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Differential dissipativity theory
for dominance analysis

Fulvio Forni, Rodolphe Sepulchre

Abstract—High-dimensional systems that have a low-
dimensional dominant behavior allow for model reduction and
simplified analysis. We use differential analysis to formalize
this important concept in a nonlinear setting. We show that
dominance can be studied through linear dissipation inequalities
and an interconnection theory that closely mimics the classical
analysis of stability by means of dissipativity theory. In this
approach, stability is seen as the particular situation where
the dominant behavior is 0-dimensional. The generalization
opens novel tractable avenues to study multistability through
1-dominance and limit cycle oscillations through 2-dominance.

I. INTRODUCTION

The analysis of a system is considerably simplified when
it is low-dimensional. Linear system analysis frequently ex-
ploits the property that a few dominant poles capture the
main properties of a possibly high-dimensional system. Low-
dimensional models are even more critical in nonlinear system
analysis. Multistability or limit cycle analysis is difficult
beyond the phase plane analysis of two-dimensional systems.

In this paper we seek to formalize the property that a
nonlinear system has low-dimensional dominant behavior. Our
approach is differential: we characterize the property for linear
systems and then study the nonlinear system differentially, that
is, along the linearized flow in the tangent bundle. The seminal
example of differential analysis in control theory is contraction
analysis [28], [36], [16], [39], [45], which we interpret as
a differential analysis of exponential stability. The property
is the contraction of a ball, characterized via a Lyapunov
dissipation inequality. A nonlinear system is contractive when
this dissipation inequality holds infinitesimally along any of its
trajectories. In the present paper, the corresponding property
is 0-dominance: it ensures that the dominant behavior of the
nonlinear system is 0-dimensional. A more recent example of
differential analysis is differential positivity [13], the differen-
tial analysis of positivity. The linear property is the contraction
of a cone, also characterized by a dissipation inequality. A
nonlinear system is differentially positive when this dissipation
inequality holds infinitesimally along any of its trajectories. In
the context of the present paper, the corresponding property
is 1-dominance: it guarantees that the dominant behavior of
the nonlinear system is 1-dimensional. More generally, we
study the property of p-dominance differentially. The property
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is characterized via a dissipation inequality, which is then
required to hold infinitesimally along the trajectories of the
nonlinear system. We prove a general theorem that formalizes
that the dominant behavior of a p-dominant system is p-
dimensional.

Differential analysis is general in that it allows to extend
a linear system property to an arbitrary flow defined on a
differentiable manifold. An important restriction in this paper
is that we only consider dissipation properties characterized by
linear matrix inequalities. Furthermore, we impose the linear
dissipation inequality to be uniform on the tangent bundle.
In geometric terms, this endows the differentiable manifold
with a flat non-degenerate metric structure, characterized by a
constant quadratic form.

The linear-quadratic restriction allows for a fruitful bridge
with the linear-quadratic theory of dissipativity. Many of the
available computational tools of dissipativity theory become
available for the analysis of p-dominance. The analysis of
p-dominance is reformulated as the search of a quadratic
differential storage that decreases along the solutions of the
linearized dynamics. The classical interconnections theorems
of (linear-quadratic) dissipativity theory are reformulated as
tools that facilitate that construction. The only substantial
difference with the classical theory is that the quadratic form
that characterizes the storage is no longer required to be a
Lyapunov function, i.e. positive definite. Instead, it is required
to have a fixed inertia, that is, p negative eigenvalues and n−p
positive eigenvalues. Stability corresponds to p = 0, whereas
p-dominance allows for any integer 0 ≤ p ≤ n.

The paper is organized as follows. Section II characterizes
p-dominance and p-dissipativity for linear time-invariant mod-
els. Section III defines p-dominance for nonlinear systems with
two main results that characterize their asymptotic behavior.
The connection with related results in the literature is dis-
cussed in Section V and dominance analysis via the solution of
LMIs is illustrated in Section VI. Differential p-dissipativity is
addressed in Section VII, where we primarily illustrate the role
of differential passivity and differential small-gain theorems
in the design and analysis of multistable systems (p = 1)
and limit cycle oscillations (p = 2). The proofs of the main
theorems are provided in appendix.

II. DOMINANT LTI SYSTEMS

Definition 1: A linear system ẋ = Ax is p-dominant with
rate λ ≥ 0 if there exists a symmetric matrix P with inertia
(p, 0, n− p) such that

ATP + PA ≤ −2λP − εI . (1)



2

for some ε ≥ 0. The property is strict if ε > 0. y
We recall that a matrix with inertia (p, 0, n−p) has p negative
eigenvalues, and n− p positive eigenvalues. For simplicity in
what follows we will use the abbreviated terminology inertia
p to denote those matrices.

In terms of the quadratic form V (x) = xTPx, the (strict)
dissipation inequality (1) reads

V̇ (x) = xT (ATP + PA)x

≤ −2λV (x)− ε | x |2

For ε > 0 this implies that the two cones

K− = {x ∈ Rn | V (x) ≤ 0}, K+ = {x ∈ Rn | V (x) ≥ 0}
are strictly contracting either in forward or in backward time:

∀t > 0 : e−AtK+ ⊂ K+, eAtK− ⊂ K−

Equivalent characterizations of p-dominance are provided in
the following proposition, whose proof is in the preliminary
version of this paper [14].

Proposition 1: For ε > 0, the Linear Matrix Inequality (1)
is equivalent to any of the following conditions:

1) The matrix A + λI has p eigenvalues with strictly
positive real part and n − p eigenvalues with strictly
negative real part.

2) there exists an invariant subspace splitting Rn = H⊕V
such that AH ⊂ H and AV ⊂ V . The dimension of V is
n− p and the dimension of H is p. Furthermore, there
exist constants 0 < C ≤ 1 ≤ C and λ < λ < λ such
that

∀x ∈ H : | eAtx |≥ C e−λt | x |, t ≥ 0

∀x ∈ V : | eAtx |≤ C e−λt | x |, t ≥ 0.

y
The property of p-dominance ensures a splitting between

n − p transient modes and p dominant modes. Only the
p dominant modes dictate the asymptotic behavior. Because
λ ≥ 0 and V ⊂ K+, the quadratic form V (x) is a Lyapunov
function for the transient behavior, that is, for the restriction
of the flow in V .

For p = 0, p-dominance is the classical property of expo-
nential stability: all modes are transient and the asymptotic
behavior is 0-dimensional.

The matrix inequality (1) is equivalent to the conic con-
straint [

ẋ
x

]T[
0 P
P 2λP + εI

] [
ẋ
x

]
≤ 0. (2)

Dissipativity theory extends p-dominance to open systems
by augmenting the internal dissipation inequality with an
external supply. The external property of p-dissipativity is
captured by a conic constraint between the state of the system
x, its derivative ẋ, and the external variables y and u of the
form[

ẋ
x

]T[
0 P
P 2λP + εI

][
ẋ
x

]
≤
[
y
u

]T[
Q L
LT R

][
y
u

]
(3)

where P is a matrix with inertia p, λ ≥ 0, L,Q,R are matrices
of suitable dimension, and ε ≥ 0. The property is strict if ε >

0. We call supply rate s(y, u) := yTQy + yTLu+ uTLT y +
uTRu the right-hand side of (3). An open dynamical system
is p-dissipative with rate λ if its dynamics ẋ = Ax + Bu,
y = Cx+Du satisfy (3) for all x and u. The property has a
simple characterization in terms of linear matrix inequalities.

