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Highlights 

 

 DNA Methylation age varies dependent on MPN phenotype 
 Increased JAK2V617F mutation burden correlates with increased DNA 

methylation age 
 Vorinostat therapy can alter DNA methylation age in PV and ET patients 

 

 

Abstract 

 

The myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal neoplastic 

disorders. Driver mutations in JAK2, CALR and MPL genes have been identified in the 

majority of cases. Alongside these, an increasing number of genes are repeatedly identified 

as mutated in MPN. These, including, ASXL1, TET2, DMNT3A, EZH2 have key roles in 

epigenetic regulation. Dysregulation of epigenetic processes is therefore a key feature of 

MPN. Vorinostat is a pan histone deacetylase inhibitor (HDACi) which has been 

investigated in MPN. DNA methylation (DNAm) is a well-defined epigenetic mechanism of 

transcription modification. It is known to be affected by ageing, lifestyle and disease. 

Epigenetic ageing signatures have been previously described allowing calculation of a 

methylation age (MA). In this study we examined the effect of vorinostat on MA in MPN 

cell lines and in Polycythaemia Vera (PV) and Essential Thrombocythemia (ET) patients 

treated with vorinostat as part of a clinical trial. An older MA was observed in patients with 

a higher JAK2 V617F allele burden and those with a longer duration of disease. PV patients 

had a MA which was older than predicted whilst MA was younger than predicted in ET. 

Treatment with vorinostat resulted in a younger MA in PV patients and older MA in ET 

patients, in both cases a trend towards the normal chronological age. When MA change was 

compared against response, non-response was associated with a younger than predicted MA 

in ET patients and a higher than predicted MA in PV patients. The link between MA and 

JAK2 mutant allele burden implies that allele burden not only has a role in clinical phenotype 

and disease evolution in MPN patients but in the overall methylation landscape of the 

mutated cells. 

 

 

                  



 

 

 

 

 

 

 

 

 

Introduction 

 

The myeloproliferative neoplasms (MPNs) are a group of clonal hematological disorders, 

where there is a change from the polyclonal hematopoiesis seen in health, to an abnormal 

monoclonal proliferation of blood cells. Polycythemia vera (PV) and essential 

thrombocythemia (ET) are characterized respectively by the excess production of red blood 

cells and platelets. Identification of the JAK2 V617F driver mutation, in 95% of PV cases 

and 50% of ET cases, causing constitutive activation of the JAK/STAT pathway has 

revolutionized our understanding of the pathogenesis of these conditions.(1)  In JAK2 V617F 

negative cases driver mutations in MPL and CALR have been identified in the majority of 

remaining ET cases.(2, 3) There is now evidence that MPNs are the result of combined 

genetic and epigenetic dysregulation, with mutations in co-operating genes increasingly 

reported.(4) These include genes involved in cell signalling pathways (LNK, CBL, NRA and, 

NF1), epigenetic regulation (ASXL1, EZH2, TET2, DNMT3A, IDH1 and IDH2), 

transcriptional regulation (TP53, RUNX1) and mRNA processing (SF3B1, SRSF2, U2AF1, 

ZRSR2). These mutations dictate the way genes are expressed, and are not MPN specific, 

being found in a wide variety of myeloid disease phenotypes and clonal hematopoiesis of 

indeterminate potential.(5) In addition, they are not mutually exclusive, making the hierarchy 

complex and unpredictable. Increasing evidence suggests that the order of acquisition of 

mutations can determine the phenotype of the disease.(6) Other mechanisms of epigenetic 

dysregulation have been identified in MPN. JAK2 V617F protein localises to the nucleus 

mediating phosphorylation of Histone H3 and the arginine methyltransferase PRMT5. (7, 8) 

                  



Overexpression of the transcription factor in NFE2 in PV results in elevated levels of 

JMJD1C, a histone demethylase, and subsequent global reductions in H3K9me1 and 

H3K9me2 levels.(9) In addition, DNA methylation patterns have been demonstrated to be 

abnormal in chronic phase MPN and change further in transformation to blast phase 

disease.(10) 

 

Best available therapies (BAT) have remained unchanged for PV and ET patients for many 

years and include low dose aspirin and cytoreductive agents such as hydroxycarbamide.  

