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Abstract—Current Humanoid Service Robot (HSR) behaviours
mainly rely on static models that cannot adapt dynamically
to meet individual customer attitudes and preferences. In this
work, we focus on empowering HSRs with adaptive feedback
mechanisms driven by either implicit reward, by estimating facial
affect, or explicit reward, by incorporating verbal responses of
the human ‘customer’. To achieve this, we first create a custom
dataset, annotated using crowd-sourced labels, to learn appropri-
ate approach (positioning and movement) behaviours for a Robo-
waiter. This dataset is used to pre-train a Reinforcement Learning
(RL) agent to learn behaviours deemed socially appropriate for
the robo-waiter. This model is later extended to include separate
implicit and explicit reward mechanisms to allow for interactive
learning and adaptation from user social feedback. We present
a within-subjects Human-Robot Interaction (HRI) study with
21 participants implementing interactions between the robo-
waiter and human customers implementing the above-mentioned
model variations. Our results show that both explicit and implicit
adaptation mechanisms enabled the adaptive robo-waiter to be
rated as more enjoyable and sociable, and its positioning relative
to the participants as more appropriate compared to using the
pre-trained model or a randomised control implementation.

Index Terms—Humanoid Robo-waiter, Reinforcement Learn-
ing, Explicit Feedback, Implicit Feedback and Facial Affect.
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I. INTRODUCTION

The use of Humanoid Service Robots (HSRs) operating
specifically in service domains such as restaurants or hotels
has increased in recent years [1]. Even though many HSRs
do not interact with customers and only provide operational
assistance, they increasingly are being deployed in more
front-of-house roles, such as the Robo-waiter introduced in
Pizza Hut restaurants across Asia [2]. Developing such HSRs
requires careful consideration of Human-Robot Interaction
(HRI) techniques to ensure the users do not find the experience
uncomfortable or frustrating.

When humans engage in dialogue, they use socio-emotional
signals to communicate different preferences [3]. Whilst hu-
mans are able to learn the preferences of those with whom
they experience repeated interactions, existing HSRs rely on
pre-defined behaviours and are not able to modify their be-
haviours with human feedback [4], [5]. This lack of emotional
intelligence can hinder the performance of an HSR, which
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can be costly. For instance, in the hospitality domain, higher
levels of emotional intelligence are seen to increase customer
satisfaction and profit performance [6]. From the customers’
perspective, employees in the service or hospitality industry
who have better social skills are seen as more competent and
approachable [7].

In this paper, we present a study that aims to improve on
static models currently employed by HSRs by learning socially
appropriate behaviours based on real-time feedback from the
customer. We propose an adaptive HSR, that uses feedback
from a human-in-the-loop to modulate behaviours in real-time.
The performance of this adaptive HSR is evaluated through
an HRI study to understand whether adaptive behaviours
improved perceptions of the HSR across several dimensions,
including sociability and appropriateness. As humans use both
verbal (explicit) and non-verbal (implicit) signals to communi-
cate, we implement and evaluate two separate adaptive agents;
one that adapts using explicit feedback, and another using
implicit feedback in the form of facial affect. A restaurant
setting is realised for the robo-waiter, providing context for
repeated interactions with the same customer, giving it the
opportunity to learn and adapt for subsequent interactions.

II. BACKGROUND AND RELATED WORK

A. Humanoid Service Robots
Robotic technologies have started influencing service in-

dustries. In 2014, Savioke tested a robot in Aloft Hotels [8]
for deliveries to guests’ rooms. The Pepper robot has also
been employed by Pizza Hut restaurants to take customer
orders and accept payments [2]. Enabling such applications
for HSRs requires their extensive evaluation under various
application domains. Lee et al. [9] evaluated a snack-delivery
HSR for the workplace where, over a 4-month field study, they
found employees extended the social roles of the robot beyond
deliveries, attaching several different roles to it. This created
a ‘ripple effect’ in the workplace, triggering new behaviours
in employees. Herse et al. [10] investigated robot persuasion
for food recommendations and found that the human-like
features of an agent may contribute to boosting persuasion.
Jie et al. [11] conducted a beverage-tasting study with a human
vs. a humanoid social robot facilitator, with priming and non-
priming instruction styles showing that the facilitation style
and facilitator type did not have a significant influence on
taste-liking. However, people were more willing to follow
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instructions, and felt more comfortable, with the humanoid
robot facilitating with priming.