Proposition 2: A linear system ẋ = Ax+Bu, y = Cx+Du
is p-dissipative with rate λ ≥ 0 if and only if there exists a
symmetric matrix P with inertia p such that[

ATP+PA+2λP−CTQC+εI PB−CTL−CTQD
BTP−LTC−DTQC −DTQD−LTD−DTL−R

]
≤ 0 . (4)

y
Proof: [⇒] Just replace ẋ = Ax+Bu and y = Cx+Du

in (3) and rearrange. [⇐] Multiply (4) by [xT uT ] on the left,
and by [xT uT ]T on the right. Then we get ẋTPx+ xTPẋ+
2λxTPx < s(y, u) as desired.

An interconnection theorem can be easily derived. A proof
is provided in the preliminary version of this paper [14], see
also the proof of Theorem 4.

Proposition 3: Let Σ1 and Σ2 p1-dissipative and p2-
dissipative systems respectively, with uniform rate λ and with
supply rate

si(yi, ui) =

[
yi
ui

]T[
Qi Li
LTi Ri

] [
yi
ui

]
(5)

for i ∈ {1, 2}. The closed-loop system given by negative
feedback interconnection

u1 = −y2 + v1 u2 = y1 + v2 (6)

is (p1 + p2)-dissipative with rate λ from v = (v1, v2) to y =
(y1, y2) with supply rate

s(y, v) =

[
y
v

]T Q1 +R2 −L1 + LT
2 L1 R2

−LT
1 + L2 Q2 +R1 −R1 L2

LT
1 −R1 R1 0
R2 LT

2 0 R2

[y
v

]
.

(7)
Furthermore, the closed-loop system is (p1 + p2)-dominant
with rate λ if[

Q1 +R2 −L1 + LT2
−LT1 + L2 Q2 +R1

]
≤ 0 . (8)

y
Mimicking classical dissipativity theory, there are two im-

portant particular cases of supply rates : the passivity supply

s(y, u) =

[
y
u

]T[
0 I
I 0

] [
y
u

]
. (9)

and the gain supply:

s(y, u) =

[
y
u

]T[ −I 0
0 γ2I

] [
y
u

]
. (10)

Hence, Proposition 3 provides an analog of the small-gain
theorems and passivity theorems for p-dominance of a linear
time-invariant system.
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III. DIFFERENTIAL ANALYSIS OF
DOMINANT NONLINEAR SYSTEMS

For a nonlinear system

ẋ = f(x) x ∈ X (11)

we define dominance differentially, that is, through the linear
dissipation inequality[

˙δx
δx

]T[
0 P
P 2λP + εI

] [
˙δx
δx

]
≤ 0 (12)

for every δx ∈ TxX , where P is a matrix with inertia p and
ε ≥ 0.

In what follows we assume that X is a smooth Riemannian
manifold of dimension n. Given any δx ∈ TxX , |δx| denotes
the Riemannian metric on X represented by

√
δxTδx in local

coordinates. ψt(x) denotes the flow of (11) at time t passing
through x ∈ X at time 0. ∂ψt(x) denotes the differential of
ψt(x) with respect to x. Note that (ψt(x), ∂ψt(x)δx) is a flow
in the tangent bundle. It is the solution of the prolonged system
[7] {

ẋ = f(x)
˙δx = ∂f(x)δx

(x, δx) ∈ TX (13)

at time t passing through (x, δx) ∈ TX at time 0. In local
coordinates ∂f(x) denotes the differential of f at x and P is
the local representation of a metric tensor P with fixed inertia.

Following the approach of Section II, we define the property
of dominance for nonlinear systems as follows.

Definition 2: A nonlinear system ẋ = f(x) is p-dominant
with rate λ ≥ 0 if there exists a symmetric matrix P with
inertia p such that (12) is satisfied by the solutions of the
prolonged system (13) for some ε ≥ 0. The property is strict
if ε > 0. y

In terms of the quadratic function V (δx) := δxTPδx, the
differential dissipation inequality (12) reads

V̇ (δx) = δxT
(
∂f(x)TP + P∂f(x)

)
δx

≤ −2λV (δx)− ε | δx |2 (14)

As a consequence, for ε > 0, the two cone fields

K+(x) := {δx ∈ TxX |V (δx) ≥ 0},
K−(x) := {δx ∈ TxX |V (δx) ≤ 0}

are strictly contracting either in forward time or in backward
time, respectively:

∂ψ−t(x)K+(x) ⊂ K+(ψ−t(x)) ∀t > 0

∂ψt(x)K−(x) ⊂ K−(ψt(x)) ∀t > 0

The following result provides the differential analog of
Proposition 1.

Theorem 1: Let A ⊆ X be a compact invariant set and let
(11) be a strictly p-dominant system with rate λ ≥ 0 and tensor
P . Then, for each x ∈ A, there exists an invariant splitting
TxX = Hx ⊕ Vx such that

∂ψt(x)Hx ⊆ Hψt(x) ∀t ∈ R ,
∂ψt(x)Vx ⊆ Vψt(x) ∀t ∈ R .

(15)

Hx and Vx are distributions of dimension p and n − p,
respectively. Furthermore, there exist constants C ≤ 1 ≤ C
and λ < λ < λ such that

|∂ψt(x)δx| ≥ Ce−λt|δx| ∀x ∈ A,∀δx ∈ Hx (16a)

|∂ψt(x)δx| ≤ Ce−λt|δx| ∀x ∈ A,∀δx ∈ Vx . (16b)

y
The interpretation of the theorem is that the linearized flow

∂ψt(·) admits an invariant splitting between n − p transient
modes and p dominant modes. The p dominant modes dictate
the long-term behavior of the flow. The quadratic form V (δx)
is a differential Lyapunov function in the invariant distribution
V ⊂ TX .

For X = Rn the characterization of the asymptotic behavior
of dominant systems can be further refined. This is because,
by integration, the differential dissipation inequality (14) leads
to the incremental inequality

V̇ (x−y) = (x−y)TP (f(x)−f(y))+(f(x)−f(y))TP (x−y)

= 2(x− y)
(∫ 1

0
P∂f(sx+ (1−s)y)ds

)
(x− y)

≤ −ε(x− y)T
(∫ 1

0
−2λP + εI ds

)
(x− y)

≤ −2λV (x− y)− ε | x− y |2 .
(17)

The following result is based on the incremental dissipation
inequality (17). We denote by Ω(x) the ω-limit set of x, that
is, the set of all ω-limit points of x.

