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chain (WLC) model[7] have computed 
force–extension curves and end-to-end 
distributions.[8–11] More recently, an empiri-
cally corrected interpolation formula was 
found for the force–extension relationship 
that nearly matches the exact numerical 
result for the WLC.[12] For continuous chain 
contour functions, one may apply the path 
integral formalism known from quantum 
mechanics[13,14] which can then be solved 
using mean-field theory[15] or approxima-
tions in the limit of short or long chains.[16] 
Exact analytical expressions for the parti-
tion function and the end-to-end distribu-
tion of the WLC model with an external 
field have been found for two and three 
dimensions.[17] However, the solution is for-

mulated in Fourier–Laplace space and is expressed in terms of 
complicated continued fractions. This solution was subsequently 
used to derive the end-to-end distribution of the free WLC model 
for a fixed chain end in Fourier space in arbitrary dimensions,[18] 
and was also extended by a torsional stiffness component to com-
pute the ring-closure probability of DNA.[19] Likewise, the exact 
end-to-end distribution was numerically computed by treating 
the WLC as an equivalent quantum particle[20] or by considering 
random walks under constraints in Fourier–Laplace space.[21]

WLC models under spatial constraints have also been 
studied in the past. In these models, the constraints are rigid 
walls which the chain cannot penetrate. Early work by Odijk[22] 
established the existence of three regimes: the rigid rod regime 
for short chains, a flexible chain regime for long chains and a 
transition regime in between. The theory was later extended to 
lyotropic polymer liquid crystals.[23] Later, the partition function 
of the WLC with a harmonic confinement potential in the infi-
nitely long chain limit and a lower bound on the confinement 
free energy in a circular tube have been found.[24] Confinement 
free energies for different confinement geometries have been 
studied for the WLC model, for example, in square and circular 
tubes.[25,26] An extensive review of WLC confinement theory 
is provided in ref. [27]. Confinement of a WLC by a harmonic 
potential for the displacement in two dimensions has further 
been studied by using Markov processes to compute the dis-
placement distribution of the chain contour.[28]

Alternatively, the structure can be modeled using the dis-
crete Kratky-Porod model[29] which can be readily simulated 
with Monte Carlo (MC) techniques.[30] These techniques have 
been used to compute force-extension curves[31] and average 
shapes[32] of semiflexible chains. Furthermore, MC simulation 

A worm-like chain model for a single, freely suspended semiflexible macro-
molecule with an aligning field of arbitrary coupling order is presented. Using 
a small-angle approximation and Ginzburg–Landau theory, exact closed-form 
solutions of the model are derived in the regime of a strong aligning field in 
arbitrary dimensions. Expressions for the mean cosine of the chain alignment 
angle, orientational order parameters, and the two-point correlation function are 
found. As a corollary, the persistence length is confirmed as a valid threshold 
for rigid behavior of the chain. The theoretical results are validated with Monte 
Carlo simulations in two and three dimensions. It is shown that the solutions for 
the small-angle approximation are within 0.1% of the simulated values for the 
exact model for chain-field alignment angles θ ≲ 20°. As a practical application, 
the findings are applied to carbon nanotubes in an aligning electric field.

1. Introduction

Describing the behavior of 1D polymer chains or semiflexible 
fibers in an external field is a problem that arises in many dif-
ferent areas of physics. In particular, the alignment of biological 
macromolecules such as DNA has been a major focus of past 
research due to its relevance in improving sequencing[1,2] and 
the emergence of single-molecule manipulation using atomic 
force microscopy and optical tweezers.[3] Similarly, electric fields 
have been used to align carbon nanotubes (CNTs) in an effort 
to improve their bulk electric and mechanical properties.[4,5]

Several theoretical treatments of the problem exist in the 
literature. The alignment of polarizable rigid rods suspended 
in air has been studied by analyzing the polarization of high 
aspect ratio ellipsoids subjected to Brownian bombardment.[6] 
In order to include bending effects, these 1D structures can also 
be modeled using semiflexible chains, where the chain has a 
finite bending stiffness. Studies using the continuous worm-like 
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was used to study confinement and different types of interac-
tions of semiflexible chains.[33]

