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Over the last half century, there have been several periods during which magnetic

resonance spectroscopy (MRS) has been used ex vivo, for a variety of reasons, on

samples such as microorganisms, cells, animal or human tissue, tissue extracts or bio-

logical fluids. These studies began in the days before the acronym MRS had been

invented, when all such methods were still called nuclear magnetic resonance (NMR),

and have extended to the present day. I will describe the historical development of

NMR methods used ex vivo, their influences on the development of MRS in vivo, and

their longer-term uses. All the interpretations will be personal, based on what I saw,

or discussed with colleagues at the time.
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1 | INTRODUCTION

Magnetic resonance spectroscopy (MRS) is the term that has come to be used for the nuclear magnetic resonance (NMR) spectroscopic studies of

living organisms, in vivo, so why would there be any interest in using this method ex vivo on tissue samples, tissue extracts or biological fluids?

Over the last half century there have been several periods during which MRS has been used ex vivo, for a variety of reasons, on samples such as

microorganisms, cells, animal or human tissue, tissue extracts or biological fluids. These studies began in the days before the acronym MRS had

been invented, when all such methods were still called NMR, and have extended to the present day.

I will describe the historical development of NMR methods used ex vivo, their influences on the development of MRS in vivo, and their

longer-term uses. However, this will not be a formal review: all the interpretations will be personal, based on what I saw at the time or discussed

with colleagues, initially when I was a graduate student in George Radda's laboratory in the early 1970s, and later as a young MRS researcher in

London, working both ex vivo and in vivo. In the text, I shall mainly mention the names of researchers who were, or subsequently became, promi-

nent in MRS or magnetic resonance imaging (MRI) research.

One further warning: 40 years ago, when I was starting out in scientific journal editing, as an Editorial Adviser, one of the subeditors

admonished an author whose paper I was editing: ‘You will recall, Professor, that the words “ex vivo” form a Latin adverbial phrase. They

should therefore be used in that sense in English, following rather than preceding the words they modify.’ That rigid piece of English

grammar seems to have vanished, along with scientific subeditors trained in the classics, but just for old times' sake I shall revert to it in

the following review.

Abbreviations used: HR-MAS, high-resolution magic angle spinning; MRS, magnetic resonance spectroscopy; Pi, inorganic phosphate.
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2 | 13C NMR STUDIES ON BIOLOGICAL SAMPLES

2.1 | Early 13C NMR studies ex vivo

The first biological NMR spectra were obtained in the early 1970s. NMR instruments were already being used in chemistry departments to moni-

tor the metabolic fate of 13C tracers in extracts of biological tissues,1 so using 13C NMR spectroscopy to study the same molecules in living cells

was an obvious next step. At that time, all chemistry-laboratory NMR experiments were routinely performed on tiny samples in rapidly spinning

narrow-bore tubes, and it was generally assumed—at least by nonphysicists—that this configuration was essential to getting a spectrum. Conse-

quently, the first studies on living biological specimens were performed ex vivo, on pellets of cells (see Figure 1, 1960s and 1970s).

Eakin et al.2 reported metabolic NMR studies on anaerobic suspensions of Candida utilis yeast cells in 1972. They added 13C labelled glucose

and monitored its metabolism in real time by identifying 13C labelled ethanol as a product. Adding D2O induced osmotic shock and liberated

metabolites that they speculated were amino acids. These experiments demonstrated the potential of 13C NMR for studying living samples, but it

was not until further advances in magnet technology took place a few years later that the method really began to deliver significant results.

2.2 | Metabolic 13C tracer studies in real time

In the late 1970s, the magnet bore of some NMR instruments had increased to the point where the probe could accommodate an organ of a small

animal. Robert Shulman's group, initially at Bell Labs and subsequently at Yale University, began an important series of studies using this technol-

ogy to follow the metabolism of 13C-labelled compounds in the perfused liver. Their results were of great interest at the time, because our under-

standing of mammalian metabolism had been transformed, over the previous decade, by the administration of compounds labelled with

radioactive tracers, such as 14C-labelled amino acids, to laboratory rodents in vivo.3 These had been extremely laborious studies, in which the met-

abolic fates of the radioactive carbon atom in the labelled compound were followed by separating, and identifying each radioactive product, and

then decomposing them so that the specific activity of each of their carbon atoms could be measured. That had been a formidable undertaking,

requiring a dedicated laboratory with a large team of skilled technical staff, so there was great interest when, in 1979, Shulman and his collabora-

tors reported experiments in which the metabolism of 13C alanine was monitored in perfused rat livers, effectively in real time.4 Shulman's group

went on to perform several similar metabolic studies on liver and other tissues,5,6 and they also collaborated with Joseph Katz's group, which had