Theorem 2: For X = Rn, let (11) be a strictly p-dominant
system with rate λ ≥ 0. Then, the flow on any compact ω-
limit set is topologically equivalent to a flow on a compact
invariant set of a Lipschitz system in Rp. y

For small values of p, Theorem 2 severely constrains the
possible attractors of the system.

Corollary 1: Under the assumptions of Theorem 2, every
bounded solution asymptotically converges to
• a unique fixed point if p = 0;
• a fixed point if p = 1;
• a simple attractor if p = 2, that is, a fixed point, a set of

fixed points and connecting arcs, or a limit cycle. y

IV. PROOFS OF THEOREMS 1 AND 2
Proof of Theorem 1.

Invariant splitting. For any p > 0 and for any δx ∈ K−, the
dissipation inequality (14) implies

V̇ (δx) ≤ −2λV (δx)− ε | δx |2≤ −ε | δx |2 (18)

for all x ∈ X and all δx on the boundary of K−, which
guarantees that

∀t ≥ 0 : ∂ψtK− ⊆ K− (19a)
∀t > 0 : ∂ψt(K− \ {0}) ⊂ K−. (19b)

The dissipation inequality (14) also implies

V̇ (δx) ≤ −2λV (δx)− ε | δx |2≤ −(2λ− ε1)V (δx) (20)

for ε1 := ε
|λmin(P )| > 0. Time-integration of this inequality

yields the estimate

∀t ≥ 0 :
e2λtV (∂ψtδx)

V (δx)
≥ eε1t (21)
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which holds uniformly for all x ∈ X and all δx in the interior
of K−. (19) and (21) guarantee that there exist T > 0 and
µ > 1 such that |e

λt∂ψtδx|
|δx| ≥ µ for all t ≥ T , all x ∈ X and

all δx ∈ K−.
Likewise, for any n − p > 0 and for any δx ∈ K+, the

dissipation inequality (14) implies

V̇ (δx) ≤ −2λV (δx)− ε | δx |2≤ −(2λ+ ε2)V (δx) (22)

for ε2 = ε
λmax(P ) > 0. Integration of the first inequality

backward time guarantees that

∀t ≥ 0 : ∂ψ−tK+ ⊆ K+ (23a)
∀t > 0 : ∂ψ−t(K+ \ {0}) ⊂ K+. (23b)

Integration of the second inequality backward time also yields
the estimate

∀t ≥ 0 :
e−2λtV (∂ψ−tδx)

V (δx)
≥ eε2t (24)

which holds uniformly for all x ∈ X and all δx in the interior
of K+. As above, (23) and (24) guarantee that there exist
T > 0 and µ > 1 such that |e

−λt∂ψ−tδx|
|δx| ≥ µ for all t ≥ T ,

all x ∈ X and all δx ∈ K+.
From here, we proceed as in the proof of [35, Theorem 1.2]

(see also [2, Chapter 3]) to show that

Hx :=
⋂
t≥0 e

λt∂ψt(x)K−(ψ−t(x)) ⊂ K−(x)

Vx :=
⋂
t≥0 e

−λt∂ψ−t(ψt(x))K+(ψt(x)) ⊂ K+(x)

are invariant distributions of dimension p and n − p respec-
tively, that is,

eλt∂ψt(x)Hx ⊆ Hψt(x) ∀t ∈ R ,

eλt∂ψt(x)Vx ⊆ Vψt(x) ∀t ∈ R .

Since eλt is just a scalar factor, (15) follows.
Exponential estimates. Observe that δx ∈ H implies that

δx belongs to the interior of K−. The estimate (16a) with
λ = λ − ε1

2 follows from the fact that −V (δx) is positive
definite in H and that V (δx) satisfies (20). For instance, there
exist 0 < ρ1 ≤ ρ2 such that ρ1δxTδx ≤ −V (δx) ≤ ρ2δx

Tδx
for all δx ∈ H and (20) gives ρ2|∂ψtδx|2 ≥ −V (∂ψtδx) ≥
−e−(2λ−ε1)tV (δx) ≥ e−(2λ−ε1)tρ1|δx|2 for all t ≥ 0, from
which (16a) follows.

Likewise, δx ∈ V implies that δx belongs to the interior of
K+. The estimate (16b) with λ = λ + ε2

2 follows from the
fact that V (δx) is positive definite in V and satisfies (22). �

Proof of Theorem 2. From the dissipation inequality (17) we
derive the inequality d

dte
2λtV (x−y) = e2λtV̇ +2λe2λtV (x−

y) ≤ −e2λtε | x − y |2 which, by time integration, implies
the following estimate for any pair of solutions initialized at
x0, y0 ∈ X :

∀t ≥ 0 : V (ψt(x0)− ψt(y0)) ≤ e−2λtV (x0 − y0)−

−ε
∫ t

0

e2λ(τ−t)|ψτ(x0)− ψτ(y0)|2dτ (25)

For large t ≥ 0, the first term on the right hand side vanishes.
This implies that the difference between any two solutions

either asymptotically vanishes or eventually remains in the
cone K−. We conclude that if x and y are distinct ω-limit
points, then necessarily V (x− y) < 0.

Consider any compact set Ω of ω-limit points. Let HP and
VP the invariant subspaces of the matrix P associated to the
p negative and n−p positive eigenvalues, respectively. Define
the linear projection Π : X → HP parallel to VP . We claim
that Π restricted to Ω is one-to-one. This is because x 6= y
and Π(x− y) = 0 imply V (x− y) > 0, which was proved to
contradict (25).

The remaining argument follows the proof of [24, Theorem
3.17]. If y ∈ ΠΩ(x) then y = Πz for a unique z ∈ Ω(x) and
the flow Πψt(z) on HP is generated by the vector field

F (y) := Πf(Π−1(y)) y ∈ Ω(x) ,

which is Lipschitz by construction. �

V. CONNECTIONS WITH THE LITERATURE

A. Dominated splittings and dominance

The property of dominance studied in this paper is closely
related to the cousin concepts of dominated splittings and par-
tial hyperbolicity. Both concepts have appeared in dynamical
systems theory as part of the extensive research to generalize
the key concept of hyperbolicity pioneered by Smale and
Anosov in the 60’s. The common theme of that research line
is that robust features of smooth dynamical systems should
be captured by robust features of their linear approximations.
Robust is to be understood here in the sense of structural
stability, that is, robustness to small perturbations of the vector
field.

The subject is vast but we refer the interested reader to
the recent survey [40] for an orientation map. Both dominated
splittings and partial hyperbolicity continue to be an important
subject in dynamical systems theory [8], [40], [38], [21], [26],
[37]. We refer the reader to [53], [37] for the implications
of Theorem 1 on normal hyperbolicity and structural stability
of compact attractors. Dominated splittings have also received
attention in control theory [6].

Theorem 1 and its proof are grounded in the results and
proofs of [35, Theorem 1.2] and [13, Theorem 3]. Theorem
2 and its proof are grounded in the results and proofs of [24,
Theorem 3.17] and [41, Proposition 3]. The proof merges these
approaches with the techniques in [43].