In this work, we are interested in studying the behavior 
of a single freely suspended, semiflexible chain in a uniform 
aligning field. We consider the WLC model with coupling to 
an external field of arbitrary order. We start from Landau and 
Lifshitz’s derivation of the persistence length,[34] which we 
extend by adding an aligning field and subsequently apply a 
small-angle approximation to the alignment of the chain con-
tour relative to the aligning field. Hence, we are able to derive 
simple closed-form solutions for the cosine of the angle of the 
chain contour relative to the aligning field, an orientational 
order parameter as well as the two-point correlation function 
in arbitrary dimensions as a function of the contour length. In 
addition, we derive a lower bound on the external field strength 
necessary to align an entire chain with the field to a certain 
angle. We propose a way to compute force-extension curves by 
interpolating a well-known weak-field limit and our strong-field 
results. By comparing this interpolated force-extension curve to 
existing work in the literature, we find good agreement between 
our model and the exact solution of the WLC. We validate our 
other theoretical results with MC simulations of a Kratky–Porod 
model, which is equivalent to the WLC model considered here 
in the continuum limit. Finally, we derive expressions for the 
field susceptibility of a conductive and linearly dielectric chain 
in the presence of an aligning electric field and apply the results 
to describe the alignment of CNTs. Our methodology provides a 
general framework for computing highly accurate and compact 
expressions for a wide variety of averages in the WLC model, 
setting it apart from many of the previous studies on this topic.

2. The Model

We characterize the contour of the chain using the d-dimen-
sional normalized tangent vector tt̂( )s  as a function of the con-
tour length s. The system is then described by the following 
free energy functional:

tt
tt

tt EE[ˆ( )] d
2

dˆ( )

d
| ˆ( )· |

0

2

F s s
a s

s
s

L
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
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


− ν � (1)

where L is the length of the chain, a is the bending stiffness, 
κ is the field susceptibility and EE is the external aligning field. 
Additionally, ν denotes the coupling order of the alignment 
with respect to the external field. The first term in Equation (1) 
simply corresponds to the classical WLC free energy[7] for cur-
vature of the chain. In the second field coupling term, we have 
assumed that the system obeys ZZ2  symmetry under the trans-
formation tt ttˆ( ) ˆ( )s s→ − . This is the case for aligning flows, gravi-
tational gradients, and electric fields that polarize the chain in 
the direction of the field. If the chain possesses, for example, 
a non-zero spin density, and we are considering the coupling 
with an external magnetic field, then ZZ2  symmetry is no longer 
present. However, the approximations considered in this work 
are equally valid in the limit of a strong aligning field irrespec-
tive of said symmetry. Without loss of generality, we define our 
coordinate system in d dimensions such that only the last com-
ponent of the external field Ed  E is non-zero. We denote the 

angle of the tangent vector relative to the external field as θ(s) 
and write in terms of the tangent vector tt̂( ) ( ( ), , ( ))1s s sd…θ θ= ⊤:

cos ( ( )) 1 ( )2

1

1
2s s
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d
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=
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If we now assume that θ(s) and all θi(s) are small, we can find 
the following identity by Taylor expanding the squared cosine to 
second order:

( ) ( ) ( )2
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2 2s s s

i

d
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where we have introduced the vector ( ) ( ( ), , ( ))1 1s s sd…θ θθ = −
⊤. 

Likewise, the curvature term can be approximated to second 
order in θ and d /dsθ . The free energy given in Equation (1) can 
now be approximated by
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The theory is now geometrically linear, that is, components 
of different dimensions are additive in the energy. In addition, 
the approximation of the field interaction term is exact in the 
case of ν  = 2 as can be seen from Equation (2). We remark 
that the free energy above is no longer symmetric under the 
transformation tt ttˆ( ) ˆ( )s s→ − , thus the original ZZ2  symmetry 
is broken. However, a new ZZ2  symmetry arises due to invari-
ance of the approximate free energy under the transformation 
( ) ( )s sθ → −θ .

3. Solving the Model

3.1. The Canonical Partition Function

According to Ginzburg–Landau theory, the approximate free 
energy functional in Equation (4) is minimal in equilibrium 
with respect to ( )sθ . In order to later find averages for field 
quantities as a function of s, we split the integral into three 
ranges:

[ ( )] [ ( )] [ ( )] [ ( )]1 1 2 2 3 3F s F s F s F sθ = θ + θ + θ � (5)

where the iθ  have support on the ranges [0, sa], [sa, sb], and [sb, L] 
respectively. The contour lengths sa and sb are variable and obey 
0 ≤ sa ≤ L and sa ≤ sb ≤ L. Ultimately, this splitting is necessary 
to independently vary the field values at arbitrary points along 
the contour, not just at the ends. Otherwise, the field values 
along the contour are subject to energy minimization and will 
not yield correct results upon statistical averaging. The splitting 
allows us to compute the correct averages for functions of sa 
and sb such as the two-point correlation function. For functions 
with a single contour length argument like single-point field 
averages, a splitting into two ranges would be sufficient. The 
free energy for a ( )siθ  in a range [xa, xb] is given by
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We compute the variational derivatives of the free energies to 
find the minima of the corresponding functionals by setting the 
derivatives to zero:
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In going to the second line, the first integrand was integrated 
by parts where the boundary term vanishes due to Dirichlet 
boundary conditions. We then obtain the following boundary 
value problems for the individual iθ :
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for some boundary values yya , yyb. Each boundary value problem 
can be easily solved and yields the general solution
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where /( )a EνκΛ = ν  denotes a characteristic length scale  
of the system. The boundary values for each range are given 
by

