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Abstract

Weighting and moment conditions in Bayesian inference

Andrew Ho Man Yiu

The work presented in this thesis was motivated by the goal of developing Bayesian methods
for “weighted” biomedical data. To be more specific, we are referring to probability weights,
which are used to adjust for distributional differences between the sample and the population.
Sometimes, these differences occur by design; data collectors can choose to implement
an unequal probability sampling frame to optimize efficiency subject to constraints. If
so, the probability weights are known and are traditionally equal to the inverse of the unit
sampling probabilities. It is often the case, however, that the sampling mechanism is unknown.
Methods that use estimated weights include so-called doubly robust estimators, which have
become popular in causal inference.

There is a lack of consensus regarding the role of probability weights in Bayesian
inference. In some settings, it is reasonable to believe that conditioning on certain observed
variables is sufficient to adjust for selection; the sampling mechanism is then deemed
ignorable in a Bayesian analysis. In Chapter 2, we develop a Bayesian approach for case-
cohort data that ignores the sampling mechanism and outperforms existing methods, including
those that involve inverse probability weighting. Our approach showcases some key strengths
of the Bayesian paradigm—namely, the marginalization of nuisance parameters, and the
availability of sophisticated computational techniques from the MCMC literature. We analyse
data from the EPIC-Norfolk cohort study to investigate the associations between saturated
fatty acids and incident type-2 diabetes.

However, ignoring the sampling is not always beneficial. For a variety of popular prob-
lems, weighting offers the potential for increased robustness, efficiency and bias-correction.
It is also of interest to consider settings where sampling is nonignorable, but weights are
available (only) for the selected units. This is tricky to handle in a conventional Bayesian



vi

framework; one must either make ad-hoc adjustments, or attempt to model the distribution of
the weights. The latter is infeasible without additional untestable assumptions if the weights
are not exact probability weights—e.g. due to trimming or calibration. By contrast, weighting
methods are usually simple to implement in this context and are virtually model-free.

Chapters 3 and 4 develop approaches that are capable of combining weighting with
Bayesian modelling. A key ingredient is to define target quantities as the solutions to
moment conditions, as opposed to “true” components of parametric models. By doing so,
the quantities coincide with the usual definitions if working model assumptions hold, but
retain the interpretation of being projections if the assumptions are violated. This allows us
to nonparametrically model the data-generating distribution and obtain the posterior of the
target quantity implicitly. Crucially, our approaches still enable the user to directly specify
their prior for the target quantity, in contrast to common nonparametric Bayesian models like
Dirichlet processes.

The scope of our methodology extends beyond our original motivations. In particular,
we can tackle a whole class of problems that would ordinarily be handled using estimating
equations and robust variance estimation. Such problems are often called semiparametric

because we are interested in estimating a finite-dimensional parameter in the presence of an
infinite-dimensional nuisance parameter. Chapter 4 studies examples such as linear regression
with heteroscedastic errors, and quantile regression.
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Chapter 1

Introduction

The purpose of statistical inference is to generalize from data to an underlying process or
population. Standard methods in the statistical toolbox—e.g. logistic and Cox regression—
assume that the data are drawn directly from the target. In practice, however, datasets are
often afflicted with missing observations and selection bias, and the failure to account for
these issues can lead to drastically misleading results. Recent high-profile examples include
the early forecasting of COVID-19 (Zhao et al., 2021) and the polling for the 2020 US
general election (Panagopoulos, 2021). Collecting more data, which increases the sampling
proportion relative to the population (if assumed to be finite), will not necessarily suffice. In
fact, it can make matters worse; as Meng (2018) states, “The bigger the data, the surer we
fool ourselves.”

The work in this thesis was motivated by the objective of developing Bayesian methods
for resolving this problem. The standard Bayesian approach (e.g. Section 8, Gelman et al.,
2013) assumes that the missingness/selection mechanism is ignorable and drops out from the
likelihood function if we condition on a sufficiently rich set of observed variables. However,
adjusting for these variables can be difficult if they are high-dimensional, particularly if the
sample size is relatively small. And the interpretations of our target quantities—such as
regression coefficients—may become obscured if we condition on variables that are not of
substantive interest.

Probability weighting provides a simple alternative; the units with observed data are
weighted by the inverse of their sampling probabilities. This idea originated in the survey
literature (Horvitz and Thompson, 1952) but has gained widespread interest due to the rising
popularity of causal inference, particularly in the use of so-called doubly robust estimators.
An overview of some of these developments is provided in §1.1.



2 Introduction

It is often argued that probability weights should not be ignored, even if they are ignorable
(Robins and Ritov, 1997, Hahn et al., 2020). But it is unclear how they should be incorporated
into a Bayesian analysis. These difficulties have led some authors to suggest that Bayesian
inference is inappropriate for handling this problem (Robins and Wasserman, 2012a,b, Robins
et al., 2015). We discuss these issues in §1.2 and argue why we believe that a Bayesian
approach can be desirable. Furthermore, we establish our philosophy of projection-based
Bayesian estimation and describe how this can handle not only weighting but a wide-ranging
class of problems involving moment conditions.

1.1 A selective overview

The existing literature on unequal probability sampling is vast, covering a wide range of esti-
mands, conditions and applications. Our intention is not to provide a comprehensive review.
Instead, we will examine a particular strand of work that will highlight the development of
several core concepts and techniques. For illustrative purposes, we will focus throughout
this section on the canonical example of estimating the mean of a one-dimensional outcome.
Suggestions on how to generalize to other quantities will be provided later.

Our starting point is design-based survey inference (§1.1.1). In contrast to mainstream
statistics, the population of interest is assumed to be finite, and the inferential uncertainty
is attributed solely to the stochastic sampling mechanism. Remarkably, this framework
enables consistent estimation under virtually no assumptions; it is perhaps one of the few
exceptions to the famous motto “all models are wrong”1. But this does not restrict us from
incorporating more traditional models; we will discuss how model-assisted estimation can
leverage auxiliary variables and outcome regression models to increase efficiency without
sacrificing robustness.

Semiparametric estimation forms the core of our overview (§1.1.2). In the 1990s, James
Robins and his collaborators established a theoretical framework for coarsened data problems,
including the missing at random mean estimation problem that we focus on. From a historical
perspective, it is interesting to see how some of their ideas were developed in parallel with
design-based inference. Motivated by finding semiparametric efficient estimators, they
re-discovered model-assisted estimation as a special case.

The literature on semiparametric estimation is often very abstract. Our intention is to
provide a relatively accessible introduction to certain concepts with an emphasis on the
statistical motivations. Where possible, we have tried to avoid technical details, but some

1The only model assumption is that the sampling mechanism is actually implemented as assumed.
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are important to properly understand the advantages and limitations of the theory. We also
collect in Appendix A the proofs of some key facts that are frequently cited in the literature,
but for which the proofs are either difficult to find in one place, or are contained as special
cases within much more general results (accompanied by intimidating sets of notation and
terminology!). While the results we prove are certainly not novel, we believe that we have
contributed to making the reasoning more intuitive and self-contained. Our main references
were van der Vaart (1998) and van der Vaart (2002).

A subsection (§1.1.2.2) is dedicated to the phenomenon of increased asymptotic efficiency
from using estimated probability weights. Partly, this is because the material helps to bridge
the gap between the (design-based inference motivated) inverse probability estimators and
the more sophisticated estimators presented later on in the section. But we also believe that
this topic is fascinating in its own right. Existing accounts of the phenomenon tend to be
either almost completely mathematical (i.e. in terms of orthogonal projections in Hilbert
spaces) or almost completely heuristic (along the lines of the circus elephants example given
here). We focus on a middle ground and try to provide statistical intuition.

Much of the work in the literature assumes that the sampling/missingness mechanism is
unknown. In this setting, the user is required to construct estimates of both the propensity
score—which determines selection—and the outcome regression function. Doubly robust
estimators (§1.1.2.3) have enjoyed popularity due to their ability to protect against the
potential inconsistency of one of the two estimators. In recent years, researchers have
discovered that doubly robust estimators have the benefit of being able to incorporate flexible
machine learning methods while retaining attractive statistical properties. We will close this
section by providing a brief introduction to these state-of-the-art methods (§1.1.3).

1.1.1 Design-based survey inference

Let y1, . . . ,yN be constant values of an outcome variable for a population of known size
N ă 8. The target quantity is the population outcome mean

ȳ “
1
N

N
ÿ

i“1

yi.

The selection indicator variables R1, . . . ,RN take the value 1 if the corresponding population
outcome is observed, and 0 otherwise. The first-order sampling probabilities πi “ PpRi “

1q “ EpRiq are assumed to be known by design.
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We can visualize this set-up by imagining N cards laid face down hiding the values of the
outcome underneath. The data collector designs a sampling frame to determine how the cards
are assumed to be randomly selected and flipped over. This differs from the superpopulation

framework of conventional statistics, where a model for the outcome variables is specified,
and the cards are assumed to have been drawn from an infinite deck. We will return to the
superpopulation approach in the next subsection.

Why might a data collector be interested in a sampling frame that assigns unequal
sampling probabilities? The answer lies in increased efficiency. It is often reasonable to
believe that we can find strata within which the outcome variation is lower than in the whole
population. Units in smaller strata can be assigned a relatively high sampling probability to
help ensure each stratum is well-represented in the sample. Additionally, some strata could
be of more interest than others. In Chapter 2, we study a sampling design where individuals
who become cases are over-sampled because they provide more information in a survival
analysis than controls.

Since we are likely to believe that the sampling probabilities are correlated with the
outcome for the above reasons, a simple average of the observed outcome values will not
suffice. Horvitz and Thompson (1952) introduced the following estimator

µ̂HT “
1
N

N
ÿ

i“1

Riyi

πi.

The inverse of the sampling probabilities are used to form a weighted average of the observed
outcome values, such that units with a relatively small sampling probability are given more
weight and vice-versa. Since πi “ EpRiq, it is clear that the Horvitz-Thompson estimator is
unbiased (some authors use the term design-unbiased to emphasize the design-based set-up).

Despite the simplicity and unbiasedness of the Horvitz-Thompson estimator, it is rarely
used in practice. The following example, paraphrased from Basu (1971), illustrates why.
A circus owner wishes to estimate the average weight of his 50 elephants. Due to the
cumbersome nature of weighing an elephant, he decides to form his estimate based on a
single measurement. Upon reviewing the results from 3 years ago, he proposes to select
Sambo, an elephant of average weight previously. The circus statistician is horrified and
insists that the owner uses the Horvitz-Thompson estimator because it is design-unbiased.
They devise a sampling frame where Sambo is selected with probability 99/100 and the
remaining probability is shared equally among the other 49 elephants. Sambo is selected,
and the statistician produces the absurd estimate of 2/99 multiplied by Sambo’s weight. The
incredulous owner asks what the estimate would have been if Jumbo, the big elephant, was
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selected. The statistician replies “98 multiplied by Jumbo’s weight”, and subsequently loses
his job.

In response to this example, Hájek (1971) proposed the alternative estimator

µ̂HJ “

¨

˝

N
ÿ

j“1

R j

π j

˛

‚

´1
N
ÿ

i“1

Riyi

πi
.

Regardless of which elephant is selected, the Hájek estimator would be equal to the raw
single measurement taken, and the circus statistician’s job would have been saved. This
superior performance may seem surprising at first; we appear to have gained from replacing
the known population size N with an estimate p

řN
j“1 R j{π jq. One possible explanation for

this is that the Hájek weights are guaranteed to sum to 1; thus, the estimator will lie in the
convex hull of the observed outcomes—a property known as sample-boundedness. The
Horvitz-Thompson estimator does not have this guarantee and is prone to poor behaviour
when the weights are variable, as is the case in Basu’s elephants example.

Working with a finite population, the notion of consistency in a design setting is slightly
different than usual. Let tFNu be an increasing sequence of (possibly random) finite
populations with associated sequences of sampling frames and finite population outcome
means tȳNu. An estimator µ̂ is design-consistent if for any ε ą 0

lim
NÑ8

PFN p|µ̂ ´ ȳN | ą εq “ 0 a.s.,

where PFN denotes the probability with respect to FN and its associated sampling frame.
Both the Horvitz-Thompson and Hájek estimators are design-consistent under very mild
conditions; see Fuller (2009) for further details.

Treating the outcome values as constants does not preclude the use of models and
auxiliary variables. Given now that we also observe (possibly vector) auxiliary variable
values x1, . . . ,xN for each unit in the population, the difference estimator takes the general
form

µ̂DIFF “
1
N

N
ÿ

i“1

ˆ

Riyi

πi
`

"

1 ´
Ri

πi

*

m̂pxiq

˙

, (1.1)

where m̂ is—loosely speaking—an estimate of the regression function “Epy | xq” fitted using
the data. Setting m̂ “ 0 recovers the Horvitz-Thompson estimator.

The design-consistency of the difference estimator does not depend on correct specifica-
tion of the regression function as long as m̂ converges appropriately to some fixed function m
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as the sample size increases; for this reason, use of the difference estimator is often referred
to as model-assisted estimation, as opposed to model-based estimation. To see this, we can
rewrite (1.1) as

µ̂DIFF “
1
N

N
ÿ

i“1

ˆ

Riyi

πi
`

"

1 ´
Ri

πi

*

mpxiq `

"

1 ´
Ri

πi

*

tm̂pxiq ´ mpxiqu

˙

.

The first term is the Horvitz-Thompson estimator, the second term will tend to 0 due to
the Horvitz-Thompson estimator for mpxq, and the remaining term will tend to 0 by the
convergence of m̂ to m. A more thorough argument will be given later, albeit in a slightly
different setting.

If we fit our regression model as usual, the difference estimator can suffer the same kind
of poor behaviour as the Horvitz-Thompson estimator. A possible strategy for fixing this can
be seen by rewriting (1.1) as

µ̂DIFF “
1
N

N
ÿ

i“1

ˆ

m̂pxiq `
Ri

πi
tyi ´ m̂pxiqu

˙

.

If we are able to fit m̂ in such a way that

1
N

N
ÿ

i“1

ˆ

Ri

πi
tyi ´ m̂pxiqu

˙

“ 0, (1.2)

the difference estimator will take the form of a regression estimator2, leading to more stable
estimates. For example, if the outcomes are binary and we use a logistic regression model,
the difference estimator will be guaranteed to lie between 0 and 1.

When m̂ is estimated using a generalized linear model with the canonical link function,
there are two simple ways (Firth and Bennett, 1998) to attain (1.2). The first is to implement
weighted maximum likelihood with weights equal to Ri{πi, so that (1.2) is equal to the inter-
cept component of the weighted score function. The second is to perform standard maximum
likelihood with an extra covariate 1{πi added to the regression model; the component of the
score function corresponding to this new covariate will be equal to (1.2). This approach is
linked to the method of targeted learning that will be discussed later.

It is common that the auxiliary variables are also only observed for the sampled units. In
this case, model-assisted estimation is still possible if the population mean of the auxiliary
variables is known (or can be reasonably approximated). Using a linear regression model

2The sample mean of a regression function.
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fitted with ordinary least squares, (1.1) specializes to

µ̂DIFF “
1
N

N
ÿ

i“1

ˆ

Riyi

πi
`

"

1 ´
Ri

πi

*

xT
i β̂OLS

˙

“ µ̂HT `

˜

1
N

N
ÿ

i“1

xT
i

¸

β̂OLS ´
1
N

N
ÿ

i“1

ˆ

RixT
i

πi

˙

β̂OLS,

where β̂OLS is the ordinary least squares coefficient estimated from the sampled units. This
is known as the linear generalized regression estimator (Cassel et al., 1976, Särndal et al.,
1992).

1.1.2 Semiparametric estimation

Let us look at the problem from a slightly different perspective. Suppose that we observe
independent and identically distributed data D1, . . . ,Dn from a distribution P known to
belong to a set P of probability measures on a measurable space pD ,A q, where for each i,
Di “ pXi,Ri,RiYiq, Xi is a vector of covariates, Yi is a one-dimensional real outcome, and Ri

is binary. We refer to P as our model.
As before, the target quantity is the outcome mean. In this setting, we denote the outcome

mean by µpPq, where µ is the mapping µ : P Ñ R with P ÞÑ EPrY s. We assume that R and
Y are independent given X—this assumption is sometimes referred to as strong ignorability

(Rosenbaum and Rubin, 1983). For the time being, we will also assume that the function

πpXq “ PpR “ 1 | Xq,

named the propensity score (Rosenbaum and Rubin, 1983), is known, and that π is bounded
away from 0 with probability 1—this is known as the positivity assumption. Aside from
the above, we make no restrictions on our model. We will use the shorthand notation
P f :“

ş

f pdqdPpdq. In particular, Pn f “ n´1řn
i“1 f pDiq, where Pn is the empirical measure.

There are a few differences to the set-up in the previous subsection. First, the outcomes
and covariates are now treated as random variables, as if they were drawn from a hypothetical
infinite superpopulation. Moreover, the covariates are assumed to be sufficient to adjust for
the selection bias, and the distribution of R given X is known. Also, we have restricted our
attention to a particular type of sampling design known as Poisson sampling (Fuller, 2009),
where each unit is sampled independent of the others. A consequence is that the number of
sampled units is random.
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Nevertheless, we can attempt to estimate the outcome mean in much the same way as
before. For example, the Horvitz-Thompson estimator

µ̂HT “ Pn

„

RY
πpXq

ȷ

is again unbiased—this follows from using iterated expectations EtEp¨ | Xqu and the strong ig-
norability assumption. In fact, assuming that varrRY {πpXqs ă 8 we can use the central limit
theorem to deduce that the Horvitz-Thompson estimator is

?
n-consistent and asymptotically

normally distributed (CAN) since it takes the form of a sample average.
The Hájek estimator

µ̂HJ “ Pn

„

R
πpXq

ȷ´1

Pn

„

RY
πpXq

ȷ

is also CAN. We can see this by defining the Hájek estimator to be the solution to the
unbiased3 estimating equation

PnrSHJpD,µqs :“ Pn

„

RpY ´ µq

πpXq

ȷ

“ 0.

Thus, the Hájek estimator belongs to the class of Z-estimators (“Z” stands for zero) and
admits the following expansion under regularity conditions (van der Vaart, 1998):

?
npµ̂HJ ´ µpPqq “ ´

?
nPn

«

P
"

BSHJ

Bµ
pD,µpPqq

*´1

SHJpD,µpPqq

ff

` oPp1q.

We deduce that
?

npµ̂HJ ´ µpPqq converges in distribution to a mean-zero normal distribution
with the “sandwich” covariance matrix

P
"

BSHJ

Bµ
pD,µpPqq

*´1

P
␣

SHJpD,µpPqq
2(P

"

BSHJ

Bµ
pD,µpPqq

*´1

.

The above can be estimated by replacing P with Pn and µpPq with µ̂HJ .
Can we do better than these two estimators? For parametric problems with standard

regularity conditions, it is well-known that maximum likelihood estimation is asymptotically

efficient. This means that the maximum likelihood estimator is CAN with the smallest
possible asymptotic variance among all regular estimators. Roughly speaking, the asymptotic
behaviour of a regular estimator is continuous with respect to the data-generating distribution—
we will provide a more precise discussion later.

3This refers to the fact that SHJ has mean zero under P when evaluated at µ “ µpPq.
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Our model, however, is semiparametric; πpXq is known, but the joint distribution of
pY,Xq is unspecified, leaving us with an infinite-dimensional nuisance parameter. Given our
interest in CAN estimators, a reasonable first step is to restrict our attention to estimators that
admit an expansion

?
npµ̂ ´ µpPqq “

?
nPntψpDquq ` oPp1q, (1.3)

where ψ is a measurable function with PtψpDqu “ 0 and PtψpDq2u ă 8. Such estimators
are called asymptotically linear and ψ is called the influence function4 of µ̂ . We have already
seen that the Horvitz-Thompson and Hájek estimators belong to this class.

The asymptotic variance of an asymptotically linear estimator is equal to the variance of
its influence function. If we could characterize the set of possible influence functions, then
we might be able to construct more precise estimators, e.g. by using the influence function to
form a set of unbiased estimating equations, as was the case for the Hájek estimator. It turns
out that such a characterization is indeed possible. The influence function of any regular and
asymptotically linear (RAL) estimator must be a gradient of the target quantity with respect
to the model. In order to elaborate on this statement, we will introduce some background in
the following subsection.

1.1.2.1 Background

What does it mean to say that one estimator is more efficient than another for estimating a
quantity at a distribution P? Clearly, any definition must depend on more distributions than
just P itself. Otherwise, the constant estimator evaluated at P would always be considered
efficient. Somehow, the complexity of the model must be taken into account. A parametric
estimator might be viewed as inappropriate for a semiparametric model because there are
distributions surrounding P that are not contained in the smaller, parametric model. Thus,
there will generally exist certain directions along which we could deviate slightly from P

such that the parametric estimator exhibits undesirable behaviour. Efficiency theory focuses
on estimators that are insensitive to small local changes in the data-generating distribution in
any direction.

The notion of “direction” is formalized by considering smooth, one-dimensional paths
contained in the model P that pass through P. The set of permitted directions is the tangent

space 9PP of the model P at P, containing measurable functions g : D Ñ R such that
Pg “ 0 and Pg2 ă 8. The tangent space is a subset of the Hilbert space L2pPq consisting

4This refers to the fact that ψpDiq quantifies the (asymptotic) influence of a single observation Di on the
value of the estimator.
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of all measurable functions h : D Ñ R with Ph2 ă 8, equipped with the inner product
xh1,h2y “ Prh1h2s and norm }h} “

?
Ph2. We say that two elements h1 and h2 are orthogonal

if Prh1h2s “ 0.
For each g P 9PP, we can exhibit a parametric submodel tPt,g : t P p´ε,εq Ă Ru Ă P

satisfying Pt,g|t“0 “ P and for every value d, we have

gpdq “
B

Bt
logdPt,gpdq|t“0. (1.4)

In words, a parametric submodel is a one-dimensional model parameterized by t that is
contained in P and passes through P at t “ 0 with score function g.

The exact form of the parametric submodel is not particularly important5. We are only
concerned with its score function g as it passes through P at t “ 0. For bounded g, a common
construction is

dPt,g “ p1 ` tgqdP,

with ε chosen small enough such that the submodel stays within P . We emphasize that
parametric submodels are not meant to be substantively meaningful, despite “model” appear-
ing in the name. As suggested above, we can simply view parametric submodels as paths
contained in P that cross P in directions identified by their score functions.

We can now give a precise definition of regularity. An estimator µ̂ is called regular for
estimating µpPq relative to 9PP if there exists a probability measure L such that

?
npµ̂ ´ µpP1{

?
n,gqq

P1{
?

n,g
ù L (1.5)

for every g P 9PP and any parametric submodel tPt,gu with score function g. For each N, the
underlying data-generating distribution is P1{

?
n,g and the arrow ù denotes convergence in

distribution. In less formal terms, the limiting distribution of the estimator at P is the same,
no matter which direction we approach from.

We also require that the target quantity possesses the following property: we say that µ is
pathwise differentiable at P with respect to 9PP if

• the mapping t ÞÑ µpPt,gq is differentiable, and

5A technical requirement is differentiability in quadratic mean (see Chapter 25 of van der Vaart (1998)).
This is used to establish a property known as local asymptotic normality, which allows a local change of
measure that is central to the proof of Theorem 1.1.
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• there exists6 is real, a necessary and sufficient condition for existence is that the
derivative map is continuous and linear in g, by the Riesz representation theorem (see
p. 363 of van der Vaart (1998)). a fixed, measurable function ψ : D Ñ R such that

BµpPt,gq

Bt
|t“0 “ Prψgs (1.6)

for every g P 9PP and any parametric submodel tPt,gu with score function g. We call ψ a
gradient7 of µ at P. Gradients are not unique; for any measurable h : D Ñ R such that
Prhgs “ 0 for all g P 9PP (we say that h is orthogonal to 9PP), ψ ` h is also a gradient.

The definition of pathwise differentiability above can be motivated as follows. Suppose
we try to form a distributional Taylor expansion

µpPt,gq ´ µpPq “ pPt,g ´ Pqrψs ` R2pPt,g,Pq, (1.7)

where R2pPt,g,Pq is simply the left-hand side minus the first term on the right—nothing is
assumed about it yet! Now suppose that we divided both sides by t and took the limit as
t Ñ 0. Clearly, the left-hand side converges to BµpPt,gq{Bt|t“0. Assuming that the order of
differentiation and integration can be exchanged, the first term on the right converges to

B

Bt
Pt,gpψq|t“0 “

ż

ψ
B

Bt
dPt,g|t“0 “

ż

ψ

ˆ

B

Bt
logdPt,g

˙

dPt,g|t“0 “ Prψgs. (1.8)

By the definition (1.6), we deduce that limtÑ0 R2pPt,g,Pq{t “ 0.
This suggests that a gradient can be viewed as a type of first-order distributional derivative.

Furthermore, the remainder term R2pPt,g,Pq must depend on the difference between Pt,g and
P in some higher-order way that allows it to vanish at a faster than linear rate. This will be
very important when we discuss double robustness later on.

From the preceding definitions, we can deduce that the constant estimator µ̂ “ µpPq is
not regular. Indeed,

?
npµpPq ´ µpP1{

?
n,gqq Ñ ´

BµpPt,gq

Bt
|t“0 “ ´Prψgs,

6Since the target quantity
7The literature often uses the name “influence function”, due to the connection with RAL estimators

discussed later. However, since this definition is not quite equivalent to that of asymptotically linear estimators,
we find the terminology potentially misleading and prefer to use “gradient” instead (used in, for example,
van der Laan and Robins (2003)).
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where the right-hand side is a constant that depends on g and is non-zero for at least some
directions8. Thus, the constant estimator exhibits a type of local asymptotic bias. This will
be the case for any estimator that relies on more information than is assumed in the model.

As stated earlier, we wish to characterize the influence functions of asymptotically linear
estimators. This is achieved with the following theorem:

Theorem 1.1. Suppose that µ̂ is an asymptotically linear estimator with influence function

ψ , and µ is pathwise differentiable at P with respect to 9PP. Then µ̂ is regular if and only if

ψ is a gradient of µ at P.

A formal proof is given in §A.1, but the interpretation is obscured by the technical details.
Considering the importance of this result, we believe that it is instructive to provide a more
informal account that aids intuition.

Let tPt,gu be a parametric submodel with score function g. We can write

?
npµ̂ ´ µpP1{

?
n,gqq “

?
npµ̂ ´ µpPqq

looooooomooooooon

1⃝

´
?

npµpP1{
?

n,gq ´ µpPqq
looooooooooooomooooooooooooon

2⃝

.

It is immediate that

2⃝ Ñ
BµpPt,gq

Bt
|t“0

as n Ñ 8. Under P, we know that term 1⃝ converges in distribution to N p0,Pψ2q. If we
switch to the sequence tP1{

?
n,gu, it can be shown that

1⃝
P1{

?
n,g

ù N p0,Pψ
2
q `

B

Bt
Pt,gpψq|t“0,

i.e. we get an extra derivative term. The expectation of ψ under P is assumed to be exactly 0,
but this is generally not the case under P1{

?
n,g. Thus, we might expect there to be an extra

“drift” factor
?

nP1{
?

n,gpψq, which converges to the derivative term above. But we already
know from (1.8) that

B

Bt
Pt,gpψq|t“0 “ Prψgs.

The estimator µ̂ is regular if and only if the extra terms vanish; that is,

BµpPt,gq

Bt
|t“0 “ Prψgs.

This is precisely the definition of a gradient introduced earlier.
8Unless µ is constant in all directions, i.e. µpPq is already known to be the truth!



1.1 A selective overview 13

The above sketch yields the interpretation that if the data-generating distribution is
perturbed slightly from P, the influence function of a RAL estimator will always follow the
target quantity by drifting in the same direction.

1.1.2.2 Improving estimators by using estimated weights

Let us return to our motivating problem. Recall that we observe N i.i.d. copies of D “

pX ,R,RY q from a distribution P known to belong to a set P of probability measures on a
measurable space pD ,A q, where R and Y are independent given X . The density of a single
observation takes the form

pY |X py | xq
r pR|X pr | xqpX pxq,

where pY |X py | xq and pX pxq are completely unspecified, but pR|X pr | xq is known to take the
form πpxqrp1 ´ πpxqq1´r. The target quantity is

µpPq “

ż

ypY |X py | xqpX pxqdydx. (1.9)

In §A.2, we show that the set of all mean-zero gradients is

"

ψcpDq “
RpY ´ cpXqq

πpXq
` cpXq ´ µpPq

*

, (1.10)

where cpxq ranges over all one-dimensional measurable functions of x. Theorem 1.1 implies
that the influence function of any RAL estimator must belong to this set. In particular,
cpxq ” 0 and cpxq ” µpPq correspond to the influence functions of the Horvitz-Thompson
and Hájek estimators respectively.

Remarkably, both estimators—and indeed, any estimator that solves an estimating equa-
tion of the form

Pn

ˆ

RpY ´ cpXqq

πpXq
` cpXq ´ µ

˙

“ 0 (1.11)

for arbitrary cpxq–can be improved by replacing the known function π with a maximum
likelihood estimate. To be more specific, suppose that we have specified a smooth parametric
model tπpX ;αqu such that πpXq ” πpX ;α0q for some parameter value α0. The likelihood
contribution of α is

n
ź

i“1

πpXi;αq
Rip1 ´ πpXi;αqq

1´Ri



14 Introduction

and the maximum likelihood estimator α̂ can be found by solving the score equation

1
n

n
ÿ

i“1

SαpRi,Xi;αq “
1
n

n
ÿ

i“1

Ri ´ πpXi;αq

πpXi;αqp1 ´ πpXi;αqq
9πpXi;αq “ 0,

where 9π is the derivative of πpXi;αq with respect to α . After replacing πpXq with πpX ; α̂q,
the Horvitz-Thompson and Hájek estimators remain consistent and asymptotically normal
but have asymptotic variances that are less than or equal to before. This phenomenon has
been referred to as a paradox (Henmi and Eguchi, 2004) since the additional randomness
from estimating α has increased efficiency rather than the other way round.

Before we provide a mathematical justification, let us illustrate this “paradox” with an
example. We revisit the circus owner from the previous section, who once again wishes to
estimate the average weight of his 50 elephants. This time, he is able to weigh more than
one! Ten of his elephants are African elephants, and the remainder are all Asian elephants.
Knowing that African elephants are generally much heavier, the owner decides to stratify
by species—the covariate X—to increase efficiency. As a result, he implements a Poisson
sampling design where the African elephants each have selection probability 1/2 and the
Asian elephants each have selection probability 1/5. Fifteen elephants are selected with 8
African and 7 Asian.

In this case, the Horvitz-Thompson estimator is equal to

1
50

p2 ˚ TA f r ` 5 ˚ TAsnq,

where TA f r and TAsn are the total weights of the selected African and Asian elephants
respectively. Effectively, we have created a pseudo-population of 16 African elephants and
35 Asian elephants by replicating the ones who were selected. Given that the proportion
of African elephants is higher in the pseudo-population than in the actual population, it
seems likely that the Horvitz-Thompson estimate will be larger than the truth. The Hájek
estimator replaces the factor of 1/50 above with 1/51; that is, we divide by the size of the
pseudo-population. This might lead to a slight improvement, but the aforementioned problem
remains.

Suppose that we estimate the selection probabilities instead. There were 10 African
elephants in the population and 8 were selected; thus, we estimate that each African elephant
had a probability of 8/10 of being selected—this is the maximum likelihood estimate for
the saturated regression model. The corresponding estimate for the Asian elephants is 7/40.
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Both the Horvitz-Thompson and Hájek estimators with the estimated probabilities equal

1
50

ˆ

10
8

˚ TA f r `
40
7

˚ TAsn

˙

.

We have created a pseudo-population with 10 African elephants and 40 Asian elephants:
exactly the same as the actual population. We would therefore expect this estimate to be
better than the ones using the true selection probabilities. This type of adjustment, where
the covariates in the sample are balanced to match the target population, is an example of
poststratification. We will discuss this further later on.

Let us take a closer look at (1.10). Any influence function ψc contained in this set can be
written9 as

ψcpDq “
RpY ´ mpXqq

πpXq
loooooomoooooon

1⃝

`

ˆ

R
πpXq

´ 1
˙

pmpXq ´ cpXqq

loooooooooooooooomoooooooooooooooon

2⃝

`tmpXq ´ µpPqu
looooooomooooooon

3⃝

, (1.12)

where mpXq is the outcome regression function EPrY | Xs. It is straightforward to verify that
the covariance between any pair of the three terms is 0. Thus,

varpψcq “ varp 1⃝q ` varp 2⃝q ` varp 3⃝q. (1.13)

The variances of terms 1⃝ and 3⃝ are exactly the “unexplained” and “explained” variances
of Y given X respectively. By the law of total variance, they sum to varpY q:

varpY q “ EPrvarpY | Xqs ` varpEPrY | Xsq “ varp 1⃝q ` varp 3⃝q.

Term 2⃝ is the most interesting one in our context. It is precisely the sampling error
discussed in the example. If c ” 0 (corresponding to the Horvitz-Thompson estimator) and
x “ tAfrican elephantu, the expression

ÿ

i:Xi“x

ˆ

Ri

πpxq
´ 1

˙

mpxq

is equal to the difference in the number of African elephants in the pseudo-population and
the actual population, multiplied by the average weight of an African elephant. The variance
of 2⃝ is the component of varpψcq that we can reduce by estimating π .

9We have just added and subtracted pR{πpXq ´ 1qmpXq.
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In general, replacing the true value of a nuisance parameter with a maximum likelihood
estimate has the (asymptotic) effect of removing the variance explained by the score function
at the cost of adding variance from enlarging the model. If the initial estimator is already
asymptotically efficient in the model where the nuisance parameter is known, then no
nuisance score can cut the variance further—we discuss asymptotically efficient estimators
in the next subsection. The cost of enlarging the model is perhaps what makes this paradox
surprising. The crucial ingredient in our problem is the fact that µ of (1.9) does not depend
on π—the circus owner’s choice of sampling mechanism has no bearing on the weight of his
elephants! As a result, µ does not vary in the directions that we have expanded the model,
and no asymptotic variance is added.

In §A.3, we verify that estimating π by maximum likelihood turns an estimator that
solves (1.11) with influence function ψc into an estimator with influence function

ψ
˚
c pDq “ ψcpDq ´EPrψcpDq | SαpR,X ,α0qs,

and therefore,
varpψ

˚
c q “ EPrvartψcpDq | SαpR,X ,α0qus ď varpψcq

by the law of total variance. As suggested above, the variance of ψ˚
c is the variance of ψc

that is unexplained by the score function SαpR,X ,α0q. Hence, the larger the model for π , the
more we reduce the variance. This is also clear from the geometrical perspective, viewing
the conditional expectation as the orthogonal projection of ψc onto the linear space spanned
by the components of SαpR,X ,α0q.

As a final note, we point out that the Horvitz-Thompson and Hájek estimators can still be
computed when X is completely unobserved and πpXq is only observed for the individuals
with R “ 1, but this is not the case for any estimator for which π must be estimated. Such a
scenario is common in survey settings, and we give particular attention to it in Chapter 3.
This might lead one to believe that the gain in efficiency is simply due to leveraging the
information in X . However, this phenomenon occurs for any initial estimator that solves an
estimating equation of the form (1.11), including ones that rely on X for the whole sample.

1.1.2.3 The efficient influence function and double robustness

Our representation of a potential influence function in (1.12) and corresponding variance
decomposition in (1.13) suggest that we should try to find a RAL estimator with cpxq ” mpxq.
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This is because terms 1⃝ and 3⃝ are independent of c, and the variance of 2⃝ vanishes, so

ψeffpDq “
RpY ´ mpXqq

πpXq
` tmpXq ´ µpPqu (1.14)

must have the smallest variance10 within the set (1.10). We call ψeff the efficient influence

function. Theorem 1.1 implies that any estimator that is asymptotically linear with influence
function ψeff must have the smallest asymptotic variance at P within the class of RAL
estimators. Before we can conclude that this is something worth caring about, we should
revisit the restrictions on this class.

First, we have asymptotic linearity. We introduced this restriction because estimators with
this property are asymptotically normal. But it turns out that N p0,Prψ2

effsq is not only the
best possible limiting distribution for RAL estimators, but for regular estimators in general.
The convolution theorem (Theorem 25.20, pg. 366 of van der Vaart (1998)) states that,
provided the tangent space 9PP is a convex cone11, any limiting distribution L of a regular
estimator is the convolution of N p0,Prψ2

effsq with some probability measure M. In other
words, L can be represented by the sum of a N p0,Prψ2

effsq variable and some independent
noise. Thus, any regular estimator that attains N p0,Prψ2

effsq exactly is necessarily optimal.
Furthermore, Lemma 25.23 of van der Vaart (1998) implies that a regular estimator has
limiting distribution N p0,Prψ2

effsq if and only if it is asymptotically linear with influence
function ψeff. Hence, there is no loss in generality by imposing asymptotic linearity in the
context of best regular estimators. Following convention (p.367, van der Vaart, 1998), we
will say that an estimator is asymptotically efficient, if it is regular and attains N p0,Prψ2

effsq

asymptotically.
This leaves the restriction of regularity. Recall that the asymptotic behaviour of regular

estimators is robust to small changes in the data-generating distribution. As mentioned before,
this rules out estimators that rely on more information than is contained in the model. But
it also excludes certain types of shrinkage estimators. Famously, the James-Stein estimator
(Stein, 1956), which is not regular (pg. 119, van der Vaart (1998)), uniformly outperforms the
sample mean with respect to mean squared error when estimating the mean of a multivariate
normal distribution in 3 dimensions or higher. It achieves this by shrinking the sample mean

10Interestingly, its variance is equal to varpY q, so an estimator that is asymptotically linear with influence
function ψeff has the same asymptotic variance as the sample mean of Y with complete data.

11Recall that the tangent space is the set of score functions, or “directions”, permitted by the model for paths
that pass through P. The tangent space is a cone if it satisfies: g P 9PP,a ě 0 ùñ ag P 9PP. As stated in pg.
363 of van der Vaart (1998), it is rarely a loss of generality to make this assumption.
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towards zero, inducing a favourable bias-variance trade-off. Some authors (e.g. Efron and
Morris, 1973) have motivated this approach using empirical Bayes.

Nevertheless, estimators that attain the N p0,Prψ2
effsq limiting distribution do enjoy a

certain type of optimality that does not depend on regularity.

Theorem 1.2. Let l : R Ñ r0,8q be a subconvex12 loss function. If 9PP is a convex cone,

then any estimator µ̂ satisfies

sup
I

liminf
nÑ8

sup
gPI

EP1{
?

n,g
lp

?
ntµ̂ ´ µpP1{

?
n,gquq ě

ż

l dN p0,Prψ
2
effsq. (1.15)

The first supremum is taken over all finite subsets of 9PP.

This is the local asymptotic minimax theorem (van der Vaart, 1992). Much like the
definition of regular estimators (1.5), the preceding display (1.15) concerns neighbourhoods
of P that contract at rate 1{

?
n. Roughly speaking, the worst-case risk over any such sequence

of neighbourhoods is asymptotically lower-bounded by the risk of a N p0,Prψ2
effsq variable.

