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Southeast Asian protected areas 
are effective in conserving forest 
cover and forest carbon stocks 
compared to unprotected areas
Victoria Graham1*, Jonas Geldmann2,3, Vanessa M. Adams4,5, Pablo Jose Negret6, 
Pablo Sinovas7 & Hsing‑Chung Chang1

Protected areas aim to conserve nature, ecosystem services, and cultural values; however, they 
have variable success in doing so under high development pressure. Southeast Asian protected areas 
faced the highest level of human pressure at the turn of the twenty-first century. To estimate their 
effectiveness in conserving forest cover and forest carbon stocks for 2000–2018, we used statistical 
matching methods to control for the non-random location of protected areas, to compare protection 
against a matched counterfactual. We found Southeast Asian protected areas had three times less 
forest cover loss than similar landscapes without protection. Protected areas that had completed 
management reporting using the Management Effectiveness Tracking Tool (METT) conserved 
significantly more forest cover and forest carbon stocks than those that had not. Management scores 
were positively associated with the level of carbon emissions avoided, but not the level of forest 
cover loss avoided. Our study is the first to find that METT scores could predict the level of carbon 
emissions avoided in protected areas. Given that only 11% of protected areas in Southeast Asia had 
completed METT surveys, our results illustrate the need to scale-up protected area management 
effectiveness reporting programs to improve their effectiveness for conserving forests, and for storing 
and sequestering carbon.

Natural forests have high conservation value in terms of irreplaceable habitat for a disproportionately large num-
ber of species as well as for the ecosystem services they provide, such as carbon sequestration and storage1,2. Popu-
lations of vertebrates have declined by 68% on average between 1970 and 20163 and the extent of ‘healthy’ forests 
has shrunk to 40% of pre-human extent4. Some scientists warn that forests have gone beyond the precautionary 
‘safe limit’ for land-system change as the level of forest cover loss has disturbed the biogeophysical processes of 
earth systems that directly regulate climate5. Protecting forests from intense levels of human pressure is essential 
for stemming the accelerating loss of species and their habitats, and for maintaining ecosystem services6. The 
last three decades have seen a considerable expansion of terrestrial and marine protected areas, which coincides 
with targets agreed under the Convention on Biological Diversity, effective from 1993. However, expanding the 
coverage of protected areas alone has proved insufficient to protect biodiversity; effective management within 
protected area borders is an essential component of ensuring species’ populations are stable or improving7.

Rigorous evaluations of protected area performance remain relatively sparse, especially in the tropical zone8. 
Evidence depicting why some protected areas perform well, while others do not, is even scarcer9, yet this knowl-
edge is crucial to improve the effectiveness of the protected area network. Further, many previous studies fail to 
account for the non-random location of protected areas by comparing areas that are protected to all the unpro-
tected areas present in the landscape10, or to neighbouring buffers11. These approaches ignore any bias in pro-
tected area placement towards locations that are remote (i.e., high altitude, steep, far from urban centres or roads) 
and have less potential for agricultural production, which in turn affects the level of deforestation pressure11–13. 
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Changes in forest cover or human pressure are two widely used indicators to measure the level of exposure to 
threats14–16. The advantage of such indicators is their broad coverage, that increases the comparability across 
sites. Separating the impact of law enforcement and management from protected area location can be achieved 
by comparing protected areas to counterfactual sites with similar characteristics. When using a counterfactual 
approach, estimates of the impact of protection on avoiding deforestation were consistently reduced17–19.

Based on Landsat satellite imagery between 2000–2013, it is estimated the global protected area network lost 
3.4 times less intact forest than unprotected areas, accounting for differences in accessibility, terrain and human 
pressure20. Geographically, protection had the weakest effect on maintaining intact forests in Southeast Asia, 
Australia and tropical South America20. Indo-Malayan forests have exceptional biological diversity, yet also rapid 
rates of deforestation21, driven by global demand for timber, palm oil and rubber22. Protected areas in Southeast 
Asia experienced a higher mean change in human pressure between 1995 and 2010 than in any other region in 
the world14. Given historical deforestation rates, Sodhi et al.23 warned that over 40% of the region’s biodiversity 
may vanish by 2100. Understanding the impact of interventions in this region, like protection status or carbon 
payments on retaining forest cover, is critical for improving conservation responses with finite resources and 
is a requirement for satisfying Monitoring, Evaluation and Reporting (MER) program requirements to access 
REDD+ and other funding streams (e.g., the Global Environmental Facility and the World Bank). Stronger forest 
protection and conservation efforts are needed across Southeast Asia’s existing protected areas to avert the future 
trajectories of forest cover and forest carbon loss estimated by 205024.