(0) , ( ) ( ) ,
( ) ( ) , ( )
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2 b 3 b b 3
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θ = θ θ = θ = θ
θ = θ = θ θ = θ � (10)

By substituting the general solution into the free energy 
functional in Equation (6), solving the integral and summing 
over the three ranges, the free energy functional breaks down 
into a function of the boundary conditions:
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Above, we have introduced the ground state energy 
F0 = −νκEνL, a characteristic energy E aE νκ= ν  and a number 
of factors:
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The dependence of the field solution on sa and sb is from 
now on implicitly included in the factors gi and expressions 
thereof and will only be explicitly expressed when useful. As 
the physics at hand will not be affected by our choice of the 
ground state energy, we can rescale by F0. Using the identity for 
the multivariate Gaussian integral, we may now compute the 
canonical partition function of the system:
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The above individual integrals are understood to be over 1Rd−  
respectively which approximates the exact partition function for 
a steep Gaussian integrand. We have further introduced addi-
tional shorthands:
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3.2. Field Averages

3.2.1. Two-Point Correlation Function

Before we begin computing averages of the tangent vector, let 
us first consider in more detail how a scalar product tt ttˆ ·ˆ

a b may 
be expressed in terms of the corresponding angle vectors aθ  and 

bθ . The correlation function for the WLC model without any 
external field is well known:[34]
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2
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We will now show that this expression is also true when we 
include a harmonic external potential as in Equation (4). Con-
sider a function (( ) )b a

2f θ − θ  with Taylor expansion:
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In a Gaussian ensemble, we can easily compute the fol-
lowing average:
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where 0Ni ∈  and with g11 defining another abbreviated quantity:
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In particular, this means that the average of any power of 
( )b b

2θ − θ  is simply a power of the average ( )b b
2〈 θ − θ 〉 , up to a 

factor. There are two things we can learn from this fact. First, 
we may write for the average of the function f:
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In going to the second line, we have applied Equation (17) 
and then used the resulting series to define an analytic function 
g under the assumption of series convergence. Second, analy-
ticity of g implies continuity and for any such function where 
the ci are independent of E, the zero-field limit is given by

lim lim
0

b a
2

0
b a

2g g
E E

( )( )( ) ( )θ − θ = θ − θ
→ →

� (20)

The above findings can be directly applied to the correlation 
function of the WLC model since tt ttˆ ·ˆ

a b is a function of geom-
etry only. First, the validity of the expression given in Equation 
(15) can be extended to the case of E  ≠ 0. Second, we find by 
Taylor expanding the exponential and comparing coefficients 
with the general form given in Equation (19):
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where pFq denotes the generalized hypergeometric function.[35] 
For d = 2, we simply recover tt ttˆ ·ˆ cos( )a b b aθ θ= −  as expected.

We have already computed the mean squared relative angle 
in Equation (17) for which we explicitly write:
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By construction of the free energy, the above expression is 
only valid if sb ≥ sa; sa and sb need to be swapped otherwise. This 
expression also defines the correlation function for any two 
points at sa, sb via Equation (21). By construction, the zero-field 
limit then evaluates to

tt ttlim ˆ ·̂
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with Lp denoting the persistence length:[34]
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With the expression for the correlation function found, one 
could in principle also compute the mean squared end-to-end 
distance of the chain using:

RR tt ttd d ˆ ·ˆ2
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0
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where sa and sb need to be swapped once sa  > sb as remarked 
before. In general, the integral has no closed-form solution 
due to the form of the correlation function. However, one may 
expand the exponential in the correlation function to find exact 
expressions for approximations to arbitrary order, or alterna-
tively solve the above integral numerically.