Historically, the concepts of “regular” and “local asymptotic minimax” were developed in
the context of parametric models to salvage the theory of maximum likelihood after so-called
“superefficient” estimators were discovered—the James-Stein estimator mentioned earlier
is an example. With this in mind, the limitations of semiparametric efficiency theory may
appear to be analogous to those of maximum likelihood. Shrinkage estimation is ubiquitous
in modern applications due to the phenomenon of “big data” and the excellent empirical
performance of data-adaptive methods, whereas maximum likelihood estimates are prone to
overfitting. What we will see later, however, is that semiparametric theory has another utility
that actually makes it particularly useful for modern statistical problems.

Let us return to the efficient influence function (1.14). In order to use this to construct an
estimator, we must replace the unknown outcome regression function mpxq with an estimate
m̂pxq. Using the estimating equation approach, we obtain the estimator

µ̂eff “ Pn

ˆ

RpY ´ m̂pXqq

πpXq
` m̂pXq

˙

.

Recall the difference estimator (1.1) introduced earlier in the context of design-based es-
timation; both estimators take the same form! What was originally an ad-hoc method for
incorporating auxiliary variable regression modelling into a design-consistent estimator can

12A function is bowl-shaped if the sublevel sets tx : lpxq ď cu are convex and symmetric about the origin. It
is called subconvex if these sets are closed.
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in fact be motivated by semiparametric efficiency theory. We will defer discussing conditions
on m̂ to the next section.

So far, we have assumed that the propensity score πpxq is known. But outside of survey
estimation and randomized experiments, this is an unreasonable assumption. Suppose now
that we work with the nonparametric model where π is unknown and completely unspecified
aside from positivity. This nonparametric model contains the previous semiparametric model
where π was assumed to be known. Thus, the new tangent space at P must contain the old
one, and any gradient for the nonparametric model is also a gradient for the semiparametric
model. In particular, any mean-zero gradient must be contained in (1.10).

But as we observed earlier, the target quantity µ does not depend on π , i.e. if we perturb
P in a direction where π changes but all else is kept fixed, then µ does not vary. So by
definition (1.6), any gradient for the nonparametric model is orthogonal to all possible scores
for π . In §A.4, we show that ψeff is the only element of (1.10) that satisfies this, and that it
is indeed a gradient. Therefore, ψeff is the unique mean-zero gradient in the nonparametric
model and remains the efficient influence function.

In the previous subsection, we discussed using a maximum likelihood estimate of π

to increase efficiency. If we have an estimator that is asymptotically linear with influence
function ψeff, then no further efficiency can be gained this way because ψeff is already
orthogonal to all scores for π . Heuristically, we could interpret ψeff as the limiting influence
function from estimating π using larger and larger models. In simple cases with finite
discrete X , like the elephants example, we could attain ψeff by using the (fully nonparametric)
saturated regression model.

The fact that ψeff remains the efficient influence function implies that the problem of
estimating µ has not become harder in the sense of the efficiency bound theorems described
earlier. Of course, the problem is certainly harder in practical terms because π must now be
estimated without a guarantee of consistency.

Let
ψ̂effpDq “

RpY ´ m̂pXqq

π̂pXq
` m̂pXq ´ µpPq,

where we have replaced the true π and m in (1.14) with estimates π̂ and m̂ respectively. This
yields the estimator

µ̂DR “ Pn

ˆ

RpY ´ m̂pXqq

π̂pXq
` m̂pXq

˙

“ Pnrψ̂effs ` µpPq. (1.16)
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Until recently, it has been routine to estimate both π and m with estimating equations
(especially maximum likelihood) derived from working models, yielding

?
n-consistent

and asymptotically normal estimators under correct specification. Robins et al. (2000)
pointed out that µ̂DR is doubly robust; that is, µ̂DR is consistent as long as at least one
of the two working models is correctly specified. If both are correctly specified, then
Pnrψ̂effs ´Pnrψeffs “ oPpn´1{2q, such that

?
npµ̂DR ´ µpPqq “

?
nPnrψeffs ` oPp1q.

We say that µ̂DR is locally efficient at any distribution P that is contained in the intersection
of both working models.

A recent review of the estimating equation approach can be found in Rotnitzky and
Vansteelandt (2014), and comprehensive treatments can be found in van der Laan and Robins
(2003) and Tsiatis (2006). We give a more general overview of double-robustness in the next
section.

1.1.3 Towards data-adaptive estimation

Let us take a closer look at µ̂DR of (1.16) with the following decomposition:

?
npµ̂DR ´ µpPqq “

?
nPnrψ̂effs (1.17)

“
?

nPnrψeffs
looooomooooon

1⃝

`
?

nPrψ̂effs
loooomoooon

2⃝

`
?

npPn ´ Pqrψ̂eff ´ ψeffs
looooooooooooomooooooooooooon

3⃝

. (1.18)

The first equality is true by definition, and the second equality follows simply from adding
and subtracting terms 1⃝ and 2⃝. Our motivation for constructing ψ̂eff was to target term

1⃝, which converges to the optimal limiting distribution N p0,Prψ2
effsq. If terms 2⃝ and 3⃝

converge to 0 in probability as n Ñ 8, then µ̂DR is asymptotically efficient.
We can give an explicit expression for 2⃝ and upper-bound it using the Cauchy-Schwarz

inequality:

?
nPrψ̂effs “

?
nP

„

π

ˆ

1
π̂

´
1
π

˙

pm ´ m̂q

ȷ

ď
?

n
›

›

›

›

1
π̂

´
1
π

›

›

›

›

}m ´ m̂}. (1.19)
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The cross-term structure provides a form of double robustness13. As long as the combined
rate of convergence of π̂ and m̂ exceeds

?
n, term 2⃝ will converge to 0 in probability. This

can be achieved, for example, if }π̂´1 ´ π´1} “ OPpn´1{2q (e.g. using logistic regression)
and }m̂ ´ m} “ oPp1q.

Alternatively, π̂ and m̂ could both be estimated using flexible data-adaptive techniques.
This is particularly attractive in high-dimensional settings where the smoothness conditions
imposed by estimating equation approaches become difficult to justify. Convergence rates of
oPpn´1{4q are attainable by many popular machine learning methods under relatively mild
assumptions on, for example, sparsity or number of derivatives of π and m (see Chernozhukov
et al. (2018), particularly the discussion in §3.2).

Term 3⃝ is often controlled using Donsker conditions derived from empirical process
theory (van der Vaart, 1998, van der Laan and Robins, 2003). But this may be overly
restrictive for high-dimensional settings and machine learning methods (Chernozhukov
et al., 2018). A simple way to avoid complexity conditions is through sample splitting. We
separate our dataset into a “training” sample—used to estimate π̂ and m̂—and a “validation”
sample—used to construct µ̂DR. The efficiency lost by reducing our sample size is recovered
by swapping the roles of the samples to construct another estimator and taking an average;
this step is called cross-fitting. Intuitively, this helps us to avoid potential overfitting from
plugging in nuisance parameter estimates derived from the same dataset (cf. the Bayesian
“sin” of using the data twice).

For simplicity, assume that n is even. Let m̂p1q and π̂p1q be estimated from Dpn{2q`1, . . . ,Dn.
Using the remaining data points, we construct

µ̂
p1q

DR “
2
n

n{2
ÿ

i“1

˜

RipYi ´ m̂p1qpXiqq

π̂p1qpXiq
` m̂p1q

pXiq

¸

.

The estimator µ̂
p2q

DR is similarly constructed by swapping the two halves of the dataset. Finally,
we set µ̌DR “ pµ̂

p1q

DR ` µ̂
p2q

DRq{2. In §A.5, we show that the conditions

?
n
›

›

›

›

1
π̂

´
1
π

›

›

›

›

}m ´ m̂} “ oPp1q

}ψ̂eff ´ ψeff} “ oPp1q

13This doesn’t quite capture the original definition where one of the estimators is allowed to be inconsistent,
so that the distance to the truth is OPp1q. There are some subtleties here depending on the estimation method.
We again refer to the articles cited at the end of the previous subsection.
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are sufficient for µ̌DR to be asymptotically efficient. The variance of µ̌DR can be estimated
using sandwich estimation, with each “layer” of the sandwich estimated by averaging across
the splits. In this particular case, the estimator takes the simple form σ̌2 “ pσ̂2

p1q
` σ̂2

p2q
q{2,

where

σ̂
2
p1q “

2
n

n{2
ÿ

i“1

˜

RipYi ´ m̂p1qpXiqq

π̂p1qpXiq
` m̂p1q

pXiq ´ µ̂
p1q

DR

¸2

,

and σ̂2
p2q

is defined correspondingly. Wald intervals constructed with σ̌2 are uniformly valid
asymptotically (Chernozhukov et al., 2018).

The above can be generalized to more than two folds of the dataset. In particular, we may
believe that estimating the functions m and π is far more challenging than estimating the
one-dimensional (or in general, finite-dimensional) µ , in which case we could use proportion
p1 ´ K´1q of the dataset as the training sample for a whole number K ą 2, and the remaining
proportion K´1 for validation. We cycle through K folds of the dataset and average the
resulting estimators. There is no difference in the asymptotic sense, but we may obtain
finite-sample performance gains.

It is not a coincidence that estimators based on ψeff enable flexible estimation of the
nuisance parameters. Recall that in §1.1.2.1, we discussed how gradients could be viewed as
first-order derivatives of the target quantity in a distributional Taylor expansion. For given
estimators m̂ and π̂ , let P̂ be a distribution in P with outcome regression function m̂ and
propensity score π̂ . Then the efficient influence function for µ at P̂ must be

ψeff,P̂pDq “
RpY ´ m̂pXqq

π̂pXq
` m̂pXq ´ µpP̂q

“ ψ̂effpZq ` µpPq ´ µpP̂q,

which satisfies P̂rψeff,P̂s “ 0. By expanding µpPq around µpP̂q in the sense of (1.7), we
obtain

µpPq ´ µpP̂q “ pP ´ P̂qrψeff,P̂s ` R2pP, P̂q

“ Prψ̂effs ` µpPq ´ µpP̂q ` R2pP, P̂q.

Hence, term 2⃝ in the decomposition (1.18) is in fact equal to ´
?

nR2pP, P̂q. Since this is
true for any such P̂, we can see why (1.19) only depends on m̂, π̂ and P. As discussed earlier,
we would a priori expect R2pP, P̂q to vanish with respect to the difference between P and
P̂ in a higher-order way. Indeed, we saw in (1.19) that it takes the form of a second-order
cross-term product. It is special, however, that terms involving “}m̂ ´ m}2” and “}π̂ ´ π}2”
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do not appear, which leads to double robustness. When π is known and π̂ ” π , the remainder
term vanishes and m̂ is permitted to converge at an arbitrarily slow rate.

On the other hand, a naïve regression estimator Pnrm̂s will generally have first-order

bias involving }m̂ ´ m}—as opposed to the second-order bias R2pP, P̂q—and will fail to be
?

n-consistent when m̂ is flexibly estimated. Worse yet, the limiting behaviour of such an
estimator may be complex and/or poorly understood, which makes it difficult to perform
inference. The analogous situation of Horvitz-Thompson or Hájek estimators with flexibly
estimated π̂ is similarly problematic.

This suggests that the use of ψ̂eff is a way of debiasing the initial estimates m̂ and π̂ . The
method of targeted learning (van der Laan and Rose, 2011, 2018) makes this more explicit.
Suppose, for example, that Y is binary, such that µ is known to lie in r0,1s. Let m̂init and π̂

be machine learning estimates of m and π respectively. We construct a new estimate of m

m̂TLpXq “ expit

˜

logittm̂initpXqu `
λ̂

π̂pXq

¸

,

where λ̂ is the maximum likelihood estimate of the regression coefficient for 1{π̂pXq with
offset logittm̂initpXqu using the units with complete data; that is, λ̂ solves

1
n

n
ÿ

i“1

R
π̂pXq

„

Y ´ expit
ˆ

logittm̂initpXqu `
λ

π̂pXq

˙ȷ

“ 0.

As a result,

µ̂TL ” Pnrm̂TLpXqs “ Pn

„

RpY ´ m̂TLpXqq

π̂pXq
` m̂TLpXq

ȷ

,

which takes the form (1.16). The parameter λ acts to debias the initial estimate m̂init in
the so-called least favourable direction 1{π . The estimator µ̂TL has the same asymptotic
behaviour as other double robust estimators, but has the advantage of being a regression
estimator. This guarantees that the estimate will lie in the permitted interval r0,1s, which
could lead to improved finite-sample inference. We had previously discussed this issue in
§1.1.1 in the context of design-based difference estimators. The solution proposed by Firth
and Bennett (1998) that involved adding the covariate 1{π was similar to the above but
differed in that λ and the (initial) outcome regression model were fitted simultaneously.
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1.2 The Bayesian paradigm

1.2.1 The Robins-Ritov example

Recall the problem set-up from §1.1.2. We observe independent and identically distributed
data D1, . . . ,Dn from a distribution P on a measurable space pD ,A q, where for each i,
Di “ pXi,Ri,RiYiq, Xi is a vector of covariates, Yi is an outcome, and Ri is binary. Strong
ignorability and positivity are assumed as before, and we will additionally assume that the
outcome is binary and the covariates are known to be uniformly distributed on the space
r0,1sk for large k (i.e. X is very high-dimensional). The likelihood function specializes to
the form

L pm,πq “ L1pmqL2pπq, (1.20)

where

mpxq “ EPrY | X “ xs “ PpY “ 1 | X “ xq

πpxq “ PpR “ 1 | X “ xq

L1pmq “

n
ź

i“1

␣

mpXiq
Yir1 ´ mpXiqs

1´Yi
(Ri

L2pπq “

n
ź

j“1

πpX jq
R jr1 ´ πpX jqs

1´R j .

The target quantity is µpPq “ EPrY s “
ş

r0,1sk mpxqdx. For now, we will assume that π is
known.

Previously, we discussed how estimators that employ inverse probability weighting could
be used to estimate µ . Within this class, we could try to attain efficiency with

µ̂eff “ Pn

ˆ

RpY ´ m̂pXqq

πpXq
` m̂pXq

˙

,

where m̂ is an estimator of m. Sample-splitting and cross-fitting techniques can ensure that
m̂ need only be L2pPq-consistent in order to achieve asymptotic efficiency, enabling the
application of flexible machine learning methods. Furthermore, we could guarantee that µ̂eff

lies between 0 and 1 with a carefully constructed m̂ (by the targeted learning approach, for
example). From here on, we will use µ̌eff to refer to an estimator that uses all of the above
techniques, i.e. sample-splitting, cross-fitting, flexibly estimated m̂, and bounding.
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For any δ ą 0, µ̌eff satisfies

sup
PPP

Pp|µ̌eff ´ µpPq| ą δ q Ñ 0

as n Ñ 8; that is, µ̌eff is uniformly consistent14. Moreover, if Cnpαq is the p1 ´ αq-Wald
interval constructed with µ̌eff and the cross-fitted sandwich variance estimator σ̌2 from §1.1.3,
then

sup
PPP

|PtµpPq P Cnpαqu ´ p1 ´ αq| Ñ 0 (1.21)

as n Ñ 8, provided that m̂ converges in L2pPq to some limit—not necessarily the true m—for
all P P P . Robins and Ritov (1997) emphasized the importance of such uniform properties
because they guarantee that for any given tolerance level, there exists a minimal sample size
at which µ will be sufficiently well-estimated regardless of the true P.

However, Robins and Ritov (1997) proved that any estimator that ignores the known π

will not be uniformly consistent. A consequence is that no interval that ignores π can both
satisfy (1.21) and also shrink to 0 in expectation as n grows; otherwise, the midpoint of the
interval would be a uniformly consistent estimator. A heuristic explanation for this lack of
uniformity is as follows. We have not placed any restrictions15 on m, which permits m to
be very badly behaved (“wiggly”). For any given sample size, we can always find an m

that is so wiggly that it cannot possibly be adequately estimated from the data. Although
µ̌eff uses estimates of m, it does not rely on these estimates being accurate, much like the
design-based model-assisted estimators that preceded it. Any biases resulting from estimating
m are corrected by using the known π .

The result only depends on X being continuous—it also holds if X is univariate. The prob-
lem can be avoided by making smoothness restrictions on m. But the point of emphasizing
that X is high-dimensional is that as the dimension increases, the smoothness requirements
to pool the information in the data become increasingly stringent and difficult to justify. As
Coombs (1964) states, “we buy information with assumptions”; the sparser the data, the
more we have to buy.

Robins and Ritov (1997) argued that the above has dire implications for “strict likelihood”
methods, including any Bayesian model that excludes π from the prior for m. This is
because the likelihood function L of (1.20) factors into L1pmq and L2pπq, where the latter
is constant because π is known; thus, a procedure that obeys the strict likelihood principle

14In fact, we could replace |µ̌eff ´ µpPq| with n0.5´ε |µ̌eff ´ µpPq| for any ε ą 0.
15Aside from the minimal requirements of measurability and being bounded between 0 and 1.



26 Introduction

will use L1 only to estimate µ . Generally, this will lead to inference that ignores π , unless π

is “artificially” added to L1 (Robins et al., 2000).
An example of such an “artificial” construction was already discussed earlier in §1.1.1 in

the context of design-based model-assisted estimators. For a logistic regression model, Firth
and Bennett (1998) (see also: Scharfstein et al. (1999)) suggested augmenting the regression
function with an additional covariate 1{πpxq:

mpx;β ,λ q ” expit

˜

H
ÿ

h“1

βhbhpxq `
λ

πpxq

¸

, (1.22)

where tbhuH
h“1 is a prespecified set of basis functions, β “ pβ1 . . . ,βHq is the vector of basis

coefficients, and λ is the one-dimensional coefficient of the covariate 1{πpxq. If β and λ are
estimated with maximum likelihood, then the resulting estimator of µ will be asymptotically
equivalent to µ̂eff with m̂pxq ” mpx; β̂MLE , λ̂MLEq and will therefore be uniformly consistent.
Under some additional conditions, this can also be true for estimators derived from a Bayesian
model using (1.22) with priors on β and λ (due to the Bernstein-von Mises theorem, possibly
under misspecification16: Kleijn and van der Vaart (2012)).

Robins and Ritov (1997) and Robins and Wasserman (2012a,b) discuss reasons for why
they believe a committed subjective Bayesian would not specify a prior for m that depends on
π . Some of these arguments are critiqued by Sims (2012a,b,c,d). While this is an interesting
topic philosophically, we believe that the practical implications are limited (see §1.2.2).
Therefore, we will omit a discussion of these details.

Regardless, Robins and Wasserman (2012b) point out that specifying a prior for m that
depends on π is necessary but not sufficient to achieve desirable frequentist properties like
uniform consistency. The model and the prior must be carefully constructed in order to mimic
a frequentist estimator, e.g. the construction in (1.22). They conclude that such approaches
are examples of frequentist pursuit and have no benefits over the original procedures they are
based on.

Robins et al. (2015) discuss further issues that arise if π is unknown. If m and π are
jointly estimated with a likelihood approach, the resulting estimate of π will depend on the
outcome regression model. As a consequence, a misspecified outcome regression model
will generally lead to an inconsistent estimate of π , even if the propensity score model is
correct. This phenomenon of model “feedback” in a Bayesian setting has been discussed by
McCandless et al. (2010), Zigler et al. (2013) and Saarela et al. (2016).

16In this case, the credible sets will generally fail to attain nominal coverage asymptotically.
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We can be more explicit by adapting the previous example described by (1.22). Suppose
we have specified a parametric model tπpX ;αqu for the propensity score, e.g. another logistic
model. The outcome regression model becomes

mpx;β ,λ ,αq ” expit

˜

H
ÿ

h“1

βhbhpxq `
λ

πpx;αq

¸

, (1.23)

and the likelihood function factors as follows:

L pm,πq ” L1pβ ,λ ,αqL2pαq.

Note that α is included in both factors, so the maximum likelihood estimate α̂MLE will
converge to the value that minimizes the KL-divergence from the truth to the joint model,
rather than just the propensity score model. Thus, if the original, non-augmented outcome
regression model17 is misspecified, then πpx; α̂MLEq will generally be inconsistent; the
maximum likelihood estimate of λ will tend to a non-zero limit, and α̂MLE will be pulled
towards a compromise between the two models. This is likely to lead to an inconsistent
estimator of µ .

In contrast, we can construct a doubly robust estimator by estimating π and m sequentially.
First, α̂MLE is obtained by maximizing L2pαq only. Then, we obtain β̂MLE and λ̂MLE by
maximizing L1pβ ,λ , α̂MLEq. The resulting estimator of µ will be consistent if the propensity
score model is correct, even if the outcome regression model is not. Moreover, we would
attain asymptotic efficiency if both models were correct.

As before, the analogous Bayesian approach exhibits similar behaviour to maximum
likelihood and is therefore afflicted with the same problem. Zigler et al. (2013) empirically
investigated the negative effects of model feedback in a Bayesian setting. There have been
several proposals for how a Bayesian could “cut” the feedback and prevent a potentially
incorrect outcome regression model from contaminating the propensity score model. Mc-
Candless et al. (2010) suggested updating the prior for π with L2pπq only; this could be
implemented with a Gibbs sampler, where π and m are updated in turn. But since there is
no proper underlying joint model, the sampler may not converge. The convergence issue
has been addressed by Plummer (2015) (and also by Jacob et al. (2017) and Liu and Goudie
(2020)). Graham et al. (2016), like the sequential doubly robust method described above,
proposed using a preliminary estimate of π derived from the propensity score model alone.

17That is, the model defined by (1.23) with λ ” 0.
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This is plugged into the likelihood function for m to be used for the updating procedure. The
uncertainty in the estimate must be accounted for by making a variance correction.

1.2.2 Discussion

1.2.2.1 Inverse probability weighting vs. poststratification

From a less technical perspective, the Robins-Ritov example can be interpreted as a compari-
son between inverse probability weighting and poststratification.

To illustrate this, let us return once more to the circus owner from the previous section,
who again wishes to estimate the average weight of his 50 elephants. Buoyed by his previous
success, he decides to implement another stratified sampling design. This time, he stratifies
not only on species, but also age, gender, skin colour and length of tusk. Fourteen elephants
are selected and weighed. As he begins to carry out his analysis, the owner realises with
horror that his previous estimation strategy will not generalize. Last time, he calculated the
totals for the two different species and computed a weighted average. The weights were
chosen to calibrate the balance of the sample covariates to the population. However, two of
his covariates—age and length of tusk—are continuous; it is impossible to compute the totals
within different levels. And even if he were to discretize those two covariates, he notices that
there are many combinations of covariates present in the population that are not represented
in the sample. It seems that his only choice is to enforce substantial dimension reductions
and smoothing in order to pool the limited information contained in his sample. The owner
despairs at the fact that his estimate will likely be heavily biased, and his interval, which will
be too narrow, will likely fail to cover the truth.

At this point, the former circus statistician—still unemployed—strides in and calls out
“The Horvitz-Thompson estimator is still unbiased!”. Upon realising that his experiment
can be saved, the circus owner jumps with joy and the pair share a tearful embrace. The
statistician gets his job back and forges a long and successful career working with the circus.

The moral of the story is that while poststratification is straightforward and efficient
in simple settings, it can become unwieldy when more covariates are involved. If heavy
smoothing is required to handle continuous covariates and to make up for insufficient data,
then the inference might be unreliable. This is the essence of the Robins-Ritov-Wasserman
argument. Meanwhile, inverse probability weighted estimators with known weights remain
unbiased (or approximately/asymptotically unbiased).
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Bayesian inference—in the standard set-up considered by Robins and Ritov (1997)—is
inherently a poststratification-type method because it conditions on all of the data18. Once
the covariates are observed, they must be adjusted for in the analysis.

1.2.2.2 Why Bayes?

Before we discuss and develop potential Bayesian approaches to this problem, it is important
to ascertain reasons for why a Bayesian approach might be desirable here. The arguments
in Robins and Ritov (1997) and Robins and Wasserman (2012a) concern a holistic sub-
jective Bayes viewpoint, from which the hypothetical user specifies a prior that perfectly
encapsulates their subjective beliefs. But this is unreasonable in practice, especially in the
high-dimensional setting in which the example is based. In any case, this philosophy excludes
any practicing Bayesian who would consider methods such as nonparametric Bayes, default
priors for nuisance parameters, and sample-size-dependent model choices. We subscribe
to the notion presented by Gelman and Shalizi (2013), who state: “In practice, the various
parts of the model have functional forms picked by a mix of substantive knowledge, sci-
entific conjectures, statistical properties, analytical convenience, disciplinary tradition and
computational tractability.”

If we acknowledge that our prior probabilities are not purely epistemic, then we must
address how they should be interpreted. In this thesis, we choose to view the prior as a
regularization device, and we will evaluate the performance of procedures from a frequentist
standpoint. In this respect, our philosophy aligns with the “Calibrated Bayes” perspective
of Rubin (1984) and Little (2011). A calibrated Bayesian procedure offers the potential for
improved small-sample inference via the prior but allows the data to dominate as the sample
size increases, yielding valid frequentist inference asymptotically. This does not undermine
the importance of subject-matter knowledge and expertise, which are still crucial for deciding
how the priors are specified.

The reduced dependence on asymptotics is important because it can be difficult to deter-
mine whether asymptotic approximations are reasonable for a given dataset. This is especially
pertinent when inverse probability weighting is involved due to its well-documented risks of
poor finite-sample performance. In a setting where π is unknown, Kang and Schafer (2007)
demonstrated empirically that doubly robust estimators can perform far worse than outcome
regression estimators when both working models are misspecified, despite the fact that the
data show scant evidence of these misspecifications.

18In §1.2.2.4 (and also in Chapters 3-4), we will explore a different perspective for Bayesian inference that is
distinct from poststratification.
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Problems surrounding inverse probability weighting are not necessarily avoided by using
machine learning methods. Compared to estimating equation approaches, the increased
flexibility demands larger sample sizes for asymptotics to become relevant. If assumptions of
sparsity and linear/logistic models are required to handle high-dimensional covariates, then
inverse probability weighting with estimated weights is particularly dangerous and arguably
fails to justify the risks involved.

Moreover, the fact that the second-order bias converges to 0 faster than n´1{2 provides
no guarantees that it is small/negligible in finite samples. Analogously, a computer scientist
would be cautious about calling a polynomial-time algorithm “fast”. The presence of 1{π̂ in
(1.19) suggests that the second-order bias is particularly unforgiving of estimation error in
regions of X with few selected individuals, which is disturbing because that is also where
estimating m is most difficult.

When the outcomes are bounded, we discussed in previous sections how one could use
link functions to force doubly robust estimators within the bounds of the parameter space. But
arguably, the benefits are only cosmetic; if a set of inverse probability weights are so extreme
that a naïve doubly robust estimator lies outside the parameter space, then a corresponding
bounded doubly robust estimator using the same weights cannot be viewed as being reliable.
If anything, this makes it more likely that a user inadvertently reports an unreliable estimate
without realizing the presence of this issue.

One might ask why a Bayesian approach to regularization should be preferred over others.
We again emphasize the importance of subject matter knowledge and expertise, and point out
that a prior provides a natural and intuitive way for users to incorporate these beliefs, even
if the specification is not entirely subjective. There is also growing empirical evidence to
suggest that Bayesian regularization can offer significant performance gains over competitors.
For example, Bayesian Additive Regression Trees (BART) (Chipman et al., 2007, 2010) has
been shown to often dominate more classically-minded counterparts like gradient boosting
(Friedman, 2001) and random forests (Breiman, 2001) in extensive simulations (e.g. Chipman
et al., 2010, Dorie et al., 2019). The exact reasons for this are not yet clear, but one could
speculate that averaging over the parameter space is better-suited in practice to complex
prediction problems than optimizing loss functions. A discussion in the context of Bayesian
deep learning can be found in Wilson (2020).

Averaging can also be beneficial computationally. Marginalization of nuisance param-
eters can often be far more computationally efficient than profiling/joint optimization. In
Chapter 2, we present an example where a profile maximum likelihood procedure using
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the EM-algorithm (Dempster et al., 1977) fails to converge appropriately, but our Bayesian
procedure works smoothly.

Finally, it is widely accepted that Bayesian inference is effective at solving complex
problems involving multiple data sources. For example, the propagation of uncertainty by
integration provides a natural framework for evidence synthesis (Ades and Sutton, 2006);
repeatedly integrating over the posterior distributions of parameters allows one to propagate
uncertainty across multiple data sources within a single analysis. Prior shrinkage also
automatically accommodates multiple comparisons (van Zwet and Cator, 2020). This
motivates the development of approaches that can be embedded into a larger, encompassing
analysis.

1.2.2.3 Pragmatic compromises

Now that we have established our motivations for pursuing a Bayesian analysis, we can
investigate whether it is possible to find pragmatic approaches that deviate slightly from the
holistic Bayesian framework while still retaining some of the benefits.

Recall that a fully Bayesian analysis can struggle in the Robins-Ritov example because
the high-dimensional, continuously distributed covariate vectors must be conditioned upon.
We can try to circumvent this issue by only conditioning on a low dimensional summary of
the covariates that is sufficient to adjust for the selection bias; effectively, we pretend that X

was unobserved aside from such a summary. The propensity score satisfies this condition, i.e.

R KK Y | πpXq, (1.24)

which can be shown as follows:

PpR “ 1 | Y,πpXqq “ ErEtR | Y,X ,πpXqu
looooooooomooooooooon

πpXq

| Y,πpXqs “ PpR “ 1 | πpXqq.

The first equality uses the tower property of expectations and strong ignorability, and the
second equality is simply due to πpXq “ PpR “ 1 | πpXqq.

Thus, the target quantity µpPq can be expressed as

µpPq “ ErPpY “ 1 | πpXqqs “ ErPpY “ 1 | πpXq,R “ 1qs.

The problem now takes the same form as before; the only difference is that the high-
dimensional X has been replaced by the one-dimensional πpXq. We can proceed to specify



32 Introduction

a model and prior for the conditional probability PpY “ 1 | πpXqq, and then compute the
posterior using the data from the individuals with R “ 1. This determines the posterior for µ

since the distribution of πpXq is known by assumption.
In general, πpXq will be a continuous variable, so the Robins-Ritov theorem still applies;

that is, a Bayesian estimate of µ derived from conditioning only on πpXq will still fail to
be uniformly consistent in the fully nonparametric model. But in practice, we can expect a
binary regression function with a one-dimensional covariate bounded between 0 and 1 to be
well-estimated for moderate sample sizes. By avoiding inverse probability weighting, we
should in fact obtain relatively stable estimates.

This approach is free of “frequentist pursuit” since there is no attempt to imitate a
frequentist estimator. The user is completely unrestricted with regards to the specification of
the model and prior. The only Bayesian “sin” committed—aside from using π , which we have
already addressed—is throwing away/ignoring data. Usually, we might be concerned about
the loss of information. But this concern is perhaps based on intuition from low-dimensional
parametric models. In this situation, we actually stand to learn more from the data—in
the sense of deriving a more precise estimate of the target quantity—due to the substantial
dimension reductions of the model.

In survey settings where X is unobserved and has unknown distribution, and πpXq is
only observed for the selected units, the approach outlined above can be adapted with some
additional steps (Zanganeh and Little, 2015, Si et al., 2015). But this involves modelling the
distribution of πpXq for the unselected units, which has no substantive value and is potentially
difficult to specify. Moreover, it is unappealing to treat the data provider as an adversary
and try to model information that has been withheld. For this setting, weighting methods
are far more attractive. In Chapter 3, we develop a method that combines the simplicity of
weighting with the benefits of Bayesian modelling.

In the observation setting, where π is unknown, some authors have suggested incorpo-
rating an estimate π̂ into the outcome regression model to improve performance. Ray and
van der Vaart (2018) proposed augmenting an outcome regression model for Y given X with
the covariate 1{π̂pXq—similar to the approaches of Firth and Bennett (1998), Scharfstein
et al. (1999) and targeted learning—with the intention of correcting the first-order bias of the
posterior for µ . Hahn et al. (2020) were instead motivated by the intuition that the selection
mechanism should provide useful information about the outcome-covariate relationship. For
instance, a practitioner may be more likely to assign treatment to patients that are deemed
to be relatively vulnerable. Thus, the estimated propensity score has the potential to be a
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useful transformation of the covariates that makes it easier to capture complex dependencies
between Y and X .

The troubling aspect from a Bayesian perspective is the data-dependent prior. The
asymptotic results of Ray and van der Vaart (2018) avoid this problem by assuming that π

is estimated from a separate sample. But in practice, this may involve splitting the dataset,
which would reduce the sample size for the prior update. Hahn et al. (2020), however,
insist that the data-dependent prior is justified because the outcome regression model is
conditional on the covariates and selection variables used to estimate π . They compare this
with the Zellner g-prior (Zellner, 1986) for linear regression, where the prior covariance of
the regression coefficients is estimated from the observed covariates.

This argument is valid for showing that the data is not used twice, but some undesirable
practical aspects remain. If we wish to endow our results with a frequentist interpretation,
then we must ascertain the appropriate form of hypothetical repetitions of the experiment.
By using a superpopulation approach, it is implicit that we are interested in providing results
that generalize to individuals outside of the dataset. This is particularly important in causal
inference. Thus, it is inappropriate to consider hypothetical repetitions that condition on
a particular realization of the covariates and selection19. Furthermore, a data-dependent
prior violates coherence, in the sense of Bissiri et al. (2016): the form of the posterior will
depend on the order that we receive the data. For example, if we receive data sequentially,
as is common in clinical trials, then we must either change the prior with each new batch,
or accept that our inferences would have been different had we received all the data at
once. This can complicate sequential decision-making, which is often cited as a strength of
Bayesian inference. Given that the estimated propensity score is used as a black box proxy
for subject-matter knowledge, it seems preferable to circumvent these problems through
prior specification of meaningful transformations of the covariates based on expert elicitation.
Some of the issues outlined above partially motivate the developments in Chapter 4.

The idea of ignoring part of the data can be taken to the extreme of replacing the entire
dataset by a set of summary statistics. Several authors (Monahan and Boos, 1992, Robins,
2004, Hoff and Wakefield, 2013, Wang et al., 2017) have suggested leveraging the asymptotic
normality of estimators to construct approximate likelihoods. If an estimator µ̂ satisfies

?
npµ̂ ´ µq ù N p0,σ2

q

19Hahn et al. (2020) do indeed use frequentist metrics to evaluate performance in their simulations, and they
perform the repetitions unconditionally; that is, the covariates and selection are randomized across iterations.
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for unknown asymptotic variance σ2, then the following “likelihood function” is approxi-
mately valid given a sufficiently large sample size:

L pµq9 exp
"

´
npµ̂ ´ µq2

2σ̂2

*

,

where σ̂2 is a robust variance estimator, e.g. the sandwich estimator. By specifying a prior
ppµq, we can directly construct a “posterior” for µ:

ppµ | µ̂q9L pµqppµq.

The estimator µ̂ plays the role of the data, while σ̂2 is treated as known.
The limitations of this approach are clear. We are stuck in a “Catch-22” situation where

we must appeal to asymptotic theory to justify the variance and normality approximations,
but asymptotic theory also suggests that the prior will only have a higher-order effect on
the posterior (Bernstein-von Mises theorems are proved in Robins (2004) and Wang et al.
(2017)). In particular, we fail to attain the previously described goal of “Calibrated Bayes”
that allows the user to be agnostic about the applicability of asymptotics.

Other approximate likelihoods have been proposed in the literature: approximate pivot
likelihood (Boos and Monahan, 1986), empirical likelihood (Owen, 2001), bootstrap likeli-
hoods (Davison et al., 1992) and implied likelihood (Efron, 1993). A review can be found in
Efron and Tibshirani (1994). Chapter 3 studies the exponentially tilted empirical likelihood

(Jing and Wood, 1996, Corcoran, 1998, Lee and Young, 1999), which was given a Bayesian
justification by Schennach (2005). We will give further arguments that support its use in
Bayesian inference and investigate its asymptotic properties.

1.2.2.4 A projection-based framework for Bayesian inference

In §1.2.1, we described the so-called “feedback” problem, in which joint modelling of the
outcome regression function and propensity score can lead to model contamination arising
from misspecification of the outcome regression model. This was compared unfavourably to
doubly robust methods, which fit the models separately/sequentially. But we now argue why
this phenomenon is misleading.

Recall from §1.1.2.3 that doubly robust estimators operate in the fully nonparametric
model, where the conditional distributions of Y given X and R given X are minimally specified.
The “working models” for m and π—defined explicitly, or by estimating equations/loss
functions—are not assumed to be correct because they only cover proper subsets of the



1.2 The Bayesian paradigm 35

nonparametric model. Of course, this is also implicit from the definition of double robustness.
The estimators m̂ and π̂ can therefore be interpreted as estimating the projections of P onto
the working models, rather than the “true” parameters. The type of projection depends on the
loss function. For example, maximum likelihood corresponds to negative log-likelihood loss
and minimizing KL-divergence.

Furthermore, since the doubly robust estimators fail to be consistent for the functional

µpPq “ EPrY s (1.25)

across the whole nonparametric model, we can infer that the actual estimand is in fact

µpro jpPq “ EP

„

RpY ´ mpro jpX ;Pqq

πpro jpX ;Pq
` mpro jpX ;Pq

ȷ

, (1.26)

where mpro jp¨;Pq and πpro jp¨;Pq are the projections of P onto the working models for m and
π respectively. This new estimand coincides with the original in (1.25) if either mpro j ” m or
πpro j ” π .

In contrast, the Bayesian joint estimation approach that suffers from feedback conditions
on both working models being correct; that is, the intersection of both working models
is assigned prior probability 1. Thus, it is no surprise that inference goes awry under
misspecification! A more appropriate Bayesian approach for the set-up above is to specify a
fully nonparametric Bayesian model, and the nonparametric posterior for P will then induce
a posterior for µpro jpPq. This roughly corresponds to our approach in Chapter 3.

The idea of defining target quantities as model-free projections, as opposed to true
components of parametric models, can be generalized to handle several long-standing is-
sues in Bayesian inference. One important example is the question of how to deal with
model misspecification. If Bayesian updating is carried out using a misspecified model,
the posterior will—under some regularity conditions—concentrate on the element in the
model that minimises the KL-divergence to the truth (also called the “pseudo-true” value).
But the coverage of credible intervals from this posterior will generally fail to converge to
nominal levels (Kleijn and van der Vaart, 2012). Another related example is the problem of
heteroscedastic errors and non-linearity in linear regression. This is studied in detail from
a frequentist viewpoint by Buja et al. (2019a,b), who also advocate the projection-based
perspective. Both cases can be resolved to certain extents by redefining the target quantities
and using nonparametric modelling. We discuss this further in Chapter 4.
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The crucial ingredient in this framework is the choice of nonparametric prior. A natural
candidate is the Dirichlet process (Ferguson, 1973), which is weakly supported on the set
of all probability measures on the sample space as long as the sample space is equal to the
support of the base measure (Ghosh and Ramamoorthi, 2003, Ghosal and van der Vaart,
2017). The Dirichlet process can be made even more convenient by letting the base measure
tend to 0. This leads to the so-called Bayesian bootstrap posterior (Rubin, 1981) that assigns
probability 1 to the set of distributions supported only on the observed data. Posterior samples
of P can be efficiently and exactly drawn without MCMC; it suffices to repeatedly sample
vectors of uniform Dirichlet weights of length n, which are assigned to the data points as
probabilities.