Here, we evaluate the effectiveness of Southeast Asian protected areas at reducing forest cover loss and associ-
ated carbon loss, while controlling for spatial variation in deforestation pressure. We also explore whether the 
process of conducting management effectiveness reporting is correlated to improved protected area performance, 
and whether performance can be predicted by levels of management resourcing. Protection from logging, expan-
sion of monoculture plantations and other threats is dependent on site-level factors, such as adequate investment 
in management activities, as well as system-level factors, such as national governance, yet the level of protec-
tion afforded by it is complex. We wanted to understand how these factors inter-relate, and link to the level of 
avoided forest cover loss and carbon emissions. Our work has implications for the usefulness of the Management 
Effectiveness Tracking Tool (METT)25 (a score-card to assess the adequacy of management in protected areas 
based on the IUCN management effectiveness framework and used in over 3,000 sites across the globe)26, for 
predicting conservation impact and for two global environmental agreements. Parties to the Convention on 
Biological Diversity27 are now preparing and revising their post-2020 biodiversity decadal targets and parties to 
the UN Framework Convention on Climate Change28 revise their nationally determined contributions to reduce 
emissions under the Paris Climate Agreement every five years. Both conventions cover commitments to reduce 
deforestation and ecosystem service loss through the long-term protection of natural systems, and it is crucial 
to understand the contribution of protected areas towards achieving these targets.

Results
Effectiveness of protected areas for reducing forest cover loss and carbon emissions.  Our 
results show that protected areas significantly reduced the loss of forest cover with the overall rate of forest cover 
loss across the region being three times lower inside protected areas (n = 692) over the period 2000 to 2018 than 
in the matched unprotected landscape (p < 0.001; df = 76,679, t = − 49.55; Table 1). However, this overall effect 
masked important differences between countries, with Malaysia having the most effective protected area net-
work, avoiding 14.57% of forest cover loss, followed by Cambodia (11.16%), Vietnam (10.27%), Laos (10.31%), 
Thailand (5.62%), Indonesia (3.93%), and Myanmar (2.28%). In the Philippines, protected areas lost 3 times 
more forest cover than unprotected areas, meaning not only was protection not effective, it in fact accelerated 
forest loss. Likewise, each country-level effect concealed differences between protected areas (Fig. 1). 

Table 1.   Estimates of forest cover loss and carbon emissions per 30 m pixel from 2000–2018, aggregated 
to 1 km2 pixels, from within and outside protected areas and avoided due to protection, before and after 
matching. Measured on a 20% sample drawn from the whole region. Carbon emissions are tonnes of CO2 per 
km2.

