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Reconstruction of the High Resolution Phase in a Closed Loop Adaptive Optics
System∗
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Abstract. Adaptive optics is a commonly used technique to correct the phase distortions caused by the Earth’s
atmosphere to improve the image quality of the ground-based imaging systems. However, the ob-
served images still suffer from the blur caused by the adaptive optics residual wavefront. In this
paper, we propose a model for reconstructing the residual phase in high resolution from a sequence
of deformable mirror data. Our model is based on the turbulence statistics and the Taylor frozen flow
hypothesis with knowledge of the wind velocities in atmospheric turbulence layers. A tomography
problem for the phase distortions from different altitudes is solved in order to get a high quality
phase reconstruction. We also consider inexact tomography operators resulting from the uncertainty
in the wind velocities. The wind velocities are estimated from the deformable mirror data and,
additionally, by including them as unknowns in the objective function. We provide a theoretical
analysis on the existence of a minimizer of the objective function. To solve the associated joint
optimization problem, we use an alternating minimization method which results in a high resolution
reconstruction algorithm with adaptive wind velocities. Numerical simulations are carried out to
show the effectiveness of our approach.
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1. Introduction. Modern telescopes allow the acquisition of high resolution images of
astronomical objects seen in the night sky. To increase the resolution, ground-based extremely
large telescopes (ELTs) with a primary mirror bigger than 30 m in diameter are currently under
construction. However, the image quality is still degraded due to the turbulent atmosphere
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above these telescopes. As a remedy for this degradation, adaptive optics (AO) systems were
introduced; see, e.g., [15, 12].

An astronomical AO system is a hardware-based device that uses deformable mirrors
(DMs) to compensate for distortions of the incoming phase due to atmospheric turbulence
and therefore making the observed images sharper. The DMs are adjusted according to the
data from wavefront sensors (WFS) which measure the incoming wavefront from so-called
guide stars, which is the phase measured in a specific wavelength. However, due to several
physical limitations, the distortions by atmospheric turbulence can never be compensated
for completely. First, the WFS have a rather coarse resolution as enough light of the guide
star has to reach each pixel of the WFS to acquire accurate data. As a consequence, the
higher spatial frequencies of the wavefront are not sensed and thus cannot be corrected by
the deformable mirror. Second, the correction of the wavefront is also limited by the DM,
the shape of which is controlled by a finite number of actuators. Finally, a time gap exists
between the acquisition of wavefront data and the update of the DM shape. The atmospheric
turbulence is changing rapidly and the increment of the distorted wavefront within the time
gap is not taken into account. The uncorrected part of the wavefront, called the residual
wavefront, results in a residual blur of the observed image.

Further improvement on the quality of the observed image can be made by image post-
processing with data from the AO systems. According to the Fourier optics model (see, e.g.,
[20, 23]), in an incoherent imaging system, the blurred image is formed by the convolution
of the point spread function (PSF) and the true image. The PSF can be determined by the
residual wavefront, or the residual phase. Several techniques known as deconvolution methods
(see, e.g., [24, 9, 10, 13]) have been developed. Such methods rely on accurate PSF knowledge
in order to remove the blur from the observed image. An estimate of the PSF can be computed
from the WFS data (see, e.g., [36]) or the reconstructed residual wavefronts [39, 38], which
always requires the use of a simulation step for the spatial frequencies of the residual wavefront
that are not sensed by the WFS.

The problem of reconstructing a high resolution phase from low resolution data has been
investigated by several authors in the literature. In particular, Chu, Jefferies, and Nagy [10]
consider an open loop system and high resolution gradients of the phase are computed from
WFS data at multiple time steps by doing a least squares data fitting with Tikhonov regu-
larization. The high resolution phases are then reconstructed using the computed gradients.
Chan, Yuan, and Zhang [9] suggest that the phase gradients are not smooth and propose an
l1 regularization term for recovering the high resolution gradients. The method developed in
[8], in contrast, reconstructs the high resolution phase directly from low resolution gradients.
All these works consider the reconstruction problems in an open loop setting, and they require
precisely known tomography operators.

The core issue of this paper is to find a high resolution residual phase in a closed loop
AO system which can then be used to obtain a high quality PSF estimate in order to further
mitigate the blur of the images. The high resolution residual phase has the capacity of
capturing the higher spatial frequencies needed for a more accurate PSF. We make use of
the commonly adopted Taylor frozen flow (TFF) assumption [34] to relate a sequence of
low resolution AO data to the high resolution phase with the wind velocities. A variational
regularization method based on the turbulence statistics and the TFF assumption is developed.D

ow
nl

oa
de

d 
04

/2
6/

21
 to

 1
31

.1
11

.1
84

.1
02

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RECONSTRUCTING CLOSED LOOP HIGH RESOLUTION PHASES 777

The wind velocities, which define the tomography operator, are not available in high accuracy
in reality. This introduces a perturbation of the tomography operator. As consistency between
the TFF and the data helps to recover the operator, we take the wind velocities as variables
of the objective function instead of fixed values. The minimization of the objective function
produces estimations of the high resolution phase and the wind velocities simultaneously. To
our knowledge, only an instantaneous low resolution reconstruction of the wavefront on the
same grid as the WFS is performed in projects for AO assisted telescopes. This is also due
to the fact that usually the AO data are not saved and thus only one set of data is available
at every time. However, for upcoming telescopes such as ESO’s ELT this will change and at
least parts of the data will be available for reconstructing the PSF in a postprocessing step.
In our approach we solve a joint model, estimating high resolution wavefronts as well as wind
velocities of atmospheric layers.

To the best of our knowledge, this is the first time that a high resolution wavefront
reconstruction for AO systems, based on a tomographic approach and measurements from
a shifted atmosphere, is considered. In particular, we propose to jointly reconstruct the
wavefront and the imprecisely known wind velocities from noisy measurement using a unified
variational approach. This also helps to refine the inaccurate tomography operator that we
start with. We prove that there exists a minimizer of the objective function of the joint
model. We also present an algorithm for solving the underlying nonconvex optimization
problem. Note that our approach differs from [27, 9], where observations without AO systems
were considered with the goal to recover an instantaneous PSF.

In image processing, the high resolution problem which aims for restoring a high resolution
image from a sequence of the low resolution ones has been attracting much interest (see, e.g.,
[7, 16]). It has been used in a variety of practical applications such as video enhancement,
facial image analysis, or medical image processing [28].

The remainder of this paper is organized as follows: In section 2, we describe the problem
setting and clarify the notation. In section 3, a model is proposed based on the turbulence
statistics and the TFF hypothesis, by assuming the wind velocities are known in advance. In
order to handle the underlying tomography problem with inexact tomography operators due
to the uncertainty in the wind velocities, we also consider adjusting the wind velocities from
the DM data using our model. In section 4, the minimization problem induced by our model
is considered. We implement an alternating direction algorithm for computing estimations
of the residual phase and the wind velocities. Finally, section 5 displays the simulated AO
system and the numerical results.

2. Problem modeling. Throughout this paper, we focus on so-called single-conjugate
adaptive optics (SCAO) systems. An SCAO system consists of one WFS, one DM, and a
control unit, which in particular computes the DM shape from data obtained by the WFS.
AO systems can be constructed and run in two different settings: open and closed loop. In
open loop, the WFS sees the full, uncorrected incoming wavefront, i.e., the WFS is located in
front of the DM in the optical path. In contrast, in closed loop the WFS only sees the residual
wavefront after correction by the DM, i.e., the WFS is located behind the DM in the optical
path. In current AO systems, closed loop is the preferred setting, as this realizes measurements
closer to zero where the behavior of the sensor is linear and much better understood. WeD
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778 R. KE, R. WAGNER, R. RAMLAU, AND R. CHAN

Figure 1. Illustration of a closed loop AO system from [11]. Adaptive mirror is equivalent to DM, distorted
wavefront is the incoming wavefront, the control system computes the reconstruction of φres, coarse

t from WFS
data and uses it to adjust the DM. The corrected wavefront, which is called the residual wavefront throughout
the paper, refers to the residual errors after the AO correction and it is the main quantity of interest.

assume that the SCAO system under consideration is run in a closed loop, meaning that WFS
is located in the optical path after the DM and thus measures only a residual of the incoming
phase after correction through the DM, where the incoming phase is the phase arriving at
the telescope after being distorted by the atmospheric turbulence. These components and
their interaction are illustrated in Figure 1. We use a time discrete setting, i.e., t always
indicates the tth time step and is therefore used as a subscript. Each time step takes only
a few milliseconds of real time in our application. Let us denote the incoming phase at t as
φt(x), where x ∈ Ω ⊂ R2 in the pupil plane and Ω is the telescope aperture. Let φDM

t (x) be
the DM shape. Then the (unknown) residual phase φres

t (x) can be written as

(1) φres
t (x) = φt(x)− φDM

t (x)

for x ∈ Ω inside the telescope pupil. Recall that in a closed loop system the WFS measures
the residual phase, i.e., φres

t (x). In contrast, in an open loop the full incoming wavefront, i.e.,
φt(x), is measured as the light beam is split before being reflected (and thus corrected) on the
DM. The goal of every AO system is to perfectly match the DM to the incoming phase, i.e.,
φres
t (x) = 0, but due to a system inherent time delay stemming from measuring, calculating,

and adjusting the DM and the coarse resolution of both WFS and DM; this is not possible in
reality. Further errors are introduced as φres

t (x) can only be measured indirectly by a WFS
and thus needs to be reconstructed from these data.