F IGURE 1 Simplified timeline of the development of ex vivo NMR methods. The dates indicate the approximate periods when the indicated
methods were developed and extensively utilised ex vivo. Solid arrows indicate the utilisation of a method on progressively more ‘biologically
realistic’ samples and eventually in vivo; dashed arrows indicate a method that has continued to be used ex vivo. MRS, magnetic resonance
spectroscopy; NMR, nuclear magnetic resonance
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performed much of the classic radiolabelled metabolite work, in a study demonstrating that the 13C and 14C tracer methods used by the two

groups gave essentially identical results.7

Metabolic tracer studies using 13C labels are still performed on biopsy samples ex vivo8 (see Figure 1; broken lines indicate a technique that is

still in use), but 13C studies in vivo are now almost always performed using tracer compounds in which the 13C signal has been enhanced by sev-

eral orders of magnitude using hyperpolarisation techniques.9

3 | OTHER NUCLEI

3.1 | Choosing a nucleus to study

At the same time as these 13C NMR methods were maturing, there were parallel developments on the study of biological samples with other

nuclei. Most NMR instruments in chemistry departments were being used for 1H work, so that initially seemed the most obvious nucleus to study.

However, it was thought that 1H NMR studies of living tissue, using the relatively inhomogeneous magnets available at that time, would be very

challenging, and I was made fully aware of all these problems by several chemists whose instruments I requested to use in the 1970s. First, the

signals from a large number of metabolites, each with several 1H peaks, would have to be distinguished and assigned. Second, the 1H chemical

shift range is small, exacerbating the spectral overcrowding problem. To make matters even worse, the signals of the tissue metabolites, which are

around 10�2 to 10�3 M in concentration, are superimposed on a � 1 M rolling baseline signal from the protons in tissue proteins. And lastly, all of

this jumble is superimposed on the 1H signal from �80 M tissue water, creating a huge dynamic range problem. Probably for all of these reasons,
1H NMR studies on living tissues were delayed until a new generation of more homogeneous magnets became available, and the main nucleus of

interest in the early 1970s was 31P.

3.2 | 31P NMR of living cells ex vivo

As with the early 13C studies, the initial 31P work on living tissues was performed ex vivo (Figure 1). In 1973, Moon and Richards published a very

influential paper,10 in which they reported the use of 31P MRS ex vivo to monitor phosphorus metabolites in living erythrocytes. The resulting

spectra were good enough for them to identify the peaks of diphosphoglycerate, serum phospholipids, ATP and inorganic phosphate. They were

also able to measure the intracellular pH of the erythrocytes from the chemical shift of the phosphate peak. The following year, Henderson and

colleagues11 showed that aged red blood cells could be induced to regenerate diphosphoglycerate when incubated with pyruvate and inosine.

These papers on erythrocyte NMR created much interest at the time, because they showed that 31P NMR spectra of several metabolically

important endogenous compounds could be detected within living cells, and also that their metabolism could be monitored in real time. The few

peaks of high-concentration phosphate metabolites could be easily resolved, and several of them—the high-energy phosphate compounds ATP

and phosphocreatine, as well as inorganic phosphate (Pi), their breakdown product—were important for energy metabolism. Simple metabolic per-

turbation studies could be performed by making the preparation hypoxic (initially, just by switching off the oxygen bubbling through the perfusion

fluid) or inducing muscle contractions. The resulting changes in the peaks of nucleoside triphosphates and (in muscle) phosphocreatine, relative to

that of inorganic phosphate, gave a simple readout of the state of cellular energy metabolism. Furthermore, as Moon and Richards10 had shown,

intracellular pH could be measured from the chemical shift of the intracellular Pi peak.