The decomposition TX = H⊕V in Theorem 1 is a splitting
that is invariant under the linearized flow ∂ψt. The splitting
is called dominated because the flow satisfies

|∂ψt(x)δxv|
|∂ψt(x)δxh|

≤ C

C
e−(λ−λ)t

|δxv|
|δxh|

for any δxh 6= 0 ∈ Hx and δxv ∈ Vx. The dominated splitting
is a consequence of the contraction of the cone fields K+(x)
and K−(x).

The contraction of a cone is projective, that is, it expresses
a contraction of the non-dominant directions relative to the
dominant directions of the flow. Because of the assumption
of a nonnegative dissipation rate λ ≥ 0, dominance further
imposes vertical contraction, that is, contraction of the flow
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∂ψt in the vertical distribution V , see (16b). The requirement
of vertical contraction is an extra requirement of dominance
with respect to the property of dominated splitting. Theorem
2 does not hold without this extra requirement.

B. Contraction, differential stability, and 0-dominance

A strict 0-dominant system is a contractive system [28],
[36], [39], [12]. For a linear system, the property is simply
exponential stability, meaning hyperbolicity and contraction of
the n transient modes to the 0-dimensional attractor. Because
P is positive definite, the dissipation inequality implies the
contraction of an ellipsoid. The quadratic form V (δx) is a
differential Lyapunov function in the terminology of [12].
On vector spaces X = Rn, its integration along geodesic
curves leads to the incremental Lyapunov function V (x− y).
From (17), it implies exponential contraction of the difference
between any two trajectories. The attractor of a 0-dominant
system is necessarily a unique fixed point.

C. Monotonicity, differential positivity, and 1-dominance

Strictly 1-dominant systems are strictly differentially pos-
itive systems [13], [10]. The contractive cone K− is an
ellipsoidal cone, that is, it is the union of two solid pointed
convex cones K− = −K∗ ∪ K∗as illustrated in Figure 1.

δxTPδx ≤ 0

K∗

δx(0)

δx(t)

Figure 1. For ε > 0 (12) guarantees that any trajectory moves from the
boundary of K∗ towards the interior.

A linear system that contracts a solid pointed convex cone
is a positive system [29], [5]. Positivity with respect to an
ellipsoidal cone was characterized via LMIs in [46], [47]. See
also [18] for a recent use of such characterization in model
reduction. Differential positivity thus induces a dominated
splitting between one dominant direction and n−1 dominated
directions. The reader is referred to [13], [10] for a compre-
hensive analysis of the asymptotic behavior of differentially
positive systems.

The distinction between 1-dominance and differential pos-
itivity is again the property of projective contraction versus
vertical contraction. Differential positivity does not imply
contraction in the 1-dimensional vertical subspace Vx. As a
consequence, the statement of Corollary 1 for p = 1 only holds
for generic initial conditions of strictly differentially positive
systems, see [13, Corollary 5].

For X = Rn, 1-dominance is also tightly related to mono-
tonicity [42], [23], [1], [24]. A monotone system preserves a
partial order �: any pair of trajectories x(·), y(·) from ordered
initial conditions x(0) � y(0) satisfy x(t) � y(t) for all t ≥ 0.

Monotonicity is implied by 1-dominance. The partial order
is the usual partial order associated to a pointed convex
cone: x � y iff y − x ∈ K∗. Monotonicity requires that

trajectories y(0) − x(0) ∈ K∗ satisfy y(t) − x(t) ∈ K∗
for all t ≥ 0, which is guaranteed by 1-dominance by the
invariance V (x(t) − y(t)) ≤ 0 for all t ≥ 0 and by the fact
that if x(0) − y(0) = 0 then x(t) − y(t) = 0, for all t ≥ 0.
Here also, monotonicity is independent of λ. The assumption
λ ≥ 0 makes 1-dominance stronger than monotonicity and
the statement of Corollary 1 for p = 1 only holds for generic
initial conditions of monotone systems, see [20], [24].

D. Contraction of rank 2 cones and 2-dominance

The property of 2-dominance provides the following gener-
alization of Poincaré-Bendixson theorem:

Corollary 2: For p = 2, under the assumptions of Theorem
2, let U ⊆ X be a compact forward invariant set that does not
contain fixed points. Then, the ω-limit set of any point in U
is a closed orbit. y

Proof: Take any ω-limit set contained in U . By Theorem
2 the flow restricted to this set is topologically equivalent to
the flow of a planar system. By Poincaré-Bendixson theorem
[22, Chapter 11, Section 4], a nonempty compact limit set of a
planar system which contains no fixed points is a closed orbit.

A similar generalization was developed in the papers [43],
[44], [41] by generalizing the concept of monotonicity to rank-
2 cones. It is this generalization that motivated the results
in the present paper. Note that the statement of Corollary 2
only holds for generic initial conditions of rank 2 monotone
systems. The stronger conclusion of Corollary 2 is again due
to the assumption of a nonnegative dissipation rate λ ≥ 0.

E. Invariant cone fields

The assumption of a constant matrix P makes the cone
fields K+(x) and K−(x) constant, that is, the same cone is
attached to every x ∈ X . A more intrinsic characterization
for X = Rn is that the cone field is invariant by translation,
the natural group action on a vector space. This geometric
interpretation allows for extensions on Lie groups and, more
generally, homogeneous spaces [31], [32], [3]. The definition
of dominance thus assumes an invariant cone field in the
present paper. The invariance of the cone field is an important
source of tractability for the search of the storage.

VI. ALGORITHMIC TEST FOR p-DOMINANCE
AND A SIMPLE EXAMPLE

A. Dominant spectral splitting

A necessary condition for dominance is that the spectrum of
the family of matrices ∂f(x) + λI , x ∈ X , admits a uniform
splitting, see Figures 2 (left) and 3 (left) for an illustration.

Theorem 3: Let (11) be a strictly p-dominant system. Then,
there exists a maximal interval (λmin, λmax) such that ∂f(x)+
λI has p unstable eigenvalues and n − p stable eigenvalues
(negative real part) for each λ ∈ (λmin, λmax), for every x ∈
X . y

Proof: By Proposition 1, the feasibility of ∂f(x)TP +
P∂f(x) + 2λP ≤ −εI , for ε > 0 and for P of inertia
p guarantees that each matrix ∂f(x) + λI has p unstable
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eigenvalues and n − p stable eigenvalues (negative real part)
at each x ∈ X . The splitting of the eigenvalues of ∂f(x) at
each x is preserved for every value of λ within some given
spectral gap (λmin(x), λmax(x)). Thus, by the uniformity of
the strict inequality above, λmin := supx∈X λmin(x) < λ and
λmax := infx∈X λmax(x) > λ.
Spectral analysis of the Jacobian matrix ∂f(x) is thus useful
to select p and λ in dominance analysis. The uniform splitting
of the spectrum is necessary but of course not sufficient
for dominance. This is well-known even for p = 0. For
instance, classical counterexamples to Kalman’s conjecture
[25] illustrate that a system can fail to be contractive even
when the spectrum of its Jacobian is uniformly in the left half
complex plane.

