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Condition-based Maintenance for Long-Life Assets 

with Exposure to Operational and Environmental Risks 

Abstract 

This paper presents a new condition-based maintenance (CBM) model for long-life assets to address 

the potential risk caused by the decline of the operating environment. Two types of maintenance are 

formulated in the CBM model. Minor maintenance can mitigate the operational and environmental 

risk, and major maintenance can eliminate the accumulated damage within the asset. A continuous-

time semi-Markov chain (CTSMC) is used for modeling the aging of the asset as well as the 

stochastic decline of the operating environment. To optimize the CBM policy in a mathematically 

tractable manner, we introduce a hypo-exponential approximation approach to match the first four 

moments of the sojourn time distribution of CTSMC. This approach guarantees a minimum 

representation of the CTSMC with non-fictitious surrogated Markov chain. The model provides both 

good mathematical tractability and sufficient generalizability. The practical impact of this research is 

demonstrated by applying it to a real industrial case of concrete bridge maintenance. It is observed 

that this approach results in a CBM plan with a lower asset lifecycle cost compared to current 

techniques.  

Keywords: Maintenance, Operational and Environmental Risk, Stochastic Modelling, Moment 

Matching, Hypo-exponential Distribution. 

1. Introduction 

The positive impact of optimised maintenance strategies has been recognized in the literature (Pinjala, 

Pintelon, & Vereecke, 2006). Amongst all maintenance strategies, condition-based maintenance 

(CBM) has emerged as an increasingly important topic for both practitioners and academics. Many 

advanced CBM models have been developed to reduce operation and maintenance cost (Liu, Wu, Xie, 

& Kuo, 2017) and (Keizer, Teunter, Veldman, & Babai, 2018). Very often, the risk of the declining 

operating environment is not explicitly formulated in these models. Development of new materials 

and reliability innovations in new designs mean that assets nowadays tend to have a long lifetime. 

When assets operate over a long period of time, the decline (i.e., adverse change) of the operating 

environment during their lifetime may no longer be considered negligible. Therefore, developing 

lifecycle models to determine appropriate CBM policies for such types of assets under a declining 

operating environment is particularly important. In this paper, the decline of the operating 

environment is defined as a gradually increasing deviation of the operational environment from what 

the asset was designed and built for, which negatively affects the aging of the asset. In practice, the 

phenomena may manifest in three ways:  
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(1) Change in the macro-scale environment: (Stewart, Wang, & Nguyen, 2011) demonstrate the 

impact of climate change on carbonation-induced corrosion of concrete infrastructure caused 

by the increase in atmospheric CO2 level and temperature. (Schweikert, Chinowsky, Kwiat-

kowski, & Espinet, 2014) explain the need to consider climate change in infrastructure plan-

ning.  

(2) Accelerated deterioration after extreme events: An investigation has shown that the deteriora-

tion of Queensland roads increased rapidly after flooding events (Sultana, Chai, Chowdhury, 

& Martin, 2016).  

(3) Consistent increase of load: Due to population increase and urbanization, traffic load on roads 

is likely to increase over time. (Rasul, Burrow, & Ghataora, 2016) show that the cumulative 

traffic load deteriorates the subgrade soil and may result in the loss of mechanical properties 

of road pavements. 

The above examples clarify the importance of the decline of operating environment on the 

management of long-life assets. The risk of declining environment could result in a long-term 

detrimental effect on the asset’s aging and significantly reduce its lifetime if left unattended. 

Fortunately, some maintenance activities, such as anti-corrosive printing and repair of the supporting 

system, can effectively mitigate the risk. Hence, the explicit consideration of the long-term risk 

arising from such declining operating environment and its corresponding maintenance activities is 

essential to estimate lifecycle costs and risks, leading to better CBM policies. In this paper, we aim to 

capture this effect using stochastic modelling and explore its impact on the condition-based 

maintenance strategy to secure a resilient future for long-life assets. 