Fortunately, φDM
t (x) is updated over time and the information of φres

t (x) is encoded in
the updates. A coarse resolution version φDM

t of φDM
t (x) is stored and can be used to recoverD

ow
nl

oa
de

d 
04

/2
6/

21
 to

 1
31

.1
11

.1
84

.1
02

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RECONSTRUCTING CLOSED LOOP HIGH RESOLUTION PHASES 779

Table 1
Data for high resolution reconstruction.

Data Description

φDM
t The coarse grid DM shape at time step t.

φres, coarse
t

The computed phase residual on the coarse grid at time step t, an
estimate for φres

t (x), obtained as a solution to (2). This quantity is
not saved by the AO system, but it can be exactly recovered from
φDM

t .

s̃t
The pseudo-WFS measurement given by (5). It is used in our refined
WFS model (4) for finding the high resolution residual phase.

v The wind velocity, which is constant over the aperture and time.

φres
t (x) in postprocessing. The main problem in this paper is to reconstruct φres

t (x) in high
resolution from a sequence of φDM

t at different time steps.
In the remaining part of this section, we will introduce a mathematical model to link

φres
t (x) to the updates of DM shapes φDM

t , and then solve an inverse problem for a high
resolution φres

t (x). The main structural idea is as follows. First, we formulate the relationship
between φDM

t and φres, coarse
t which essentially means a coarse resolution approximation of

φres
t (x). Second, from φres, coarse

t we derive pseudomeasurements s̃t, which are then used as
input to our algorithm for finding φres

t (x) from a refined WFS model. Additionally, we assume
a constant wind velocity v given in units [m/(time step)] which describe the motion of φt(x).
All these quantities are summarized in Table 1.

2.1. WFS model and low resolution DM data. Let us start with the forward model
connecting the WFS measurements and the residual of the incoming wavefront. We assume
a closed loop AO system using a Shack–Hartmann WFS (SH-WFS). In such an AO system,
the WFS is located behind the DM (as Figure 1 shows). The WFS is modeled as an operator
Γ : H11/6(Ω)→ Rn2×2 (cf., e.g., [22]) mapping a phase φres

t (x) onto measurements st obtained
on n× n subapertures, i.e.,

st = Γφres
t (x)

with Γ := (Γx,Γy)
T , defined via its action on subapertures Ωi,j , i, j = 1, . . . , n giving as

measurements the discrete averaged gradients st,x and st,y, given as

(Γzφ
res
t )i,j =

1

|Ωi,j |

∫
Ωi,j

∂

∂z
φres(x) dx, z ∈ {x, y}, x = (x, y).

Clearly, Γ is bounded in H1(Ω). Note that the use of the space H11/6(Ω) for the definition of
the operator Γ stems from the fact that the atmospheric turbulence, and thus the wavefronts,
follows a von Karman power law, which basically states that the wavefronts belong to H11/6

with high probability (cf., e.g., [37, 25], and section 3.1.2). These SH-WFS measurements st
are gradients averaged over the subapertures Ωi,j , i, j = 1, . . . , n with ∪ni,j=1Ωi,j = Ω.

Generating the low resolution DM data. The AO system needs to reconstruct the
residual phase in real time in order to control φDM

t (x) since the φt(x) in (1) changes quickly
over the time steps t. This raises an inverse problem in which the 2-dimensional functionD
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780 R. KE, R. WAGNER, R. RAMLAU, AND R. CHAN

(a) (b)

Figure 2. (a) The SH-WFS measurement and the low resolution residual phase in a subaperture. In this
example, (x′i, y

′
j) are the grid points which satisfy x′i = x3i, y

′
j = y3j. (b) The SH-WFS measurement and the

high resolution residual phase in a subaperture of the WFS. The subaperture is bounded by the outermost square
whose side length is 3 times the grid spacing of φres, (xi, yj) are the grid points. The measurement sx(0, 0) and
sy(0, 0) is modeled as the average slope in the x direction and y direction in the subaperture, respectively.

φres
t (x) has to be reconstructed for each time step t from given measurements st. However, the

DM has a finite number of actuators only and thus it is sufficient to perform a discrete phase
reconstruction instead of inverting the continuous operator. We view Γ as a combination of a
projector Pn : H11/6(Ω)→ R(n+1)×(n+1) and a discrete SH-WFS operator Γn : R(n+1)×(n+1) →
Rn2×2, i.e., Γ = ΓnPn. Several ways to choose the (n+ 1)× (n+ 1) grid exist.

The discrete representation of the residual phase can then be obtained as a solution
φres, coarse
t to the discrete inverse problem

st = Γnφ
res, coarse
t + ηt,(2)

where φres, coarse
t := Pnφ

res
t (x) is in low resolution, and ηt models the noise. Figure 2(a)

illustrates the discretization for the SH-WFS case. During an AO run, the measurements
st are obtained and the residual phase φres, coarse

t needs to be reconstructed, i.e., (2) has
to be inverted. To solve this problem several direct methods were developed and studied
in simulation and on-sky [43, 32, 33, 29, 40, 3, 4]. These methods neglect the motion of
the atmosphere during the measurement and computation time due to the small shift. The
distance of the shift is determined by the wind velocity v ∈ R2. However, to reconstruct a
high resolution phase from multiple frames, the shift of the atmosphere has to be taken into
account. We delay the discussion on the shift to section 3.

Once a solution to (2) is obtained, it is used to compute the new DM shape φDM
t+1, mini-

mizing the residual in (1), as

φDM
t+1 = φDM

t + α · φres, coarse
t ,(3)

where α > 0 is the so-called loop gain and the initial DM shape is given as φDM
−1 = 0. These

data are generated by the AO system and stored for image postprocessing.D
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2.2. Refined WFS model. We want to reconstruct the unkown φres
t on a finer grid than

the WFS or DM, meaning the grid of φDM
t . Therefore, we need to introduce additional

operators coarsening functions on the respective grids. Let Qnk, for k ∈ N, be the projector
from H11/6(Ω) onto R(nk+1)×(nk+1) and Ck the coarsening operator mapping a fine resolution
phase from R(nk+1)×(nk+1) to R(n+1)×(n+1). From this we can model the measurements of a
higher resolution phase φres

t := Qnkφ
res
t (x) with Pn = CkQnk, so using (2) we have

st = ΓnCkφ
res
t + ηt,(4)

where ηt models the noise. Note that the coarsening operator is not uniquely defined.
An illustration of the grids of the SH-WFS measurement and the high resolution residual

phase is given in Figure 2(b) in which the SH-WFS measurement is considered to be located
at the center of the subaperture following the Fried geometry [17].

2.3. From low resolution DM data to high resolution phase. As AO systems are running
at a frequency of up to 500 Hz, meaning 500 sets of WFS measurements and DM shapes are
measured and applied, respectively, each second, a huge amount of data needs to be saved.
If one wants to use these data in a postprocessing step, then it might be beneficial to reduce
the amount of saved data as much as possible. One option is to save the applied DM shapes
only, which are represented by point values of the corresponding function, instead of the WFS
data, being averaged gradients, as this already reduces the amount of data by a factor 2.

This means that φres, coarse
t , the solution to (2), computed in real time during the AO run,

is treated as the input to our problem instead of st. Therefore, we rewrite (3) for recovering
φres, coarse
t from the DM shapes as

φres, coarse
t =

1

α
(φDM

t+1 − φDM
t ).

Since φres, coarse
t represent low resolution copies of φres

t , one may want to compute φres
t by

upsampling them. However, φres, coarse
t is known only up to an additive constant, given that

the constant function is in the null space of Γn, due to the underlying physical structure of
the WFS. To manage the issue of unknown constant, we define a pseudo-WFS measurement
that respects the low resolution WFS model (2) via

(5) s̃t := Γnφ
res, coarse
t ,

and use it instead of φres, coarse
t in the high resolution reconstruction.

In summary, our approach is based on the refined observation model (4), using pseudo-
WFS measurements created from the saved DM shapes via (5). Recall that both φDM

t and
φres, coarse
t are in low resolution, and the quantity of interest φres

t is in high resolution. The grids
for different quantities are compared in Figure 3(a). So the problem is highly ill-posed. The
idea for dealing with the ill-posedness of this problem is to combine multiple measurements
from neighboring time steps, and to use prior knowledge of the phase.

