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Abstract
We advocate an account of dualities between physical theories: the basic idea is that
dual theories are isomorphic representations of a common core. We defend and illus-
trate this account, which we call a Schema, in relation to symmetries. Overall, the
account meshes well with standard treatments of symmetries. But the distinction
between the common core and the dual theories prompts a distinction between three
kinds of symmetry: which we call ‘stipulated’, ‘accidental’ and ‘proper’.
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1 Introduction

Symmetries have long been a central topic in the philosophy of physics: as witness
collections such as Brading and Castellani (2003) and this special issue. But dualities
between physical theories have only more recently become a focus of interest.1 In this
paper we bring the topics together, by applying an account of dualities that we have
developed elsewhere.

Bringing the topics together is natural. For in the literature, it is agreed by all hands
that a duality is like a “giant symmetry”: a symmetry between theories. For in physics,
the basic idea of a symmetry is amap taking a state of the system into another appropri-
ately related state; and correspondingly mapping physical quantities—details below.
And in a duality, an entire theory is mapped into another appropriately related theory.

Our account of dualities will confirm this basic analogy. The leading idea will be:
(i) the preservation, or appropriate matching, of a state’s values for various quantities,
and (ii) this preservation or matching being maintained by the dynamics of the system.
(We say ‘preservation or matching’ so as to respect the distinction between invariance
and covariance, and ‘dynamics’ is to include Euclidean systems: details below.)

In short: our account—we call it a ‘Schema’—holds that a duality between two
theories requires that:

(a) The two theories share a common core; the common core is itself a theory,
which we will call the bare theory; (for us, a bare theory or model is a theory or model
stripped of its interpretation; more details in Sect. 2.1); and

(b) The two given theories are isomorphic models of this common core, the bare
theory.

Here, we understand ‘models’ as realizations or formulations. They are almost
always representations in the sense of representation theory, i.e. homomorphic copies
of the bare theory. Representations are of course in general not isomorphic. But we say
that duality is a matter of two models of a common core, a bare theory, being indeed
isomorphic with respect to the structure of that core.

1 See for example Castellani (2017), Dieks et al. (2015), Fraser (2017), Huggett (2017), Matsubara (2013),
Read (2016), Rickles (2017).
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We stress that here we mean ‘representation’ in the mathematical, not the philo-
sophical, sense. The bare dual theories do not interpret the bare common core theory
(notwithstanding our use of the word ‘model’). Rather they are specific realizations or
formulations of the bare theory, like the matrix representations of an abstract group.
But agreed: the dual theories, and also often the bare theory, do get interpreted. Inter-
pretation, and our choice of jargon, is further explained in Sect. 2.1.

We have developed this Schema in various papers. The most detailed one is our
(2018). It also illustrates the Schema with a major example: bosonization, which is a
duality between two quantum field theories in two spacetime dimensions—one with
bosons, and one with fermions. So here, a bosonic model is isomorphic to a fermionic
model; (their common core is a certain infinite-dimensional algebra). Other papers (De
Haro 2016a, 2018b; Butterfield 2018) discuss in more detail duality’s relation to the
interpretation of theories, especially the various senses in which theories get called
‘equivalent’. Other papers discuss other advanced, indeed conjectural, examples in
string theory (De Haro 2015, 2017; De Haro et al. 2016, 2017). And yet other papers
discuss the less formal aspects of dualities: in particular, their heuristic role in finding
a theory “behind” the bare theory, of which the dual models are only approximations
not representations (De Haro 2018a), and in relations to understanding (De Haro and
De Regt 2018a, b).2

Thus the aim of this paper is to relate the Schema to symmetries in more detail than
we have done previously. (Our previous discussion was in (2018: Sects. 3.1.1, 3.2.4).)
The main topic will be the relations between symmetries of the common core theory,
and symmetries of one of the dual theories (one of the models of the common core).
This topic is an important preliminary to discussing the ‘interaction’ of symmetries
with dualities. It will call for care about what parts of a model “do the representing” of
a common core; (cf. Sect. 2.2’s distinction betweenmodel root and specific structure).
It will also lead to a classification of kinds of symmetry (Sect. 5, summarized in
Sect. 5.4). Thus we will give as much emphasis to symmetries as to dualities (usually
treating symmetries first).

To be as clear as possible, we will build up the details successively. In effect,
Sects. 2 and 3 set the stage for the main claims in the second half of the paper. We
begin by explaining the contrast between the two ‘levels’: the bare theory, and its
models (realizations). This contrast is a prerequisite to our discussing symmetries and
dualities, since it can (should!) be explained for the case of a singlemodel (realization):
i.e. regardless of whatever dualities, or symmetries, may hold good. This we do in

2 Weadmit at the outset that because our Schemadefines duality formally,without regard to the isomorphism
being surprising or scientifically important, it has many illustrations that are unremarkable, and indeed not
usually called dualities. We will see examples below: cf. Sect. 2.3. Contrast a case like bosonization.
Since bosons and fermions are very different, it is indeed a surprising isomorphism. It is also scientifically
important because it pairs situations of strong coupling in one dual (so that problems are in general difficult
to solve, since perturbation theory cannot be trusted) with situations of weak coupling in the other dual: so
one can sometimes solve a problem in the weak coupling regime of one dual and transfer the result, so as to
solve an intractable problem in the other dual. Broadly speaking, dualities’ scientific importance depends
on these features: the isomorphism being surprising, and its relating strong and weak coupling regimes.
But features like importance and surprise are hard to be precise about: hence our decision that it is best to
define duality formally, even at the expense of countless trivial examples. For more discussion, cf. De Haro
and Butterfield (2018: Sect. 2.1) and De Haro (2018a: Sects. 1, 3.3).
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Sect. 2. As we will see, this involves various issues of interpretation, even controversy.
And it prompts our distinction between model root and specific structure.

We are thereby equipped to give a brief exposition of our Schema, and a more
detailed prospectus of the second half of the paper—i.e. of our account of the relations
between symmetries and dualities. These are in Sect. 3.

This account starts with symmetries in general: without regard to dualities, or even
our distinction between theories and themodels that realize or represent them; (Sect. 4).
Here, we relate our basic idea of symmetry, as a map on states that preserves quanti-
ties’ values, to some familiar topics: such as dynamical symmetries, how spacetime
theories treat symmetries, and what is the subset of quantities that it is “worthwhile”
for symmetries to preserve (cf. Caulton 2015). Then we discuss how symmetries fit
with the theory-model relation: but again without regard to dualities; (Sect. 5). Here,
the differing amounts of structure at the levels of the bare theory and its models—the
distinction betweenmodel root and specific structure—will prompt definitions of three
kinds of symmetry: which we call stipulated, accidental and proper. Finally in Sect. 6,
we describe how on our account, dualities preserve symmetries in a straightforward
way. Sect. 7 concludes.

A final preliminary: our scope is limited. We will not engage in detail with two
debates that have been prominent in the recent philosophical literature about symme-
tries. For these debates are orthogonal to most of this paper’s issues: which centre
around the relations between symmetries of the common core, and symmetries of
its models. But for completeness, we here briefly note these debates, and our broad
view about them. They both concern whether symmetry is always a sign of ‘surplus
structure’, ‘redundancy’ or ‘gauge’: for the relation of this to duality, cf. our (2018:
Sect. 3.2.4)

(1) Should two symmetry-related solutions of a theory: (a) be interpreted ab initio
as representing the same physical state of affairs?; or (b) be taken merely to motivate
searching for a common ontology that secures such an interpretation? This debate is
articulated by Møller-Nielsen (2017) and, in relation to dualities, Read and Møller-
Nielsen (2018). These authors defend option (b). Broadly speaking, we agree with
them, about symmetries as well as dualities: cf. De Haro (2016a: Sect. 1.3), Butterfield
(2018: Sects. 1.2, 3.3) and De Haro (2018b: Sect. 2.3).

(2) Given a theory whose solution-space is partitioned by a group of symmetries—
i.e. solutions in the same same cell are symmetry-related—should we: (a) try to
write down a ‘quotiented’ (also known as: ‘reduced’) theory whose solutions cor-
respond to the cells of the partition; or (b) resist quotienting the given theory,
but take its symmetry-related solutions to be isomorphic? This debate is articu-
lated, with (a) and (b) labelled ‘reduction’ and ‘sophistication’ respectively, by
Dewar (2015: Sects. 4–6, 2017), see also Caulton (2015: pp. 156–157). Dewar
defends sophistication. Broadly speaking, we are sympathetic (De Haro 2018b: Sect.
3.2.3; Butterfield 2018: Sect. 2.3): reduction is not to be undertaken lightly. But
the Schema does not commend one or the other: we will encounter these two
alternatives in Sect. 2.3.2, and we will see that the choice between a ‘reduced’
or a ‘sophisticated’ formalism basically comes down to a choice of representa-
tions.
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2 Theories, models, model roots and specific structure

We said at the beginning of Sect. 1 that on our account of duality, two dual theories
share a common core, which is itself a theory, the bare theory—and that they are
isomorphic models of it. So to explain that account, we first need to explain our use
of the terms ‘theory’ and ‘model’: which, after all, have various (conflicting!) uses.
We do this in Sect. 2.1. This leads to: distinguishing within a model, what we will call
the model root (in most cases: a model triple) from the specific structure (Sect. 2.2);
and giving examples of this distinction (Sect. 2.3). Finally, we introduce notation for
the values of physical quantities on states (Sect. 2.4). Then we will be ready to define
duality as an isomorphism of model roots: details in Sect. 3.

2.1 ‘Theory’ vs. ‘model’: interpretation

For the words ‘theory’ and ‘model’, the first point to make—the main idiosyncrasy in
our usage—arises from the fact that since a duality compares two theories, it involves
two “levels”: the common core “above” (more general and-or more abstract) and
the theories “below” (more specific and-or more concrete). On the other hand, one
naturally thinks of a theory as general and-or abstract, “standing above”, and “being
common to”, its more specific and-or concrete models. So in order to discuss duality,
the question arises: should we allocate the word ‘theory’ to the common core, or to
each of the two dual theories?

We opt for the former. And since the two dual theories (so-called!) are indeed
specific and-or concrete realizations (versions, formulations) of this common core
that we have opted to call a ‘theory’, we also co-opt the word ‘model’ for the duals
themselves. So the overall effect of our jargon is to lift the use of the words ‘theory’
and ‘model’, “one level up”.

As a simple example to illustrate our usage, consider position-momentum duality
in elementary Schrödinger-picture quantum mechanics. Although the position and
momentum representations might have been discovered, in a counterfactual history,
as different “theories” (since the Schrödinger equation takes very different forms
in the position and momentum bases, as do the operators and wave-functions), the
discovery of theFourier transformation reveals that these are in fact two representations
of a common core theory: namely, quantum mechanics formulated in the basis-free
language of Hilbert space. Thus what in the counterfactual history is thought to be two
distinct “theories”, is seen to be just two models, i.e. representations, of a common
structure, which we call elementary quantum mechanics.

2.1.1 ‘Model’

So beware! This means that our use of ‘model’ rejects three common connotations of
the word.3 Namely, the connotations that a model is:

3 In Sect. 5.2, we will recover the first notion, (i), of a ‘model’, as a special case of our usage. That we
here reject this connotation means that our models are not defined as in (i). But in Sect. 5.2’s specific case,
“models” in sense (i) turn out to be models in our sense.
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(i) a solution of the theory, or a history of the system concerned (often a trajectory
through the state-space), as against ‘all solutions’—which are the purview of the
theory; and-or

(ii) an approximation(s) to what the theory says (maybe about a specific regime or
system the theory is concerned with); and-or

(iii) a part of the empiricalworld—ahunk of reality!—that thus gives an interpretation
(or part of an interpretation) of the theory.

We will indeed later be concerned with the ideas (i) to (iii): (in fact, with (iii) in this
Subsection). But they are not part of our definition of ‘model’.

Instead, a model is for us a specific realization (or version or formulation) of a
theory. That is: it ‘models’ (verb!) another theory “above”, which in general also
has other such models. Almost always, it is a representation of the theory above,
in the sense of mathematical representation theory—‘representation’ being another
word with confusingly diverse uses. Recall the example, in this Section’s preamble,
of position versus momentum representations.

And as we have announced: the main case for us of “the theory above” will be the
common core, the bare theory, of two dual theories (our ‘models’). (It is usually best
to think of the bare theory as uninterpreted, or abstract: though it may be interpreted:
cf. Sect. 2.1.3). So we say the two given theories are models of the bare theory; and
their being isomorphicmodels of the bare theory (isomorphic as regards the structure
of the bare theory) is what makes them duals.

2.1.2 ‘Theory’

As to our use of ‘theory’, the main thing to say is that it is mainstream: i.e. typi-
cal of the literature, especially the literature on the semantic conception of theories
as applied to physics. Agreed: recent philosophy of science has emphasised many
aspects of scientific endeavour that hardly invoke the notion of scientific theory, cen-
tral though this notion was for discussions by both the positivists and their successors.
For example, aspects such as experiment (calibration of instruments etc.), causation
(mechanistic explanation etc.), and the social dimensions of knowledge (testimony
etc.) have recently been discussed with a strong emphasis on models (in a more usual
sense than ours!), rather than theories.