To effectively model behaviours for HSRs such as robo-
waiters, Schmidt-Rohr et al. [12] applied Reinforcement
Learning (RL) for modelling robot behaviours by understand-
ing human activity through speech and posture. Yet, the focus
of this work was to only model correct waiter behaviour, with-
out any adaptation. More recently, Sawadwuthikul et al. [13]
sought to improve on these static behaviour policies through
dynamic adaptation of positioning and trajectory by learning
from a human-in-the-loop. Human feedback was only used
to assist the robots’ ability to remember the location of a
customer when several customers were present. In both of
these studies, the focus was on task-based learning, in that
the agent successfully learns to accomplish tasks associated
with being a robo-waiter. They did not, however, focus on
learning socially appropriate behaviours or personalising robot
behaviour to specific customers as a result of their feedback.

B. Learning Socially Appropriate Behaviours in HRI
For robots to operate effectively in society, they need to

understand various social norms and individual user-behaviour
as inaccurate situational behaviour can decrease trust in social
robots [14]. This is particularly challenging while learning
appropriate behaviours during the first interactions with a
user [15] as first impressions may impact competence ratings
subsequently [16]. A key factor to consider while designing
robots for human-centric environments is how they position
themselves while interacting with humans. Understanding the
basic principles of proxemics [17], [18], that is, approaching
humans in an appropriate manner or the robot positioning
itself at an appropriate distance to encourage a conversation,
becomes essential for meaningful human-robot interactions.

To learn socially appropriate robot behaviours, most current
approaches use static datasets, created using crowd-sourced
labelling platforms, that provide common consensus annota-
tions on what is considered socially appropriate. Tjomsland
et al. [19] proposed the MANNERS-DB consisting of 3D
scenes created in Unity, where the appropriateness of robot
actions in each scene was labelled on a 5-point Likert scale,
ranging from very inappropriate to very appropriate using a
crowd-sourced labelling platform. Similarly, Gao et al. [20]
trained an agent to learn socially appropriate approach be-
haviour using a 3D simulated environment in Unity. They
formulated the task to be learnt as an RL problem, defining
the reward function in terms of existing social theories [21],
[22]. They demonstrated, in a within-subjects HRI study, that
the agent trained on offline data was rated as more polite,
sociable and human-like compared to an agent following a
static policy [22]. With the help of offline training on large
datasets, RL has been shown to be effective at learning socially
appropriate behaviours [23] outperforming static models of so-
cial behaviour [20]. Yet, real-time adaptation in social robots
is still relatively less explored. Recent works have shown that
robots are able to learn socially appropriate behaviours through
a combination of feedback mechanisms, which might include

implicit, explicit or pre-trained behaviours [13], [20], [24].
Implicit signal processing in HRI, such as evaluating facial
expressions [25] or body language, allows for more feedback
to be collected from the participant, and also reduces ‘feedback
fatigue’ [26]–[28]. Both implicit and explicit feedback have
been used as input for Interactive Reinforcement Learning
(IRL) models [13], [24]. However, their efficacy has not yet
been adequately explored, and their impact on user perceptions
is still to be investigated extensively.

C. Automatic Facial Reaction Analysis

As human communication relies on the successful exchange
of verbal and non-verbal affective signals [29], embedding
such an understanding of human behaviour in social robots
plays a pivotal role in improving interactions with users and
increasing trust in HRI [30]. Human affect is communicated
in a myriad of ways, but the most frequently researched affec-
tive signals include speech, facial expressions and body ges-
tures [31], [32]. These signals can be evaluated either in terms
of user expressions categorised into emotion classes [33], or a
dimensional approach such as the Circumplex Model [34] can
be used to provide a more flexible and realistic representation
of affect with valence depicting the positive or negative nature
of the expression and arousal depicting its intensity.

Understanding user expressions can not only provide the
necessary motivation for robots to adapt their behaviour but
also act as feedback on how the interaction is going. A
straightforward way to evaluate user behaviour during an
interaction is to observe their facial expressions. Facial affect
has been used to improve perceptions of robots in HRI [24] or
to provide evaluations for robot behaviour [35], [36] but using
facial affect to provide real-time implicit feedback, particularly
in interactions with robo-waiters, is yet to be explored.

D. Reinforcement Learning in HRI

RL strategies such as Interactive Reinforcement Learning
(IRL) [37] allow for training the agents through natural
interactions with humans who provide feedback to the agent,
shaping their behaviour in real-time [38]. This feedback can
either be used to shape the action-policy, directly influencing
the agent’s actions [39], [40], or modulate the reward func-
tion [36], [41] guiding it to learn optimal behaviours. However,
learning with the human-in-the-loop can be challenging as
humans tend to provide more positive than negative feedback,
at times ignoring the robots’ mistakes. Additionally, as the
interaction progresses, the frequency of providing feedback
decreases. Modelling implicit feedback, such as using facial
affect, can thus be more effective as the human ‘teacher’
will be less conscious of providing feedback and will be
less likely to suffer from ‘feedback fatigue’ [27]. Existing
approaches have explored such implicit feedback signals for
robot learning [27], [42] such as Weber et al. [24] who focus
on learning appropriate humorous behaviour using audiovisual
data to detect laughs and smiles to reward the robot. They
found that the robot was considered to be funnier when it
adapted its behaviour in response to users’ affective responses.
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III. RESEARCH QUESTIONS AND CONTRIBUTIONS