B. Convex relaxations

Sufficient conditions for dominance are provided by the
inequality

∂f(x)TP + P∂f(x) + 2λP + εI ≤ 0 ∀x ∈ X (26)

whose solutions P , for some ε ≥ 0, must also satisfy a fixed
inertia constraint.

If the spectrum of ∂f(x) admits a stable splitting for a given
λ, then all the solutions P of (26) must share the same inertia,
meaning that the inertia condition can be dropped. One is then
left with solving an infinite family of LMIs.

It is common practice to reduce an infinite family of LMIS
to a finite family through convex relaxation, see e.g. [4] and
references therein. Let A := {A1, . . . , AN} be a family of
matrices such that ∂f(x) ∈ ConvexHull(A) for all x. Then,
by construction, any (uniform) solution P to

ATi P + PAi + 2λP + εI ≤ 0 1 ≤ i ≤ N (27)

is a solution to (26). For instance, at each x,
∂f(x) =

∑N
i=1 ρi(x)Ai for a given set of ρi(x) such

that
∑N
i=1 ρi(x) = 1. Thus, the left-hand side of (26) reads(∑N

i=1 ρi(x)ATi

)
P + P

(∑N
i=1 ρi(x)Ai

)
+ 2λP + εI =∑N

i=1 ρi(x)
(
ATi P + PAi + 2λP + εI

)
≤ 0, where the last

inequality follows from (27).
The algorithmic steps of dominance analysis of a given

nonlinear system ẋ = f(x) can thus be summarized as
follows:

1) Estimate p and λ from the spectrum analysis of ∂f(x)
2) Reduce the infinite family of LMIs to a finite family by

convex relaxations.
3) Test the feasibility of the relaxed LMI with a LMI solver.

C. Example

We illustrate the theory on a classical textbook example:
a one degree of freedom mechanical system with nonlinear
spring (Duffing model), actuated by a DC motor with a
PI feedback control. While this example is elementary, it
illustrates the tractability of dominance analysis on a four-
dimensional model, for which a global analysis of the attrac-
tors is a nontrivial problem.

The mechanical model is given by

ẋp = xv ẋv = −α(xp)− cxv + u (28)

where xp and xv are position and velocity of the mass
respectively, u is the force input to the system, c is the damping
coefficient, and α(xp) := ∂U(xp) is the force deriving from
the mechanical potential U : R → R. Contraction, or 0-
dominance is expected with sufficient damping if the potential
is strictly convex. A differential quadratic storage is easily
found for the numerical value c = 5 and the assumption

1 ≤ ∂α(xp) ≤ 5 .

P is computed via convex relaxation (27) for A1 :=
[

0 1
−1 −5

]
and A2 :=

[
0 1
−5 −5

]
. For λ = 0 and ε = 0.01, the LMI solver

(Yalmip [27], SeDuMi [49] ) returns

P :=

[
0.8696 0.1482
0.1482 0.1304

]
which is positive definite.

The same approach is repeated for the non-convex potential

−2 ≤ ∂α(xp) ≤ 5 ,

which allows for several minima (including the classical
double-well potential of the nonlinear Duffing model [19,
Chapter 2]). Figure 2 (left) suggests a stable splitting between
the two eigenvalues. The differential storage is computed
again by convex relaxation (27) for A1 :=

[
0 1
2 −5

]
and

A2 :=
[

0 1
−5 −5

]
. For λ = 2 and ε = 0.01, the LMI solver

returns
P =

[
−5.1987 3.6260
3.6260 6.1987

]
which has inertia 1. Figure 2 (right) shows the non positive
level sets of δxTPδx. The system is 1-dominant, meaning that
every bounded trajectory asymptotically converges to some
fixed point.

-6 -4 -2 0
Re

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Im

-1 -0.5 0 0.5 1
/ x

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

/ 
x 2

Figure 2. Left: roots of the Jacobian of the mechanical systems for different
xp. The value of λ is emphasized by the vertical dashed line. Right: negative
level sets of δxTPδx where P has inertia 1.

Suppose now that the mechanical system is driven by a DC
motor modelled by the electrical equation

u = kfxi Lẋi = −Rxi − kexv + V . (29)

xi is the current of the circuit, kf is a static approximation
of the current to force characteristic, L and R are inductance
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and resistance respectively, ke is the back electromotive force
coefficient, and the voltage V is an additional input.

It is easy to verify that 1-dominance is preserved for R = 1,
kf = 1, ke = 1, and 0 < L < 0.05, since the time-scale sepa-
ration between electrical and mechanical dynamics introduces
a mild perturbation on the dominant/slow dynamics of the
system. For L = 0.1 the reduced time scale separation allows
for interaction between electrical and mechanical dynamics.
The distribution of the eigenvalues of the Jacobian in Figure 3
(left) suggests that strict 1-dominance still holds. Indeed, for
L = 0.1, λ = 2, and ε = 0.01, the LMI solver returns

P =

 −3.0942 0.8985 −0.5355
0.8985 3.3771 0.1935
−0.5355 0.1935 0.7171


which has inertia 1. For constant inputs V , every bounded
trajectory necessarily converges to some fixed point, as illus-
trated in Figure 3 (right), where we considered the double well
potential U(xp) := x2p/4 + cos(xp).
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Figure 3. Left: roots of the Jacobian of (28) and (29), by sampling −2 ≤
∂α(xp) ≤ 5 at different xp. Right: Trajectory of the mass position in time
for the interconnected system (28), (29) with potential U(xp) := x2p/4 +
cos(xp), from the initial condition xp = 0.05, xv = 0, xi = 0, at constant
V = 0.

Finally, we close the loop with a PI controller

V = kP (r − xp) + kIxc ẋc = r − xp (30)

where xc is the integrator variable, kP and kI are proportional
and integral gains, respectively, and r is the reference.

The degree of dominance of the closed loop can be mod-
ulated via PI control. A detailed analysis of PI control for p-
dominance is beyond the scope of this paper. We just observe
that with gains kP = 1 and kI = 5 the eigenvalues of the
Jacobian in Figure 4 (left) exhibits a stable splitting into two
groups of two eigenvalues. 2-dominance is verified with λ = 2,
ε = 0.01, in which case the LMI solver returns the storage

P =


−4.3713 1.7901 −0.5507 0.0216
1.7901 5.6483 0.3768 −0.9320
−0.5507 0.3768 1.0521 −0.4363
0.0216 −0.9320 −0.4363 −1.3291


with inertia 2. For r = 0 the unique fixed point at 0 is unstable.
We conclude that every bounded trajectory must converge to
a periodic orbit, as illustrated in Figure 4 (right).
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Figure 4. Left: roots of the Jacobian of the closed loop given by (28), (29)
and (30) by sampling −2 ≤ ∂α(xp) ≤ 5 at different xp. Right: Trajectory
of the mass position in time for the closed loop (28), (29), (30) with potential
U(xp) := x2p/4 + cos(xp) and PI control gains kP = 1 and kI = 5, from
the initial condition xp = 0.05, xv = 0, xi = 0 and xc = 0, at constant
r = 0.