3.2.2. Field Alignment

The right-hand side of Equation (21) also tells us how angles 
are generally measured in θ space. We may therefore compute 
the mean cosine of alignment (MCA) 〈cos θ〉 of the WLC with 
the external field direction EE EEˆ /E=  by choosing either tt̂ a  or tt̂ b:
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Choosing tt̂ a  instead will lead to the same result with sb being 
replaced by sa. Thus, we will drop the suffices a, b in the expres-
sion for the MCA henceforth. In the case of d  = 1, both the 
correlation function and the MCA are unity as expected. Fur-
thermore, the zero-field limit is not defined as there is no pre-
ferred direction. As Equation (26) is monotonically increasing 
on [0, L/2] and is symmetric with respect to L/2, the minimum 
and maximum of the MCA are given by
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Practically, one could be interested in determining the min-
imum field strength Emin necessary to align an entire chain to 
a certain value tt EEˆ· ˆ

minα ≡ 〈 〉 . Generally, the expression for the 
minimum MCA in Equation (27) is not analytically solvable for 
E. However, we may study the limits of short and long chains. 
For small L, coth( / ) /L LΛ ≈ Λ  and for large L, coth( / ) 1L Λ ≈ . 
Hence, we may solve for Emin in both limits:
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Above, L* denotes the threshold where both approximations 
are equal. It can be expressed in terms of the persistence length 
as

ln pL Lα= −∗ � (29)
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It turns out that short chains with L ≪ L* can be treated 
as rigid rods for any given α as the approximate expression 
in Equation (28) does not depend on the bending stiffness a 
anymore. Indeed, it is simple to verify that the short chain 
limit is identical to taking the limit a  →  ∞, corresponding to 
an infinitely stiff and thus rigid chain or rod. Additionally, the 
minimum and maximum MCA along the chain coincide in 
this limit since the alignment is no longer a function of con-
tour length, further supporting the rigid rod interpretation. 
According to Equation (24), the persistence length increases 
with stiffness and decreases with temperature. Therefore, the 
rigid rod approximation holds for stiff and short chains at 
low temperatures. For L ≫ L* on the other hand, finite length 
effects are negligible, but bending of the chain becomes rel-
evant. This leads to the existence of a lower bound for the 
required electric field strength given by the large L limit in 
Equation (28).

3.2.3. Orientational Order Parameter

A quantity that is useful for quantifying the alignment irrespec-
tive of the relative sign of the tangent vector and the reference 
axis is the squared cosine of the alignment angle:
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The average also appears in the expansion of the orientation 
distribution function (ODF) of a system in terms of spherical 
harmonics.[36] If the ODF is symmetric about an axis, then 
the expansion is in terms of Gegenbauer polynomials.[35] The 
second moment of the expansion is commonly used as an ori-
entational order parameter of polymeric and macromolecular 
systems which we will denote as σ. In two[37] and three[38] 
dimensions it is given by

(cos ) 2 cos 12D 2
2Tσ θ θ= 〈 〉 = 〈 〉 − � (31)

(cos )
1

2
3 cos 13D 2

2Pσ θ θ( )= 〈 〉 = 〈 〉 − � (32)

for a choice of EÊ as the reference axis. Above, T2 and P2 denote 
the Chebyshev and Legendre polynomials as special cases 
of the Gegenbauer polynomials in two and three dimen-
sions.[35] In two dimensions, the order parameter σ2D  = 1 for 
perfect field alignment and σ2D = −1 for a fully orthogonal ori-
entation with respect to the field. In three dimensions, these 
two extremes correspond to order parameters of σ3D  = 1 and 
σ3D = −1/2 respectively.

3.2.4. Chain Extension

Similar to the squared end-to-end distance, the mean chain 
extension in the direction of the field can be computed numeri-
cally by evaluating the following integral of the MCA:

d cos ( )SF
0

R s sd

L

∫ θ〈 〉 = 〈 〉� (33)

Due to our assumptions of small angles and a strong aligning 
field, the above integral will only yield good results where these 
assumptions hold, which we indicate by the suffix SF. In order 
to improve the accuracy of the extension-field relationship, 
one common approach is to interpolate between the weak- 
and strong-field limits.[8] In the literature, the most commonly 
discussed aligning field is of order ν  = 1,[8,12,17] which we will 
assume for the remainder of this section. Such a field is then 
typically referred to as a “force” in the literature. In the weak-
field limit, the extension of the chain simply follows from the 
equipartition theorem and is given by a linear relationship:[8]

4

( 1)
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2

R
Ea L

d d
d

κ β
〈 〉 =

−
� (34)

The interpolation is typically performed in the aligning field, 
that is, the field is treated mathematically as the response to an 
extension.[8] For strong fields, the asymptotic field response is 
known and diverges as:[8]

( 1)

16 (1 / )
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2 2E
d

a R Ldκ β
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−
− 〈 〉

� (35)

If we were to just add the field responses, the linear contri-
bution from the weak-field response would be added on top of 
a linear term arising from Taylor expanding Equation (35) in 
〈Rd〉:

( )
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8
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2

2E R
d R

a L
d

d

κ β
〈 〉 =

− 〈 〉
� (36)