Country
Forest cover 
loss inside

Carbon 
emissions 
inside

Before matching After matching

Forest cover 
loss outside

Avoided forest 
cover loss

Carbon 
emissions 
outside

Avoided 
carbon 
emissions

Forest cover 
loss outside

Avoided forest 
cover loss

Carbon 
emissions 
outside

Avoided 
carbon 
emissions

Cambodia 12.70% 4575 13.47% 0.77% 4492  − 123 23.86% 11.16% 8337 3762

Indonesia 2.75% 1494 14.60% 11.84% 5287 3777 6.68% 3.93% 3002 1509

Laos 3.33% 1989 12.42% 9.08% 4704 2790 13.65% 10.31% 5173 3184

Malaysia 3.15% 1475 25.34% 22.19% 9637 8151 17.72% 14.57% 8336 6862

Myanmar 0.27% 348 2.63% 2.39% 1705 1401 2.55% 2.28% 1426 1077

Philippines 2.26% 2023 0.67%  − 1.59% 1337  − 735 0.77%  − 1.49% 1577  − 446

Thailand 0.37% 642 0.47% 0.20% 1454 804 5.99% 5.62% 3109 2467

Vietnam 0.69% 1016 8.25% 7.56% 2613 1531 10.96% 10.27% 3542 2526

Average 3.19% 1.695 9.73% 6.55% 3904 2200 10.27% 7.08% 4313 2618
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Carbon emissions were likewise significantly lower in protected areas over the period 2000 to 2018 than 
in matched areas not under protection (p < 0.001; df = 76,679, t = − 67.87). Post-matching, the average rate of 
carbon emissions in protected areas was 2.5 times lower (1695t CO2 per km2) than the counterfactual (4313t 
CO2 per km2), resulting in a net treatment effect of 2618t CO2 per km2, equivalent to a saving of 145t CO2 
per km2 per year.

The difference between the naïve (pre-matching) and counterfactual (post-matching) estimates of avoided 
forest cover loss and carbon emissions was small on average for the region (Table 1). However, for some countries, 
there were large changes in the magnitude of avoided forest cover and carbon emissions between pre- and post-
matching and the direction of these changes varied inconsistently (Fig. 2). Estimates of avoided forest cover loss 
and carbon emissions decreased in 3 countries, increased in 3 countries and remained consistent in 2 countries. 
For example, Indonesian protected areas decreased from being 5 times more effective at reducing forest cover 
loss before matching, to only twice as effective than the counterfactual post-matching. Vietnam’s protected areas 

Figure 1.   Estimated (a) forest cover loss and (b) carbon emissions (tonnes of CO2 per 1 km pixel) avoided in 
Southeast Asian protected areas from 2000–2018, aggregated to 1 km2 pixels. Negative values indicate that more 
forest cover was lost or more carbon was emitted inside the protected area than outside. The map was produced 
in ArcMap v10.5 (http://​deskt​op.​arcgis.​com/​en/​arcmap/).

http://desktop.arcgis.com/en/arcmap/
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were 12 times more effective than the counterfactual prior to matching, yet after matching this factor increased 
to 16. Post-matching estimates of avoided forest cover loss and carbon emissions increased for Thailand, though 
the matching performance was poor, meaning the matching did not yield a large improvement in balancing the 
treatment and the counterfactual samples (S1).

Impact of protected area monitoring and management reporting.  Our results show that protected 
areas with management effectiveness assessments had significantly reduced rates of forest cover loss and carbon 
emissions, with the overall rate of forest cover loss (p = 0.004) and carbon emissions (p = 0.016) significantly 
lower in protected areas that had completed METT assessments, compared to those that had not (Figs. 3 and 4). 
The average rate of forest cover loss avoided in METT protected areas was 9.67% (n = 73), compared to 8.10% in 
non-METT protected areas (n = 619). The average rate of carbon emissions avoided in protected areas that had 
METT assessments was 3500t CO2 per km2, compared to 2942t CO2 per km2 in the non-METT protected areas.

When exploring the individual components of the METT in more detail (Fig. 5), our most parsimonious 
model for predicting avoided forest cover loss did not detect a relationship between any of the management 
dimensions or contextual factors and avoided forest cover loss. However, for avoided carbon emissions, our most 
parsimonious model included protected area level management resourcing, design and planning, governance, 
national-level transparency, years protected, protected area size, human footprint index, oil palm suitability, and 
slope (Fig. 5). Country as a random effect explained 18% of the variance in the data.

Discussion
Despite the intense level of human pressure Southeast Asian forests are facing14, we found the protected area 
network in the region lost 3 times less forest cover between 2000–2018 than the analogous unprotected landscape. 
This amounted to 2.5 times less carbon emissions in protected areas than the counterfactual. Our estimate is 
consistent with the findings from a global study20 that estimated Southeast Asian protected areas lost 3.3 times 
less intact forest between 2000–2013 than unprotected areas. These results also add to previous counterfactual 
matching studies from Sumatra and Borneo, that show protected areas resisted deforestation pressure over 
earlier periods18,29.