3.3 | Breaking new ground with 31P NMR

31P NMR also enabled studies on living tissues that were difficult, if not impossible, by other methods. In 1977, Truman Brown and Kamil Ugurbil,

working in Shulman's laboratory, reported the use of saturation transfer methods to measure the unidirectional rate constant of phosphorus trans-

fer between ATP and Pi in aerobic Escherichia coli cells.12 A year later, Brown collaborated with several members of George Radda's group at

Oxford University in another saturation transfer study that used 31P NMR to analyse the kinetics of the creatine kinase reaction in perfused rat

hearts.13

3.4 | 31P NMR: from ex vivo towards in vivo

In 1974, a 31P NMR study on a living tissue was performed in Oxford, in a collaboration between the research groups of George Radda and Rex

Richards, using the latter group's newly completed, vertical-bore 7.5-T superconducting instrument. They obtained spectra ex vivo from excised
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rat muscle; it was not perfused, so they were able to follow the falls in phosphocreatine and ATP, and the rise in Pi as it became hypoxic.14 Two

of the collaborators—David Hoult, who had built the 7.5-T instrument, and David Gadian—were to become well known in the field of biological

MR. A comparative 31P NMR study of frog, toad, abalone and human muscle was reported by Tyler Burt et al. in 1976.15 Gadian subsequently col-

laborated with the physiologists Joan Dawson and Doug Wilkie in extensive 31P NMR studies on perfused, excised muscles,16,17 and similar work

was performed in the same laboratory on perfused heart,18 kidney19 and liver.20

The use of NMR ex vivo on perfused cells, tissues and organs has a number of advantages, and this method is still in use (reviewed in21).

However, the success of the early 31P studies on tissues and organs immediately suggested the possibility of using that method to monitor the

metabolism of whole animals, or even human subjects, once larger bore magnets became available. The direction of travel for 31P studies, thereaf-

ter, was quite different from that of 13C, because it soon led to studies on tissues and organs in living animals, and then on to studies on human

volunteers and patients, the method that was to be called MRS.

4 | USE OF 1H NMR, IN VIVO AND EX VIVO

It was not until the advent of more sophisticated instruments in the late 1970s that the many technical problems associated with obtaining 1H

NMR spectra of living tissues began to be addressed, and once again the initial work was performed on isolated cells (Figure 1). In 1977, Ian

Campbell, Philip Kuchel and colleagues used 1H spin echo NMR to study human erythrocyte metabolism.22 They assigned resonances to purines,

to oxidised and reduced glutathione (from which they followed changes in the redox status of the cells), and to lactate and pyruvate (which

allowed assessment of glycolysis); they also measured intracellular pH from the chemical shift of the haemoglobin spectrum.

Another study, on membrane transport, was performed in Campbell's laboratory by Kevin Brindle and others.23 They utilised extracellular

Fe3+, Mn2+ and Dy-DTPA to enhance the differential magnetic susceptibility between the intracellular and extracellular compartments. That work

prophetically predated the use of paramagnetic agents in MRI for contrast enhancement, and it cites an even earlier paper24 on water transport in

erythrocytes that also utilised extracellular Mn2+.

By the late 1980s, the more sophisticated research instruments that had become available also had large magnets that could accommodate

whole animals or even humans. Consequently, most 1H MRS research began to focus on methods that could be used in vivo, and although some

early studies on solid tissues included data obtained both ex vivo and in vivo,25 or were performed exclusively ex vivo,26 there was no need for a

prolonged preliminary period during which tiny tissue samples were studied.

5 | METABOLITE STUDIES EX VIVO

5.1 | Metabonomics

Beginning in the late 1980s, several long-lived methods that use 1H NMR ex vivo were developed (Figure 1). The first was introduced by Jeremy

Nicholson's group at Imperial College, London, which pioneered a method that they named ‘metabonomics’. 1H NMR was used ex vivo to monitor

metabolic changes induced in biological systems by various perturbations, and mathematical methods were then applied to analyse the results.27