Remark 1: A variant of the example is to replace the
mechanical model with the nonlinear pendulum ẋp = xv ,
ẋv = − sin(xp) − cxv + u with (xp, xv) ∈ S × R. One-
dominance is proven as in Duffing example but the state-
space is now nonlinear. From Theorem 1, every attractor of
the pendulum exhibits at least one direction of contraction,
locally. The shape of S × R makes 1-dominance compatible
with fixed point attractors, for small constant torque u, and
with attractors defined by periodic orbits, for large constant
torque u, [48, Section 8.5]. See also the analysis in [13] using
differential positivity. y

VII. INTERCONNECTIONS

A. Differential dissipativity theory

Dissipativity theory is a fundamental complement to stabil-
ity theory in systems and control [54], [55], [56]. Stability,
and more generally, dominance, is the property of a closed
system. Dissipativity is the property of an open system, i.e.
a system with inputs and outputs. By decomposing a closed
system as an interconnection of open subsystems, the search
of quadratic storage for the analysis of the closed system is
converted into the solution of linear matrix inequalities for the
open subsystems.

The recent papers [11], [15], [51] have proposed to use dis-
sipativity theory differentially in order to study contraction (i.e.
0-dominance) via interconnections. We pursue this approach
to study p-dominance. We restrict to open systems of the form{

ẋ = f(x) +Bu
y = Cx+Du

x ∈ X , (y, u) ∈ W (31)

where X and W are smooth manifolds of dimension n and
m, respectively. The associated prolonged system reads

ẋ = f(x) +Bu
˙δx = ∂f(x)δx+Bδu
y = Cx+Du
δy = Cδx+Dδu

(32)

where (x, δx) ∈ TX and (w, δw) := ((y, u), (δy, δu)) ∈ TW .
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We also assume that W is covered by a single chart and
that the matrix L and the symmetric matrices Q and R below
have suitable dimensions. All restrictions above relate to the
restriction of constant tensors P in this paper for the analysis
of dominance.

Definition 3: A nonlinear system (31) is differentially p-
dissipative with rate λ and differential supply rate

s(w, δw) :=

[
δy
δu

]T[
Q L
LT R

][
δy
δu

]
(33)

if for some symmetric matrix P with inertia p and some
constant ε ≥ 0, the prolonged system (32) satisfies the conic
constraint[

˙δx
δx

]T[
0 P
P 2λP+εI

][
˙δx
δx

]
≤
[
δy
δu

]T[
Q L
LT R

][
δy
δu

]
(34)

for all (x, δx) ∈ TX and all (w, δw) ∈ W . (31) is strictly
differentially p-dissipative if ε > 0. y

Differential dissipativity is guaranteed by the feasibility of
the inequality[
∂f(x)TP+P∂f(x)−CTQC+2λP+εI PB−CTL− CTQD

BTP−LTC −DTQC −R−DTL−LTD−DTQD

]
≤0

for some symmetric matrix P with inertia p and some constant
ε ≥ 0. A necessary condition for the feasibility of this
inequality is that ∂f(x)TP+P∂f(x)−CTQC+2λP+εI ≤ 0
which corresponds to (26) for Q = 0 and clarifies the
connection between differential dissipativity and dominance.
This infinite family of LMIs can reduced to a finite family
through relaxations, following the approach in Section VI-B.

B. A dissipativity theorem for p-dominance

Suppose that a nonlinear system can be decomposed as the
interconnection of two subsystems:{

ẋ1 = f1(x1) +B1u1
y1 = Cx1 +D1u1

(35a){
ẋ2 = f2(x2) +B2u2
y2 = Cx2 +D2u2

(35b)

u = Hy + v (35c)

where the matrix H specifies the interconnection pattern
between inputs u = [uT1 uT2 ]T and outputs y = [ yT1 yT2 ]T .
v = [ vT1 vT2 ]T is an additional input. Then the dissipativity
theorem below provides conditions for the differential p-
dissipativity of the interconnected system from the differential
p-dissipativity of its components.

The formulation of the theorem follows the approach of
[33]. The theorem can be easily adapted to the interconnec-
tion of several systems [34]. In what follows we will use
Q̄ :=

[
Q1

Q2

]
, L̄ :=

[
L1

L2

]
, and R̄ :=

[
R1

R2

]
for readability,

where for i ∈ {1, 2} the matrices Qi, Li and Ri characterize
the differential supply rate fo each subsystem.

Theorem 4: Let (35a) and (35b) be (strictly) differentially
p1-dissipative and p2-dissipative respectively, with uniform
rate λ and differential supply rate[

δyi
δui

]T[
Qi Li
LTi Ri

] [
δyi
δui

]
i ∈ {1, 2} . (36)

Then, the interconnected system (35) is (strictly) differentially
p-dissipative with degree p = p1 + p2, rate λ, and differential
supply rate [

δy
δv

]T[
Q L
LT R

] [
δy
δv

]
(37)

where

Q := Q̄+ L̄H +HT L̄T +HT R̄H
L := L̄+HT R̄
R := R̄ .

(38)

For v = 0, the interconnected system (35) is (strictly) p-
dominant if Q ≤ 0. y

Proof: Let P1 and P2 be solutions to (3) respectively
for (35a) and (35b). Take P := P1 + P2, x := [xT1 xT2 ]T ,
and δx := [ δxT1 δxT2 ]T . Note that P1 has inertia p1 and
P2 has inertia p2, where n1 and n2 are the dimensions of
the two state manifolds, respectively. It follows that P has
inertia p1 + p2. Furthermore, by (strict) differential dissi-
pativity of (35a) and (35b), (3) can be written in the ag-
gregated form ˙δx

T
Pδx + δxTP ˙δx + δxT (2λP + εI)δx ≤

δyTQδy + δyTLδu + δuTL
T
δy + δuTRδu, for some ε ≥

(ε > 0). Since δu = Hδy + δv, the expression above
reads ˙δx

T
Pδx+ δxTP ˙δx+ δxT (2λP + εI)δx ≤ δyTQδy +

δyTLδv+ δvTLT δy+ δuTRδu which shows (strict) differen-
tial p-dissipativity of the interconnected system.

Finally, for v = 0 we get ˙δx
T
Pδx+δxTP ˙δx+δxT (2λP +

εI)δx ≤ δyTQδy ≤ 0 where the last inequality follows from
the condition Q ≤ 0. This shows that P is a solution of (12).

Theorem 4 is a general result to study dominance via
interconnections. In particular, it provides an interconnection
theorem for the analysis of contraction (0-dominance) and
monotonicity (1-dominance).

C. Differential passivity analysis

The passivity supply[
δy
δu

]T[
0 I
I 0

][
δy
δu

]
(39)

plays an important role in dissipativity theory because it
connects the theory to the physical property that a passive
system can only store the energy supplied by its environment.
The theory of port-Hamiltonian systems encompasses a broad
modeling framework of physical models with passivity prop-
erties [52].