These therapies have no effect on modifying the underlying disease process.  Recent 

developments include the use of specific JAK inhibitors including ruxolitinib, a direct JAK1 

and JAK2 inhibitor. Studies have demonstrated improved hematocrit control, spleen volume 

reduction and modest but sustained allele burden reduction in PV patients resistant or 

intolerant to HU.(11, 12)  However, no benefit over BAT was established for ET in the same 

second line setting.(13) As the role of epigenetic dysregulation in MPN becomes 

increasingly established, epigenetic therapies have been trialed in MPN. Vorinostat (MK-

0683) is a pan histone deacetylase inhibitor (HDACi) which has been shown to induce 

tumour cells to undergo growth arrest, differentiation or apoptotic cell death(14-16). In PV 

and ET, vorinostat has demonstrated efficacy in MPN. Discontinuation of therapy over a six 

month treatment phase was high with only 48% of patients completing the treatment course. 

A majority of patients had decreased leucocyte or platelet counts on treatment, with a 

reduction in the prevalence of splenomegaly and pruritus observed. Very modest reductions 

in the JAK2 V617F burden in positive patients were observed with no relation to 

response.(17) 

 

DNA methylation (DNAm) is known to be altered by ageing and can reflect the effect of 

diet, lifestyle or disease on cellular processes(18). Changes in DNAm influence the relative 

transcription profile of the cell by activating or inactivating gene transcription. ‘Methylation 

age’ (MA) may be a more accurate reflection of disease than chronological age (CA). Using 

an ageing signature composed by Weidner et al to generate individual MA,(19) we 

hypothesised that DNAm may be altered in MPN patients resulting in a change in MA. 

Further, we hypothesised that the use of an epigenetic modifier would alter MA in PV and 

ET patients. Therefore, we set out to investigate the effect of vorinostat on MA in a clinical 

trial setting. 

 

                  



Methods 

 

Tissue culture and drug treatment 

UKE-1, SET-2 and HEL cell lines were cultured in line with standard practices. Vorinostat 

was solubilized in DMSO. Specified concentrations were added to a cell suspension obtained 

at 2x105 cells/mL. Cells were then incubated at 37°C for required time frames. 

 

DNAm age calculation 

To validate the DNAm ageing signature previously described, the granulocyte fraction of 

whole blood obtained in EDTA from healthy volunteers was obtained by centrifugation, 

separation of buffy coat, addition of PBS and further centrifugation. DNA extraction was 

performed using the Quick-gDNA™ Miniprep Kit (Zymo research, California) as per 

manufacturer instructions. Bisulfite conversion of DNA was performed using Epitect 

bisulfite kit (Qiagen) as per manufacturer instructions. This converts unmethylated cytosine 

to uracil leaving methylcytosine residues unaffected. PyroMark PCR kit (Qiagen) was used 

to amplify DNA for regions within ASPA, ITGA2B and PDE4C genes using primers with 

biotinylation of the 5’ sequence. DNA gel electrophoresis confirmed adequate PCR product. 

Pyrosequencing was undertaken using the PyroMark Gold Q24 reagents kit, Qiagen and 

PyroMark Q24 sequencer machine. DNAm levels were inserted into the epigenetic ageing 

signature previously described by Weidner et al. (19) 

 

Clinical trial samples 

Samples were available from PV and ET patients in a non-randomised open label phase II 

multicentre study of Vorinostat (EudraCT #2007-005306-49).  At trial enrollment, patients 

had consented to the collection, storage and analysis of additional peripheral blood samples 

for use in research associated with the trial. Quantitative analysis of JAK2 V617F was 

performed as previously described.(17) Clinicohematological parameters used to assess 

response as previously described.(17) 

 

Statistical analysis 

                  



GraphPad Prism version 5 software was used to calculate all statistical values including IC50, 

R2 and p values using the paired/unpaired t-test as appropriate (***p<0.001, **p<0.01, 

*p<0.05, n.s not significant).  