This work investigates whether adapting robot behaviours
improves human perceptions of robots in HSR settings. Prior
work has used pre-annotated datasets to learn appropriate
behaviours and found this to positively improve the robot
evaluations [22]. Hence, we first investigate (RQ1:) whether
pre-training robot behaviours with crowd-sourced data im-
proves robo-waiter perceptions as compared to a ‘control’
condition with randomly sampled, static robot behaviours.
Recent works have also highlighted the importance of using
objective feedback in HRI evaluation, arguing that the time-
consuming nature of subjective feedback (via questionnaires)
makes it less likely to be effective in longitudinal learning
settings such as with HSRs [43]. Thus, we employ an objective
evaluation strategy, via explicit (using speech) and implicit
(using facial expressions) feedback given by the participants
during their interactions with the HSR. We first investigate
(RQ2:) whether person-specific adaptation based on explicit
feedback improves robo-waiter perceptions as compared to
generalised learning with crowd-sourced data. In contrast, we
also investigate (RQ3:) whether person-specific adaptation
based on implicit feedback improves robo-waiter perceptions
as compared to generalised learning with crowd-sourced data.
Furthermore, to compare the two different feedback strategies,
we explore if (RQ4:) there is a significant difference in robo-
waiter perceptions when using explicit or implicit feedback.

To the best of our knowledge, this is the first study inves-
tigating different adaptation strategies in HSRs in the context
of a robo-waiter. The contributions of this work are three-
fold. Firstly, we create a dataset of varied HSR behaviours
and undertake a web-based evaluation (see Section IV-A)
to understand potential user perceptions and obtain labels
for appropriateness via crowd-sourcing. We provide detailed
statistical analyses for the appropriateness of positioning and
speed labels for the robo-waiter. Secondly, we evaluate three
popular RL methods using the collected data to train the robo-
waiter agent and implement the best performing method (see
Section IV-C) on the Pepper robot for real-time evaluations. Fi-
nally, we conduct a within-subjects HRI study with the Pepper
Robot comparing 4 different strategies (see Section V-A4) for
implementing robot behaviour. We compare the perceptions of
the robot under these 4 strategies via statistical analyses and
present insightful findings for future research.

IV. WEB-BASED SURVEY AND MODEL TRAINING

A. Materials and Methods
For the robot to learn socially appropriate behaviours, it is

important to understand how different individuals rate the ap-
propriateness of HSR behaviours in restaurant settings. Thus,
we conducted a crowd-sourced study where participants were
asked to imagine themselves being served by a robo-waiter.
They were presented with a survey, using Google Forms1,
where they were shown images and GIFs illustrating the robot
positioning itself when serving a customer and were asked to

1https://forms.gle/mE5FEBBJS133Y36KA

provide appropriateness labels for these behaviours using a 5-
point Likert scale (ranging from very inappropriate to very
appropriate). Along with appropriateness ratings, participants
also provided annotations based on their affective responses
towards the robot’s positioning in terms of valence and arousal
labels using Self-assessment Manikin (SAM) [44] annotations.

1) Setup: The images and GIFs used in the web-based
survey were created using a 9 ⇥ 9 grid, in which the middle
3 ⇥ 3 grid-locations were reserved for the placement of the
table and the person sitting at the table. The first section of the
survey consisted of 24 questions where the participants were
shown 12 images depicting the robot’s position with respect
to the customer. For each image, they were asked to rate
the appropriateness of the robot’s positioning. Additionally,
for every other position (6 out of the 12) they were also
asked to annotate their affective responses (valence/arousal)
towards the robot in that position. The second section of the
survey consisted of further 24 questions, where participants
were shown 12 different GIFs in which the robot moved one
or two steps from its original position in any direction (up,
down, left or right). For each GIF, the participants rated the
appropriateness of both the movement (direction of approach)
and the speed of the robot, considering it was approaching the
customer. An example of the questions can be found in Fig. 1
of the supplementary material provided.

2) Participants and Assessment: After the study-design
was approved by the Departmental Ethics Committee, the
survey was distributed to the students at the university. All
the generated images and GIFs were divided into 6 different
survey forms with a total of 48 questions each. Each form
had the same question structure and style, but with different
images and GIFs depicting different positions on the 9⇥9 grid
as well as different movements and speeds for the robot. Each
survey form was annotated by 8� 11 unique participants.