Semi-Markovian model is a powerful approach for modeling the stochastic aging process. It relaxes 

the Markov assumption that is hardly met in practice by extending the sojourn time distribution from 

exponential distribution to general distributions. The semi-markovian model has been widely applied 

in multiple areas. Dimitrakos and Kyriakidis (Dimitrakos & Kyriakidis, 2008) designed an optimal 

preventive maintenance strategy for a production system with buffer capacity by using Semi-Markov 

decision processes. Salari and Makis developed a CBM for a multi-unit system using Semi-Markov 

decision process and applied it on wind farms (Salari & Makis, 2017). Lian et al. modeled an 

inventory replenishment policy using a semi-Markov kernel (Lian, Liu, & Zhao, 2009). Using such 

models to calculate the expected lifetime or evaluate the reliability normally requires the adoption of 

numerical solutions for the Kolmogorov equations (Lefebvre & Perotto, 2011; Kharoufeh, Cox, & 

Oxley, 2013) and discrete-event simulation (Manno, Chiacchio, Compagno, D’Urso, & Trapani, 

2014). However, these methods are complicated and demand a high computational cost, especially for 

long-life assets with multiple deteriorating scenarios under different declining operating environments.  
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In this paper, we aim to develop an alternative approach to calculate the long-term expected cost of 

CBM policies for long life assets modeled by continuous time semi-Markov chains (CTSMC). 

Compared to the standard formulation of the semi-Markov decision process (Puterman, 1994), 

CTSMC can model the actions – such as maintenance – as an individual state. This provides a 

relatively straightforward method to model the duration of maintenance and the associated downtime 

penalty costs. Our approach contains two stages. In the first stage, we apply a hypo-exponential 

distribution to approximate all non-exponentially distributed sojourn times. After the approximation, 

the semi-Markovian model is then converted to a surrogate Markov model, which is easier to solve. 

The hypo-exponential approximation is a generalization of approximating using Erlang distribution 

(Thummler, Buchholz, & Telek, 2006). Also, unlike using Coxian distribution (C.-W. Park & Lee, 

2014) and acyclic phase-type distribution (Bobbio, Horváth, & Telek, 2005) that will result in 

fictitious surrogate Markov chain that can hardly be associated with the actual condition of the asset 

(Yeh, 1997), the sub-states after hypo-exponential approximation can be deemed as a linear 

decomposition of the sojourn time. It implies that the sub-state can be easily calculated using the 

knowledge of the sojourn time in a condition state. In the extant literature in asset lifecycle and 

reliability modelling (Kharoufeh, Solo, & Ulukus, 2010; Guo, 2014) and other domains (Wang & 

Wilson, 1994; Arıkan, Deshpande, & Sohoni, 2013; Ko & Pender, 2017), majority of the algorithms 

focus on matching the first two or three moments of the distribution. Because the fourth moment is 

directly related to the tail behavior of the sojourn time of distribution (Westfall, 2014), it is desirable 

to match the fourth moment for lifecycle modeling that requires formulation of long-term 

deteriorating characteristics. In our approach, we aim to match the first four moments as well as 

minimize the number of sub-states to avoid unnecessary calculation in the second stage. In the second 

stage, we use a three-layered CBM model that considers both minor maintenance and major 

maintenance. Since the surrogate Markov model is a continuous-time Markov model with good 

mathematical tractability, the long-term expected cost of the CBM policies can be derived analytically. 

The rest of the paper is structured as follows. In section 2, we provide a description of the problem 

and an overview of the maintenance model. The outline of the overall approach is described step-by-

step. Section 3 explains the hypo-exponential approximating approach for matching the first four 

moments and explores the analytical boundaries between the third and fourth moments. A guidance 

for selecting the minimum number of sub-states in surrogate Markov chain is also presented. This is 

essential for reducing unnecessary states in the surrogate Markov chain and provides a mathematically 

effective way for optimizing the CBM policy. A three-layered CBM model is formulated using the 

surrogate Markov chain. The steady-state probabilities are derived analytically to obtain a 

mathematical tractable expression for the lifecycle cost. Section 4 applies the overall approach to a 

practical case study of concrete bridge maintenance. The benefit of matching the additional fourth 
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moment is demonstrated by comparing with a solution that uses only three matching moments. The 

concluding remarks are summarized in section 5. 

2. System description and overview of the maintenance model  

The designed service life of assets such bridges is normally more than 30 years. Also, its aging 

process can be considered as a multi-state stochastic process. During its long lifetime, the operating 

environment may also decline stochastically, and this can accelerate the aging of the bridge. For 

instance, due to accumulated chloride ions, the surrounding environment can trigger chloride-induced 

deterioration. This could significantly reduce the lifetime of the bridge and cause unexpected 

disruption of service if left unattended. Apart from a self-revealing failure state, the condition state 

and operating environmental risks can only be assessed through periodic inspection. Based on the 

inspection outcome, two types of maintenance actions can be implemented. The first is minor 

maintenance, of which the purpose is to increase the level of protection against environmental hazards. 