Results 

 

Validation of ageing signature 

 

In 2014, Weidner et al performed a comprehensive analysis of 102 age related CpG sites in 

blood.(19)  They described how the measurement of DNAm levels at CpG’s within 3 key 

genes, ASPA, ITGA2B, PDE4C enabled the determination of a reliable MA that reflected CA 

in normal individuals using an “aging signature” calculation (Figure 1A).  To ensure the 

ageing signature calculation presented in the publication was representative of CA in normal 

individuals in our hands, samples were obtained with verbal consent from 5 healthy 

volunteers.  The mean age of the volunteers was 39 years (range 23-60) and included 3 

females and 2 males.  The granulocyte fraction was obtained from peripheral blood samples 

obtained in EDTA with subsequent DNA extraction. Pyrosequencing of each gene of interest 

was performed in turn following bisulfite conversion of the DNA and PCR cycling. 1 site of 

CpG methylation was analysed within ASPA, 3 sites within ITGA2B and 4 sites within 

PEDE4C. MA was calculated for each of the volunteers using the ageing signature 

calculation. Using the mean of DNAm values at site 1 and 3 within PDE4C, the mean of 

DNAm at all sites in ITGA2B and the DNAm value for the one site in ASPA resulted in a 

MA that closely aligned with the chronological age of the volunteers as a whole group as 

shown in Figure 1B (r =0.987, CI 0.81-1.0).  

 

 

 

 

 

 

 

                  



 

 

Figure 1 

A) Calculation prepared Weidner et al that predicted CA in normal individuals by assessing DNAm 

levels within 3 genes: ASPA, ITGA2B and PDE4C  

B) Correlation of Methylation age (MA) to Chronological age (CA) in healthy volunteers showing final 

MA and CA closely correlated in a healthy volunteer group. 

 

 

 

 

 

Effect of vorinostat on MA in clinical trial samples 

 

A) 

 

B)  

Predicted age (in years) = 38.0 - 26.4 α - 23.7 β + 164.7 γ 

α ASPA 

β ITGA2B 

γ PDE4C 

                  



Vorinostat was tested as a therapeutic strategy in a group of PV and ET patients as part of an 

investigator initiated non-randomised open label phase II multicentre study (EudraCT 

#2007-005306-49).  This study included 63 patients from 15 centres across Europe.  

Vorinostat was given at a dose of 400mg orally once daily for 24 weeks.  Response rate (RR) 

to vorinostat (complete response (CR) and partial response (PR)) on an intention-to-treat 

basis was 35%, with a decrease in the incidence of splenomegaly and constitutional 

symptoms (in particular pruritus). There was however a high discontinuation rate (52%) due 

to side-effects (most commonly diarrhea, fatigue and renal impairment) or lack of response. 

(17) 

 

DNA samples from 22 PV and 18 ET patients from this trial were available for research 

purposes. The gender split was 23 female patients and 17 male patients with a mean age of 

62 years at trial entry (range 29-81 years). Time from diagnosis to trial entry was available in 

all but 1 patient and was on average 347 weeks (range 0-1428). All patients received a wash 

out period before enrolment and were drug free at time of trial entry. Figure 2A shows the 

demographics of the trial participants, relative JAK2 V617F allele burdens and response rates 

per trial criteria. 

 

Samples, originating from peripheral blood, were taken at trial enrolment prior to receiving 

vorinostat and after 3 months of therapy.  In 21 of the 40 patients, DNA was also available 

after 6 months of vorinostat treatment. MA was determined for each patient at each sample 

time point. A predicted MA was also generated for each patient, using their known CA and 

the ratio established in the healthy volunteer group. We were then able to correlate MA with 

clinical parameters including known CA, gender, disease group, mutational profile and 

therapeutic response.  

 

The correlation of MA to CA at each time point is shown for all patients in Figure 2B. The 

trend line established in healthy volunteers allowed the patients in whom the calculated MA 

was older or younger than expected to be clearly visualized. At baseline, a trend towards a 

higher than predicted MA was observed averaging 0.5 years older than expected for CA 

(range 31.9 years younger to 49.8 years older). After 6 months therapy vorinostat had altered 

MA, with a trend towards a lower than expected MA when compared to CA (1.0 years 

younger, range 26.2 years younger to 43.9 years older). 

                  



 

 

 

Figure 2 

A) Gender, JAK2 mutant status and response classification for each disease category. 

In 66.7% (n=6/9) of the JAK2 wild type patients CALR was confirmed as the driver 

mutation. 