3. Estimating the residual phase in high resolution. In order to estimate the residual
phase in high resolution, we have to make assumptions on the flow and statistics of the
atmosphere. For this purpose, we present and adopt the TFF hypothesis from [34] and theD
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(a) (b)

Figure 3. (a) Three different discretization grids. The purple dots, the blue square, and the black cross
represent the points on the grids of φt, φ

res, coarse
t , and φres

t , respectively. In this example the grid of φres is 3
times finer than that of φres, coarse. The residual phase φres

t and computed phase φres, coarse
t lie on the annular

aperture only. (b) The grid of φres
t shifted by −vt (i.e., the small red dots) does not fall on the grid of φres

0 . To
define the discrete motion operator, the shifted φres

t should be interpolated onto the grid of φres
0 (i.e., the black

dots).

von Karman power spectral density from [31] in the following sections. Furthermore, we first
investigate the simplified problem of estimating the residual phase in the presence of only one
atmospheric layer and known wind velocities. However, measurements of the wind velocities
are not available all the time, thus we will introduce a more evolved setting, allowing one to
adapt the wind velocities by using the current WFS measurements. In a last step, we move
to the realistic situation of several atmospheric layers moving with different wind speeds and
directions. Thus a tomographic problem arises which needs to be solved.

3.1. Assumptions on the atmosphere. To model the properties of the atmospheric turbu-
lence, we make assumptions on the flow within the atmospheric layers and on their statistics.

3.1.1. TFF hypothesis. In this section, we introduce the TFF hypothesis in order to be
able to connect subsequently measured information of the incoming phase. In particular, we
want to use this assumption to find a shift operator mapping the phase at time step t back to its
position at time step 0. This hypothesis was introduced in [34]: The atmospheric turbulence
is composed of a number of layers located at different altitudes above the ground. Each of the
layers does not change its shape on small time scales and moves across the telescope aperture
with a constant velocity due to wind. As shown in [2] and the references therein, the TFF
holds up to approx 100 ms, which corresponds to 50 time frames in an AO system with loop
frequency of 500 Hz (i.e., 2 ms per time frame). In a first step, we assume a one-layer model.
As a consequence of the TFF hypothesis, the incoming phase reaching the telescope has a
translational motion as

(6) φt(x) = φ0(x− tv),D
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where v ∈ R2 is the wind velocity and t denotes the tth time step, with 0 < t < T , e.g., for a
loop frequency of 500 Hz, we get t ≤ 50. Equation (6) together with (1) implies that φ0(x)
is measured repeatedly by the WFS, provided that the DM shapes φDM

t (x) are known and T
is not too big, i.e., |Tv| < D, where D is the telescope diameter. Based on this fact a high
resolution reconstruction of φ0(x) is possible.

Discrete motion operator. Let us now define the discrete motion operator Mv,t acting
on φt associated with the translation of the form f(x) → f(x + tv). If tv is not a multiple
of the grid spacing, we use bilinear interpolation, as shown in Figure 3(b). Thus, we can
approximate (6) in a discrete sense as

(7) Mv,tφt ≈ φ0.

3.1.2. Turbulence statistics. In order to use the properly weighted terms in our func-
tional, we need to gather knowledge on the turbulence statistics of the atmosphere. Fortu-
nately, the statistical properties of the atmospheric turbulence have been well studied. In
Kolmogorov’s theory, atmospheric turbulence is assumed to be a homogeneous and isotropic
random process [25, 41]. The turbulence statistics are usually described by its power spectral
density (PSD) and there are various versions of PSDs in the literature. In this paper, we
assume the von Karman PSD of the phase φ(x) (see, e.g., [31]) given by

Pφ (κ) =
0.023r

−5/3
0(

κ2
0 + |κ|2

)11/6
,

where r0 is the Fried parameter, κ0 = 1/L0, and L0 is the atmospheric turbulence outerscale.
The covariance function of the phase is the inverse Fourier transform of the PSD, i.e.,

(8) Cφ = F−1 (Pφ) ,

where F denotes the Fourier transform.
Approximate covariance operator of the phase. In a discrete setting, the covariance

matrix Cφ derived from (8) and its inverse are dense and, therefore, not efficient in real
computation especially for large scale problems. Many approximations of the covariance
matrix have been developed in the past decades in order to achieve fast computations; see for
instance [35, 42]. In particular, Ellerbroek showed in [14] that the biharmonic operator ∆2

provides a good approximation to the inverse covariance operator. The discrete biharmonic
operator has sparsity which contributes to efficient matrix-vector multiplications and shows
great advantages when iterative solvers are applied. Thus, we will use it in our method to
approximate the covariance matrix.

3.2. Mathematical models for high resolution estimation. We establish a mathematical
model for estimating a high resolution wavefront in the following sections. In particular,
we first assume known wind velocities, being the ideal case in ground-based astronomy. An
additional enhancement of the model leads us to a joint estimation of wavefront and wind
velocities.D
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3.2.1. High resolution reconstruction with known wind velocities. In the following, we
will set up a functional which is minimized to obtain a high resolution reconstruction of
the residual phase. We use the previously introduced operators Ck, which relates the two
different discretization grids in (4), and Mv,t, which accounts for atmospheric motion due
to wind in (7). As data, we use the set of pseudo-WFS measurements {s̃t} to replace the
set of WFS data {st}. Therefore, the high resolution reconstruction does not require any
AO data other than the DM shapes. Due to the fact that the number of high resolution
pixels is bigger than the dimension of the measurements, the high resolution reconstruction
problem is ill-posed. As in practice, s̃t always contains noise from the sensor and the real
time reconstruction algorithm, regularization techniques are necessary to reach an accurate
and stable reconstruction. Additionally, we would like to use the statistics of the turbulence
(cf., section 3.1.2). To this end, let H1 = H + εI, where H is the discrete Laplacian operator,
ε > 0, and I the identity matrix. The matrix εI is an analogy to κ0 in Pφ and avoids zero
eigenvalues appearing in H. Assuming the von Karman phase PSD, H2

1 approximates the
inverse covariance matrix of φt up to a scaling constant.

As the TFF hypothesis and von Karman PSD are valid for the incoming phase rather than
the residual phase we first reconstruct φt and then an estimate of φres

t using (1). Recall that
the DM shape φDM

t lies on a coarse grid. However, through the so-called influence functions
of the DM actuators, we are able to interpolate φDM

t to the same resolution as φres
t . Denoting

the high resolution DM shape as φ̃DM
t , we get a discrete version of (1) as

φres
t = φt − φ̃DM

t .

This together with (4) gives a formulation of the observation model

s̃t = WΓnCk

(
φt − φ̃DM

t

)
+ ηt,

where the matrix W defines the pupil mask for a nonrectangular telescope aperture (repre-
sented as a ring in Figure 3(a)).

In summary, we adopt the following model for the reconstruction of the high resolution
wavefront:

min
Φ
J β0 (Φ) :=

1

2

T∑
t=0

(∥∥∥WΓnCk

(
φt − φ̃DM

t

)
− s̃t

∥∥∥2
+ β ‖H1φt‖2

)
,

subject to φ0 = Mv,tφt, t = 0, . . . , T,

(9)

where Φ is the column stacking of the high resolution phases φ0, . . . ,φT , β is the regularization
parameter that has to be chosen according to the noise level and the strength of the atmo-
spheric turbulence, and H1, Γn, Ck, s̃t, φ̃

DM
t being the previously defined weighting matrix,

coarse SH-WFS operator, coarsening operator, derived pseudo-WFS measurements, and DM
shape interpolated to a fine grid, respectively. Note that the motion operator Mv,t is known
as we assume v is given, but in general v is not known precisely.

To connect our method with Bayesian models, let us consider replacing H1 by the square

root of inverse covariance matrix C
−1/2
φ and impose the following conditions:D
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• the noise η̃t := s̃t −WΓφres
t is white Gaussian;

• φt is a realization of Gaussian random variables with covariance matrix Cφ and zero
mean;
• the regularization parameter β is properly chosen;
• the wind velocity v satisfies that the components of tv are multiples of the grid spacing,

then the solution to our model can be interpreted as the conditional mean or the minimum
mean squared error estimate under the Bayesian framework. The corresponding minimizer in
this case is also known as the maximum a posteriori estimate.