The first proposal to use the Bayesian bootstrap for constructing posteriors of projected
estimands was perhaps the weighted likelihood bootstrap (Newton and Raftery, 1994). The
motivation was simply to provide a computationally efficient approximation to a parametric
Bayes posterior. Posterior computation consisted of repeated (Dirichlet) weighted maximum
likelihood, which corresponds to finding the value in the parametric model that is closest to the
posterior draw of P in terms of KL-divergence. Although the developments of MCMC have
rendered these computational benefits redundant, Lyddon et al. (2018) realised the potential
of the weighted likelihood bootstrap for handling model misspecification, and extended the
approach. The Bayesian bootstrap has also been applied to instrumental variables estimation
and quantile regression (Chamberlain and Imbens, 2003), and doubly robust estimation
(Saarela et al., 2016).

The glaring deficiency of the Dirichlet process—and by extension, the Bayesian bootstrap—
is the inability to directly incorporate a prior on the target quantity. Kessler et al. (2015)
proposed a general heuristic for combining nonparametric priors with informative, marginally
specified priors on finite-dimensional parameters. But this involves deriving or estimating the
original marginal prior induced by the nonparametric prior, such as a Dirichlet process, which
appears to be infeasible unless the parameter is very low-dimensional. This is a problem that
we address in Chapters 3 and 4.

1.3 Conclusions

1.3.1 Generalizations to other estimands

Our running example—estimating an outcome mean from incomplete data—is closely related
to estimating an average treatment effect in causal inference (e.g. Morgan and Winship, 2007).
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Suppose we wish to estimate EY 1 ´EY 0, where Y 1 and Y 0 denote the counterfactual outcome
variables for treated and not treated respectively. Furthermore, suppose that R “ 1 if an
individual is assigned to the treatment group, and R “ 0 if the individual is assigned to the
control group. We observe independent and identically distributed data D1, . . . ,Dn, where for
each i, Di “ pXi,Ri,RiY 1

i ,p1 ´ RiqY 0
i q, and Xi is a vector of covariates as before. We assume

that X is sufficient to adjust for confounding20; that is,

Y r
KK R | X for r P t0,1u,

and the propensity score πpXq “ PpR “ 1 | Xq is bounded away not only from 0 but also from
1 with probability 1. Under these assumptions, the average treatment effect is identifiable,
and we can apply the previously described methods for incomplete data to first estimate EY 1

from pX ,R,RY 1q and again to estimate EY 0 from pX ,R,p1 ´ RqY 0q.
Returning to the incomplete data set-up, we can also generalize the methodology to other

estimands besides outcome means. Recall that the Hájek estimator solves

Pn

„

RpY ´ µq

πpXq

ȷ

“ 0,

where we have weighted the complete data influence function Y ´ µ by R{πpXq. Suppose
now that we observe independent and identically distributed data D1, . . . ,Dn, where for each
i, Di “ pXi,Ri,RiZiq. The assumptions are similar to before; we have only replaced Y with a
more general variable Z, and µ is replaced with a more general estimand γ . For example,
Z “ pY,W q and γ is the linear regression coefficient of Y on W . Suppose also that γ can be
estimated by solving

PnrupZ;γqs “ 0

given complete data, where PrupZ;γpPqqs “ 0, e.g. upZ;γq “ W TpY ´Wγq for ordinary least
squares estimation. It is then clear that the Hájek-style estimating equation

Pn

„

RupZ;γq

πpXq

ȷ

“ 0.

is unbiased and can be used to estimate γ for incomplete data if π is known.
The estimating equation above belongs to the class described by

Pn

„

RupZ;γq

πpXq
´ φpX ,γq

"

R
πpXq

´ 1
*ȷ

“ 0,

20Also referred to as “no unmeasured confounding” and “conditional exchangeability”.
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where φpX ,γq is an arbitrary measurable function of X and γ . The most efficient member
of this class is obtained by setting φ ” φeffpZ,γq ” EPrupZ;γq | Xs (Tsiatis, 2006). It is
straightforward to verify that the efficient influence function (1.14) for estimating the outcome
mean can be recovered by replacing upZ;γq with Y ´ µ . However, while Y ´ µ is the unique
complete-data influence function for µ (see §A.2), there are generally multiple complete-data
influence functions for an estimand γ . For instance, the influence function for the linear
regression coefficient is not unique; we can use weighted least squares or robust alternatives.
Thus, finding the efficient influence function for γ involves optimizing over u as well as φ .
It is not necessarily the case that the optimal choice of u is the efficient influence function
for complete data (van der Laan and Robins, 2003, Tsiatis, 2006). Moreover, the efficient
influence function can be difficult to compute. One could therefore opt for a compromise
estimator that is not fully efficient but is relatively easy to implement.

Similar to before, it is likely that π and φeff—for a particular choice of u—are both
unknown. If estimating equations are used for both, then the resulting estimator for γ is
doubly robust and locally efficient in its class. We will revisit this in Chapter 3.

1.3.2 Thesis outline

Chapters 2-4 form the core of this thesis. In Chapter 2, we develop a Bayesian framework
for analyzing case-cohort study data under the Cox model. The case-cohort study design
employs an unequal probability sampling frame wherein certain covariates are measured for
all cases and a random subset of the controls. Our method is applied to the EPIC-Norfolk
cohort study to investigate the associations between saturated fatty acids and incident type-2
diabetes. Chapter 3 studies the use of the Bayesian exponentially tilted empirical likelihood
to resolve the issues described in this first chapter. This approach builds on the projection-
based perspective described in §1.2.2.4, and we prove asymptotic results to justify its use.
Some of the shortcomings of this method are addressed in Chapter 4, where we introduce a
new nonparametric Bayesian model called the exponentially tilted Bayesian bootstrap. We
develop algorithms to sample from the posterior and explore its behaviour across a variety of
examples. Finally, Chapter 5 discusses some of the limitations of our work and identifies
potential avenues for future research.

The notation defined in this chapter will also be used in Chapters 3 and 4, roughly
following the conventions of the missing data and moment condition inference literature. In
Chapter 2, we will instead use notation that is more standard in survival analysis in order to
facilitate comparisons with papers proposing competing methodology. For example, we have
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used R to denote the binary selection variable in this chapter, but R is more commonly used
to denote the at-risk indicator in survival analysis. Further details of these differences are
discussed in §2.2.1.





Chapter 2

A Bayesian framework for case-cohort
Cox regression

2.1 Introduction

This chapter develops methodology for the case-cohort study design (Prentice, 1986), which
is an increasingly common approach for studying prospective epidemiological associations.
Time and cost constraints, as well as concerns over the wastage of valuable biological material
(Borgan and Samuelson, 2017), can render it infeasible to obtain certain covariates on a
full cohort. The case-cohort design circumvents this issue by requiring complete covariate
measurements on only a randomly sampled subcohort along with all remaining incident
cases, allowing one to efficiently target the quantities of interest while retaining identifiability.
An advantage over the similarly motivated nested case-control design (Thomas, 1977) is the
ability to reuse the subcohort for multiple endpoints (Kulathinal and Arjas, 2006).

Existing proposals for analysing case-cohort data are mostly based on the Cox propor-
tional hazards model (Cox, 1972), although other models have been considered (e.g. Lu and
Tsiatis, 2006, Zeng and Lin, 2014, Steingrimsson and Strawderman, 2017). The most widely
used approach is weighted Cox regression, motivated by the intuition that the oversampling
of cases can be balanced by an appropriate overweighting of the subcohort controls. The
methods of Prentice (1986) and Barlow (1994) are the most commonly applied (Sharp et al.,
2014). In both proposals, cases sampled outside of the subcohort enter into the analysis only
at their respective failure times, allowing for the partially collected covariates—referred to as
expensive covariates hereafter—to be time-dependent.

Assuming time-independence permits more efficient weighting approaches. Kalbfleisch
and Lawless (1988) and Chen and Lo (1999) proposed weighting schemes based on inverse
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probability weighting and post-stratification respectively. However, neither approach can
make use of potentially available information on the unsampled controls, such as auxiliary
variables and censoring times. Borgan et al. (2000) suggested several methods to address
this issue, one of which was later augmented by Kulich and Lin (2004) to increase efficiency.
Yet, weighted Cox estimators cannot be fully efficient; Nan et al. (2004) studied the semi-
parametric efficiency bound for the problem and quantified the amount of efficiency lost. It
is unclear whether estimators that achieve the bound can be constructed in general.

Alternatives to weighted Cox regression have been proposed that use the full cohort data
more efficiently and avoid the potential instability of inverse probability weights. Keogh and
White (2013) described how multiple imputation can be applied to the problem, treating the
expensive covariates for unsampled individuals as missing data. This requires a conditional
imputation model for the expensive covariates given all observed variables, including the
event time and case indicator. Care is required to avoid incompatibility issues (Morris et al.,
2013) with the proportional hazards model: Keogh and White (2013) implemented the
imputation with either a simple generalized linear model, or with rejection sampling using a
preliminary marginal model. Full likelihood methods have assumed that the censoring mech-
anism is ignorable given the observed data. Nonparametric maximum likelihood estimation
with the EM-algorithm was proposed by Scheike and Martinussen (2004), later extended by
Zeng and Lin (2014) to include auxiliary variables and shown to be semiparametric efficient.
However, computation is numerically unstable for more than three continuous auxiliary
variables. Kulathinal and Arjas (2006) considered Bayesian analysis with data augmentation
(Tanner and Wong, 1987), specifying a fully parametric form for the baseline cumulative
hazard function.

We introduce a novel Bayesian framework for case-cohort Cox regression under the
ignorable censoring assumption stated earlier; time-independence will be also be assumed
since it is sufficient for our application and simplifies the descriptions, but we will discuss
how this can be relaxed. The basic procedure is carried out in two stages. First, we obtain the
posterior of the conditional distribution of the expensive covariates given the fully observed
covariates using only the data from individuals with complete measurements—we refer to
this as the restricted posterior. Samples from this restricted posterior serve as inputs to a
pseudo-marginal Metropolis-Hastings algorithm (Lin et al., 2000, Beaumont, 2003, Andrieu
and Roberts, 2009). This procedure yields the interpretation of using a likelihood function
equal to the average of a set of Cox partial likelihoods, each computed from a dataset formed
from the original with a different instance of imputed values for the missing expensive
covariates. In this regard, our method shares a conceptual similarity with multiple imputation,
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but is fully Bayesian and is automatically free of incompatibility issues with the Cox model.
For large and moderate-dimensional datasets, we also propose extensions to the method
based on modified versions of the correlated pseudo-marginal algorithm (Deligiannidis et al.,
2018) that facilitate faster mixing.

Unlike Kulathinal and Arjas (2006), who require a fully specified joint model for the
expensive and fully observed covariates, we allow for the (nuisance) marginal distribution of
the fully observed covariates to be ignored. Moreover, our model for the baseline cumulative
hazard function is nonparametrically specified and integrated out; this obviates sampling a
potentially high-dimensional (or even infinite-dimensional) parameter, and leads to more
robust inference for the log-hazard ratio than using a parametric model specification. With no
auxiliary variables, and a discrete model for the expensive covariates, the likelihood reduces
to the nonparametric likelihood used by Scheike and Martinussen (2004). When auxiliary
variables are available, the conditional model for the expensive covariates can be arbitrarily
specified, without the three dimensional covariate ceiling of the Zeng and Lin (2014) kernel
estimation approach.

In §2.2, we introduce our method in a general setting, and propose modifications to the
basic algorithm that facilitate improved mixing. Simulations comparing the performance of
our approach to previous proposals are presented in §2.3. In §2.4, we apply our method to the
EPIC-Norfolk study with the objective of investigating the associations between individual
plasma phospholipid saturated fatty acids and incident type 2 diabetes. A challenging aspect
is incorporating the compositional fatty acid data into the Cox model. Previous studies
treated the proportions as absolute measurements, and used them directly. On the other hand,
we first apply the additive logratio transformation (Aitchison, 1982) to the data. We discuss
how this produces more reliable and interpretable results. To assess the effectiveness of
our method and model for studying this application, we carried out a novel synthetic data
experiment using a generating mechanism that exploits the case-cohort design and resamples
from the real dataset.

2.2 Bayesian case-cohort Cox regression

2.2.1 Notation and background

First, consider the Cox proportional hazards model (Cox, 1972) for complete data. Let
D0 “ pY,∆,Z,W q, where Y “ minpT,Cq, T and C denote the failure time and right-censoring
time respectively, ∆ “ IpT ď Cq and pZ,W q P Rm is a vector of time-independent covariates—
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later on, there is a probability that Z is unobserved. The conditional hazard function of T

given pZ,W q is λ ptq “ exppβ T
1 Z ` β T

2W qλ0ptq, where β “ pβ1,β2q is the log-hazard ratio
describing the effects of the covariates, and λ0ptq is the baseline hazard function. Let
Λ0ptq “

şt
s“0 λ0psqds be the baseline cumulative hazard function. Suppose we observe an

independent and identically distributed sample D0
i “ pYi,∆i,Zi,Wiq pi “ 1, . . . ,nq and let

Riptq “ Ipt ď Yiq be the at-risk indicator at time t for individual i. Assuming that T and C are
conditionally independent given pZ,W q, the parameter β can be estimated by maximizing
the Cox partial likelihood1 (Cox, 1972)

n
ź

i“1

#

exppβ T
1 Zi ` β T

2Wiq
řn

j“1 R jpTiqexppβ T
1 Z j ` β T

2Wjq

+∆i

, (2.1)

which is equivalent to solving the partial score equations

n
ÿ

i“1

∆i

#

pZi,Wiq
T

´

řn
j“1 R jpTiqexppβ T

1 Z j ` β T
2WjqpZ j,Wjq

T

řn
j“1 R jpTiqexppβ T

1 Z j ` β T
2Wjq

+

“ 0 (2.2)

Suppose now that the covariates Zi—which we will refer to as the expensive covariates—
are measured for only a random subset of the cohort. Suppose also that we observe an
independent and identically distributed sample Xi pi “ 1, . . . ,nq of auxiliary covariates that
can be used to predict the unmeasured values of Z. More explicitly, we observe Di “

pYi,∆i,AiZi,Ai,Wi,Xiq pi “ 1, . . . ,nq, where Ai is a binary variable indicating whether the
expensive covariates for individual i have been measured, and the other variables are defined
as before. In a standard case-cohort design, Ai “ 1 if individual i is a case, or a control
sampled into the subcohort. Let S “ ti : Ai “ 1u Ă t1, . . . ,nu denote the set of individuals
with measured Zi, and let S̄ “ t1, . . . ,nuzS . We will make use of the shorthand notation of
indexing by sets, e.g. XS “ tXi : i P S u.

We point out that the notation defined above differs slightly from Chapters 1, 3 and 4.
In particular, we have used A to denote the binary selection variable, rather than R, and Z

denotes the expensive covariates instead of the set of fully observed variables, as previously
used in §1.3.1 (and also later in Chapter 3). We have chosen to do this to adhere to the
conventions of the survival analysis literature, making it easier for the reader to switch
between our work and the papers cited in this chapter.

We make the following assumptions:

1In the presence of ties, (2.1) takes the Breslow form of the partial likelihood (Breslow, 1972), which is the
form we will use for the whole of this chapter.
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Assumption 2.1. For each i “ 1, . . . ,n, Ci is independent of pTi,Ziq given pWi,Xiq.

Assumption 2.2. The vector pA1, . . . ,Anq is independent of pZ1, . . . ,Znq given tpYj,∆ j,Wj,X jq :
j “ 1, . . . ,nu.

Assumption 2.1 strengthens the conditional independence assumption for full-data Cox
regression, requiring further that Ci be independent of Zi given pWi,Xiq for each i “ 1, . . . ,n.
This will hold, for example, if the censoring is administrative. Assumption 2.2 is guaranteed
to hold for standard case-cohort studies since the subcohort selection mechanism is known
by design, and is either fully randomized or stratified on the baseline covariates Xi.

Of the 32 case-cohort analyses reviewed by Sharp et al. (2014), all but one used the Cox
model, and 20 papers employed weighted Cox regression; the remaining papers carried out
a standard unweighted Cox analysis with the sampled units. The motivation for weighted
Cox regression is similar to that of the Horvitz-Thompson estimator and the other weighted
estimators described in Chapter 1. Since the complete-data partial score equations (2.2)
are unusable due to the unmeasured expensive covariates, they are replaced by a weighted
version that involves only the sampled units.

We will describe the weighted Cox regression methods under the standard unstratified
case-cohort design, where

PpAi “ 1 | Yi,∆i,Wi,Xiq “

$

&

%

1, for ∆i “ 1

p, for ∆i “ 0,

and p is a known proportion that is strictly greater than 0. Let n0 and m0 be the number
of controls in the full cohort and subcohort respectively. Define n1 and m1 for the cases
similarly.

Weighted Cox estimators solve

n
ÿ

i“1

∆i

#

pZi,Wiq
T

´

řn
j“1 ωi jR jpTiqexppβ T

1 Z j ` β T
2WjqpZ j,Wjq

T

řn
j“1 ωi jR jpTiqexppβ T

1 Z j ` β T
2Wjq

+

“ 0 (2.3)

for a chosen set of weights tωi ju. By design, ωi j must be equal to zero if the j-th individual
is a control who was not selected into the subcohort. The original approach by Prentice
(1986) weighted all elements of the subcohort equally, but only included a case outside the
subcohort at its failure time. This was due to the fact that Prentice considered time-dependent
covariates and did not assume that the full covariate histories for cases outside the subcohort
would be available. Asymptotic justification for the resulting estimator was only established
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Table 2.1 Weight for individual j at failure time Ti. P, Prentice (1986); SP, Self and Prentice
(1988); KL, Kalbfleisch and Lawless (1988); CL, Chen and Lo (1999).

P SP KL CL(I) CL(II)
Case in S 1 1 1 1 1

Case not in S 1pi “ jq 0 1 1 1
Control in S 1 1 1{p n1{m1 n0{m0

later in Self and Prentice (1988). Here, the authors considered a slightly different estimator
for which the cases outside the subcohort are left out altogether. Thus, the unknown full
cohort quantities are estimated using only the randomly sampled subcohort. They proved
consistency and asymptotic normality of their estimator, and argued that the earlier estimator
by Prentice (1986) would generally behave similarly if the contribution of the appended
cases is negligible for large samples. The Self and Prentice (1988) estimator has not been
used in practice due to its low efficiency (e.g. Borgan et al., 2000).

Kalbfleisch and Lawless (1988) suggested an inverse probability weighted estimator;
controls in the subcohort are up-weighted by the reciprocal of the subcohort sampling
proportion, similar to the Horvitz-Thompson estimator. Chen and Lo (1999) proposed two
weighting schemes, both of which can be viewed as variations of the Kalbfleisch and Lawless
method with estimated weights. If the size of the full cohort is unknown, the controls are
up-weighted by the number of cases in the full cohort divided by the number of cases in the
subcohort. Otherwise, the number of controls outside the subcohort is known, and efficiency
can be improved by instead estimating the weights by the number of controls in the full
cohort divided by the number of controls in the subcohort. This relates to our discussion of
estimated weights and post-stratification in Chapter 1. As one would expect, it can be shown
(e.g. Borgan and Samuelson, 2017) that the Chen and Lo (1999) approaches improve on the
other methods described in terms of efficiency. The different sets of weights are summarized
in Table 2.1.

2.2.2 The pseudo-marginal algorithm

In this section, we provide a brief overview of an MCMC approach that is crucial to the
methodology we develop later. Suppose we wish to draw samples from an analytically
intractable probability density ppβ q, where β is real-valued2. Since we are unable to evaluate

2Naturally, ppβ q will be the marginal posterior of the log-hazard ratio.
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ppβ q point-wise, standard MCMC methods like the Metropolis-Hastings algorithm are
infeasible. Suppose, however, that we are able to find a non-negative approximation p̂pβ | Uq

satisfying EU rp̂pβ | Uqs “ ppβ q, where U is a random variable with marginal density ppuq,
i.e. p̂pβ | Uq is an unbiased estimator of the true ppβ q. We can then construct an MCMC
sampler that targets the “joint density” of pβ ,Uq that is proportional to p̂pβ | UqppUq; at
stationarity, the samples of β are drawn from the exact marginal distribution ppβ q. Thus, this
type of algorithm is called pseudo-marginal (Andrieu and Roberts, 2009).

In particular, we are interested in the setting where ppβ q “
ş

ppβ ,θ qdθ , where θ is a
latent variable3 and ppβ ,θ q is a tractable joint density. If ppβ ,θ q “ hpβ ,θ qgpθ q for non-
negative integrable functions h and g (they need not be ppβ | θ q and ppθ q respectively), then
a natural choice of unbiased estimator is

p̂pβ | θ
:

1 , . . . ,θ
:

Bq9
1
B

B
ÿ

b“1

hpβ ,θ :

b q,

where B is a positive integer, and θ
:

1 , . . . ,θ
:

B are independent and identically distributed
according to the density proportional to g. In the context of the previous set-up, the auxiliary
variable U is equal to pθ

:

1 , . . . ,θ
:

Bq.
Classically, this latent variable problem is handled using a Metropolis-Hastings algorithm

that targets ppβ ,θ q. A Gibbs sampler is a typical choice if we are able to sample from the
conditionals ppβ | θ q and ppθ | β q; this is the data augmentation method of Tanner and
Wong (1987). However, the mixing for such a sampler is likely to be prohibitively slow if
θ is high-dimensional and strongly correlated with β (Andrieu and Roberts, 2009). The
EM-algorithm (Dempster et al., 1977)—the analogous approach for maximizing a likelihood
with latent variables—suffers the same deficiencies. The motivation of the pseudo-marginal
algorithm was to create a far more computationally efficient alternative. The caveat is that
we do not obtain samples of θ from its true marginal distribution, but that is not a concern
for us since we are only interested in β .

The seemingly obvious choice of proposal distribution for U is its marginal density ppuq;
that is, each proposal for U is independent of the current value. But this can lead to poor
mixing if U is very high-dimensional. Deligiannidis et al. (2018) proposed the correlated

pseudo-marginal algorithm, which uses a pre-conditioned Crank-Nicolson proposal (Cotter
et al., 2013) for U . This choice of proposal is particularly well-suited for high-dimensional
parameters, and the authors showed that there was a substantial gain in efficiency over the

3Later on, θ will be the set of all unmeasured expensive covariates.
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non-correlated algorithm. Assuming that ppuq is analytically tractable, there is no loss of
generality to assume that U is standard multivariate normal by using inversion techniques.
Given the current value U , a new proposal U 1 is drawn by setting U 1 “ ρU `ε

a

1 ´ ρ2, where
ρ P r0,1s and ε „ N p0, Iq. Higher values of ρ lead to higher acceptance probabilities at the
expense of slower exploration of the parameter space; the value can be tuned accordingly.

We will see, however, that the auxiliary variable U in our method does not have a
tractable marginal density. This is addressed in §2.2.4, where we extend the correlated
pseudo-marginal algorithm for our purposes.

2.2.3 Model and inference

Under the general set-up described in §2.2.1, the likelihood function for the data D1, . . . ,Dn

is equal to

«

ź

iPS

texppβ
T
1 Zi ` β

T
2Wiqλ0pYiqu

∆i exp
!

´eβ T
1 Zi`β T

2 WiΛ0pYiq

)

ppZi | Wi,Xiq

ff

»

–

ź

jPS̄

ż

exp
!

´eβ T
1 z j`β T

2 W jΛ0pYjq

)

ppz j | Wj,X jqdz j

fi

fl

(2.4)

multiplied by

#

n
ź

k“1

ppCk | Wk,Xkq
1´∆kPpCk ě Yk | Wk,Xkq

∆k ppWk,Xkq

+

ppA1, . . . ,An | tpYj,∆ j,Wj,X jq : j “ 1, . . . ,nuq.

(2.5)

This is derived by taking the full likelihood for the Cox model with complete data (van der
Vaart, 1998, p.425) and integrating out the missing expensive covariates tZ j : j P S̄ u. In this
section, we will describe our model restrictions for the different terms in the likelihood, and
explain how to carry out inference on the hazard ratio.

The baseline cumulative hazard function Λ0 is set to be a step function with jumps only at
the failure times. Let ∆Λ0pYiq denote the jump size of Λ0 at Yi for ∆i “ 1. Then, the baseline
hazard λ0pYiq equals ∆Λ0pYiq if ∆i “ 1, and 0 otherwise, and Λ0ptq “

ř

i:∆i“1,Yiďt ∆Λ0pYiq.
This idea was introduced by Breslow (1972) to motivate both the Cox partial likelihood
estimator—from a nonparametric maximum likelihood perspective—and the Breslow esti-
mator of the baseline cumulative hazard function. Scheike and Martinussen (2004) and Zeng
and Lin (2014) extended this approach for case-cohort data.
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We specify a Bayesian bootstrap prior for Λ0

ppΛ0q9
ź

i:∆i“1

∆Λ0pYiq
´1.

For complete data, Kim and Lee (2003) referred to this as the “Poisson form Bayesian
bootstrap” and showed that the resulting inference for β is equivalent to Bayesian analysis
with the Cox partial likelihood. We will see that a similar phenomenon arises with case-cohort
data. Kalbfleisch (1978) and Sinha et al. (2003) motivated this prior by considering the limit
of a sequence of gamma process priors that become progressively more noninformative.
This is similar to how the original Bayesian bootstrap (Rubin, 1981) can be motivated by
considering the noninformative limit of a sequence of Dirichlet process priors.

For the terms of the form ppZ | W,Xq in (2.4), we require a regression model for the
expensive covariates Z given the fully observed covariates pW,Xq. This will be used to
predict the missing expensive covariate values and its specification is left to the user. We
denote the parameter of this model by γ , which can be infinite-dimensional. The priors for β

and γ are also left to the user, aside from the requirement of joint prior independence of Λ0,
β , and γ .

In (2.5), we set the models for the censoring ppCk | Wk,Xkq, the fully observed covariates
ppWk,Xkq and the selection ppA1, . . . ,An | tpYj,∆ j,Wj,X jq : j “ 1, . . . ,nuq to be a priori inde-
pendent of pΛ0,β ,γq. Thus, (2.5) will drop out of the subsequent analysis and no further
specification of these models is needed.

It follows that the posterior for pΛ0,β ,γq given D1, . . . ,Dn is proportional to

«

ź

iPS

exppβ
T
1 Zi ` β

T
2Wiq

∆i exp
!

´eβ T
1 Zi`β T

2 WiΛ0pYiq

)

ppZi | Wi,Xi,γq

ff

»

–

ź

jPS̄

ż

exp
!

´eβ T
1 z j`β T

2 W jΛ0pYjq

)

ppz j | Wj,X j,γqdz j

fi

fl ppγqppβ q.

(2.6)

Let

ppγ | DS q9

«

ź

iPS

ppZi | Wi,Xi,γq

ff

ppγq (2.7)

be the posterior for γ given only the data for individuals in S —the set of individuals with
measured Zi. We refer to this as the restricted posterior of γ . By integrating (2.6) with
respect to Λ0, applying Fubini’s theorem to exchange the order of integration with the missing
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covariates, and then integrating with respect to γ , we find that

ppβ | D1, . . . ,Dnq9

ż n
ź

k“1

"

exppβ T
1 zk ` β T

2Wkq
řn

l“1 RlpTkqexppβ T
1 zl ` β T

2Wlq

*∆k
«

ź

iPS

δtzi “ Ziudzi

ff

»

–

ź

jPS̄

ppz j | Wj,X j,γqdz j

fi

fl ppγ | DS qdγ ppβ q

(2.8)

where δt¨u is the Dirac delta function. (A more detailed derivation can be found in §B.1.)
Thus, the posterior of β is proportional to the prior of β multiplied by the Cox partial
likelihood averaged across the restricted posterior predictive distribution of the missing
covariates.

Although this averaged Cox partial likelihood is probably intractable, it is generally
possible to draw values of the missing covariates from the restricted posterior predictive
distribution, either exactly or by MCMC methods. This provides us with a computational
strategy to sample from the marginal posterior of β using the pseudo-marginal algorithm.
Let B be a positive integer (the choice of which is suggested below). Define the distribution
of a B ˆ |S̄ | random variable Zmis by

ppzmis
| WS̄ ,XS̄ ,DS q “

B
ź

b“1

ż

ź

jPS̄

ppzpbq

j | Wj,X j,γbqppγb | DS qdγb, (2.9)

where tzpbq

j : j P S̄ , b “ 1, . . . ,Bu are the components of zmis. We can sample Zmis as
follows: draw B independent values γ1, . . . ,γB from the restricted posterior (2.7), and for each
b “ 1, . . . ,B and each j P S̄ , draw from ppz | Wj,X j,γbq; Zmis takes the value of the set of
imputed covariates. By combining Zmis with the measured values of Z, this procedure yields
B datasets with complete covariate measurements. Define the function h by the mean of the
partial likelihood functions across all datasets:

hpβ ,Zmis
q “ B´1

B
ÿ

b“1

»

–

ź

k:∆k“1

exppβ T
1 Zk ` β2Wkq

řn
l“1 RlpYkqexppβ T

1 Zpbq

l ` β2Wlq

fi

fl

where Zpbq

l is the expensive covariate for individual l in the b-th imputed dataset.
Let qpβ̃ | β q be a user-specified proposal distribution for β . Algorithm 2.1 describes

the basic template for sampling from the marginal posterior of β . The algorithm can be
viewed as a Metropolis-Hastings algorithm for the augmented parameter pβ ,zmisq with
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Algorithm 2.1: Sampling from the marginal posterior of β

Input initial parameter value β p0q.
Draw Zmis

p0q
from ppzmis | WS̄ ,XS̄ ,DS q (2.9).

For r “ 1 to r “ N
(a) Propose β̃ from qpβ | β pr´1qq.
(b) Draw Z̃mis from ppzmis | WS̄ ,XS̄ ,DS q.

(c) With probability min
"

1, qpβ pr´1q|β̃ qppβ̃ qhpβ̃ ,Z̃misq

qpβ̃ |β pr´1qqppβ pr´1qqhpβ pr´1q,Zmis
pr´1q

q

*

,

set β prq “ β̃ and Zmis
prq

“ Z̃mis.
Otherwise, set β prq “ β pr´1q and Zmis

prq
“ Zmis

pr´1q
.

Output pβ p1q, . . . ,β pNqq.

proposal distribution q˚pβ̃ , Z̃mis | β ,zmisq “ qpβ̃ | β qppz̃mis | WS̄ ,XS̄ ,DS q. The acceptance
probability for the r-th iteration with proposal pβ̃ , Z̃misq and current value pβ pr´1q,Zmis

pr´1q
q

can now be written as

min

#

1,
q˚pβ pr´1q,Zmis

pr´1q
| β̃ , Z̃misqppβ̃ qppZ̃mis | WS̄ ,XS̄ ,DS qhpβ̃ , Z̃misq

q˚pβ̃ , Z̃mis | β pr´1q,Zmis
pr´1q

qppβ pr´1qqppZmis
pr´1q

| WS̄ ,XS̄ ,DS qhpβ pr´1q,Zmis
pr´1q

q

+

.

Thus, Algorithm 2.1 converges to stationarity with an invariant distribution function propor-
tional to ppβ qppzmis | WS̄ ,XS̄ ,DS qhpβ ,zmisq. By construction, the expectation of hpβ ,Zmisq

with respect to ppzmis | WS̄ ,XS̄ ,DS q is proportional to ppD1, . . . ,Dn | β q in β ; the marginal
invariant distribution of β is therefore equal to the true marginal posterior. If MCMC is
required to draw restricted posterior values of γ , it is straightforward to modify Algorithm 2.1
to sample the further augmented parameter pβ ,zmis,γ1, . . . ,γBq.

Since Algorithm 2.1 is a pseudo-marginal algorithm that uses an average of unbiased
estimators (as opposed to a particle filter), and computation time scales roughly linearly in B,
the results of Sherlock et al. (2017) suggest that the optimal computational tradeoff between
number of iterations N and number of estimators B is achieved by setting B “ 1. If parallel
computing is available with negligible overheads, B should be set equal to the number of
available cores, so that the B partial likelihood functions are computed in parallel.
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2.2.4 Modifications to improve mixing

For large datasets with moderate to high dimensional covariates, such as our application in
§2.4, Algorithm 2.1 may not be sufficient to ensure good mixing. In this section, we describe
how improved mixing can be attained.

As discussed in §2.2.2, the correlated pseudo-marginal algorithm (Deligiannidis et al.,
2018) improves on the efficiency of the standard pseudo-marginal algorithm by correlating
the current and proposed values of the variables that are used to obtain the estimate of the
likelihood factor (Zmis in our set-up). However, this method requires the distribution of these
variables to be inverted into a standard multivariate normal distribution; for the restricted
posterior predictive distribution of Zmis given by (2.9), this will generally be impossible in
practice due to intractability.

We solve this by instead considering the restricted posterior predictive distribution of Zmis

conditional on γ1, . . . ,γB. In equation (2.9), the factors of the form ppzpbq

j | Wj,X j,γ
pbqq are

user-specified probability density/mass functions. Generally, this means that we can analyti-
cally or numerically evaluate a deterministic function ϕ such that ϕpU,WS̄ ,XS̄ ,γ1, . . . ,γBq

has the distribution of Zmis, where U „ N p0M, IMq for M “ BˆS̄ , independent of γ1, . . . ,γB.
This motivates Algorithm 2.2, a modified version of the correlated pseudo-marginal algorithm
in which the set of parameters is augmented by γ1, . . . ,γB, and the values of U are correlated
to the level determined by ρ P p´1,1q. When ρ “ 0, Algorithm 2.2 is equivalent to Algorithm
2.1. Recall that increasing ρ leads to higher acceptance probabilities but slower exploration
of the parameter space, and the value can be tuned accordingly. We justify the algorithm in
§B.2.

If this is insufficient to ensure adequate mixing, we can correlate γ1, . . . ,γB as well.
In the case where the restricted posterior ppγ | DS q admits an analytic expression, it is
straightforward to extend Algorithm 2.2 by replacing step (b) with a correlated proposal using
the normal inversion strategy employed for Zmis. We take this approach in §2.4, albeit only
for a subparameter of γ . Otherwise, we can sample γ1, . . . ,γB using a Metropolis-Hastings
algorithm with a proposal distribution chosen to induce a suitable level of correlation.

2.3 Simulation study

In this section, we provide an initial assessment of our proposal by comparing its performance
with the weighted Cox regression methods of Prentice (1986), Kalbfleisch and Lawless (1988)
and Chen and Lo (1999) (the more efficient version labelled CL(II) in Table 2.1). All three
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Algorithm 2.2: Correlated sampling algorithm

Input initial parameter value β p0q

Draw U p0q „ N p0M, IMq.
Draw i.i.d. γ

p0q

1 , . . . ,γ
p0q

B „ ppγ | DS q.
Compute Zmis

p0q
“ ϕpU p0q,WS̄ ,XS̄ ,γ

p0q

1 , . . . ,γ
p0q

B q.
For r “ 1 to r “ N

(a) Draw a proposal β̃ from qpβ | β pr´1qq.
(b) Draw i.i.d. γ̃1, . . . , γ̃B „ ppγ | DS q.
(c) Draw ε „ N p0M, IMq and set Ũ “ ρU pr´1q `

a

p1 ´ ρ2qε .
(d) Compute Z̃mis “ ϕpŨ ,WS̄ ,XS̄ , γ̃1, . . . , γ̃Bq.

(e) With probability min
"

1, qpβ pr´1q|β̃ qppβ̃ qhpβ̃ ,Z̃misq

qpβ̃ |β pr´1qqppβ pr´1qqhpβ pr´1q,Zmis
pr´1q

q

*

, set pβ prq,U prqq “ pβ̃ ,Ũq.

Otherwise, set pβ prq,U prqq “ pβ pr´1q,U pr´1qq

Output pβ p1q, . . . ,β pNqq.

existing methods can be implemented using the R package survival. Since these methods
are unable to incorporate auxiliary covariates to improve the prediction of the missing
expensive covariates, we considered the special case where there are no auxiliary covariates
to enable direct comparisons. In §2.4.3, we perform further experiments that are closely
based on the application to the EPIC-Norfolk study.

Failure times were independently and identically generated for a full cohort size of
n “ 2000 using a Weibull baseline hazard function

λ ptq “ exppβ0Zqηνtν´1,

where β0 is the target quantity. The expensive covariate Z was generated from N p0,1q.
The censoring times took the value 3 with probability 0.2, and were otherwise uniformly
distributed between 0 and 3. The sets of values of pβ0,η ,νq, with β P t´0.3,0,0.3u, were
chosen such that the average proportion of cases (approximately 4%) roughly corresponded
to that of the application. The subcohort sampling proportion p “ 0.04 was chosen similarly.

For our Bayesian method, computation was carried out using Algorithm 2.1. We specified
a Bayesian bootstrap model (Rubin, 1981) for the distribution of Z. A new value of Zmis

is proposed as follows: sample a set of probability weights from Dirichletp1, . . . ,1q, each
corresponding to an observed value of Z in S ; conditional on the weights, independently
draw each missing covariate from the observed set of Z values. For β , we specified an
improper uniform prior on R and used a normal random walk proposal: qpβ̃ | β pr´1qq “
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N pβ pr´1q,σ2q. For the proposal variance, we used four times the estimated variance of the
Chen and Lo (1999) estimator (using a weighted Cox analysis). With parallel computing,
the communication overhead dominated the computation time of the likelihood estimator;
thus, the number of estimators B was set to 1. The first 1000 Metropolis-Hastings iterations
were discarded, and the subsequent 20000 iterations were used for analysis. We chose the
posterior mean as the Bayes point estimator.

Table 2.2 summarizes the performance of the four methods across 2000 Monte Carlo
trials. The relative efficiencies were computed by taking the ratio of the mean squared errors
relative to the complete data analysis, where information on all variables is available for the
full cohort. The coverage properties of the Bayesian method were assessed by examining
the proportion of trials where β0 was contained in the central 95% posterior credible region.
For the remaining procedures, we have reported the coverage from 95% Wald intervals with
robust variance estimates.

Our proposal substantially outperformed the three weighted Cox approaches in all settings:
the Bayes estimator was approximately unbiased with smaller standard deviations, leading
to a significant reduction in efficiency loss relative to the complete data analysis. The
central posterior credible regions also exhibited frequentist coverage close to nominal levels,
improving on the Prentice method in particular. We draw attention to the fact that we have
specified a noninformative prior for β and a nonparametric model for Z which makes virtually
no modeling assumptions. Thus, there is ample scope to make further performance gains if
prior substantive knowledge is available.