To correct these double contributions and ensure the correct 
behavior for weak fields, the above linear term needs to be sub-
tracted from the strong-field response. Furthermore, the strong-
field response given in Equation (33) is not analytic for E = 0 
due to the functional form of the MCA. Therefore, a smooth 
cutoff factor needs to be applied to the strong-field response for 
small extensions. Otherwise, the interpolation will not give the 
correct weak-field limit. All these aspects are considered in the 
following expression for the “interpolated” field:

( ) ( ) 1 ( ) ( )I WF
/

SF lin
pE R E R e E R E Rd d

R L
d d

d( )[ ]〈 〉 = 〈 〉 + − 〈 〉 − 〈 〉−〈 〉 � (37)

where ESF(〈Rd〉) and EWF(〈Rd〉) are the inverses with respect to E 
of Equations (33) and (34) respectively. In the exponential term, 
we chose the persistence length as the decay length; however, 
any choice that is much smaller than the chain length will pro-
duce results similar to the ones discussed later in this section. 
Finally, the function in Equation (37) can be inverted again to 
yield the interpolated extension 〈Rd〉I as a function of E. In d = 
3 dimensions and for non-dimensional values β = a = κ = 1, we 
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compare our results for the extension with results from the lit-
erature in Figure 1. We chose two studies that consider a WLC 
model that is equivalent to ours with ν  = 1 and without the 
modulus in Equation (1). As noted before, the modulus does 
not matter in the strong-field regime. The first study by Marko 
and Siggia (suffix MS)[8] provides a well-known result for the 
force-extension curve which was derived by interpolating weak- 
and strong-field results. The interpolation approach described 
above is also formally equivalent to the one used by Marko 
and Siggia. The second study is by Petrosyan (suffix P) which 
empirically corrects the Marko–Siggia result and is within 1% 
of the exact solution.[12] Hence, the result by Petrosyan can be 
effectively used to compare our results to the exact solution. 
Furthermore, L = 10.0 was chosen as both studies only produce 
correct results if L ≫ Lp.[8] All results visually coincide for field 
strengths E  > 10.0. As expected, the small-angle approxima-
tion overestimates the alignment and hence the extension of 
the chain as the harmonic potential is steeper than the corre-
sponding exact cosine term. However, our approach has several 
advantages over the cited studies. First, it is valid for all values 
of L and not limited to long chains. Furthermore, our interpo-
lated result is closer to the exact result of the WLC than the 
Marko-Siggia result starting at relatively low field strengths of 
E > 0.5 while only very slightly underestimating the extension 

for weaker fields. This difference can be explained by the fact 
that Marko and Siggia merely use the asymptotic behavior of 
the strong-field solution given by Equation (35) whereas we use 
the exact solution of the small-angle approximation for all pos-
sible field strengths. Our approach also does not rely on empiri-
cally corrected interpolation formulae compared to the result 
derived by Petrosyan.[12] Finally, the methodology described in 
this work allows for the computation of a wide variety of rel-
evant averages, not only the chain extension.

4. Validation with Monte Carlo Simulation

By discretizing the free energy expression, we may cast the 
model into a form which can be easily simulated using an MC 
approach. The discretized version is also known as the Kratky-
Porod model.[29] The chain is discretized into N straight seg-
ments with length l and normalized vector tt̂ i  for which we can 
write down the following energy expression:
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In the small-angle approximation, the expression simplifies to:
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where the iθ  are d  − 1 dimensional vectors analogous to the 
continuous field and we have shifted the energy by F0 as 
before. Both the exact and approximate Kratky-Porod model 
can be easily simulated using an MC algorithm with Rosen-
bluth sampling[39] to accelerate the computational convergence. 
For the theoretically derived expressions in Equations (21) and 
(26), one can confirm the validity of the results with an MC 
simulation of a system with the free energy given by Equation 
(39). For our purposes, we set β = a = κ = ν = L = E = 1 and 
use N = 500 discrete segments. The simulation results are in 
excellent agreement with the analytical expressions, as shown 
in Figure 2.