The Nicholson group performed these studies in conventional, vertical-bore high-resolution NMR instruments, and in the early days they focused

particularly on changes in body fluid metabolites and tissue extracts.28 Their method was especially useful, therefore, for practical applications on

topics such as toxicology and drug development,29 where changes in the NMR spectrum of a body fluid can indicate the metabolic response of

the animal or patient to a drug or toxin. Metabonomics has since been applied to numerous other systems, including microorganisms, with a par-

ticular focus on the intestinal microbiota.30 In recent years, metabonomic studies of body fluids and tissue samples have also been used to

improve the diagnosis of human diseases, such as liver.31

5.2 | Chemometrics

Some similar methods that used NMR ex vivo were developed, using different terminology (e.g., in the early 1990s, Sian Howells, who was then a

student in my own laboratory, developed a method she called ‘chemometrics’,32 a term that she had imported from chemistry). These approaches

did not use the external perturbation that is fundamental to metabonomics. Instead, they focused on problems such as the diagnosis and progno-

sis of cancer, by developing methods for pattern recognition of the metabolite concentrations in tumour biopsies.33 Another difference from

metabonomics was that although they initially worked with biopsies, the long-term aim of these studies was their use with 1H spectra of human

cancers that were obtained in vivo.34
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5.3 | Metabolomics

In the late 1990s, another alternative term—‘metabolomics’—came into use.35 This had a more general connotation than metabonomics: the

metabolome is the totality of all the small-molecule metabolites in an organism, by analogy with its genome and proteome. Metabolomics, there-

fore, is the study of that system in totality, and once again NMR methods can have significant advantages. Because all the NMR-detectable

metabolites can be quantified simultaneously in an extract of the original sample, with no further preparation or chemical derivatisation required,

their relative concentrations can be measured with great precision. Furthermore, NMR is nondestructive, so the extracts can be retained and

analysed by other methods. Compared with liquid chromatography–mass spectrometry, the other main technique in use for metabolomics, NMR

is a simpler and more stable technique that yields peaks which are easily identified and quantified. However, NMR is much less sensitive, and

detects relatively few metabolites. Nevertheless, the 1H NMR method is still widely used ex vivo for studies that are nowadays generally termed

‘metabolomics’ (although some authors still use the term ‘metabonomics’31).

5.4 | Medical uses of 1H NMR ex vivo

In addition to metabonomics and metabolomics, the study of metabolites in body fluids for medical diagnosis is another strand that can be identi-

fied in the use of NMR—particularly 1H NMR—ex vivo. There are important distinctions in the purpose of the studies between diagnostic NMR

and metabolomics or metabonomics. Whereas the aim of metabolomics is essentially scientific, diagnostic studies on body fluids are aimed at

medical utility. And although metabonomics can be used to study disease, it involves a deliberate perturbation of the system that is not usually

necessary for diagnostic purposes.

Many body fluids are easy to monitor by 1H NMR, as the metabolites are dissolved in a simple aqueous medium, giving a well-resolved spec-

trum with a flat baseline, and the myriad of metabolites that can be monitored makes subtle distinctions possible. Urine is particularly easy to

study, and an early publication from Richard Iles and colleagues that focused on organic acidurias36 led to many other studies on genetic disor-

ders, both ex vivo and in vivo.37 Recent NMR studies on urine have, for instance, identified biomarkers for the severity of Parkinson's disease,38

early and late age-related macular degeneration,39 and hepatocellular carcinoma.40

6 | HIGH-RESOLUTION MAGIC ANGLE SPINNING

All the applications discussed so far have used conventional solution-state NMR, but techniques for obtaining spectra from solid samples were also

under development from the early days. In 1958, Raymond Andrew and colleagues first described ‘magic angle’ NMR for obtaining spectra from rap-

idly spinning crystals,41 but it was not until the development of high-resolution magic angle spinning (HR-MAS) methods in the 1990s42 that it

became possible to obtain high-resolution spectra from biological samples. Compared with NMR spectroscopy of chemical extracts, HR-MAS has the

advantage that the sample remains intact, so it can be used for further studies by other methods.

7 | THE PRESENT DAY

The use of NMR ex vivo continues to provide important results, as one can do things to an isolated sample that would be impractical or unethical

with a patient, or even with an intact, living organism. Metabonomics and metabolomics continue to use NMR methods, and diagnostic 1H NMR

of body fluids is actively studied. This special issue discusses the state of the art in this important field.
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