We mention also that we implemented the nonparametric maximum likelihood estimator
(Scheike and Martinussen, 2004, Zeng and Lin, 2014), which is computed using an EM-
algorithm. However, we were unable to obtain numerical convergence for any of the sets of
parameter values, so we excluded this estimator from the comparisons.

Additionally, we investigate how the computation time of our method scales with dataset
size. The set-up is the same as before, with parameter values β0 “ 0.3, η “ 0.01, ν “ 2.0. In
Figure 2.1, we have plotted the computation times across 100 trials for n ranging from 1000
to 10000 in steps of 1000. Additionally, we have plotted the fitted curve from a quadratic
model, which suggests that our method and implementation are Opn2q.
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Table 2.2 Comparison of log-hazard ratio estimates for 2000 replicates. CL, Chen and Lo
(1999); KL, Kalbfleisch and Lawless (1988); ESD, empirical standard deviation; RMSE, root
mean squared error; RE, relative efficiency; Cov, coverage.

β0 “ ´0.3, η “ 0.01, ν “ 2.0 β0 “ ´0.3, η “ 0.02, ν “ 1.2
Estimator Bias ESD RMSE RE Cov (%) Bias ESD RMSE RE Cov (%)
Complete 0.000 0.109 0.109 1.000 95.00 0.000 0.107 0.107 1.000 95.70
Bayes 0.013 0.145 0.146 0.561 94.80 0.012 0.141 0.142 0.563 95.85
CL -0.021 0.206 0.207 0.278 94.25 -0.017 0.190 0.191 0.312 94.50
KL -0.021 0.206 0.207 0.278 94.25 -0.017 0.190 0.191 0.312 94.50
Prentice -0.012 0.202 0.202 0.293 90.15 -0.010 0.186 0.187 0.325 91.20

β0 “ 0, η “ 0.01, ν “ 2.0 β0 “ 0, η “ 0.02, ν “ 1.2
Estimator Bias ESD RMSE RE Cov (%) Bias ESD RMSE RE Cov (%)
Complete 0.002 0.115 0.115 1.000 94.40 0.002 0.113 0.113 1.000 95.00
Bayes 0.004 0.161 0.161 0.508 94.80 0.005 0.163 0.163 0.485 95.10
CL 0.003 0.194 0.194 0.352 95.25 0.003 0.181 0.181 0.394 95.75
KL 0.003 0.194 0.194 0.352 95.25 0.003 0.181 0.181 0.394 95.75
Prentice 0.002 0.191 0.191 0.363 90.20 0.003 0.178 0.178 0.405 91.20

β0 “ 0.3, η “ 0.01, ν “ 2.0 β0 “ 0.3, η “ 0.02, ν “ 1.2
Estimator Bias ESD RMSE RE Cov (%) Bias ESD RMSE RE Cov (%)
Complete 0.001 0.114 0.114 1.000 94.10 0.001 0.112 0.112 1.000 93.65
Bayes -0.008 0.151 0.151 0.571 94.80 -0.008 0.149 0.150 0.564 94.90
CL 0.023 0.204 0.206 0.307 93.70 0.019 0.192 0.193 0.340 94.30
KL 0.023 0.204 0.206 0.307 93.70 0.019 0.192 0.193 0.340 94.30
Prentice 0.014 0.201 0.202 0.319 89.45 0.012 0.188 0.189 0.355 90.65
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Fig. 2.1 Computation times by dataset size.
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2.4 Application to the EPIC-Norfolk study

2.4.1 Study design and data preparation

We apply our methodology to investigate the associations between individual saturated fatty
acids and incident type 2 diabetes, using data from the European Prospective Investigation
into Cancer and Nutrition (EPIC)-Norfolk study (Day et al., 1999). The original cohort study
included 25,639 men and women aged 40 to 79. Between 1993 and 1997, all participants
were invited to undergo a baseline health check, during which anthropometric measurements
and blood samples were taken by trained nurses. Participants were also required to complete
a health and lifestyle questionnaire. Follow-up concluded on 31st December 2007; the follow-
up time for each participant was taken to be the total number of days from the recruitment
date to diabetes diagnosis or the censoring date. This form of administrative censoring
implies that Assumption 2.1 is satisfied.

As one of twenty-six centres contributing to the EPIC-InterAct case-cohort study (Lan-
genberg et al., 2011), a random subcohort of size 1025, along with the remaining 863 incident
cases, were selected to have their blood samples analyzed for fatty acid composition. The
quantities of the fatty acids were expressed as a percentage of total plasma phospholipid fatty
acids (mol%). Among the 27 fatty acids with relative concentrations greater than 0.05%, 9
were identified as saturated fatty acids (SFAs), belonging to 3 different groups: 2 odd-chain
SFAs (pentadecanoic acid, C15:0; heptadecanoic acid, C17:0), 3 even-chain SFAs (myristic
acid, C14:0; palmitic acid, C16:0; stearic acid, C18:0) and 4 very-long-chain SFAs (arachidic
acid, C20:0; behenic acid, C22:0; tricosanoic acid, C23:0; lignoceric acid, C24:0).

We identified age at recruitment, sex, waist circumference, body mass index and physical
activity index as potential confounders of the effects of the saturated fatty acids on incident
type 2 diabetes. Additionally, we have chosen to incorporate 5 dietary variables from the
questionnaires to help predict the missing values of the fatty acids. These are daily intakes
(grams per day) of: potatoes and other tubers, fruit, fish and shellfish, meat and meat products,
and dairy products.

Individuals with prevalent type 2 diabetes (855 individuals) or unknown diabetes status
(5 individuals), as well as those with missing confounder (1832 individuals) or dietary data
(310 individuals), were excluded from analysis. Following Forouhi et al. (2014), we also
excluded individuals with a ratio of energy intake to energy requirement in the bottom or top
1% as probable dietary misreporters (432 individuals). There remain 22219 individuals in
the dataset, with a subcohort of size 886 (860 controls and 26 incident cases) and 771 non-
subcohort incident cases. From this, 14 subcohort individuals and 95 non-subcohort incident
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cases have missing fatty acid measurements. Instead of excluding these individuals and losing
valuable data on cases, we have chosen to assume that this missingness is independent of the
values of the missing fatty acid data given the available information, so that Assumption 2.2
is still satisfied.

2.4.2 Model specification

We set W to be the potential confounders described in §2.4.1. Sex was represented by a
binary variable. The physical activity index data were categorical with four levels: “Inactive”,
“Moderately inactive”, “Moderately active” and “Active”. This information was decomposed
into three binary dummy variables with “Active” as the reference category. The remaining
confounders—age, waist circumference, and body mass index—were scaled by their full
cohort standard deviations. The auxiliary variable X was set to be the 5 dietary variables
after undergoing the log-transformation x ÞÑ logp1 ` xq.

The fatty acid data are compositional—the relative concentrations of the individual fatty
acids sum to 100%. To address this, we applied the additive logratio transformation (Aitchi-
son, 1982). Denote a fatty acid measurement value by z1 “ pz1

1, . . . ,z
1
9,z

1
Oq, where z1

1, . . . ,z
1
9

are the relative concentrations of the 9 SFAs, and z1
O is the total relative concentration of all

remaining fatty acids. If all entries of z1 are non-zero, its additive logratio image in R9 is

ˆ

log
z1

1
z1

O
, . . . , log

z1
9

z1
O

˙

. (2.10)

Otherwise, we first take the zero replacement strategy described in Greenacre (2019). Any
zero entries of z1 are replaced by half of the smallest possible positive measurement. In
this case, since measurements are given to two decimal places of a percentage, all zeros
are replaced by 0.005%. Set Z to be the transformed fatty acid vector as described after
scaling each component by its standard deviation within the subcohort. In §2.4.4, we discuss
interpretations and the advantages over direct use of the compositional data.

Let V “ p1,W T,XTqT. We specify a multivariate normal linear regression model

Z | W,X ,ξ ,Σ „ N pξ
TV,Σq (2.11)

where ξ P R13ˆ9 and Σ P R9ˆ9. Let nS “ |S | “ 1548, the total number of individuals with
fatty acid measurements. We use the Jeffreys prior

ppξ ,Σq9|Σ|
´p9`1q{2

“ |Σ|
´5,
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which can be interpreted as the noninformative limit of a matrix normal-inverse Wishart prior
(Gelman et al., 2013). By conjugacy, the restricted posterior distributions are

ξ | Σ,ZS ,WS ,XS „ MN pξ̂ ,pV T
S VS q

´1,Σq (2.12)

Σ|ZS ,WS ,XS „ I W pΨ,nS q, (2.13)

where MN and I W denote the matrix normal and inverse Wishart distributions respec-
tively and

ξ̂ “ pV T
S VS q

´1V T
S ZS (least squares estimator)

Ψ “ pZS ´VS ξ̂ q
T
pZS ´VS ξ̂ q (residual sum of squares).

The remaining notation follows §2.2. For the log-hazard ratio β , we specified independent,
weakly informative Student-t priors for each of the components, all centered at 0 with 3
degrees of freedom.

2.4.3 Synthetic data experiment

To assess our method and model specification, we analyzed synthetic datasets designed to
resemble the real data. Our design takes advantage of the fact that the subcohort data are a
random sample from the full cohort; thus, the empirical distribution of the subcohort data
should provide a reasonable approximation of the target population distribution. Synthetic
datasets were generated as follows: 1. repeatedly sample with replacement from the subcohort
to generate a synthetic full cohort of half the size of the original; 2. generate a new subcohort
of half the size as the original subcohort by sampling without replacement from the synthetic
full cohort. Step 1 generates a new full cohort dataset using the empirical distribution of the
subcohort, and step 2 implements the case-cohort design. We proceed to analyze the dataset
without using the fatty acid data for the unsampled controls, as in a standard case-cohort
analysis.

The factor of a half introduces a cross-validation element to the experiment, guaranteeing
that a substantial proportion of the original subcohort controls will not be sampled into the
synthetic subcohort; this way, the predictive performance of the regression model (2.11) is
evaluated.

For the purpose of these experiments, we removed all individuals in the original subcohort
with missing fatty acid measurements before generating the synthetic data. As a result, we
are able to compare our results to a truth: the Cox estimator consistently estimates the hazard
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ratio, so we can find the true hazard ratio of the generating distribution to an arbitrary level
of accuracy by computing the Cox estimate for a large dataset generated by resampling from
the original subcohort—we used n “ 2000000.

The size and complexity of the datasets necessitated a correlated sampling algorithm to
achieve good mixing; we took the approach described at the end of §2.2.4, correlating both
the missing fatty acid variables Zmis and the regression coefficients ξ . The full details are
provided in §B.3. For each dataset, we discarded the first 100000 iterations of the sampler
and used the following 300000. We determined that this was sufficient for chain convergence
by examining the trace plots for several trials.

The results for 200 synthetic datasets are summarized in Figure 2.2 and Table 2.3; we
compared the performance of the posterior mean estimator with the Prentice estimator.
Figure 2.2 contains violin plots of the estimates for the log-hazard ratios with reference to
the true values. Table 2.3 compares the numerical performance results of both estimators.
The efficiency gain results were found by dividing the mean squared error of the Prentice
estimator by the mean squared error of the Bayes estimator and computing the percentage
difference. We can roughly interpret the efficiency gain values as the increase in sample size
required for the Prentice estimator to match the performance of the Bayes estimator at the
current sample size.

The results demonstrate that the method and model are effective for analyzing the data
and produce substantial efficiency gains over the Prentice estimator. We also mention the
fact that the experimental design favors the Prentice estimator; in each trial, the set of
unsampled controls contains exact replicates of the subcohort controls, which matches the
implicit modelling assumptions of the Prentice estimator. This will not be the case in the real
application, so we expect the actual performance gains to be even greater.

2.4.4 Results for the EPIC-Norfolk data

For the application, we used the same sampling algorithm as the one in §2.4.3 (described
fully in §B.3). We discarded the first 200000 iterations of the sampler, and used the following
800000 for analysis. The convergence diagnostics can be found in §B.4.

To interpret the results, we recall that the fatty acid data—originally compositional—were
additive logratio transformed using (2.10), and then scaled by their respective estimated
standard deviations. For concreteness, let us specifically consider the saturated fatty acid
C14:0. The posterior mean estimate of the hazard ratio is 1.18 (Table 2.4), implying that
an increase of 1 standard deviation in the logratio corresponding to C14:0, keeping all
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Fig. 2.2 Posterior mean and Prentice estimates of the saturated fatty acid log-hazard ratios.
The red dashed lines represent the true values.
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Table 2.3 Comparison of log-hazard ratio estimates in the synthetic data experiment. ESD,
empirical standard deviation; RMSE, root mean squared error; EG, efficiency gain.

C14:0 C15:0 C16:0
Estimator Bias ESD RMSE EG Bias ESD RMSE EG Bias ESD RMSE EG
Prentice -0.051 0.164 0.172 0.000 0.189 0.189 0.069 0.186 0.199
Bayes -0.055 0.119 0.131 +72% -0.106 0.142 0.177 +14% 0.051 0.124 0.134 +120%

C17:0 C18:0 C20:0
Estimator Bias ESD RMSE EG Bias ESD RMSE EG Bias ESD RMSE EG
Prentice -0.072 0.156 0.172 0.040 0.168 0.173 0.017 0.158 0.159
Bayes 0.078 0.130 0.152 +29% 0.108 0.134 0.172 +1% -0.068 0.127 0.144 +21%

C22:0 C23:0 C24:0
Estimator Bias ESD RMSE EG Bias ESD RMSE EG Bias ESD RMSE EG
Prentice 0.019 0.217 0.218 -0.004 0.115 0.115 -0.154 0.234 0.280
Bayes 0.061 0.155 0.167 +71% -0.002 0.066 0.066 +200% -0.220 0.151 0.266 +11%

other logratios and confounders fixed, increases the hazard of type 2 diabetes onset by 18%.
Framing this with respect to a particular individual, the change occurs if their absolute

quantity of C14:0 increases, with all else kept equal. This way, the only logratio that
changes is the one corresponding to C14:0; the ratios of the other saturated fatty acids to
the reference category (the total of all remaining fatty acids) remain the same as before.
Cox regression with isometric logratio transformed compositional data has previously been
proposed (McGregor et al., 2020), but this produces much less interpretable results than what
is described above.

A review and meta-analysis of previous studies can be found in Huang et al. (2019).
To the best of our knowledge, our work is the first to use transformed fatty acid data to
investigate this problem. There are several reasons why we believe that this is preferable
over direct use of the raw data. First, as noted by Pearson (1897), treating proportions as
absolute measurements runs the risk of introducing “spurious correlation” into the analysis.
In Figure 2.3, we observe that the moderate negative correlation on the original scale between
C16:0 and C18:0—by far the two most abundant saturated fatty acids—is removed after
transformation. Also, additive changes in percentages ignore the inherently relative nature of
the data. For example, an increase from 0% to 1% of a fatty acid is viewed as equivalent to
an increase from 4% to 5%. One could further argue that increasing the proportion of a single
fatty acid while keeping some others fixed does not correspond to any type of meaningful
hypothetical intervention. Moreover, the total proportion of all omitted fatty acids (e.g. all
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non-saturated fatty acids, or everything apart from the even-chain SFAs) is forced to decrease
in order for the proportions to sum to 100%, making the analysis strongly dependent on the
choice of included fatty acids. This could partly explain the disparity in results across studies.
In contrast, our use of the transformation gives us the previously described interpretation
of increasing the absolute quantity of a fatty acid. This corresponds to a more intuitive
intervention, and only depends on the particular fatty acid that is being changed.

The meta-analysis by Huang et al. (2019)—with 10 studies included—suggested that
there was conclusive evidence for the effects of only three saturated fatty acids: C15:0 and
C17:0 (inverse association with type 2 diabetes), and C14:0 (positive association). In this
regard, our results for C17:0 and C14:0 are consistent with the existing literature. It is less
clear-cut for C15:0, although there is a weak indication that an inverse association is present.

Even-chain SFAs account for the bulk of the total amount of saturated fatty acids, and they
have been linked to an increased risk of type 2 diabetes in several studies (e.g. Forouhi et al.,
2014, Lu et al., 2018). Our results for C14:0 and C16:0 support this link, but no evidence of
association was found for C18:0. We conjecture that the disparity for C18:0 can be explained
by our use of transformed fatty acid data. On the raw data scale, increasing the proportion
of C18:0 while keeping the proportions of the other SFAs fixed forces the total proportion
of non-saturated fatty acids to decrease. On the transformed scale, this corresponds to an
increase in all of the logratios. In §B.5, we provide an informal calculation that shows how
the effects from the other logratios could indicate a positive association for C18:0, even when
such an association does not exist. Particularly, the relatively small standard deviation of
C16:0 on the transformed scale (Table 2.4) allows its strong positive association to dominate.
This suggests that the effects from C18:0 found by previous studies may in fact be mostly
due to C16:0 instead.

Comparatively few studies have investigated the association between very-long-chain
SFAs and type 2 diabetes. Forouhi et al. (2014) analyzed data from the EPIC-InterAct Project,
which incorporates data from 26 studies from 8 different countries in Europe, including the
EPIC-Norfolk dataset. This analysis suggested that all four of the very-long-chain SFAs
examined here are inversely associated with type 2 diabetes. Our findings for C22:0 differ,
instead supporting a positive association, matching the conclusions of Lin (2018) using data
from a Chinese population. On the other hand, our results indicate inverse associations for
C20:0 and C24:0; this heterogeneity within an SFA group supports the argument that the
effect of each SFA should be studied separately.
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Fig. 2.3 Estimated correlations between the saturated fatty acids using the subcohort data.
Values below the diagonal were computed from the raw data; values above the diagonal were
computed from the additive logratio transformed data.
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Fig. 2.4 Posterior distributions of the saturated fatty acid hazard ratios. The darkness of the
strips is proportional to the posterior density, with the central 95% credible regions indicated.
ocSFAs, odd-chain saturated fatty acids; evSFAs, even-chain saturated fatty acids; vlcSFAs,
very-long-chain saturated fatty acids.
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Table 2.4 Data summaries for the subcohort individuals with complete data, and analysis
results. The raw data are expressed as percentages of the total phospholipid fatty acids.
SFA, saturated fatty acid; ocSFAs, odd-chain saturated fatty acids; evSFAs, even-chain
saturated fatty acids; vlcSFAs, very-long-chain saturated fatty acids; ALR, additive logratio
transformed; SD, standard deviation; HR, hazard ratio. “HR 95%” refers to the central 95%
credible interval; “PpHR ď 1q” refers to the posterior probability that the hazard ratio does
not exceed 1.

Raw data ALR data Analysis results
Group SFA Mean (SD) Mean (SD) HR Mean HR 95% PpHR ď 1q

ocSFAs C15:0 0.25% (0.07%) -5.42 (0.27) 0.97 (0.86, 1.10) 0.684
C17:0 0.43% (0.09%) -4.86 (0.26) 0.86 (0.77, 0.95) 0.998

ecSFAs C14:0 0.39% (0.10%) -4.95 (0.26) 1.18 (1.05, 1.33) 0.003
C16:0 30.12% (1.54%) -0.59 (0.07) 1.39 (1.24, 1.55) 0.000
C18:0 13.97% (1.32%) -1.36 (0.11) 0.99 (0.88, 1.12) 0.585

vlcSFAs C20:0 0.16% (0.05%) -5.89 (0.31) 0.91 (0.82, 1.02) 0.947
C22:0 0.29% (0.10%) -5.27 (0.24) 1.11 (0.96, 1.29) 0.074
C23:0 0.14% (0.07%) -6.13 (0.70) 0.99 (0.88, 1.11) 0.601
C24:0 0.24% (0.08%) -5.44 (0.26) 0.78 (0.70, 0.87) 1.000

2.5 Discussion

This chapter introduced a novel methodology for case-cohort Cox regression. We are
able to incorporate auxiliary variables to help predict the missing covariate values and
are unrestricted in our choice of prediction model; this differs from multiple imputation
(Keogh and White, 2013), which requires careful specification of prediction models to avoid
incompatability with the Cox model. The models for the nuisance parameters, including the
baseline cumulative hazard function, are nonparametrically specified and then integrated out,
facilitating robust and convenient inference. By modifying the basic sampling algorithm,
the method scales effectively to datasets with a large sample size and a moderate number
of covariates, in contrast to nonparametric maximum likelihood estimation (Zeng and Lin,
2014). We demonstrated this scalability in our analysis of the EPIC-Norfolk study, where we
used 19 covariates —5 confounders, 5 auxiliary covariates, and 9 expensive covariates—with
a sample size of 22219. Simulations suggest that we obtain substantial efficiency gains
over weighted Cox regression approaches (e.g. Prentice, 1986), which are the status quo in
practice. As part of our analysis of the EPIC-Norfolk study data, we also developed a new
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approach for handling compositional data in the Cox model that provides more reliable and
interpretable results compared to previous studies.

There is ample scope to extend our framework. We have assumed that the covariates
are time-independent since this was sufficient for our application, where only baseline
measurements were available. This assumption can be relaxed by building on the results of
Sinha et al. (2003), which provided a Bayesian justification of the Cox partial likelihood in
various settings.

The nested case-control design (Thomas, 1977) is similar to the case-cohort design in the
sense that full covariate measurements are obtained for all cases, but only for a sample of
controls. Like the nonparametric maximum likelihood approach of Scheike and Juul (2004),
Scheike and Martinussen (2004) and Zeng and Lin (2014), it is straightforward to adapt
our method to the nested case-control design under similar assumptions. Generalizing our
method to other survival models like Zeng and Lin (2014) is an area for future research.

Another important direction for further work is variable selection. Existing proposals
are few in number and revolve around weighted Cox regression (Ni et al., 2016, Newcombe
et al., 2018). Extending our framework to perform variable selection will not only allow
more efficient use of data, but also has the advantage of adopting the principled Bayesian
approach to variable selection (Clyde and George, 2004).





Chapter 3

Inference under unequal probability
sampling with the Bayesian exponentially
tilted empirical likelihood

3.1 Introduction

In this chapter, we develop an inferential framework for estimation in the presence of unequal
probability sampling. We work under two settings. The first, which we refer to as the
design setting, assumes a selection mechanism determined by the data collector, but only
partial design information in the form of sampling probabilities for the selected individuals
is provided to the analyst. This is frequently encountered when analyzing public-use survey
datasets (Zanganeh and Little, 2015, Si et al., 2015, Wang et al., 2017). The second is
an observational setting where the selection mechanism is unknown but is assumed to be
ignorable conditional on a set of fully observed covariates.

We introduced these two settings in §1.1 and §1.2. Recall that in both cases, it is common
in practice to use semiparametric estimators that incorporate inverse probability weighting.
If the selection probabilities are known, weighting methods are simple to implement and
require few modelling assumptions to attain consistency and asymptotic normality. In the
observational setting, inverse probability weights estimated from a selection model can be
combined with an imputation model to produce doubly robust estimators. If the models are
fitted using estimating equations, the resulting doubly robust estimator is consistent as long
as one of the models is correctly specified, and attains the semiparametric efficiency bound if
both models are correct. Doubly robust estimators also facilitate bias correction, enabling
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valid frequentist inference when using (highly regularized) machine learning methods, pro-
vided that they converge sufficiently quickly. However, while the large sample properties
of these estimators are attractive, their reliability for small or moderately-sized datasets is
less justified theoretically. Particularly, the use of inverse probability weighting can lead to
disastrous performance in the presence of model misspecificiation and a practical violation
of positivity (Kang and Schafer, 2007). For small sample inference, a careful choice of prior
distribution in a Bayesian approach can offer both regularization and a systematic way of
incorporating informative knowledge into the analysis, with this influence gradually relaxed
as the sample size increases. Further motivations for pursuing a Bayesian approach were
discussed in detail in §1.2.2.2.

A significant drawback of a standard Bayesian approach is the requirement of stronger
structural assumptions on the data distribution and the sampling mechanism. In the design
setting, one option is to specify a flexible regression imputation model with the sampling
probability included as a covariate to adjust for the selection bias. To obtain estimates for the
target population, the sampling probability can be integrated out using a sampling probability
model conditional on selection (Zanganeh and Little, 2015, Si et al., 2015). Alternatively, one
can use a sample likelihood approach (Pfeffermann et al., 2006) which truncates the dataset
to just the sampled individuals and requires the specification of a conditional selection model.
Both approaches involve directly modelling the dependence structure between the incomplete
data and the sampling probabilities, rather than using the unavailable design variables
specified by the data collector. This is potentially difficult to specify correctly. Moreover, by
including the sampling probabilities in a conditional approach, the interpretation of the target
quantities—e.g. regression coefficients—can become obscured.

The difficulties in the observational setting are exemplified by the Robins-Ritov example
discussed in §1.2.1. Conventional Bayesian estimators will generally fail to be doubly robust;
either the selection mechanism is ignored, or the model parameters are a priori dependent,
such that misspecification of just one model can feed back into the other, precluding con-
sistency (Zigler et al., 2013, Robins et al., 2015). We have seen in Chapter 2 that ignoring
the selection can be beneficial for efficiency, but one may wish to protect against model
misspecification by leveraging the selection data to make weaker modelling assumptions.

Our framework offers the practical benefits of Bayesian statistics, along with the attractive
asymptotic guarantees of frequentist semiparametric estimators. Central to our approach
is a novel application of Bayesian exponentially tilted empirical likelihood (Schennach,
2005), a methodology that forms a posterior by combining a prior with a likelihood function
defined by moment conditions. We specialize to the domain of Z-estimation since many
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proposed semiparametric estimators (e.g. Hájek, 1971, Robins et al., 1994, Scharfstein et al.,
1999, Cao et al., 2009, Rotnitzky et al., 2012) are Z-estimators, and the unbiased estimating
equations they solve are used to define a set of corresponding moment constraints. We
prove Bernstein–von Mises theorems showing that the resulting Bayesian exponentially
tilted empirical likelihood posterior becomes approximately normal, centred at the chosen
estimator with matching asymptotic variance; the choice of prior is unrestricted, outside of
continuity and non-zero mass in a neighbourhood of the probability limit of the estimator.
Thus, the posterior shares analogous properties of the estimator, such as double robustness
and local efficiency, and the frequentist coverage of any credible set will be approximately
equal to its credibility. In particular, the latter implication extends the large-sample posterior
properties proved by Chib et al. (2018) and provides an interpretation of the credible sets as
regularized or shrinkage estimators of confidence sets, filling a conceptual gap otherwise left
empty due to the procedure not being fully Bayesian.

Additionally, we prove that a separation condition, similar to what is required by Theorem
1 of Chib et al. (2018), is implied under standard assumptions for the consistency of Z-
estimators. This allows the user to avoid a potentially difficult verification. Schennach (2005)
provided an interpretation of Bayesian exponentially tilted empirical likelihood which justifies
its use as a Bayesian procedure. However, the conditions of this result are not satisfied in our
design setting in §2.3. We establish an alternative interpretation, connecting the likelihood
function with a proper likelihood arising from an exponential family of maximum entropy
distributions and suggest that this paves the way for future work. Proofs of all results are
found in §C.3.

Our approach offers the ability to obtain modified versions of existing estimators with
improved properties, even in the absence of informative priors. For example, certain proposed
estimators (e.g. Cao et al., 2009) may have a non-zero probability of lying outside of the
parameter space, leading potentially to suboptimal finite sample performance (Rotnitzky
et al., 2012). This can be rectified by simply restricting the support of the prior, producing a
new estimator which is population bounded in accordance with the variation of its predecessor
and has identical asymptotic behaviour. Having a posterior distribution also allows the user to
have a choice of estimators such as the mean, median, or the maximum a posteriori estimator,
depending on the situation or target loss function.
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3.2 Proposal

3.2.1 Exponentially tilted empirical likelihood

Suppose that D is a random vector drawn from a distribution P0. The objective is to estimate
θ0 P Θ Ă Rm, which is assumed to satisfy the moment condition EP0tgpD,θ0qu “ 0, where g

is a function mapping into Rm. Thus, the dimension of the moment condition is assumed
to match the dimension of the target quantity. The observed data Di pi “ 1, . . . ,nq are inde-
pendent and identically distributed replicates of D with realized values di. A Z-estimator θ̂n

solves the estimating equation n´1řn
i“1 gpdi,θ q “ 0 for θ P Θ. Many proposed estimators for

unequal probability sampling problems take this form, accompanied with a set of regularity
assumptions similar to the following.

Assumption 3.1. (i) The parameter space Θ of θ is compact, θ0 lies in the interior of Θ

and is the unique solution to EP0tgpD,θ qu “ 0 (ii) with probability 1, there is a unique

solution θ̂n to n´1řn
i“1 gpDi,θ q “ 0 for each n (iii) Ω0 “ varP0tgpD,θ0qu is non-singular

(iv) EP0tsupθPΘ ∥gpD,θ q∥2
2u ă 8 (v) with probability one, gpD,θ q is continuous at each

θ P Θ (vi) with probability one, gpD,θ q is continuously differentiable with respect to θ in a

neighbourhood Θ1 of θ0 and EP0tsupθ 1PΘ1 ∥Bθ gpD,θ 1q∥Fu ă 8, where Bθ denotes the partial

derivative with respect to θ and F refers to the Frobenius norm (vii) G0 “ EP0tBθ gpD,θ0qu

is invertible.

Assumption 3.1 is sufficient for the Z-estimator θ̂n to be consistent and asymptotically
normally distributed (van der Vaart, 1998)

n1{2
pθ̂n ´ θ0q Ñ N p0,Σ0q,

with convergence in distribution, where Σ0 “ pGT
0Ω

´1
0 G0q´1, and G0 and Ω0 can be consis-

tently estimated by

Ĝn “ n´1
n
ÿ

i“1

Bθ gpDi, θ̂nq and Ω̂n “ n´1
n
ÿ

i“1

gpDi, θ̂nqgpDi, θ̂nq
T (3.1)

respectively.
The moment condition g can also define a semiparametric model by restricting to distri-

butions P which satisfy EPtgpD,θ qu “ 0 for θ P Θ. For values of θ such that the origin lies
in the convex hull of tgpdi,θ q : i “ 1, . . . ,nu, the exponentially tilted empirical likelihood
(Jing and Wood, 1996, Corcoran, 1998, Lee and Young, 1999, Schennach, 2005) is defined,
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up to a constant factor, as

Lnpθ q “

n
ź

i“1

npipθ q

where the probabilities p1pθ q, . . . , pnpθ q solve the optimization problem

max
p1,...,pn

n
ÿ

i“1

p´pi log piq (3.2)

subject to
n
ÿ

i“1

pi “ 1,
n
ÿ

i“1

pigpdi,θ q “ 0, pi ě 0 pi “ 1, . . . ,nq. (3.3)

For other values of θ , Lnpθ q is set to 0. The function ppθ q “ pp1pθ q, . . . , pnpθ qqT is well-
defined since: (i) for each value of θ , the constraint set is compact and the objective function
is continuous, so if the constraint set is non-empty, the objective function attains the maximum
and (ii) the objective function is strictly concave, so there is a unique maximizer.

One may interpret this likelihood function as being derived from a θ -parameterized
set of categorical distributions supported on the observed data values. For each value of
θ , the solution minimizes the Kullback-Leibler divergence to the empirical distribution
subject to the constraint EPtgpD,θ qu “ 0. More precisely, the Kullback-Leibler divergence
is minimized with the empirical distribution as the second argument; the opposite direction
corresponds to the empirical likelihood (Owen, 2001), which replaces (3.2) with

max
p1,...,pn

n
ÿ

i“1

log pi.

This connection mirrors the relationship between variational Bayesian methods and expec-
tation propagation (Gelman et al., 2013). The exponentially tilted empirical likelihood is
connected to Z-estimation as follows.

Proposition 3.1. The Z-estimator θ̂n maximizes the exponentially tilted empirical likelihood.

Furthermore, we show that Assumption 3.1 is sufficient to establish the following separa-
tion property, which illustrates that Ln decays exponentially to 0 outside of any ball around
θ̂n.

Theorem 3.1. If Assumption 3.1 is satisfied, then for any δ ą 0, there exists an ε ą 0 such

that

sup
∥θ´θ̂n∥2ěδ

Lnpθ q

Lnpθ̂nq
ď expt´εpn ´ 1q

1{2
u
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occurs with probability approaching 1.

3.2.2 Bayesian exponentially tilted empirical likelihood

From a Bayesian perspective, Schennach (2005) proposed that the exponentially tilted
empirical likelihood can be combined with a prior ppθ q to form a posterior

ppθ | d1, . . . ,dnq9Lnpθ qppθ q

and referred to this approach as Bayesian exponentially tilted empirical likelihood. Schennach
justified this by proving that, if all observed data values are distinct, Lnpθ q can be represented
as a limit

Lnpθ q “ lim
εÑ0

lim
BÑ8

ż

#

n
ź

i“1

ppdi | ξBq

+

ppξB | θ ;εqdξB,

suggesting that it has a proper probabilistic interpretation as a likelihood derived from a
semiparametric model after marginalizing an infinite dimensional nuisance parameter. The
prior for the nuisance parameter ξB “ pξB,1, . . . ,ξB,BqT conditional on θ and a positive real
number ε is a distribution on a grid of values such that the induced mixture of uniform
densities centred on the components of ξB satisfy the moment restrictions within a tolerance
ε , favouring mixtures with small support. Conditional on ξB, Di is distributed according to
the corresponding mixture of uniform densities. As B Ñ 8, the spacing of the grid of values
tends to zero and the range tends to infinity. Chib et al. (2018) further proved Bernstein–von
Mises results, showing that the total variation distance between the posterior distribution of
n1{2pθ ´ θ0q and the normal distribution N p0,Σ0q tends to zero under correctly specified
moment constraints.

We specialize to the domain of Z-estimation, and establish a Bernstein-von Mises theorem
with centring point equal to the Z-estimator θ̂n. This implies that the posterior is not only
consistent and asymptotically normal, but frequentist coverage of any credible set will be
approximately equal to its credibility, extending the properties implied by Chib et al. (2018).
We specify a distinct set of further assumptions.

If Lnpθ q is non-zero, the optimization problem specified by (3.2) and (3.3) can be solved
(Schennach, 2007) by considering the dual problem

pipθ q “
exptλ̂npθ qTgpdi,θ qu

řn
j“1 exptλ̂npθ qTgpd j,θ qu

(3.4)
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where λ̂npθ q solves
n
ÿ

i“1

exptλ
Tgpdi,θ qugpdi,θ q “ 0. (3.5)

Assumption 3.2. There exists a neighbourhood B of θ0 on which, with probability approach-

ing 1, the exponentially tilted empirical likelihood is non-zero, or equivalently, there exists a

function λ̂n : B Ñ Rm satisfying, for all θ P B,

n
ÿ

i“1

exptλ̂npθ q
Tgpdi,θ qugpdi,θ q “ 0.

Assumption 3.3. For almost all values of d, gpd,θ q is twice differentiable with respect to θ

in a neighbourhood of θ0, and the second derivative satisfies a Lipschitz condition

∥∥B
2
θ gpd,θ q ´ B

2
θ gpd,θ 1

q
∥∥

op ď ψpdq
∥∥θ ´ θ

1
∥∥

2

for an integrable function ψ , where op refers to the operator norm.

Assumption 3.4. For almost all values of d, there exists a neighbourhood of p0,θ0q contained

in Rm ˆ Θ in which the function

f pλ ,θ q “ exptλ
Tgpd,θ qugpd,θ q

and all of its first and second partial derivatives are dominated by an integrable function.

These allow us to establish the following intermediate result.

Proposition 3.2. If Assumptions 3.3 and 3.4 are satisfied, on a neighbourhood of θ0, there

exists a unique function λ0 mapping into Rm satisfying

EP0rexptλ0pθ q
TgpD,θ qugpD,θ qs “ 0

and λ0 is twice Lipschitz differentiable.

Consequently, one can generate an exponential family tPθ u from P0

dPθ

dP0
pdq “ exptλ0pθ q

Tgpd,θ q ´ κpθ qu

locally around θ0, where κpθ q “ logEP0rexptλ0pθ qTgpD,θ qus and EPθ
tgpD,θ qu “ 0. The

exponentially tilted distribution Pθ is the I-projection (Csiszár, 1975) of P0 onto the set
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tP : EPtgpD,θ qu “ 0u, i.e. the closest element to P0 in the set in terms of Kullback-Leibler
divergence. In this local region of θ0, the exponentially tilted empirical likelihood is approxi-
mately equal to the likelihood generated by this exponential family. This suggests that the
exponentially tilted empirical likelihood is a plug-in estimate of a least favourable family of
distributions aimed at reducing the original semiparametric model to a parametric model in a
minimally informative way. This offers a general interpretation of the Bayesian exponentially
tilted empirical likelihood methodology which holds even in certain situations where the
Schennach (2005) interpretation does not apply, such as the design setting in §2.3 where the
set of observed data values may not be distinct.

Theorem 3.2. Suppose that Assumptions 3.1–3.4 hold. Suppose also that the prior ppθ q

admits a continuous density with respect to the Lebesgue measure and is positive at θ0. Then

ż

Θ

ˇ

ˇ

ˇ
ppθ | D1, . . . ,Dnq ´ p

θ̂n,n´1Σ0
pθ q

ˇ

ˇ

ˇ
dθ Ñ 0

with convergence in probability, where p
θ̂n,n´1Σ0

is the density of N pθ̂n,n´1Σ0q.

By centring and scaling, and using an alternative form of the total variation distance
(Tsybakov, 2009), we have the equivalent representation of

sup
B

ˇ

ˇ

ˇ
Ptn1{2

pθ ´ θ̂nq P B | D1, . . . ,Dnu ´N p0,Σ0qpBq

ˇ

ˇ

ˇ
Ñ 0

with convergence in probability, where B ranges over all elements of the Borel sigma-algebra
on Rm. Theorem 3.2 implies both posterior consistency and asymptotically correct frequentist
coverage of credible sets. The following result confirms the first-order equivalence of the
posterior mean and θ̂n, establishing the validity of the methodology as a shrinkage estimation
framework that can produce finite sample gains, while matching the asymptotic performance
of the standard estimator.

Theorem 3.3. Suppose that Assumptions 3.1–3.4 hold and
ş

∥θ∥2 ppθ qdθ ă 8. Let θ ˚
n “

ş

θ ppθ | d1, . . . ,dnqdθ be the Bayesian exponentially tilted empirical likelihood posterior

mean. Then

n1{2
pθ̂n ´ θ

˚
n q Ñ 0 and n1{2

pθ
˚
n ´ θ0q Ñ N p0,Σ0q.

with convergence in probability and distribution respectively.
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3.2.3 Design setting

We first consider a design setting where the selection probabilities are known for the sampled
individuals. The data Di “ pRiZi,Ri,Riπiq pi “ 1, . . . ,nq are independent and identically
distributed from P0; Ri is the selection indicator which is equal to 1 if Zi is observed and
0 otherwise, and πi “ PpRi “ 1 | Wiq, where Zi and Ri are conditionally independent given
Wi. The variables W1, . . . ,Wn are the design variables chosen by the data collector to assign
sampling probabilities to individuals in the target population, but are not included in the
dataset. We make the positivity assumption that there exists a δ ą 0 such that πi ě δ with
probability 1. The target quantity θ0 is the unique solution to EP0tupZ,θ qu “ 0 for a function
u and θ P Θ Ă Rm. The full data estimating function u is adapted below to the estimating
function g for the observed data, allowing us to apply Theorem 3.2.