Furthermore, we can also simulate the system for the exact 
potential given in Equation (38) and compare it to the theoret-
ical predictions derived for the approximate potential. Here, we 

Figure 1.  Lin-log plot of extension vs field strength. Comparison of results 
from this work obtained through the small-angle approximation (SF) and 
interpolation (I) with literature results by Marko and Siggia (MS)[8] and 
Petrosyan (P).[12]

Figure 2.  Comparison of theoretical prediction and MC simulation results with the approximate potential for MCA, order parameter and correlation 
function function vs. contour length.
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note that the MCA for the exact potential in the MC simulations 
is measured as tt EE| ˆ( )· ˆ |s〈 〉 due to the underlying ZZ2  symmetry 
while the approximate theory provides values for tt EEˆ( )· ˆs〈 〉 . Oth-
erwise, we would be measuring a vanishing average due to the 
spontaneous symmetry breaking into broadly aligned or anti-
aligned orientations with respect to the external field. For weak 
fields, the modulus should lead to a higher degree of alignment 
being measured with the exact potential compared to the case 
where no ZZ2  symmetry is considered as all contributions to the 
average are positive. In addition, the existence of two minima 
as attractors in orientation space leads to a larger number of 
aligned configurations for the exact potential as long as the 
energy barrier between both minima is sufficiently low so that a 
single configuration may span both. Hence, we should observe 
higher values for the MCA and orientational order parameter 
with the exact potential compared to the approximate potential. 
For strong fields, the two potential wells of the exact potential 
for opposite chain orientations with respect to the external field 
become increasingly disjoint in probability space, such that ZZ2  
is effectively broken for each generated configuration. Both 
resulting sets of configurations are equivalent to each other, 
equally probable and can be both approximated by the small-
angle approximation with broken symmetry. Then, the approxi-
mate harmonic potential presents a steeper potential well than 
the exact expression, resulting in a higher MCA as well as a 
higher orientational order parameter.

These predictions are confirmed by the converged MC results 
shown in Figure 3 where they are compared to theoretical pre-
dictions in two and three dimensions. For the simulations, we 

used the same values as listed above and merely varied the 
external field strength E. While the results deviate significantly 
for a weak aligning field (E  = 1.0) for the MCA of the chain 
with the field, the agreement between theory and simulation 
improves with increasing field strength and both results visibly 
coincide at E  = 100.0 in both two and three dimensions. This 
can be explained by the decrease of the alignment angle with 
respect to the field with increasing field strength where the 
small-angle approximation becomes more valid until the results 
are visibly indistinguishable. Additionally, one observes that the 
MCA and order parameter for the exact potential are higher in 
the case of E = 1.0 compared to the approximate potential and 
lower for greater field strengths. These findings are therefore in 
full agreement with our previous discussion.

As the correlation function measures relative angles and the 
order parameter is an even function of the alignment angle, 
they are not subject to any adjustment in the measurement 
unlike the MCA. We therefore observe significantly better 
agreement with theory in the weak field regime. The order 
parameter behaves qualitatively like the MCA but with a better 
quantitative agreement with theory. For the correlation func-
tion, simulations and theory diverge slightly in the medium 
field regime where the small-angle approximation is not fully 
valid yet and subsequently converge for strong fields. This leads 
to the conclusion that any approximation to the squared end-
to-end distance based on the theoretically derived correlation 
function will agree well with its corresponding exact value.

One also observes generally greater alignment with the field 
close the center of the chain compared to the chain ends due 

Figure 3.  Comparison of MC simulation results and theoretical predictions for MCA, order parameter and correlation function for d = 2 (a) and d = 3 
(b). Solid lines are values predicted by theory and dashed lines are values obtained from MC simulations.
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to the stronger coupling of the elastic and aligning fields. In 
d  = 3 dimensions, our theoretical predictions agree well with 
the simulation results for tt EEˆ· ˆ 0.75〈 〉 >  or an alignment angle 
θ ≲ 40° with a maximum error in the MCA of less than 5%. 
The agreement becomes excellent with a maximum MCA error 
of less than 0.1%  in the regime tt EEˆ· ˆ 0.95〈 〉 >  or θ ≲ 20°.

The MC simulation results can also be directly visualized 
by overlaying a large number of generated configurations as is 
shown in Figure 4 for two dimensions. By choosing to overlay 
all configurations at the midpoint of the chain, it is possible 
to compare configurations generated from theories with and 
without ZZ2  symmetry in the tangent vectors tt̂ i . At first glance, 
the results for the approximate and exact potentials look very 
similar, though one may observe minor differences consistent 
with the observations discussed before. For E  = 1.0, the dark 
central region is vertically elongated for the exact potential 
compared to the approximate potential, suggesting greater 
field alignment as noted before. This greater field alignment 
is also supported by a greater order parameter being meas-
ured for the exact potential. The order parameter was averaged 
over all chain segments. In the case of the two higher field 
strengths, the opposite can be observed: the top and bottom 
lobes for the exact potential “fan out” more widely than for the 
approximate potential, though the difference is barely notice-
able at E  = 100.0. Likewise, the order parameters are greater 
for the approximate potential in those cases, with the values 
only differing in the third decimal place at the highest applied 
field strength.

