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ABSTRACT: PSP is a pathologically defined neuro-

degenerative tauopathy with a variety of clinical presen-

tations including typical Richardson’s syndrome and

other variant PSP syndromes. A large body of neuroim-

aging research has been conducted over the past two

decades, with many studies proposing different struc-

tural MRI and molecular PET/SPECT biomarkers for

PSP. These include measures of brainstem, cortical and

striatal atrophy, diffusion weighted and diffusion tensor

imaging abnormalities, [18F] fluorodeoxyglucose PET

hypometabolism, reductions in striatal dopamine imag-

ing and, most recently, PET imaging with ligands that

bind to tau. Our aim was to critically evaluate the

degree to which structural and molecular neuroimaging
metrics fulfill criteria for diagnostic biomarkers of PSP.
We queried the PubMed, Cochrane, Medline, and PSY-

CInfo databases for original research articles published
in English over the past 20 years using postmortem

diagnosis or the NINDS-SPSP criteria as the diagnostic
standard from 1996 to 2016. We define a five-level the-

oretical construct for the utility of neuroimaging bio-
markers in PSP, with level 1 representing group-level
findings, level 2 representing biomarkers with demon-

strable individual-level diagnostic utility, level 3
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representing biomarkers for early disease, level 4 repre-

senting surrogate biomarkers of PSP pathology, and

level 5 representing definitive PSP biomarkers of PSP

pathology. We discuss the degree to which each of the

currently available biomarkers fit into this theoretical

construct, consider the role of biomarkers in the diag-

nosis of Richardson’s syndrome, variant PSP syn-

dromes and autopsy confirmed PSP, and emphasize

current shortfalls in the field. VC 2017 The Authors.
Movement Disorders published by Wiley Periodicals,
Inc. on behalf of International Parkinson and Movement
Disorder Society.

Key Words: progressive supranuclear palsy; diagno-
sis; magnetic resonance imaging; positron emission tomog-
raphy; single-photon emission computed tomography

Progressive supranuclear palsy (PSP) is a pathologic
diagnosis with neurodegeneration characterized by
abnormal tau pathology in the form of globose neuro-
fibrillary tangles, tufted astrocytes, coiled bodies, and
threads,1 with a predominance of 4-repeat (4R) tau
isoforms.2 Tau pathology is typically observed in the
brain stem, basal ganglia, diencephalon, and temporal,
motor, and premotor cortices,1,2 although distribution
can vary.3,4 The most commonly recognized clinical
presentation of PSP is Richardson’s syndrome (PSP-
RS), in which patients have early and notable gait and
postural instability, frequent falls, and abnormal verti-
cal eye movements (supranuclear gaze palsy).5,6 How-
ever, a number of other clinical presentations of PSP
have been increasingly recognized, including but not
limited to PSP with predominant parkinsonism (PSP-
P),6 PSP with progressive gait freezing (PSP-PGF),7

PSP with predominant frontal presentation (PSP-F),8

PSP with a predominant speech/language disorder
(PSP-SL),9 and PSP with predominant corticobasal
syndrome (PSP-CBS).10 We have recently developed
the Movement Disorder Society-endorsed PSP clinical
diagnostic criteria that recognize this heterogeneity
and provide criteria for the different clinical variants
of PSP.11 A major challenge faced during the revision
of the diagnostic criteria was to determine whether
there was enough evidence to support the inclusion of
neuroimaging biomarkers in the diagnosis of PSP-RS,
the other variant syndromes of PSP (vPSP), or in the
diagnosis of pathological PSP, and what role they
should play in the diagnostic criteria.

Table 1 provides a theoretical construct to judge the
utility of diagnostic neuroimaging biomarkers in PSP.
The first step is to demonstrate abnormalities in the
group of interest compared with matched healthy con-
trols and other clinically overlapping disease groups
(level 1). In the context of PSP, this typically means
demonstrating abnormalities in PSP-RS compared with
other parkinsonian disorders, such as Parkinson’s dis-
ease (PD), multiple system atrophy with predominant
parkinsonism (MSA-P), and CBS. However, if one
wishes to ultimately develop a diagnostic biomarker
for PSP pathology, it is also important not to ignore
vPSP, for which neuroimaging signatures may differ
from PSP-RS. A biomarker differentiating PSP-F, PSP-