Example 3.1 (Outcome mean). Z “ Y , upZ,θ q “ Y ´ θ .

Example 3.2 (Linear regression). Z “ pY,Xq, upZ,θ q “ XTpY ´ Xθ q.

Consider the estimator θ̂n which solves the estimating equation

n
ÿ

i“1

Ri

πi
upZi,θ q “ 0.

To address the technicality that the sampling probabilities are provided as Riπi in the notation
rather than just πi, we set Ri{pRiπiq “ 0 when Ri “ 0, so that Ri{pRiπiq is equivalent to Ri{πi.
In the case of estimating the population outcome mean, this estimator specializes to the Hájek
estimator (Hájek, 1971). For D “ pRY,R,Rπq „ P0 and gpD,θ q “ RupZ,θ q{π ,

EP0tgpD,θ qu “ EWEP0|W

"

R
π

upZ,θ q | W
*

“ EW

„EP0|W pR | W q

π
EP0|W tupZ,θ q | Wu

ȷ

“ EP0tupZ,θ qu

where we have used the conditional independence of R and Z conditional on W and the
equality of EP0|W tR | Wu and π . This shows that θ0 is the unique solution to EP0tgpD,θ qu “ 0.
Let Lnpθ q be the exponentially tilted empirical likelihood function corresponding to the
moment conditions EP0tgpD,θ qu “ 0, for θ P Θ. The likelihood function is combined with a
user-specified prior ppθ q to form a posterior

ppθ | d1, . . . ,dnq9Lnpθ qppθ q. (3.6)



78 Inference under unequal probability sampling with BETEL

If Assumptions 3.1–3.4 are satisfied and ppθ q is continuous and non-zero around θ0, Theorem
3.2 implies that

ż

Θ

ˇ

ˇ

ˇ
ppθ | D1, . . . ,Dnq ´ p

θ̂n,n´1Σ0
pθ q

ˇ

ˇ

ˇ
dθ Ñ 0

with convergence in probability, where p
θ̂n,n´1Σ0

is the density of N pθ̂n,n´1Σ0q and Σ0 “

limnÑ8 varP0pn1{2 θ̂nq. Since θ̂n is a consistent estimator of θ0, the posterior will concentrate
around θ0 as n gets large. Furthermore, since Σ0 is equal to the asymptotic variance of n1{2 θ̂n,
the frequentist coverage of any credible set will be approximately equal to its credibility.

3.2.4 Observational setting

In this subsection, we work in a setting where the selection mechanism is unknown. The
observed data Di “ pRiZi,Ri,Wiq pi “ 1, . . . ,nq are independent and identically distributed
from P0; Zi and Ri are as before, and Wi is a vector of covariates observed for each i such
that Zi and Ri are conditionally independent given Wi. The target quantity γ0 is the unique
solution to EP0tupZ,γqu “ 0 for a function u and values of γ belonging to a compact real
subset Γ. In a missing data context, the conditional independence of Zi and Ri is sometimes
referred to as a missing at random assumption. This set-up may also be viewed as one arm
of a point exposure causal inference problem in the potential outcomes framework, with the
conditional independence corresponding to an assumption of no unmeasured confounders.

Let π0pW q “ PpR “ 1 | W q be the true propensity score and let φ0pW,γq “ EP0tupZ,γq |

Wu. We make the positivity assumption that there exists a δ ą 0 such that π0pW q ě δ with
probability 1. Solving

1
n

n
ÿ

i“1

„

RiupZi,γq

π̂pWiq
´ φ̂pWi,γq

"

Ri

π̂pWiq
´ 1

*ȷ

“ 0, (3.7)

where π̂ and φ̂ are estimators of π0 and φ0 respectively, leads to a doubly robust estimator
of γ; that is, it is consistent and asymptotically normal as long as at least one of π̂ and φ̂ is
consistent. There is a significant body of work regarding choices for π̂ and φ̂ , particularly for
population outcome mean estimation (previously discussed in detail in Chapter 1), which
lead to various favourable efficiency properties. See Kang and Schafer (2007) and Rotnitzky
and Vansteelandt (2014) for comprehensive reviews.

If π̂ and φ̂ are derived from the solutions to unbiased estimating equations, as is often
the case in practice, we can exploit this to formulate a set of nested moment constraints
for an exponentially tilted empirical likelihood model. We show in Theorem 3.4 that the
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resulting marginal posterior distribution of γ is calibrated asymptotically to the behaviour of
the selected estimator.

We restrict our attention to parametric working models πpW ;αq and φpW,γ;β q for
real-valued parameters α and β . Suppose pα̂n, β̂n, ρ̂nq solve the unbiased estimating equation

1
n

n
ÿ

i“1

Uα,β ,ρpDi,α,β ,ρq “ 0

where ρ is a set of additional auxiliary parameters, possibly empty (Rotnitzky and Vanstee-
landt, 2014). The two parameters pα,β q can be estimated either separately or together. For
example, in the case of mean estimation, Robins et al. (1994) estimate α with maximum
likelihood for a logistic regression model, and estimate β separately using ordinary least
squares. Scharfstein et al. (1999) also use maximum likelihood estimation for α , but include
the reciprocal of the propensity score as a covariate in the outcome regression model.

Let γ̂n be the solution to

1
n

n
ÿ

i“1

„

RiupZi,γq

πpWi, α̂nq
´ φpWi,γ; β̂nq

"

Ri

πpWi, α̂nq
´ 1

*ȷ

“ 0. (3.8)

Let θ “ pα,β ,ρ,γq and define gpD,θ q “ pUα,β ,ρpD,α,β ,ρqT,hpD,α,β ,γqTqT, where

hpD,α,β ,γq “
RupZ,γq

πpW ;αq
´ φpW,γ;β q

"

R
πpW ;αq

´ 1
*

.

In accordance with Assumption 3.1(i), we assume that there exists a value θ0 “ pα0,β0,

ρ0,γ
˚q which is the unique solution to EP0tgpD,θ qu “ 0. We say that the working model for

the propensity score is correctly specified if π0pW q “ πpW ;α0q and similarly that the model
for φ is correctly specified if φ0pW,γq “ φpW,γ;β0q. If at least one is correctly specified,
γ˚ “ γ0 and the Z-estimator γ̂n consistently estimates the truth.

Let Lnpθ q be the exponentially tilted empirical likelihood function corresponding to
the moment conditions EPtgpD,θ qu “ 0. The likelihood function is combined with a user-
specified prior ppθ q to form a posterior

ppθ | d1, . . . ,dnq9Lnpθ qppθ q.

Let ppγ | d1, . . . ,dnq be the marginal posterior for γ .
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Theorem 3.4. Suppose that Assumptions 3.1–3.4 hold and that the prior ppθ q admits a

continuous density with respect to the Lebesgue measure and is positive at θ0. Then as

n Ñ 8,
ż

Γ

ˇ

ˇ

ˇ
ppγ | D1, . . . ,Dnq ´ pγ̂n,n´1V0

pγq

ˇ

ˇ

ˇ
dγ Ñ 0

with convergence in P0-probability, where pγ̂n,n´1V0
is the density of N pγ̂n,n´1V0q and

V0 “ limnÑ8 varP0pn1{2γ̂nq.

As stated earlier, γ̂n is, by construction, consistent for estimating γ0 provided either
π0pW q “ πpW ;α0q or φ0pW,γq “ φpW,γ;β0q for all γ or both. Therefore, Theorem 3.4 im-
plies that the exponentially tilted empirical likelihood posterior shares this double robustness
property; the posterior will concentrate around the true value as long as one of the working
models is correctly specified. Furthermore, credible sets for γ will asymptotically have
nominal frequentist coverage if consistency holds, even if one of the working models is
misspecified. If both models are misspecified, the credible sets will have approximately
nominal coverage for the probability limit γ˚ of γ̂n, which is possibly different from γ0.

3.2.5 Implementation

We describe below how one can compute Lnpθ q for a fixed value of θ . To simplify notation,
let gi “ gpdi,θ q for each i “ 1, . . . ,n, suppressing dependence on θ . To check whether the
feasible set of the optimization problem specified by (3.2) and (3.3) is non-empty, it is
sufficient and computationally convenient, via an R package like lpSolve (Berkelaar, 2015)
for example, to check whether there exists a feasible solution to the linear programming
problem

maximize: 0 over tx P Rn : 0 ď xi ď 1, i “ 1, . . . ,nu

subject to: gTx “ 0 and cTx “ 1
(3.9)

where g “ pg1, . . . ,gnq and c “ p1, . . . ,1qT. The objective 0 is suggested here for computa-
tional simplicity, but can be replaced by bTx for any arbitrary b P Rn as we are only concerned
with the feasible set. If the feasible set is empty, Lnpθ q is set to zero. Otherwise, assuming
the solution to (3.2) and (3.3) lies in the interior of the simplex, i.e. all of the values of pi are
non-zero, the optimization problem can be solved by considering the dual problem described
by (3.4) and (3.5).

Assuming that
řn

i“1 gigT
i is strictly positive definite, a unique solution to (3.5) exists

and it can be found using the Newton–Raphson method. This requires specifying a small
convergence tolerance value with respect to a norm of choice. Pseudo-code for evaluating
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Lnpθ q is provided in §C.1. Once we are able to evaluate Ln pointwise, we can perform
posterior inference using standard Bayesian computational machinery such as Markov chain
Monte Carlo or importance sampling.

3.3 Simulations

3.3.1 Mean estimation for binary outcomes

In this simulation, we consider estimating the population mean of binary outcomes in a
design setting. In the notation of §3.2.3: Z “ Y , upZ,θ q “ Y ´ θ and θ0 “ EP0pY q. The
design variables Wi (i “ 1, . . . ,n) are independent and identically distributed according to
the beta distribution Betap1.5,3.5q, and the outcomes Yi | Wi „ BerpWiq so that θ0 “ 0.3. The
selection variables Ri (i “ 1, . . . ,n) are independent and identically distributed according to
Ri | πi „ Berpπiq, where logitpπiq “ Wi. Thus, Yi and the selection probability πi are positively
correlated, and the selection must be adjusted for to estimate θ0. The data available for
analysis are Di “ pRiYi,Ri,Riπiq pi “ 1, . . . ,nq, so that the design variables are excluded.

Following the approach in §3.2.3, the Z-estimator θ̂n is the Hájek estimator which solves

n
ÿ

i“1

gpDi,θ q “

n
ÿ

i“1

Ri

πi
pYi ´ θ q “ 0.

We use g to define the exponentially tilted empirical likelihood Lnpθ q, which we combine
with three different priors for θ : θ „ Betap0.5,0.5q, θ „ Up0,1q and θ „ Betap1.5,3.5q.
The first is Jeffrey’s prior. The mean of the Betap1.5,3.5q prior is equal to θ0, so we consider
this prior as informative, while the first two are considered noninformative.

We compare this approach with the proposal in §2 of Wang et al. (2017). In a survey
inference context, they suggest a Bayesian approach using an approximate normal likelihood

θ̂ | θ „ N pθ ,V̂ q

where θ̂ is a consistent and asymptotically normal estimator of θ0 and V̂ is a robust estimator
of the variance of θ̂ . The estimator θ̂ acts as a summary statistic for the data, such that the
posterior is

ppθ | θ̂ q9 ppθ̂ | θ qppθ q
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where ppθ̂ | θ q is defined by the normal model above, and ppθ q is a prior for θ . We choose θ̂

to be the Hájek estimator defined above and we estimate its variance with the nonparametric
bootstrap. We also use the same priors as defined above.

Table 3.1 compares the frequentist estimator θ̂n with the Bayesian methods. Each setting
was replicated 2000 times. The Bayes point estimators are the posterior means. Coverage
rates were computed based on central 95% credible regions. The Bayesian computation
was carried out using importance sampling with 5000 particles for each replication and the
tolerance for computing the exponentially tilted empirical likelihood was 10´4.

The Bayesian exponentially tilted empirical likelihood estimators generally have a higher
magnitude of bias than the normal approximation when a noninformative prior is used, but
lower with the informative prior. This reflects the fact that the exponentially tilted empirical
likelihood is less informative than the normal likelihood, resulting in higher shrinkage
towards the prior mean. In the case of the two noninformative priors, this causes an upward
bias towards the prior mean 0.5. This conservative characteristic leads to the Bayesian
exponentially tilted empirical likelihood approach having superior performance in terms of
root mean squared error and coverage rate across almost all settings, and particularly with
the smaller sample sizes when the normal approximation is less accurate.

3.3.2 Doubly robust mean estimation with missing data

This simulation scenario works under the observational setting described in §3.2.4 and
follows the design of Kang and Schafer (2007). For each i pi “ 1, . . . ,nq, the vector of
covariates Wi “ pWi1,Wi2,Wi3,Wi4q „ N p0, I4q, where I4 is the 4 ˆ 4 identity matrix, and the
selection indicator Ri | Wi „ Bertπ0pWiqu where

π0pWiq “ expitpα0,1 ` α
T
0,2Wiq, α0,1 “ 0, α0,2 “ p´1,0.5,´0.25,´0.1q

T

and Z “ Y , the outcome, with Yi | Wi „ N tm0pWiq,1u where

m0pWiq “ β0,1 ` β
T
0,2Wi, β0,1 “ 210, β0,2 “ p27.4,13.7,13.7,13.7q

T.

We have assumed that Yi and Ri are conditionally independent given Wi. The data are
Di “ pRiYi,Ri,Wiq pi “ 1, . . . ,nq. In addition to the correctly specified models:

(a) πpw;αq “ PpR “ 1 | W “ w;αq “ expitpα1 ` αT
2wq

(b) mpw;β q “ EP0pY | W “ w;β q “ β1 ` β T
2 w,
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Table 3.1 Bias, root mean squared error and coverage rate from 2000 Monte Carlo simula-
tions using the Hájek estimator, the Wang et al. normal approximation and the Bayesian
exponentially tilted empirical likelihood approach. RMSE, root mean squared error; CR,
coverage rate; BETEL, Bayesian exponentially tilted empirical likelihood.

Population size Prior Method Bias (ˆ100) RMSE (ˆ100) CR (%)
Hájek 0.17 11.67

Jeffrey’s Normal -1.57 13.06 88.6
BETEL 1.19 11.79 92.9

n “ 25 Uniform Normal 0.72 11.55 91.5
BETEL 2.30 11.06 94.5

Betap1.5,3.5q Normal -1.62 10.22 92.3
BETEL -0.11 9.18 96.2

Hájek 0.08 8.27

Jeffrey’s Normal -0.69 8.92 92.1
BETEL 0.88 8.29 94.7

n “ 50 Uniform Normal 0.39 8.28 91.7
BETEL 1.45 8.18 94.6

Betap1.5,3.5q Normal -1.06 7.32 92.6
BETEL 0.11 7.33 95.7

Hájek -0.08 6.01

Jeffrey’s Normal -0.23 6.24 92.1
BETEL 0.51 6.03 94.8

n “ 100 Uniform Normal -0.11 6.03 92.5
BETEL 0.57 5.87 94.6

Betap1.5,3.5q Normal -0.75 5.75 92.8
BETEL -0.08 5.56 94.9
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we also consider the misspecified models:

(c) πpw1;αq “ PpR “ 1 | W 1 “ w1;αq “ expitpα1 ` αT
2w1q

(d) mpw1;β q “ EP0pY | W 1 “ w1;β q “ β1 ` β T
2 w1,

where W 1
i “ pW 1

i1,W
1
i2,W

1
i3,W

1
i4q are transformed covariates with

W 1
i1 “ exppWi1{2q

W 1
i2 “ Wi2{t1 ` exppWi1qu ` 10

W 1
i3 “ tpWi1Wi3q{25 ` 0.6u

3

W 1
i4 “ pWi2 `Wi4 ` 20q

3.

The target quantity is µ0 “ EP0pY q “ 210. We adopt the notation m and µ instead of φ and
γ used in §3.2.4 to match the Kang and Schafer (2007) paper. For the sake of brevity, the
estimators and methods described in the rest of this section will be represented in terms of
the correct covariates Wi. Under misspecification, the covariates Wi are replaced with W 1

i as
appropriate.

The doubly robust augmented inverse probability weighted estimator (Robins et al., 1994),
sometimes referred to as the standard double robust estimator, is

µ̂DR “

n
ÿ

i“1

1
n

„

RiYi

πpWi; α̂nq
´ mpWi; β̂nq

"

Ri

πpWi; α̂nq
´ 1

*ȷ

. (3.10)

where α̂n and β̂n are estimated via maximum likelihood estimation, or equivalently, by
solving

1
n

n
ÿ

i“1

UαpDi,αq “ 0,
1
n

n
ÿ

i“1

Uβ pDi,β q “ 0. (3.11)

where Uα and Uβ are the score equations for the logistic and linear regression models
respectively. In this case, the set of additional auxiliary parameters ρ referred to in §3.2.4 is
empty.

Saarela et al. (2016) proposed a Bayesian doubly robust approach using the Bayesian
bootstrap (Rubin, 1981). A Dirichlet process model is specified for Di in the limit of the
base measure tending to 0. Inference for µ is based on a posterior predictive distribution
induced by maximizing expected utility functions. Here, we follow the approach detailed in
§6¨2 of their paper and choose the utility functions to match the specification of µ̂DR. More
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explicitly, the parameters α and β are linked to the Bayesian bootstrap model via

α “ argmax
α

EtRpα1 ` α
T
2W q ´ logr1 ` exppα1 ` α

T
2W qsu,

β “ argmin
β

EtRpY ´ β1 ´ β
T
2W q

2
u,

corresponding to the maximization of the expected log-likelihoods of the propensity score
and outcome regression models respectively under the posterior. The target quantity µ is
defined by

µ “ E
„

RY
πpW,αq

´ mpW,β q

"

R
πpW,αq

´ 1
*ȷ

.

In practice, we sample from the posterior predictive distribution by repeatedly generating
uniform Dirichlet weights ω “ pω1, . . . ,ωnq and computing µ̂DR with the fixed uniform
weights p1{n, . . . ,1{nq replaced with ω in (3.10) and (3.11). Define µ̂Sa to be the posterior
predictive mean of µ for this method. The Bayesian exponentially tilted empirical likelihood
posterior for θ “ pα,β ,µq is obtained by setting upZ,µq “ Y ´ µ and following the approach
described in §3.2.4. We compare this to the doubly robust augmented inverse probability
weighted estimator and the Saarela et al. (2016) proposal.

In Table 3.2, “OR correct” refers to use of the correct outcome regression model (a),
while “OR incorrect” refers to the use of model (c). Similarly, “PS correct” refers to use of
the correct propensity score model (b), while “PS incorrect” refers to the use of model (d).
For both Bayesian exponentially tilted empirical likelihood estimators, we use independent
flat priors for all working model parameters across all settings. For µ̂BETEL,1, a flat prior is
specified for the target quantity µ , while µ̂BETEL,2 is equipped with a weakly informative
prior t3p210,1q. The three parameters pα,β ,µq are a priori independent across all settings.
Sampling from the Saarela et al. (2016) posterior can be implemented directly, as described
above. The exponentially tilted empirical likelihood was computed with a tolerance of
10´4 and posterior samples were drawn using a Metropolis-Hastings algorithm with 2000
iterations, along with an initial 500 burn-in iterations.

The results in Table 3.2 show that µ̂BETEL,1 performs similarly to µ̂Sa in all settings.
This is expected since the flat prior on all parameters was chosen to be as noninformative
as possible. These similarities provide further confirmation that our asymptotic theory is
relevant for finite samples. Both µ̂BETEL,1 and µ̂Sa significantly outperform µ̂DR when both
working models are misspecified, suggesting that a Bayesian approach for this problem offers
helpful shrinkage even when designed to be noninformative.
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In all settings, µ̂BETEL,2 outperforms both µ̂DR and µ̂Sa in root mean squared error and
median absolute error. This illustrates that when substantial prior knowledge of the target
quantity is available, the use of this information in our proposed approach leads to better
overall performance than the other estimators evaluated.

OR correct, PS correct OR incorrect, PS correct
Estimator Bias RMSE MAE ESD Estimator Bias RMSE MAE ESD

µ̂DR -0.01 2.55 1.73 2.55 µ̂DR 0.27 3.61 2.32 3.60
µ̂Sa 0.01 2.57 1.71 2.57 µ̂Sa 0.57 3.44 2.31 3.39

µ̂BETEL,1 -0.15 2.55 1.76 2.55 µ̂BETEL,1 0.49 3.81 2.25 3.78
µ̂BETEL,2 -0.14 2.40 1.63 2.40 µ̂BETEL,2 0.48 3.27 2.01 3.24

OR correct, PS incorrect OR incorrect, PS incorrect

Estimator Bias RMSE MAE ESD Estimator Bias RMSE MAE ESD

µ̂DR -0.01 2.59 1.73 2.59 µ̂DR -6.44 38.52 3.64 37.97
µ̂Sa -0.09 2.60 1.73 2.60 µ̂Sa -4.81 15.41 3.38 14.64

µ̂BETEL,1 -0.22 2.90 1.76 2.89 µ̂BETEL,1 -8.21 18.61 4.21 16.71
µ̂BETEL,2 -0.15 2.43 1.66 2.43 µ̂BETEL,2 -3.51 6.71 3.38 5.72

Table 3.2 Monte Carlo simulations based on 1000 replicates using the standard doubly robust
estimator, the Saarela et al. method and the Bayesian exponentially tilted empirical likelihood
approach. RMSE, root mean squared error; MAE, median of absolute errors; ESD, empirical
standard deviation; DR, double robust; Sa, Saarela et al. (2016) proposal, BETEL, Bayesian
exponentially tilted empirical likelihood; OR, outcome regression; PS, propensity score.

3.4 Application

We examine the association between blood pressure and sodium and potassium consumption
using data from the National Health and Nutrition Examination Survey 2003–2006. The
dataset includes 13957 individuals with full data on the relevant information, and is drawn
from the US civilian population from 2003–2006, which we have assumed to be constant
during the time period and equal to 300 million. Each observation is associated with a weight
variable assumed to be proportional to the reciprocal of the sampling probability of the
individual. This follows the example found in §5.2.4 in Lumley (2010).
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We work in the design setting described in §3.2.3. The aim is to fit a linear regression
model for blood pressure Y on sodium X1 and potassium X2 consumption. Age X3 is also
included for deconfounding. The moment condition is

gpD,θ q “ RW pY ´ θint ´ X1θ1 ´ X2θ2 ´ X3θ3qX

where R is the selection indicator variable, W is the weight variable and X “ p1,X1,X2,X3qT.
We consider the frequentist Z-estimator with standard errors estimated using the sandwich
estimator (C.3). For our Bayesian exponentially tilted empirical likelihood proposal, each
regression parameter is assigned an independent prior: θint „ t3p100,1q, θ1 and θ2 follow
half-normal distributions on the positive and negative reals respectively, each with scale
parameter 1, and θ3 „ t3p0,1q. The priors for θ1 and θ2 reflect the substantial prior evidence
that sodium raises blood pressure in humans, and potassium does the opposite. The likelihood
was computed with a tolerance of 10´4 and posterior samples were drawn using a Metropolis-
Hastings algorithm.

Table 3.3 compares the frequentist estimates with the Bayesian exponentially tilted
empirical likelihood posterior mean estimates. In addition to the analysis of the full dataset,
an analysis of a random sample of 300 samples was also carried out. With the smaller dataset,
the frequentist approach leads to a positive estimated value for the effect of potassium on
blood pressure. On the other hand, the Bayesian exponentially tilted empirical likelihood
approach gives an estimated value much closer to the ones obtained from the full dataset.
This is a clear illustration of the significant impact that the use of an informative prior can
offer in small-sample inference, as previously argued in §1.2.2.2. The priors specified were
not meticulously constructed to reflect all available substantive knowledge. We simply
restricted the sign of the regression coefficients and imposed mild shrinkage towards 0 to
protect against overestimation of effect sizes, which is known to be a common occurrence in
small samples (van Zwet and Cator, 2020). This was sufficient to produce significantly better
estimates compared to the frequentist approach. The results of both approaches converge
with the increase in sample size, in accordance with theory.

3.5 Discussion

Our contributions in this chapter can be grouped into two areas: practical and conceptual.
From the practical perspective, our Bernstein-von Mises-type result provides an asymptotic
frequentist justification of BETEL akin to that of regular parametric Bayes—namely, that
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Table 3.3 Frequentist estimates and standard errors and the Bayesian exponentially tilted
empirical likelihood posterior means and posterior standard deviations. BETEL, Bayesian
exponentially tilted empirical likelihood; s.d., standard deviation.

Sample size Method θint θ1 θ2 θ3

Frequentist Estimate 95.10 0.39 0.85 0.54
n “ 300 Standard error 2.85 0.63 0.94 0.04

BETEL Posterior mean 99.31 0.51 -0.56 0.52
Posterior s.d. 1.22 0.29 0.39 0.03

Frequentist Estimate 99.74 0.80 -0.91 0.50
n “ 13957 Standard error 0.80 0.15 0.19 0.01

BETEL Posterior mean 99.82 0.78 -0.89 0.49
Posterior s.d. 0.39 0.09 0.12 0.01

large-sample BETEL posterior credible regions are approximately confidence regions. This,
however, tells us little about how to interpret the BETEL posterior in finite-sample inference.
To this end, we suggested that BETEL can be viewed as an approximate Bayes procedure
that uses a plug-in estimate of a least favourable parametric family to form the likelihood
function.

Empirical likelihood estimators for missing data problems have previously been proposed
by Qin and Zhang (2007) and Chan and Yam (2014). Their work provides a convenient
framework for integrating multiple working models into a single analysis, extending the
doubly robust property to a multiply robust one. The methods are based on maximizing the
conditional empirical likelihood of the outcomes and covariates given selection, and thus
differs from ours which uses the marginal exponentially tilted empirical likelihood.

As suggested in §3.2.1, the empirical distribution may be viewed as an initial estimate of
the true data generating distribution in the exponentially tilted empirical likelihood. From
this interpretation, it is natural to ask whether this initial estimate can be improved. While
the empirical distribution can be applied very generally, its use may disregard additionally
known or assumed structure about the data distribution, such as its support, conditional
independencies and smoothness. Nonparametric techniques such as density estimation may
offer a way to incorporate this information into the initial estimate. Investigating whether
such replacements are advantageous is a topic of further research.
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One might argue, however, that plugging in an initial estimate of the data generating
distribution should be avoided altogether in a Bayesian modelling framework. Besides the
unappealing double-use of the data, one may be concerned that the uncertainty in the initial
estimate has not been taken into account in the BETEL posterior. Indeed, as we will see in
the next chapter, the failure to propagate this uncertainty can lead to uncalibrated inference
for functionals of the data distribution that are not completely determined by the moment
conditions. Our solution will be to instead treat this “pre-tilted” distribution as a nuisance
parameter and specify a prior for it, allowing the uncertainty to flow through the Bayesian
update.





Chapter 4

Moment condition inference with the
exponentially tilted Bayesian bootstrap

4.1 Introduction

In the previous chapter, we argued that the method of Bayesian exponentially tilted empirical
likelihood (BETEL) is effective at tackling two popular classes of unequal probability sam-
pling problems. Unfortunately, BETEL is still not completely satisfactory, both practically
and conceptually. To illustrate our reasons concretely, let us recall our general set-up. We
are motivated by the problem of estimating a quantity defined by a moment condition. Let
P be a set of probability measures on a measurable space pD ,A q and let θ : P Ñ Θ Ă Rm

pm P Nq be a functional defined as the solution to EPtgpD,θ pPqqu “ 0 for each P P P , where
D „ P and g is a real function. We observe an i.i.d. sample D1, . . . ,Dn drawn from P.

Consider the simplest example where D “ X , a one-dimensional real-valued random
variable, and we wish to estimate the mean1 of X . In this case, P is the set of all probability
measures on pR,Bq with mean in Θ, where Θ is assumed to be a compact subset of R, and
B is the Borel σ -algebra on R. We define θ pPq to be the mean of P P P , or equivalently,
θ pPq is the solution to EPtgpX ,θ pPqqu “ 0, where gpX ,θ q “ X ´ θ . Suppose that we have
informative prior beliefs about θ , which we incorporate into a prior distribution πpθ q. The
BETEL posterior is

ppθ | X1, . . . ,Xnq9Lnpθ qπpθ q,

1Note that this example differs from the problem of estimating an outcome mean with incomplete data that
we have studied in detail in Chapters 1 and 3. Here, we have complete data, so the moment condition (and the
overall problem) is far simpler.
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where Ln is the exponentially tilted empirical likelihood function with respect to the moment
condition defined by g. This posterior allows us to carry out inference on θ with the
knowledge that we are correctly calibrated in a frequentist sense, due to the Bernstein-von
Mises theorem (Theorem 3.3). But in standard Bayes, the posterior quantifies our uncertainty
for all aspects of P, not just a particular finite-dimensional parameter. It is quite plausible,
for example, that we only have informative prior beliefs about θ , but we are also interested
in some other quantity e.g. PpX ă 0q.

In order to carry out inference on quantities other than θ , our only option is to refer
back to the plug-in family tPθ u that we estimated from the data by exponentially tilting
the empirical distribution. For any functional ηpPq, we can induce its posterior distribution
with the mapping θ ÞÑ ηpPθ q. However, the posterior for η will not generally exhibit the
asymptotic frequentist calibration enjoyed by θ , as we illustrate in the following experiment.

Suppose that the true data-generating distribution is N p0,1q, for which PpX ă 0q “ 0.5.
We specified a weakly informative prior for θ : θ „ N p0,16q. To obtain posterior samples
for PpX ă 0q, we used the mapping θ ÞÑ Pθ pX ă 0q, i.e. the sum of the weights of Pθ

corresponding to the data points that are less than 0. Across 1000 iterations for different
values of n, we recorded the proportion of central 95% credible intervals that contained the
truth 0.5. The results can be found in Table 4.1.

Table 4.1 Coverage of PpX ă 0q central 95% credible intervals

n “ 30 n “ 50 n “ 70 n “ 100 n “ 200 n “ 500 n “ 1000
Coverage 88.4% 87.7% 87.2% 86.4% 86.3% 88.1% 87.0%

The results suggest that the coverages of the BETEL intervals do not converge to the
nominal level. We can attribute this to the plug-in estimate of the likelihood that is treated as
an a priori truth; the uncertainty of this estimate is not taken into account in the posterior.
This calibration problem is avoided in the case of θ as a result of the exponential tilting in
its least favourable direction, but this does not necessarily provide any guarantees for other
quantities.

Even if we are only interested in θ and are therefore unconcerned by the above dilemma,
we may find the idea of a plug-in likelihood conceptually unattractive from a Bayesian
point of view. The plug-in principle is inherently frequentist, and applying it in a Bayesian
framework involves using the data twice. A more principled Bayesian approach for handling
nuisance parameters is to specify priors for the nuisance parameters and integrate them out.
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The dependence of tPθ u on the data also means that BETEL lacks coherence in the sense of
Bissiri et al. (2016); that is, the form of the BETEL posterior depends on the order that we
update the data in. This may in fact have important practical consequences, as previously
discussed in §1.2.2.3 in the context of methods that use estimated weights in a Bayesian
set-up, e.g. Ray and van der Vaart (2018), Hahn et al. (2020). The form of the BETEL
posterior will depend on the order that we receive the data, which can possibly lead to
contradictory conclusions in settings where the data are generated sequentially.

In this chapter, we introduce the exponentially tilted Bayesian bootstrap (ETBB), a
method closely related to BETEL that avoids the aforementioned issues. We conjecture
that it can be derived as the limit of a sequence of fully Bayesian procedures, yielding
the interpretation that we have replaced the plug-in family in BETEL with a full nuisance
parameter model that is integrated out. To support this conjecture, we carry out extensive
simulations that illustrate this convergence both numerically and graphically.

However, the ETBB involves a nuisance parameter of dimension equal to the sample size.
We develop two computational approaches to handle the difficulties associated with high-
dimensional parameters. The first is based on the pre-conditioned Crank-Nicolson proposal
(Cotter et al., 2013) previously introduced in §2.2.2. The second is based on Hamiltonian
Monte Carlo (Neal, 2011).

We expand our scope beyond unequal probability sampling to tackle a range of practically
relevant problems that lie within the moment restriction framework. The ETBB follows the
projection-based perspective outlined in §1.2.2.4, where quantities are defined as functionals
of the data generating distribution, rather than as components of a parametric model. In this
respect, the ETBB has wider applicability than BETEL, which is restricted to inference for
quantities that can be defined as the solutions to moment conditions. The utility of ETBB
is more comparable to a fully nonparametric Bayesian model such as the Dirichlet process
(Ferguson, 1973), but we are able to directly specify informative priors for the parameters that
we tilt across, which we have emphasized as being a crucial aspect of performing Bayesian
inference (§1.2.2.2).

4.2 Proposal

Our proposal is inspired primarily by unpublished work by Yuichi Kitamura and Taisuke
Otsu, of which descriptions can be found in Bornn et al. (2019) and Florens and Simoni
(2019). Kitamura and Otsu introduced a nonparametric prior for P that tilts a Dirichlet
process prior to satisfy the moment condition for each value of θ .
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Let Π be a chosen marginal prior for θ . Let P̃ be another parameter, with independent
prior distribution DPpαq, where α is a user-specified finite measure. Given pθ , P̃q, P solves
the optimization problem

min
P

ż

log
ˆ

dP
dP̃

˙

dP̃ s.t. EPtgpD,θ qu “ 0 (4.1)

The solution to the optimization problem, if it exists, is unique, and it is the information
projection (Csiszár, 1975) of P̃ onto the space of distributions satisfying the moment condition
for θ . Similar to the approach of Kessler et al. (2015), the resulting prior for P combines an
arbitrary prior for θ with a nonparametric prior. By construction, the implicit marginal prior
of θ is still the user-specified Π.

The parameter P̃ could be interpreted as an initial estimate of P that disregards the
moment condition and functional of interest. Given such an estimate, if one is provided
with the information that the true value of P in fact satisfies the moment condition for a
particular θ , it would be coherent to replace P̃ with the closest value—with respect to the
KL-divergence in this case—within the constraint set.

In this set-up, we can recover BETEL by replacing the Dirichlet process prior for P̃ with
a point mass prior on the empirical distribution. The Kitamura and Otsu model avoids the
data-dependence of BETEL and incorporates the uncertainty in P̃. However, the computation
is problematic. In order to solve the exponential tilting optimization (4.1), the distribution P̃

must be fully known. This precludes the possibility of modifying existing exact sampling
methods that are used for Dirichlet mixture models such as slice sampling (Walker, 2007),
where the distribution is adaptively truncated to a finite number of features. It seems likely
that the only option is an approximate sampling method; for example, one that is based on
the blocked Gibbs sampler (Ishwaran and James, 2001). We propose such a sampler in §D.2
and argue that it will scale very poorly with the sample size.

Our proposal is motivated by the aim of producing a computationally tractable method
with similar inferential advantages to the Kitamura and Otsu approach. Of central importance
is the following conjecture, based on how the standard Dirichlet process converges weakly to
the Bayesian bootstrap.

Conjecture: For any sequence of finite measures tαtu
8
t“0 such that |αt | Ñ 0 as t Ñ 8, the

sequence of posteriors for P under the Kitamura and Otsu model converges weakly to a proper

distribution, which we call the exponentially tilted Bayesian bootstrap (ETBB) posterior.

Moreover, this limiting distribution assigns probability 1 to a set of discrete distributions

supported only on the observed data.
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We provide evidence to support this in §4.4. If the conjecture is true, there is a symmetry
between the relationship of ETEL and the ETBB, and the relationship of the nonparametric
bootstrap and the Bayesian bootstrap. As stated earlier, BETEL can be derived within the
Kitamura & Otsu framework by replacing the Dirichlet process prior for P̃ with a point-
mass prior on the empirical distribution Pn, which follows the plug-in principle of the
nonparametric bootstrap. The ETBB instead specifies a Bayesian bootstrap prior for P̃. This
symmetry is summarized in Table 4.2.

Table 4.2 Comparison of bootstrap and exponential tilting methods.

Frequentist Bayesian
Bootstrap Nonparametric bootstrap Bayesian bootstrap
Model/likelihood ETEL ETBB

The conjecture implies that we can approximate the limiting posterior with any base
probability measure that contains the observed data in its support. In particular, we can
choose a discrete distribution supported only on the observed data, so that P̃ can now be
finitely parameterized by the vector of probabilities q̃ “ pq̃1, . . . , q̃nq with Dirichlet prior
Dirpa1, . . . ,anq, where q̃i “ P̃pD “ Diq and ai ě 0 for all i. This leads to the joint posterior
pθ , P̃q defined by

ppθ , q̃ | D1, . . . ,Dnq9πpθ q

#

n
ź

i“1

qipθ , q̃q

q̃1´ai
i

+

, (4.2)

where pq1pθ , q̃q, . . . ,qnpθ , q̃qq is the vector of probabilities on tD1, . . . ,Dnu that solves the
optimization problem (4.1) for θ and P̃. For values of θ with no solutions to (4.1), the
posterior density is set to 0. We will assume that Π admits a density πpθ q with respect to the
Lebesgue measure, but we could generalize this in the usual way.

To approximate the ETBB posterior, the Dirichlet parameters pa1, . . . ,anq should all be
set to values close to 0. While we have conjectured that the posterior for P converges to a
proper distribution, we do not make the same claim for P̃. If all of a1, . . . ,an are equal to 0,
the prior for q̃ is improper, and the posterior described by (4.2) may be as well. To resolve
this, we propose setting all the parameters to be equal to 0 and truncating the parameter space,
i.e. specify a small positive constant ε such that q̃i ą ε ą 0 for all i. By doing this, the prior
density for q̃ remains finite on the truncated space, guaranteeing propriety. In practice, some
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degree of truncation will always be enforced regardless of this due to numerical limitations.
More details regarding the computation can be found in §4.3.

BETEL can also be recovered from (4.2) by setting a1 “ . . . “ an and taking the limit
as a1 Ñ 8; the Dirichlet prior on P̃ converges to a point mass on the empirical distribution
(Ghosal and van der Vaart, 2017). We illustrate the contrasts between BETEL, ETBB and
different Dirichlet priors in Figures 4.3 and 4.4 for the following example.

Example 4.1. We return to the example of mean estimation. For illustrative purposes, we
set n “ 3. In this setting, the data is px1,x2,x3q and the moment condition is

gpX ,θ q “ X ´ θ .

For all of the simulations we performed, we fixed x1 “ ´1 and x3 “ 1, and specified a
uniform prior for θ . We varied the values of x2 across different values between ´1 and 1.

In the special case of x2 “ 0, the following proposition provides the explicit form of the
conditional posterior of pq1,q2,q3q given θ “ 0. The proof is provided in §D.3.