3.2.2. Adaptive wind velocities. We now move on to the more realistic situation, where
only an estimate of the wind velocity is available, and we need to account for these imprecise
measurements. Let us denote the estimate of the wind velocity by v(0). We need to modify
the model such that it allows variation of this estimate. For imprecise information on wind
speed and direction, the associated motion operator, denoted by Mv(0),t, becomes imprecise.
The model in (9) relies on the assumption that

φ0 −Mv(0),tφt ≈ 0,

which does not hold when v(0) is not close enough to v and |t| � 1, due to the resulting
cumulative error in the motion operator Mv(0),t. In fact, Mv(0),t defines a displacement of

v(0) · t and the error in the displacement is (v− v(0)) · t. In this case, an approximation based
on the successive difference, relating φt+1 to its predecessor rather than to the first instance
φ0,

Mv(0),tφt −Mv(0),t+1φt+1 ≈ 0,

is more reliable. This helps to get a better estimate of v from inexact wind velocity data.
Furthermore, in order to preserve the consistency between the (pseudo)measurement and

the TFF hypothesis with given wind velocity which is not accurate enough, the wind velocity
is considered as a variable in the functional. Therefore, it can be adjusted appropriately
during the minimization process.

In summary, we solve the joint minimization problem for both an estimated high resolution
phase and an estimated wind velocity

min
Φ,v
J β1 (Φ,v) :=

1

2

T∑
t=0

(∥∥∥WΓnCk

(
φt − φ̃DM

t

)
− s̃t

∥∥∥2
+ β ‖H1φt‖2

)
,

subject to Mv,tφt = Mv,t+1φt+1, t = 0, . . . , T − 1.

(10)

3.2.3. Existence of a minimizer for adaptive wind velocities. The objective function J β1
is strongly convex with respect to Φ. If v is fixed, then one can easily conclude that it has a
unique minimizer. However, the involvement of v makes (10) a nonconvex problem and the
properties of minimizers less straightforward. For the theoretical analysis of the minimizers,
here we consider the optimization problem in a continuous setting. Specifically, the problemD
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786 R. KE, R. WAGNER, R. RAMLAU, AND R. CHAN

(10) is reformulated as

min
φ,v
J β1 (φ,v) :=

1

2

T∑
t=0

(∥∥WΓ
(
φt(·)− φDM

t (·)
)
− s̃t

∥∥2
+ β ‖(∆ + εId)φt(·)‖2L2(R2)

)
,

subject to φt(·+ vt) = φt+1(·+ v(t+ 1)), t = 0, . . . , T − 1,

(11)

in which ∆ is the Laplacian operator, Id denotes an identity operator, W restricts the data
to the telescope aperture, Γ is a bounded linear operator from H1

(
R2
)

to Rn2×2, and φt(·) is
the continuous version of φt. For a given time step t, φt(·) is a function mapping from R2 to
R.

As described in section 3.1.2, ∆ is an approximation to the (scaled) inverse covariance
operator of the phase. Correspondingly, we seek for the solution of (11) in the subspace H2

of H11/6. In the subsequent discussion, we consider φt(·) to be in the Sobolev space H2
(
R2
)

for t = 0, 1, . . . , T .

Theorem 1. Let β, ε > 0 and φDM
t (·) ∈ H1(R2). Assuming that the wind velocity is bounded

‖v‖ ≤ m for some constant m, then the minimization problem in (11) has a minimizer in

(H2(R2))
T+1 ×Bm, where Bm := {v ∈ R2 | ‖v‖ ≤ m} is a ball in R2.

Proof. Let us rewrite the constraint in (11) in an equivalent form as φt(·+ vt) = φ0(·) for
t = 1, . . . , T . It is sufficient to prove that the objective function
(12)

Ĵ β1 (φ0,v) :=
1

2

T∑
t=0

(∥∥WΓ
(
φ0(· − vt)− φDM

t (·)
)
− s̃t

∥∥2
+ β ‖(∆ + εId)φ0(· − vt)‖2L2(R2)

)

has a minimizer in H2(R2)×Bm. Clearly Ĵ β1 is lower bounded. Let (φ
(0)
0 ,v(0)), (φ

(1)
0 ,v(1)), . . .

be a minimizing sequence of Ĵ β1 in H2(R2) × Bm. Then {Ĵ β1 (φ
(i)
0 ,v(i)) | i = 0, 1, . . . } is

bounded. As for any i we have

2

β
Ĵ β1
(
φ

(i)
0 ,v(i)

)
≥
(

(∆ + εId)φ
(i)
0 , (∆ + εId)φ

(i)
0

)
L2(R2)

=
(

∆φ
(i)
0 ,∆φ

(i)
0

)
L2(R2)

+ 2ε
(
∇φ(i)

0 ,∇φ(i)
0

)
L2(R2)

+ ε2
(
φ

(i)
0 , φ

(i)
0

)
L2(R2)

,
(13)

the sequence {φ(i)
0 } is bounded inH1(R2). Furthermore, given that φ

(i)
0 ∈ H2(R2), |φ(i)

0 |2H2(R2) ≤
ξ(∆φ

(i)
0 ,∆φ

(i)
0 )L2(R2) for some constant ξ. Therefore, {φ(i)

0 } is a bounded sequence in H2(R2).

This observation, together with {v(i)} being bounded in R2, implies that there exists a sub-

sequence {(φ(ij)
0 ,v(ij))} and (φ

(∗)
0 ,v(∗)) satisfying

(14) φ
(ij)
0 ⇀ φ

(∗)
0 in H2

(
R2
)

and v(ij) → v(∗) ∈ Bm.D
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RECONSTRUCTING CLOSED LOOP HIGH RESOLUTION PHASES 787

(I) As a consequence of (14),

lim
j→∞

(
∆φ

(ij)
0 ,∆φ

(ij)
0

)
L2(R2)

≥
(

∆φ
(∗)
0 ,∆φ

(∗)
0

)
L2(R2)

,

lim
j→∞

(
∇φ(ij)

0 ,∇φ(ij)
0

)
L2(R2)

≥
(
∇φ(∗)

0 ,∇φ(∗)
0

)
L2(R2)

,

and also
lim
j→∞

(
φ

(ij)
0 , φ

(ij)
0

)
L2(R2)

≥
(
φ

(∗)
0 , φ

(∗)
0

)
L2(R2)

.

Then it holds that limj→∞ ‖(∆ + εId)φ
(ij)
0 ‖2L2(R2) ≥ ‖(∆ + εId)φ

(∗)
0 ‖2L2(R2) according to the

equality in (13). Moreover, based on the invariant property∥∥∥(∆ + εId)φ
(ij)
0

(
· − v(ij)t

)∥∥∥2

L2(R2)
=
∥∥∥(∆ + εId)φ

(ij)
0

∥∥∥2

L2(R2)
,

we get that for t = 0, 2, . . . , T ,

(15) lim
j→∞

∥∥∥(∆ + εId)φ
(ij)
0

(
· − v(ij)t

)∥∥∥2

L2(R2)
≥
∥∥∥(∆ + εId)φ

(∗)
0

(
· − v(∗)t

)∥∥∥2

L2(R2)
.

(II) To obtain a similar result to (15) for the data fidelity term, we need to prove that for
a fixed t,

(16) φ
(ij)
0

(
· − v(ij)t

)
⇀ φ

(∗)
0

(
· − v(∗)t

)
in H1

(
R2
)
.

We split the proof into a few steps.

(i) Recalling that φ
(ij)
0 ∈ H2(R2) ⊂ H1(R2), we have

(17)
∥∥∥φ(ij)

0

(
· − v(ij)t

)
− φ(ij)

0

(
· − v(∗)t

)∥∥∥
L2(R2)

≤ t
∥∥∥v(∗) − v(ij)

∥∥∥ · ∣∣∣φ(ij)
0

(
· − v(∗)t

)∣∣∣
H1(R2)

.

(ii) For any g ∈ L2(R2), as φ
(ij)
0 are uniformly bounded in H1(R2), it follows from (17)

that (g, φ
(ij)
0 (· − v(ij)t)− φ(ij)

0 (· − v(∗)t))L2(R2) → 0 as j →∞. The weak convergence of φ
(ij)
0

in H1(R2) implies that

(g, φ
(ij)
0 (· − v(∗)t)− φ(∗)

0 (· − v(∗)t))L2(R2) = (g(·+ v(∗)t), φ
(ij)
0 − φ(∗)

0 )L2(R2) → 0.

(iii) Following (ii), we have(
g, φ

(ij)
0

(
· − v(ij)t

)
− φ(∗)

0

(
· − v(∗)t

))
L2(R2)

=
(
g, φ

(ij)
0

(
· − v(ij)t

)
− φ(ij)

0

(
· − v(∗)t

))
L2(R2)

+
(
g, φ

(ij)
0

(
· − v(∗)t

)
− φ(∗)

0

(
· − v(∗)t

))
L2(R2)

→ 0

(18)

for any g ∈ L2(R2).D
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(iv) Finally, the same arguments in (i), (ii), and (iii) apply to all the first order weak

derivatives of φ
(ij)
0 (· − v(ij)t) and φ

(∗)
0 (· − v(∗)t), as the weak derivatives are also in H1(R2)

and, thus, clearly in L2(R2). This together with (18) gives the weak convergence (16).
(v) Since the linear operator WΓ is bounded and φDM

t (·) ∈ H1(R2), the weak con-

vergence in (16) admits that the sequence WΓ(φ
(ij)
0 (· − v(ij)t) − φDM

t (·)) converges to

WΓ(φ
(∗)
0 (· − v(i∗)t)− φDM

t (·)) and, hence

lim
j→∞

∥∥∥WΓ
(
φ

(ij)
0

(
· − v(ij)t

)
− φDM

t (·)
)
− s̃t

∥∥∥ =
∥∥∥WΓ

(
φ

(∗)
0

(
· − v(∗)t

)
− φDM

t (·)
)
− s̃t

∥∥∥ .
(III) Following (I) and (II), we have (φ

(∗)
0 ,v(∗)) ∈ H2(R2)×Bm such that

Ĵ β1 (φ
(∗)
0 ,v(∗)) ≤ Ĵ β1 (φ

(ij)
0 ,v(ij))

for all j. So (φ
(∗)
0 ,v(∗)) is a minimizer of (12) which completes the proof.