An example of this type of maintenance is anti-corrosion coating. This mitigates the environmental 

risk and restores the aging rate of the bridge back to normal. The second action is major maintenance, 

which can eliminate the accumulated damage of the bridge and bring the bridge back to as good as 

new state. Compared to minor maintenance, major maintenance may require a longer maintenance 

duration and higher cost. In practice, this type of maintenance includes overhaul and preventive 

replacement. If the bridge reaches the failure state, it will be replaced. All the maintenance actions and 

replacement incur a non-negligible duration, and the bridge will be closed to traffic and other users 

during maintenance, incurring a downtime penalty cost. The objective of this CBM model is to 

identify the optimal condition thresholds for minor and major maintenance actions such that the time-

averaged lifecycle cost can be minimized. 

Our CBM model has a three-layered structure. We use a layer index   to signify different layers:     

indicates the deterioration layer,     represents inspection layer, and     represents the 

maintenance layer. In the deterioration layer, we formulate the aging of the long-life asset under 

environmental risks as CTSMC. The state of the long-life asset is expressed as        , where   

          indicates the deteriorating state of the asset. State     indicates the ‘as good as new’ 

state and state     represents the failure of the asset and is an absorbing state. Assets may subject to 

a declined operating environment that results in an increase in the environmental risk and 

subsequently changes the aging mechanism. Our model formulates such type of environmental risk 

using an environmental index  . For the convenience of expression, we categorize the environmental 

index into three different levels denoted by           for normal-rated, risky, and severe 

environmental risk, respectively. Notice that this approach can cope with scenarios where   has more 

than three levels. The sojourn time of states in the deterioration layer follows a General distribution. 

As the operating environment declines, the aging process may accelerate and exhibit different 
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characteristics. We represent the sojourn time in the normal-rated operating environment as       and 

the sojourn time in a declined operating environment as      , where        . The decline rates of the 

operating environment are denoted as      . The state transition diagram of the long-life semi-

Markovian deteriorating asset is illustrated in Figure 1. 

 

Figure 1: A state transition diagram of the long-life semi-Markovian deteriorating process 

Without loss of generality, we can combine the states                   as the failure state        . 

Therefore, the overall number of states for the deterioration layer is     , and the state space 

                                           .  

To design and optimize the CBM policy in a mathematically tractable manner, we apply a hypo-

exponential approximation to convert the CTSMC to a surrogate Markov chain. Hence the time-

averaged lifecycle cost of the asset under CBM policies can be assessed analytically. In our approach, 

we aim to match the first four moments of the sojourn time distribution. It is important to consider the 

fourth moment at the moment matching step since it represents the tail behaviour of the sojourn time 

distribution that is associated with the long-term performance of assets and may in turn influence their 

lifecycle costs.  

The overall approach developed in this paper can be summarized as follows: 

Step 1: Identify the scale of applicability based on the analytical bounds of skewness and kurtosis of 

the hypo-exponential distribution and find the minimal representation for matching the first four 

moments. 

Step 2: Approximate all the non-exponentially distributed sojourn times using the surrogate Markov 

chain. 

Step 3: Construct the CBM model  
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Step 4: Express the time-average lifecycle cost in term of state probabilities and derive the analytical 

form of the referencing state. 

Step 5: Calculate the time-average lifecycle cost and optimize the maintenance thresholds for both 

minor maintenance and major maintenance. 

This approach will now be described in more detail in the following sections.  

3. Approximating approach 

For each state with a non-exponential sojourn time distribution, the first four moments will be 

approximated by   serially connected sub-states with different exponential distributions. After the 

conversion, the resulting continuous-time Markov chain is referred to as the surrogate Markov chain. 

We denote the surrogate Markov chain as         . Each condition is then decomposed into sub-

states and renumbered from 0 to  . Thus, the state space of the surrogate Markov chain is    

                                         . It is worthwhile to mention that the number of 

sub-states in surrogate Markov      is directly related to the number of equations to be solved for 

assessing CBM policies. Hence, it is important to keep      to a minimum (a minimum representation) 

while matching the first four moments of the general sojourn time distribution.  

3.1 Hypo-exponential approximation 

To match high-order moments, we first calculate the moment generating function of a hypo-

exponential distribution. Using the moment generating function, a given moment of the hypo-

exponential distribution can be calculated by differentiation instead of integration. We denote a hypo-

exponential distribution random variable as  , which can be expressed as the sum of independent 

exponential random variables with different rates. 

             

where    is an exponential random variable and   is a finite positive integer.  