The passivity theorem states that the feedback interconnec-
tion of passive systems is passive. A differential version of
this important theorem is provided by Theorem 4: any system
that is differentially p-passive preserves that property under
the feedback interconnection with a differentially passive (i.e.
0-passive) system.

Passivity theory has proven useful in identifying robust con-
troller structures that preserve stability. An important particular
case is the class of proportional-integral controllers, that we
now revisit in the light of dominance analysis.
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We first consider the proportional feedback controller

(P ) ȳ = kP (ū) . (40)

The controller is differentially 0-passive (for arbitrary non-
negative rate) from ū to ȳ provided that the mapping kp(·)
is monotone, or differentially positive: ∂kP (ū) ≥ 0 for all
ū ∈ R. For instance,[

δȳ
δū

]T[
0 I
I 0

][
δȳ
δū

]
= 2δūT∂k(ū)δū ≥ 0.

Likewise, the proportional-integral feedback controller

(PI) ẋc = ū, ȳ = kP (ū) + kIxc (41)

from ū to ȳ is
• differentially 0-passive if kP (·) is monotone and if kI ≥

0, with rate λ = 0.
• differentially 1-passive if kP (·) is monotone and if kI <

0, with rate λ ≥ 0 (strictly for λ > 0).
This is because the storage S(δxc) := kI

2 δx
2
c satisfies Ṡ ≤

δūδȳ. Furthermore, for λ > 0 and kI < 0 we have Ṡ +
λkIδx

2
c + εδx2c ≤ δūδȳ for ε = λ|kI |.

As an illustration, we revisit the nonlinear (Duffing) mass-
spring-damper system in Section VI-C. For any nonlinear
spring satisfying −3 ≤ ∂α(xp) ≤ 3, the system is strictly
differential 1-passive with rate λ = 2 from u to y = −xp:
defining the state x := [xp xv ], the variational dynamics
˙δx = A(x)δx+Bδu, δy = Cδx

A(x) :=

[
0 1

−∂α(xp) −5

]
B :=

[
0
1

]
C :=

[
−1 0

]
.

satisfies

A(x)TP + PA(x) + 2λP + εI ≤ 0
PB = CT

for P =
[−2 −1
−1 0

]
and ε = 0.01, for all x ∈ R2.

Assume for simplicity that kP (·) is odd and monotone and
consider the interconnection

u = ȳ + v ū = −y .
The closed loops with the proportional controller and with the
proportional-integral controller are illustrated in Figure 5, for
the the particular case kP (ū) := tanh(2ū) and kI := −1.

By Theorem 4, the proportional feedback u = −kP (y) +
v = kP (xp) + v preserves 1-differential passivity. Figure
6 (left) illustrates a situation where the original system is
monostable (linear spring, i.e. a quadratic potential) and then
converted to a bistable system with the static output feedback
u = − tanh(2y) + v = tanh(2xp) + v. The example is
elementary but illustrative of a general principle: the feed-
back controller shapes the potential energy of a contractive
mechanical system to convert the system from monostable to
bistable.

Likewise, the proportional-integral control u = −kP (y) −
kI
∫
y + v = kP (xp) − kI

∫
y + v = tanh(2xp) −

∫
xp + v

makes the closed-loop system differentially 2-passive because
it corresponds to the negative feedback interconnection of two
differentially 1-passive systems. Figure 7 illustrates that, in

this new configuration, the role of the proportional controller
is to convert a linear stable system (kP = 0) into a 2-dominant
system with a stable limit cycle oscillation (kP = 1).

Again the example is elementary but illustrates the general
principle that PI control can turn a contractive mechanical sys-
tem into a system with a limit cycle attractor. Such conclusions
are usually drawn from a local analysis of the linearization
around the stable equilibrium of the contractive system. The
first scenario corresponds to a saddle node bifurcation whereas
the second scenario corresponds to a Hopf bifurcation. The
differential approach in this paper makes this analysis non
local.

Plant
u

xp
+

−xc −1
s

Plant
u

xp
v

+

Figure 5. Left: Closed loop of the plant given by (28) with α(xp) = xp
and u = tanh(2xp) + v (saturated proportional feedback). Right: Closed
loop given by the interconnection of the linear mass-spring-damper system
and nonlinear proportional-integral controller.
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Figure 6. Left: trajectories from different initial conditions of the open
loop system (28) with α(xp) = xp and u = 0. Right: trajectories from
different initial conditions of the closed loop (28),u = tanh(2xp) + v, with
α(xp) = xp and v = 0.

D. Differential small gain analysis

The supply [
δy
δu

]T[ −I 0
0 γ2I

][
δy
δu

]
. (42)

also has a special status in dissipativity theory because of its
connection to the small gain theorem, a cornerstone of robust
control theory [58], [57], [9], [59], [50].

When specialized to the supply (42), Theorem 4 provides a
differential version of the small gain theorem: p-dominance is
preserved under feedback with a 0-dominant system provided
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Figure 7. Left: Trajectory of the linear closed-loop system (kP = 0).
Right: Trajectory of the nonlinear closed-loop system (kP = 1) . Parameters:
α(x) = xp. Initial condition xp = 1, xv = 0, xc = 0.

that their finite differential gains γ1 and γ2 (of degree p and
0 respectively) satisfy the small gain condition γ1γ2 < 1.

The differential small gain theorem opens the way to a
differential approach of nonlinear robust control. The link with
an operator-theoretic definition of the differential gain of a
dominant system is beyond the scope of this paper (see e.g.
[17] for a concept of differential gain for stable systems), but
we briefly illustrate how the theorem can be used in nonlinear
robustness analysis.

∆

+r v yNominal
closed loop

Figure 8. A nonlinear plant with parametric uncertainties represented as the
feedback interconnection of nominal plant and uncertain dynamics ∆.

Consider the nominal closed loop in Figure 5 (right)
where the mass-spring-damper system (28) with linear spring
α(xp) = xp is interconnected to a saturated proportional-
integral feedback u = tanh(2xp) −

∫
xp + v. We study the

robustness of the oscillations to perturbations affecting the
spring constant and damping coefficient. We use the usual
representation of parametric uncertainties through feedback
interconnections as shown in Figure 8.

For c = 5 and λ = 2 the nominal closed loop system is
2-dominant with differential gain γ := 0.5636 from the input
v to the position output xp, obtained for

P :=

 −0.5522 0.0498 −0.0171
0.0498 1.4946 0.3068
−0.0171 0.3068 0.0576

 .
The nonlinear mechanical spring is modeled through an addi-
tive perturbation, i.e.

α(xp) = xp + ∆(xp) ,

corresponding to the feedback interconnection in Figure 8,
with v = ∆(xp). The differential small-gain theorem implies

that 2-dominance is preserved for any |∂∆(xp)| ≤ 1/γ.
Furthermore, for any perturbation ∆(xp) that preserves the
origin as a unique and unstable fixed point of the closed loop
system, every bounded trajectory of the perturbed closed loop
will converge to a periodic orbit, like in the nominal case.