3.3. Atmospheric tomography with an inexact operator. Up to now we focused on the
incoming phase φt(x) yielded by one single thin atmospheric turbulence layer. In a more
realistic situation, the distorted phase φt(x) is a result of the 3-dimensional atmospheric
turbulence. It is commonly considered that the distortions only happen at some discrete
heights in the Earth’s atmosphere (see, e.g., [31]). In such a setting, the incoming phase is a
projection of the phase distortions at these layers, i.e.,

(19) φt(x) =
L∑
l=1

φl,t(x),

where φl,t(x) is the distortion of the phase corresponding to the lth layer and L is the number
of layers (see, e.g., [21]). However, we cannot simply use the existing methods as they do not
foresee using a time series of WFS data, but several WFS measurements at the same time
and, additionally, these methods give a coarse resolution of the wavefront only. Therefore, we
need to adapt the model to perform a time dynamic tomographic reconstruction.

Assuming the distortions of the phases φl,t are independent of each other, for different l,
the TFF is valid for the translational motion on each layer, i.e.,

(20) φl,t(x) = φl,0(x− tvl)

in which vl ∈ R2 is the wind velocity of the lth layer. If v1, . . . ,vL are different, then
φt(·) does not preserve its form as t changes, i.e., (6) does not hold. Our idea to obtain a
high resolution incoming phase is first reconstructing φl,t(x) in high resolution with the TFF
hypothesis (20), and then doing projections to get φt(x) according to (19). Note that this
results in a tomography problem as in an AO system where only information about φt(x)
is available. Figure 4(a) displays an example of the tomography problem in a three-layer
setting. Unfortunately, with some uncertainty in the wind velocities, the exact unknown-to-
data operator is unavailable. Small perturbations on the operator due to the errors in the
wind velocities are illustrated in Figure 4(b).D
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(a) (b)

Figure 4. (a) The tomography problem in a three-layer case. The winds of the layers shift the observed
area of the distorted phase with the time, as illustrated by the bended paths corresponding to t = 1 and t = 2.
(b) The path is perturbed by the inexact wind velocity, resulting in an inaccurate tomography operator.

Let Φ be a concatenation of φ1,0,φ1,1, . . . ,φL,T . As a direct extension of the previous
model, we consider the following optimization problem:

min
Φ,v
J β2 (Φ,v) :=

1

2

T∑
t=0

∥∥∥∥∥WΓnCk

(
L∑
l=1

φl,t − φ̃DM
t

)
− s̃t

∥∥∥∥∥
2

+ β
L∑
l=1

‖Hlφl,t‖2
 ,

subject to Mvl,tφl,t = Mvl,t+1φl,t+1, t = 0, . . . , T − 1, l = 1, 2, · · · , L,

(21)

where v is a column stacking of v1, . . . ,vL, Hl = 1
cl

(H+εI), and
∑L

l=1 c
2
l = 1, where c2

l are the

so-called c2
n-values of the atmospheric layers (see section 5.1) . Once the minimizer of (21),

denoted by ({φ̂l,t}, v̂), is obtained, the residual phase φres
t is estimated as

∑L
l=1 φ̂l,t − φ̃DM

t

according to (19) and (1).

4. Numerical minimization. A numerical minimization procedure is needed to compute
the estimate φres

t from (10) or, respectively, (21). Let us consider the one-layer case (10)
first. It is clear that the optimization problem is not convex as the constraints are not convex
functions in v. To deal with such a problem, we implement an alternating direction method
to find a minimizer of the objective function with respect to Φ and v.

We define Mv and M̃v as block matrices of the form

Mv =

Mv,0

. . .

Mv,T−1 0

 , M̃v =

0 Mv,1

. . .

Mv,T

 ,
and let Av = MT

v (M̃v −Mv), where the superscript T denotes the transpose of a matrix. Then
the constraint in (10) can be equivalently written as AvΦ = 0. The corresponding augmentedD
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Lagrangian functional is given by

L1(Φ,v,λ) = J β1 (Φ,v) + λ∗AvΦ +
τ

2
‖AvΦ‖2 ,

in which τ ≥ 0 is the augmented Lagrangian parameter (see, e.g., [5]). Starting from v = v(0),
an alternating update on Φ, v, and λ leads to estimates of the phase and wind velocities. To
be specific, the method requires solving the following two subproblems alternatively:

Φ(k+1) = arg min
Φ

J β1 (Φ,v(k)) +
τ

2

∥∥∥∥∥Av(k)Φ +
λ(k)

τ

∥∥∥∥∥
2
,(22)

v(k+1) = arg min
v

τ

2

∥∥∥∥∥AvΦ(k+1) +
λ(k)

τ

∥∥∥∥∥
2

(23)

with λ(k) being updated as

λ(k+1) = λ(k) + τAv(k+1)Φ(k+1).(24)

The subproblem (22) is a least squares problem, the solution of which is obtained by solving
a linear system. The second subproblem (23) is more difficult as it is neither linear nor convex.
We will show that it is related to an image registration problem and the optical flow algorithm
proposed by Gilliam and Blu [19, 18] can be adapted for finding a good approximation to the
solution.

4.1. All-pass filters for wind estimation. First, we consider the explicit objective function
of subproblem (23), i.e.,∥∥∥∥∥AvΦ(k+1) +

λ(k)

τ

∥∥∥∥∥
2

=

T−1∑
t=0

∥∥∥MT
v,tMv,t+1φ

(k+1)
t+1 −MT

v,tMv,tφ
(k+1)
t + λ

(k)
t /τ

∥∥∥2
.

To reduce the complexity of notations, let pv,t := MT
v,tMv,t+1φ

(k+1)
t+1 and qv,t := MT

v,tMv,tφ
(k+1)
t

and v := v(k) + u. In the frequency domain, for any displacement vector u = [u1, u2]T ,

(25) p̂v(k)+u,t ≈ f̂u ◦ p̂v(k),t and q̂v(k)+u,t ≈ q̂v(k),t,

where f̂u := [ei(ω1u1+ω2u2)]ω for ω = [ω1, ω2]T ∈ R2, p̂v,t is the Fourier transform of pv,t, and

◦ denotes the Hadamard product. It is clear that the filter f̂u is an all pass filter. From (25),
the objective function∥∥∥∥Av(k)+uΦ(k+1) +

λ

τ

∥∥∥∥2

≈
T−1∑
t=0

∥∥∥f̂u ◦ p̂v(k),t − q̂v(k),t + λ̂
(k)
t /τ

∥∥∥2

=

T−1∑
t=0

∥∥∥f̂u/2 ◦ p̂v(k),t − f̂−u/2 ◦ (q̂v(k),t − λ̂(k)
t /τ

)∥∥∥2
.

(26)
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The problem is converted into registering pv(k),t and qv(k),t − λ
(k)
t /τ for all t simultaneously.

The last equality of (26) expresses the shifting motion of u in a forward-backward form, and
later we will show that such an expression is crucial in constructing an all pass filter like f̂u.

We use the idea of the local all pass (LAP) algorithm [18] which is based on an approxi-
mation of the filter f in a space with basis {f (j)}. A typical choice of the filter basis is

f (j) := [f (j)]x1,x2 , where

f (0) = exp

(
−x

2
1 + x2

2

2ξ2

)
, f (1) = x1f

(0), and f (2) = x2 ◦ f (0).