Proposition 4.1. For px1,x2,x3q “ p´1,0,1q, the conditional posterior of pq1,q2,q3q given

θ “ 0 is

q1 | pθ “ 0;x1,x2,x3q „
1
2

Betap2,1q

q2 | pθ “ 0;x1,x2,x3q „ Betap1,2q

q3 | pθ “ 0;x1,x2,x3q “ q1 | pθ “ 0;x1,x2,x3q.

Although Proposition 4.1 only concerns a special case, it provides some evidence that the
ETBB posterior is well-defined and proper, even though the prior is improper.

Figure 4.1 compares the posterior densities for θ between the ETBB and the Bayesian
bootstrap. The posterior densities shown for the Bayesian bootstrap have been calculated
exactly using

pBBpθ q “

$

&

%

1`θ

1`x2
, for ´ 1 ď θ ď x2

1´θ

1´x2
, for x2 ď θ ď 1.

The details can be found in the §D.1.
Figure 4.2 displays the ETBB posterior densities for q. We recall that the Bayesian

bootstrap posterior for q is uniform on the simplex, regardless of the values of the observed
data. In contrast, the posterior densities for the ETBB, while being close to uniform, are
higher in certain regions of the simplex depending on the value of x2.
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Figures 4.3 and 4.4 contain the posterior densities for q as we change the values of
a “ pa1,a2,a3q. As stated earlier, we can interpret BETEL as the limit as a1 Ñ 8 with
a1 “ a2 “ a3. The posterior densities for BETEL are concentrated in small regions of the
simplex. As the values of ta1,a2,a3u decrease, the posterior densities become gradually
more diffuse.

4.3 Computation of the ETBB posterior

4.3.1 Optimization

Where there exists a solution, the vector q “ pq1pθ , q̃q, . . . ,qnpθ , q̃qq can be found by solving
the dual optimization problem

qipθ , q̃q “
q̃i exptλ TgpDi,θ qu

řn
j“1 q̃ j exptλ TgpD j,θ qu

where λ satisfies

n
ÿ

j“1

q̃ j exptλ
TgpD j,θ qugpD j,θ q “ 0.

For each value of θ and q̃, λ can be approximated using a Newton-Raphson algorithm
similar to the one used for ETEL in the previous chapter; we have provided pseudo-code in
Algorithm 4.1. Since θ and q̃ are fixed for each optimization, there is no ambiguity in using
the shorthand notation

gi “ gpDi,θ q

f pλ q “

n
ÿ

j“1

q̃ j exptλ
Tg jug j

Hpλ q “

n
ÿ

j“1

q̃ j exptλ
Tg jug jgT

j.

As in the previous chapter, we should first check whether there exist solutions to the linear
programming problem

n
ÿ

j“1

p jgpD j,θ q “ 0; tpp1, . . . , pnq : 0 ď pi ď 1,
n
ÿ

j“1

p j “ 1u. (4.3)
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Fig. 4.1 The ETBB and Bayesian bootstrap posterior densities for θ across different values
of x2.



4.3 Computation of the ETBB posterior 99

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
1

0

0.
2

0.
4

0.
6

0.
8 1

q2q1

q3

q2

q1 q3

x2  = −0.8

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
1

0

0.
2

0.
4

0.
6

0.
8 1

q2q1

q3

q2

q1 q3

x2  = −0.6

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
1

0

0.
2

0.
4

0.
6

0.
8 1

q2q1

q3

q2

q1 q3

x2  = −0.4

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
1

0

0.
2

0.
4

0.
6

0.
8 1

q2q1

q3

q2

q1 q3

x2  = −0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
1

0

0.
2

0.
4

0.
6

0.
8 1

q2q1

q3

q2

q1 q3

x2  = 0

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
1

0

0.
2

0.
4

0.
6

0.
8 1

q2q1

q3

q2

q1 q3

x2  = 0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
1

0

0.
2

0.
4

0.
6

0.
8 1

q2q1

q3

q2

q1 q3

x2  = 0.4

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
1

0

0.
2

0.
4

0.
6

0.
8 1

q2q1

q3

q2

q1 q3

x2  = 0.6

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
1

0

0.
2

0.
4

0.
6

0.
8 1

q2q1

q3

q2

q1 q3

x2  = 0.8

1 2 3
level

Fig. 4.2 The ETBB posterior density for q across different values of x2.
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Fig. 4.3 The BETEL, Dirichlet and ETBB posterior density for q across different values of a
with x2 “ 0.
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Fig. 4.4 The BETEL, Dirichlet and ETBB posterior density for q across different values of a
with x2 “ 0.8.
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Algorithm 4.1: Newton algorithm: optimizing q
Input θ , q̃ and tolerance τ0 ą 0.
Solve linear programming problem described by (4.3).
If no feasible solutions exist

output 0
else

λ Ð p0, . . . ,0q

τ Ð τ0 ` 1
while τ ą τ0

s Ð Hpλ q´1 f pλ q

r Ð 0
λ 1 Ð λ ´ s
while f pλ q ą f pλ 1q

r Ð r ` 1
λ 1 Ð λ ´ 2´rs

τ Ð ∥λ 1 ´ λ∥
λ Ð λ 1

for i “ 1 to i “ n
qi Ð q̃i exppλ Tgiq{t

řn
j“1 q̃ j exppλ Tg jqu

output pq1, . . . ,qnq

For moderate to high dimensional θ , inverting Hpλ q may be computationally expensive.
An alternative to Newton’s method is gradient descent: solving f pλ q “ 0 is equivalent to
minimizing the objective

ϒpλ q “

n
ÿ

j“1

q̃ j exptλ
Tg ju.

This is due to convexity; the unique global minimum lies at the point where f pλ q—the
derivative of ϒpλ q with respect to λ—is equal to 0. An example of a gradient procedure is
provided in Algorithm 4.2. Since gradient descent is a first-order method—using only the
first derivative of the objective—it will likely take more iterations to converge than Newton’s
method. This will nevertheless result in a favourable trade-off for gradient descent if each
iteration of Newton’s method is much more expensive, particularly due to the inversion of
Hpλ q.



4.3 Computation of the ETBB posterior 103

Algorithm 4.2: Gradient descent: optimizing q
Input θ , q̃ and tolerance τ0 ą 0.
Solve linear programming problem described by (4.3).
If no feasible solutions exist

output 0
else

λ Ð p0, . . . ,0q

τ Ð τ0 ` 1
while τ ą τ0

t Ð 1
while ϒpλ ´ t f pλ qq ą ϒpλ q ´ pt{2q∥ f pλ q∥2

2
t Ð t{2

λ 1 Ð λ ´ t f pλ qq

τ Ð ∥λ 1 ´ λ∥
λ Ð λ 1

for i “ 1 to i “ n
qi Ð q̃i exppλ Tgiq{t

řn
j“1 q̃ j exppλ Tg jqu

output pq1, . . . ,qnq

4.3.2 Sampling q̃ | θ

We propose sampling from the ETBB posterior using a Gibbs sampler, alternating between
updating θ and q̃. In both cases, exact sampling is infeasible and we suggest several options
to tackle this.

There are two main challenges for sampling q̃ conditional on θ . First, we may encounter
posterior multimodality. Second, the dimension of q̃ can be high since it scales with the
sample size n. The two methods we propose in this subsection were designed to handle these
issues to varying extents.

4.3.2.1 Pre-conditioned Crank-Nicolson proposal

The simpler of our two proposals uses pre-conditioned Crank-Nicolson proposals (Cotter
et al., 2013) with Metropolis-Hastings. We had previously introduced this proposal in §2.2.2
and applied it to resolve the issues caused by high-dimensionality in the case-cohort design.

First, we perform an auxiliary transformation from the n-simplex to the unit hypercube
r0,1sn´1 Ă Rn´1. This transformation ϕ and its inverse are described in Algorithms 4.3 and
4.4 respectively.
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Algorithm 4.3: Hypercube transformation q̃ ÞÑ ϕpq̃q

Input q̃.
Set z1 “ q̃1.
For i “ 2 to i “ n ´ 1

Set zi “ q̃i t
ś

jăip1 ´ z jqu´1.
Output z “ pz1, . . . ,zn´1q.

Algorithm 4.4: Inverse hypercube transformation z ÞÑ ϕ´1pzq

Input z.
Set q̃1 “ z1.
For i “ 2 to i “ n ´ 1

Set q̃i “ zi
ś

jăip1 ´ z jq.
Set q̃n “

śn´1
j“1p1 ´ z jq.

Output q̃ “ pq̃1, . . . , q̃nq.

The inverse transformation can be interpreted as a stick-breaking construction. Suppose
that z “ pz1, . . . ,zn´1q lies inside the unit hypercube r0,1sn´1. In the first step, we take a stick
of length 1 and break off a piece of proportion z1. In the second step, we take what is left
and break off a piece of proportion z2. We repeat this process until the n-th step, where we
simply keep the remaining piece.

These transformations are similar to those proposed in Betancourt (2012); they only
differ by a reflection in the hypercube, i.e. pz1, . . . ,zn´1q ÞÑ p1 ´ z1, . . . ,1 ´ zn´1q. From the
analysis in Betancourt (2012), we can immediately deduce that if q̃ „ Dirpα1, . . . ,αnq, then

ϕpq̃q „

n´1
ź

i“1

Betapαi, α̃iq, (4.4)

where α̃i “
řn

k“i`1 αi.
To overcome multimodality, we suggest selecting a proposal distribution for q̃ that has a

disproportionate amount of probability mass at the boundaries of the n-simplex, where the
modes are likely to be located. A straightforward choice is Dirpα, . . . ,αq, where 0 ă α ă 1.
To ensure good mixing, it may be necessary to correlate successive proposals; for this, we use
the pre-conditioned Crank-Nicolson proposal (Cotter et al., 2013), which we had previously
introduced in §2.2.2.

Let Φ and Fa,b be the cumulative distribution functions of N p0,1q and Betapa,bq re-
spectively. We can invert q̃ „ Dirpα, . . . ,αq into a standard multivariate normal variable as
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follows: map q̃ to z “ ϕpq̃q in the unit hypercube and set

U “ pΦ
´1

tFα,pn´1qαpz1qu,Φ´1
tFα,pn´2qαpz2qu, . . . ,Φ´1

tFα,αpzn´1quq.

By (4.4), U „ Nn´1p0, In´1q. The pre-conditioned Crank-Nicolson proposal is U 1 “ ρU `
a

1 ´ ρ2ε , where ε „ Nn´1p0, In´1q and ρ P r0,1q. This proposal can be mapped back into
the n-simplex, and accepted/rejected with a Metropolis-Hastings step.

The pseudo-code for a single update for q̃ conditional on θ is presented in Algorithm
4.5. Along with ρ and α , we also input the current values q̃pcurq and θ pcur) of the sampler.
We recommend starting with a value of α that is close to 1 and reducing the value to try
to increase the acceptance rate if necessary. When n far exceeds the dimension of θ , we
hypothesize that the marginal posterior of q̃ will be close to uniform and a value of α

approximately equal to 1 will be optimal. If the sampler appears to get stuck at modes, it
may help to try setting ρ “ 0, which corresponds to proposing independent samples from
Dirpα, . . . ,αq; this could increase the frequency for the sampler to jump from one mode to
another.

Algorithm 4.5: Pre-conditioned Crank-Nicolson update for q̃

Input q̃pcurq, θ pcur), ρ , α .
Set z “ ϕpq̃pcurqq.
Set U “ pΦ´1tFα,pn´1qαpz1qu,Φ´1tFα,pn´2qαpz2qu, . . . ,Φ´1tFα,αpzn´1quq.
Sample ε „ Nn´1p0, In´1q and set U 1 “ ρU `

a

1 ´ ρ2ε .
Set z1 “ pF´1

α,pn´1qα
tΦpU 1

1qu, . . . ,F´1
α,αtΦpU 1

n´1quq.
Set q̃1 “ ϕ´1pz1q.
With probability

min

«

1,
!

śn
i“1

qipθ (cur),q̃1q

qipθ (cur),q̃(cur)q

)

"

śn
i“1

q̃1
i

q̃(cur)
i

*´α
ff

,

set q̃pcurq “ q̃1.
Output q̃pcurq.

4.3.2.2 Hamiltonian Monte Carlo

For problems with very large sample sizes—and thus, very high-dimensional q̃—we propose
a Hamiltonian Monte Carlo procedure for updating q̃. For high-dimensional problems, this
procedure may exhibit substantial sampling efficiency gains, but it requires careful tuning of
several parameters to be effective.
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First, we need to map values in the n-simplex to an unconstrained space. We use ϕ—
defined in Algorithm 4.3—as an auxiliary mapping into the unit hypercube r0,1sn´1. We
define a further mapping ψ : r0,1sn´1 Ñ Rn´1 by z ÞÑ y, where

yk “ log
„

pn ´ kqzk

1 ´ zk

ȷ

for k “ 1, . . . ,n ´ 1. The above inverts into

zk “
eyk

n ´ k ` eyk
.

A key ingredient of Hamiltonian Monte Carlo is computing the gradient of the log-target
density. In this case, our target is the conditional posterior density of q̃ given θ :

ppq̃ | θ ,D1, . . . ,Dnq9

#

n
ź

i“1

qipθ , q̃q

q̃i

+

We provide the gradient with respect to q̃ in Proposition 4.2, which is proved in §D.3. Since θ

is fixed while updating q̃, there is no ambiguity in using the shorthand notation gi “ gpDi,θ q.

Proposition 4.2. For θ lying inside the convex hull defined by the moment condition g and

the data, the gradient of the log-conditional posterior density is

B log ppq̃ | θ ,D1, . . . ,Dnq

Bq̃ j
“ ´

q jpθ , q̃q

q̃ j

$

&

%

«

n
ÿ

i“1

gi

ffT« n
ÿ

i“1

qipθ , q̃qgigT
i

ff´1

g j ` n

,

.

-

for j “ 1, . . . ,n.

The chain rule allows us to find the gradient with respect to y:

B log ppq̃ | θ ,D1, . . . ,Dnq

Byk
“

n
ÿ

j“1

Bq̃ j

Byk

B log ppq̃ | θ ,D1, . . . ,Dnq

Bq̃ j
,

where

Bq̃ j

Byk
“

$

’

’

’

&

’

’

’

%

0, for k ą j

q̃ jp1 ´ z jq, for k “ j

´q̃ jzk, for k ă j.
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In the above, z j and zk are associated with the value z “ ψ´1pyq in the unit hypercube. We
will use the shorthand notation

Spy1
q “

B log ppq̃ | θ ,D1, . . . ,Dnq

By

∣∣∣∣
y“y1

.

The gradient is involved in numerically integrating Hamilton’s equations to propose a new
value of q̃. The integrator we use is called the leapfrog integrator. We augment our parameter
space with an additional momentum variable η P Rn´1 that has the same dimension as y. We
also require specification of the following tuning parameters: positive-definite mass matrix
M P Rpn´1qˆpn´1q, step-size ε ą 0, and the number of leapfrog steps L. Suggestions on how
to select and tune these parameters can be found further below. The leapfrog integrator is
described in Algorithm 4.6. Starting at initial values of y and η , we update each in turn for L

steps and output their final values.

Algorithm 4.6: Leapfrog integrator
Input y, η , M, ε , L.
Set y0 “ y and η0 “ η .
For l “ 0 to l “ L ´ 1

Set η l`1{2 “ η l ´ pε{2qSpylq

Set yl`1 “ yl ` εM´1η l`1{2
Set η l`1 “ η l`1{2 ´ pε{2qSpyl`1q

Output pyL,ηLq.

The output from the leapfrog integrator is accepted/rejected with a Metropolis-Hastings
step. The final ingredient is the Jacobian factor that takes into account the change of variables
from q̃ to y. The Jacobian factor at y is

Jpyq “

n´1
ź

i“1

zip1 ´ ziq

¨

˝1 ´

i´1
ÿ

j“1

q̃ j

˛

‚,

where z “ ψ´1pyq and q̃ “ ϕ´1pzq. The details of the derivation can be found at
https://mc-stan.org/docs/2_24/reference-manual/simplex-transform-section.html.

The Hamiltonian Monte Carlo update procedure is described in Algorithm 4.7. For each
update, we sample a new inital value of the momentum η0 from Nn´1p0,Mq. As a result, the
density function φ0,M of Nn´1p0,Mq enters the acceptance ratio at the Metropolis-Hastings

https://mc-stan.org/docs/2_24/reference-manual/simplex-transform-section.html
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step. Regardless of whether the proposal is accepted or rejected, the current value of the
momentum is discarded and a new value is sampled in the next update.

Algorithm 4.7: Hamiltonian Monte Carlo update for q̃

Input q̃pcurq, θ pcur), M, ε , L.
Set y0 “ ψpϕpq̃pcur)qq.
Sample η0 „ Nn´1p0,Mq.
Set pyL,ηLq “ leapfrogpy0,η0,M,ε,Lq using Algorithm 4.6.
Set q̃L “ ϕ´1pψ´1pyLqq.
With probability

min
”

1, ppq̃L|θ pcurq,D1,...,Dnq

ppq̃pcurq|θ pcurq,D1,...,Dnq

JpyLq

Jpy0q

φ0,MpηLq

φ0,Mpη0q

ı

,

set q̃pcurq “ q̃L.
Output q̃pcurq.

The most difficult aspect of Hamiltonian Monte Carlo is tuning the parameters involved.
A systematic way of tuning M is to estimate the covariance matrix of y

M´1
“ Etpy ´Erysqpy ´Erysq

T
u

where the expectation is taken with respect to the target distribution of y. One can iteratively
refine this estimate by repeatedly running the chain for a small number of iterations. An
initial estimate could be obtained by using the sampling method described in §4.3.2.1 and
transforming the posterior sample of q̃ to obtain a sample of y. Tuning L and ε is trickier
to prescribe. One option is to start by fixing a value of L and adjusting ε to achieve the
optimal acceptance rate of about 65.1% (Neal, 2011). The choice of L “ 1 results in the
Metropolis-adjusted Langevin algorithm.

4.3.3 Sampling θ | q̃

Designing a sampler for θ | q̃ that targets

ppθ | q̃,D1, . . . ,Dnq9πpθ q

#

n
ź

i“1

qipθ , q̃q

q̃i

+
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is more conventional and straightforward. For low-dimensional θ , it may suffice to use
random walk Metropolis-Hastings

θ
1
„ N pθ

(cur),Vpropq,

where Vprop could be a scalar multiple of an estimate of the target distribution covariance. An
initial value could be obtained by using the nonparametric bootstrap or Bayesian bootstrap.

For high-dimensional θ , gradient-based methods like the Metropolis-adjusted Langevin
algorithm or Hamiltonian Monte Carlo may be necessary to improve sampling efficiency.
The gradient of the log target density is provided in Proposition 4.3, which is proved in §D.3.

Proposition 4.3. Suppose that πpθ q and gpD,θ q are both differentiable with respect to θ .

For θ lying inside the convex hull defined by the moment condition g and the data, the

gradient of the log-conditional posterior density is

B log ppθ | q̃,D1, . . . ,Dnq

Bθ
“

∇πpθ q

πpθ q
`

Bλ T

Bθ

˜

n
ÿ

i“1

gi

¸

`

n
ÿ

i“1

p1 ´ nqiq
BgT

i
Bθ

λ ,

where λ is the solution to the dual optimization problem for θ and q̃, and

Bλ

Bθ
“ ´

˜

n
ÿ

i“1

qipθ , q̃qgigT
i

¸´1
$

&

%

n
ÿ

j“1

q jpθ , q̃qpIn ` g jλ
T
q
Bg j

Bθ

,

.

-

.

4.4 Comparison with Kitamura & Otsu

In this section, we compare the Kitamura & Otsu proposal and the exponentially tilted
Bayesian bootstrap with the aim of providing support for our claim that the ETBB can be
viewed as a limit of the Kitamura & Otsu posterior as the base measure of the Dirichlet
process tends to zero. First, we must develop a sampler for the Kitamura & Otsu approach.
This is challenging because draws from a Dirichlet process are infinite-dimensional. Exact
computational methods involving the Dirichlet process exploit either conjugacy or the ability
to adaptively truncate samples (Walker, 2007). Neither option is possible in our setting; the
ETBB model is not conjugate, and samples from a Dirichlet process cannot be truncated
without introducing approximation error in the tilting step. Thus, we will settle with an
approximate sampling method using truncated stick-breaking (Ishwaran and James, 2001).
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Fix a whole number K ě n that determines the size of the support of any randomly drawn
distribution. Let α ą 0 and let G0 be a probability measure. Let

p1 “ V1, pK “

K´1
ź

i“1

p1 ´Viq, pk “ Vk

k´1
ź

i“1

p1 ´Viq for 2 ď k ď K ´ 1

where V1, . . . ,VK´1
i.i.d.
„ Betap1,αq and let A1, . . . ,AK

i.i.d.
„ G0. The random distribution defined

by PpD “ Akq “ pk for k “ 1, . . . ,K has distribution approximately equal to the Dirichlet
process DPpα,G0q. The approximation becomes increasingly exact as K Ñ 8.

It is evident that p1, . . . , pK are not identically distributed; p1 will be larger than p2

on average, p2 larger than p3 on average etc. This means that the ordering of A1, . . . ,AK

is important. We split the parameterization of A1, . . . ,AK into B1, . . . ,BK—just the set of
values of the atoms—and the ordering indicators I1, . . . , IK , which take values in t1, . . . ,Ku;
if I j “ k, then A j “ Bk. A priori, B1, . . . ,BK

i.i.d.
„ G0 and I1, . . . , IK is uniform over the set of

permutations on t1, . . . ,Ku.
Given p1, . . . , pK,A1, . . . ,AK , let P̃ be the probability measure2 defined by P̃pD “ Akq “ pk

for k “ 1, . . . ,K. For each value of θ , we define the tilted probability measure

PtiltpD “ ¨ | θ , p1, . . . , pK,A1, . . . ,AKq

as the solution to the optimization problem (4.1). As before, this solution—if it exists—will
be a discrete distribution supported only on A1, . . . ,AK . The likelihood function is thus

n
ź

i“1

PtiltpD “ Di | θ , p1, . . . , pK,A1, . . . ,AKq,

the product of the exponentially tilted probabilities of observing the data. As a result,
tB1, . . . ,BKu must contain the values tD1, . . . ,Dnu a posteriori. Without loss of generality, we
will fix Bi “ Di for i “ 1, . . . ,n. In §D.2, we develop a blocked Gibbs sampler (Ishwaran and
James, 2001) that cycles through updating θ , tI1, . . . , IKu, tB1, . . . ,BKu and tV1, . . . ,VK´1u.

We perform two sets of simulations to support our conjecture given in §4.2; that is, the
posterior in the Kitamura & Otsu model converges to the ETBB posterior for any sequence of
base measures that tends to 0. The requirement that this holds for any sequence is crucial for
ensuring that the ETBB posterior is well-defined. Thus, we will illustrate this convergence

2This P̃ plays the same role as the P̃ in the ETBB but is supported on the atoms A1, . . . ,AK , rather than just
the observed data points.
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for different sequences of base measures in each setting. Throughout, the number of sticks
for the Kitamura & Otsu implementation was fixed at 10.

Example 4.1 (continued). We return to the mean estimation example in §4.2 with three data
points. The data is px1,x2,x3q and the moment condition function is

gpX ,θ q “ X ´ θ .

We fixed x1 “ ´1 and x3 “ 1, and specified a U p´1,1q prior for θ . For the Kitamura & Otsu
proposal, we consider three sequences of base measures. Each sequence has the following
structure: we fix a base probability distribution ᾱ and set α “ |α |ᾱ for different values of
|α | ą 0. In the first and second sequences, we have ᾱ “ N p0,22q and ᾱ “ N p0,0.12q

respectively. In the third sequence, ᾱ is the skew normal distribution with density function

φ

´x
2

¯

Φp´xq,

where φ and Φ are the density and cumulative distribution functions of N p0,1q respectively.
Table 4.3 presents the posterior mean estimates of the marginal distributional probabilities.

We see that as |α | tends to 0, the estimates for the Kitamura & Otsu method appear to
converge to those of the ETBB. Furthermore, the total probability mass on tx1,x2,x3u tends
to 1, supporting our claim that the full nonparametric posterior will concentrate on the set of
distributions that are supported only on the observed data.

Figures 4.5 and 4.6 compare the posterior density plots for θ for x2 “ 0 and x2 “ 0.8
respectively. In each setting, we can see that as |α | tends to zero, the density functions for the
Kitamura and Otsu method appear to converge to the density for the ETBB for both values of
x2. For ᾱ “ N p0,22q, the base distribution is more dispersed than the ETBB posterior. As a
result, the Kitamura and Otsu posterior becomes tighter as |α | decreases. We observe the
opposite effect when ᾱ “ N p0,0.12q. For clarity of presentation, we omitted the curves for
|α | “ 0.05, which followed the patterns described above but were very close to the curves
for |α | “ 0.1.

Example 4.2 (Logistic regression). In the second set of simulations, we investigate logistic
regression. The data are fixed to be the six values

td1, . . . ,d6u “ tp´1,0q,p´0.5,0q,p0.2,0q,p´0.2,1q,p0.5,1q,p1,1qu.
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Table 4.3 Mean estimation comparison of posterior mean probabilities between Kitamura &
Otsu and ETBB.

N p0,22q x2 “ 0 x2 “ 0.8
Method PpX “ x1q PpX “ x2q PpX “ x3q Total PpX “ x1q PpX “ x2q PpX “ x3q Total
|α | “ 1 0.243 0.223 0.245 0.710 0.252 0.227 0.235 0.714
|α | “ 0.5 0.285 0.247 0.287 0.818 0.303 0.256 0.260 0.819
|α | “ 0.2 0.328 0.256 0.327 0.911 0.346 0.276 0.285 0.907
|α | “ 0.1 0.336 0.263 0.333 0.932 0.357 0.279 0.292 0.928
|α | “ 0.05 0.347 0.265 0.347 0.959 0.370 0.283 0.296 0.948
ETBB 0.362 0.278 0.361 1 0.398 0.293 0.309 1

N p0,0.12q x2 “ 0 x2 “ 0.8
Method PpX “ x1q PpX “ x2q PpX “ x3q Total PpX “ x1q PpX “ x2q PpX “ x3q Total
|α | “ 1 0.279 0.218 0.279 0.777 0.282 0.241 0.256 0.779
|α | “ 0.5 0.315 0.248 0.315 0.878 0.334 0.262 0.279 0.875
|α | “ 0.2 0.342 0.259 0.344 0.945 0.364 0.281 0.288 0.932
|α | “ 0.1 0.350 0.269 0.350 0.969 0.374 0.287 0.291 0.952
|α | “ 0.05 0.351 0.267 0.351 0.970 0.377 0.285 0.295 0.957
ETBB 0.362 0.278 0.361 1 0.398 0.293 0.309 1

Skew normal x2 “ 0 x2 “ 0.8
Method PpX “ x1q PpX “ x2q PpX “ x3q Total PpX “ x1q PpX “ x2q PpX “ x3q Total
|α | “ 1 0.223 0.235 0.337 0.795 0.231 0.270 0.294 0.795
|α | “ 0.5 0.273 0.256 0.347 0.876 0.295 0.277 0.305 0.876
|α | “ 0.2 0.311 0.262 0.357 0.930 0.337 0.284 0.309 0.929
|α | “ 0.1 0.324 0.269 0.357 0.950 0.348 0.283 0.309 0.940
|α | “ 0.05 0.329 0.263 0.362 0.954 0.355 0.282 0.314 0.951
ETBB 0.362 0.278 0.361 1 0.398 0.293 0.309 1
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Fig. 4.5 Mean estimation posterior densities for θ px2 “ 0q.
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The target quantity θ satisfies the moment condition defined by

gpD,θ q “ X
ˆ

Y ´
eθX

1 ` eθX

˙

,

where D “ pX ,Y q, i.e. θ is the regression coefficient for X with no intercept. We consider
two sequences of base measures for the Kitamura and Otsu proposal, both with the same
structure as before—we fix the base distribution and vary the size of the base measure. In
setting 1, we consider a base distribution having independent X and Y : X „ N p0,1q and
Y „ Ber(0.5). Equivalently, this is the logistic regression model with θ “ 0. In setting 2, the
base distribution is defined by X „ N p0,0.52q and Y | X „ Berpexpitp8Xqq. In both settings,
we specify a flat prior for θ .

Table 4.4 contains the posterior mean estimates of the marginal distributional probabilities.
Similar to the mean estimation example, we can see in both settings that the estimates from
the Kitamura and Otsu method converge to the estimates from the ETBB as |α | tends to 0.
We also see the total of the Kitamura and Otsu estimates converging to 1, again supporting
our conjecture that the limit of the Kitamura and Otsu posterior puts all of its mass on the set
of distributions supported only on the observed data.

Figure 4.7 presents the posterior densities for θ . In setting 1, we can see that the density
for |α | “ 1 is—relatively speaking—shrunk towards the value 0. This is expected because X

and Y are independent under the base distribution, corresponding to θ “ 0. As |α | decreases,
we see the curves converge towards the ETBB density. The opposite occurs in setting 2. For
|α | “ 1, the density is shrunk towards θ “ 8 due to the influence of the base distribution. We
then see the curves converge towards the ETBB density from the opposite direction to setting
1.

4.5 Further examples

4.5.1 Robust linear regression

Consider the linear model

Y “ Xβ ` ε,

where Erε | Xs “ 0. Bayesian linear regression conventionally operates under the assumption
of homoscedasticity; that is, Erε2 | Xs “ Erε2s. Such a modelling choice is more likely to be
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Table 4.4 Logistic regression comparison of posterior mean probabilities between Kitamura
& Otsu and ETBB.

Setting 1
Method PpD “ d1q PpD “ d2q PpD “ d3q PpD “ d4q PpD “ d5q PpD “ d6q Total
|α | “ 1 0.144 0.164 0.127 0.128 0.168 0.147 0.879
|α | “ 0.5 0.145 0.169 0.148 0.145 0.175 0.150 0.931
|α | “ 0.3 0.148 0.173 0.154 0.153 0.175 0.154 0.957
|α | “ 0.1 0.155 0.179 0.158 0.154 0.180 0.153 0.980
ETBB 0.155 0.184 0.156 0.158 0.190 0.157 1

Setting 2
Method PpD “ d1q PpD “ d2q PpD “ d3q PpD “ d4q PpD “ d5q PpD “ d6q Total
|α | “ 1 0.138 0.151 0.145 0.147 0.146 0.141 0.868
|α | “ 0.5 0.148 0.166 0.147 0.148 0.172 0.146 0.926
|α | “ 0.3 0.146 0.169 0.158 0.153 0.172 0.154 0.951
|α | “ 0.1 0.150 0.180 0.162 0.163 0.177 0.154 0.986
ETBB 0.155 0.184 0.156 0.158 0.190 0.157 1

for the sake of convenience than a true reflection of the analyst’s beliefs. In the simplest case,
conjugate models allow one to forgo MCMC and sample from the posterior directly.

If homoscedasticity is violated, a Bayesian model that does not take this into account will
generally produce credible regions for β that do not achieve nominal coverage as the number
of samples goes to infinity. Even if heteroscedasticity is detected, handling the resulting
model selection issue from a Bayesian standpoint is not straightforward. On the other hand,
a frequentist can remain agnostic with the use of heteroscedastic-consistent standard errors
(White, 1980).

In this subsection, we demonstrate that the ETBB can provide a solution to these problems.
In the first scenario, we generate X „ N p0,1q and ε | X „ N p0,0.52q. In the second scenario,
we generate X „ N p0,1q and ε | X „ N p0,0.52|X |q. In both cases, the true value of β is
0.4, and we generate n “ 100 samples.

We compare the ETBB and BETEL with the following standard Bayesian model:

ε |X ,σ2
„ N p0,σ2

q

β ,σ2
„ ppβ ,σ2

q9σ
´2.

This is a special case of the conjugate normal-inverse gamma model with a Jeffrey’s prior for
pβ ,σ2q. The model is correctly specified in scenario 1 but fails to address the heteroscedas-
ticity present in scenario 2.
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For the ETBB and BETEL, we investigate two sets of moment conditions. The first is the
ordinary least squares condition ErXpY ´Xβ qs “ 0 with a weakly informative β „ N p0,42q

prior. The second combines the ordinary least squares condition with Erσ2 ´pY ´Xβ q2s “ 0
with the same prior as the standard Bayesian model above. This set of conditions can be
interpreted as the expected score equations for the normal linear model; we seek the pseudo-
true values of β and σ2 that minimize the KL-divergence between the normal linear model
and the true data-generating distribution.

Table 4.5 and 4.6 summarize the results for both scenarios, each run for 500 iterations.
Values for biases, empirical standard deviations, and root mean squared errors are given with
respect to posterior mean estimates. Central 95% credible intervals were used for β , while
one-sided intervals were used for σ2 (from 0 to the upper 95% quantile).

In the first scenario, the standard Bayesian model is correctly specified, and as expected,
we see from Table 4.5 that the central 95% credible intervals for both β and σ2 achieve
nominal coverage. In the second scenario, however, the model misspecification leads to
the standard Bayesian credible intervals undercovering substantially, as shown in Table 4.6.
BETEL with ordinary least squares performs well for β in both settings but poorly for σ2,
which is not included in the moment condition. This is fixed by using the score conditions
instead; in that case, BETEL performs well in each category, albeit with slight undercoverage,
similar to both ETBB methods.

Our simulations illustrate that the ETBB can allow the Bayesian to remain as agnostic to
homoscedasticity/heteroscedasticity as a frequentist using ordinary least squares. There is
little loss in performance relative to a fully parametric model under correct specification, and
there are significant gains when homoscedasticity is violated.

The advantages of using ETBB with ordinary least squares over BETEL with the score
conditions are more evident if we consider extensions to multivariate outcomes. This is
because specifying a prior for a covariance matrix is well-known to be difficult (Barnard
et al., 2000), particularly if the user wishes to be noninformative in their beliefs. The Jeffreys
prior that we used in §2.4.2 is convenient in the conjugate normal-inverse Wishart model
but lacks this benefit when coupled with BETEL. The number of parameters involved in a
covariance matrix induces a large computational burden in the optimization step, limiting the
scalability of the method.

Above, we have only considered a semiparametric model where the linearity of the
regression function is assumed to be true. Since our moment condition does not impose any
model restrictions, we can also use the ETBB under a fully nonparametric setting, where
linearity may not necessarily hold. In that case, β can be viewed as a statistical functional
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Table 4.5 (Scenario 1) Comparison of standard Bayes, BETEL, and ETBB for the ho-
moscedastic errors model. OLS, ordinary least squares; Sco, score equation; N-IG, normal-
inverse gamma; ESD, empirical standard deviation; RMSE, root mean squared error, Wid,
mean width of central 95% credible intervals, Cov, coverage of central 95% credible intervals.

β

Method Bias ESD RMSE Wid Cov
N-IG 0.004 0.050 0.050 0.197 95.6%
BETEL-OLS -0.002 0.049 0.049 0.189 92.2%
ETBB-OLS 0.003 0.051 0.051 0.188 94.0%
BETEL-Sco 0.003 0.050 0.050 0.188 94.0%
ETBB-Sco 0.003 0.051 0.051 0.186 93.4%

σ2

Method Bias ESD RMSE Wid Cov
N-IG 0.002 0.033 0.033 0.318 94.8%
BETEL-OLS -0.001 0.035 0.035 0.255 52.0%
ETBB-OLS -0.003 0.033 0.033 0.307 91.8%
BETEL-Sco -0.002 0.033 0.033 0.308 91.2%
ETBB-Sco -0.002 0.033 0.033 0.307 91.4%

Table 4.6 (Scenario 2) Comparison of standard Bayes, BETEL, and ETBB for the het-
eroscedastic errors model. N-IG, normal-inverse gamma; ESD, empirical standard deviation;
RMSE, root mean squared error, Wid, mean width of central 95% credible intervals, Cov,
coverage of central 95% credible intervals.

β

Method Bias ESD RMSE Wid Cov
N-IG 0.003 0.063 0.063 0.175 83.6%
BETEL-OLS 0.003 0.062 0.062 0.227 93.2%
ETBB-OLS 0.003 0.062 0.062 0.229 93.8%
BETEL-Sco 0.003 0.062 0.062 0.229 93.8%
ETBB-Sco 0.004 0.062 0.062 0.222 93.0%

derived from a nonparametric projection of the true data-generating distribution onto the
space of linear models (Buja et al., 2019a,b).
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4.5.2 Quantile regression

Standard regression generally focuses on estimating the conditional mean function ErY |

X “ xs. The aim of quantile regression is to provide a more detailed summary of the data
by using several regression curves corresponding to different quantiles of the conditional
distribution of Y given X .

Consider the following model (Koenker and Bassett, 1978): the τ-th conditional quantile
function of Y P R given X P Rp is specified to be

QτpY | Xq :“ inftt | PpY ď t | Xq ě τu “ Xβ pτq,

where τ P p0,1q. This model specification is not generative; additional structure is required
to perform standard Bayesian inference. Given data tpXi,Yiq | i “ 1, . . . ,nu, β pτq can be
estimated from a frequentist perspective by

β̂ pτq “ argmin
β

n
ÿ

i“1

ρτpYi ´ Xiβ q

where ρτpy ´ xβ q “ pτ ´1ty ă xβuqpy ´ xβ q (Cameron and Trivedi, 2010).
Chamberlain and Imbens (2003) suggested an approach based on the Bayesian bootstrap

that repeatedly solves

β pτq
plq

“ argmin
β

n
ÿ

i“1

wplq
i ρτpYi ´ Xiβ q

where pwplq
1 , . . . ,wplq

n q are uniform Dirichlet weights. Lancaster and Jun (2010) and Yang and
He (2012) studied approaches based on BETEL and Bayesian empirical likelihood (BEL)
respectively3. Following Yang and He (2012), we consider the moment condition

ErψτpY ´ Xβ pτqqXs “ 0, (4.5)

where

ψτpuq “

$

&

%

1tu ă 0u ´ τ, for u ‰ 0

0, for u “ 0.

3The empirical likelihood was previously defined in §3.2.1
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It is likely that we are interested in multiple quantiles pτ1, . . . ,τkq. Using BETEL or Bayesian
empirical likelihood would require kp estimating equations, which may be computationally
expensive. Moreover, it is plausible that the user only has informative beliefs about some
of the quantiles of interest (particularly, the median). In contrast, the ETBB can be used to
estimate all quantile coefficients simultaneously while allowing the user to specify moment
conditions for a selected subset of the quantiles.

We assess the performance of the ETBB with the following simulation study by Yang
and He (2012). The outcomes are generated by Yi “ βI `βSpXi ´2q`εi pi “ 1, . . . ,nq, where
βI “ 2, βS “ 1, and Xi and εi are independently generated from the chi-squared distribution
with 2 degrees of freedom and N p0,22q respectively. We specify the moment conditions
(4.5) for τ “ 0.5 only; that is, the conditions for the median regression coefficients βIp0.5q

and βSp0.5q. Independent priors of N p0,1002q are specified for both parameters. Unlike
Yang and He (2012), we will also investigate the results for τ “ 0.25 and τ “ 0.75, even
though we have not used the corresponding moment conditions.