The analysis of perturbations affecting the damping coeffi-
cient c = 5 is similar. For c = 5 and λ = 2 the nominal closed
loop system is 2-dominant with differential gain γ := 0.5468
from the input v to the velocity output xv , obtained for

P :=

 −0.2859 −0.0028 −0.0131
−0.0028 1.2328 0.2977
−0.0131 0.2977 0.0532

 .
Oscillations will persist when the linear damping coefficient
cxv is replaced by a nonlinear coefficient c(xv) given by

c(xv) = 5xv + ∆(xv)

provided that |∂∆(xv)| < 1/γ and that the origin remains an
unstable fixed point.

VIII. CONCLUSION

This paper illustrated that linear-quadratic dissipativity the-
ory, a cornerstone of stability theory, generalizes with surpris-
ing ease to the analysis of dominance. Dominance analysis
in turn is relevant to capture the frequent property that the
asymptotic behavior of a nonlinear dynamical model is low-
dimensional. In particular, the theory seems relevant to gen-
eralize the theory of stability to a theory of multistability and
limit cycle analysis.

The approach in this paper is differential, meaning that the
usual linear matrix inequalities of dissipativity theory are con-
sidered in the tangent bundle. They characterize a dominated
splitting of the linearized flow between p dominant directions
and n− p transient directions. This property is captured with
the usual linear matrix inequalities of dissipativity theory, with
the only difference that the solution matrix P is required to
have a fixed inertia (p negative eigenvalues and n−p positive
eigenvalues), the standard stability framework corresponding
to the case p = 0.

An important restriction throughout this paper is to analyze
p-dominance with a constant quadratic storage (i.e. a constant
P ). This restriction is the price to be paid for tractability.
Standard LMI solvers can then be used to construct the storage.

A number of generalizations deserve further attention.
Those include the construction of differential storages that
are non quadratic, or/and state-dependent (i.e. non constant
P (x)), as well as the study of dominance with state-dependent
rate λ(x), or systems with a different degree of dominance in
different parts of the state-space, or the analysis of dominance
in non smooth systems. Such generalizations have received
considerable attention in the analysis of contraction, i.e. 0-
dominance, suggesting clear avenues to study p-dominance.
Finally, differential dissipativity theory offers an opportunity to
revisit classical results from robust control theory and absolute
stability theory in the context of multistable and oscillatory
systems, see e.g. [30] for a first step in that direction.
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for a new class of monotone systems. Journal of Differential Equations,
246(5):1978 – 1990, 2009.

[42] H.L. Smith. Monotone Dynamical Systems: An Introduction to the
Theory of Competitive and Cooperative Systems, volume 41 of Math-
ematical Surveys and Monographs. American Mathematical Society,
1995.

[43] R.A. Smith. Existence of period orbits of autonomous ordinary dif-
ferential equations. In Proceedings of the Royal Society of Edinburgh,
volume 85A, pages 153–172, 1980.

[44] R.A. Smith. Orbital stability for ordinary differential equations. Journal
of Differential Equations, 69(2):265 – 287, 1987.

[45] E.D. Sontag. Contractive systems with inputs. In Jan C. Willems, Shinji
Hara, Yoshito Ohta, and Hisaya Fujioka, editors, Perspectives in Math-
ematical System Theory, Control, and Signal Processing: A Festschrift
in Honor of Yutaka Yamamoto on the Occasion of his 60th Birthday,
pages 217–228. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[46] R.J. Stern and Wolkowiczm H. Invariant ellipsoidal cones. Linear
Algebra and its Applications, 150:81 – 106, 1991.

[47] R.J. Stern and H. Wolkowicz. Exponential nonnegativity on the ice
cream cone. SIAM Journal on Matrix Analysis and Applications,
12(1):160–165, 1991.

[48] S.H. Strogatz. Nonlinear Dynamics And Chaos. Westview Press, 1994.
[49] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization

over symmetric cones. Optimization Methods and Software, 11–12:625–
653, 1999.

[50] A.J. van der Schaft. L2-Gain and Passivity in Nonlinear Control.
Springer-Verlag New York, Inc., Secaucus, N.J., USA, second edition,
1999.

[51] A.J. van der Schaft. On differential passivity. In 9th IFAC Symposium
on Nonlinear Control Systems, 2013.

[52] A.J. van der Schaft and D. Jeltsema. Port-hamiltonian systems theory:
An introductory overview. Foundations and Trends R© in Systems and
Control, 1(2-3):173–378, 2014.

[53] S. Wiggins. Normally Hyperbolic Invariant Manifolds in Dynamical
Systems. Applied Mathematical Sciences. Springer, 1994.

[54] J.C. Willems. Dissipative dynamical systems part I: General theory.
Archive for Rational Mechanics and Analysis, 45:321–351, 1972.

[55] J.C. Willems. Dissipative dynamical systems part II: Linear systems with
quadratic supply rates. Archive for Rational Mechanics and Analysis,
45:352–393, 1972.



12

[56] J.C. Willems. Dissipative dynamical systems. European Journal of
Control, 13(2-3):134–151, 2007.

[57] G. Zames. On the input-output stability of time-varying nonlinear
feedback systems–part II: Conditions involving circles in the frequency
plane and sector nonlinearities. IEEE Transactions on Automatic
Control, 11(3):465–476, 1966.

[58] G. Zames. On the input-output stability of time-varying nonlinear
feedback systems part I: Conditions derived using concepts of loop
gain, conicity, and positivity. IEEE Transactions on Automatic Control,
11(2):228–238, 1966.

[59] K. Zhou, J.C. Doyle, and K. Glover. Robust and optimal control.
Prentice Hall, 1995.

Fulvio Forni received his Ph.D degree in Computer
Science and Control Engineering in 2010 from the
University of Rome Tor Vergata, Italy. In 2008-
2009 he held visiting positions at the LFCS of the
University of Edinburgh, UK and at the CCDC of the
University of California Santa Barbara, US. In 2011-
2015 he held a postdoctoral position University of
Liege, Belgium (FNRS). He is currently a Lecturer
in the Department of Engineering at the University
of Cambridge.

Rodolphe Sepulchre received the engineering de-
gree (1990) and the Ph.D. degree (1994), both
in mathematical engineering, from the Universite
catholique de Louvain, Belgium. He was a BAEF
fellow in 1994 and held a postdoctoral position at the
University of California, Santa Barbara from 1994
to 1996. He was a research associate of the FNRS
at the Universite catholique de Louvain from 1995
to 1997. Since 1997, he has been professor in the
department of Electrical Engineering and Computer
Science at the Universite de Liege, Belgium. He

held visiting positions at Princeton University (2002-2003) and the Ecole
des Mines de Paris (2009-2010) and part-time positions at the University of
Louvain (2000-2011) and at INRIA Lille Europe (2012-2013). He is now a
Professor in the Department of Engineering at the University of Cambridge.
In 2008, he was awarded the IEEE Control Systems Society Antonio Ruberti
Young Researcher Prize. He is an IEEE fellow and an IEEE CSS distinguished
lecturer since 2010.