If      
 
   , where    are independent exponential variables with non-identical rates          

 , the Laplace transform of the probability density of   can be expressed as: 

                   

 

   

  
  

    

 

   

 

To obtain the analytical expression of      , we need to apply inverse Laplace transform to the above 

equation: 
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By applying the Heaviside cover-up method (George Jr, 1996) on  
 

    
 
   , it follows 

     
  

    

 

   

          
  

     

 

       

 

   

 

    
  

For the convenience of expression, we denote        
  

     

 
        which is also known as Lagrange 

basis polynomials of   . According to the linear property of the inverse Laplace transform, we have 

               
   

 

    
 

 

   

          
             

 

   

 

The moment generating function of random variable   is defined as 

                        
 

  
. It is a function of auxiliary mathematical variable of   that can 

be applied to find all the moments of the distribution. 

                   
             

 

   

  
 

  

                    
 

 

 

   

  
       

    

 

   

 

After obtaining the moment generating function, the analytical expression of a given moment   of 

hypo-exponential distribution can be calculated by differentiating the moment generating function   

times with respect to   and set     as: 

  
              

          

   

 

   

 

   

          
  

         

 

   

 

   

  
       

  
 

 

   

 

For hypo-exponential distributions, the first and second moments have been explored by (Magott & 

Skudlarski, 1993; Jang, Chung, Suh, & Rhee, 2006). We, therefore, focus on identifying the 

boundaries of the third and fourth moments. Skewness and kurtosis are standard ways to interpret the 

third and fourth moments (Johnson & Taaffe, 1989). as shown in equations (1) and (2) respectively. 

   
  
        

      
        

     

   
       

         
 

    
   

   

    
   

    
   

 
(1) 

   
  
        

      
        

       
        

     

   
       

       
 

    
   

   

    
   

    
    

(2) 

where    and    expresses the skewness and the kurtosis of the hypo-exponential distribution 

respectively.  

For a general distribution with known mean, variance, skewness, and kurtosis that are denoted as 

         and    respectively, inspired by (Johnson & Taaffe, 1990) and (Öztürk & Dale, 1985), we 
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define the function   as the square distance between the first four standardized moments of the 

approximated hypo-exponential distribution and the underlying distribution. 

      
  

 

   

    

 

      
  

 

   

 

   

    

 

  
    

   
   

    
   

    
   

    

 

  
    

   
   

    
   

    
       

 

 

The objective of the hypo-exponential approximation is to minimize   by adjusting         while 

keeping   as small as possible. If   is known,                     is a typical problem of 

minimization of nonlinear systems that can be solved by well-estimated approaches such as (Coleman 

& Li, 1996) and (Moré, 1978). Hence, the key step is to identify the smallest  . However, the 

dilemma is that if   is too small, the hypo-exponential may no longer match the skewness and 

kurtosis, while if   is too large, it may result in an unnecessary complication for calculating the 

lifecycle cost. As described by (Bobbio et al., 2005), one of the major difficulties of approximating 

with phase-type distribution lies in the unknown bounds of higher moments, which may result in 

unpredictable performance. To assist the approximation, we derive proposition 1 and 2 that express 

the interdependence between skewness and kurtosis and guide the selection of the minimum of  . 

Proposition 1: For a hypo-exponential distribution, the lower bound of kurtosis is related to skewness 

as follows:        
 .  

Proposition 1 is derived through proving the hypo-exponential distribution is infinite divisible, as 

shown in Appendix A.  

Proposition 2: The minimum number of states   to match the skewness    and kurtosis    of a given 

distribution using hypo-exponential distribution needs to satisfy the following necessary conditions.  

 

        
 

  
    

 

    
        

  

 

        
 

 
      

 

   
          

  

The proof can be found in Appendix B, and the result can be visualized, as shown in Figure 2. 

Different pattern-fills are used to distinguish different regions to represent the third and fourth 

standardized moments with a minimum number of states. This result determines the feasibility of 

matching skewness and kurtosis by using hypo-exponential distribution, as well as recommends the 

minimum number of states in the surrogate Markov chain. 
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Figure 2: Regions to well represent skewness and kurtosis with different   

To demonstrate the performance of using the developed boundaries, an illustrative example is 

provided. In the example, we compare the performance of matching a Gamma distribution 

(benchmark) with the   suggested by our derived boundary condition to the scenario with   outside 

the suggested boundaries. The Gamma distribution has a shape parameter equals to 3.8, and a scale 

parameter equals to 1.316. The result is plotted in Figure 3.  