B) Correlation of MA to CA in Vorinostat treated patients. Calculated MA at each time 

point compared to known CA of patients with trend line as established in healthy 

volunteers.  Patients below the line are younger than expected for CA, while those 

above the line are older than expected for CA 

                  



After surveying the entire cohort, each disease group (PV and ET) was scrutinised separately.  We 

observed a tendency towards a higher than expected MA at all time points in PV whilst the opposite 

was true in the ET cohort. This was despite having a similar mean CA (PV 61.8 years, range 29 - 78 

and ET 62.6 years, range 51 - 81).  Amongst PV patients mean MA was 58.1 years (range 35.2 – 

104.9) at baseline, 57.5 years (range 35.5 – 99.9) at 3 months and 50.5 years (range 35.3 – 93.7) at 6 

months.  Amongst ET patients mean MA was 48.7 years (range 32.3 – 74.1) at baseline, 49.6 years 

(range 35.3 – 84.9) at 3 months and 49.1 years (range 36.6 – 66.1) at 6 months. The difference 

between the groups (PV vs. ET) was statistically significant at trial entry (5.04 years older vs. 5.1 

years younger, p=0.01), but not after 3 months (4.44 years older vs. 4.16 years younger) or 6 months 

vorinostat therapy (1.8 years older vs. 4.0 years younger). Figure 3A demonstrates the delta change in 

age of the entire cohort and disease groups separately.  In this way, all patients start at a baseline CA 

of 1.0 and their calculated MA displayed as a ratio of CA.  The change in MA after 3 months 

vorinostat was not significant and reflected the change expected from normal chronological ageing 

(mean change of +0.1 years, range -20.9 to +10.8).  When the follow-up data on the 21 patients who 

had longer term samples available was analysed, a significant increase in MA was noted from 

baseline to 6 months (mean change +2.8 years, range -5.9 to + 9.4, p=0.0036, paired student t test).  

When disease groups were analysed separately, the change from baseline to 6 months was only 

significant among ET patients (mean change +4.2 years, range -0.6 to +8.9, p=0.0021) and not within 

the PV group (mean change +1.6 years, range -5.9 to +9.4. An MA score was calculated by 

subtracting the predicted MA from the observed MA. At baseline, this MA score was 0.45 for the 

entire cohort, -5.27 for ET group and 5.52 for the PV group. At six months of therapy, the MA score 

was -1.04 (p = 0.002) for the whole cohort, -4.2 for the ET group (p = 0.0013) and 1.8 for the PV 

group (not significant). 

 

MA and Mutational status  

 

An ANOVA analysis was performed to pursue any associations between MA and the mutational 

spectrum seen in the cohort.  This included the presence of driver mutations (wild type or mutant 

JAK2, JAK2 mutant allele burden, CALR, MPL) and any additional co-operating mutations (ASXL1, 

TET2, EZH2, DNMT3, SRSF2).  A statistically significant link between MA and JAK2 allele burden 

was seen. JAK2 allele burden was independently associated with MA score at baseline using linear 

regression (p=0.01). Compared to patients with low JAK2 allele burden, patients with high JAK2 

(>60% variant allele frequency at baseline) had an older MA at baseline (64.2 years vs. 44.8, 

p=0.008) and after 3 months therapy (64.3 years vs. 44.1, p=0.0002). PV and ET patients were 

examined separately.  PV patients with a high JAK2 allele burden compared to the low burden group 

                  



had a mean MA of 66.0 years vs. 46.2 at baseline (p=0.0149) and 61.5 years vs. 46.2 after 3 months 

(p=0.0077).  Within ET, high burden patients compared to low burden patients had a mean MA of 

57.3 years vs. 50.0 years at baseline (not significant) and 61.5 years vs. 47.8 after 3 months (not 

significant).  However, after 6 months vorinostat therapy, this relationship between allele burden and 

MA was not significant in the overall cohort with a mean MA in high burden patients 54.7 years vs. 

45.8 years in low allele burden group. Significance was also lost in the PV group with the high burden 

mean MA 48.5 years vs 43.2 years in the low burden group. There were insufficient remaining low 

burden patients in the ET group to draw any conclusion. When JAK2 negative patients were included 

in the low burden group, the results were similar across all phenotypes and time points with only the 3 

month ET time point displaying significance were it had not been previously.  Figure 3B demonstrates 

these results. There was no correlation between JAK2 burden at baseline and change in MA on 

therapy. There was no association between change in allele burden and MA on vorinostat treatment. 

 

 

Figure 3 

!A)! B)!

                  



A) Vorinostat treated patient, change in MA with treatment. For entire cohort and each disease group separately, the 
change in MA as a ratio of CA over time.  A significant change in MA was noted from baseline to 6 months in the cohort 
overall, and when ET patients were analysed separately. 