We agree that these aspects of scientific endeavour are important for our philosoph-
ical understanding of science (De Haro and De Regt 2018a: Sect. 1.1). But even if
these aspects do not need the notion of theory, still the notion may well be useful for
other aspects. Indeed, we believe it is indispensable for discussion of symmetries and
dualities in physics.4

More specifically: we can often think of a physical theory as a triple: a state-spaceS
(e.g. a Hilbert space in a quantum theory), a set of physical quantitiesQ (almost always
an algebra), and a dynamics D that describes how the values of quantities (on states)
change over time (and-or over space—so as to accommodate Euclidean theories). As

4 We also believe it useful, even indispensable, in other discussions. One main one is understanding
renormalization—a topic for which, again, there has been scepticism about its usefulness: e.g. Kaiser
(2005: pp. 377–387). For a defence of the notion, cf. Butterfield (2014: Sect. IV.1).
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we said in Sect. 1, symmetries and dualities will concern the preservation or matching
of these values.5 So we will sometimes write a theory (and of course: a model in our
sense) as a triple, e.g. 〈S,Q,D〉. In any specific case, each of S, Q and D will of
course have further structure. For example:

(i) For a quantum theory, S will usually be a Hilbert space, or a set of density
matrices; for a classical theory, it will usually be amanifold, or a set of probability
distributions;

(ii) For almost any theory, Q will be an algebra over the real or complex numbers,
allowing quantities to be added and multiplied; and

(iii) For almost any theory, the dynamics D can be understood either in Schrödinger
picture, with states changing over time and quantities fixed over time, or in
Heisenberg picture (vice versa).

Two clarifications about our treatment of a theory as a triple: the first formal, the
second interpretative. First: note that we said: ‘we can often think of a physical theory
as a triple’, and ‘almost any’ in (ii) and (iii). For we agree that not every theory is
presented, or best thought of, in this way. Theories in statistical and quantum physics
are often formulated in terms of partition functions and-or path integrals with sources,
and related concepts like sets of correlation functions, rather than in terms of states
and quantities. And in field theories, the dynamics is often presented as field equations
holding at each spacetime point—and so not naturally thought of in terms of the
Schrödinger or Heisenberg pictures with their “background time”. But in this paper,
we can think of theories (and models, in our sense) as such triples: all our morals will
carry over to these other ways of formulating theories.6

Second: We admit that of course, a physical theory is almost never presented to
us as a tidy triple of state-space, quantities and dynamics. Almost always, the theory
appears to us messier than that: more vaguely defined and-or more complicated. The
triple needs to be extracted from that “mess”. Indeed, there are two points here.

(i) The complicated appearance is of course in part due to those aspects such as
experiment mentioned above. But this complexity, and the need to allow for such
aspects (and to assess them philosophically), does not militate against extracting
a triple as a concept useful for e.g. understanding symmetries.

(ii) We make no claim that there is always, or even typically, a unique best definition
of the triple. So presenting a theory as a triple usually involves: (a) choices
about exactly what to take as the state-space etc.; and even (b) judgment about
interpretative and perhaps controversial matters. We will see some examples of
this variety, already in Sect. 2.2; and we will see that these choices may affect
verdicts of interest, e.g. whether there is an isomorphism, or a duality.

5 In addition, a theory often comes with stipulated symmetries. We will discuss these in Sects. 4.2 and 5.1.
6 Of course, one can draw connections between formulations with states, quantities and dynamics—our
triple conception—and other types of formulation, like partition functions, path integrals and field equations.
For example, a partition function with a source that couples to an operator in the Lagrangian of a quantum
field theory is standardly used to calculate, by taking functional derivatives, the correlation functions of that
operator in the vacuum state. Cf. Sect. 4.4, and De Haro et al. (2017: pp. 75–76).
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2.1.3 Interpretation

This brings us to the interpretation of physical theories. A large subject! But here, we
only need to report another part of our overall position, which is again mainstream.
Namely, we endorse the endeavour of giving theories (and so: models in our sense)
a classical referential semantics. That is: we envisage assigning references in the
empirical world to appropriate elements of theories—be they states and quantities
(i.e. mathematical objects) for a theory presented as a triple, or words and sentences
(i.e. linguistic objects) for a theory presented in a language. This even-handedness
between mathematical and linguistic objects—and thus between theories as N -tuples
and as sets of sentences—is deliberate: for we endorse recent arguments against the
traditional firm distinction between the semantic and syntactic conceptions of theory
(Lutz 2017; Glymour 2013; van Fraassen 2014).7

This even-handedness is one reason we call our endorsement of referential seman-
tics ‘mainstream’. There are also two other reasons: the first is familiar in philosophy
of science, and the second is familiar in philosophy of language.

First: recall that accepting such referential semantics is independent, or at least
largely independent, of the debate over scientific realism. For that debate is largely
about what is the right attitude to our theories, not about their semantic content. Thus
the arch empiricist, van Fraassen, explicitly accepts a literal construal of the theoretical
claims of—i.e. a referential semantics for—scientific theories (1980: p. 14): as do other
influential positions that reject realism, such as Fine’s ‘natural ontological attitude’
(1984: pp. 96–99, 1986: p. 130).

Second: we should recall the moral of Lewis’ seminal paper, ‘Languages and Lan-
guage’ (1975). Lewis begins by rehearsing a thesis and an antithesis: the task of the
paper, and his moral, is to reconcile them in a synthesis—which indeed he accom-
plishes. Thus the thesis begins by saying that a language is an assignment ‘ofmeanings
to certain sequences of types of sound or of marks…’ (p. 3). As this quote hints:
the thesis is advocacy of a referential semantics; (indeed an intensional semantics—
cf. below). The antithesis begins by saying that ‘language is a social phenomenon
wherein people utter strings of vocal sounds ... and wherein people respond by thought
or action to the sounds they observe to have been produced’ (ibid). As this quote hints:
the antithesis is advocacy of an account of language emphasising people’s proposi-
tional attitudes (intentions, beliefs, desires etc.): both as what is communicated by
language, and as what underpins that communication. Thus Lewis’ synthesis is his
account of what it is for a language L , à la the thesis, to be the language used by
a human population, à la the antithesis. The main idea is that this is a matter of the
population having conventions (in Lewis’ sense) of truthfulness in L and trust in L .
Thus he knits the thesis and antithesis together in a detailed way (and replies to vari-
ous objections). He ends by saying: ‘According to the proposal I have presented, the
philosophy of language is a single subject. The thesis and antithesis have been the
property of different schools; but in fact they are complementary essential ingredients
in any adequate account either of languages or of language’ (p. 35).

7 And our phrase ‘words and sentences’ is to signal that the semantics is compositional in the usual sense:
viz. the reference assigned to a string of symbols is a function of the references assigned to the symbols.
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To which we say: ‘Hear, hear!’. That is: we claim a similar reconciliation between
our advocating a referential semantics for scientific theories, and various lines of
philosophical work that downplay, or even do not mention, reference or theories. Thus
some work on some of the aspects of scientific endeavour, mentioned above, seems
sceptical, not just about ‘theory’ as a useful notion, but also about reference. For
example: much philosophical writing about experiment (calibration of instruments
etc.) emphasizes non-linguistic skills, practices and norms; and much philosophical
writing about the social dimensions of knowledge emphasizes the wider and practical
world, e.g. the functioning of scientific communities and institutions in e.g. the main-
tenance of norms, such as accreditation, etc. Such emphases are entirely appropriate,
say we. Study of experiment should of course emphasize non-linguistic skills; and so
on. But such emphases in no way militate against developing a referential semantics
for scientific language, and so for scientific theories. In short, we think Lewis’ synthe-
sis gives a valuable, because irenic, perspective on this work’s relation to referential
semantics.8

So much by way of defending ourselves as having mainstream views about inter-
pretation. The upshot is that we envisage a referential semantics using interpretation
maps, i . These are maps on states or quantities (s ∈ S etc.), or on linguistic items,
assigning as values (outputs of the map) parts of the empirical world (hunks of real-
ity!). But they are, in general, partial maps; i.e. for some arguments, the map yields
no value (output). For some details and examples, see De Haro (2018b).9

In the next Section we will contrast internal and external interpretations, both of
which are interpretations in the above sense. Roughly speaking, an internal interpre-
tation only interprets that “part” of the model that is “the homomorphic copy” of the
theory, while an external interpretation can interpret all of the model.

2.2 Model roots, specific structure, and their interpretations

As hinted at the end of the previous Section, we need some more jargon and notation
about the relation between a bare theory and its models that will allow us to distinguish
the parts or aspects of models that are “shadows” of corresponding parts or aspects of
the bare theory, from those that are not.

8 More controversially: we think Lewis’ synthesis gives a valuable, because deflating, perspective on the
burgeoning literature about scientific representation; viz. along the lines Callender and Cohen’s claim that
we should analyse representation in science in terms drawn from philosophy of language and mind (2006,
especially Sect. 3).
9 In fact, we endorse a specific programme within the general enterprise of referential semantics. Namely:
intensional semantics in the sense developed by Carnap, Montague and Lewis in which:

(i) the notion of ‘linguistic meaning’ is taken to be ambiguous between what Frege called ‘sense’ and
what he called ‘reference’, here called ‘intension’ and ‘extension’ respectively; and

(ii) intension is modelled as a function taking linguistic items—and for us, states or quantities—to their
reference, relative to a possible world.

But in this paper, we will not need the details of this view. A standard exposition is Lewis (1970); besides,
pp. 16–17 of his (1975) give a fine sketch, including a defence of semantics adverting to possible worlds.
Our own endorsement is in: De Haro and Butterfield (2018: Sect. 2.3), Butterfield (2018: Sect. 3.1), De
Haro and De Regt (2018a).
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Fig. 1 The model’s (Schrödinger) dynamics implements that of the bare theory

The jargon is clearest for the common case, which we will focus on throughout this
paper: when the realization of the bare theory proceeds by (mathematical) represen-
tation, and the bare theory is a triple comprising a state-space S, a set of quantitiesQ
and a dynamics D: (cf. Sect. 2.1.2 and footnote 6). Although the bare theory may be
interpreted (like its models, the dual theories, usually are), adding the adjective ‘bare’
signals helpfully that the theory is “above” and can be / is often uninterpreted.10

In this common case: by the very definition of ‘representation’, the model gives
a homomorphic copy of the bare theory (irrespective of there being a duality). That
is: there are appropriate structure-preserving maps from the states, quantities and
dynamics of the bare theory to the model’s homomorphic copy. To be precise: there
is a pair of structure-preserving maps—from states in the bare theory to states in the
model, and from quantities in the bare theory to quantities in the model. And there is a
meshing condition on the model’s dynamics that makes it implement that of the bare
theory. The details are as follows: though we can mostly take them in our stride, and
just say ‘homomorphic copy’.11

We can write the bare theory as a triple T = 〈S,Q,D〉; and similarly its model
M = 〈SM ,QM ,DM 〉, where the subscripts signal that the state-space etc. are different
from that of the bare theory. If we think of the dynamics in Schrödinger style as a map
on the state-space (more details in Sect. 2.4), and write the homomorphism from S to
SM as h, then the meshing condition on the model’s dynamics will be the commuting
diagram in Fig. 1.

Once we have the distinction of levels, i.e. a bare theory represented by a model,
there is an important distinction to be made within the model. (This is important
irrespective of there being a duality.) Namely between:

(i) The parts and aspects of the model which together express its realizing the bare
theory;

(ii) The parts and aspects which do not express the realization.

We will call (i) the model root. And in the common case where the bare theory, and
so also the model, is a triple of states, quantities and dynamics, we will call (i) the
model triple. And we will call (ii) the model’s specific structure. We can think of it

10 We take the point, from Read and Møller-Nielsen (2018: Sect. 5.3), that not every common core need
be so rich as to lead to a theory (in the present case, not every common core needs to allow being written as
a triple). But we will simply restrict our attention to cases in which the common core is as rich as a theory,
which we submit are the most interesting cases—and indeed they seem to be the most common cases in the
literature on dualities. See also De Haro (2018b: Sect. 2.1.1; footnote 30).
11 So the relation of representation between a bare theory and a model of it will involve not just one map as
in, say, group representation theory (the homomorphism from the abstract group to e.g. a set of matrices),
but at least two maps. We will see in Sect. 3.1 that these two maps are related to each other, because states
and quantities are dual (in mathematicians’ sense!) to one another.
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as the ‘ingredients’ or ‘building blocks’ by which the representation of the bare theory,
i.e. (i), is built.

There is a correlative distinction between two kinds of interpretation. Recall from
Sect. 2.1.3 that an interpretation is given by interpretation maps, i.e. functions (in
general, partial functions) mapping items in the theory to items in the world. Thus we
say that an internal interpretation is one that only interprets the model root: it maps
all of and only the model root to items in the world, regardless of the specific structure.
On the other hand, an external interpretation also maps (some or all of) the specific
structure to items in the world.

Of course, ingredients are present in the cooked dish, and building blocks are present
in the built house. Similarly here: often, an item of specific structure is in the model
root, though (by definition) it is not part of the representation of the bare theory. And in
such a case an internal interpretation does not interpret the item of specific structure.
(Sect. 2.3 will give examples.)

Thus the distinction between specific structure (‘building blocks’), and model root
(‘what gets built’) is physically significant, in that it constrains interpretation. It is
formal in that it can be stated without giving an interpretation: but it has consequences
for interpretation. For more discussion, cf. De Haro (2016a: Sect. 1.1.2, 2018a: Sect.
2.2.3), De Haro and Butterfield (2018: Sect. 3.2.2), and De Haro (2018b: Sect. 2.1.2).

But we stress that even within a given model, the distinction is not ‘God-given’. It is
relative to how exactly we define the bare theory, and thereby the homomorphism from
it to the model. And for a physical theory, as usually presented to us informally and
even vaguely, there need be no best or most natural way to make this exact definition.
For recall comment (ii) at the end of Sect. 2.1.2: how exactly to present a theory as a
triple of states, quantities and dynamics is a matter of choice and even judgment.