 

Figure 3: Performance improvement using the developed boundaries for moment matching 

Figure 3 demonstrates that with the same moment matching method, the one using the   that 

suggested by our derived boundary has a better performance in matching the benchmark distribution.  

We have so far demonstrated the feasibility and identified the boundaries for matching the third and 

fourth moments using a hypo-exponential approximation. By using this approximating approach, the 

CTSMC is transformed into a surrogate Markov chain whose states are capable of being interpreted as 

the sub-condition states of the asset. According to Proposition 2, the size of the surrogate Markov 
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chain can be minimized, thereby making it more practical for modeling the lifecycle of long-life 

assets by effectively avoiding unnecessary states.  

3.2 Formulation and calculation of CBM policies 

The results from section 3.1 allow us to transform a condition state into a serial connected sub-

condition states with exponentially distributed sojourn time to match the first four moments of all 

non-exponentially distributed sojourn time in the CTSMC. In this section, we developed a three-

layered CBM model on the resulting surrogate Markov chain. The model aims to find the optimal 

state to maintain the asset so that the time-averaged cost of the maintenance of the asset is minimized. 

In general, the model contains three layers, namely deterioration layer    , inspection layer    , 

and maintenance layer    . Both minor maintenance activities and major maintenance activities are 

considered within the model. The state transition diagram of the CBM model is illustrated in Figure 4.  

 

Figure 4: A three-layered CBM for assets under declining operating environment 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 
 

In Figure 4, the first deterioration layer is formulated by the surrogate Markov chain, which is 

interconnected with inspection and maintenance layers. In the inspection layer, we model the 

frequency of inspection as     with a cost    and duration      . Based on the inspected condition 

and environmental index, we can decide the thresholds for minor maintenance and major maintenance. 

A minor maintenance activity is mainly used to increase the protection against environmental risk 

when the environmental index is ‘risky’ or ‘severe’. The minor maintenance has a duration      and 

cost   . A major maintenance activity restores the condition of an asset to as good as new state with a 

duration      and a cost   . If the asset deteriorates to the failure state        , a replacement will 

be implemented with a duration      and cost   . We also consider a planned downtime cost as    

caused by maintenance activities and an unplanned downtime cost as    caused by the replacement.  

We classify the maintenance model into four phases. Phase Ⅰ contains the states with a sub-condition 

index    . In phase Ⅰ, the asset under either the risky or severe environmental condition will be 

repaired by a minor activity. No major maintenance is required in this phase. Phase Ⅱ contains the 

states with a condition index          . In phase Ⅱ, the asset with a risky environmental index 

will be repaired by minor maintenance. However, if the asset is in a severely declined operating 

environment, major maintenance will be carried out. Phase Ⅲ contains the states with a condition 

index        . In phase Ⅲ, major maintenance will be applied if the asset is operating in either a 

risky or severe environmental index. Phase Ⅳ contains the states with a sub-condition index      

    . In phase Ⅳ, all good, risky, and severe environmental indices will lead to major maintenance. 

The objective of the maintenance model is to find the optimal values of phase thresholds as      and   

so that the lifecycle cost is minimized. The time-averaged cost of the maintenance of the asset can be 

expressed by equation (3): 

                      

 

   

 

   

         

 

   

   

     

                

 

   

   

   

              

 

   

 

   

        

 

     

 

             

 

     

         

 

   

   

     

             

(3) 

To obtain the analytical expression for  , it is critical to know the analytical expression of the 

required steady states probabilities, which requires to solve        equations, where   is the 

number of sub-conditions. Because the approximation is obtained by the hypo-exponential 

distribution, the configuration of resulting states follows a unique recursive pattern in each phase. We 

first express all the states as the ratio of referencing state       . Because the sum of all steady-state 
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probabilities is 1, we can derive the analytical expression of the referencing state in a recursive form 

as Proposition 3. 