Here ξ is a parameter that can be determined according to the size of displacement. A larger
basis is possible, but here we consider only the 3-dimensional case. The problem of estimating
fu in (26) is linearized into finding an optimal filter of the form f † = (

∑2
j=0 a

†
jf

(j)) with

a† = [a†1, a
†
2, a
†
3]T being a solution to

(27) min
a∈R3,a1=1

T−1∑
t=0

∥∥∥∥∥∥
 2∑
j=0

ajf
(j)

 ∗ pv(k),t −
 2∑
j=0

ajf
(−j)

 ∗ (qv(k),t − λ(k)
t /τ

)∥∥∥∥∥∥
2

,

in which ∗ denotes the convolution operation and f (−j) = [f (j)(−x1,−x2)]x1,x2 . The min-
imization can be done by solving a small linear system in a. Note that up to a scaling

constant f̂ † approximates f̂u/2, and f̂ (−†), defined as the Fourier transform of f (−†) :=

[
∑
a†f (j)(−x1,−x2)]x1,x2 , approximates f̂−u/2. Therefore f̂u, as an all pass filter, is ap-

proximated by  2∑
j=0

a†j f̂
(j)(ω1, ω2)

/
2∑
j=0

a†j f̂
(j)(−ω1,−ω2)


ω

which is also an all pass filter.
Finally, the new wind velocity is v(k+1) := v(k)+u(k+1) and the update u(k+1) is computed

as
(28)

u
(k+1)
1 =

2
∑

x1,x2

∑2
j=0 x1a

†
jf

(j)(x1, x2)∑
x1,x2

∑2
j=0 a

†
jf

(j)(x1, x2)
and u

(k+1)
2 =

2
∑

x1,x2

∑2
j=0 x2a

†
jf

(j)(x1, x2)∑
x1,x2

∑2
j=0 a

†
jf

(j)(x1, x2)
.

The method described here is a simplified version of the LAP algorithm, as the LAP algorithm
[18] was designed to estimate a motion field, i.e., u is a vector field rather than a constant
vector. To do this, the algorithm computes the velocity for each pixel by restricting the
problem in a small window centered at the pixel under the assumption that the motion field
within each window is nearly constant. However, this treatment is unnecessary in our problem,
since u is a constant velocity according to the TFF assumption. Hence we solve (27) for a
single motion vector over the entire domain.

4.2. The alternating direction method. In summary, the minimization process (23) re-
sults in a self-adaptive algorithm which updates the inexact wind velocity with the informationD
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Algorithm 1

Input: φDM
t for t = 0, . . . , T , v(0)

Output: Estimates of residual phases φ̂res
0 , . . . , φ̂res

T and the estimated wind velocity v̂.

Step 1. Initialization.
1. recover φres, coarse

t from the DM data φDM
t ,

2. compute the high resolution DM shape φ̃DM
t from φDM

t ,
3. compute the pseudo-WFS measurement s̃t with φres, coarse

t by (5),
4. set λ(0) = 0.

Step 2. For k = 1, 2, . . . ,m, repeat:
1. Compute Φ(k) as minimizer of the Lagrangian functional

J β1 (Φ,v(k−1)) +
(
λ(k−1)

)∗
Av(k−1)Φ +

τ

2
‖Av(k−1)Φ‖2

over all Φ. Here Φ(k) is a column stacking of φ
(k)
0 , . . . ,φ

(k)
T .

2. Estimate the wind velocity v(k) = v(k−1) + u(k), where u(k) is given by (28).
3. λ(k) = λ(k−1) + τAv(k)Φ

(k).

Step 3. The output is given by φ̂res
0 = φ

(m)
0 − φ̃DM

0 , . . . , φ̂res
T = φ

(m)
T − φ̃DM

T , v̂ = v(m).

from the observed data based on an implicit use of the TFF hypothesis. The algorithm is
described in Algorithm 1.

Note that Algorithm 1 is not an exact alternating direction method of multipliers (see,
e.g., [5]) as the optimization problem has a nonlinear constraint and the subproblem in v is
linearized as in (27). We investigate the convergence of the method from initial wind velocities
with errors in section 5.4. In real applications, only values of φt on the telescope aperture are
useful. Although in our model φt can be defined on a domain that is much bigger than the
telescope aperture, it is not necessary to do so as the part outside the telescope aperture does
not contribute to the blur of the observed image. For computational reasons, φt is defined on
a grid in a small rectangular domain covering the telescope aperture.

4.3. Solving the tomography problem. Let us now consider problem (21) which is also
nonconvex. We introduce an algorithm similar to Algorithm 1 for the minimization.

We define Av as a block diagonal matrix with diagonal blocks Av1 , Av2 , . . . , AvL . Then
the equality constraints in (21) have a compact form AvΦ = 0. The corresponding augmented
Lagrangian functional is given by

L2 (Φ,v,λ) = J β2 (Φ,v) + λ∗AvΦ +
τ

2
‖AvΦ‖2 .

Again, the idea of updating Φ,v,λ alternatively can be applied, and the main issue remains in
the subproblem of minimizing L2 with respect to v. For fixed Φ(k+1) and λ(k), the subproblem
can be decomposed into

(29) min
vl

τ

2

∥∥∥∥∥AvlΦ(k+1)
l +

λ
(k)
l

τ

∥∥∥∥∥
2

, l = 1, . . . , L,
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where Φ
(k+1)
l and λ

(k)
l are subvectors of Φ(k+1) and λ(k) corresponding to the lth layer, l =

1, 2, . . . , L. The problem (29) has the same form as (23), which means that the update of v
can be performed in a layer-by-layer manner using the technique described in subsection 4.1.
We use the update rule for λ from (24). The resulting method is summarized in Algorithm 2.

Algorithm 2

Input: φDM
t for t = 0, . . . , T , v(0)

Output: Estimates of residual phases φ̂res
0 , . . . , φ̂res

T and the estimated wind velocity
v̂.

Step 1. Initialization.
1. recover φres, coarse

t from the DM data φDM
t ,

2. compute the high resolution DM shape φ̃DM
t from φDM

t ,
3. compute the pseudo-WFS measurement s̃t of φres, coarse

t by (5),
4. set λ(0) = 0.

Step 2. For k = 1, 2, . . . ,m, repeat:

1. Compute φ
(k)
1,0, . . . ,φ

(k)
1,T , . . . ,φ

(k)
L,0, . . . ,φ

(k)
L,T as a minimizer of the Lagrangian

functional

J β2 (Φ,v(k−1)) +
(
λ(k−1)

)∗
Av(k−1)Φ +

τ

2
‖Av(k−1)Φ‖2

over all Φ. Concatenate the vectors φ
(k)
1,0, . . . ,φ

(k)
1,T , . . . ,φ

(k)
L,0, . . . ,φ

(k)
L,T as Φ(k).

2. For l = 1, 2, . . . , L, compute the new estimated wind velocity at the lth layer
as

v
(k)
l = v

(k−1)
l + u

(k)
l ,

where u
(k)
l is given by (28).

3. λ(k) = λ(k−1) + τAv(k)Φ
(k).

Step 3. The output is computed as φ̂res
0 =

∑L
l=1φ

(m)
l,0 −φ̃

DM
0 , . . . , φ̂res

T =
∑L

l=1φ
(m)
l,T −

φ̃DM
T , v̂ = v(m).

5. Simulation results. In order to validate our algorithm, we used a MATLAB-based AO
simulation tool to obtain the required data. As a benefit of simulation, we can compare the
phase recovered on a fine grid to the true incoming phase. As no alternative algorithms to solve
this problem exist in the literature, we demonstrate the reconstruction quality by comparing
the results to the ground truth. Additionally, we compare our method in section 5.4 to the
use of optical flow constraints.

5.1. Simulation setting. The simulated system is an SCAO system on an 8 m telescope,
equipped with one 40×40 SH-WFS, described in Table 2. We perform simulations for different
atmospheric settings to demonstrate the power of our method. As a starting point, we consider
an atmosphere consisting just of one layer with a wind speed of 15 m/s in direction 0◦. In theD
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Table 2
Description of the simulated SCAO system.

Telescope diameter 8 m

Central obstruction 2.2 m

1 NGS SH-WFS 40 × 40 subapertures

WFS wavelength λ 0.589 µ m

WFS integration time 2 ms

1 DM at height 0 m closed loop

DM actuator spacing 0.2 m

Table 3
Nine-layer median atmosphere.

Layer 1 2 3 4 5 6 7 8 9

Height(m) 47 140 281 562 1125 2250 4500 9000 18000

c2n-profile 0.522 0.026 0.044 0.116 0.098 0.029 0.059 0.043 0.06

Wind speed 15 13 13 9 9 15 25 40 21

Direction 0 π/2 π 3π/2 0 π/2 π 3π/2 0

next steps, first we change the direction to 30◦ and, second, we move to a two layer profile,
with relative strengths 0.65 and 0.35. The altitudes of the layers are 0 and 5000 m, the wind
speeds 15 m/s, and the directions 0◦ and 90◦, respectively.

As a last step, we take an atmospheric profile with nine layers, often referred to as an
ESO standard profile from [26]. This model is based on measurements at ESO’s site Paranal
in the Atacama desert with a Fried parameter r0 = 12.9 cm. In Table 3, the values for the
nine-layer medium seeing atmosphere are given.

The AO loop is controlled using the cumulative reconstructor with domain decomposition
algorithm [32, 33] with optimized loop gain. We take the first 20 frames of an AO simulation
using these parameters to show the performance of our algorithm.