SL, and PSP-CBS from other frontotemporal lobar
degeneration spectrum disorders may also be valuable.
For these group-level findings to translate into useful
biomarkers, the next step is to demonstrate useful sen-
sitivity and specificity (>80%) for the clinical diagnosis
at the individual patient level (level 2). Biomarkers that
perform well at this level could be valuable to support
the clinical diagnosis. However, because these analyses
are based on comparison with clinical diagnosis rather
than the gold standard of neuropathology, there is still
no evidence at this point that the biomarker adds any-
thing to clinical diagnosis, other than to increase confi-
dence. A biomarker could surpass clinical diagnosis if
one can demonstrate utility for early clinical diagnosis,
when patients have mild or nonspecific symptoms and
signs before they meet clinical criteria for the disease
(level 3), or if one can demonstrate that a biomarker
has a strong relationship with the presence of PSP
pathology regardless of clinical phenotype (level 4).
The latter will ideally require the demonstration that a
biomarker is highly associated with PSP pathology, not
only in patients diagnosed with PSP-RS but also in
vPSP, thus representing utility for the entire clinical
spectrum of PSP. However, neuroimaging biomarkers
that satisfy level 4 may still be considered only a surro-
gate marker of pathology, meaning that they correlate
well with pathology but do not directly measure
pathology. Thus, the holy grail in neuroimaging is to
identify a biomarker that directly measures underlying
pathology and hence could be considered a definitive
pathological biomarker (level 5). We are getting closer
to this goal with the development of PET ligands that
can bind to abnormal tau in the brain, and current
knowledge of these biomarkers will be discussed. At
levels 4 and 5, the ideal biomarker would be one that
is specific to PSP pathology, although biomarkers that
could identify a 4R tauopathy could also be diagnosti-
cally useful. Another issue to consider when assessing
the value of neuroimaging biomarkers is how well the
proposed measures would translate into clinical prac-
tice; ideally they should be relatively inexpensive, con-
venient, safe, widely available, and comparable across
different centers.

This review will utilize the theoretical construct out-
lined in Table 1 to evaluate the degree to which
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different proposed structural and functional neuroim-
aging metrics fulfill criteria as diagnostic biomarkers
in PSP. As part of our efforts to develop the new diag-
nostic criteria, a detailed literature search and content
evaluation was performed that formed the basis of
this review (Supplemental Data).

Structural MRI

Brain Stem Measures

Striking midbrain atrophy is typically observed in PSP-
RS, and a number of midbrain metrics have been pro-
posed as potential biomarkers. These metrics include
visual assessment of midbrain atrophy, midbrain profile
or the presence of specific morphological markers such as
the “hummingbird” sign (atrophy of dorsal midbrain
resembles hummingbird’s head and bill in midsagittal
plane12), “Mickey Mouse” sign (rounded rather than
rectangular midbrain peduncles in axial planes),13 and
“morning glory” sign (concavity of the lateral margin of
the midbrain tegmentum in axial planes14); see Figure 1.
Quantitative measures of midbrain anterior-posterior
diameter and midsagittal area or volume have also been
assessed. Studies are in general agreement that midbrain
measurements are smaller in PSP-RS compared with MSA
and PD,14-31 although overlap can occur at the individual
level, particularly between PSP-RS and MSA.15,16,28,30

Diagnostic sensitivity and specificity values (Table 2) are
typically high (>90%) for differentiating PSP-RS
from controls and from MSA and PD using midbrain
area,15-17,32 although midbrain diameter15,18-20,22,23,32

and volume15,24 and visual assessments13,14,20,21,25,33,34

have been more variable, not always meeting the 80% cut
point required for a level 2 biomarker. Visual assessments
of the midbrain can be particularly problematic because
they are not quantitative, lack objectivity, and can be
highly dependent on image acquisition and patient
positioning.35,36

A ratio of midbrain to pons area (Fig. 1) in the mid-
sagittal plane has been proposed as a biomarker to
differentiate PSP-RS from MSA-P, given that MSA-P is
associated with atrophy of the pons and sparing of the
midbrain, the opposite pattern to PSP-RS.15 Some

studies have found high sensitivity and specificity for
the midbrain-pons area ratio in differentiating PSP-RS
from MSA-P and from PD,15-17,19,32,37-40 although
sensitivity has been lower in other studies22,23,41