We found that statistical matching, which controlled for the non-random location of protected areas, had a 
variable effect on the direction and magnitude of our estimates of the protection impact. We found that post-
matching estimates of avoided forest cover loss and carbon emissions decreased for Indonesia, Malaysia and 
Myanmar, remained stable for Laos and the Philippines, and increased for Thailand, Vietnam and Cambodia. 
Our finding contrasts with the consensus from the literature that the matched counterfactual approach consist-
ently reduces the estimated impact of protection17–19. Joppa and Pfaff (2010) explain the reduced impact post-
matching by the general bias in protected area placement towards places subject to low human pressure, which 
overestimates the protection effect. We did not find this pattern consistently across all countries. Bebber and 
Butt30 observed that controlling for residual placement bias was more important for regions with high forest 

Figure 2.   The treatment effect (change ratio) of protection before and after matching. Treatment effect of 
protection represents the level of forest cover loss and carbon emissions avoided before and after matching. 
Effect size is calculated by dividing the average forest cover loss rate per country in the counterfactual by the 
forest cover loss rate in the treatment area (protected area), or vice-versa when the latter is larger. The same 
formula is used for estimating the treatment effect for carbon emissions. Negative values indicate that more 
forest cover was lost, or more carbon was emitted, inside protected areas than outside.
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cover. We suggest the causation mechanism underlying this pattern is for countries with high remaining forest 
cover, deforestation activities will be targeted towards unprotected forests over protected forests, whereas for 
countries with low remaining forest cover, protected areas must withstand escalating deforestation pressure due 
to lack of choice in available forest resources31. This theory offers a plausible explanation for Vietnam and the 
Philippines. Protected areas in the Philippines have the highest level of human pressure, yet protection appears to 
have the perverse impact of accelerating forest and forest carbon loss; a trend particularly evident on the island of 
Palawan where protected areas experienced more forest loss than expected32. We do not attempt to infer patterns 
of causation for the matched results for Thailand and Cambodia because the matching performance was poor 
(S1). To synthesize, we infer that these patterns may be driven by human pressure and proportion of remaining 

Figure 3.   Rates of avoided forest cover loss for protected areas that had METT assessments, compared to those 
that had not. Units are rates of avoided forest cover loss for each country between 2000–2018 based on a 20% 
sample drawn from the whole region. The italicised numbers below the bars represent the number of protected 
areas within the group. Whiskers represent standard error bars.

Figure 4.   Avoided carbon emissions grouped by protected areas that had METT assessments, compared to 
those that had not. Units are tonnes of carbon emissions (tCO2) avoided per pixel (1 km2) between 2000–2018 
based on a 20% sample drawn from the whole region. The italicised numbers below the bars represent the 
number of protected areas within the group. Whiskers represent standard error bars.
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forest cover, though we recommend further in-depth exploration of the local socioeconomic conditions that 
may be driving this trend.

Our findings show that protection resulted in statistically significant lower levels of forest cover loss and 
carbon emissions, compared to the unprotected analogous landscape. Protected areas in the region have on 
average withstood escalating pressure relative to the analogous unprotected landscape in Cambodia, Indonesia, 
Laos, Malaysia, Myanmar, Thailand and Vietnam, but not in the Philippines. Regional deforestation trends in 
Southeast Asia are influenced largely by Indonesia, where over 50% of the region’s forests remain and where ~ 40% 
of protected areas are located. In 2017, the annual deforestation rate in Indonesia dropped by 60%, followed by 
another small decline in 2018. These positive results may be influenced by policy initiatives to slow deforestation 
and restore peatlands in Indonesia, such as Presidential Instruction No. 10/2011 suspending new concession 
licenses for logging and forest conversion in primary forest and peatlands, and the high volume of REDD+ 
projects33,34. Despite overall positive outcomes of protection, there are examples where protected areas were 
completely ineffective. For example, two Cambodian protected areas Roneam Daun Sam Wildlife Sanctuary and 
Snoul Wildlife Sanctuary lost 100% and 80% of forest cover respectively and both were degazetted by the Govern-
ment of Cambodia shortly after. These examples highlight that without adequate resourcing, political backing or 
community support, protected areas can be degraded and degazetted for increased access to extractive activities35.