B. Collected Data and Agreement Analysis
1) Robot Positioning: The average appropriateness ratings

for each position can be seen in Fig. 1a. The areas directly in
front, and to the left or right of the table are rated as the most
appropriate when serving the customer. The further away the
robot is positioned from the table, the less appropriate it is
considered. Furthermore, the area behind the table is rated as
less appropriate, suggesting the participants prefer the robot
to keep a reasonable distance and not come too close. This
is in line with the suggestions made by Mead et al. [18]
who suggest that robots should maintain a reasonable ‘social
distance’ from the participants in HRI settings.

2) Affective Responses: The participants only annotated
every alternate adjacent position in terms of affective responses
towards the robot in that position to reduce the time taken to
complete the survey. These ratings were interpolated to provide
a rating for each grid-position. As seen in Fig. 1b, valence
ratings (left) closely reflected the appropriateness ratings with
positions closer and in front of the table resulting in the highest
ratings. For arousal (right), however, the positions with high
valence and appropriateness ratings received lower overall
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(a) Position Ratings. (b) Valence (left) and Arousal (right) Ratings.

(c) Speed Ratings.

Fig. 1: Participants ratings for (a) Appropriateness of Robot
Positioning, (b) Affective Responses to Robot Positioning and
(c) Appropriateness of the Speed of Robot Movements.

scores which may be associated with feelings of calmness
and safety [45] in those positions. In contrast, the participants
reported higher arousal for positions immediately behind the
table, hinting at feelings of stress or discomfort [45].

3) Speed of Movement: For collecting participant ratings
for the appropriateness of the robot’s speed of movement, mul-
tiple GIFs, with different frame-rates, were generated depicting
the robot moving between two given positions. Fig. 1c presents
the average appropriateness ratings provided for positions in
the grid traversed by the robot following a speed ranging from
slow to fast. As can be seen, the participants preferred slower
speeds when the robot was closer to the table, and higher
speeds when further away from the table.

4) Agreement Analysis: To evaluate the quality of the data
collected and assess agreement levels in participants’ ratings,
we compute reliability scores for collected ratings using
Fleiss’ Kappa () [46] values. Fleiss’  measures how reliable
ratings from two or more raters are by measuring the amount
of agreement between the scores. For the position ratings, on
average, we observe  = 0.55, while for speed ratings, we get
 = 0.46. Similarly, for valence and arousal ratings we obtain
 values of 0.40 and 0.48, respectively. These values indicate
a moderate-to-substantial agreement between the participants.
For an in-depth analysis of these scores, we split the 9 ⇥ 9
grid representing the room settings into several sections and
individually compute  for these sections (see Fig. 2).
Robot Positioning: For position scores (see Fig. 2a), we
observe a moderate-to-substantial agreement across the entire
grid with a higher agreement for positions near the table (the
black region), both front and behind (Fig. 2(a) top), and left
and right (Fig. 2(a) middle) of the table, validating the scores
witnessed in Fig. 1a. When split into quadrants (Fig. 2(a)
bottom), we see the highest agreement scores for positions
close to the top-right of the table.
Affective Responses: For valence and arousal evaluations

Fig. 2: Fleiss Kappa () Scores for (a) Position, (b) Valence,
(c) Arousal and (d) Speed Ratings. Scores are computed by
splitting up the 9⇥9 grid horizontally (top), vertically (middle)
and into quadrants (bottom).

we see a similar trend where high agreement is witnessed
for positions near the table (see Fig. 2(b,c)). However, even
though a higher agreement is witnessed for valence scores in
front of the table, arousal scores witness a higher agreement
for positions behind the table. This is in line with the scores
witnessed in Fig. 1b where positions behind the table invoked
stronger responses in the participants, resulting in high arousal
ratings. When split into quadrants, valence scores (Fig. 2b
bottom) witness a high agreement for positions to the top-right
of the table while arousal scores (Fig. 2c bottom) witness a
high agreement for positions at the bottom-left of the table.
Speed of Movement: For speed evaluations, we do not
observe high agreement scores in any sections of the grid (see
Fig. 2(d)). While there is a moderate agreement for positions
in front and close to the table, we also get such agreement
scores for positions behind and far from the table.
Overall, despite a moderate-to-substantial agreement for most
sections of the grid, participants differed in their evaluation
of the agent’s behaviour. This motivates us to investigate
whether considering real-time user feedback to improve robot
behaviour may improve their perceptions of the robo-waiter.

C. Model Training
To learn socially appropriate behaviours for the robo-waiter,

we use the crowd-sourced data to train an RL agent. Filtering
different grid sections based on the reliability scores received
(see Fig. 2), as well as owing to experiment-room constraints
for the in-person user-study (see Fig. 4), we model the
environment for the RL agent using only the top-right quadrant
of the grid. The action-space for the agent is consisted of
4⇥3 = 12 different actions to be selected as a combination of
different speeds (faster, same, slower) and different movement
options (up, down, left, right). In each state, defined by the
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(a) Position-wise scores. (b) Rolling Episode Scores.

