.5237H−9
1

�

�∗ = h∗
0
+ w∗(0)

Hertzian flat and confirms the idea that Hertz theory plays a 
part in the study of adhesive point contacts.

The semi-rigid theory turns out to be the proper limiting 
theory as � approaches zero, but for 𝜇 > 0.1, the M-DMT 
equations are better. For 𝜇 > 0.3 the choice is between the 
Maugis (Dugdale) theory and the full self-consistent numeri-
cal analysis.

Has the DMT method (or more accurately, the MDT 
(force) method) a future? Is there a DMT (force) method for 
other geometries? One solution, and perhaps the obvious 
one, is to start by solving the dry (non-adhesive) contact 
problem. Then the contact areas are ignored, and the adhe-
sive stresses over the out-of-contact area are calculated  (see, 
for example [17]). Applied to a single spherical indenter, this 
would exactly reproduce the DMT(force) method. (Apply-
ing it to a fractal rough surface would bring in a new dif-
ficulty: does Derjaguin’s approximation that the force/unit 
area between two tiny elements is the same as between two 
infinite, plane, surfaces hold for fractal elements?).

Alternatively, “DMT”, or specifically the M-DMT solu-
tion, can be used to study rough surface in a different way. 
Just as Fuller and Tabor [18] used the JKR solution in 
combination with an asperity model, Maugis [19] used the 
M-DMT equations. Many elaborations of the asperity model 
are possible. But are such approaches “using the DMT 
method”? Is there a difference between making a brick and 
using bricks to build a wall?

6 � Derjaguin’s Contribution

Since Derjaguin in the MYD paper specifically rejects the 
thermodynamic method, the heart of the DMT paper, (added 
to the difficulty of following the DMT paper!), the obvi-
ous course is to ignore it. The present author believes the 
MDT paper should equally be ignored. (We might add that 
no one seems ever to have considered generating and using 
load-approach equations for either model, but that may be 
because of the temptation to use the simple M-DMT equa-
tions P̂ = (4∕3)â3 − 2𝜋 ; 𝛿 = â2 due to Maugis, not Der-
jaguin. But it would be absurd to forget Derjaguin’s major 
contributions to solid contact (or indeed that this was a 
sideline for a major contributor to the electrochemistry of 
colloids): or that he made one of the earliest (1954) direct 
measurements of van der Waals forces.10

[A] In his 1934 paper, Derjaguin introduced.

	 i.	 The Derjaguin approximation that the force between 
a small, curved, inclined element is the same as the 

9  w(0)∕� = (16∕3)�3∕2
√

2H
1
[C

4
H

−3
1

− C
16
H

−9
1
] with C2n =

√

� ∕2)⋅
(n − 1∕2)!∕n !:

10  cited by Tabor and Winterton [6], but inaccessible, See also the 
reference in [2].
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force across a parallel gap (Rediscovered 44 years 
later by the physicists, and labelled the “Proximity 
Force Theorem”. [20]).

	 ii.	 Using this approximation, and assuming that the gap 
between an ellipsoid and a plane is of the form 
h = h0 + x2∕2R1 + y2∕2R2 , there will be an adhesive 
force between them T(h0) = 2�

√

R1R2 ∫
∞

h0
f (h) dh 

where f (h) is the force/unit area between two half-
spaces a distance h apart. Hence, when h0 is the equi-
librium separation ε between the bodies, so that the 
integral equals the work function (or Dupré surface 
energy Δγ, then the pull-off force will be 
Tmax = 2�

√

R1R2 ⋅ Δ� . This is a generalisation of the 
result found by Bradley [5], that for a sphere 
Tmax = 2� RΔ� , but Derjaguin’s proof is for any ellip-
soid, for any law of force f (h) , and requires enor-
mously less effort.

	 iii.	 Introducing, somewhat unsuccessfully due to his 
attachment as an experimenter to crossed cylinders 
and therefore to elliptical contacts (and apparently a 
distrust of the Hertz theory!) the idea that elastic defor-
mation must be taken into account. (An idea which 
seems not yet to have reached the physicists (eg [21])

	 i.	 [B] (i) In the 1980 (MYD) paper, Derjaguin (and his 
collaborators) introduced a surface force law based 
on the Lennard–Jones 6–12 law for the potential 
between two molecules, the now well-known law 
F(h) = (8Δ�∕3�)[(�∕h)3 − (�∕h)9] (MYD, but perhaps 
with help from Rayleigh [22])

	 ii.	 (ii) They then used this surface force law as the sur-
face pressures on an elastic sphere (assuming without 
comment that the sphere deformation may be found 
using the half-space equations, as did Hertz), and by 
an iterative numerical analysis solved the problem of 
the approach and separation of an elastic sphere to 
a rigid half-space. They showed that by scaling the 
governing equations, the solution depends on a single 
dimensionless parameter. [Which, except for a scale 
factor, is the parameter � previously introduced by 
Tabor by physical reasoning.]

	 iii.	 (iii) They showed that as μ rises, the pull-off force 
falls from the rigid solid value 2� RΔ� towards the 
JKR value (3∕2)� RΔ� . [But their plot has no actual 
points. and the decrease from the rigid solid value is 
steeper than later workers have found].

7 � Conclusion

Derjaguin introduced the study of how Hertzian contact is 
modified by molecular forces, so naturally as a perturbation 
of a Hertzian contact. But when he and his collaborators 

[MYD] introduced the self-consistent solution of the prob-
lem by numerical analysis, they found the configuration to be 
very far from Hertzian: as a result, no useful answers can be 
obtained by analyses based on it. The DMT paper should be 
written off as a gallant failure. And the MDT (force) method, 
and the idea of finding and integrating surface forces, should 
equally be written off, and Maugis’ assumption that the rigid 
body adhesion force applies during contact as well as at 
contact accepted, not as an approximation, but as a complete 
and admirable theory!

DMT and MDT never attempted to provide complete 
analyses of how contact takes place, so in no way were they 
competitors to the JKR analysis, which, like M-DMT, is a 
complete solution, giving relations between load, approach, 
and contact area (for a specific range of the Tabor param-
eter). Their aim seems to have been purely to determine the 
value of the pull-off force and to find the configuration at 
which separation occurs: it is in no way the equivalent of 
the JKR theory.

End-note: Derjaguin’s rejection of Dahneke’s theory 
(from DMT 1975).

It is an obvious truth that passing over from the picture 
of elastic stresses and pressures to their molecular interpre-
tation, we should make Frep equal to the resultant of all the 
molecular interactions, and if we want to take into account 
separately the close-range repelling (repulsive) forces and 
far-range attraction forces, Frep should have been made equal 
to the difference between the former and the latter. Limiting 
ourselves only to the former when interpreting the contact 
interaction [as was done in (4)], implies making a gross error 
which is of the same magnitude as the main component of 
term Fatt that was taken into account by Dahneke in calculat-
ing the total sticking force.
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