We will see this flexibility in play later, in Sect. 2.3, where we will have a choice
to define the model root either as a single representation of a structure (with a further
choice to include or not to include a choice of basis in the model root) or as an
equivalence class of representations.

We will also see it in connection with dualities, in Sect. 2.3.2. For as we announced:
we say a duality is an isomorphism of models of a bare theory; (details in Sect. 3.1).
But this means: an isomorphism with respect to the structure of the bare theory—
which is the structure that the models represent. Therefore the isomorphism that is the
duality is an isomorphism of model roots. And in the common case of triples of states,
quantities and dynamics: it is an isomorphism of model triples.12 So the flexibility
about the definition of a bare theory, and so about what a model must represent, leads
to flexibility about exactly what the duality mapping is, i.e. what is the isomorphism
between model roots.

It isworth having a notation distinguishing between themodel root (which is usually
a model triple of states etc.) and the specific structure. So given a model M , we now
write m for its model root. This is usually a model triple, which we now write as

12 A clarification: This is not to say that the specific structure (the ‘building blocks’) is always ‘invisible’
to the other side of the duality, i.e. that no part of the specific structure is mapped across by a duality to the
other model. Often, some part of the specific structure is mapped across. Indeed, that is unsurprising. For
the model root is built from specific structure: so one expects that in order to map the model roots, one into
the other, the duality must map at least part of the specific structure, one into the other.
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〈SM ,QM ,DM 〉. Again, the subscripts signal that the state-space etc. are different
from those of the bare theory. We also write M̄ for the specific structure. So we write
a model M of a bare theory T as

M =: 〈m; M̄〉 = 〈SM ,QM ,DM ; M̄〉 , (1)

where the semi-colon in the defined angle-bracket signals the contrast between root
and specific structure, and the last equation just expresses the usual case of the root
being a triple.

But beware: one should not think of M as just the ordered pair of independently
given m and M̄ . For m is built by using the specific structure M̄ , and so it is not given
independently of M̄ . Rather, m encodes M’s representing the bare theory T . So one
might well write TM instead ofm, since having a subscript M on the right hand side of
the equation M = 〈TM ; M̄〉 signals that M is not an ordered pair of two independently
given items. In other words: the notation TM emphasises that the model triple: (i) is a
representation of T , (ii) is built from M’s specific structure viz. M̄ , and (iii) is itself a
theory (hence the letter ‘T’).

Here is an illustration of this notation in use. As announced: we say that a duality is
an isomorphism of model roots, with respect to the structure of the bare theory. So if
M1, M2 are models of a bare theory T , their being duals means: m1 ∼= m2. And in the
usual case of model triples, i.e. mi = 〈SMi ,QMi ,DMi 〉 , i = 1, 2: this isomorphism
of roots will be a matter of two appropriately meshing isomorphisms, one between the
state-spaces SMi and one between the quantity algebras QMi . Details in Sect. 3.1.

2.3 Examples: matrix representations and Galilean transformations

In this Section, we will illustrate our notions of theory and model, and the contrast
of model root vs. specific structure. Our first example (Sect. 2.3.1) is from matrix
representations; our second example (Sect. 2.3.2) is about Galilean transformations in
Newtonian mechanics. The latter example will also illustrate our notion of interpreta-
tion from Sect. 2.1.3, especially our internal versus external contrast from Sect. 2.2.

2.3.1 Matrix representations

Perhaps the simplest illustration of these notions, model root and specific structure,
comes from defining the bare theory to be just an abstract groupG; and as usual, taking
realizations to be representations.13 So let us consider matrix representations of G.
More specifically:we consider for afinite groupG, a set {Mi }ofn×n complexmatrices
with non-zero determinant (i runs from 1 to the order of G). That is: Mi ∈ GL(n,C).
In such a representation, the choices of the size n of the matrices and of the ground-
field (R or C) are of course parts of specific structure: for these are building blocks by
which we build the homomorphic copy of G.

13 Strictly speaking, a bare theory must have an appropriate set of maps to the real numbers, to express
the values of quantities, and even a dynamics. But for the sake of illustration, we here ignore these maps.
Anyway, Sect. 2.3.2 will sketch an illustration from physics.
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But even in this simple illustration, we can see further options about how exactly
to define model root and specific structure. These options relate to the fact that the
unitary group U(n) acts on GL(n,C), by M �→ UMU−1 ≡ UMU †. EachU ∈ U(n)

sends a representation {Mi } to another representation, called ‘equivalent’; and repre-
sentation theory then of course concentrates on equivalence classes of representations,
characterizing them in terms of their invariants, especially characters. The spirit of the
enterprise is that a unitary change of basis has no mathematical significance. This
means there are two main options, (A) and (B) below, about how to define the model
root, and thereby, also the specific structure—and there will be further choices.14

(A)Model root as representationWe can say that a single representation {Mi } is the
model root. Indeed: multiplication of the matrices Mi realizes a homomorphic copy
of G’s multiplication. And it is no objection that items of specific structure—the size
of the matrices n, and the choice of the ground-field—are ‘in’ the matrices Mi . For
as we said: that an item appears in a model root does not prevent it appearing in the
specific structure. After all, the model root is built from the specific structure.

On this option, two equivalent representations of G, i.e. a set of matrices {Mi } and
another set {U Mi U−1}, for some fixed U ∈ U(n), will be isomorphic, as homomor-
phic copies of G’s multiplication. So on our account of duality, they are duals. (As
we will discuss in Sect. 3: this reflects our definition of duality being logically weak
i.e. having many instances.)

But there is also a further choice. For the fact that the matrices realize group multi-
plication is independent of their acting as linear operators on the vector spaceCn . That
is: although we always think of a matrix as representing (that word again!) a linear
operator, it only does so relative to a choice of basis—and the representation we began
with, viz. h : G → {Mi }, makes no such choice. But if we wish, we can adjoin such a
choice to our model. That is: we can stipulate that the matrix representation {Mi } also
has, as part of its specific structure, some specific basis ek (k = 1, . . . , n) of Cn .

Once such a choice is made, the basis vectors ek (and thereby all vectors v =∑n
k=1 vk ek) are of course acted upon—sent to another basis—by the similarity

transformations U that act on the matrices Mi . That is: ek �→ ∑n
l=1Ukl el when

Mi �→ U Mi U−1. But the idea of the stipulation is that the first-chosen basis ek labels
the representation: it fixes the interpretation of the {Mi } as linear operators. It is just
that this labelling basis maps across to the labelling bases of equivalent representa-
tions. This illustrates the idea in footnote 12 that—to return to our jargon—specific
structure can map across a duality. In this example, the duality maps a labelling basis
to another basis: {ek} �→ {∑n

l=1Ukl el} when Mi �→ U Mi U−1.
(B) Model root as equivalence class We can say that an equivalence class of

representations—the entire orbit of a given {Mi } under the action of U(n)—is the
model root. For indeed: equivalent representations realize the very same homomor-
phic copy ofG’s multiplication. Again, the size of the matrices n, and the choice of the
ground-field, are ‘in’ the model root (since they are preserved by equivalence). And

14 Roughly speaking, (B) takes roots to be equivalence classes of what (A) takes them to be. One might
question whether (A)’s “concrete” matrices are really more “basic” than their equivalence classes as in (B).
But exposition of the issues is much clearer if we keep the (A) vs. (B) contrast.
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again, it is no objection that an item in the model root is also in the specific structure:
since the model root is built from the specific structure.

On option (B), there are still duals, on our account of duality—despite the option’s
having “quotiented” to a more abstract notion of model than that of option (A). For
we can vary n; and-or we can vary the ground-field. That is: two different choices of n
can provide two model roots—the equivalence class of a representation {Mi } : Mi ∈
GL(n1,C), and the equivalence class of a representation {Mj } : Mj ∈ GL(n2,C)—
that instantiate the same homomorphic copy of G. And similarly, we can vary the
ground-field, and yet instantiate the same homomorphic copy of G. And similarly, we
can consider non-linear/non-matrix realizations/representations of G.

And as in option (A), there is the further choice—again because the fact that matri-
ces realize groupmultiplication is independent of their acting as linear operators on the
vector space Cn . That is: if we wish, we can adjoin to a model root—an entire equiv-
alence class of representations—the choice of some specific basis ek (k = 1, . . . , n)
of Cn , which we can then take to be specific structure. Of course, the only natural
way to do this is to attach the basis to some arbitrary element of the class, i.e. one
set of matrices {Mi }, and then transport the basis around to the other elements of the
equivalence class by the action of U(n).

2.3.2 Galilean transformations

Newtonian mechanics provides a simple illustration of the notions of model root,
specific structure, and indeed duality. And since it is an example from physics rather
than pure mathematics, we also get an illustration of Sect. 2.2’s distinction between
internal and external interpretations.

The idea is as follows. The bare theory T is Newtonian mechanics, of say N gravi-
tating point-particles, set in a Galilean (neo-Newtonian) spacetime: i.e. in a spacetime
manifold that is ‘globally likeR4’, with Euclidean geometry in its instantaneous time-
slices, and a flat 4-dimensional connection, but no preferred absolute rest. This bare
theory is modelled (in our sense: i.e. realized, represented) by formulations of New-
tonian mechanics of N gravitating particles, set in a Newtonian spacetime, i.e. in a
spacetime that is ‘globally like R4’ but that does have an absolute rest.

Famously (notoriously!), the difference in such formulations’ specifications of
absolute rest is not experimentally detectable, since specifications that are each boosted
with respect to the other specify the same flat 4-dimensional connection, and a boost
maps a solution of the equations of motion to another solution. Or as it is usually put,
in more physical terms: no experiment in Newtonian mechanics can distinguish one
specification of rest from the others, because the theory is invariant under boosts (‘has
boosts as a symmetry’). Hence, of course, the debate between Newton and Leibniz,
as articulated in the Leibniz-Clarke correspondence, and with its long legacy down to
the present day (e.g. Earman 1989).

So in this example, it is natural to say that the specific structure of each model
includes its specification of absolute rest. Using this specification, the model defines
a flat 4-dimensional connection—viz. the same connection as is defined by the other
models—and thereby builds a homomorphic copy of T .
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We can make this example simpler and precise, and yet still a worthwhile illus-
tration, by taking the bare theory T to be just the abstract Galilean group Gal(3).
This is a 10-dimensional Lie group, whose generators are three spatial rotations, four
(space and time) translations, and three boosts. That is: its generators are usually thus
described, by way of justifying their commutation relations. But of course the abstract
group can be defined by the commutation relations, free of a physical interpretation.
Thinking of Gal(3) like this will yield a clear analogy with Sect. 2.3.1’s matrix repre-
sentations of an abstract group G, and with that Section’s option (A), i.e. Model root
as representation.

Gal(3) is usually presented in its fundamental representation. Namely, as a con-
crete group of transformations on (bijections of) R4, written in terms of the standard
coordinates (x, t) ∈ R

4, with g ∈ Gal(3) represented as the function

g(x, t) := (R · x + v0 t + r0, t + t0) , (2)

where R is a 3 × 3 spatial rotation matrix, v0 is the velocity boost, r0 is the spatial
translation vector, and t0 is the time translation. This fundamental representation can
also be expressed in a coordinate-free way as an action on the affine space ofR4, i.e. on
Euclidean 4-space. But we will not need the details of affine spaces (cf. e.g. Auslander
and MacKenzie 1963, Chapter 1).

But just as in Sect. 2.3.1’s option (A), where a model root was a matrix representa-
tion of a groupG, we could adjoin a choice of a basis ek (k = 1, . . . , n) ofCn as specific
structure: so also here, we can adjoin a choice of an inertial coordinate system as spe-
cific structure, and we can take this to give the model’s specification of absolute rest.15

The standard coordinate system defined by the components of R4 itself is then just
one choice among many, determining one specification of absolute rest among many.
Natural though we find it for writing down the fundamental action of Gal(3), as we did
in Eq. (2), the action can of course be written down in any inertial coordinate system.
And any such system can be taken to give a model’s specification of absolute rest.

And just as in (A) of Sect. 2.3.1, each matrix Mi mapped the adjoined basis ek to
another basis: so also here, each Galilean boost maps an adjoined choice of absolute
rest, represented mathematically by an inertial coordinate system, into another such
choice, i.e. another inertial coordinate system.16

But there is also, so far, a disanalogy with (A) of Sect. 2.3.1. For so far, we have
just one model root, encapsulated in Eq. (2), and various choices of specific structure;
whereas (A) of Sect. 2.3.1 had many different model roots—many different matrix
representations {Mi } of the abstract group G. Correlatively, our fundamental repre-
sentation of Gal(3) is faithful, i.e. has trivial kernel; while Sect. 2.3.1’s {Mi } were in
general not faithful.

But there are other representations of Gal(3). Indeed, there is a matrix represen-
tation that is isomorphic, as a model root, to what we have. So it is faithful—and
the isomorphism of model roots is, on our account, a duality. Namely, we use

15 We say ‘give’—meaning ‘determine’—rather than ‘be’, simply because a coordinate system includes
choices of spatial and temporal origins and units, and of an orientation of spatial axes, as well as the absolute
rest, i.e. the timelike congruence of inertial worldlines.
16 Of course, Galilean transformations that are not boosts keep fixed the choice of absolute rest: cf. foot-
note 15.
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5 × 5 matrices G ∈ GL(5,R) (G for ‘Galileo’ not ‘group’!), that act on vectors
(xA) := (x, t, 1) ∈ R

4 × {1} ⊂ R
5, as follows (cf. Bargmann 1954: pp. 38–41 and

Holm 2011: p 10):

x̃ A =
5∑

B=1

GAB xB

(GAB)5A,B=1 :=
⎛

⎝
R v0 r0

01×3 1 t0
01×3 0 1

⎞

⎠ . (3)

With this representation, a specification of absolute rest is given by a specific choice
of vector x ∈ R

4 × {1}. Namely, (xA) := (x, t, 1) ∈ R
4 × {1} specifies rest to be

the timelike congruence of inertial worldlines parallel to the inertial worldline passing
through both the spatiotemporal origin (0, 0) and the point (x, t). So here, it is a single
vector that gets adjoined as specific structure; (not a whole basis, as in Sect. 2.3.1, and
not a whole inertial coordinate system, as above). And each Galilean boost maps an
adjoined choice of absolute rest, given by a vector x ∈ R

4 × {1}, into another such
choice, i.e. another vector.