5. Application to Alignment of Carbon Nanotubes 
in an Electric Field

5.1. Properties of Carbon Nanotubes

Since their first correct identification,[40] CNTs have been a sub-
ject of major scientific and technological interest due to their 
exceptional mechanical, electrical and thermal properties. A 
practical application of our theory is the alignment of CNTs by 
electromagnetic fields with the goal of producing materials with 
high mechanical stiffness and strength as well as high electrical 
conductivity in the alignment direction.[41] In particular, CNTs 
produced using the floating catalyst chemical vapor deposi-
tion (FCCVD) method[42] are suitable for alignment by an elec-
tric field as they are freely suspended in hydrogen gas during 
synthesis. We will focus on the alignment of CNTs during 
synthesis in the FCCVD furnace, in contrast to post-synthesis 
alignment, for example, during the embedding of the CNTs in 
an epoxy matrix.[43] We present a preliminary demonstration of 
how the theory can be applied in practice and a more definitive 
analysis of the problem of CNT alignment will be described in 
future work.

Here, we provide a brief summary of the structural and elec-
trical properties of CNTs following ref. [44]. The structure of a 
single-wall CNT (SWCNT) is fully characterized by the chiral 
vector CC ( , )h n m=  with chiral indices , 0Nn m ∈ . SWCNTs where 
the chiral indices satisfy n − m = 3k with Zk ∈  are metallic; they 
do not have a band gap and are thus conductive. In contrast, 

Figure 4.  Visualization of 10 000 ensemble configurations for different field strengths in the approximate and exact potentials in two dimensions. 
Aligning field pointing upwards with all chain configurations overlaid at the chain midpoint. Images are annotated with corresponding order parameters 
converged to the shown decimal places.
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all other SWCNTs do have a band gap and are semiconductors, 
hence show dielectric behavior. The FCCVD method typically 
produces both metallic and semiconductive SWCNTs,[45] hence 
the two cases will be analyzed in turn.

5.2. Conductive Chain

Let EE be an external electric field. We will assume that charges 
in the chain can only move parallel to the chain contour. Thus, 
we may split the electric field into two components, one parallel 
to the contour and one perpendicular to it:

EE EE EE EE tt EE tt EE( ) ( ) ( ); ( )·ˆ( ) 0, ( )·ˆ( ) || ( ) ||s s s s s s s s� � �= + = =⊥ ⊥ � (40)

The parallel component of the electric field is reduced to 
zero in a conductive chain due to moving charges. We use the 
difference in electric field energy as the coupling component to 
the external field. Additionally, the electric field is assumed to 
vanish within a constant cross-section A around the contour of 
the chain. Hence, we write for an electrically conductive WLC 
occupying a volume WLCV :

EE EE tt
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F V A s s
L

�

V
∫ ∫
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Thus, we may identify νC = 2 and κC = ε0A/2 for a conductive 
WLC in correspondence with our model.

5.3. Dielectric Chain

As with a conductive chain discussed above, we will assume 
that polarization in the dielectric case is only possible parallel 
to the chain contour, where it will be convenient to adopt the 
representation of the electric field vector given in Equation (40). 
In a linear dielectric with electric susceptibility χ, the compo-
nent of the electric field parallel to the chain contour reduces 
according to:

EE
EE

1
�

�

χ
=

+
′ � (42)

We deduce for the interaction energy of the dielectric with 
the aligning field:
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Again, we have assumed that the field is effectively reduced 
inside a cross-section A around the chain contour. As before, 
we have νD = 2 and the field susceptibility:

2
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2 Aκ ε χ χ
χ

=
+

+
� (44)

In the limit χ  →  ∞, we recover the field susceptibility of a 
conductor κD → κC. Notice that (χ2 + 2χ)/(1 + χ)2 < 1, hence a 

conductive chain will always tend to align more with the field 
than its dielectric counterpart.

5.4. Field Alignment of Carbon Nanotubes

Let us now apply these findings to CNTs in an electric field. 
The bending stiffness of SWCNTs of radius RCNT has been 
computed using molecular dynamics simulations to approxi-
mately follow:[46]

63.80 ( / )CNT CNT
2.93a R Å eV Å= � (45)

Armchair CNTs with chiral vector (n, n) are conductive and 
have radius:[44]

3

2
1.421CNTR

n
Å

π
≈ � (46)

We will also assume that the electric field vanishes in the 
direction of the CNT contour inside a constant cross-section 