(Table 2). The superior cerebellar peduncles (SCPs)
are also atrophic in PSP,42 which contrasts with a rela-
tive sparing of the middle cerebellar peduncles
(MCPs). This has led to the development of the MR
Parkinsonism Index (MRPI), which takes into account
both the midbrain-pons area ratio and the ratio of the
MCP to SCP width ([P/M] 3 [MCP/SCP])38; see Fig-
ure 1. The MRPI is typically increased in PSP-RS com-
pared with controls, MSA-P, and PD, and sensitivity
and specificity values for differentiating PSP-RS from
MSA-P, PD, and vascular parkinsonism have been
excellent17,22,37-39,41,43,44 (typically >80% and up to
100% sensitive in a few studies that represent differ-
ent continents37-40,43,44); see Table 2. A number of
studies have found that the MRPI was superior or
equivalent to the midbrain-pons ratio in differentiating
PSP-RS from MSA-P and PD17,37,38,40,41 (Table 2).
Fewer data are available to assess how well midbrain
measures could differentiate PSP-RS from CBS.13,45

Therefore, there is plenty of evidence to support brain
stem measurements as level 2 diagnostic biomarkers in
PSP-RS (Table 3). However, proposing one specific
measure for the purposes of diagnostic criteria is chal-
lenging because centers differ in how they perform
these measurements, and specific cut points vary and
will likely be cohort- and acquisition-specific. The
MRPI appears to be less affected by aging compared
with the midbrain-pons ratio46 but requires detailed
measurement of a number of structures that may be
difficult to standardize. Indeed, 1 multicenter study
found that the MRPI did not perform as well as the
midbrain-to-pons ratio in differentiating PSP-RS from
PD and MSA-P.32 However, another multicenter study
showed high sensitivity/specificity for the MRPI in dif-
ferentiating PSP-RS and PD and showed that an auto-
mated MRPI measurement that does not rely on rater
reliability performs as well as a manual MRPI mea-
surement.43 Automated methods for measuring mid-
brain volume are also now available47 and may
improve standardization.

TABLE 1. Levels of evidence for neuroimaging biomarkers in PSP

Level Utility PSP-RS vPSP

1 Research tool Group-level evidence that a biomarker is abnor-
mal in PSP-RS

Group-level evidence that a biomarker
is abnormal in vPSP

2 Supportive of clinical diagnosis Individual-level data showing diagnostic value
(high sensitivity 1 specificity) for PSP-RS

Individual-level data showing diagnostic value
(high sensitivity 1 specificity) for vPSP

3 Supportive of early clinical diagnosis Evidence for abnormalities before patients meet
clinical criteria for PSP-RS

Evidence for abnormalities before patients
meet clinical criteria for vPSP

4 Supportive of pathological diagnosis Individual-level data showing diagnostic value for PSP pathology, regardless of syndrome
5 Definitive Biomarker of actual pathology
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There is evidence that these biomarkers could reach
level 3 and show diagnostic value in early PSP-RS
(Table 3). Abnormal MRPI and midbrain-pons ratios
have been shown to predate and predict the develop-
ment of PSP-RS in patients with clinically unclassifi-
able parkinsonism at baseline in a retrospective23 and
prospective study,48 with abnormalities detected 15
months before patients fulfill criteria for PSP-RS in the
retrospective study.23

Given that the clinical diagnosis of PSP-RS has high
sensitivity and specificity for pathological PSP,13,49,50

the midbrain-based measures discussed above also

tend to perform well in autopsy-confirmed studies.19,29

However, it is less clear whether these measures add
anything to the clinical diagnosis of PSP-RS in predict-
ing pathology and hence could be level 4 bio-
markers.13 Group-level studies have failed to find
midbrain atrophy in patients with PSP pathology who
presented with clinical syndromes other than PSP-
RS,51 including patients presenting with CBS.52

Conversely, reduced midbrain areas were identified in
PSP-RS that had underlying corticobasal degeneration
pathology.51 It therefore appears that in many instan-
ces midbrain atrophy is related to the PSP-RS clinical

FIG. 1. Structural MRI demonstrating the morphological characteristics of PSP-RS and brain stem measurements. Top left sagittal slice shows the
hummingbird sign with atrophy of the dorsal midbrain and relative preservation of the pons. Top right axial slice through the midbrain shows
rounded midbrain peduncles (Mickey Mouse sign) and concavity of the lateral margin of the midbrain tegmentum (morning glory sign [arrow]). Bot-
tom images show example measurements of the midbrain anteroposterior (AP) diameter, midbrain, and pons area, superior cerebellar peduncle
width, and middle cerebellar peduncle width (modified from reference 32).
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presentation, rather than to the presence of PSP
pathology, limiting its value as a level 4 diagnostic
biomarker. In fact, midbrain area measures had a
93% sensitivity and 89% specificity in differentiating
PSP-RS from other syndromes across a range of

pathologies in the same study,51 once again supporting
midbrain measurements as level 2 biomarkers of
PSP-RS. Similarly, another autopsy study found that
midbrain atrophy was present in only 86.4% of path-
ologically confirmed PSP, and the hummingbird sign