B) Effect of JAK2 allele burden on MA. MA at all time points of the entire cohort and each disease group, separated into 
those with high JAK2 allele burden and those with low burden/wild type JAK2.  Patients with high burden were 
significantly older by MA at baseline and after 3 months therapy. 

 

 

We examined the effect of time to enrolment in the study on JAK2 V617F allele burden and MA. 

Time from diagnosis to enrolment was available for all but 1 patient. There was a significant 

association between high allele burden and longer diagnosis to enrolment time. Amongst the high 

burden patients mean time to enrolment was 530 weeks (range 0-1428) compared to 171 weeks (range 

0-776) in the low burden group (p=0.02). From this, we investigated if MA was correlated with time 

to enrolment. At baseline and 3 months a positive correlation was evident (R2: 0.1291 & 0.2344; 

respectively).  However, by 6 months the variables showed no correlation. When the MA score, the 

difference between calculated and predicted MA, was analysed, the same correlations were evident. 

Therefore, following Vorinostat administration, the MA and MA score were now independent of time 

to enrolment. 

 

Additional co-operating oncogenic mutations were detected in several patients (ASXL1 n=4/40, TET2 

n=6/40, EZH2 n=3/40), with three patients having more than one mutation. No statistically significant 

effect was seen on MA or MA score in relation to these mutations. 

 

MA and Response 

 

MA was analysed in parallel with the known response rates of the cohort (20% CR, 42.5% PR and 

37.5% Non response (NR)).  In the cohort overall, NR compared to CR was associated with a younger 

MA after 6 months therapy (38.4 years vs. 57.8, p=0.01 unpaired t test). This evidence linking 

patients with a younger MA with non-response was also evident separately, within the ET patient 

group; ,  NR compared to PR was associated with a younger MA after 3 months therapy (41.4 years 

vs. 56.3, p=0.0156); and NR compared to CR was associated with a younger MA after 6 months 

therapy (38.5 years vs. 59.5, p=0.0158) (Figure 4A). 

 

                  



When the effect of MA score on response was examined, further correlations were noted. Although 

the cohort size was small, by 6 months NR compared to CR was associated with a MA that was 

younger than that expected for CA (i.e. a negative MA score) (-11.42 years vs. +7.97, p=0.0477).  

This was also noted separately within the ET group, were again NR compared to CR was associated 

with a MA that was younger than expected for CA at 6 months (-13.9 years vs. + 5.0, p=0.0161). In 

addition, within PV, NR compared to PR was associated with a MA that was older than expected for 

CA at baseline (+18.0 years vs. -5.1, p=0.0279) and after 3 months therapy (+16.2 years vs. -4.7, 

p=0.0293)  (Figure 4B).  

 

 

!A)! B)!

                  



Figure 4 

A) At each time point, the MA of the entire cohort and each disease group separated by 

response (CR, PR and NR). 

B) At each time point, the MA score of the entire cohort and each disease group separated into 

by response (CR, PR and NR). 

Discussion 

 

The role of epigenetic dysregulation in MPN pathogenesis has been increasingly defined.(20) Using a 

epigenetic ageing signature based on DNAm at three genes (ASPA, ITGA2B, PDE4C) designed 

specifically for peripheral blood, which has been validated for changes in cellular composition 

between individuals,(19) we set out to investigate the impact on DNAm resulting from the use of a 

histone deacetylase inhibitor, vorinostat, in real world clinical trial samples. DNAm is perhaps the 

best described epigenetic mechanism of transcription regulation. The effect of ageing on DNAm 

levels has been referred to as the ‘epigenetic clock’ and is a concept that has been widely accepted for 

over fifty years(18) The phenomenon of a diverging epigenome landscape in aging individuals has 

been associated with neoplastic diseases(21) and DNAm changes have also been implicated in 

myeloid malignancy.(22) Previous studies have demonstrated an observable change in DNAm 

patterns in chronic phase MPN samples compared to normal samples and a further change during 

transformation to blast phase disease.(10) 

 

In keeping with this, we have demonstrated a significant difference in MA between PV and ET with 

PV patients demonstrating a higher than predicted MA in contrast to ET patients demonstrating a 

lower than predicted MA. We also demonstrate that patients with a higher JAK2 V617F allele burden 

have an increased MA for all patients and the PV only cohorts. This allows us to question the role of 