Proposition 3: The referencing state can be expressed analytically with the recursive matrixes in 

phase Ⅰ, Ⅱ, Ⅲ, and Ⅳ as  

      

 

 
  
 

  
 

    
   
   

   
   
   

 
   
  

   
   
   

 
   
  
    

 

   

    
   
   

   
   
   

 
   
  

   
   
   

 
   
  

        

 

   

    
   
   

   
   
   

 
   
  

   
   
   

 
   
  

            
 

   

    
   
   

 
   
  

   
   
   

 
   
  

   
   
   

 
   
  

                  

   

   

  
       
  

 
       
  

 
       
  

                  

 
 
 
 
 
 

 
     

               
          

                             
 
 
 
 
 

 
  
 

  
 
  

 

(4) 

where  ,  ,   and   are the recursive matrices in phase Ⅰ, Ⅱ, Ⅲ, and Ⅳ respectively. The proof of 

proposition 3 is shown in Appendix C. With the analytical expression of       , the rest of states can 

be expressed analytically by multiplying equation (4) with the associated ratios. Hence, by 

substituting of the analytical expressions of all the states to (3), the analytical expression for time-

averaged cost can be achieved.  

4. Case study – CBM of concrete bridges  

In this section, we apply the overall approach to a case study of maintenance of concrete bridges. 

Bridges are important infrastructure assets that serve the public and drive economic growth. In 

practice, conditions of bridges are classified into 5 (0 to 4) discrete states. State 0 indicates that the 

bridge is in the ‘as good as new’ state, and state 4 indicates the functional failure of the bridge. 

Concrete bridge components may experience different exposure levels during their lifetimes, such as 

the risk of flooding, traffic load, aging environment, and condition of other components. The exposure 

levels for bridges are normally classified into three categories: mild, moderate, and severe. The 

exposure levels can be modelled using environmental indices described in section 4. Crack, creep, and 
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fatigue propagation are the major deterioration mechanisms for concrete bridges. In the literature, 

such types of deterioration are normally modeled by a Gamma process that is composed of 

independent increments of Gamma distribution (Van Noortwijk, 2009). With data and subjective 

estimates provided by the UK Bridges Board, the initial settings of sojourn times at each state are 

presented in Table 1. 

Table 1: Initial setting of sojourn time distributions of each state 

             

Mild 

(years) 

                                                              

                                

Moderate 

(years) 

                                                         

                                

Severe 

(years) 

                                                        

                               

 

In Table 1,    indicates the    state in the semi-Markov aging model. The sojourn times at state 0 are 

exponentially distributed, which do not require further treatment. The sojourn times of states 1 to 3 

follow Gamma distribution. Based on the shape parameter of the Gamma distribution, the skewness 

and kurtosis are 1.0260 and 4.5789, respectively. According to Proposition 2, a minimum of     is 

required to match the third and fourth standardized moments of the Gamma distribution. Hence, the 

sojourn times at state   ,    and    can be expressed as four serially connected sub-condition states, 

as shown in Table 2.  

Table 2: Sojourn times of sub-states after hypo-exponential decomposition for matching the first four 

standardized moments 

Condition 

state 

            

Sub- 

state 

                                                                                                                                  

Mild 

(years) 

60 15.4 13.2 15.4 17.4 15.4 13.2 15.4 17.4 15.4 13.2 15.4 17.4 

Moderate 

(years) 

60 8.82 10.3 10.3 11.6 5.70 5.26 4.28 5.26 2.06 2.71 2.74 2.71 

Severe 

(years) 

20 4.19 4.01 3.15 4.01 2.06 2.71 2.74 2.71 0.98 1.37 1.37 1.37 
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In Table 2,          denotes the     sub-state in the surrogate Markov chain for approximating the     

condition state in the semi-Markov chain. After the approximation, the four aging conditions in the 

semi-Markov chain are expanded to 13 sub-condition states in the surrogate Markov chain. Because 

the surrogate Markov chain is a continuous time Markov chain with exponentially distributed sojourn 

time, the deterioration rate can be calculated by inverting the sojourn time.  

We consider the environmental decline as a stochastic process. The decline rate from mild exposure 

level to moderate exposure level is every 10 years. The decline rate from the moderate exposure level 

to severe exposure level is every 2 years. In the UK, the condition of bridges is investigated by 

general inspection every 2 years. We assume that the average duration of inspection is 4 hours and 

costs £100. A minor maintenance activity such as patching takes 2 days and cost £6000. Major 

maintenance that eliminates the accumulated damage of bridges takes one week and cost £200,000. 

All maintenance activities on the bridge will cause planned traffic interruption. The traffic 

management cost, in this case, is £5000 per day. A replacement of the concrete bridge can last as long 

as a month and cost up to £300,000. More importantly, it can also cause a safety issue and unplanned 

traffic interruption, which will cost £20,000 per day. The parameter setting of the declining operating 

environment, inspection, and maintenance are provided in Table 3.  