Protected areas with Management Effectiveness Tracking Tool (METT) assessments withstood significantly 
more forest cover loss and carbon emissions than non-METT protected areas. This finding highlights the value 
of investing in monitoring and evaluation programs to predict performance. We recommend further exploration 
to determine the causal link in this relationship. By benchmarking performance against best practice stand-
ards, protected area managers may be identifying key strengths and weaknesses and thereby improving future 
performance as a result of the monitoring process. We also note that as METT assessments are a requirement 
of GEF-funded projects, the protected areas attracting donor funding may be funded because they have better 
performance. Given our findings that management scores are positively linked to carbon savings, combined with 
growing evidence of positive correlations between management scores and biodiversity population trends36–38, 
the value gained by participating in protected area management effectiveness reporting programs is becoming 
clearer39. Yet only 11% of protected areas in Southeast Asia had completed METT surveys.

Our study is the first to find evidence that management effectiveness scores from the METT database can pre-
dict the level of carbon emissions avoided in protected areas. All other studies to our knowledge, that attempted 
to link avoided deforestation or reduced fire incidents to management scores at sites across South America and 
Madagascar, did not detect a clear pattern40–45. Further, most of these studies attempt to link management scores 
to deforestation or fire, not carbon emissions. Although we found avoided carbon emissions and forest cover 
loss were correlated (Supplementary Information), some key differences arose. Differences can be due to woody 
vegetation density, vegetation type, stem diameter at breast height and vegetation age46. This is particularly rel-
evant given our increased knowledge of the contribution of tropical protected areas in achieving targets laid out 
in the Paris Agreement30,47. Tropical protected areas reduced ~ 29% of tropical deforestation emissions between 
2000–2012, compared to expected deforestation30. Looking forward, the conservation, restoration, and improved 
management of tropical forests, mangroves, and peatlands could provide between 23–37% of the cost-effective 
mitigation solution required by 2030 to limit global warming to 2 °C48,49. To account for losses in natural forests 
that are replaced by monoculture plantations (e.g., rubber, oil palm), we recommend future research explore 
carbon trends to provide deeper insight into forest cover change dynamics.

One of the most important caveats to consider when interpreting these results is that we have not considered 
land tenure and land use categories in matched areas not under formal protection, as described in Schleicher 
et al.50. Land that aligns with the IUCN definition of a protected area and contained in the World Database 

Figure 5.   Regression coefficient estimates (scaled) of the model input variables in the best-fit linear mixed-
effect models for predicting avoided carbon emissions in METT protected areas. Fit was assessed based on 
Akaike information criterion. Error bars are for a 95% confidence interval. Slope and protected area size were 
log-transformed to the power of 2 prior to fitting the model.
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of Protected Areas (WDPA), does not capture all land with conservation value. Community-managed forests 
are a growing governance arrangement in developing countries51 and have reduced rates of deforestation in 
Indonesia52. Separating the different types of land use in the counterfactual area not under protection would pro-
vide further insight into what is occurring outside the protected area estate. However, other effective area-based 
conservation measures (OECMs) are not listed in the WDPA, unless they are declared. Similarly, we grouped 
different types of protected areas into a singular treatment group, when in reality, there are varying levels of 
human perturbations allowed under different governance regimes53. Other studies have found that protected 
area strictness does not consistently improve environmental and social outcomes12,54. Future research assessing 
how protected area management and governance dimensions relate to social impacts would be highly valuable 
to understand their multi-dimensional impacts. Evidence exists of positive conservation and socioeconomic 
outcomes from protected areas55, particularly those that implement collaborative management regimes, where 
local people were empowered and maintained cultural and livelihood benefits56; yet no studies to our knowledge 
have linked management scores with social impacts.

In conclusion, by accounting for spatially-dynamic deforestation pressures, we find evidence that the South-
east Asian protected area network is conserving forests and forest carbon stocks, in addition to the biodiversity 
benefits previously reported37. Higher levels of management resourcing are associated with greater reductions in 
carbon emissions. The protected area network in the region therefore presents strong opportunities for scaled-up 
investment of conservation and REDD + finance. Stronger forest protection and conservation efforts are needed 
in Southeast Asia’s existing protected areas to avert projected trajectories of forest cover and forest carbon loss 
estimated by 205024. However, protection requires funding to implement and less than 3% of all climate mitigation 
funding went to forest-based mitigation strategies57,58 One step towards mobilizing greater financial support is 
demonstrating strong links between management resourcing and conservation impacts. Given the low level of 
finance being directed at forest-based climate mitigation solutions, combined with the sizable contribution of 
tropical protected areas in achieving the Paris Agreement targets30,48,59, we recommend that financiers enhance 
stimulus for protection to more effectively store and sequester carbon. Our study shows that management effec-
tiveness frameworks, such as the METT, can play a guiding role in predicting protection outcomes.