So much by way of how Galilean transformations’ illustration of the notions of
model root and specific structure is analogous with Sect. 2.3.1’s matrices. We end
with two comments, [1] and [2], about the physical interpretation of this example
(comments which thereby have no analogues about those matrices). For simplicity
and brevity, we will restrict both comments to the simple “vacuum” scenario which
wehave concentrated on: i.e.R4 as a description of either neo-Newtonian orNewtonian
spacetime, without regard to the N gravitating point-particles wementioned at the start
of this Section. Thus recall that we concentrated on taking the bare theory T to be just
the abstract Galilean group Gal(3), and considered its action onR4. But this is only for
simplicity: these two comments carry over to the non-vacuum scenario, where there
are particles.17

[1] Agreement with usual verdicts The first comment looks ahead to Sect. 4.4’s
discussion of symmetries in a spacetime theory, i.e. a theory that postulates a spacetime

17 It is just that it would take too long to spell out the non-vacuum scenario. To glimpse why, we briefly note
some of the issues one confronts. Obviously, one must consider the particles’ state-space: which one would
build from their configuration space (the “qs”), by adding either velocities (“q̇s”: defining velocity phase
space, in the Lagrangian framework) or canonical momenta (“ps”: defining phase space, in the Hamiltonian
framework). At first sight, the N particles’ configuration space is “just” R

3N . But there are subtleties to
be dealt with. Indeed: not only the topics mentioned above, of passing to the affine space so as to “rub
out” the preferred origin, and whether to have an absolute rest; but also whether to excise collision points,
i.e. whether to forbid point-particles to be in the very same place. Assuming these subtleties are dealt with,
and the Lagrangian or Hamiltonian state-space is constructed, one would then consider the action of the
Euclidean group on this state-space, lifted from its action onR3. Again, there are subtleties about this lifted
action; and to treat boosts and so represent the Galilean group, one needs to “add a time axis”, defining what
is often called ‘extended (velocity) phase space’. For a philosophical introduction to all these subtleties,
cf. e.g. Belot (2000: Sects. 3, 4) and Butterfield (2006: Sect. 2.3).
These two comments also bear on the two debates about interpreting symmetries, which we set aside at the
end of Sect. 1. Indeed the authors cited take Newtonian gravitation as a main example. But again, these
debates are orthogonal to most of this paper’s issues; so that it would take too long to spell out, beyond the
references we gave there, exactly what these comments imply for them.

123



Synthese (2021) 198:2973–3013 2989

with certain chrono-geometric structures like metrics and connection. (Such theories
of course also postulate matter and radiation, particles and fields, in the spacetime; but
as just announced, we are setting that aside.)

Wewill see in Sect. 4.4 that in a spacetime theory, a symmetry is usually defined as a
map on the spacetime that (once its domain of definition is extended in the natural way
to include chrono-geometric structures and matter fields): (i) fixes, i.e. does not alter,
the chrono-geometric structures, and (ii) maps a matter-field solution of the equations
of motion to another solution. (We will also see how this relates to the more basic
and general notion of symmetry we will use from the start of Sect. 4.) Accordingly,
boosts are a symmetry of neo-Newtonian spacetime: for a boost preserves the chrono-
geometric structures, i.e. the spatial and temporalmetrics and the flat affine connection,
andmaps solutions to solutions.But boosts are not a symmetry ofNewtonian spacetime
(i.e. a spacetime that is globably like R4, but that has a specification of absolute rest).
For a boost does not fix a specification of rest.18 These points are, in effect, the
modern mathematical expression of the famous (notorious!) point with which this
Section began: that no mechanical experiment can discern which is the putatively
correct standard of rest.

Our discussion above, and our notions of model root, duality etc., accords with this.
In particular, just as in Sect. 2.3.1: an item of specific structure can be “in” the model
root, which is, after all, built with specific structure; and so an isomorphism of model
roots (on our account, a duality) can map specific structure from one model to another.
And this is what Galilean boosts do. In our jargon: they define an isomorphism of
model roots that maps one model’s specification of absolute rest into another’s. Think
for example of how the vector (xA) := (x, t, 1) ∈ R

4 × {1}—which specifies rest
as parallelism to the inertial worldline through both the origin (0, 0) and the point
(x, t)—is mapped by GAB of Eq. (3) to a vector specifying rest as parallelism to the
inertial worldline through both the origin (0, 0) and the point (R ·x+v0 t+r0, t + t0).
[For more detail about how the duality maps in this example are defined by boosts,
cf. Butterfield (2018: Sect. 4.1).]

Butmapping onemodel’s specification of absolute rest into another’s is not the same
as fixing the given specification, i.e. not the same as a symmetry in spacetime theories’
usual sense. Thus this example illustrates how a bare theory can have a symmetry,
viz. boosts, that (some or even all) its models lack. This will later be a main theme
(Sects. 5.1 and 5.2).

This example also has a philosophical moral that is not about symmetry. Namely:
duality does not imply physical equivalence. Two theories can be duals—in our jargon:
models with isomorphic model roots—without their making the very same claims
about the world. They can even contradict one another about the world, as do two rival
specifications of what is absolute rest. This leads in to the next comment.

[2] Internal and external interpretations The example also illustrates Sect. 2.2’s
distinction between internal and external interpretations.As usual, interpretative issues
are underdetermined by formal theory: witness the moral just stated at the end of [1].
However, the example clearly allowsus to formulate the disagreement betweenNewton

18 On the other hand: spatial rotations and spatiotemporal translations are symmetries of both spacetimes.
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(Clarke) and Leibniz—the question whether absolute rest is physically real—in terms
of the internal versus external contrast.

For recall that an internal interpretation interprets only the model root, but not the
specific structure. More precisely, we define this as meaning that specific structure
which is “in” a model root as a building block, does not get interpreted. Therefore
models that are isomorphic, i.e. have isomorphic roots, and so differ only in their
specific structure, must receive the same interpretation.19 Thus in our example: an
internal interpretation of a model simply does not interpret the specification of rest
(whether it is given by an inertial coordinate system considered as rest, as for Eq. (2), or
by a vector x ∈ R

4×{1}, as for Eq. (3)). In short: the specification of rest is not part of
what is physical. Thus an internal interpretation articulates Leibniz’ relationist views.

On the other hand, an external interpretation (by definition) does interpret (some
or all of) the specific structure. Thus an external interpretation can take any two
dual models—any isomorphic model roots with different specifications of rest, x
and x̃ say—to have distinct interpretations. This kind of external interpretation thus
articulates the Newton-Clarke view: in short, that giving all material bodies the same
boost makes a physical difference.

2.4 Values of quantities on states

Before formally defining duality as isomorphism, we need notation for treating states,
quantities and dynamics. Suppose we are given a set of states S, a set of quantitiesQ
and a dynamicsD: 〈S,Q,D〉. (As stressed in Sect. 1: in any specific case, S,Q andD
will each have a lot of structure beyond being sets—but we will not need these details
in what follows. And as admitted in Sect. 2.1.2: not all theories are presented, or best
thought of, as such triples—but what we say will carry over to other formulations
using e.g. partition functions; cf. footnote 6.)

Then we write the value of quantity Q in state s as

〈Q, s〉 (4)

It is these values that are to be preserved, or suitably matched, by the duality, i.e. by
the isomorphism of model triples: cf. Eq. (9) below. And in subsequent Sections’
discussion of symmetry, it is these values that are to be preserved by a symmetry map.

For classical physics, one naturally represents (that word again!) a quantity as a
real-valued function on states: Q : s �→ Q(s). Given such a function representing the
quantity, 〈Q, s〉 := Q(s) ∈ R is the system’s possessed or intrinsic value, in state s,
of the quantity Q. Similarly for quantum physics: one naturally represents quantities
as linear operators on a Hilbert space of states, so that 〈Q, s〉 := 〈s|Q̂|s〉 ∈ R is
the system’s Born-rule expectation value of the quantity. (But in fact, for quantum

19 Recall that Newtonian gravitation contains unphysical singularities when two massive point particles
coincide, as they cando after a finite time (see footnote 17). Thus internal interpretations of isomorphicmodel
roots of Newtonian gravitation must either give the same “interpretation” to the unphysical singularities
(usually: signaling a limitation of the applicability of the theory), or one must deal with the singularities in
some other way. See the discussion in De Haro (2018b: Sects. 2.3.1, 2.3.2(C)).
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dualities, the duality often preserves off-diagonal matrix elements 〈s1|Q̂|s2〉 ∈ C:
cf. below.)

As to dynamics, here assumed deterministic: This can be usually presented in
two ways, for which we adopt the quantum terminology, viz. the ‘Schrödinger’ and
‘Heisenberg’ pictures; (though the ideas occur equally in classical physics). We will
adopt for simplicity the Schrödinger picture. So we say: dS is an action of the real line
R representing time on S.

There is an equivalent Heisenberg picture of dynamics with DH , an action of R
representing time on Q. The pictures are related by, in an obvious notation:

dS : R × S 
 (t, s) �→ dS(t, s) =: s(t) ∈ S iff DH

: R × Q 
 (t, Q) �→ DH (t, Q) =: Q(t) ∈ Q (5)

where for all s ∈ S considered as the initial state, and all quantities Q ∈ Q, the values
of physical quantities at the later time t agree in the two pictures:

〈Q, s(t)〉 = 〈Q(t), s〉 . (6)

3 The schema: duality as isomorphism of model roots

In this Section, we summarize our account of duality. This account has been developed
mainly by De Haro (2016a: Sect. 1, 2016b: Sect. 1), but also more fully by us together
(2018a: Sects. 2, 3). As a mnemonic, we label this account a Schema. We first define
duality (Sect. 3.1); then we give a prospectus for the following Sections (Sect. 3.2). It
will be clear that our Schema is logically weak, so that there are countless examples,
including elementary ones: a topic taken up in footnote 2’s references.

3.1 Duality defined

We can now present our Schema for duality as an isomorphism between model roots
(model triples). Let M1, M2 be two models, with model roots m1 and m2 and specific
structure M̄1 and M̄2; so that, with the notation Eq. (1), we have: M1 = 〈m1; M̄1〉 and
M2 = 〈m2; M̄2〉.We can suppose thatM1, M2 are bothmodels of a bare theory T . Then
we say that M1 and M2 are dual if their model roots are isomorphic, i.e. if m1 ∼= m2.

More specifically, if the model roots are triples m1 = 〈SM1 ,QM1 ,DM1〉 and m2 =
〈SM2 ,QM2 ,DM2〉, then to say that the model triples m1,m2 are isomorphic is to say,
in short, that: there are isomorphisms between their respective state-spaces and sets
of quantities, that

(i) make values match, and
(ii) are equivariant for the two triples’ dynamics (in the Schrödinger and Heisenberg

pictures, respectively).20

20 Alternatively, in other formalisms (cf. footnote 6), the dynamics in one model is mapped into the
dynamics in the other. For an example, where the dynamics is a set of covariant Euler-Lagrange equations,
see De Haro (2018b: Sect. 3).
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Fig. 2 Equivariance of duality and dynamics, for states and quantities

Thus these maps are our rendering of the correspondence between duals: of, in physics
jargon, ‘the dictionary’.

Thus we say: A duality between m1 = 〈SM1 ,QM1 ,DM1〉 and m2 = 〈SM2 ,QM2 ,

DM2〉 requires:
(1) An isomorphism between the state-spaces (almost always: Hilbert spaces, or for

classical theories, manifolds):

dS : SM1 → SM2 using d for ‘duality’ ; and (7)

(2) An isomorphism between the sets (almost always: algebras) of quantities

dQ : QM1 → QM2 using d for ‘duality’ ; (8)

such that: (i) the values of quantities match:

〈Q1, s1〉1 = 〈dQ(Q1), dS(s1)〉2 , ∀Q1 ∈ QM1 , s1 ∈ SM1 . (9)

and: (ii) dS is equivariant for the two triples’ dynamics, DS:1, DS:2, in the
Schrödinger picture; and dQ is equivariant for the two triples’ dynamics,
DH :1, DH :2, in the Heisenberg picture: see Fig. 2.

Eq. (9) appears to favour m1 over m2; but in fact does not, thanks to the maps d
being bijections.

This definition of duality can be simplified, since the requirement that the values of
quantities match, Eq. (9), implies relations between the duality maps dS and dQ. Thus
in the quantum case, the duality maps are related by: dQ(Q) = dS ◦ Q ◦ d−1

S (where
dS is constrained to be unitary).21 Thus duality comes down to a single duality map
on states, dS , together with appropriate equivariance conditions on the quantities and
the dynamics.