Fig. 3: Training dynamics for DQN, DQN+HER and A3C
trained on (a) Appropriateness ratings from the web-based
survey. Models are compared on the basis of the (b) Rolling
episode scores at the end of 20, 000 episodes.

grid-position and current speed, it chose from one of the 12
actions and was rewarded (see Eq. 1) using the average crowd-
sourced appropriateness ratings (see Fig. 3a).

R(st, a) = eMp[st] (1)

where st is the current state, a is the action taken by the agent
and Mp is the matrix of average appropriateness ratings.

We compared three popular RL methods, namely, Deep Q-
Learning (DQN) [47], DQN with Hindsight Experience Re-
play [48] (DQN+HER) and Asynchronous Advantage Actor-
Critic (A3C) [49] to learn socially appropriate robot be-
haviours. We implemented our grid-based environment as a
custom OpenAI Gym 2 environment, realising the dynamics
of our restaurant settings. The RL models were implemented
adapting open-source PyTorch implementations3.

Fig. 3b shows the rolling episode scores for 20, 000 episodes
where the 3 strategies are trained on the same environment.
DQN+HER requires a goal/destination to be selected and
stored in the replay buffer along with the agent’s experience.
For this, we modify the environment to allow for the selection
of random destinations during training for the DQN+HER
agent. The episode terminates when the agent either reaches
the maximum permissible step-count (scount = 250) or if it
reaches the destination. The DQN agent performs the best,
accumulating the highest episode score at the end of 20, 000
episodes. DQN+HER training, however, showed relatively
unstable reward dynamics that may be due to the early
termination of episodes as the agent reached the randomly
defined destination. As no reward is achieved for reaching
this arbitrarily defined goal, the model struggled to learn
the optimal policy in a short time. The A3C model was
the quickest to converge, however, it repeatedly converged
to a sub-optimal solution. A grid-search-based optimisation
of hyper-parameters was performed, resulting only in shorter
convergence times with no substantial improvements in final
episode scores for the three models.

2https://gym.openai.com
3https://bit.ly/39tfMNU

Fig. 4: Left: Room setup for the study. Right: Participant
experiencing an interaction with the HSR.

V. HRI STUDY WITH ADAPTIVE LEARNING

After training the DQN model on crowd-sourced data, we
implemented it on the Pepper robot to evaluate the learnt
behaviours using an in-person HRI study. As only moder-
ate agreement was observed in participant ratings for robot
behaviour (positioning and movement), we included adaptive
feedback mechanisms (explicit or implicit) to extend the
agents’ learning and investigated whether using such mecha-
nisms affect participants’ perceptions of the robot’s behaviour.

A. Materials and Methods

1) Setup: The experiment (see Fig. 4) was set-up with a
low-table and chair in one corner of a well-lit room. Pepper
was able to navigate the entire room as the participants
remained seated on the chair at all times. A camera was placed
on the low-table to record the participants’ facial expressions
and speech along with a tablet to be used by them to fill survey
forms. Key elements of a usual restaurant setting (drinks or
food) were missing due to Covid-19 restrictions in place.

2) Participants: The user study was conducted with a total
of N = 21 participants (9 female, 12 male) recruited amongst
students at the university. The majority of the participants
(N = 18) were members of the Department of Computer Sci-
ence, having some familiarity with robots and technology. All
participants provided informed consent for their participation
as well as on how the data collected during the experiments
were to be used. The consent forms as well as the design
and experiment protocol of the user-study were approved by
the Departmental Ethics Committee. The participants were
compensated in the form of Amazon vouchers.