Table 3: Parameter setting of the declining operating environment, inspection, and maintenance  

Parameter Value 

      0.1        

      0.5        

    0.5        

    6       

    £100 

   0.5       

   £6000 

   0.1429       

   £200,000 

   0.033       

   £300,000 

   £5000       

   £20000       

 

In this case, we aim to find the optimal maintenance thresholds of phases Ⅰ, Ⅱ, Ⅲ, and Ⅳ to minimize 

the long-term maintenance cost of concrete bridges. By using the three-layered CBM model, the time-
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averaged long-term cost can be calculated by equation (4). The cost is minimized when          

and    . The minimum long-term cost      is £4667.40 per year. The time-averaged long-term 

costs at the combination of different phase thresholds for                  and     are 

illustrated in Figure 5. The size of the markers                where   is a significantly small 

number to avoid the undefined value. 

 

Figure 5: Time-averaged long-term costs at different phase thresholds  

For performance comparison, we have applied a similar approach where we match the first three 

moments of the sojourn time of condition states. The resulting sub-condition states are tabulated in 

Table 4.  

Table 4: Sojourn times of sub-states after hypo-exponential decomposition for matching the first three 

moments 

Condition 

state 

            

Sub- 

state 

                                                                                                                                  

Mild 

(Years) 

60 14.1 14.1 14.1 18.6 14.1 14.1 14.1 18.6 14.1 14.1 14.1 18.6 

Moderate 

(years) 

60 11.0 11.0 11.0 7.65 4.71 4.71 4.71 6.23 1.86 2.75 2.76 2.76 

Severe 

(years) 

20 4.13 4.13 4.13 2.84 1.86 2.75 2.76 2.76 1.38 0.89 1.39 1.39 

 

We repeat the same approach to optimize the maintenance thresholds with the first three matched 

moments. In this case, the optimized maintenance thresholds are        . Figure 6 compares 
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the time-averaged long-term cost with the first four matched moments and the first three matched 

moments. 

 

Figure 6: Time-averaged long-term cost when       

By matching the first three moments, the minimum time averaged cost is £4706.40 per year when 

   . With four matching moments, the minimum time-averaged cost is reduced to £4667.40 per 

year when    , which lead to a 0.84% annual saving of the maintenance budget. Although the 

resulting difference seems small in the first instance, similar benefits can be rolled out to similar 

bridges or other concrete infrastructure when planning regional maintenance. For instance, according 

to (Parlikad & Catton, 2018), the average revenue budget for local authorities to maintain bridges is 

about £2.3 million. In the cases with a similar scale, a saving of £19,320 can be expected for local 

authorities. Moreover, for bridge maintenance, many sensors such as vibration sensors, moisture 

sensors, and fiber optic sensors can be implemented to further improve maintenance performance. 

However, it may require a large initial investment in sensors, ICT, and data centres. Our developed 

approach is formulated using the practically available inspection data and can be used until 

investment in such condition-monitoring technologies is made. Moreover, our model can lead to 

maintenance practices that can potentially avoid the excessive aging of the assets caused by the 

decline of the operating environment. In practice, it promotes less costly maintenance by employing 

minor maintenance to mitigate excessive aging and reducing the chance of costly major maintenance 

and replacement. 

Concluding Remarks 

The paper presents a new technique to optimise the CBM policy for long-life assets. We presented a 

mathematically tractable way for optimizing the maintenance policy through a hypo-exponential 

distribution. This approach addresses one of the shortcomings of current models in the literature that 

matches the first three moments resulting in fictitious sub-states that are undesirable for designing a 

CBM policy. Our approach transforms the semi-Markovian aging process using a hypo-exponential 
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decomposition so that the surrogate Markov chain could be deemed as the sub-states of the asset. 

More importantly, the tail behavior of sojourn time distribution could be preserved with minimal 

representation.  

This research emphasises the importance of matching the fourth moment and provides fundamental 

analysis on the boundaries of skewness and kurtosis, which contributes to the selection of the 

minimum number of states in the surrogate Markov chain. The resulting three-layered CBM model 

helps determine optimal maintenance decisions based on the combined information of aging and 

operating environment risk and minimises the time-averaged operation cost. The analytical expression 

of the reference state makes the model mathematical tractable. Finally, the practical case study 

highlights the benefit of the approach on annual maintenance budget planning for regional authorities. 

In the future, we aim to capture and formulate the transitive influence from the operating environment 

with the assistance of sensory information. 