Materials and methods
We analysed a total area of 747,714 protected and unprotected pixels, covering eight countries: Cambodia, 
Indonesia, Laos, Malaysia, Myanmar, the Philippines, Thailand, and Vietnam. Timor-Leste, Brunei, and Singa-
pore were excluded from the analysis because there were insufficient pixels in these countries to do matching. 
Full details of our data sources and preparation are provided in Supplementary Information with a summary 
included below. All the data we used is freely available. All spatial analysis was performed in ArcMap v10.5 (ESRI 
2016) using Asia South Albers Equal Area Conic projection. Statistical modeling was performed in R v3.4.3 (R 
Development Core Team 2017).

Avoided forest cover loss and carbon emissions.  We used the Hansen tree cover loss maps that meas-
ure the annual change in tree cover between 2000 and 2018 and the tree canopy cover map for the year 2000 at a 
spatial resolution of ∼30 m across the terrestrial world (version 1.6; Hansen et al.60). We used the aggregate tool 
in ArcMap to downscale from the ~ 30 m pixels to ~ 1 km resolution (Supplementary Information). Tree cover 
loss includes either outright deforestation or temporary disturbance (e.g. due to forestry, selective logging, shift-
ing cultivation or wildfires61). To estimate forest cover loss between 2000 and 2018, we created a binary forest 
cover map for the year 2000, where forest was categorized as having tree cover of greater than or equal to 40% 
canopy cover and “loss” was restricted to only those pixels that were classified as “forest” in 2000. We identified 
this threshold by running comparisons of the total forest area resulting from a range of thresholds and compar-
ing it against the total forest area in the Global Forest Watch platform (www.​globa​lfore​stwat​ch.​org). The rate of 
forest cover loss in each protected area was calculated by aggregating the total number of pixels that had lost 
forest cover over the 18-year period and dividing this total by the number of pixels sampled. For carbon emis-
sions, we used the CO2 emissions from aboveground woody biomass loss between 2000 and 2018 at a resolution 
of ∼30 m across the tropics62. In this study, “carbon emissions” refers to emissions “committed” at the time of 
disturbance or clearing, noting there may be a time lag until they are “realized”. Again, we used the aggregate tool 
in ArcMap to downscale from the ~ 30 m pixels to ~ 1 km resolution by summing all values. Carbon emissions 
per protected area were calculated in the same way as forest cover loss, resulting in an average carbon emission 
saving per pixel. Our carbon emission estimates do not include emissions from peat.

We measured the treatment effect in terms of deforestation for each country, by dividing the average forest 
cover loss rate in the counterfactual by the forest cover loss rate in the treatment area (protected area), or vice-
versa when the latter is larger. The same method was used to calculate the treatment effect in terms of carbon 
emissions. We used the unpaired Wilcoxon test to assess whether there were significant differences between 
treatment areas and the matched controls.

Protected areas.  We used a cleaned map of terrestrial protected areas that were established prior to the year 
2000 from the March 2018 World Database on Protected Areas (WDPA; UNEP-WCMC 2018). To identify and 
remove overlaps between designations (e.g., international and national designation) and IUCN classifications, 
we created separate layers for each IUCN classification, erasing any overlap between the categories and retaining 
the strictest classification (Deguignet et al. 2017; see Supplementary Information). The terrestrial administrative 
boundaries used in the analysis are taken from the Database of Global Administrative Areas (GADM; www.​
gadm.​org), version 2.8, November 2015.

http://www.globalforestwatch.org
http://www.gadm.org
http://www.gadm.org
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Definition of effectively managed protected areas.  The International Union for the Conservation of 
Nature (IUCN) Green List framework evaluates protected area management effectiveness based on four com-
ponents: (1) good governance, (2) sound design and planning, (3) effective management, and (4) successful 
conservation outcomes. It is a new global standard for assessing whether protected areas are achieving conser-
vation outcomes through effective management and equitable governance (IUCN and WCPA 2017). However, 
because it is new, it has not yet been widely applied in protected area evaluations. The Management Effectiveness 
Tracking Tool METT;25 is the largest global source of information on protected area management effectiveness63.