Similarly in the classical case: though representing quantities as real-valued func-
tions on the state-space, rather than as maps on the state-space, means that the relation

21 The proof is as follows. As mentioned in Sect. 2.4, Eq. (9) generalizes to matrix elements between
arbitrary vector states s, s′ in the state-space, which in the quantum case is a Hilbert space. Namely, the
duality maps must satisfy: 〈s′|Q|s〉1 = 〈dS (s′)|dQ(Q)|dS (s)〉2. Notice that we can rewrite this purely as
an identity in modelm1: 〈s′| Q |s〉1 = 〈s′| d†S ◦dQ(Q)◦dS |s〉1. Since the state-space is the whole Hilbert
space, S1 = H1, this equation is valid for all s, s′ ∈ H1 (it is also valid for all Q ∈ Q); so it implies that

the operators on the two sides must be equal: d†S ◦ dQ(Q) ◦ dS = Q ⇒ dQ(Q) = dS ◦ Q ◦ d†S , as
claimed in the main text.
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between the duality maps dS and dQ is a little different. Here, we need the notion of a
dual map (‘dual’ in the mathematical, not physical, sense). Thus recall that given any
map between two sets f : X → Y , and any map g : Y → Z , the dual (or transpose)
g∗ of g (with respect to f ) is defined as themap g∗ : X → Z with g∗(x) := (g◦ f )(x).
Putting X = Y = S, f = dS , and Z = R, and taking the function g : Y → Z to be
the quantity (as a real-valued function) Q : S → R: this definition of the dual map
becomes (with the bra-ket notation now meaning values of quantities as in Eq. (4)):
〈Q∗, s〉 := 〈Q, dS(s)〉. But so far, the notation Q∗ does not exhibit its dependence
on dS ; (just as g∗ does not exhibit its dependence on f ). So it is clearer to write
d∗
S(Q) instead of just Q∗. Thus we write: 〈d∗

S(Q), s〉 := 〈Q, dS(s)〉. Applying this to
d−1
S : S → S, we deduce that defining dQ as the dual (d−1

S )∗ of d−1
S yields Eq. (9),

as desired. That is: we have by the definition of ‘dual map’ :

〈(d−1
S )∗(Q) , dS(s)〉 = 〈(Q ◦ d−1

S ), dS(s)〉 = 〈Q, s〉 ; (10)

which is Eq. (9). So like in the quantum case: duality comes down to a single duality
map on states, dS , with dQ being defined as the dual, i.e. transpose, of its inverse d−1

S ,
and appropriate equivariance conditions on the dynamics.

We will see in Sect. 4 that for symmetries instead of dualities, we can similarly
concentrate on a map on states—unsurprisingly, since the basic notion of symmetry
is the preservation of the values of given quantities.

3.2 The road ahead: duality as a ‘giant symmetry’

As discussed in Sect. 1, we have elsewhere related this Schema to various topics, and
illustrated it with bosonization and some examples from string theory. The job of the
next three Sections is to relate it to symmetries.

As also discussed in Sect. 1, it is agreed in the literature that a duality is like a ‘giant
symmetry’: a symmetry between theories. The main new ingredient that the Schema
adds to this agreed idea is its picture of two levels, with the bare theory above and the
model roots, the bare theory’s homomorphic copies, below. As we will see, these two
levels can differ in the amount of structure that a map, such as a symmetry, is required
to preserve; and this prompts some distinctions between types of symmetry.

Thus we will proceed in three stages.

(i) Webeginwith comments about symmetry in general (Sect. 4). They are regardless
of both: (a) there being a duality; and (b) the distinction between a theory and
its representations (homomorphic copies), or more generally its instantiations.
These comments are familiar ground in the philosophy of symmetry: but they are
worth making since they will apply, suitably adjusted, to the rest of the paper.

(ii) Then we discuss, regardless of there being a duality, how a symmetry of a theory
is related to symmetries of its representations (homomorphic copies), or more
generally its instantiations: (Sect. 5). This will yield the distinctions between
types of symmetry.
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(iii) Finally, we suppose we have a duality in the sense of the Schema, and relate this
to symmetries. That is: we show that a duality preserves the symmetries of its
model triples (Sect. 6).

4 Symmetries in general

We begin with a usual notion of symmetry: as a map a on states, a : S → S,
that preserves the values of a salient set of quantities: usually a large set, though
not necessarily all the quantities. The map a must also respect the structure of S,
e.g. topological or differential structure. (Thus ‘a’ is for ‘automorphism’.) But this
requirement will be in the background in the sequel: the emphasis will be on the
state s and the image-state a(s) having the same values for quantities in the salient
set.

Here, the notion of value is exactly as in the Schema: 〈Q, s〉, understood as a
classical possessed value or a quantum expectation value (or more generally, as a
matrix element, 〈s′| Q̂ |s〉 ∈ C: see below). The equality of values, for a symmetry a,

〈Q, a(s)〉 = 〈Q, s〉 (11)

is then analogous to the Schema’s matching of values, under transforming both states
and quantities by the duality maps dS and dQ: cf. Eq. (9). (More generally: as in
Sect. 3, we take quantum symmetries to also preserve off-diagonal matrix elements:

〈a(s′)| Q̂ |a(s)〉 = 〈s′| Q̂ | s〉 , ∀ s, s′ ∈ S , (12)

for a salient subset of operators in Q, usually including the Hamiltonian. And this
condition can be weakened, to hold only for a salient subset of states in S.)

This is of course the reasonwhy the Schema confirms the ‘giant symmetry’ analogy.
So far—i.e. before we focus on the two levels, bare theory above and model roots
below—there are just two disanalogies between symmetry and duality:

(i) Equation (11) uses the identity map on quantities, while Eq. (9) uses a duality
map dQ: corresponding to the jargon ‘invariance’ vs. ‘covariance’, and our phrase
‘preservation or matching’ above;

(ii) Equation (11) typically holds for a salient subset of the quantities, while the
duality condition Eq. (9) holds for all the quantities: this will be illustrated below.

This notion of symmetry is very simple. But suitably adapted and augmented, it will
be sufficient for this paper’s purposes. In this Section, we make four comments about
it. They are regardless of there being a duality; and of the distinction between levels,
i.e. between a bare theory and model roots. So in this Section, we can just think of a
theory as a triple of states, quantities and dynamics: 〈S,Q,D〉. These comments will
apply, suitably adjusted, to the rest of the paper. The first, third and fourth comments
(Sects. 4.1, 4.3, and 4.4) are about the notion being adaptable, including to dynamics.
The second comment (Sect. 4.2) is about the idea of a salient set of quantities.
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4.1 Dual maps

We said that a symmetry is a map on states that preserves the values of a salient,
usually large, set of quantities. Agreed, it is also usual to think of a symmetry as a map
on quantities that preserves values on a salient, usually large, set of states: i.e. for a
given state, the value of the argument-quantity equals the value of the image-quantity.
Instead of Eq. (11), one would write a symmetry as a map α : Q → Q with:

〈α(Q), s〉 = 〈Q, s〉. (13)

But there is no conflict here. The two conceptions are related by duality in math-
ematicians’ sense, not ours (cf. Sect. 3.1). That is: one map is the mathematical
dual of the other. Recall that given any map a : S → S, its dual map on quan-
tities, a∗ : Q → Q, is defined by requiring that for any s ∈ S and Q ∈ Q:
〈a∗(Q), s〉 := 〈Q, a(s)〉. It follows immediately that if a : S → S is a symme-
try in our initial sense, i.e. a respects the structure of S, and Eq. (11) holds, then the
dual map on quantities, a∗ : Q → Q is a symmetry in the corresponding sense as
regards quantities, given by Eq. (13):

〈Q, a(s)〉 = 〈Q, s〉 ⇒ 〈a∗(Q), s〉 := 〈Q, a(s)〉 = 〈Q, s〉. (14)

Besides, while we began with symmetry as a map on states, and conceived symme-
tries for quantities as dual maps: one could instead equally well start with quantities.
For again, one defines dual maps in the same way. Given any map α : Q → Q, we
say that its dual map on states, α∗ : S → S, is defined by requiring for all arguments:
〈Q, α∗(s)〉 := 〈α(Q), s〉. One could then define symmetries for quantities by Eq. (13),
and deduce that if α is a symmetry for quantities, its dual map α∗ is a symmetry for
states, i.e. obeys Eq. (11).

Likewise in the quantum case, with preservation of matrix elements for a salient
set of operators. We can define a symmetry α by:

〈s′| Q̂ |s〉 = 〈s′| α(Q̂) |s〉 , ∀ s, s′ ∈ S . (15)

Again, this condition can be weakened, to hold only for a salient subset of states in
S. Similar manipulations to the ones in the classical case22 give that the symmetry,
defined as a map α on quantities, induces a symmetry, defined as a map a on states,
iff the symmetry map α decomposes in the following way:

α(Q̂) = a† Q̂ a . (16)

Notice that this correspondence between symmetries α on quantities and symmetries
a on states is not one-to-one. For example, if a commutes with a quantity Q, we can

22 The proof is as follows. Begin with a symmetry a : S → S defined on states, viz. Eq. (12), and rewrite
the left-hand side as: 〈a(s′)| Q̂ |a(s)〉 = 〈s′|a† Q̂ a|s〉. Comparing this with Eq. (15), we see that this induces
a symmetry α, defined on quantities. Namely: α(Q̂) = a† Q̂ a. And the other way around: if the map α

on quantities decomposes into the left- and right-action of some operator a, then this induces a symmetry
a : S → S on states.
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have a non-trivial symmetry on states that gives rise to a trivial symmetry on quantities
(i.e. a map a that is non-trivial, while α = id is trivial).

4.2 Salient quantities and states: stipulated symmetries

We said that a symmetry preserves values for ‘a salient, usually large, set of quanti-
ties/states’. This general formulation deliberately uses the vague word ‘salient’, since
it varies from case to casewhich quantities/states it is noteworthy to preserve the values
of. But it is worth noticing three sorts of consideration that often mould the choice of
quantities/states, i.e. which quantities/states count as salient. The first, which we label
stipulated symmetries, gives a contrast with how we have written so far; the second
and third will get a Subsection of their own (Sects. 4.3 and 4.4).

So far, we have written as if a theory is always given to us with prescribed sets
of states and of quantities, so that the set of symmetries is thereby fixed, once some
precise meaning of ‘salient’ is fixed. But as we foreshadowed in footnote 5: often in
physics, we “begin our theorizing” with symmetry principles. That is: we define a
theory’s sets of states and quantities in order that they carry a representation of a given
abstract symmetry group: spacetime symmetry groups such as the Poincaré group
being a standard example. In such a case, we will say the symmetries are stipulated—
they are part of the definition of the theory. Usually, we think of these symmetries as
maps on states: unitary representations of a spacetime symmetry group on a Hilbert
space being a standard quantum example.

In general, then, a theory T that is formulated as a triple, 〈S,Q,D〉, is said to
have a stipulated symmetry if it is formulated as having an automorphism of the state-
space, a : S → S, that preserves some salient subset of the quantities. The stipulated
symmetry thus comes with a choice of which quantities count as salient, so that their
values are “worth” preserving. This choice is encoded formally in the definition of the
triple and its stipulated symmetry, and it of course bears on the theory’s interpretation—
it moulds the kinds of interpretations that the theory can be given.

But note that stipulating a symmetry does not imply that every state has its value
preserved for every quantity definable on the state-space. (And mutatis mutandis if
we conceive a symmetry as a map on quantities; cf. Sect. 4.1 above.) For example,
one might stipulate rotational symmetry: more precisely, that in a quantum theory the
Hamiltonian is rotationally invariant, so that the Hilbert space carries representations
of SO(3). But this still allows using quantities Q whose expectation values on some
states are not invariant under rotations. Thus even with a stipulated symmetry, there
is a question of selecting the salient quantities. This point will recur in Sect. 4.3.23

23 For example, Caulton (2015: p. 156) distinguishes three natural classes, two of which are extreme and
trivialising, while the third is the most interesting: (1) symmetries that preserve all the quantities Q of
a theory: these are required to preserve everything, which means changing nothing; (2) symmetries that
do not preserve any quantities, i.e. the set of all bijections on the state-space S; (3) symmetries that lie
between these extremes are the interesting cases: especially symmetries that preserve the ‘set of physical
quantities, i.e. the quantities that, on the basis of their representing the physical properties and relations,
register physical differences’ (ibid).
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4.3 Dynamical symmetries

Wehave presented symmetries asmaps that preserve the salient quantities’ values (and
respect the structure of S orQ: cf. Sect. 4.1). But we have not mentioned time, i.e. the
fact that values change over time. It is indeed very usual to define a symmetry as a
map that ‘preserves the dynamics’. Taking a symmetry, as usual, as a map on states,
this means, roughly: if a sequence of states is possible according to the dynamics, so
is the sequence of image-states.

We canmake this precise by using the framework for dynamics, in both Schrödinger
andHeisenberg pictures, given in Sect. 2.4, Eqs. (5) and (6).Wewill favour the former.
(As noted there, a full discussion would also address the treatment of time in theories
not best thought of as triples, e.g. theories formulated using partition functions; again,
cf. footnote 6.)

On Schrödinger dynamics, a dynamically possible total history of the system is a
curve through the state-space S parameterized by time t : with each point s(t) defining
the values 〈Q, s(t)〉 of the various quantities Q at t . Then we can define a dynamical
symmetry as a map a on S that (a) respects S’s structure (b) maps any dynamically
possible history (curve through state-space) to another such history. That is: if s(t)
is a dynamically possible history, the sequence a(s(t)) of states is also dynamically
possible.24

On Heisenberg dynamics, the definition of a dynamical symmetry is (we think!)
more complicated, because the representation of a dynamically possible history is
more complicated. A history is given by a fixed s ∈ S and a family of curves through
Q, all parameterized by time t : with Q1, Q2 on a common curve representing the
same physical quantity, e.g. energy, at two times t1, t2. So for a single history, there
are as many curves through Q in the family as there are physical quantities pertaining
to the system. So a dynamical symmetry must be a map whose domain is, not Q, but
the set of all such families of curves (or all such families that are indeed dynamically
possible, once some s ∈ S is chosen). So the map will have to suitably respect, not
so much Q’s structure, but the structure Q induces on this set of families of curves.
And for the map to be a dynamical symmetry, it must leave invariant the dynamically
possible families (allowing, no doubt, for a change of state s ∈ S). But in this paper,
we can focus on symmetries as maps on states, and so we will not need to further
consider the Heisenberg picture.