Appendix A. Proof of Proposition 1 

For a distribution to be infinitely divisible, it requires that the characteristic function      can be 

expressed as 

                     
   

    
       

 

 

 (A1) 

where   is real and            is integrable between 0 and  . For example, the characteristic 

function of exponential distribution with rate   is       . In this case, the equation holds when 

   
    

    
  

 

 
 and              

By substituting the   and      into equation (A3) we have: 

  
 

    
                   

 

 

 

Based on the property of the characteristic function                          , we have  

             
  

     

 

   

       
  

     
 

 

   

 

Let    
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   . Then by substituting   and      into equation (A1), 

it follows: 
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The result shows that the hypo-exponential distribution is infinite divisible. As (Rohatgi & Székely, 

1989) proved,        for any given distribution. The inequalities can be further sharpened to 

       if the distribution is infinite divisible. Therefore, the interdependence between skewness 

and kurtosis for hypo-exponential distribution is constrained by the sharp boundary as expressed by 

equation (A2). 

       
  (A2) 

  

Appendix B. Proof of Proposition 2 

According to equation (1) 

 
  
 
 
   

 
    

   
    

   

    
   

    
   

 

By using the inequality of Hölder mean 

 
 

 
   

  

 

   

 

   

  
 

 
   

  

 

   

 

   

 

The equality holds when    is identical. Hence, 

 
  
 
 
   

  
 

 
 
   

 

Therefore,  

   
 

  
 (A3) 

By using Cauchy-Schwarz inequality 

    

 

   

  
   

 

     
  

 

   

 

The equality holds when   
   are identical. Therefore, the  
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(A4) 

Based on Proposition 1, the necessary boundaries for matching the third and fourth moments are 

expressed in equation (A2), (A3) and (A4). Equations (A3) and (A4) are related to the number of 

states  . Equation (A2) is independent of  . When    , it is equivalent to use an exponential 

distribution for approximation. In this case, the boundaries for skewness and kurtosis can be 

calculated using equation (A3) and (A4) as      and     . By substituting            into 

equation (A3) and (A4), we can calculate the boundaries for matching the third and fourth moments 

for a given  . Then, the feasible region of phase-type approximation using hypo-exponential 

distribution can be visualized as shown in Figure 2. Figure 2 shows that when   increases the region 

expands. When   approaches infinity, the region is the largest and identical to all the positive region 

above the curve boundary        
 . To match a given distribution with skewness    and kurtosis 

  , the minimum number of state   can be identified when the boundaries conditions satisfy at   and 

not satisfy at     as shown below: 

 
 

 
 

  
    

 

    
 

 
      

 

   
  

  

  

Appendix C. Proof of Proposition 3 

Equations based on the input and output equilibrium  
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For     

                                           

From the list of equations, only        are dependent on the probabilities of         .        and        can 

be expressed by only       . If we use        as the reference state, the        and        can be 

expressed as shown in the following equations: 

       
     

                 
       

       
     

           

     

                 
       

       when       are dependent on       ,       ,      ,        and       , which can be expressed as: 
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By substituting the expressions, we have  

                                              

where 
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To make the equations more compact, we can transfer the equations into matrix format. 

 

      
      
      

   

            
            
            

  

        
        
        

  

In phase I, we denote the recursive matrix as  . Therefore, we can analytically express any 

deterioration state   within phase Ⅰ.  

 

      
      
      

     

      
      
      

    

 
 
 
 
 
 

 
     

               
          

                             
 
 
 
 
 

         (A5) 

Similarly, we can express the phase Ⅱ (       ) deterioration states as a recursive equation A2: 

 

      
      
      

         

      
      
      

        

 
 
 
 
 
 

 
     

               
          

                             
 
 
 
 
 

 (A6) 

where   is a     matrix 
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For phase Ⅲ (       ), we have 

 

      
      
      

             

      
      
      

            

 
 
 
 
 
 

 
     

               
          

                             
 
 
 
 
 

 (A7) 

Where   is a     matrix 

   

      

         
            

  

     
       

           
 

     
            

                              
 

     
         

               
 

     
                 

                                         
 

     
              

                            
 

     
         
         

 

For phase Ⅳ          , we have  
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(A8) 

Where   is a     matrix 

   

      

         

            

  

     
       

               
 

     
            

                                  
 

     
         

               
 

     
                 

                                             
 

     
              

                            
 

     
         
         

 

Based on the list of equations, states        and        can be expressed by       . By recalling the sum 

of all states probability is equal to 1, therefore by substituting A5 to A8, the analytical expression of 

referencing state of        can be derived. 
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