Table 4.7 presents the results for ETBB across 500 iterations in each setting for n “ 100
and n “ 200. We have included the results for BEL, BETEL and Chamberlain and Imbens
(2003) for comparison. The coverage and (average) widths are given with respect to the
central 95% credible intervals. We can see that the ETBB intervals perform similarly to
Chamberlain and Imbens (2003), achieving approximate calibration for all parameters with
similar widths. This is reassuring because the Bayesian bootstrap is known to satisfy the
nonparametric Bernstein-von Mises theorem (Ghosal and van der Vaart, 2017) and is therefore
asymptotically efficient in the nonparametric model.

BEL and BETEL achieve nominal coverage for the median parameters, but the intervals
for the other parameters exhibit substantial undercoverage as expected. We obtain further
evidence that the plug-in approach fails to fully propagate the uncertainty in the parameters
that are not determined by the moment conditions.

4.5.3 Doubly robust estimation

We revisit the experiment in §3.3.2 derived from Kang and Schafer (2007). Similar to our
earlier investigation of BETEL, we use two ETBB models in each setting. The first specifies
a flat prior for all parameters. The second specifies a flat prior for all parameters aside from
µ , for which we specify a t3p210,1q prior. We compare the ETBB with the approaches
described previously in §3.3.2: the standard doubly robust estimator (Robins et al., 1994),
the Saarela et al. (2016) proposal, and the two BETEL models with the same priors as above.
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Table 4.7 Comparison of ETBB with BEL, BETEL and Chamberlain and Imbens (2003) for
quantile regression. CI, Chamberlain and Imbens.

n “ 100 Coverage
Method βIp0.25q βSp0.25q βIp0.5q βSp0.5q βIp0.75q βSp0.75q

BEL 90.2% 79.0% 97.8% 98.8% 76.2% 77.2%
BETEL 88.4% 77.6% 97.2% 98.0% 76.2% 75.0%
CI 97.5% 95.7% 96.6% 96.2% 96.4% 94.7%
ETBB 98.4% 93.8% 95.2% 96.4% 95.2% 93.8%

n “ 100 Width
Method βIp0.25q βSp0.25q βIp0.5q βSp0.5q βIp0.75q βSp0.75q

BEL 0.66 0.37 1.06 0.59 0.66 0.36
BETEL 0.65 0.35 1.05 0.56 0.66 0.34
CI 1.10 0.58 1.01 0.53 1.12 0.58
ETBB 1.07 0.54 1.02 0.56 1.09 0.56

n “ 200 Coverage
Method βIp0.25q βSp0.25q βIp0.5q βSp0.5q βIp0.75q βSp0.75q

BEL 88.8% 75.2% 96.8% 97.4% 72.6% 78.6%
BETEL 88.2% 74.2% 97.0% 96.4% 72.8% 76.8%
CI 96.6% 95.2% 96.4% 95.4% 95.2% 95.8%
ETBB 97.4% 91.2% 95.6% 92.6% 93.4% 92.2%

n “ 200 Width
Method βIp0.25q βSp0.25q βIp0.5q βSp0.5q βIp0.75q βSp0.75q

BEL 0.45 0.24 0.73 0.39 0.46 0.24
BETEL 0.45 0.23 0.73 0.38 0.46 0.24
CI 0.77 0.39 0.71 0.37 0.77 0.40
ETBB 0.76 0.37 0.69 0.35 0.75 0.38

Table 4.8 presents the results; the values for the Bayesian approaches are given with
respect to the posterior mean estimates. The performance of the ETBB estimators are similar
to their corresponding BETEL estimators, which suggests that the ETBB is also an effective
approach for doubly robust estimation. As before, the performance of BETEL and ETBB
are similar to the Bayesian bootstrap approach of Saarela et al. (2016) when using the flat
prior for all parameters. With the weakly informative prior, BETEL and ETBB substantially
outperform both the standard doubly robust estimator and Saarela et al. (2016), particularly
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when both models are misspecified, demonstrating the protective effect of such priors in the
presence of model misspecification.

OR correct, PS correct OR incorrect, PS correct
Estimator Bias RMSE MAE ESD Estimator Bias RMSE MAE ESD

µ̂DR -0.01 2.55 1.73 2.55 µ̂DR 0.27 3.61 2.32 3.60
µ̂Sa 0.01 2.57 1.71 2.57 µ̂Sa 0.57 3.44 2.31 3.39

µ̂BETEL,1 -0.15 2.55 1.76 2.55 µ̂BETEL,1 0.49 3.81 2.25 3.78
µ̂ETBB,1 -0.15 2.57 1.71 2.56 µ̂ETBB,1 0.51 3.95 2.33 3.92
µ̂BETEL,2 -0.14 2.40 1.63 2.40 µ̂BETEL,2 0.48 3.27 2.01 3.24
µ̂ETBB,2 -0.15 2.40 1.67 2.40 µ̂ETBB,2 0.47 3.30 2.01 3.27

OR correct, PS incorrect OR incorrect, PS incorrect

Estimator Bias RMSE MAE ESD Estimator Bias RMSE MAE ESD

µ̂DR -0.01 2.59 1.73 2.59 µ̂DR -6.44 38.52 3.64 37.97
µ̂Sa -0.09 2.60 1.73 2.60 µ̂Sa -4.81 15.41 3.38 14.64

µ̂BETEL,1 -0.22 2.90 1.76 2.89 µ̂BETEL,1 -8.21 18.61 4.21 16.71
µ̂ETBB,1 -0.16 2.74 1.76 2.74 µ̂ETBB,1 -7.73 16.67 4.25 14.77
µ̂BETEL,2 -0.15 2.43 1.66 2.43 µ̂BETEL,2 -3.51 6.71 3.38 5.72
µ̂ETBB,2 -0.14 2.51 1.63 2.51 µ̂ETBB,2 -3.86 8.18 3.52 7.22

Table 4.8 Monte Carlo simulations based on 1000 replicates using the standard doubly robust
estimator, the Saarela et al. method, BETEL and ETBB. RMSE, root mean squared error;
MAE, median of absolute errors; ESD, empirical standard deviation; DR, double robust; Sa,
Saarela et al. (2016) proposal; OR, outcome regression; PS, propensity score.

4.6 Discusssion

In this chapter, we have developed a nonparametric Bayesian framework for moment con-
dition inference. The motivation for the ETBB was to address several shortcomings of
BETEL, namely, the practical and conceptual issues that arise from using the empirical
distribution as a plug-in. Our solution was to replace the plug-in with a prior, inspired by a
proposal by Kitamura and Otsu. Compared to the Kitamura and Otsu approach, however,
it is relatively straightforward to sample from the ETBB posterior. We have developed two
computational options: one based on the pre-conditioned Crank-Nicolson proposal, and
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one using Hamiltonian Monte Carlo. The ETBB was shown to be an effective approach for
various problems that are often handled using estimating equations.

The most important direction for future work is the development of theory to confirm
our hypotheses. First, we have specified an improper prior, so it is necessary to verify that
the ETBB posterior is proper; currently, we only have confirmation for a special case of a
simple example (Proposition 4.1). Next, we would like to confirm that the ETBB posterior
is indeed a noninformative limit of the Kitamura and Otsu proposal. This conjecture was
supported by our extensive simulation results. And finally, to justify the use of the ETBB
for estimating general functionals, it is of interest to prove a nonparametric Bernstein-von
Mises theorem for the ETBB posterior of P, similar to what is known to hold for the Dirichlet
process (Ghosal and van der Vaart, 2017).

As we have already discussed in §1.2.2.4, the key deficiency of the Bayesian bootstrap—
and Dirichlet processes in general—is the inability to directly specify an informative prior
on the target quantity, which is something that we have resolved with the ETBB. Bornn
et al. (2019) provided a Bayesian justification for combining the Bayesian bootstrap with an
informative prior through importance sampling. First, one draws a sample from the Bayesian
bootstrap posterior; then, the importance weight assigned to each draw is proportional to
its value under the prior density function. Finally, one obtains a new posterior sample by
resampling according to the weights. However, the justification for this approach relies on the
support of the data generating distribution being known and discrete, which is restrictive in
practice. If this does not hold, one would have to make the assumption that the observed data
forms the entire support, which suffers from the same type of data-dependence as BETEL
and BEL.

A limitation of our work is the assumption that the dimension of the moment conditions
equals the dimension of the parameter; that is, the parameter is exactly identified. There is
substantial interest—-particularly in econometrics—in moment conditions that overidentify
the parameter. The standard approach for such problems is generalized method of moments

(Hansen, 1982), which minimizes a weighted version of the sample moment conditions, rather
than setting them exactly to 0. Some developments in this direction have been established for
BETEL by Chib et al. (2018). We conjecture that similar extensions can also be made for the
ETBB.



Chapter 5

Conclusions and future work

In this thesis, we have developed Bayesian modelling approaches for an array of problems
that are often handled using weights and/or estimating equations. A common thread that
links our work is the ability to directly specify a prior on the quantity of interest while using
nonparametric modelling. Although we recommend that the user specifies an informative
prior based on subject matter knowledge, we acknowledge that there are situations where an
objective prior might be appropriate. Investigating effective choices of objective priors for our
proposed methodology is a topic of future research. It would be of interest to compare these
choices with more standard nonparametric Bayesian methods such as Dirichlet processes.

Our work in Chapter 2 exploited the fact that the Cox partial likelihood can be derived
from a Bayesian perspective by specifying a Bayesian bootstrap prior on the baseline cu-
mulative hazard function, which is restricted to be a step function with jumps only at the
failure times. We noted that the same restriction can also motivate the Cox partial likelihood
as a profile likelihood function by maximizing the jump sizes. Indeed, this was the source of
Breslow’s estimator of the cumulative baseline hazard function (Breslow, 1972). A similar
phenomenon that links the Bayesian bootstrap and profile likelihood was discovered by
Seaman and Richardson (2004) in the context of logistic regression analysis of case-control
studies. We believe that this connection may be far more general. An exploration of this
hypothesis could potentially lead to a Bayesian framework for wide classes of problems
where profile likelihood estimation is the norm. As with our method in Chapter 2, the
Bayesian paradigm offers an attractive alternative due to the marginalization of nuisance
parameters, and computational techniques such as the pseudo-marginal algorithm.

The approaches in Chapters 3 and 4 can be viewed as Bayesian analogues of estimating
equation methodology. As discussed in Chapter 1, the state-of-the-art for some semipara-
metric problems involves the use of flexible machine learning methods to estimate nuisance
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parameters, rather than estimating equations. It is not immediately clear whether our methods
can be generalized to incorporate machine learning. One possibility is to fix estimates of
the nuisance parameters beforehand—using machine learning, sample-splitting and cross-
fitting—and then tilt only in the direction of the target quantity. The asymptotic theory in
the frequentist setting suggests that neglecting to account for the uncertainty in the nuisance
parameter estimates will not affect the asymptotic posterior variance, i.e. posterior credible
intervals will still attain nominal coverage asymptotically. However, this compromise of
using plug-in estimators would diminish the conceptual appeal of ETBB over BETEL and
other alternatives.

Our approach in Chapter 2 differs from that of Chapters 3 and 4 due to the use of a more
orthodox Bayesian model, albeit with an improper Bayesian bootstrap prior on the baseline
cumulative hazard function. With BETEL and ETBB, we were in fact deliberately avoiding
a more conventional Bayesian approach to circumvent problems such as the ones posed by
the Robins-Ritov example (§1.2.1). Conversely, it is natural to wonder whether BETEL and
ETBB could be effective for case-cohort Cox regression. Recall from §2.2.1 that the status
quo for this problem is weighted Cox regression, which involves solving weighted versions
of the Cox partial score equation (2.3). These equations do not take the form of a sum of
independent and identically distributed terms. Thus, in order to apply BETEL or ETBB,
we would have to use nested estimating equations, similar to our doubly robust estimation
approach in Chapter 3, which would produce a set of estimating equations for every failure
time point. For even moderately sized datasets, the corresponding set of moment conditions
would likely be too high-dimensional to enable computation of the posterior.

Throughout this thesis, we have assumed that the dimension of the data does not exceed
the sample size, enabling standard regression models and estimating equations to be used.
However, this may preclude the use of our proposed methodology for many modern data
science applications. As argued in §1.2.2.2, we believe that it is dangerous to use inverse
probability weighting coupled with assumptions such as sparsity, due to the potential in-
stability caused by model misspecification and practical violations of positivity. In such
high-dimensional settings, it may be preferable to choose a more conventional outcome
regression approach (Bayesian or otherwise) and settle with just prediction, rather than
attempt to perform frequentist-calibrated inference under false pretenses.

We have discussed how BEL, BETEL and ETBB are all based on finding the distribution
that minimizes the KL-divergence to some “initial estimate” of the data generating distribution
subject to moment constraints. The empirical likelihood inputs the initial estimate as the
first argument of the KL-divergence; this leads to a maximum likelihood/profile likelihood
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interpretation (see §3.2.1). BETEL and ETBB do the opposite (the initial estimate is the
second argument), which has information geometric justifications (Csiszár, 1975). The
asymmetry of the KL-divergence may be considered unappealing. A possible direction for
future work is to investigate the effectiveness of a symmetric difference measure, such as the
total variation distance or the Hellinger distance, which are also examples of f -divergences
(Csiszár and Shields, 2004).

With the exception of the “design setting” in Chapter 3, we have only considered sampling
mechanisms that are ignorable. In the design setting, we implicitly assumed that the sampling
mechanism is ignorable for the data collector given their possession of additional design
information since they are able to provide weights that adjust for the selection bias. However,
there are settings where neither of these scenarios can reasonably be assumed to be true.
For example, some believe that Republican voters were less likely to respond to 2020 US
presidential election polls and that the pollsters did not collect sufficient information to adjust
for this, leading to systematic underestimation of Donald Trump’s support (Panagopoulos,
2021). If so, the missing data were not missing at random (NMAR). In such cases, the target
quantities are not identifiable without further assumptions specifiying the dependence of
the sampling on the missing observations. Of course, such assumptions are untestable, so
one must proceed with caution. A detailed discussion of NMAR can be found on pages
10-11 of Fitzmaurice et al. (2014). Nevertheless, if one is comfortable with making such
assumptions and is able to fit the selection model with estimating equations, we speculate
that both BETEL and ETBB can be used to perform inference.

To conclude, we hope that the projection-based view of statistical estimation will gain
wider adoption in the Bayesian community. We have demonstrated that this perspective
creates opportunities to apply Bayesian methodology to a wide range of problems that are
considered to be difficult or unattractive to handle in a standard Bayesian set-up. It is also
important that researchers should not feel the need to trade-off flexibility with interpretability.
We can combine the many practical benefits of Bayesian inference with robust, frequentist-
valid measures of uncertainty asymptotically, attaining practical and interpretable “Calibrated
Bayes”.
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Appendix for Chapter 1

A.1 Proof of Theorem 1.1

By Lemma 1.6 of van der Vaart (2002), a parametric submodel tPt,gu with score function
g P 9PP that is differentiable in quadratic mean admits the expansion

log
n
ź

i“1

dP1{
?

n

dP
pDiq “

1
?

n

n
ÿ

i“1

gpDiq ´
1
2

Pg2
` oPp1q,

and therefore converges in distribution under P to N p´1
2Pg2, 1

2Pg2q. By applying the
continuous mapping theorem, dPn

1{
?

n{dPn converges in distribution under P to a log-normal
distribution, which is strictly positive with probability 1. Le Cam’s first lemma (Lemma 6.4
in van der Vaart (1998)) implies that the sequence Pn

1{
?

n is contiguous with respect to Pn.
Now consider

˜ ?
npµ̂ ´ µpPqq

log
śn

i“1
dP1{

?
n

dP pDiq

¸

“

˜

1?
n

řn
i“1 ψpDiq

1?
n

řn
i“1 gpDiq ´ 1

2Pg2

¸

` oPp1q.

By the multivariate central limit theorem and Slutsky’s lemma, the left hand side converges
in distribution under P to

N

˜˜

0
´1

2Pg2

¸

,

˜

Pψ2 Prψgs

Prψgs Pg2

¸¸

.

By Le Cam’s third lemma (Example 6.7 of van der Vaart (1998)),

?
npµ̂ ´ µpPqq

P1{
?

n,g
ù N pPrψgs,Pψ

2
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We deduce that

?
npµ̂ ´ µpP1{

?
n,gqq “

?
npµ̂ ´ µpPqq ´

?
npµpP1{

?
n,gq ´ µpPqq

P1{
?

n,g
ù N p0,Pψ

2
q ` Prψgs ´

BµpPt,gq

Bt
|t“0.

Thus, µ̂ is regular if and only if

Prψgs “
BµpPt,gq

Bt
|t“0.

A.2 Characterizing the mean-zero gradients for known π

Let Q be the joint distribution of Y and X induced by P. In the nonparametric complete data
model, where Y and X are always observed, the unique mean-zero gradient for µ is Y ´ µ .
That Y is a gradient can be seen from

BµpQt,gq

Bt
|t“0 “

B

Bt

ż

ydQt,gpx,yq|t“0 “

ż

ygpx,yqdQpx,yq.

If f is orthogonal to the space, then Prp f ´ P f q2s “ 0, since f ´ P f is contained in the
tangent space, i.e. f is a constant. Thus, Y ´ µ is the unique mean-zero gradient.

Let r ¨ spy | xq ` spxq be a score for the incomplete data model. Then

R ¨ spY | Xq ` spXq “ EQ,π rspY | Xq ` spXq | Ds.

This follows from writing

EQ,π rspY | Xq | Ds “ EQ,π rR ¨ spY | Xq | Ds
looooooooooomooooooooooon

“R¨spY |Xq

`EQ,π rp1 ´ Rq ¨ spY | Xq | Ds
looooooooooooooomooooooooooooooon

“p1´RqEPrspY |Xq|Xs“0

.

We can show that RY {πpXq ´ µ , the influence function of the Horvitz-Thompson estima-
tor, is a gradient. Using iterated expectations,

EP

„ˆ

RY
πpXq

´ µ

˙

tR ¨ spY | Xq ` spXqu

ȷ

“ EP

„ˆ

RY
πpXq

´ µ

˙

EPtspY | Xq ` spXq | Du

ȷ

“ EQ

„

Eπ

"ˆ

RY
πpXq

´ µ

˙

| Y,X
*

rspY | Xq ` spXqs

ȷ

“ EQrpY ´ µqtspY | Xq ` spXqus.
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We claim that any mean-zero gradient for the complete data model can be written in the
form

RY
πpXq

´ µ ` bpDq,

where b is a one-dimensional measurable function satisfying Pb2 ă 8 and Eπ rbpDq | Y,Xs “

0, and conversely, any function of this form is a mean-zero gradient.
We prove the converse first. It suffices to show that such a b is orthogonal to the tangent

space. Keeping the same notation as above,

EPrbpDqtR ¨ spY | Xq ` spXqus “ EPrbpDqEQ,πtspY | Xq ` spXq | Dus

“ EQrEπ rbpDq | Y,XstspY | Xq ` spXqus

“ 0.

Now let ψ be a mean-zero gradient of the incomplete data model. It can be written in the
form

ψpDq “

ˆ

RY
πpXq

´ µ

˙

`

„

ψpDq ´

ˆ

RY
πpXq

´ µ

˙ȷ

. (A.1)

Since

EQrEπ rψpDq | Y,XstspY | Xq ` spXqus “ EPrψpDqtR ¨ spY | Xq ` spXqus,

the conditional expectation Eπ rψpDq | Y,Xs must be a mean-zero gradient of the complete
data model. Thus, it must be equal to Y ´ µ by uniqueness. The same is true for the condi-
tional expectation of RY {πpXq ´ µ , since it is also a mean-zero gradient of the incomplete
data model. Therefore, the term in square brackets in (A.1) qualifies as a function b.

It remains to characterize the set of functions b. We can write

bpDq “ R ¨ b1pY,Xq ` p1 ´ Rq ¨ b2pXq, (A.2)

where b2 cannot depend on Y because Y is unobserved if R “ 0. Thus,

0 “ ErbpDq | Y,Xs “ πpXq ¨ b1pY,Xq ` p1 ´ πpXqq ¨ b2pXq.

By rearranging, we see that

b1pY,Xq “
πpXq ´ 1

πpXq
b2pXq.
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Thus,

bpDq “
πpXq ´ R

πpXq
b2pXq,

ranging over arbitrary b2.

A.3 Calculating the influence function for an estimator with
estimated weights

Let µ̂c be the estimator that solves

Pn

ˆ

RpY ´ cpXqq

πpXq
` cpXq ´ µ

˙

“ 0

and therefore has influence function

ψcpDq “
RpY ´ cpXqq

πpXq
` cpXq ´ µpPq.

With a slight abuse of notation, let

ψcpD;αq “
RpY ´ cpX ;αqq

πpX ;αq
` cpX ;αq ´ µpPq

so that ψcpDq “ ψcpD;α0q. Let µ̂˚
c be the estimator that solves

Pn

ˆ

RpY ´ cpX ; α̂qq

πpX ; α̂q
` cpX ; α̂q ´ µ

˙

“ 0

where α̂ solves
PntSαpR,X ;αqu “ 0.

Since pµ̂˚
c , α̂q jointly solve a set of unbiased estimating equations, the theory of Z-estimation

(van der Vaart, 1998) implies that the influence function of µ̂˚
c is

ψ
˚
c pDq “ ψcpDq ` P

ˆ

Bψc

Bα
pD;αq|α“α0

˙T

i´1
α0

SαpR,X ,α0q,

where iα0 is the Fisher information

iα0 “ PtSαpR,X ,α0qSαpR,X ,α0q
T
u.
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Let Pα be the probability measure derived from replacing πpXq in P with πpX ;αq, keeping
all else fixed. The product rule implies that

B

Bα
PαtψcpD;αqu|α“α0 “ P

ˆ

Bψc

Bα
pD;αq|α“α0

˙

` PtψcpDqSαpR,X ,α0qu.

The first term on the right arises from differentiating ψc while keeping Pα fixed; the second
is the other way round. But PαtψcpD;αqu “ 0 for all α , so the left-hand side is 0. Thus,

ψ
˚
c pDq “ ψcpDq ´ PtψcpDqSαpR,X ,α0qu

Ti´1
α0

SαpR,X ,α0q;

that is, ψ˚
c is equal to ψc minus its orthogonal projection onto the linear space spanned by

the components of SαpR,X ,α0q.

A.4 The unique mean-zero gradient in the nonparametric
model is ψeff

Any one-dimensional score bpDq for the ppr | xq model must satisfy Eπ rbpDq | Y,Xs “ 0 and
Pb2 ă 8. In §A.2, we already showed that such functions are characterized by

bpDq “
R ´ πpXq

πpXq
b2pXq, (A.3)

ranging over arbitrary b2. They are all scores; we can see this by considering the one-
dimensional parametric submodels defined by

πpX ; tq ” πpXq ` tb2pXqr1 ´ πpXqs.

Recall the decomposition (1.12) of ψc. If we take b2 ” m ´ c, then b is exactly equal to term

2⃝. Since 2⃝ is orthogonal to terms 1⃝ and 3⃝, its covariance with ψc is the variance of 2⃝.
This is zero if and only if c ” m. Furthermore, ψeff is indeed orthogonal to any b of the form
(A.3). Hence, ψeff is the unique element of (1.10) that is orthogonal to all scores for π . Since
ψeff is a gradient in the model where π is known, and µ does not depend on π , we deduce
that ψeff is still a gradient in the nonparametric model.
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A.5 Sample splitting

Let ψ̂
p1q

eff be the estimated efficient influence function with m̂ ” m̂p1q and π̂ ” π̂p1q, which are
estimated from Dpn{2q`1, . . . ,Dn. Term 3⃝ in (1.18) for samples D1, . . . ,Dn satisfies

Er
?

npPn{2 ´ Pqrψ̂
p1q

eff ´ ψeffs | Dpn{2q`1, . . . ,Dns “ 0

and

varr
?

npPn{2 ´ Pqrψ̂
p1q

eff ´ ψeffs | Dpn{2q`1, . . . ,Dns “ 2varrψ̂p1q

eff pD1q ´ ψeffpD1q | Dpn{2q`1, . . . ,Dns

ď 2}ψ̂
p1q

eff ´ ψeff}
2.

By Chebyshev’s inequality, we deduce that

?
npPn{2 ´ Pqrψ̂

p1q

eff ´ ψeffs “ OPp}ψ̂
p1q

eff ´ ψeff}q “ oPp1q,

and hence,

?
npµ̂

p1q

DR ´ µpPqq ”
2

?
n

n{2
ÿ

i“1

ψ̂
p1q

eff pDiq “
2

?
n

n{2
ÿ

i“1

ψeffpDiq ` oPp1q.

By swapping the roles of the two halves, we similarly obtain:

?
npµ̂

p2q

DR ´ µpPqq ”
2

?
n

n
ÿ

i“pn{2q`1

ψ̂
p2q

eff pDiq “
2

?
n

n
ÿ

i“pn{2q`1

ψeffpDiq ` oPp1q.

Finally, letting µ̌DR “ pµ̂
p1q

DR ` µ̂
p2q

DRq{2 yields

?
npµ̌DR ´ µpPqq “

?
nPnrψeffs ` oPp1q.
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Appendix for Chapter 2

B.1 Derivation of the marginal posterior of β

We provide a more detailed derivation of expression (2.8). First, (2.6) is proportional to

«

ź

iPS

exppβ
T
1 Zi ` β

T
2Wiq

∆i exp
!

´eβ T
1 Zi`β T

2 WiΛ0pYiq

)

ff

»

–
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jPS̄

ż

exp
!

´eβ T
1 z j`β T

2 W jΛ0pYjq

)

ppz j | Wj,X j,γqdz j

fi

fl ppγ | DS qppβ q,

where we have incorporated the restricted posterior of γ . Then, we integrate with respect to
Λ0 and apply Fubini’s theorem to bring the Λ0 integral inside:

ż

tz j: jPS̄ u

ż

Λ0

«

ź

iPS

exppβ
T
1 Zi ` β

T
2Wiq

∆i exp
!
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1 Zi`β T

2 WiΛ0pYiq

)

ff

»

–

ź

jPS̄

exp
!

´eβ T
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2 W jΛ0pYjq

)

fi

fldΛ0

«

ź

kPS̄

ppzk | Wk,Xk,γqdzk

ff

ppγ | DS qppβ q.

(B.1)

The Λ0 integral on the inside can be rewritten as

ż

Λ0

n
ź

k“1

«

exppβ
T
1 Z̃k ` β

T
2Wkqexp

#

´∆Λ0pYkq

n
ÿ

l“1

RlpTkqeβ T
1 Z̃l`β T

2 Wl

+ff∆k

dΛ0
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where Z̃k equals Zk if k P S and equals zk otherwise. Integrating out each ∆Λ0pYkq yields

n
ź

k“1

"

exppβ T
1 Z̃k ` β T

2Wkq
řn

l“1 RlpTkqexppβ T
1 Z̃l ` β T

2Wlq

*∆k

.

Substituting this back into (B.1) and then integrating with respect to γ yields (2.8).

B.2 Justification of Algorithm 2.2

Let γ “ pγ1, . . . ,γBq. To justify Algorithm 2.2, it is sufficient to check that detailed balance
holds for pU,γq. This amounts to showing that

φpu;0M, IMqppγ | tDi : i P S uqKtpu,γq,pũ, γ̃qu “ φpũ;0M, IMqppγ̃ | tDi : i P S uqKtpũ, γ̃q,pu,γqu

(B.2)
where φp¨; µ,Σq is the density function of N pµ,Σq and Ktpu,γq,pũ, γ̃qu “ φpũ;ρu,p1 ´

ρ2qIMqppγ̃ | tDi : i P S uq. Clearly, the terms involving γ on both sides of (B.2) match.
Furthermore,

φpu;0M, IMqφpũ;ρu,p1 ´ ρ
2
qIMq “ p2πq

´M
p1 ´ ρ

2
q

´M{2 exp
"

1
2

„

uTu `
pũ ´ ρuqTpũ ´ ρuq

1 ´ ρ2

ȷ*

“ p2πq
´M

p1 ´ ρ
2
q

´M{2 exp
"

1
2

„

ũTũ `
pu ´ ρ ũqTpu ´ ρ ũq

1 ´ ρ2

ȷ*

“ φpũ;0M, IMqφpu;ρ ũ,p1 ´ ρ
2
qIMq,

which establishes (B.2).

B.3 Application computation

We set B “ 1. First, consider sampling ξ given pΣ,ZS ,WS ,XS q. Let C “ pV T
S VS q´1.

Since C and Σ are both positive definite, they possess unique positive definite square roots
C1{2 and Σ1{2 respectively. Let Uξ „ MN p013ˆ9, I13ˆ13, I9ˆ9q—or equivalently, let Uξ

be a 13 ˆ 9 matrix where the entries are independent N p0,1q variables—independent of
pΣ,ZS ,WS ,XS q. Then,

ϕξ pUξ ,Σ,ZS ,WS ,XS q “ ξ̂ `C1{2Uξ Σ
1{2

has the conditional distribution (2.12).
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Next, consider sampling Zmis given pWS̄ ,XS̄ ,ξ ,Σq. With UZ „ N p09, I9ˆ9q independent
of pWS̄ ,XS̄ ,ξ ,Σq,

ϕZpUZ,WS̄ ,XS̄ ,ξ ,Σq “ Σ
1{2UZ ` ξ

TVS̄

has conditional distribution equal to (2.11) for the missing values of Z.
The sampling algorithm is described in Algorithm B.1. The correlation parameters ρξ

and ρZ were both set to 0.995. For both the synthetic data experiment and the real application
dataset, we used a normal proposal for β : qp¨ | β q “ N pβ ,Vpropq. Our initial parameter
values β p0q and proposal variances Vprop are provided in the supplementary code.

Algorithm B.1: Correlated sampling algorithm for the application

Select an initial parameter value β p0q.
Draw an initial value pU p0q

ξ
,U p0q

Z ,Σp0qq.

Compute ξ p0q “ ϕξ pU p0q

ξ
,Σp0q,ZS ,WS ,XS q.

Compute Zmis
p0q

“ ϕZpU p0q

Z ,WS̄ ,XS̄ ,ξ p0q,Σp0qq.
For r “ 1 to r “ N

(a) Propose β̃ from qpβ | β pr´1qq.
(b) Propose Σ̃ from (2.13).
(c) Sample εξ „ MN p013ˆ9, I13ˆ13, I9ˆ9q and set Ũξ “ ρξU pr´1q

ξ
`

b

p1 ´ ρ2
ξ

qεξ .

(d) Compute ξ̃ “ ϕξ pŨξ , Σ̃,ZS ,WS ,XS q.

(e) Sample εZ „ N p09, I9ˆ9q and set ŨZ “ ρZU pr´1q

Z `

b

p1 ´ ρ2
ZqεZ .

(f) Compute Z̃mis “ ϕZpŨZ,WS̄ ,XS̄ , ξ̃ , Σ̃q.

(g) With probability min
"

1, qpβ pr´1q|β̃ qppβ̃ qhpβ̃ ,Z̃misq

qpβ̃ |β pr´1qqppβ pr´1qqhpβ pr´1q,Zmis
pr´1q

q

*

,

set pβ prq,U prq

ξ
,U prq

Z q “ pβ̃ ,Ũξ ,ŨZq.

Otherwise, set pβ prq,U prq

ξ
,U prq

Z q “ pβ pr´1q,U pr´1q

ξ
,U pr´1q

Z q.
Output pβ p1q, . . . ,β pNqq.

B.4 Convergence diagnostics

We provide convergence diagnostics for the sampling computation in §2.4.4. Figure B.1
contains the trace plots for the log-hazard ratios of the nine saturated fatty acids for 3 separate
chains, each run for 1000000 iterations.

In §2.4.4, we discarded the first 200000 iterations of the sampler and used the subsequent
800000 iterations for analysis. Using the final 800000 iterations for each of the 3 chains, we
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computed the Gelman-Rubin statistics (Gelman et al., 2013) for the log-hazard ratios of the 9
saturated fatty acids to be: 1.000019, 1.000053, 1.000005, 1.000056, 1.000052, 1.000021,
1.000082, 1.000057, 1.000033 for C15:0, C17:0, C14:0, C16:0, C18:0, C20:0, C22:0, C23:0
and C24:0 respectively.

B.5 Investigating the results for C18:0

In this section, we provide an informal calculation to demonstrate how increasing the relative
concentration of C18:0 could indicate a positive association with type 2 diabetes, even when
one does not exist on the transformed scale.

Suppose that our initial saturated fatty acid proportions are equal to the mean values in
Table 2.4. This implies that the initial proportion of non-saturated fatty acids is 54.01%. If
we increase the proportion of the fatty acid C18:0 by 1 standard deviation—1.32%—while
keeping the other saturated fatty acid proportions fixed, the proportion of non-saturated fatty
acids decreases to 52.69%. As a result, all logratios apart from the one corresponding to
C18:0 increase by logp54.01q ´ logp52.69q “ 0.025 (3 decimal places). Setting the posterior
mean estimates of the hazard ratios in Table 2.4 as the truths, we can compute the change in
risk as follows:

p0.97q
0.025
0.27 ¨ p0.86q

0.025
0.26 ¨ p1.18q

0.025
0.26 ¨ p1.39q

0.025
0.07 ¨ p0.91q

0.025
0.31 ¨ p1.11q

0.025
0.24 ¨ p0.99q

0.025
0.70 ¨ p0.78q

0.025
0.26

“ 1.00 ¨ 0.99 ¨ 1.02 ¨ 1.12 ¨ 0.99 ¨ 1.01 ¨ 1.00 ¨ 0.98

“ 1.10.

We observe in particular that the effect is dominated by the factor of 1.12 from C16:0 due
to its small standard deviation (0.07) on the transformed scale. For reference, Forouhi et al.
(2014) estimated the hazard ratio of C18:0 across 6 different models to be (1.25, 1.06, 1.06,
1.12, 1.12, 1.07).
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Fig. B.1 Trace plots for the log-hazard ratios of the nine saturated fatty acids.





Appendix C

Appendix for Chapter 3

C.1 Implementation pseudo-code

Define

f pλ q “

n
ÿ

i“1

exptλ
Tgiugi

Hpλ q “

n
ÿ

i“1

exptλ
TgiugigT

i .

Further to our description in §2.5, we provide pseudo-code of the likelihood computation
algorithm (Algorithm C.1) to assist users in implementing the method.

C.2 Notation

To reduce the amount of notational clutter in the proofs, we introduce the notation (i)
lnpθ q “ logLnpθ q and (ii) gipθ q “ gpdi,θ q.

C.3 Proofs

Proof of Proposition 3.1. The optimization problem

max
p1,...,pn

n
ÿ

i“1

t´pi log piu
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Algorithm C.1: Computing the exponentially tilted empirical likelihood
Input θ and tolerance τ0 ą 0.
Solve linear programming problem described by (3.9).
If no feasible solutions exist

output 0
else

λ Ð p0, . . . ,0q

τ Ð τ0 ` 1
while τ ą τ0

s Ð Hpλ q´1 f pλ q

r Ð 0
λ 1 Ð λ ´ s
while f pλ q ą f pλ 1q

r Ð r ` 1
λ 1 Ð λ ´ 2´rs

τ Ð ∥λ 1 ´ λ∥
λ Ð λ 1

for i “ 1 to i “ n
pi Ð exppλ Tgiq{

řn
j“1 exppλ Tg jq

L Ð
śn

i“1 npi
Output L.

subject to
n
ÿ

i“1

pi “ 1

is solved uniquely by pi “ 1{n for each i “ 1, . . . ,n (using the method of Lagrange multipliers
for example). If the additional constraint

n
ÿ

i“1

pigpdi, θ̂nq “ 0

is imposed, it follows that pi “ 1{n for each i “ 1, . . . ,n is still the unique solution since it
satisfies the constraint. By the AM-GM inequality,

Lnpθ q “

n
ź

i“1

npipθ q ď 1

with equality if and only if each pipθ q is equal to 1{n, attained at θ “ θ̂n.
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Proof of Theorem 3.1. From the proof of Proposition 3.1, Lnpθ̂nq “ 1. Furthermore, by
consistency of θ̂n, θ0 will lie in the ball tθ : ∥θ ´ θ̂n∥ ď δ{2u with probability approaching
one. Hence,

sup
∥θ´θ̂n∥2ěδ

Lnpθ q

Lnpθ̂nq
ď sup

∥θ´θ0∥ěδ{2
sup

pPΦpθq

n
ź

i“1

npi (C.1)

occurs with probability approaching 1, where Φpθ q “ tp :
řn

i“1 pi “ 1,
řn

i“1 pigipθ q “

0, pi ě 0, i “ 1, . . . ,nu Y t0u, and it is therefore sufficient to establish the upper-bound for the
right-hand side.

By a similar argument to the proof of Lemma C.1, EP0tgpD,θ qu is continuous in θ and
we have assumed that it has a unique zero at θ0. By the compactness of Θ, there exists some
ε ą 0 such that

inf
∥θ´θ0∥ěδ{2

∥EP0tgpD,θ qu∥1 ą ε.

By Assumption 3.1(iv), n´1řn
i“1 gipθ q and n´1řn

i“1∥gipθ q∥2
2 converge uniformly in proba-

bility to EP0tgpD,θ qu and EP0t∥gpD,θ q∥2
2u respectively. Therefore,

sup
θPΘ

∥∥∥∥∥1
n

n
ÿ

i“1

gipθ q ´EP0tgpD,θ qu

∥∥∥∥∥
1

ă ε{2, sup
θPΘ

1
n

n
ÿ

i“1

∥gipθ q∥2
2 ă 2EP0

"

sup
θPΘ

∥gpD,θ q∥2
2

*

occur with probability approaching 1. On this event,

inf
∥θ´θ0∥ěδ{2

∥∥∥∥∥1
n

n
ÿ

i“1

gipθ q

∥∥∥∥∥
2

1

“ inf
∥θ´θ0∥ěδ{2

inf
pPΦpθq

∥∥∥∥∥1
n

n
ÿ

i“1

gipθ q ´

n
ÿ

i“1

pigipθ q

∥∥∥∥∥
2

1

ą
ε2

4
.

By the Cauchy-Schwarz inequality, the left hand side is bounded above by

inf
∥θ´θ0∥ěδ{2

inf
pPΦpθq

#

1
n

n
ÿ

i“1

pnpi ´ 1q
2

+#

1
n

n
ÿ

i“1

∥gipθ q∥2
2

+

.

Hence, there exists a strictly positive constant ε̃ such that

inf
∥θ´θ0∥ěδ{2

inf
pPΦpθq

#

1
n

n
ÿ

i“1

pnpi ´ 1q
2

+

ě ε̃.