Note that using more than 20 frames might improve the results further, however, it also
clearly increases the computational costs. The maximum number of frames that can be used is
related to the wind speed. If the atmospheric turbulence seen in the first frame is blown over
the whole telescope and no part of it can be seen anymore in the T th frame, it is reasonable
to stop taking into account any frame after T steps. Note that, therefore, it is required that
the frozen flow hypothesis holds for at least T frames. For the setting of Table 2 and a
wind speed of 15 m/s, we have T = 267. However, one may also think of reconstructing the
atmosphere on an ever bigger domain, and thus take into account more than T frames. In
real observations this idea will most likely fail as the TFF hypothesis will not hold for 267
frames being equivalent to more than 0.5 s of real time. Therefore, we did not follow this idea
further as it also increases the computational costs.

5.2. Numerical considerations. The residual of the incoming phase φres
t (x) is computed

by the simulation software on a fine level with 400× 400 pixels across the telescope aperture,
translating into 2 cm/pixel. The SH-WFS has 40 × 40 subapertures and the DM 41 × 41
actuators, which limits the resolution of the reconstructed incoming phase for the usual AO
control algorithm to this level as the DM cannot use higher resolved incoming phases.D
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Our method is able to provide a high resolution reconstruction, however, we cannot choose
it arbitrarily large as the resolution of the reconstruction should still be smaller than the
resolution of the simulated incoming phase, in order to avoid an inverse crime. In the following
simulations, the underlying grid for the high resolution reconstruction is chosen to be four
times finer than the grid of the DM actuators, resulting in a 161× 161 reconstruction.

To judge the quality of our fine resolution reconstruction, we compare it to the ground
truth. As a quality criterion, we take the l2-norms of the reconstruction error, i.e.,

‖φ̂res
t − φres

t ‖2,(30)

where t indicates the time step and φ̂res
t is the result of our algorithm. Due to the different

resolutions, we have to interpolate the simulated φres
t to the same grid as φ̂res

t . For this
purpose, we use the MATLAB function interp2. To make a comparison, we also interpolate
φres, coarse
t to the same grid as φ̂res

t and compute the corresponding l2-error. Since only the part
of the phase inside the telescope aperture contributes to the image quality, in (30), φ̂res

t and
φres
t are restricted to the telescope domain with the piston mode (i.e., the additive constant

complement) removed.

5.3. Numerical results. In this section we present the numerical results from several test
runs. We always use the first 20 frames for our algorithm to compute the high resolution
residual phase. We will demonstrate the performance of our algorithm by first assuming
that exact wind velocities are given and solving problem (9). After that, we consider the
situation where the exact values of wind velocities are unavailable which usually happens in
real applications. Algorithms 1 and 2 with adaptive wind velocities are employed to find the
high resolution reconstructions in this case.

5.3.1. Exact wind velocity case. To highlight the strength of our method, we start with
the simplest possible case, i.e., simulation 1 (S1): All atmospheric turbulence is located in
one layer close to the ground, with known wind speed and direction, and a bright star can
be used as a guide star. In this case the used AO control algorithm provides a correction
in the K-band close to the diffraction limit. Using our model (9), we can still reduce the
l2-error between the true residual phase φres

t and the reconstructed residual phase φres, coarse
t

by 15 to 20%; see Figure 5(a). The l2-error of the bilinear interpolation at the first time step
is much bigger than the others because the control loop of the system has to be closed and
no other information of the phase is available at this time within the AO control algorithm.
Our high resolution (HR) reconstruction still results in a small l2-error at the first time step
since we have used the data from the following time steps as well. The l2-error curve of our
reconstruction has significantly less oscillation over the time than the l2-error curve of the
bilinear interpolation, which is reasonable as our reconstructed phase does not rely heavily on
data of a specific time step and hence prevents enormous errors.

As a next step, in simulation 2 (S2), we change the guide star flux to simulate a faint
star. This leads to a decreased correction quality through the AO control algorithm but
leaves more room for improvement of the reconstructed residual phase. With low flux the
real time reconstruction for the adaptive system has correction errors that are bigger than the
reconstruction with high flux. So for the low flux case, the AO system is unable to use theD
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(j) HR reconstruction
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(k) HR reconstruction
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(l) HR reconstruction

Figure 5. First column: simulation 1; second column: simulation 2; third column: simulation 3. The plots
in the first row are l2-errors of the reconstruction, with the x-axis being the frame number. All the images from
the second row to the last row are corresponding to t = 16 (i.e., at the 16th time step) and show wavefronts in
m.
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data efficiently enough, and we expect that a more significant improvement can be made by
our algorithm which takes full consideration of the relation of the data from all time steps.
Indeed, our method reduces the residual l2-error by 70 to 80%, as shown in Figure 5(b).

In the first two simulations the wind direction was parallel to an axis, which gives more
information for HR reconstruction in one direction than in the other. The best possible
situation would be a wind direction of 45◦ to the axes, leading to an equally spread gain of
information in x- and y-direction. However, such a direction might not occur in practice, thus
we choose an angle of 30◦ with respect to the first axis for simulation 3 (S3). Changing again
to high flux, even in this case our algorithm gives an improvement of 45% to 65%, shown
in Figure 5(c). Compared to the accuracy improvement for S1 (which is around 20%), the
improvement for this one is much more significant. However, this is reasonable as the sampling
points from different time steps have less overlap. Recall that the angle between the wind
velocity and the first axis is 30◦, which ensures that the trajectories of coarse grid points do
not have an overlap with each other. In S1, in contrast, the coarse grid points always fall in
n+ 1 lines parallel to the first axis where n is the number of grid point on the second axis.

In Figures 5(d)–5(l), the images of the reconstruction by bilinear interpolation on the DM
data, the true phase in HR and the HR reconstruction by the proposed method are given.
As expected, the bilinear interpolations do not include the fine details of the residual phase
well. Our approach is able to recover some missing high frequency components in the data,
therefore, shows an improvement from the bilinear interpolation.

However, the HR reconstruction is limited by several factors. First, the time interval in
which the TFF hypothesis holds is typically small. This limits the amount of low resolution
data and therefore sets an upper bound for the resolution of the reconstruction. Second,
the low resolution data are not acquired in a random manner. Instead, the motion vector is
constant and the coarse grid points propagate in a fixed direction with a constant rate, which
means that the two-dimensional phase is not evenly sampled in a short time.

To take a closer look, Figure 6 displays the images of reconstruction errors for simulations 1
and 3. The error images of the HR reconstruction have some special patterns. In Figure 6(b),
the pixels with a bigger error are concentrated on some lines parallel to the vertical line, while
in Figure 6(d) the relatively big errors are mainly distributed on the lines having an angle of
30 degrees with the vertical line. The directions of the lines coincide with the directions of
the winds in both cases, which indicates that the phase at some grid points is not detected as
well as other points over the process.

We take two additional steps to get closer to a realistic on-sky scenario. For a two-layer
atmosphere and high photon flux, i.e., simulation 4 (S4), the performance of our algorithm is
a bit worse than in the one-layer case, as now the problem becomes a tomography problem.
As the wind directions for the two layers are different, recovering the information on each
layer is much more challenging. Still, the improvement by of our algorithm ranges from 20%
to 30%. The results for this case are plotted in Figure 7(a).

The final step is to use the ESO standard profile from Table 3 in simulation 5 (S5). In
this case, the AO control algorithm still performs on a high level. Applying our algorithm
leads to an improvement between 10% and 25%, showing that our model can cope with the
multilayered nature of the atmosphere. The results are shown in Figure 7(b).
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(b) our method for simulation 1
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(c) bilinear interpolation for sim-
ulation 3
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(d) our method for simulation 3

Figure 6. Reconstruction error images at t = 16 of the bilinear interpolation and our method.
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Figure 7. (a) and (b) are the l2-errors of two methods for simulations 4 and 5, respectively. The x-axis is
the frame number.

5.3.2. Reconstructions with inexact wind velocities. We further study the performance
of the proposed algorithms when the initial wind velocities (IWVs) are imprecise. The adaptive
wind velocity (AWV) algorithm is used. To make the results comparable to the previous re-
construction, we let the simulation settings be the same as before except that the precise wind
velocities (PWVs) are replaced by the imprecise ones. The proposed method is employed on
the five simulations and the IWVs are assumed to have 10% to 20% error for all simulated cases.