TABLE 2. Studies that report sensitivity and specificity of brain stem measurements for the diagnosis of PSP-RS compared
with other parkinsonian disorders

First author Year Comparison Measure Sensitivity Specificity

Schrag20 2000 35 PSP-RS vs 54 MSA MB visual (MB atrophy) 77 37
Adachi14 2004 5 PSP-RS vs 23 PD 14 MSA MB visual (morning glory sign) 80 97
Righini25 2004 25 PSP-RS vs 27 PD MB visual (superior profile) 68 88.8
Righini25 2004 25 PSP-RS vs 27 PD MB visual (MB atrophy) 68 77.7
Price33 2004 12 PSP-RS vs (12 PD, 12CN) MB visual (MB atrophy) 83 79
Massey13a 2012 22 PSP vs 13 MSA MB visual (MB atrophy) 86.4 66.7
Massey13a 2012 22 PSP vs 13 MSA MB visual (hummingbird) 68.4 100
Oba16 2005 21 PSP-RS vs (23 PD, 25 MSA-P, 31 HC) MB area 100 91.3
Cosottini15 2007 15 PSP-RS vs (7 MSA-P, 14 CN) MB area 100 90.5
Zanigni17 2016 23 PSP-RS vs 42 PD MB area 96 98
Moller32 2017 106 PSP-RS vs 204 PD MB area 84.0 83.8
Moller32 2017 106 PSP-RS vs 60 MSA-P MB area 78.3 81.7
Asato18 2000 8 PSP-RS vs 9 MSA-P MB diameter 100 100
Asato18 2000 8 PSP-RS vs 21 MSA-C MB diameter 100 91
Schrag20 2000 36 PSP-RS vs 54 MSA MB diameter 23 96
Cosottini15 2007 17 PSP-RS vs (7 MSA-P, 4 CN) MB diameter 60 95.2
Massey19a 2013 12 PSP-RS vs 7 MSA MB diameter 83 100
Kim22 2015 29 PSP-RS vs 82 PD MB diameter 50 85.3
Owens23 2016 25 PSP-RS vs (25 MSA, 25 PD) MB diameter 44 100
Paviour24 2006 18 PSP-RS vs (9 MSA-P, 9 PD, 18 HC) MB volume 72.2 91.9
Paviour24 2006 18 PSP-RS vs 9 MSA-P MB volume 83 33
Cosottini15 2007 18 PSP-RS vs (7 MSA-P, 14 CN) MB volume 86.7 76.2
Oba16 2005 22 PSP-RS vs (23 PD, 25 MSA-P, 31 HC) MB-pons ratio 100 100
Cosottini15 2007 16 PSP-RS vs (7 MSA-P, 14 CN) MB-pons ratio 86.7 100
Quattrone38 2008 33 PSP-RS vs 108 PD MB-pons ratio 90.9 93.5
Quattrone38 2008 33 PSP-RS vs 19 MSA-P MB-pons ratio 97 94.7
Hussl41 2010 22 PSP-RS vs 75 PD MB-pons ratio 63.6 94.7
Hussl41 2010 22 PSP-RS vs 26 MSA-P MB-pons ratio 63.6 84.6
Morelli37 2011 42 PSP-RS vs 170 PD MB-pons ratio 92.9 85.3
Longoni39 2011 10 PSP-RS vs 25 PD MB-pons ratio 90 96
Massey19a 2013 13 PSP-RS vs 7 MSA MB-pons ratio 67 100
Kim22 2015 30 PSP-RS vs 82 PD MB-pons ratio 46.2 89.7
Zanigni17 2016 24 PSP-RS vs 42 PD MB-pons ratio 96 90
Owens23 2016 25 PSP-RS vs (25 MSA, 25 PD) MB-pons ratio 68 100
Borroni45 2010 18 PSP-RS vs (16 CBS, 28 FTD) MB-pons ratio 1 CSF bio 94.2 84
Sankhla40 2016 20 PSP-RS vs 13 PD MB-pons ratio 100 92.86
Moller32 2017 106 PSP-RS vs 204 PD MB-pons ratio 77.4 80.4
Moller32 2017 106 PSP-RS vs 60 MSA-P MB-pons ratio 77.8 89.4
Quattrone38 2008 33 PSP-RS vs 108 PD MRPI 100 100
Quattrone38 2008 33 PSP-RS vs 19 MSA-P MRPI 100 100
Hussl41 2010 23 PSP-RS vs 75 PD MRPI 81.8 76
Hussl41 2010 23 PSP-RS vs 26 MSA-P MRPI 81.8 92.3
Morelli37 2011 42 PSP-RS vs 170 PD MRPI 100 99.4
Longoni39 2011 10 PSP-RS vs 25 PD MRPI 100 92
Kim22 2015 31 PSP-RS vs 82 PD MRPI 92.3 39.7
Zanigni17 2016 25 PSP-RS vs 42 PD MRPI 87 93
Nigro43 2016 88 PSP-RS vs 234 PD MRPI 100 100
Nigro43 2016 88 PSP-RS vs 234 PD MRPI (automated) 97.3 97.4
Sankhla40 2016 20 PSP-RS vs 13 PD MRPI 100 100
Mostile44 2016 12 PSP-RS vs 17 vascular parkinsonism MRPI 100 100
Moller32 2017 106 PSP-RS vs 204 PD MRPI 68.9 67.7
Moller32 2017 106 PSP-RS vs 60 MSA-P MRPI 79.0 64.1