Given this definition of dynamical symmetry in Schrödinger picture, as a map on
S that commutes with the dynamics (footnote 24), the obvious first question is: how
is this related to our initial idea of symmetry as a map on S that preserves quantities’
values, regardless of time?

A priori, they seem very different. Indeed the notion of dynamical symmetry seems
weaker in that it requires the transform a(s(t)) of each dynamically possible history
s(t) ‘only’ to be itself dynamically possible—it need not have any distinctive relation
to s(t), e.g. by being in some sense a ‘replica’ of s(t). But in fact the notions are drawn
together by dynamical symmetry’s requirement that the map on histories be induced

24 Preserving the dynamics in this sense is of course a commutation i.e. equivariance condition. For if
we write s(t) = Dt,t0 (s(t0)) with Dt,t0 representing the dynamics (cf. Eq. 5), then preservation of the
dynamics is: a(s(t)) ≡ a(Dt,t0 (s(t0))) = Dt,t0 (a(s(t0))).
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by a map on states. That is: writing a history as a set of points in S for brevity, {s(t)}:
a dynamical symmetry requires that the map on histories {s(t)} �→ {s′(t)} be induced
by a map on instantaneous states, i.e. s(t) �→ a(s(t)). This turns out to be a strong
requirement, thanks to the ‘sensitivity’ of dynamics to the values of many quantities.
That is: it turns out to force a to preserve the values of many quantities—leading us
back to our initial idea of symmetry. But note that this implication is not a priori: it
depends on what dynamical evolution, in typical theories, in fact depends on.

Thepoint here iswell illustratedby spacetime symmetries, asmentioned inSect. 4.2.
Take for example, spatial translation or spatial rotation in Euclidean space R

3; and
consider any of Newtonian mechanics, relativistic mechanics, quantum mechanics,
or indeed their ‘cousin’ field theories. Each of these is of course a framework for
theorising: not a specific theory, with specific particle and-or field contents, and their
dynamics (equations of motion). But it turns out that most such specific theories that
have been empirically successful,25 once set in Euclidean space R3, do have spatial
translations and spatial rotations as dynamical symmetries. And since a dynamical
symmetry is to be induced by a single map a on instantaneous states, e.g. by spatial
translation of 1 mile due East applied to every state, the transform a(s(t)) of each
dynamically possible history s(t)will indeed be a ‘replica’ of s(t), e.g. spatially trans-
lated by 1 mile. Besides, the dynamics is ‘sensitive’ to the values of many quantities,
in the sense that a dynamical symmetry must not alter them: so its map a on instan-
taneous states is indeed a symmetry à la our initial idea. Again, spatial translations
and spatial rotations give a standard illustration; as follows. As we said, most of the
empirically successful specific theories written in any of the above frameworks, and
set in Euclidean spaceR3, have these as dynamical symmetries. But they “don’t allow
squeezing”! That is, a dynamical symmetry a must preserve all the relative distances,
and relative velocities, between the constituents of the system: if a is, or includes, a
spatial translations or rotation, it must be a rigid one, of the system as a whole. It must
preserve the values of many quantities—the relative ones.

This discussion of a dynamical symmetry leads in to Sect. 4.4. Also, the cautionary
note at the end of Sect. 4.2 above applies again. That is: stipulating that a symmetry be
dynamical—indeed, stipulating more specifically: both a symmetry and a dynamics
it respects—does not imply that every state has its value preserved for every quantity
definable on the state-space. Again, the example of SO(3) in quantum theory suffices.
One might stipulate that SO(3) be a symmetry, and that the Hamiltonian be SO(3)-
invariant (i.e. in obvious notation: [H ,UR] = 0 for all R ∈ SO(3)). This does not
imply that one can only use quantities Q that are rotationally invariant (i.e. [Q,UR] =
0).

4.4 Spacetime theories and their symmetries

In philosophical and foundational discussions of spacetime theories, it is usual to
define symmetries in an apparently different way from ours.

25 ‘Successful’ within limits, of course: for example, relative velocities small compared with c for New-
tonian mechanics to be successful, and typical actions large compared with h for Newtonian or relativistic
mechanics to be successful.

123



Synthese (2021) 198:2973–3013 2999

Besides, it is usual to define such theories, not as a triple 〈S,Q,D〉 as we have
done, but as a set of, so to speak, possible universes. That is: as a set of n-tuples,
consisting of a spacetimemanifold M , equipped with both chrono-geometric structure
(encoded in a metric field, a connection etc.) and matter fields (encoded in tensor and
spinor fields obeying equations of motion). Each such n-tuple represents a (total, 4-
dimensional) solution of the theory: a ‘possible universe’.26 A symmetry is thenusually
defined along the following lines. (Recall the example of Galilean transformations in
Sect. 2.3.2.) It is a bijection of the manifold that:

(a) respects its topological and differential structure (technically: is a diffeomor-
phism); and whose induced maps on tensor fields, connections etc.:

(b) fix the chrono-geometric structure (i.e. maps the metric field, connection etc. into
themselves) and also

(c) send the matter fields into another solution of the equations of motion—another
sequence of values over time that is dynamically allowed/possible.

So we need to link our construal of a theory as a triple, and of a symmetry as a
map on a state-space, to these ideas. The main link is of course that while a physical
theory usually has as its subject-matter some limited kind of system, for which we
think of the instantaneous state (values of quantities) changing over time, a spacetime
theory takes the universe-throughout-all-time as its subject-matter. So in our construal,
a dynamically possible total history of the system is, on Schrödinger picture dynamics,
as discussed in Sect. 4.3: a curve through S parameterized by time t , with each point
s(t) defining the values 〈Q, s(t)〉 of the various quantities Q at t .27 But in a spacetime
theory, a dynamically allowed/possible total history of the system is just an n-tuple.

One natural way to link to our construal is to make a space-vs.-time split within the
spacetime theory’s manifold.28 That is: we take the spacetime theory to have:

[a] a state-space S of the instantaneous states of a notional 3-manifold �, which we
take as a fiducial spacelike slice of the spacetime manifold;

[b] a set of quantities Q defined on � (local densities of matter fields etc.); and
[c] a dynamics D determining the evolution of the instantaneous state of �. Then a

dynamically possible total history is a foliation of spacetime, whose leaves are
time-evolutes of �, equipped with fields. In other words: it is a curve through S
parameterized by a time t labelling the leaves of the foliation.

26 So these n-tuples are usually called ‘dynamically possible models’ of the theory: but we will resist yet
another use of the over-worked word ‘model’!
27 As in Sect. 4.3 , one can have a corresponding discussion using the Heisenberg picture. But here, we set
this aside.
28 An alternative way to link to the usual covariant formulations of spacetime theories takes a model of T
to have as its state-space the set of all admissible spacetimes that are solutions of the theory’s dynamical
equations (e.g. in general relativity, the Einstein equations). But adopting either of these ways, here and
in the main text, one faces issues, if a state is a whole spacetime, about how to “get inside a spacetime”,
so as to distinguish a quantity’s differing values at different spacetime points. Thus one widely adopted
approach is to associate quantities not with points, but with extended regions of different types, i.e. one
gets ‘quasi-local quantities’: see Penrose (1982) and Brown and York (1993); for reviews, see Wang (2015)
and Szabados (2009). There are also other issues about which much could be said, such as: rigorously
defining quasi-local quantities; fixed fields; the definition of diffeomorphism invariance and its interplay
with boundary conditions. See for example Pooley (2017: p. 117) and De Haro (2017).
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Combining [a]–[c] with our discussion of dynamical symmetries in Sect. 4.3, we
can now see that our initial simple idea of a symmetry, as amap a on the system’s state-
space S that respects its structure and preserves the values of a salient set of quantities,
is, after all, similar to the usual definition of symmetry for spacetime theories, (a)–(c)
above. For making the space-vs.-time split, [a]–[c], renders this usual definition of
symmetry, (a)–(c), like Sect. 4.3’s definition of dynamical symmetry. Indeed, most of
the familiar (and empirically successful) theories set in the framework of Newtonian
mechanics, or relativistic mechanics or quantum mechanics (or their ‘cousin’ field
theories) mentioned in Sect. 4.3 can be written down as spacetime theories, i.e. as
postulating a spacetimemanifold equippedwith chrono-geometric structure andmatter
fields: with the different notions of symmetry being linked by using a space-vs.-time
split.

There are of course several issues here, about which much more could be said.
Among them are:

(i) the interplay of the structures (topological, differential, metrical etc.) of physical
space, spacetime, and state-space;

(ii) the justification for singling out, in the spacetime definition of symmetry, the
chrono-geometric structure of the manifold as having to be fixed (requirement
(b)), while the matter fields need not be (especially in the context of general
relativity); and

(iii) the justification for making the space-vs.-time split, especially in the context of
relativity theory (especially general relativity: cf. footnote 28).

And of course, such issues are mutually related. For example, (i) and (ii): one might
argue that the requirement (b), to fix the chrono-geometric structure, reflects the
requirement in our initial idea of symmetry, that a must respect the structure of the
state-space S, and the fact that S’s structure is largely determined by the chrono-
geometric structure of spacetime. However, for this paper we will not need to explore
these issues: sufficient unto the day ...

5 Symmetries of theories and of models

We now combine the ideas of Sect. 4 with Sect. 3’s distinction between a bare theory
T and its models in our sense, viz. representations of T , each with a specific structure
of its own. Our notation distinguishes the model’s representation of the bare theory’s
triple, from its specific structure M̄ . It gives a subscript M to the former to signal that
it is built out of the latter: M = 〈SM ,QM ,DM ; M̄〉. Cf. Eq. (1). We also wrote this
as M =: 〈m; M̄〉 , where m := TM := 〈SM ,QM ,DM 〉 is the model triple.

As we announced in the prospectus (Sect. 3.2), the differing amounts of structure at
the two levels, bare theory and model, prompt some distinctions, and some definitions
of types of symmetry.

Wewill begin with the idea of symmetries of a theory that are implemented in all the
models, which leads to the idea of stipulated symmetries (Sect. 5.1). Then we consider
symmetries that fail to be implemented in some of the models, which leads to the idea
of accidental symmetries (Sect. 5.2). We will see that this failure can happen for two
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diverse reasons. Roughly speaking: either the theory’s homomorphic copy has “lost
the structure with which to exhibit the symmetry”, or the model has “extra structure
that blocks the symmetry”.

Then in Sect. 5.3, we will discuss cases where the specific structure in a model
has a symmetry that is “invisible” in the weaker structure of the model triple (the
homomorphic copy of the bare theory). Here, ‘invisible’ will mean, roughly speaking:
‘cannot be defined, or reduces to the trivial symmetry, i.e. the identity map’. We call
such a symmetry a proper symmetry of themodel. Note that these cases yield a contrast
with the other,more common, usage of ‘model’ as an individual solution of a theory.On
that usage, a model is in general less symmetric than its theory—as is often remarked,
with the buzz-word ‘symmetry-breaking’. A solution of a dynamics with a spherically
symmetric Hamiltonian need not be spherically symmetric; a cubical crystal lattice
with one particular placing of its lattice points, and one particular orientation of its
edges, can be a solution of a dynamics that is translation-invariant and isotropic; and
so on. So beware: our cases of proper symmetries of a model are cases ‘lying in the
opposite direction’ from what one expects from the other, more common, usage of
‘model’.

Finally, Sect. 5.4 will sum up the Section. It emphasises that these three types of
symmetry are mutually exclusive. (It also mentions a fourth type: which will not be
important, butwhich completes our classification, i.e.makes the four types exhaustive.)

This Section builds on Sect. 4. For in this Section:

(i) We will again take a symmetry as a map a on states, though we could equally
well take it as a map on quantities;

(ii) We will return to the idea of stipulated symmetries; and
(iii) One can, at each stage of the discussion, require the symmetry to be a dynamical

symmetry; but we will not explicitly mention this;

and these three points echo Sects. 4.1, 4.2 and 4.3, respectively.

5.1 Guaranteeing that a bare theory’s symmetry is implemented in amodel:
stipulated symmetries

For any theory T and any of its models M , there is a natural condition for a symmetry
of T to be itself realized in M : for it to have, so to speak, a “shadow” in the model M . It
is that an obvious diagram should commute (cf. Fig. 3). Here, we write representation
as a map h (‘h’ for homomorphism). So treating symmetries as maps on states: a
symmetry of T = 〈S,Q,D〉 is a map a : S → S that preserves the value of all
quantities in a salient subset of the quantities Q. So we take h as an appropriate
structure-preserving map: from S in the theory T itself, to SM in the representing
model triple m = TM = 〈SM ,QM ,DM 〉. Then the condition—that the symmetry a
is itself realized in M—is that there should be a map aM : SM → SM , such that the
diagram in Fig. 3 commutes.

But this condition is not automatic: even in simple cases, like elementary group
theory. In Sect. 5.2 we will discuss how the condition can fail: here we consider ways
to secure it.
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Fig. 3 Commutativity diagram of the symmetry a with the representation map h

There are two obvious ways to do so: i.e. ways to secure that a bare theory’s
symmetry is implemented in a model of it. The first is a formal triviality; the second
is a stipulation.