For the first three simulations, Algorithm 1 is used and one wind velocity is computed for
each simulation. The l2-errors of the HR reconstructions are shown in Figures 8(a)–8(c). ForD
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Figure 8. (a)–(c): The l2-errors of the reconstructions for simulations 1 to 3, respectively. In these plots
the x-axis is the frame number and y-axis is the l2-error. The exact wind speed means reconstruction with fixed
PWV, while the wrong wind speed means using IWV without adaption. (d)–(e): the AWV for simulations 1 to
3. The unit of the x- and y-axis is pixels per time step, given as 25 m/s (i.e., the number of HR pixels (with
length 0.05 m) per time step (being 1/500 s).

comparison the previous test results on exact wind velocity cases are also displayed. According
to the figures, with IWV the minimizer of (9) is computed and the corresponding l2-error is
significantly bigger than the ones obtained with the exact wind velocity at the first and last
few frames, except for the low flux case (i.e., the second simulation). An IWV does not play a
key role in the reconstruction accuracy in the low flux case where the observed data are very
unreliable.

The estimated wind velocities at all iterations are plotted in Figures 8(d)–8(f). The unit
of the x- and y-axis is relating the number of HR pixels (with length 0.05 m) to the length
of a time step, being 1/500 s, thus giving 25 m/s. In the high flux cases, Algorithm 1 starts
with an IWV that has around 20% error, but finally outputs improved ones with less than 1%
error. This implies that the algorithm is capable of extracting the wind velocity information
from the AO data itself, and explains why it is still able to have a comparable reconstruction
accuracy to the one obtained with the exact wind velocity, as shown Figures 8(a) and 8(c).
In the low flux case, the error of the estimated wind velocity is reduced from 13.4% to around
1.4% as shown in Figure 8(e).

For simulations 1 and 3, the error images of the reconstruction from the last subsection, the
reconstruction by the proposed algorithm, and the reconstruction with fixed IWV are given
in Figure 9. Significantly larger errors can be observed from the algorithm without AWVsD
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Figure 9. Error images of different reconstructions at t = 16. (a)–(c): With exact wind velocity, with
AWV, and without AWV for simulation 1. (d)–(f): With exact wind velocity, AWV, and without AWV for
simulation 3.

while the proposed algorithm with adaptive velocities results in errors that look similar to the
reconstructions with PWV.

For the two-layer case, i.e., simulation 4, we used Algorithm 2 which solves for the HR

residual phase as well as the wind velocity for each of the two layers. IWVs {v(0)
l }, having

around 10% to 20% error, are given. A reconstruction from (9) using the wrong wind velocities

{v(0)
l } is also computed and a large error is observed at the first and last few frames as shown

in Figure 10(a). The reconstruction at the middle frames, however, has a close accuracy to
reconstruction for the exact wind velocity case. On the other hand, Algorithm 2 with only

inexact wind velocities {v(0)
l } gives almost the same accuracy as the solution of (9) with exact

wind velocities. In Figure 10(c), the wind velocity estimates for each of the two layers are
displayed. It suggests that our algorithm can recover information of the wind velocities from
the DM data itself using imprecise IWV.

Finally, Algorithm 2 is used to estimate estimates of the nine wind velocities for nine layers
in the fifth simulation. Though in this case the l2-error of the minimizer of (9) with the fixed
IWV is still reasonably small compared to the minimizer with the PWV, Algorithm 2 can still
make an improvement with the implementation of AWV. The resulting accuracy is shown in
Figure 10(b) and the estimated wind velocities for all layers are given in Figure 10(d). The
algorithm fails to distinguish the layers with close wind velocities, such as the second layer and
the sixth layer. The isolated wind velocities, however, are captured well, such as that of the
fourth layer and the eighth layer. The reconstruction does not depend heavily on separatingD
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Figure 10. The l2-errors and the estimated wind velocities for simulation 4 and 5.

the wind velocities of those layers with similar motions, as the reconstruction accuracy shown
in Figure 10(b) is still comparable to the one obtained with the PWV.

5.4. Numerical convergence and comparison of our method. As discussed in section 4.2,
the constraints of our method are nonconvex. Therefore no convergence to a global minimum
is guaranteed for our method theoretically. We demonstrate that our method converges nu-
merically to the correct solution for different levels of errors in the IWV and compare our
method to the optical flow constraints.

5.4.1. Different levels of error in the initial wind speed. In this subsection we test
different initialization and different levels of noise in wind velocities and investigate their
impacts on the algorithm.

For each simulation, 8 different initializations with 66.7% error (i.e., the squares in Fig-
ure 11(a)) are applied. The trajectories of the estimated wind velocity by the algorithm are
plotted in Figure 11(a). The iterations of the wind velocities converge to a point close to the
ground truth value (i.e., the circle in Figure 11(a)) consistently for all the simulations.

We also compared the accuracy of wind estimation under different levels of errors in IWV
(66.7%, 40%, 24%, 14.4%, 8.6%, 5.2%, and 0%, respectively). The estimation errors are
plotted against the initialization errors in Figure 11(b) for the four simulations, respectively.
This clearly shows that the final errors in wind velocity are stable with respect to the levels
of initial errors.D
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Figure 11. Reconstruction accuracy with different wind velocity initialization and different levels of IWV
errors for simulation 1 (1st column), simulation 2 (2nd column), simulation 3 (3rd column), and simulation 4
(4th column), respectively. The results for (b) are averaged from 8 different initializations at each error level
of IWV. The error bars in (c) reflect the impacts of 8 initializations.

It is also interesting to note that the error of computed HR residual phase by our (joint
phase reconstruction and wind estimation) approach remains small despite different levels of
initial wind errors (ranging from 66.7% to 0%), i.e., the black curve in Figure 11(c). The
reconstruction using the fixed wind velocity algorithm (i.e., the blue curve in Figure 11(c)),
in contrast, significantly degraded as the error in the wind velocity increases.

5.4.2. Comparison with the optical flow constraints. We compare our model with the
optical flow constraints (OFC) [6, 1], which is a well-known model for motion estimation in
imaging problems. The OFC assumes that the function values (e.g., image intensity) remainD
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Figure 12. The S3 open loop wavefront (left), residual of discrete OFC (middle), and ours (right).

Table 4
l2 reconstruction error under constraint OFC and SD with different wind velocity initializations.

Error in IWV Constraint S1 S2 S3 S4

66.7%
OFC 6.27 × 10−6 1.04 × 10−5 2.94 × 10−6 6.42 × 10−6

SD 5.08× 10−6 1.03× 10−5 2.28× 10−6 5.32× 10−6

14.4%
OFC 6.34 × 10−6 1.03 × 10−5 2.94 × 10−6 6.69 × 10−6

SD 5.08× 10−6 1.03× 10−5 2.28× 10−6 5.32× 10−6

0%
OFC 6.37 × 10−6 1.03 × 10−5 2.94 × 10−6 6.82 × 10−6

SD 5.08× 10−6 1.03× 10−5 2.28× 10−6 5.32× 10−6

unchanged along the trajectory of a moving point and, therefore, satisfy

∂φ

∂t
+∇φ · v = 0

for an image φ. This can be discretized as

(31) φt+1 − φt +∇h
φt + φt+1

2
· v = 0

in our setting where the measurements are taken at a fixed time frequency. Here ∇h is the
discrete gradient operator.

We first evaluate the approximation error of OFC (31) and our constraint (9) on a ground
truth simulated phase. The residual of our constraint is much smaller than that of OFC (see
Figure 12). We denote our constraint (9) by successive difference (SD). The comparison of
these two approaches with different initial wind error levels (0%, 14.4%, and 66.7%) is given
in Table 4. Our method achieves a better reconstruction error over different simulations and
IWVs.

6. Conclusion. We investigated the problem of deriving an HR phase from coarse mea-
surements in a closed loop AO system, arising from the quest of using such an HR phase in
postprocessing of the data. After describing the system setting, we developed an approach for
solving this problem with consideration of the model error due to imprecise observations (i.e.,D
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wind velocity). Our approach is based on the TFF hypothesis and uses subsequently applied
DM shapes in a minimization procedure to obtain a HR phase. For known wind velocities
in the different atmospheric layers the functional to be minimized describes a tomography
problem and can be solved with standard tools.

As the wind velocities might not be known in practice, we also investigated the case of
imprecisely known wind velocities. This results in an augmented Lagrangian functional, which
can be solved using an alternating direction method. Finally, we demonstrated the power of
our method in numerical experiments under different atmospheric conditions. The l2-error
is clearly reduced by our method compared to a simple bilinear interpolation from a coarse
to a fine grid in all cases. For the more realistic setting with nine atmospheric layers and
imprecise knowledge of the wind velocities, the adaptive method outperforms the method
using constantly wrong wind velocities and is close to exact knowledge of the wind velocities.

In practice, this method might be useful on the one hand for temporal control, using the
calculated HR phase to predict the incoming phase (see [30] and the references therein for
details on temporal control), and on the other hand a highly resolved phase could be useful
for postprocessing, e.g., in PSF reconstruction methods as in [39]. Bringing our method to
this level requires investigating the behavior when scaled to the size of upcoming 40 m class
telescopes like ESO’s ELT. Furthermore, we will test our algorithm in end-to-end simulation
tools for such telescopes to demonstrate the feasibility for the AO community in more detail.
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