We used METT assessments conducted between 2000 and 2014 as protected area management scores. We 
used the approach outlined in Graham et al.37 to select, exclude, and re-align METT survey responses to the 
four IUCN Green List Standard components based on congruence between objectives being measured by each 
indicator (also see Table S11 in Supplementary Information). We also excluded the conservation outcomes survey 
responses because we replaced this with an independent, quantitative measure of ‘conservation outcomes’, being 
‘avoided deforestation’ and ‘avoided carbon emissions’, which is a more powerful indicator than a categorical 
score. The effective management component had more questions than any other category, therefore we split it 
into two sub-categories: management resourcing and management processes. We were left with the following four 
dimensions of management: (1) good governance, (2) sound design and planning, (3) management resourcing, 
and (4) management processes. Each assessment consists of 30 questions that are scored from 0 (inadequate or 
non-existing) to 3 (adequate or fully implemented). We selected the earliest possible assessment date because 
management factors should precede any resulting impact. Finally, we calculated an average score for all METT 
questions within these four groups.

Statistical matching to assess protected area performance.  We selected control sites to measure 
the impact of protection using the MatchIt package in R64. To account for the non-random distribution of pro-
tected areas, we included multiple predictive factors to balance the counterfactual and treatment samples. We 
based our approach for selecting predictive factors on analyses of deforestation in Southeast Asia24,65 and from 
global protected area impact studies using matching13,14. We selected anthropogenic drivers (human population 
density, presence of roads and railways, pressure to expand croplands and urban environments), suitability for 
land conversion (elevation, slope, and agricultural suitability), and biological aspects (peat characteristics and 
forest cover; see Table 2 for data sources and Supplementary Information for more details). To account for leak-
age of protected areas, we excluded buffers of 10 km around their boundaries. The buffer area is inappropriate as 
an independent control, because the area immediately outside a protection zone can be partially protected due 

Table 2.   Details, data sources and rationale for the variables selected for the statistical matching.

Type Covariates Rationale Restrictions in matching Data source

Intervention variable Protected areas Terrestrial protected areas established 
prior to 2000 Treatment WDPA (www.​prote​ctedp​lanet.​net)

Control variables

Political drivers Country
Political systems and environmental 
policies differ between countries, so 
matching must be contained within the 
same country

Restricted to country GADM (https://​gadm.​org/​data.​html)

Anthropogenic drivers Human Footprint Index: HFI
Human population density, roads, 
railways, pressure to expand croplands 
and urban environments negatively 
influence the location of PAs

Balance sample to treatment HFP1993 (https://​wcshu​manfo​otpri​
nt.​org/)

Environmental drivers

Elevation Elevation accounted for in the selected 
location of PAs Balance sample to treatment

Global Digital Surface Models (DSM), 
“ALOS World 3D-30 m” (AW3D30) 
(https://​www.​eorc.​jaxa.​jp/​ALOS/​en/​
aw3d30/​index.​htm)

Slope Slope accounted for in the selected 
location of PAs Balance sample to treatment Calculated from Elevation layer (as 

above)

Agricultural suitability – oil palm, cas-
sava, rice, maize

Highly suitable land for oil palm, cas-
sava, rice or maize is more likely to be 
cleared and less likely to be protected

Balance sample to treatment
GAEZ class oil palm, cassava, wetland 
rice, maize (http://​gaez.​fao.​org/​Main.​
html#)

Biological aspects

Forest cover Forests more likely to be protected Balance sample to treatment
Hansen tree cover in 2000 v1.6 (https://​
earth​engin​epart​ners.​appsp​ot.​com/​
scien​ce-​2013-​global-​forest/​downl​oad_​
v1.6.​html)

Peatlands
Peatlands have different biophysical 
characteristics and are more likely to 
be protected. Peninsular Malaysia and 
Indonesia

Balance sample to treatment
Peatlands, year 2000. Miettinen et al. 
201269 (https://​crisp.​nus.​edu.​sg/​crisp_​
oview.​html)