3) Robotic Platform: We use the Pepper robot by SoftBank
Robotics as it has been used in several HSR settings, making
it an appropriate choice for our experiments. The humanoid
features assist in making the robot seem welcoming and more
human-like for such interactions [50]. Additionally, to make
the interactions seem more naturalistic [51], the robot selected
certain animations for its upper-body which played while the
robot-waiter interacted with the participants. These animations
were randomly pre-selected from a set of animations chosen
for their similarity to expected movements during such an
interaction, and kept consistent across all interactions. For
example, Pepper gestured towards the participant to indicate
that it was speaking to them, or waved when introducing itself.
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4) Experiment Conditions: The user-study was conducted
as a within-subjects study where each participant witnessed
4 different conditions (C1�C4) with the ordering of these
conditions randomised for each participant. The participants
were not informed of any differences in the conditions to avoid
priming their responses and behaviours. Under each condition,
the robot held a series of interactions with the participant
designed to replicate interactions between a customer and a
waiter in a restaurant. The 4 conditions were as follows:
C1�Control: Under the control condition, the robot followed
a pre-selected random behaviour by moving (with an arbitrar-
ily decided speed) and positioning itself randomly with respect
to the participant without modifying its behaviour at all during
the interactions. This allowed us to evaluate whether learning
socially appropriate behaviours was actually desirable.
C2�Pre-trained: Under this condition, the robot was embed-
ded with a behaviour (positioning and speed of movement)
model pre-trained on the crowd-sourced data. The pre-trained
DQN agent was used as it performed the best amongst the
compared approaches (see Section IV-C). Unlike C1, the robot
did not return to the same position each time but used the pre-
trained RL model to determine its behaviour. Again, the robot
did not modify its behaviour during the interactions and each
time followed the pre-trained RL model.
C3�Explicit Feedback: Here, using the pre-trained DQN
model as the starting point, the robot adapted its behaviour
using the verbal feedback provided by participants as an
evaluation of its behaviour. The robot utilised a simplistic
‘keyword-spotting’ method while listening to the participant.
C4�Implicit Feedback: Under this condition, the robot de-
termined valence values from the facial expressions of the
participants using the FaceChannel [52], [53], an off-the-shelf
facial affect recognition model. Depending upon the positive or
negative valence values, the robot was rewarded accordingly,
allowing it to adapt its behaviour during the interactions.

5) Experimental Protocol: Before the experiment, the par-
ticipants were explained how the robot will interact with them
across 4 rounds over the course of ⇡ 45 minutes. At the end of
each round, they were asked to provide their evaluation, using
the tablet placed in front of them, based on their experience
interacting with the robot during that round. At the start of
the experiment, the robot held an introduction round with
the participants which was used to record baseline arousal
and valence scores for the participant. Pepper, acting as the
robo-waiter, interacted with the participants under 4 separate
tasks, reflecting interactions a customer might experience with
a waiter in restaurants:

i) Pepper welcoming the participant to ‘Pepper’s Diner’.
ii) Pepper taking a ‘food’ order from the participant.

iii) Pepper returning to the participant with their order.
iv) Pepper returning to collect the dishes.

6) Adapting to User Feedback: After each task, the robot
asked the participants for feedback on its behaviour. This
feedback, explicit for C3 by asking, ”How did you find the
service just now?” and implicit for C4 using the rolling
average of the valence values estimated over the last 3 seconds,

provided rewards for the robot under these conditions. To
ensure the 4 conditions were identical, feedback was sought
in C1 and C2 as well but not used to update the model.
Explicit Reward: Explicit reward was determined using ‘key-
word spotting’ on the participants’ responses. Based on the
keywords, the robot was given a positive = 10 (for Yes,
Good, Great, Yeah, Perfect, Sure), neutral = 1 (for Sort of,
Fine, Alright, OK, Adequate, Acceptable) or negative = �10
(for Nope, No, Not, Bad, Too Close, Too Far) reward for its
behaviour, updating the model for the subsequent interactions.
Implicit Reward: Implicit reward was computed using devi-
ations in valence values (V 2 [�100, 100]) determined from
participants’ facial expressions compared to the introduction
round. These values were normalised to Vn 2 [�10, 10], using
eq. 2 to make it comparable to explicit reward values.

Vn = 20.0⇥ V � Vmin

Vmax � Vmin
� 10.0 (2)

where V represents the rolling average of valence values
computed over the last 3 seconds (3 ⇥ 30 = 90 frames),
with Vmin and Vmax representing the minimum and maximum
deviation detected from the baseline readings during this time.
Combined Reward: The reward function for C3 and C4 was
defined by combining the reward computed for the positioning
of the robot, following the position-wise scores computed
using the crowd-sourced data (see Fig. 3), as well as the
implicit or explicit reward using the following equation:

R(st, a) = Mp[st] + eFt (3)

where st is the current state of the robot, a is the action taken,
Mp is the matrix of average crowd-sourced appropriateness
ratings and Ft is the explicit or implicit reward.

For the adaptive (C3 and C4) conditions, the robot started
the interaction following the pre-trained model while subse-
quent interactions followed an ✏-greedy (✏ = 0.2; determined
following a grid-search) approach to learn optimal behaviour.

7) Implementation: For speech recognition, the
SpeechRecognition [54] python library was used which
uses the Google Cloud-based ASR API. This was found
to be more accurate and reliable than the in-built speech
recognition software of Pepper. For analysing facial affect,
the FaceChannel [52], [53] was used, providing a lightweight
off-the-shelf solution. Working with a dimensional model
meant we were able to compare these values against baseline
participant behaviour to compute the implicit reward for
the model. We only use the valence values as they are
sufficient to quantify the positive or negative experience of
the customers [55]. Furthermore, as the crowd-sourced ratings
for arousal received low agreement scores for the top-right
quadrant (see Fig 2)), these scores were ignored.