CNT CNT
2A Rπ= . Taking a temperature of T  = 1200  K typical for 

the FCCVD process,[47] we can determine the minimum elec-
tric field strength Emin necessary to reach a minimum MCA 

tt EEˆ· ˆ
minα ≡ 〈 〉  of the chain with the field as a function of CNT 

length. We choose to find the field strength for a minimum 
MCA of α  = 0.95, which corresponds to a minimum average 
alignment angle of approximately 18°. This value is typical 
for aligned CNT fibers[48] and lies within the range where our 
analytical solutions give an accurate prediction of the exact 
behavior as discussed in Section  4. The exact numerical solu-
tions and the approximations found in Equation (28) are shown 
in Figure 5a for armchair SWCNTs with different chiral vectors. 
As predicted, we find two regimes separated by a threshold 
length L*. Well below L*, that is, in the rigid rod limit, the elec-
tric field strength decreases with a power law. Above L*, the 
behavior is dominated by bending effects and the electric field 
strength converges to a constant value. The exact numerical 
values for the minimum electric field strength visually coincide 
with the approximate values computed with Equation (28) apart 
from one decade around L* where the system transitions from 
the short to the long chain limit. Figure 5b shows a generaliza-
tion of Figure 5a for continuous CNT radii with the exact elec-
tric field value. As expected, the electric field strength necessary 
to reach an certain minimum MCA α reduces with increasing 
CNT length and radius. We find that for individual SWCNTs, 
the electric field strength to achieve strong alignment with the 
field exceeds 106 V m−1. This suggests that it is practically impos-
sible to align individual SWCNTs with a static electric field 
without risking substantial arcing due to electric breakdown 
of the surrounding gas. However, CNTs form bundles, due to 
weak van der Waals interactions, which exhibit higher stiffness 
and have a greater cross-sectional area compared to individual 
CNTs.[49] Furthermore, multi-walled CNTs (MWCNTs) are also 
known to be stiffer compared to SWCNTs.[50] The higher stiff-
ness and effective cross-sectional area of these structures may 
significantly lower the necessary electric field strength for align-
ment. We remark that the theory as presented here is purely 
classical in nature and does not take into account any quantum 
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effects that might play a role on the nanoscale, for example, the 
effect of crystal momentum resonance on conductivity present 
in CNT junctions.[51] Furthermore, dynamic effects of moving 
charges may further influence the alignment. An in-depth dis-
cussion of these phenomena at this point however would be 
beyond the scope of this work.

6. Conclusion

Using Ginzburg–Landau theory and the WLC model, we 
studied the statistics of a freely suspended macromolecule in 
an aligning field of arbitrary order. By applying a small-angle 
approximation, simple closed-form solutions for the MCA, an 
orientational order parameter and the two-point correlation 
function for the tangent vector along the contour of the chain 
were derived. In particular, all results in this work can be 
expressed as compositions of exponential and hypergeometric 
functions. The results were shown to be in excellent agree-
ment with MC simulations of the exact WLC model in the 
limit of strong fields and resulting alignment angles of less 
than 20°. As expected, we found that higher field strengths, 
greater field coupling and higher bending stiffness lead to 
greater average alignment of the chain with the external field. 
An interpolation formula for force–extension curves was 
derived and compared to results from existing literature. The 
force–extension curve from the small-angle approximation 
was found to agree well with the exact solution of the WLC 
model for strong aligning fields, whereas the interpolation 
formula gave similar or better agreement with the exact solu-
tion than a widely known result due to Marko and Siggia.[8] 
Approximate expressions and a lower bound for the minimum 
field strength required to reach a minimum MCA of the chain 

contour with the field were computed. All results were found 
to be consistent with classically derived results for the WLC 
in the limit of no external field. Furthermore, we confirmed 
the well-known result that semiflexible chains can be approxi-
mately treated as rigid rods if the chain length does not exceed 
the persistence length. As an example, we derived free energy 
expressions for an electrically conductive and a linearly die-
lectric chain in a homogeneous electric field and showed 
that such a system can be described with our model. As an 
application of the model, we applied our theory to the align-
ment of individual SWCNTs with an electric field and showed 
how the minimum field strength required to reach a desired 
minimum MCA with the field behaves as a function of the 
CNTs’ parameters.
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Figure 5.  Minimum electric field strength necessary for a minimum MCA value of α = 0.95 for SWCNTs. In a), log-log of field strength vs. CNT length 
for different SWCNTs with chiral vectors listed in the legend. Solid and dashed lines show exact and approximate values respectively. Vertical dashed 
lines indicate the threshold length L* for the approximate expression. In b), log-log-lin plot of field strength (log) as a function of CNT length (log) 
and CNT radius (lin). Isocontours for the field strength are shown on the surface and projected into the xy-plane. A continuous distribution of CNT 
radii was assumed.
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