First: consider the case where the model triple is isomorphic to the bare theory. (In
the language of representation theory: the representation is faithful, i.e. the homomor-
phism has trivial kernel.) With the map h an isomorphism, the map aM is bound to
exist; and the diagram in Fig. 4 will trivially commute. In this case, a symmetry of the
theory has a “duplicate” or “replica” (not just a “shadow”) in the symmetries of the
model—so that in effect, the symmetries of the theory are a subset of the symmetries
of the model. We say ‘in effect’ just because of the different domains of definition: S
vs. SM .

Second: consider, so to speak, the power of stipulation. That is: recall the idea of
stipulated symmetries, as in Sect. 4.2. The idea there was that often in physics, we
“begin with”, i.e. are guided by, symmetry principles, and therefore require the state-
space of our theory to carry a representation of a group, with values of the salient
quantities being preserved under the action of the (representation’s) group elements.
One standard example is requiring the states, of whatever type of particle or field, to
carry a representation of a spacetime symmetry group, such as the Poincaré or Galilean
group.

Carrying this idea over to our two levels, of bare theory and models: it means
requiring each model triple to have a symmetry that is a shadow of the bare theory’s
symmetry. In terms of symmetries as maps on states: each model triple is simply
required to have a symmetry aM on SM that makes Fig. 3 commute. In short: one
has commutation by stipulation. We shall call such symmetries—both a on the bare
theory that ‘does the requiring’, and the ‘required’ aM on the model M—stipulated
symmetries. And similarly for a whole group of symmetries. And again, a spacetime
symmetry group gives a standard example.

This second idea can be implemented in practice as follows: (i) Stipulate the sym-
metries to be part of the definition of the bare theory, T (cf. footnote 5). (ii) Reduce the
set of models to only those models that instantiate the symmetry, i.e. those for which
the diagram in Fig. 3 commutes. Here, (i) implies (ii).

Thus, for a field theory based on the homogeneous Lorentz group, one can systemat-
ically construct the fields by looking at the irreducible representations of this group.29

Thus we begin (cf. Weinberg 1995: Chapters 5.2–5.6) with the trivial representation
of the Lorentz group, which gives a massive scalar field. The next (in terms of its
dimension) irreducible representation is the Dirac spinor representation describing a
fermion. The next irreducible representation is the (massive) vector representation,

29 For textbooks on quantum field theory that take this approach from their very first pages, see Weinberg
(1995: Chapters 2.4–2.7, 5) and Maggiore (2005: Chapter 2).
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Fig. 4 Commutativity of group automorphism a1 with group homomorphism h

i.e. a four-vector (which contains spin zero and spin one states); and we can have
various tensor representations, etc.

Often, in practice, and in particular for spacetime symmetry groups: these twoways
to secure the commutation—to secure that a bare theory’s symmetry is implemented—
come together. For the stipulation made is not just that the state-space of the model
triple carry a symmetry, or carry some or other representation of a group of symmetries.
It is also stipulated that it carry a faithful representation of the group. That is: the
representation map h is required to be an isomorphism. So the upshot is: a symmetry
of the bare theory has a duplicate or replica (not just a shadow) in the symmetries
of each model (but of course represented differently in the theory and in each of the
models)—so that in effect, the stipulated symmetries of the theory are a subset of the
symmetries of the models.30

5.2 A bare theory’s symmetry might fail to be implemented in amodel: accidental
symmetries

As we said at the start of Sect. 5.1, Fig. 3 need not commute—even in simple cases,
like elementary group theory. In fact, the condition can fail in either of two ways:
because the theory’s homomorphic copy has “lost the structure with which to exhibit
the symmetry”; or because the model has “extra structure that blocks the symmetry”.
We will give an example of each of these: the first from group theory, the second from
elementary spacetime theory.

So first, let the bare theory be just a group G1,31 with an automorphism a1 : G1 →
G1; and suppose a groupG2 representsG1 thanks to the existence of a homomorphism
h : G1 → G2. So G2 ∼= G1/ker h. Then for there to be a homomorphism of G2, a2 :
G2 → G2 (even homomorphism: let alone automorphism), that realizes a1 (counts
as a1’s “shadow” in G2) requires commutation: i.e. for all g1 ∈ G1, h(a1(g1)) =
a2(h(g1)). Or as a diagram, see: Fig. 4. But a1 and h need not mesh in this way:
commutation of the diagram is not guaranteed. The smallest counterexample we have
found is presented in the Appendix.

A second example of a theory’s symmetry failing to exist at the level of its models
is given by Sect. 2.3.2’s neo-Newtonian spacetime as a bare theory, modelled by
various Newtonian spacetimes each with their own specification of absolute rest. Here
it is “extra structure in the models” that blocks the implementation of the theory’s

30 Again, we say ‘in effect’ just because of the different domains of definition:S vs.SM . And as mentioned
in this Section’s preamble: note the contrast with the other, more common, meaning of ‘model’ as an
individual solution of a theory. On that meaning, a model is in general less symmetric than its theory.
31 To be a bare theory in our sense, we would need to add a set of maps to the real numbers, to express
evaluation of the quantities, and even a dynamics. But to give the simplest case, we ignore these maps.
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symmetry. Thus we take neo-Newtonian spacetime to be so defined that the Galilean
group is its symmetry group: i.e. the set of diffeomorphisms of the spacetime that
fix the spatial metric (giving Euclidean geometry in the instantaneous slices), the
temporal 1-form (ordering the slices like R), and the flat affine connection (giving a
notion of absolute acceleration, without a notion of absolute rest or absolute velocity).
(Cf. Sect. 4.4.) Thanks to avoiding an absolute rest, the boosts are symmetries. But
in a Newtonian spacetime, with the extra structure of a specified absolute rest, the
boosts are not symmetries: the symmetry group is reduced to the Euclidean group
(i.e. rotations and spatial translations) combined with time translations. In our jargon,
whereby a model comprises specific structure as well as a model triple: the specific
structure prevents the symmetry.

Accidental symmetries: We have seen that, in general, the symmetries of a theory
are not instantiated in its models. But this of course does not forbid special situations
in which a theory happens to have symmetries that are not stipulated (they are not
part of the definition of the bare theory). And these symmetries may (though of course
they need not) have “shadows” in some (but not all) of their models. This is the
situation where the diagram in Fig. 3, for a specific model M , commutes “for free”,
i.e. without the symmetry a being part of the definition of the bare theory T . We call
these accidental symmetries.

To illustrate the practical usefulness of the notion of accidental symmetries, we now
give a very simple example thatwewill generalise in the next Section.Consider the bare
quantum theory of the hydrogen atom, with a Hamiltonian that only contains a kinetic
term for the electron, and a potential that only contains the Coulomb attraction, i.e. the
basic textbook example of the hydrogen atom, neglecting all other interactions. Thus
the states of our theory are square-integrable wave-functions, the quantities are the set
of operators of the hydrogen atom (in particular the Hamiltonian), and the dynamics
is the Schrödinger equation (thus we adopt the Schrödinger picture). This theory has
many models, in our logically weak sense of ‘model’ from Sect. 2.1.1. Indeed, each
square-integrablewave-function that solves the Schrödinger equationwith given initial
conditions (along with the set of operators that act on it, and its time evolution) is a
representation of the theory—even if a very non-faithful representation.32 Let us call
these models Mn�m , where n, �,m are the quantum numbers of the hydrogen atom.33

But the set of all such models, i.e. the set of all square-integrable wave-functions
that solve the Schrödinger equation, is itself also a model. Let us call this model
Mtotal := {Mn�m}, where n, �,m have the usual ranges.

Let us now discuss the spherical symmetry of this bare theory of the hydrogen
atom. Particular solutions (except for special, spherically symmetric, solutions) are of
course not spherically symmetric. Thus, most of the individual models Mn�m do not
enjoy the SO(3) symmetry of the theory (although they are mapped into each other by
the action of SO(3)). On the other hand, Mtotal does carry non-trivial representations
of SO(3), which acts as an automorphism of the set of states. Namely, SO(3) maps

32 This recovers the usual meaning of ‘model’, (i) in Sect. 2.1.1, as a special case of ‘model’, in our sense.
Cf. footnote 3.
33 Since each state is determined by a set of initial conditions, it is in general not the case that only stateswith
fixed values of n, �,m are allowed. The general allowed state is a linear combination of these, depending
on the boundary conditions. But for notational simplicity, we label the models by quantum numbers.
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states with the same n and � but different values of m, so that � labels the distinct
representations of SO(3) (and, by focussing on a suitable set of eigenfunctions of the
Laplacian that form a complete set, one can get the irreducible representations). In
other words, SO(3) is a symmetry of Mtotal. Of course, all of the above generalises to
the case where the potential is specified only to be a spherically symmetric function,
i.e. of the form V (r), and we consider other spatial dimensions: as we will do in the
next Section.

Thus rotational symmetry is an accidental symmetry of this particular theory. It is
a symmetry of the theory that is represented non-trivially in one of the models of the
theory, but not in all the models.

5.3 Proper symmetries of models

In the last two Sections, we considered symmetries of a theory that are stipulated
to be symmetries of all the models (Sect. 5.1) or that fail to be realized in at least
some of the models (Sect. 5.2). In this Section, we consider symmetries that are not
defined in the theory, but that are nevertheless symmetries of a model. For a model’s
specific structure M̄—its ‘content’ that goes beyond its being a model/realization of
T—can make the model have symmetries additional to those that are “shadows”,
or even “duplicates”, of the symmetries of T . And we expect that if these additional
symmetries arewell-defined on themodel triple, or if they naturally induce a symmetry
there, that symmetry is trivial, i.e. just the identity map on the model triple.

Our prototypical cases of representations of a group or algebra give examples.
Perhaps the simplest is as follows. Let T be the real numbers R; and let M be the
complex numbers C which of course represents R as the real axis, i.e. the complex
numbers with zero imaginary part, {z ∈ C | z = x + i0, x ∈ R}. So this latter set, the
real axis, is like the model triple. Then M has the symmetry of complex conjugation
z �→ z̄ which is indeed well-defined on the real axis: but there, it is just the identity
map.34

This prompts the idea of a proper symmetry of a model: where the word ‘proper’
is to connote ‘specific to the model’. The idea is that such a symmetry depends, at
least in part, on the model’s specific structure—which, recall, “lies beyond” the model
triple’s representing the bare theory: just like complex conjugation in the example just
given.

Togive a general definition, it is clearest to introduce another notation for amodel, as
a triple of its own set of states, quantities and dynamics. So we write: M = 〈S̄, Q̄, D̄〉.
Contrast the way our previous notation in Eq. (1) separated out the specific structure
M̄ . Thus we wrote: M = 〈SM ,QM ,DM ; M̄〉 = 〈m; M̄〉. With the new notation,

34 There are also examples in interesting cases of dualities. In gauge-gravity dualities, De Haro (2017)
showed that a certain subgroup of the diffeomorphism group of the gravity model of the theory (roughly,
the diffeomorphismswhich preserve the asymptotic boundary conditions)was ‘invisible’ to the gaugemodel
of the theory, in the sense of not representing any difference on that model: and so these diffeomorphisms
are not in the common core between the two models, and they are trivially represented on the bare theory.
The same verdict was made in De Haro (2016b: Sect. 2.2.3) for the ‘gauge symmetries’ of the gauge side
of the duality. These are not visible on the gravity side: they are symmetries of the formulation of the gauge
model of the theory, and are trivially represented on the bare theory.
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we can discuss ‘symmetry of a model’ in just the same way that, already in Sect. 4,
we discussed ‘symmetry of a theory’: namely, as a map a on the state-space S̄ that
preserves the values of a salient, usually large, set of quantities.

This suggests the following definition. Given a (bare) theory T that is represented
by various models and presented as a triple, we will say that a symmetry a of one such
model M = 〈S̄, Q̄, D̄〉, a : S̄ → S̄, is a proper symmetry of M , if there is some other
model of T , say M ′ = 〈S̄ ′, Q̄′, D̄′〉 for which, in effect, a cannot be defined; and a
can, in effect, also not be defined for the theory T . (Here, we say ‘in effect’ for the
same reason as in Sect. 5.1: i.e. just because of the different domains of definition: S̄
vs. S̄ ′.) More precisely: in the model M ′ = 〈S̄ ′, Q̄′, D̄′〉, there is no natural definition
of a symmetry map a′ : S̄ ′ → S̄ ′ that is a “cousin” of a, except perhaps as the identity
map.

Again, the complex numbers vs. the real numbers give what is perhaps the simplest
example, with the real line now taken as another model M ′ := R, along with the
complex plane M := C: rather than R being the theory T . In this example, complex
conjugation is a proper symmetry of M := C: it reduces to the identity map on the
other model, M ′ := R.

Consider again the example from the previous Section, but in generalised form.
We stipulate that our bare theory is the quantum mechanics of the abstract two-body
problem in an arbitrary number of spatial dimensions. Consider now models that
specify:

(i) the number of spatial dimensions, n, and the idealization that one body is a test-
body, which secures rotational invariance, and so an SO(n) symmetry; and

(ii) the form of the potential.

Specifically, we will take the model to specify the dimension of space to be 3, and
the potential to be the Coulomb potential. With these definitions, the SO(3) rotational
symmetry is not a symmetry of the bare theory but it is a symmetry of the model.
Furthermore, the model’s specifying the potential to decay like 1/r means that the
SO(3) symmetry is enlarged to SO(4), where the additional symmetry corresponds to
a new conserved quantity—the Runge-Lentz vector.35 On the other hand, notice that
there are countless other choices of potential that do not share the SO(4) symmetry.
Thus, in fact, this model has an SO(4) symmetry that the bare theory and countless
other models do not share: it is a proper symmetry of this model.