8) Questionnaires: After each condition, that is after the
robot completed all of the 4 tasks (see Section V-A5), the
participants were asked to fill out a questionnaire evaluating
their experience interacting with the robot. This questionnaire
consisted of a subset of the Game Experience Questionnaire
(GEQ) [56] measuring the enjoyment levels for the participants
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Fig. 5: Average explicit feedback values across the 4 tasks for
C3 (left) and C2 (right).

due to their interaction with the robot. It also included ques-
tions measuring the participants’ impressions on the sociability
(evaluating politeness and human-like qualities), adaptability
(sensitivity towards the participants’ behaviour) and appropri-
ateness (positioning, speed and approach) of robots’ behaviour.

B. Results and Data Analysis

The results from the user-study are divided into objective
and subjective feedback categories. The objective feedback
constitutes measurements of explicit or implicit feedback pro-
vided by the participants evaluating the robot’s behaviour. As
one condition sought explicit user feedback while another
focused on implicit feedback, in the interest of consistency,
both forms of feedback were collected across all conditions,
even when these were not used to adapt robot behaviour.
Due to technical issues during the study, 2 participants were
excluded while analysing the objective feedback. Subjective
evaluations were collected using the different questionnaires
filled by all the participants (N = 21) after each condition.

1) Quantitative Results:
a) Objective Feedback: Objective feedback was col-

lected from the participants in the form of explicit verbal
responses as well as implicit observation of how their facial
affect (valence) changed during the interaction in response to
the robot’s behaviour. The positive or negative nature of these
measurements provides an understanding of how appropriate
and satisfactory they found the robot’s behaviour.

Both implicit and explicit feedback was computed for each
condition to provide insights into how the Explicit Feedback
(C3) and Implicit Feedback (C4) conditions improved on the
Pre-trained Model (C2), even though these values were not
used to update the model under C2. Comparing C3 and C2, a
one-tailed Mann-Whitney U Test [57] showed that the average
explicit feedback (the reward value computed using keyword
spotting) was significantly higher (U = 88, p = 0.010) for
C3. Furthermore, as each condition consisted of the Pepper
performing 4 tasks, we observe that these values increase for
C3 (see Fig. 5) as the participants witnessed more interactions
while decreasing for C2. Similarly, when comparing C4 and
C2, a one-tailed Mann-Whitney U Test showed that the aver-
age implicit feedback (computed using eq. 2) was significantly
higher (U = 87.0, p = 0.015) for C4. Similar to the explicit
feedback, as the participant interacted with Pepper across the

Fig. 6: Average implicit feedback values across the 4 tasks for
C4 (left) and C2 (right).

4 tasks, these values steadily increase for C4 while decreasing
for C2, as seen in Fig. 6.

In general, we see that a higher magnitude of explicit
rewards were provided by the participants during C3 while
implicit awards were dominant during C4 (see Section II of
the supplementary material provided for the respective plots).

b) Subjective Feedback: To evaluate our research ques-
tions (see Section III), participants’ responses to the question-
naire recording their impressions of robot behaviour in terms
of enjoyment, sociability, adaptability and appropriateness
were compared for the 4 conditions using a pairwise Wilcoxon
Signed-Rank Test [58] (see Fig. 7).
RQ1: When comparing the robot following the RL model pre-
trained on crowd-sourced data (C2) with a random static be-
haviour policy (C1), the robot under C2, on average, received
improved ratings across all evaluations. In particular, it was
rated significantly more impressive (W = 36.0, p = 0.044)
and significantly higher in terms of the appropriateness of the
speed of robot’s movements (W = 16.5, p = 0.005).
RQ2: When evaluating whether receiving explicit feedback
from the participants (C3) improved their perceptions of the
robot compared to following the pre-trained model (C2),
C3 was found to be rated higher across all dimensions. In
particular, the robot under C3 was rated significantly less
tiresome (W = 37.0, p = 0.035) and more sociable (W =
21.5, p = 0.022), better understood what the participant said
(W = 36.0, p = 0.013) and adapted to what they said and did
(W = 14.0, p = 0.001). C3 was also rated significantly higher
for the positioning (W = 22.5, p = 0.008) of the robot.
RQ3: Similarly, on comparing adapting with implicit feedback
(C4) to using the pre-trained model (C2), the robot under C4
improved upon the scores received for C2 across all dimen-
sions. It was found to be rated significantly higher on its ability
to adapt to what the participant said (W = 27.5, p = 0.008) as
well as on the appropriateness of the positioning of the robot
(W = 33.5, p = 0.011).
RQ4: Finally, comparing the explicit (C3) vs. implicit adapta-
tion (C4) strategy, although no clear preference was discovered
for the participants across most dimensions, C3 did receive sig-
nificantly better results in a number of dimensions. It was rated
significantly less tiresome (W = 3.5, p = 0.016) and more
sociable (W = 32.5, p = 0.017), better understood what the
participant said (W = 105.0, p = 0.023) and better adapted to
what the participant said and did (W = 81.0, p = 0.028).
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Fig. 7: Participants’ evaluations of the robo-waiter across (a) Enjoyment, (b) Sociability, (c) Adaptability and (d) Appropriateness
dimensions. ⇤ represents p < 0.05, ⇤⇤ represents p < 0.01, and ⇤⇤⇤ represents p < 0.001.