Outcome variables

Forest cover loss A binary measure of forest cover loss 
for 2000–2018 Outcome

Hansen tree loss v1.6 2000–2018 
(https://​earth​engin​epart​ners.​appsp​ot.​
com/​scien​ce-​2013-​global-​forest/​downl​
oad_​v1.6.​html)

Forest carbon loss Biomass loss for 2000–2018 Outcome
Global Forest Watch Tree Biomass Loss 
(http://​data.​globa​lfore​stwat​ch.​org/​datas​
ets/​tree-​bioma​ss-​loss)

http://www.protectedplanet.net
https://gadm.org/data.html
https://wcshumanfootprint.org/
https://wcshumanfootprint.org/
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
http://gaez.fao.org/Main.html#
http://gaez.fao.org/Main.html#
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
https://crisp.nus.edu.sg/crisp_oview.html
https://crisp.nus.edu.sg/crisp_oview.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
http://data.globalforestwatch.org/datasets/tree-biomass-loss
http://data.globalforestwatch.org/datasets/tree-biomass-loss
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to the close proximity to the restricted area18 or subject to higher deforestation when logging and other activities 
are displaced to the area immediately outside the protected area66,67. We randomly selected a sample covering 
20% of the total study region to reduce spatial autocorrelation68. After removing missing values, we retained a 
final sample of 747,714 of 1 km2 pixels.

We used Propensity Score Matching (PSM) to create a statistically balanced counterfactual sample to evalu-
ate protected area impact for each country. Despite its limitations, PSM remains the most widely used matching 
approach14,50,68 and often performs comparatively better than other methods when handling a large numbers of 
covariates70. We tested coarsened exact matching (CEM) methods, however PSM performed better at finding 
paired matches for each pixel while maximising sample size. The unprotected pixels included in the matched 
analysis, represented the pixels most comparable to the protected pixels with respect to the matching variables 
within the same country (Fig. 6) using the nearest neighbour method, without replacement. We matched each 
treatment pixel to a unique control observation that had not been matched previously. We calculated avoided 
forest cover loss and carbon emissions at a pixel-by-pixel level, using one-for-one pairs.

Figure 6.   The broad statistical matching approach showing treatment, control and outcomes variables. 
To account for the non-random distribution of protected areas, we included multiple predictive (control) 
variables to create a statistically balanced counterfactual sample to evaluate protected area impact. We selected 
anthropogenic drivers, suitability for growing crops, and biological aspects. In each country, we selected a 
treatment and control sample, where the treatment is protection. Matching was repeated separately for each 
country. Once a suitable counterfactual sample was selected, we calculated the amount of forest cover loss and 
carbon emissions that were avoided due to protection.
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Approach for linking forest conservation to management.  The forest cover loss rates during the 
period 2000–2018 and associated carbon emissions for each protected area was our unbiased measure of avoided 
forest cover loss and carbon emissions from protected areas. We built two predictive linear models that tested 
the direction and strength of the relationship between management and contextual factors, and the two depend-
ent variables (1) avoided forest cover loss; and (2) avoided carbon emissions inside protected areas. Southeast 
Asian deforestation and degradation is largely driven by agriculture and logging, therefore anthropogenic driv-
ers, accessibility and peat characteristics are the best determinants of the spatial patterns of deforestation24. Our 
independent variables included four management factors: (1) good governance, (2) sound design and planning, 
(3) management resourcing, and (4) management processes, as well as (5) years protected, (6) protected area 
size, (7) human pressure, (8) elevation, (9) slope, (10) agricultural suitability, (11) national government trans-
parency, and (12) GDP (Supplementary Information). We selected the data that was nearest to the year 2000 for 
our contextual variables, prioritising older over more recent data, because management and contextual factors 
should precede any resulting impact. We performed correlation tests on all model variables. This resulted in 
removing GDP, elevation, and suitability for growing rice, cassava and maize due to high intercorreality. Slope 
and size were log-transformed to the power of two, to prevent outliers driving the results. The best-fit model was 
determined based on Akaike Information Criterion (AIC) of all possible configurations of predictor variables, 
using the MuMIn package71.

Data availability
The datasets used in this study are publicly available and may be provided by the corresponding author on 
reasonable request.
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