5.4 Kinds of symmetry

Let us sum up this Section’s discussion of how the symmetries of a bare theory relate
to those of its models. We have made two main points, as follows.

(i) A bare theory T is represented by one of its model triples, m. The model M
then consists of m and some specific structure M̄ ; (cf. Sect. 2). But representation
requires only a homomorphism, not an isomorphism. Hence our articulating in

35 Recall that the rotational invariance of the Hamiltonian implies the conservation of angular momentum,
which means that the classical orbits lie on a plane. Likewise, the SO(4) symmetry implies the conservation
of the Runge-Lenz vector, namelyM := (p×L−L×p)/2m−e2r/r : i.e. it commuteswith theHamiltonian.
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Sects. 5.1 and 5.2 the condition—in terms of a commuting diagram—for a sym-
metry of T to be itself realized in m. As Sect. 5.2 described, this condition can
fail. So when this condition ismet for some of the models—not by stipulation but
“accidentally”—we say that there is an accidental symmetry.

(ii) When the diagram is stipulated to commute, so that eachmodel has a ‘duplicate’ or
‘replica’ of the symmetry a, we have a stipulated symmetry. There are two obvious
ways to implement this stipulation: defining the theory to have a symmetry, and
accordingly restricting the set of models to those that respect the symmetry, or
requiring the model triples to be isomorphic to the theory T (the latter condition
being strictly stronger). But even in such cases, the model (as against the model
triple) has its own specific structure M̄—which may have symmetries that m, and
the other models “know nothing of”: these are proper symmetries of the model
(Sect. 5.3).

Wecan also nowsee that our three types of symmetry aremutually exclusive. Stipulated
symmetries and accidental symmetries are mutually exclusive because the former are
stipulated while the latter are not; and stipulated symmetries and proper symmetries
of models are mutually exclusive because, while the former has a shadow (i.e. can be
defined as a symmetry) in all of the models, the latter cannot be defined in at least
some models (and it is also not defined in the theory).

Accidental symmetries and proper symmetries are mutually exclusive because an
accidental symmetry is a symmetry of the theory (although it is not stipulated); while
a symmetry of the theory cannot be a proper symmetry of a model.

The only possibility that is not covered by the above three kinds of symmetries is
the possibility that a symmetry is a symmetry of all the models but is not a symmetry
of the theory. Such a symmetry can for example be obtained when a proper symmetry
of the models is shared by some models (but of course not all), and then the models
for which this symmetry is not realized are excised from the set of models. We could
call such a symmetry an improper symmetry of the models (improper, in the sense that
it is a symmetry of all the models but not of the theory).

Indeed, it is now true that any symmetry (in our sense) belongs to one of these
four categories. For, given a theory and a set of models, a symmetry can either be a
symmetry of the theory and of all themodels (hence it is stipulated); or it is a symmetry
of all the models but not the theory (an improper symmetry); or it is a symmetry of
the theory and of only some models (an accidental symmetry); or it is a symmetry of
some models but not of the theory and not of some other models (a proper symmetry
of the models); or it is only a symmetry of the theory (also an accidental symmetry).

6 Duality preserves symmetries

It is straightforward to confirm that on Sect. 3.1’s definition of duality, a duality
preserves any symmetry (including dynamical symmetries) of its model triples. There
are two points here. First: there is a commuting square diagram of isomorphisms.
Second: there is the issue of the values of a quantity being equal on a given state, and
on its transform under a symmetry. The first point will lead in to the second.

123



3008 Synthese (2021) 198:2973–3013

Fig. 5 Commutativity of duality and symmetry for states

Fig. 6 Commutativity of duality and symmetry for quantities

First: The duality maps dS , dQ are not only bijections, but isomorphisms: dS :
SM1 → SM2 , and dQ : QM1 → QM2 . And although we did not have to spell out the
exact structures of SMi ,QMi that these isomorphisms are to preserve, it is obvious
from the fact that ‘is isomorphic to’ is both a symmetric and a transitive relation, that
the diagram above, with a understood to be any automorphism of SM1 , commutes
(cf. Fig. 5).

And of course, this diagram of isomorphisms is just what we mean by saying a
duality d preserves an automorphism of the state-space SM1 in its domain model
triple, and preserves SM1 ’s structure. Namely, d carries the automorphism—a map a
on SM1—to a corresponding automorphism of states in the codomain (indeed: range)
model triple. The diagram defines this corresponding automorphism, i.e. the map
forming the fourth side of the square: dS ◦ a ◦ (dS)−1 : SM2 → SM2 .

There is obviously a corresponding point about quantities, as against states. Since
dQ is required to be an isomorphism of quantities, the diagram above, with a now
understood to be any automorphism of QM1 , must commute, cf. Fig. 6.

And again, this diagram is just what we mean by saying a duality d preserves
an automorphism of the quantities in its domain model triple, and preserves QM1 ’s
structure. Namely, d carries the automorphism—amap a onQM1—to a corresponding
automorphism of quantities in the codomain (indeed: range)model triple. The diagram
defines this corresponding automorphism: dQ ◦ a ◦ (dQ)−1 : QM2 → QM2 .

In short: Figs. 5 and 6 show that duality commutes with automorphisms of the states
and of the quantities.

Second: But in physics, the notion of symmetry of course involves more than
the notions of automorphism of the state-space, and of the set (usually algebra) of
quantities. It involves the pairing whereby states s and quantities Q assign each other
a value: 〈Q, s〉. For these values (for a large and salient set of quantities) must be
preserved under the symmetry.

But satisfying this is automatic, for a duality as defined in Sect. 3.1. That is: For
a duality to respect this aspect of symmetry was already built in to our definition of
duality: namely in condition (i), that the values are equal between states and quantities
that correspond by the duality. Recall Eq. (9), which we here repeat:

〈Q1, s1〉1 = 〈dQ(Q1), dS(s1)〉2 , ∀Q1 ∈ QM1 , s1 ∈ SM1 . (17)
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Fig. 7 Commutativity of symmetry and dynamics

Fig. 8 Commutativity of duality, symmetry, and dynamics

Thus let us show that the map a2 := dS ◦ a ◦ (dS)−1 : SM2 → SM2 is a symmetry
on states in our sense, i.e. preserves values; cf. Fig. 5. (A similar argument works for
the symmetry on quantities, as in Fig. 6.) In effect, we just use the duality maps and
Eq. (17) to carry back the discussion of preservation of values to the automorphism
a : SM1 → SM1 in model M1. Thus we consider 〈Q2, s2〉2, and we write Q1, s1 for
the inverse images, under dQ and dS respectively, of Q2, s2. Then we have (using
Eq. (17) for the second and fourth equations, and a being a symmetry for the third
equation):

〈Q2, s2〉2 = 〈dQ(Q1), dS(s1)〉2 = 〈Q1, s1〉1 = 〈Q1, a(s1)〉1
= 〈dQ(Q1), dS(a(s1))〉2 = 〈Q2, a2(dS(s1))〉2 ≡ 〈Q2, a2(s2)〉2 . (18)

Finally: the same verdict—that a duality preserves any symmetry of its model
triples—applies to dynamics, i.e. to dynamical symmetries. Recall from footnote 24
(in Sect. 4.3) that a dynamical symmetry is a commutation i.e. equivariance condition.
So for the Schrödinger picture of dynamics, the diagram for the ‘first’ side of a duality,
i.e. m1 = 〈SM1 ,QM1 ,DM1〉, is, with a the dynamical symmetry, as in Fig. 7.

So we now compose this diagram with Fig. 5, which represents that a duality
preserves a symmetry. But since in Fig. 7, the ‘first’ side, ‘1’, of the duality occurs
twice, on both top and bottom rows, we now need to compose Fig. 7 with Fig. 5
twice: both on its bottom row; and also on its top row (with the duality arrow in
Fig. 5 reversed). The resulting diagram (Fig. 8) shows that the duality isomorphism
on state-spaces dS carries the dynamical symmetry a on the ‘1’ side of the duality, to
a dynamical symmetry on the ‘2’ side: namely, the symmetry dS ◦ a ◦ d−1

S (cf. either
the top or bottom square). The Schrödinger picture dynamics on SM2 is (reading down
the columns in the Figure): dS ◦ Dt,t0 ◦ d−1

S .

123



3010 Synthese (2021) 198:2973–3013

To sum up: we have shown that a duality always preserves a symmetry of its model
triples.

7 Conclusion

In this paper we have investigated the relations between dualities and symmetries,
using our Schema for dualities. The Schema begins with a conception of theories and
of models that is widespread in philosophy of science (namely, a theory as a formal
structure or a set of axioms, and models as instantiations or representations of the
theory) but that departs from the common usage, in philosophy of physics, of models
as individual solutions of the theory’s dynamical equations. The flexibility in our usage
allows both a natural definition of a duality as an isomorphism between models and
the recovery, as a special case, of the more familiar notion of ‘model’ in philosophy
of physics: by appropriately tuning the level of the description—more precisely, by
carefully selecting the relevant representations.

In Sect. 2, we emphasised (i) the distinction within a model (in our sense, viz.
representation of a bare theory), between model root and specific structure; and (ii)
the distinction between internal and external interpretations. This gave us a clear
formulation of disagreements like those between Newton (Clarke) and Leibniz, about
the status of absolute rest: which we illustrated with Galilean transformations.We also
used matrix representations of a group to illustrate the different ways one can define
‘model root’ and ‘specific structure’.

The distinction (i) also underpins the Schema’s exact definition of duality as an
isomorphism of model roots (Sect. 3). This equipped us, after reviewing symmetries
in general (Sect. 4), to understand in detail how dualities and symmetries relate to one
another.

This we undertook in the last two Sections. In Sect. 5, the Schema’s conceptions of
theory andmodel prompted us to introduce four types of symmetries: of which two are
symmetries of the theory (stipulated symmetries and accidental symmetries) and two
are symmetries ofmodels only (proper and improper symmetries). These four types are
mutually exclusive and jointly exhaustive of all the possibilities for symmetries, given
the Schema’s distinction between theory andmodels, and our construal of ‘symmetry’.
Then in Sect. 6 we showed that, just as one would hope, the Schema’s construal of
duality meshes with whatever symmetries the duals, i.e. the isomorphic model roots,
may have.
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Appendix: A group automorphism lost under homomorphism

We present a simple case of Sect. 5.2’s topic, of a symmetry of a theory being “lost” in
a model. As discussed in Sect. 5.2: for the simple case of group theory, this is a matter
of the diagram in Fig. 4 not commuting. That is: an automorphism a1 : G1 → G1, and
a homomorphism h : G1 → G2 ∼= G1/ker h need not mesh as the diagram shows, so
as to give a well-defined homomorphism a2 : G2 → G2.

To see what is involved, we can identify G2 with its isomorph G1/ker h; and let us
write K as short for ker h. Then the commutation requirement h(a1(g1)) = a2(h(g1))
is the requirement that the definition of a2 by saying a2(Kg1) := h(a1(g1)) be well-
defined. That is: the given automorphism a1 must respect the cosets of h. That is:
we require that if h(g1) = h(g′

1), i.e. Kg1 = Kg′
1, i.e. there is a k ∈ K such that

g′
1 = kg1, then also there is a k ∈ K such that a1(g′

1) = ka1(g1). But a1 and h need
not mesh in this way: commutation of the diagram is not guaranteed.

The smallest counterexample we have found takes G1 as the dihedral group D4. It
has D2 as a normal subgroup, D2�D4, with D4/D2 ∼= C2 = {0, 1}. So we takeG2 as
(up to isomorphism) the cyclic groupC2 and h : G1 → G2 as the canonical projection
taking each element of D4 to its D2-coset. Then we define a1 : D4 → D4 to take an
element b of the normal subgroup D2 out of D2. This implies that the diagram cannot
commute. For on the left of the diagram h : D4 
 b �→ D2 = eD4/D2 , so that any
bottom-row homomorphism a2 must map D2 = eD4/D2 �→ D2 = eD4/D2 ; while on
the right of the diagram h : D4 
 a1(b) �→ (D2)a1(b) �= eD4/D2 .

The details are as follows. D4 is the symmetry group of the square, and is generated
by two elements: rotation out of the plane of the square by π about the axis in the plane
that horizontally bisects the square; and rotation in the plane of the square byπ/2 about
the axis normal to the plane through the centre of the square. We label these b and c
respectively. So with e the identity transformation, b2 = c4 = e. One checks that bc
and bc3 are the rotations out of the plane of the square by π about the two diagonal
axes, and bc2 is the rotation about the axis in the plane that vertically bisects the square.
So these elements are of order 2. Also one checks that cb = bc3, c2b = bc2, c3b = bc.
And so D4 has eight elements, which we write as {e, c, c2, c3, b, bc, bc2, bc3}, with
generating equations b2 = c4 = (bc)2 = e. D4 has a copy of the dihedral group D2—
viz. {e, c2, b, bc2} with generating equations b2 = (c2)2 = (bc2)2 = e—as a normal
subgroup: D2 �D4, with D4/D2 ∼= C2. So define h : D4 → D4/D2 ≡ {D2, D2(bc)}
as the canonical projection. That is: each element of D2 is sent to D2 ∈ D4/D2; and
the other four elements, c, c3, bc, bc3, are each sent to their common coset D2(bc).
Finally, we define the automorphism a1 : D4 → D4 as:

(i) the identity map on the rotations in the plane (the powers of c); but also
(ii) mapping b to bc, i.e. b ∈ D2 is mapped out of D2, and
(iii) mapping bc to bc2, bc2 to bc3, and bc3 to bc4 ≡ b (so that an element out of D2

is mapped into D2).

A tedious check shows that a1 thus defined is an automorphism. So by the argument
in the preceding paragraph, the diagram in Fig. 4 does not commute.
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