2) Qualitative Results: To evaluate the qualitative experi-
ence of the participants interacting with the robo-waiter, semi-
structured interviews were conducted at the end of the ses-
sions. Despite having to repeatedly give feedback (4⇥4 = 16
times), none of the participants found the interactions tedious.
All of them said that they could imagine being served by
a robo-waiter in the future. Several participants, however,
highlighted aspects of the robot’s behaviour that they did not
appreciate. For instance, they found the robot approaching
them “face-on” to be frightening, especially when it moved
straight towards them. This is in line with the compensation
model of proxemic behaviour [17] with the participants ex-
pressing discomfort over such robot behaviour. One participant
mentioned their discomfort when “it came up to them with its
eyes glowing green” while another compared its movement
to a “doll in a horror movie”. However, the same participants
enjoyed how the robot moved its upper-body and hands during
the interactions describing it as “very human-like”. Three
participants mentioned that the robot did not seem to listen to
them, some other (N = 6) found the entire interaction boring
or repetitive while a couple others suggested that inclusion of
real food might have improved their interaction experience.

VI. SUMMARY AND CONCLUSIONS

To the best of our knowledge, this is the first work investi-
gating different adaptation strategies for learning appropriate
approach and positioning behaviour for HSRs in real-time HRI
settings. The main outcomes of this work are summarised as:

1) Using an RL model pre-trained on crowd-sourced
data improves sociability, enjoyment, appropriateness of
robot’s behaviour compared to following a random policy.

2) Adaptation using explicit or implicit user-feedback im-
proves appropriateness and sociability ratings compared
to using a model pre-trained only on crowd-sourced data.

3) Modelling adaptation using an explicit feedback strategy
results in improved enjoyment, sociability and adaptabil-
ity ratings, compared to using implicit feedback.

These findings highlight the need to expand real-time social
interaction capabilities for HSRs, enabling them to adapt
their behaviour in response to user-feedback. Pre-training
the behaviour model using crowd-sourced data improves the
participants’ interaction experience as learning from such a
generalised understanding of user preferences improves how
the robot interacts with the participants. Following an explicit
feedback strategy results in an improved performance evalu-
ation compared to using implicit feedback. This may be due
to explicit feedback being more targeted and direct. Implicit
feedback may get convoluted with other interaction factors
such as the participants’ politeness or their interest in the robot.

Our results also show that an adaptive agent is preferred,
in line with other works [59] where the robot was pre-trained
based on responses to a survey completed by the participants
before the interaction but did not adapt its behaviour in real-
time. Our work demonstrates that not only do participants find
the adaptive robot to be more enjoyable, sociable, adaptable
and appropriate, but they also interact more positively with the
robot, providing it with positive implicit and explicit feedback.

A. Limitations and Future Work
The implicit feedback strategy explores only valence esti-

mations from facial expressions, which may not be sufficient to
exactly capture the participants’ feedback as such evaluations
may get convoluted with other interaction factors. Thus, future
work should explore a multi-modal analysis of user behaviour
in terms of both extrinsic (audio-visual signals) and intrinsic
(biosignals) factors to better capture participant reactions and
feedback to robot actions [29]. Furthermore, due to COVID-
19 restrictions, only department members were allowed to
participate in the study. This limits the diversity amongst the
participants. Future works should explore if the findings in this
study hold within a more realistic restaurant environment, and
with a wider and more diverse user demographics.
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Learning Socially Appropriate Robo-waiter
Behaviours through Real-time User Feedback

Supplementary Data and Results

I. DATA COLLECTION

Fig. 1: An example of the questions asked to the participants in the online survey for data collection.



II. HRI USER-STUDY

A. Implicit Feedback across Conditions

Fig. 2: Implicit feedback captured across the 4 tasks for each experiment condition. Implicit feedback is used to update the
robot behaviour only in C4.



B. Explicit Feedback across Conditions

Fig. 3: Explicit feedback captured across the 4 tasks for each experiment condition. Explicit feedback is used to update the
robot behaviour only in C3.
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