DNA methylation change in the pathogenesis of the eventual MPN phenotype. Our understanding of 

the determination of MPN phenotype remains incomplete. Higher JAK2 V617F allele burdens are 

associated with an emphasis of the PV phenotype.(23) Recent work suggests that the order of 

acquisition of mutations may directly affect the resulting end phenotype,(6) whilst the presence of 

particular cooperating somatic mutations are observed with varying frequency between MPN 

phenotypes suggesting a role in the determination. The number of co-existing somatic mutations is 

also observed to be higher in primary myelofibrosis in comparison to ET or PV.(24) In observing this 

difference in DNAm between ET and PV we have not defined cause or effect. The older MA may be 

a reflection of other cellular processes driving the PV phenotype potentially directly related to the 

                  



JAK2 allele burden. The association between time from diagnosis to enrolment with JAK2 allele 

burden raises the possibility that allele burden may act as a surrogate marker for disease duration. In 

JAK2 V617F positive murine models, there is clear exhaustion of the HSC population.(25) It could be 

hypothesized that exhaustion of this stem cell population in higher JAK2 allele burden or prolonged 

diseased settings may impact on the MA of the resulting haematopoietic progenitors.  

Alternatively, the change in DNAm which is reflected by the differing MA observed, may directly 

influence the development of a particular phenotype through regulation of gene transcription favoring 

a PV or ET type expression profile. Future studies should aim to differentiate these hypotheses.  

 

 

Our observations of the role of vorinostat in altering DNAm have been limited by the clinical trial 

design. Unfortunately, the toxicity of the dosing regime used in the trial resulted in a high drop-out 

rate with many patients failing to complete the 6 months of treatment. Using unpaired analysis we 

demonstrated a change in the MA of both PV and ET patients. Compared to predicted MA, in general 

PV patients behaved as might be expected of a disease cohort; ageing older than predicted at trial 

entry and trended towards getting younger with therapy.  In contrast, ET patients actually had a 

younger than anticipated MA at trial entry and became older on therapy. Both groups trended towards 

the predicted MA calculated from our normal cohort over the course of treatment, suggesting that 

there was a normalisation of DNAm patterns resulting from vorinostat therapy.  These results are 

susceptible to bias resulting from the drop out of individuals with MA readings at the extremes of the 

results, for each cohort. When we looked at paired analysis, the significance of the increase in MA at 

6 months therapy in the ET cohort was maintained consistent with a modification effect towards 

normal resulting from vorinostat therapy. We did not observe any correlation between JAK2 allele 

burden at baseline and change in MA on therapy or between the change in allele burden on therapy 

and MA.  

 

We have demonstrated a correlation of MA to response in the clinical trial. Non response was 

associated with a younger MA after 6 months of therapy in comparison to complete responders in the 

ET group. Meanwhile, non-response was associated with an older MA than predicted at baseline in 

comparison to partial responders in the PV group. This suggests that MA may contribute to treatment 

resistant biological phenotypes. We speculate that in these non-responders vorinostat is unable to 

overcome the mechanisms driving altered methylation patterns typical of each disease phenotype. 

Individuals in whom the methylation patterns are therapeutically manipulated towards normal 

                  



demonstrate an association with disease response rates. It will be interesting to investigate whether 

this association of normalisation of DNAm patterns and disease response occurs in the setting of other 

effective therapies for MPN including the JAK inhibitors.  

 

Conclusion 

This study investigated the effect of the HDACi, vorinostat, on DNAm at three key genes (ITGA2B, 

ASPA and PDE4C) which have previously been validated to produce a epigenetic aging signature in 

peripheral blood. We observed an older MA at baseline in patients with a higher JAK2 V617F allele 

burden. Patients with PV had an observed MA which was older than predicted whilst patients with ET 

had an observed MA which was younger than predicted. Therefore, DNA methylation patterns may 

be reflective of, or, causative of the resulting disease phenotype. Non-response in ET patients was 

associated with a younger than predicted MA after therapy in comparison to patients with a complete 

response. Meanwhile in PV, non-response was associated with an older than predicted MA in 

comparison to partial responders prior to therapy. This is suggestive that therapeutic manipulation of 

the DNAm ageing pattern of cells towards normal may be reflective of response more generally. In 

comparison, an inability of vorinostat to successfully manipulate DNAm in a number of cases reflects 

a tendency to non-response.  
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