Consider the optimization problem of maximizing
śn

i“1 npi subject to

n
ÿ

i“1

pi “ 1,
n
ÿ

i“1

pnpi ´ 1q
2

ě nε̃, pi ě 0 for each i “ 1, . . . ,n.
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For an element p “ pp1, . . . , pnq in the constraint set, if pi, p j both exceed n´1 for some
i, j and are unequal, replacing both with ppi ` p jq{2 would strictly increase the objective
while remaining in the constraint set. We deduce that for any solution to the the optimization
problem, all values of pi exceeding n´1 must be equal. At least one value exceeds n´1 due
to the inequality constraint. A similar argument applies for values below n´1.

For fixed m P t1, . . . ,n ´ 1u, we consider maximizing the objective when m values of pi

are equal to p` ą n´1, and the remaining n´m values are equal to p´ ă n´1. We can further
write np` “ 1 ` a, np´ “ 1 ´ b, where 0 ď a ď n ´ 1, 0 ď b ď 1. By taking the logarithm of
the objective, we seek to maximize m logp1 ` aq ` pn ´ mq logp1 ´ bq subject to

am “ pn ´ mqb, ma2
` pn ´ mqb2

ě nε̃.

For pnε̃q{tpn ´ 1q2 ` ε̃u ă m ă n{p1 ` ε̃q, the constraint set is non-empty and the solution is

a “

"

ε̃pn ´ mq

m

*1{2

, b “

„

ε̃m
n ´ m

ȷ1{2

.

We consider sufficiently large n such that m “ 1 lies in the permissible range. We claim that
for fixed n, m “ 1 is the value which maximizes the objective, which can now be written as

«

1 `

"

ε̃pn ´ mq

m

*1{2
ffm#

1 ´

ˆ

ε̃m
n ´ m

˙1{2
+n´m

.

Letting x “ tpn ´ mq{mu1{2, which is strictly decreasing in m, and taking the logarithm of
the objective, it is sufficient to show that the function

n
1 ` x2 logp1 ` xε̃

1{2
q `

nx2

1 ` x2 log

˜

1 ´
ε̃1{2

x

¸

is increasing in x. By differentiating with respect to x and simplifying, it is sufficient to show
that

2x

#

logp1 ` xε̃
1{2

q ´ log

˜

1 ´
ε̃1{2

x

¸+

´ p1 ` x2
q

˜

ε̃1{2

1 ` xε̃1{2 `
ε̃1{2

1 ´ ε̃1{2{x

¸

ă 0. (C.2)
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The first term is equal to

2x log

˜

1 ` xε̃1{2

1 ´ ε̃1{2{x

¸

“ 2x log

#

1 `
ε̃1{2px2 ` 1q

xp1 ´ ε̃1{2{xq

+

ď
2ε̃1{2px2 ` 1q

1 ´ ε̃1{2{x

˜

1 ` xε̃1{2

1 ´ ε̃1{2{x

¸´1{2

“
2ε̃1{2px2 ` 1q

tp1 ´ ε̃1{2{xqp1 ` xε̃1{2qu1{2

where we have used the inequality logp1 ` zq ď zpz ` 1q´1{2. Therefore, the left-hand side of
(C.2) is upper-bounded by

ε̃1{2px2 ` 1q

tp1 ´ ε̃1{2{xqp1 ` xε̃1{2qu1{2

$

&

%

2 ´

˜

1 ´ ε̃1{2{x
1 ` xε̃1{2

¸1{2

´

˜

1 ` xε̃1{2

1 ´ ε̃1{2{x

¸1{2
,

.

-

. (C.3)

For positive z, z ` z´1 is lower-bounded by 2, with equality if and only if z “ 1. But ε̃ is
strictly greater than 0, so

˜

1 ´ ε̃1{2{x
1 ` xε̃1{2

¸1{2

cannot equal 1. Therefore, (C.3) is strictly less than 0, as required.
Returning to (C.1), we conclude that

sup
∥θ´θ0∥ěδ{2

sup
pPΦpθq

n
ź

i“1

npi ď r1 ` tε̃pn ´ 1qu
1{2

s

#

1 ´

ˆ

ε̃

n ´ 1

˙1{2
+n´1

“ r1 ` tε̃pn ´ 1qu
1{2

sexp

«

pn ´ 1q log

#

1 ´

ˆ

ε̃

n ´ 1

˙1{2
+ff

ď r1 ` tε̃pn ´ 1qu
1{2

sexpt´ε̃pn ´ 1q
1{2

u.

For 0 ă ε˚ ă ε̃ , and sufficiently large n, we have a further upper-bound of expt´ε˚pn ´ 1q
1{2

u.

Proof of Proposition 3.2. We work in a neighbourhood of p0,θ0q in Rm ˆ Θ in which As-
sumptions 3.3 and 3.4 hold. The function

EP0rexptλ
TgpD,θ qugpD,θ qs
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is 0 at p0,θ0q and the domination condition of Assumption 3.4 allows us to differentiate under
the integral sign twice and deduce that the function is twice continuously differentiable. By
the implicit function theorem, there exist a neighbourhood U Ă Θ of θ0 and a neighbourhood
of W Ă Rm of 0 such that there exists a unique twice continuously differentiable function
λ0 : U Ñ W satisfying

λ0pθ0q “ 0, EP0rexptλ0pθ q
TgpD,θ qugpD,θ qs “ 0

for all θ P U . The second part of Theorem 3.1 in Csiszár (1975) implies that λ0 is in fact
the unique mapping into Rm which satisfies the above properties. The implicit function
theorem also implies that the second derivative B2λ0 of λ0 can be expressed as the sum and
products of expectations of expressions involving λ0, Bλ0, g, Bθ g, which are all continuously
differentiable in θ , and B2

θ
g, which satisfies the Lipschitz condition from Assumption 3.3,

defined on a bounded set. Therefore, B2λ0 is Lipschitz continuous.

Lemma C.1. The function

EP0tgpD,θ qgpD,θ q
T
u

is continuous in θ .

Proof of Lemma C.1. For a fixed value θ ˚ P Θ, consider a sequence θn Ñ θ ˚. Define

fnpdq “ gpd,θnqgpd,θnq
T, f pdq “ gpd,θ ˚

qgpd,θ ˚
q

T

such that fn converges pointwise to f P0-almost everywhere and

∥ fnpdq∥F ď sup
θPΘ

∥∥gpd,θ qgpd,θ q
T
∥∥

F

for all n and for all values of d, where F refers to the Frobenius norm. The upper-bound is
integrable, since

EP0

"

sup
θPΘ

∥∥gpd,θ qgpd,θ q
T
∥∥

F

*

“ EP0

"

sup
θPΘ

∥gpd,θ q∥2
*

ă 8

by Assumption 3.1(iv). Therefore, we can apply the dominated convergence theorem to
deduce that

lim
nÑ8

EP0 tgpd,θnqgpd,θnq
T
u “ EP0 tgpd,θ ˚

qgpd,θ ˚
q

T
u ,

which establishes continuity.
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Lemma C.2. Under Assumptions 3.1–3.4, there exists a value of δ ą 0 such that the δ -ball

around θ̂n satisfies the following properties with probability approaching 1:

(i) contained in a neighbourhood of θ0 satisfying the conditions of Assumptions 3.2 and

3.3 and Proposition 3.2.

(ii) the set of vectors tg1pθ q, . . . ,gnpθ qu span Rm for all values of θ .

(iii) the function λ̂npθ q from Assumption 3.2 is the unique function mapping into Rm which

satisfies
n
ÿ

i“1

exptλ̂npθ q
Tgipθ qugipθ q “ 0.

(iv) λ̂n is twice continuously differentiable and

Bλ̂npθ q “ ´

#

n
ÿ

i“1

pipθ qgipθ qgipθ q
T

+´1
»

–

n
ÿ

j“1

p jpθ qtI ` g jpθ qλ̂npθ q
T
uBθ g j

fi

fl . (C.4)

(v) ln is twice differentiable with Blnpθ̂nq “ 0 and n´1B2lnpθ̂nq “ ´Σ̂`
n “ ´ĜT

nΩ̂´1
n Ĝn.

Proof of Lemma C.2. Consider a ball around θ0 satisfying the conditions of Assumptions 3.2
and 3.3 and Proposition 3.2. By the consistency of θ̂n, with probability approaching one, θ̂n

is within half the radius from θ0. Thus, we can take the ball around θ̂n of half the radius.
Assumption 3.1(iii) and Lemma C.1 imply that there exists a neighbourhood of θ0 where

the determinant of EP0tgpD,θ qgpD,θ qTu is bounded away from 0. By the uniform law of
large numbers implied by Assumption 3.1(iv), n´1řn

i“1 gipθ qgipθ qT is positive definite for
all θ in this neighbourhood with probability approaching 1. This is equivalent to the set
tg1pθ q, . . . ,gnpθ qu spanning Rm. If necessary, we shrink the ball around θ̂n to be contained
in here.

The function fnpλ ,θ q “
řn

i“1 exptλ Tgipθ qugipθ q is differentiable with respect to λ with
partial derivative

Bλ fnpλ ,θ q “

n
ÿ

i“1

exptλ
Tgipθ qugipθ qgipθ q

T

which is positive definite by the previous property. Thus, for fixed θ , fnpλ ,θ q is an injective
mapping of λ and λ̂npθ q the unique value which maps to 0.

By the uniqueness of λ̂n and the application of the implicit function theorem to fn at
each value of pλ̂npθ q,θ q, λ̂n is equal to the implicit function and is thus twice continuously
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differentiable. The first derivative is

Bλ̂npθ q “ ´

#

n
ÿ

i“1

exp λ̂npθ q
Tgipθ qgipθ qgipθ q

T

+´1
»

–

n
ÿ

j“1

exp λ̂npθ q
Tg jpθ qtIm ` g jpθ qλ̂npθ q

T
uBθ g j

fi

fl

“ ´

#

n
ÿ

i“1

pipθ qgipθ qgipθ q
T

+´1
»

–

n
ÿ

j“1

p jpθ qtIm ` g jpθ qλ̂npθ q
T
uBθ g j

fi

fl .

We can express the log exponentially tilted empirical likelihood as

lnpθ q “ log
n
ź

i“1

exptλ̂npθ qTgipθ qu
řn

j“1 exptλ̂npθ qTg jpθ qu

“

n
ÿ

i“1

tλ̂npθ q
Tgipθ qu ´ n log

n
ÿ

j“1

exptλ̂npθ q
Tg jpθ qu

and we differentiate with respect to θ to obtain

Blnpθ q “

n
ÿ

i“1

Bpλ̂
T
n giq ´ n

n
ÿ

i“1

Bpλ̂ T
n giqexptλ̂npθ qTgipθ qu

řn
j“1 exptλ̂npθ qTg jpθ qu

“

n
ÿ

i“1

Bpλ̂
T
n giqt1 ´ npipθ qu.

But pipθ̂nq “ 1{n for each i “ 1, . . . ,n, so

Blnpθ̂nq “ 0.

The second derivative of ln is

B
2lnpθ q “

n
ÿ

i“1

B
2
pλ̂

T
n giqpθ qt1 ´ npipθ qu ´ n

n
ÿ

i“1

tBpλ̂
T
n giq

T
Bppiqupθ q.

Since pipθ̂nq “ 1{n for each i “ 1, . . . ,n, the first sum is zero at θ “ θ̂n. Furthermore,

Bpλ̂
T
n giqpθ̂nq “

´

gT
i Bλ̂n ` λ̂

T
n Bθ gi

¯

pθ̂nq

“ pgT
i Bλ̂nqpθ̂nq
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since λ̂npθ̂nq “ 0 by part (ii) and

Bpipθ̂nq “

$

&

%

piBpλ̂
T
n giq ´ pi

n
ÿ

j“1

p jBpλ̂
T
n g jq

,

.

-

pθ̂nq

“ n´1
pgT

i Bλ̂nqpθ̂nq ´ n´2

$

&

%

n
ÿ

j“1

g jpθ̂nq

,

.

-

T

Bλ̂npθ̂nq

where the second term is zero since θ̂n is the Z-estimator. We deduce from part (iii) that

Bλ̂npθ̂nq “ ´

#

n´1
n
ÿ

i“1

gipθ̂nqgipθ̂nq
T

+´1
$

&

%

n´1
n
ÿ

j“1

Bθ g jpθ̂nq

,

.

-

“ ´Ω̂
´1
n Ĝn.

Putting everything together,

n´1
B

2lnpθ̂nq “ ´ĜT
nΩ̂

´1
n

#

n´1
n
ÿ

i“1

gipθ̂nqgipθ̂nq
T

+

Ω̂
´1
n ĜT

n

“ ´ĜT
nΩ̂

´1
n Ĝn,

as required.

Proof of Theorem 3.2. This proof is based on the proof of Theorem 1.4.2 in Ghosh and
Ramamoorthi (2003).

We make a change of variables s “ n1{2pθ ´ θ̂nq

ż

Rm

ˇ

ˇ

ˇ
p˚

ps | D1, . . . ,Dnq ´ p2πq
´m{2

|Σ0|
´1{2 expp´0.5sT

Σ
´1
0 sq

ˇ

ˇ

ˇ
ds

where

p˚
ps | D1, . . . ,Dnq “

ppθ̂n ` s{n1{2qLnpθ̂n ` s{n1{2q
ş

ppθ̂n ` t{n1{2qLnpθ̂n ` t{n1{2qdt

“
ppθ̂n ` s{n1{2qexptlnpθ̂n ` s{n1{2q ´ lnpθ̂nqu

ş

ppθ̂n ` t{n1{2qexptlnpθ̂n ` t{n1{2q ´ lnpθ̂nqudt
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and is extended to all of Rm by taking the value zero outside of its original domain. Writing
Cn “

ş

Rm ppθ̂n ` t{n1{2qexptlnpθ̂n ` t{n1{2q ´ lnpθ̂nqudt, we are required to show that

C´1
n

ż

Rm

ˇ

ˇ

ˇ
ppθ̂n ` s{n1{2

qexptlnpθ̂n ` s{n1{2
q ´ lnpθ̂nqu ´Cnp2πq

´m{2
|Σ0|

´1{2 expp´sT
Σ

´1
0 s{2q

ˇ

ˇ

ˇ
ds

(C.5)
tends in probability to 0. It is sufficient to show that

I1 “

ż

Rm

ˇ

ˇ

ˇ
ppθ̂n ` s{n1{2

qexptlnpθ̂n ` s{n1{2
q ´ lnpθ̂nqu ´ ppθ0qexpp´sT

Σ
´1
0 s{2q

ˇ

ˇ

ˇ
ds Ñ 0

with convergence in probability, since it implies that Cn converges to ppθ0qp2πqm{2|Σ0|1{2 in
probability and the integral in (C.5) is bounded above by I1 `I2, where

I2 “

ż

Rm

ˇ

ˇ

ˇ
ppθ0qexpp´sT

Σ
´1
0 s{2q ´Cnp2πq

´m{2
|Σ0|

´1{2 expp´sT
Σ

´1
0 s{2q

ˇ

ˇ

ˇ
ds

“

ˇ

ˇ

ˇ
ppθ0q ´Cnp2πq

´m{2
|Σ0|

´1{2
ˇ

ˇ

ˇ

ż

Rm
expp´sT

Σ
´1
0 s{2qds

which also converges to 0 in probability.
Let δ ą 0 be small enough to satisfy the conditions of Lemma C.2. Let c ą 0. We separate

I1 into the three regions A1 “ ts : ∥s∥2 ă c logn1{2u, A2 “ ts : c logn1{2 ă ∥s∥2 ă δn1{2u,
A3 “ ts : ∥s∥2 ą δn1{2u.

We begin with A3.

ż

A3

ˇ

ˇ

ˇ
ppθ̂n ` s{n1{2

qexptlnpθ̂n ` s{n1{2
q ´ lnpθ̂nqu ´ ppθ0qexpp´sT

Σ
´1
0 s{2q

ˇ

ˇ

ˇ
ds

ď

ż

A3

ppθ̂n ` s{n1{2
q
Lnpθ̂n ` s{n1{2q

Lnpθ̂nq
ds `

ż

A3

ppθ0qexpp´sT
Σ

´1
0 s{2qds.

The first integral goes to zero by Theorem 3.1. The second goes to zero by the tail properties
of the multivariate normal distribution.

By Taylor’s theorem,

lnpθ̂n ` s{n1{2
q ´ lnpθ̂nq “

1
2n

B
2lnpθ̂nqps,sq `

1
2n

tB
2lnpθsqps,sq ´ B

2lnpθ̂nqps,squ

“ ´
1
2

sT
Σ̂

`
n s ` Rnpsq

where θs “ θ̂n ` pηsq{n1{2 for some η P r0,1s, with the first order term vanishing due to
Lemma C.2. By the domination conditions of Assumption 3.4 and the uniqueness of λ0 from
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Proposition 3.2, all of

sup
θPBδ pθ̂nq

∥∥∥λ̂npθ q ´ λ0pθ q

∥∥∥ , sup
θPBδ pθ̂nq

∥∥∥Bλ̂npθ q ´ Bλ0pθ q

∥∥∥ , sup
θPBδ pθ̂nq

∥∥∥B
2
λ̂npθ q ´ B

2
λ0pθ q

∥∥∥
converge to 0 in probability. For the following, let hipθ q “ λ0pθ qTgipθ q and hpD,θ q “

λ0pθ qTgpD,θ q and we suppress dependence on θ for presentational clarity

1
n

B
2ln “

1
n

n
ÿ

i“1

ˆ

B
2hi

„

1 ´
expphiq

EP0texphpDqu

ȷ

´
expphiqBhT

i
EP0texphpDqu

„

Bhi ´
EP0texphpDqBhpDqu

EP0texphpDqu

ȷ˙

` oP0p1q.

From Assumption 3.3 and Proposition 3.2, we know that for each i, B2hi satisfies a Lipschitz
condition, and all other terms are continuously differentiable in θ , thus

sup
sPA1YA2

n´1
∥∥B2lnpθsq ´ B2lnpθ̂nq

∥∥
op

∥θs ´ θ̂n∥2
ď OP0p1q.

Now consider
ż

A1

ˇ

ˇ

ˇ

ˇ

ppθ̂n ` s{n1{2
qexptlnpθ̂n ` s{n1{2

q ´ lnpθ̂nqu ´ ppθ0qexp
ˆ

´
1
2

sT
Σ

´1
0 s

˙
ˇ

ˇ

ˇ

ˇ

ds ď J1 ` J2

where

J1 “

ż

A1

ppθ̂n ` s{n1{2
q

ˇ

ˇ

ˇ

ˇ

exp
ˆ

´
1
2

sT
Σ̂

`
n s ` Rnpsq

˙

´ exp
ˆ

´
1
2

sT
Σ

´1
0 s

˙
ˇ

ˇ

ˇ

ˇ

ds

J2 “

ż

A1

ˇ

ˇ

ˇ
ppθ̂n ` s{n1{2

q ´ ppθ0q

ˇ

ˇ

ˇ
exp

ˆ

´
1
2

sT
Σ

´1
0 s

˙

ds.

By consistency of θ̂n and continuity of ppθ q at θ0, J2 converges to 0 in probability. Further-
more,

sup
sPA1

Rnpsq ď sup
sPA1

∥s∥2
2∥θs ´ θ̂n∥2 OP0p1q ď c3 plogn1{2q3

n1{2 OP0p1q “ oP0p1q

and Σ̂`
n converges to Σ

´1
0 in probability by Assumption 3.1. Therefore, J1 converges in

probability to zero.



162 Appendix for Chapter 3

Next consider
ż

A2

ˇ

ˇ

ˇ

ˇ

ppθ̂n ` s{n1{2
qexptlnpθ̂n ` s{n1{2

q ´ lnpθ̂nqu ´ ppθ0qexp
ˆ

´
1
2

sT
Σ

´1
0 s

˙ˇ

ˇ

ˇ

ˇ

ds

ď

ż

A2

ppθ̂n ` s{n1{2
qexp

"

´
1
2

sT
Σ̂

`
n s ` Rnpsq

*

ds `

ż

A2

ppθ0qexp
ˆ

´
1
2

sT
Σ

´1
0 s

˙

ds.

The second integral is bounded above by ppθ0qexpt´ζ pc logn1{2q2{2uvolpA2q where ζ ą 0
is the smallest eigenvalue of Σ

´1
0 . For n1{2 ą e, plogn1{2q2 ą logn1{2, so we can further

upper-bound the second integral by

K ppθ0q
nm{2

nζ c2{4

where K ą 0 is a constant. For sufficiently large c, this tends to 0 as n tends to infinity.
For the first integral, since ∥θs ´ θ̂n∥2 ă δ for all s P A2, we have

sup
sPA2

|Rnpsq|

∥s∥2
2

ď δ OP0p1q.

Therefore, for any ε ą 0, we can choose sufficiently small δ to ensure that

pr
"

|Rnpsq| ă
1
4

sT
Σ̂

`
n s for all s P A2

*

ą 1 ´ ε

for all sufficiently large n. Hence, with probability greater than 1 ´ ε ,

ż

A2

ppθ̂n ` s{n1{2
qexp

"

´
1
2

sT
Σ̂

`
n s ` Rnpsq

*

ds

ď sup
sPA2

ppθ̂n ` s{n1{2
q

ż

A2

exp
ˆ

´
1
4

sT
Σ̂

`
n s
˙

ds

which converges to zero in probability.

Proof of Theorem 3.3. Using the same notation as the proof of Theorem 3.2, we claim that

ż

Rm
∥stp˚

ps | D1, . . . ,Dnq ´ p2πq
´m{2

|Σ0|
´1{2 expp´0.5sT

Σ
´1
0 squ∥2 ds Ñ 0
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with convergence in probability. This is similar to what was proved in Theorem 3.2, but there
is now an additional factor of ∥s∥2 in the integrand. The claim implies that∥∥∥∥ż

Rm
stp˚

ps | D1, . . . ,Dnq ´ p2πq
´m{2

|Σ0|
´1{2 expp´0.5sT

Σ
´1
0 squds

∥∥∥∥
2

Ñ 0

with convergence in probability, but the second term within the norm is equal to the mean of
a mean zero multivariate normal distribution. Thus,

n1{2
pθ

˚
n ´ θ̂nq “

ż

Rm
s p˚

ps | d1, . . . ,dnqds Ñ 0

with convergence in probability. The second assertion follows from this along with the
asymptotic normality of θ̂n stated in §2.1.

It remains to prove the initial claim. Since
ş

Rm∥s∥2 expp´0.5sTΣ
´1
0 sqds ă 8, we can

argue similarly to the proof of Theorem 3.2 that it is sufficient to show

ż

Rm
∥stppθ̂n ` s{n1{2

qexptlnpθ̂n ` s{n1{2
q ´ lnpθ̂nqu ´ ppθ0qexpp´sT

Σ
´1
0 s{2qu∥2 ds Ñ 0

with convergence in probability. As before, we decompose the integral into the three regions
A1, A2 and A3. For A3,

ż

A3

∥stppθ̂n ` s{n1{2
qexptlnpθ̂n ` s{n1{2

q ´ lnpθ̂nqu ´ ppθ0qexpp´sT
Σ

´1
0 s{2qu∥2 ds

ď

ż

A3

∥s∥2 ppθ̂n ` s{n1{2
q
Lnpθ̂n ` s{n1{2q

Lnpθ̂nq
ds `

ż

A3

∥s∥2 ppθ0qexpp´sT
Σ

´1
0 s{2qds.

Changing variables back to θ , the first integral on the right hand side is equal to

ż

∥θ´θ̂n∥2ąδ

npm`1q{2∥θ ´ θ̂n∥2 ppθ q
Lnpθ q

Lnpθ̂nq
dθ .

But
ż

∥θ´θ̂n∥2ąδ

∥θ ´ θ̂n∥2 ppθ qdθ ď

ż

∥θ´θ̂n∥2ąδ

p∥θ∥2 `∥θ̂n∥2q ppθ qdθ ,

and the right hand side is stochastically bounded by the finite moment assumption. Thus, by
applying Theorem 3.1, the first integral tends to zero in probability. The second integral also
tends to zero in probability by the tail properties of the multivariate normal distribution.
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Furthermore,
ż

A1

∥s∥2 expp´sT
Σ

´1
0 s{2qds “ OP0p1q and

ż

A2

∥s∥2 expp´sT
Σ

´1
0 s{4qds Ñ 0

with convergence in probability, from which we can deduce that the integrals for A1 and A2

will also converge to 0 in probability using the same arguments as the proof of Theorem 3.2.

Proof of Theorem 3.4. Theorem 3.2 implies L1 convergence of the full posterior as n Ñ 8

ż

Θ

ˇ

ˇ

ˇ
ppθ | D1, . . . ,Dnq ´ p

θ̂n,n´1Σ0
pθ q

ˇ

ˇ

ˇ
dθ Ñ 0

with convergence in probability, where Θ Ă Rm is the parameter space of θ , p
θ̂ ,n´1Σ0

is the
density of N pθ̂n,n´1Σ0q, θ̂n “ pα̂n, β̂n, ρ̂n, γ̂nq and Σ0 “ limnÑ8 varP0pn1{2θ̂nq. It remains
to show the corresponding result for the marginal posterior. Let m1 “ dimpαq ` dimpβ q `

dimpρq, so that pα,β ,ρq P Rm1 , and let m2 “ dimpγq, so m1 ` m2 “ m. The posterior density
ppθ | d1, . . . ,dnq is assigned the value 0 outside of Θ.

ż

Γ

ˇ

ˇ

ˇ
ppγ | D1, . . . ,Dnq ´ pγ̂n,n´1V0

pγq

ˇ

ˇ

ˇ
dγ “

ż

Γ

ˇ

ˇ

ˇ

ż

Rm1
ppθ | D1, . . . ,Dnq ´ p

θ̂n,n´1Σ0
pθ qdα dβ dρ

ˇ

ˇ

ˇ
dγ

ď

ż

Γ

ż

Rm1

ˇ

ˇ

ˇ
ppθ | D1, . . . ,Dnq ´ p

θ̂n,n´1Σ0
pθ q

ˇ

ˇ

ˇ
dα dβ dρ dγ

ď

ż

Rm2

ż

Rm1

ˇ

ˇ

ˇ
ppθ | D1, . . . ,Dnq ´ p

θ̂n,n´1Σ0
pθ q

ˇ

ˇ

ˇ
dα dβ dρ dγ

“

ż

Θ

ˇ

ˇ

ˇ
ppθ | D1, . . . ,Dnq ´ p

θ̂n,n´1Σ0
pθ q

ˇ

ˇ

ˇ
dθ

`

ż

RmzΘ

p
θ̂n,n´1Σ0

pθ qdθ .

The first term tends in probability to 0 by Theorem 3.2. This implies that

ż

Θ

p
θ̂n,n´1Σ0

pθ qdθ Ñ 1

with convergence in probability, so the second term also tends in probability to 0.



Appendix D

Appendix for Chapter 4

D.1 Posterior density of θ for the Bayesian bootstrap

For the mean estimation example in Section 4.2, we derive the posterior density of θ for
the Bayesian bootstrap. We can write θ “ ´q1 ` x2q2 ` q3 where the probability weights
q1,q2,q3 are distributed according to the uniform Dirichlet distribution. Since the weights
sum to 1, we can alternatively write θ “ 1 ´ 2q1 ` px2 ´ 1qq2 by removing q3. The joint
distribution of pq1,q2q is given by the uniform density

pBBpq1,q2q “ 21t0 ď q1,0 ď q2,q1 ` q2 ď 1u. (D.1)

One way to derive this is to note that the marginal distribution of q1 is Betap1,2q, which
has density 2p1 ´ q1q1t0 ď q1 ď 1u, and the conditional distribution of q2 given q1 is
Ur0,1 ´ q1s, which has density p1 ´ q1q´1

1t0 ď q2 ď 1 ´ q1u.
Let φ “ q1. We perform a change-of-variables from pq1,q2q to pθ ,φq. The Jacobian

factor satisfies

|J|
´1

“

∣∣∣∣∣1 ´2
0 x2 ´ 1

∣∣∣∣∣ “ |x2 ´ 1| “ 1 ´ x2.

Thus, the joint density of pθ ,φq is

pBBpθ ,φq “
2

1 ´ x2
1

"

0 ď φ ,0 ď
1 ´ θ ´ 2φ

1 ´ x2
,
1 ´ θ ´ φ ´ x2φ

1 ´ x2
ď 1

*

(D.2)
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by substitution of pθ ,φq into D.1. Let us rearrange the three inequalities inside the indicator
function in terms of φ :

φ ě 0

φ ď
1 ´ θ

2

φ ě
x2 ´ θ

1 ` x2
.

If x2 ď θ , the third inequality is redundant; if x2 ě θ , the first inequality is redundant.
To derive the marginal density of θ , we integrate φ out of D.2. For x2 ď θ , we integrate

between 0 and p1 ´ θ q{2 to get

pBBpθ q “
1 ´ θ

1 ´ x2
1tx2 ď θ ď 1u.

For x2 ě θ , we integrate between px2 ´ θ q{p1 ` x2q and p1 ´ θ q{2 to get

pBBpθ q “
2

1 ´ x2

"

1 ´ θ

2
´

x2 ´ θ

1 ` x2

*

1t´1 ď θ ď x2u

“
1 ` θ

1 ` x2
1t´1 ď θ ď x2u.

D.2 Computation for Kitamura & Otsu

In this section, we develop a blocked Gibbs sampler for the Kitamura and Otsu proposal
using the truncated stick-breaking set-up introduced in §4.4.

D.2.1 Updating θ

The conditional posterior density of θ given everything else is proportional to

πpθ q

n
ź

i“1

PtiltpD “ Di | θ , p1, . . . , pK,A1, . . . ,AKq.

Similar to our discussion in §4.3.3, there is considerable flexibility in selecting a proposal for
θ , including simple options like random walk Metropolis-Hastings.
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D.2.2 Updating tI1, . . . , IKu

In terms of mixing, this is the most challenging block of parameters to update due to the size
of the set of permutations on t1, . . . ,Ku. We propose sampling J uniformly on t1, . . . ,Ku

and proposing tI1
1, . . . , I

1
Ku, where I1

J “ IJ`1, I1
J`1 “ IJ , and I1

k “ Ik otherwise. In other words,
we swap IJ with IJ`1. The conditional posterior density is proportional to the likelihood
function.

D.2.3 Updating tB1, . . . ,BKu

As stated above, we have fixed Bi “ Di for i “ 1, . . . ,n. Hence, we only need to update
Bn`1, . . . ,BK . The conditional posterior density is proportional to

#

K
ź

k“n`1

g0pBkq

+#

n
ź

i“1

PtiltpD “ Di | θ , p1, . . . , pK,A1, . . . ,AKq

+

(D.3)

where g0 is the probability density/mass function of G0. We suggest proposing B1
n`1, . . . ,B

1
K

directly from G0—an independence sampler. In the Metropolis-Hastings step, the product on
the left of (D.3) will drop out of the acceptance ratio.

D.2.4 Updating tV1, . . . ,VK´1u

The conditional posterior density of tV1, . . . ,VK´1u is proportional to

#

K´1
ź

k“1

p1 ´Vkq
α´1

+#

n
ź

i“1

PtiltpD “ Di | θ , p1, . . . , pK,A1, . . . ,AKq

+

.

We suggest using pre-conditioned Crank-Nicolson proposals. Let Φ be the cumulative
distribution function of the standard normal distribution, and let ρ P r0,1q. For each k “

1, . . . ,K ´ 1, we propose

V 1
k “ ΦpρΦ

´1
pVkq `

b

1 ´ ρ2εkq

where ε1, . . . ,εK´1 „i.i.d. N p0,1q.



168 Appendix for Chapter 4

D.3 Proofs

Proof of Proposition 4.1: We will use the shorthand qi “ qip0, q̃q for i “ 1,2,3. The condi-
tional posterior ppq̃1, q̃2, q̃3 | θ “ 0,x1,x2,x3q is proportional to

3
ź

i“1

qi

q̃i
“

3
ź

i“1

eλxi

ř3
j“1 q̃ jeλx j

where λ satisfies

´q̃1e´λ
` q̃3eλ

“ 0.

Thus, eλ “
a

q̃1{q̃3 and

3
ź

i“1

qi

q̃i
“ pq̃2 ` 2

a

q̃1q̃3q
´3.

We further deduce that

q1 “ q3 “

?
q̃1q̃3

q̃2 ` 2
?

q̃1q̃3
, q2 “

q̃2

q̃2 ` 2
?

q̃1q̃3
.

It is therefore sufficient to derive the form of the posterior for q1; we subsequently have q3 “

q1 and q2 “ 1 ´ 2q1. The cumulative distribution function Ppq1 ď tq for q1 is proportional to

ż

?
q̃1q̃3

q̃2`2
?

q̃1q̃3
ďt

pq̃2 ` 2
a

q̃1q̃3q
´3 dq̃1dq̃2dq̃3

for t P r0,0.5s. We make the change of variables

q̃2 “ V1

q̃1 “ V2p1 ´V1q

q̃3 “ p1 ´V1qp1 ´V2q

that maps the simplex to the unit square in R2 via stick-breaking; the integral is now equal to

ż

0ď
p1´V1q

?
V2p1´V2q

V1`2p1´V1q
?

V2p1´V2q
ďt

p1 ´V1qtV1 ` 2p1 ´V1q
a

V2p1 ´V2qu
´3 dV1dV2
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where p1 ´V1q is the Jacobian factor. Rearranging the parameter set in terms of V1, we get

ρpt,V2q :“
p1 ´ 2tq

a

V2p1 ´V2q

p1 ´ 2tq
a

V2p1 ´V2q ` t
ď V1 ď 1.

We begin by integrating with respect to V1 over the above interval. For the time being, we
use the shorthand W “

a

V2p1 ´V2q to reduce clutter. Integrating by parts (differentiating
p1 ´V1q and integrating tV1 ` 2p1 ´V1qWu´3), we get

„

p1 ´V1qtV1 ` 2p1 ´V1qWu´2

´2t1 ´ 2Wu

ȷV1“1

V1“ρpt,V2q

´

ż 1

V1“ρpt,V2q

tV1 ` 2p1 ´V1qWu´2

2t1 ´ 2Wu
dV1

“
ttp1 ´ 2tqW ` tu

2W p1 ´ 2W q
`

„

tV1 ` 2p1 ´V1qWu´1

2p1 ´ 2W q2

ȷV1“1

V1“ρpt,V2q

“
ttp1 ´ 2tqW ` tu

2W p1 ´ 2W q
`

2t ´ t{W
2p1 ´ 2W q2

“
t2

2W 2

“
t2

2V2p1 ´V2q
.

Integrating tV2p1 ´V2qu´1 directly over the interval V2 P r0,1s yields infinity. Instead, we
consider the limit of

ż bk

ak

t2

2V2p1 ´V2q
dV2

for 0 ă ak ă bk ă 1 as ak Ñ 0, bk Ñ 1. For each term in this sequence, we have

Ppq1 ď tq9t2

for t P r0,0.5s, i.e. q1 „ 0.5 ¨ Betap1,2q. Therefore, we can define the conditional posterior
of pq1,q2,q3q to be this limit, which is proper and matches the required result.

Proof of Proposition 4.2: We use the shorthand notation gi “ gpDi,θ q and qi “ qipθ , q̃q.
Using the notation of the dual optimization problem, λ satisfies

n
ÿ

i“1

q̃i exppλ
Tgiqgi “ 0.
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Differentiating both sides by q̃ j,

Bλ

Bq̃ j

ÿ

i“1

q̃i exppλ
TgiqgigT

i ` exppλ
Tg jqg j “ 0,

which rearranges to

Bλ

Bq̃ j
“ ´

˜

n
ÿ

i“1

qigiqT
i

¸´1
ˆ

q j

q̃ j
g j

˙

. (D.4)

The log-posterior density is

log ppq̃ | θ ,D1, . . . ,Dnq “

n
ÿ

i“1

log
ˆ

qi

q̃i

˙

` cpθ q

“

˜

n
ÿ

i“1

λ
Tgi

¸

´ n log

#

n
ÿ

i“1

q̃i exppλ
Tgiq

+

` cpθ q,

where cpθ q is independent of q̃. Hence,

B log ppq̃ | θ ,D1, . . . ,Dnq

Bq̃ j
“

Bλ T

Bq̃ j

˜

n
ÿ

i“1

gi

¸

´
nexppλ Tg jq

řn
i“1 q̃i exppλ Tgiq

´
nBλ T

Bq̃ j

ř

i“1 q̃i exppλ Tgiqgi
řn

k“1 q̃k exppλ Tgkq

“
Bλ T

Bq̃ j

˜

n
ÿ

i“1

gi

¸

´ n
q j

q̃ j
´ n

Bλ T

Bq̃ j

˜

n
ÿ

i“1

qigi

¸

“
Bλ T

Bq̃ j

˜

n
ÿ

i“1

gi

¸

´ n
q j

q̃ j
,

where the last equality is due to
řn

i“1 qigi “ 0. The required result is obtained by substituting
(D.4) into the right-hand side.

Proof of Proposition 4.3: As with the proof of Proposition 4.2, we use the shorthand notation
gi “ gpDi,θ q and qi “ qipθ , q̃q, and using the notation of the dual optimization problem, λ

satisfies

n
ÿ

i“1

q̃i exppλ
Tgiqgi “ 0.
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Differentiating both sides by θ ,

n
ÿ

i“1

q̃i
Bλ

Bθ
exppλ

TgiqgigT
i `

n
ÿ

i“1

q̃i exppλ
TgiqpIn ` giλ

T
q
Bgi

Bθ
“ 0.

By rearranging, we obtain

Bλ

Bθ
“ ´

˜

n
ÿ

i“1

qigigT
i

¸´1
$

&

%

n
ÿ

j“1

q jpIn ` g jλ
T
q
Bg j

Bθ

,

.

-

.

The log-posterior density is

log ppq̃ | θ ,D1, . . . ,Dnq “ logπpθ q `

n
ÿ

i“1

log
ˆ

qi

q̃i

˙

` cpq̃q

“ logπpθ q `

#

n
ÿ

i“1

pλ
Tgiq

+

´ n log

$

&

%

n
ÿ

j“1

q̃ j exppλ
Tg jq

,

.

-

` cpq̃q,

where cpq̃q is independent of θ . Hence,

B log ppq̃ | θ ,D1, . . . ,Dnq

Bθ
“

∇πpθ q

πpθ q
`

n
ÿ

i“1

Bpλ Tgiq

Bθ
´ n

řn
j“1

Bpλ Tg jq

Bθ
q̃ j exppλ Tg jq

řn
k“1 q̃k exppλ Tgkq

“
∇πpθ q

πpθ q
`

n
ÿ

i“1

p1 ´ nqiq
Bpλ Tgiq

Bθ

“
∇πpθ q

πpθ q
`

n
ÿ

i“1

p1 ´ nqiq

ˆ

Bλ T

Bθ
gi `

BgT
i

Bθ
λ

˙

“
∇πpθ q

πpθ q
`

Bλ T

Bθ

˜

n
ÿ

i“1

gi

¸

`

n
ÿ

i“1

p1 ´ nqiq
BgT

i
Bθ

λ ,

where we have used the fact that
řn

i“1 qigi “ 0 for the last equality.
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