PD, Parkinson’s disease; MSA-P, parkinsonian variant of multiple system atrophy; MSA-C, cerebellar variant of multiple system atrophy; CBS, corticobasal syn-
drome; FTD, frontotemporal dementia; CN, cognitively normal controls; MB, midbrain; MRPI, MR Parkinsonism Index; CSF bio, cerebrospinal fluid biomarkers.
aStudies with autopsy-confirmed PSP.
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was only present in 68.4%, even after a disease
duration of 4.8 years.13 However, midbrain atrophy
has been observed in speech and language disorders
that are confirmed or suspected of having PSP pathol-
ogy,53-56 as well as in PSP-F8 and PSP-P.39,57-59 Mid-
brain atrophy in vPSP is typically less severe than in
PSP-RS,39,56-58 although there is some suggestion that
abnormalities on the MRPI could be an early feature
in PSP-P59 and have some value as a level 3
biomarker.

Cortical Measures

A number of group-level studies have demonstrated
cortical atrophy in PSP-RS, typically involving the
frontal lobes.33,60-74 The focus of atrophy appears to
be the premotor cortex, but atrophy also spreads into
the prefrontal cortex. Studies have demonstrated that
whole-brain and frontal atrophy are greater in PSP-RS
than in PD24,64,67,72,75 and MSA-P,72 although visual
assessment of frontal atrophy had poor sensitivity
(17% and 57%) and moderate specificity (75% and
83%) in differentiating PSP-RS from MSA13,20 in 2
studies, reflecting the fact that discernible frontal atro-
phy is only present in approximately 60% of PSP-RS
patients.13 Frontal atrophy may be more useful if con-
sidered in addition to brain stem regions. One study
found that adding frontal, third ventricle, and whole-
brain volumes to midbrain and SCP volumes improved

the differentiation of PSP-RS from PD and MSA (sen-
sitivity, 88.9%; specificity, 97.3%).24 Another showed
that combining frontal, ventricular, and whole-brain
volumes could differentiate PSP-RS from PD and con-
trols with 95.2% sensitivity and 90.9% specificity.64

One caveat to consider, however, is that frontal
atrophy is unlikely to differentiate PSP-RS from CBS,
given that CBS shows striking frontal atro-
phy.60,62,68,76 Quantitative methods for assessing fron-
tal volume or thickness also vary widely across studies
and may influence diagnostic utility.

Frontal atrophy also occurs in vPSP, particularly in
PSP-F,8 PSP-SL,9,54,55 and PSP-CBS52,77 and can be
greater than in PSP-RS,62 likely reflecting a shift in
PSP pathological burden from brain stem to cortex.78

The degree of frontal atrophy is similar in both PSP-
PGF79 and PSP-P57 compared with PSP-RS. Although
no diagnostic data are available on the value of frontal
atrophy in vPSP, the presence of frontal atrophy
would be consistent with these diagnoses. Data are
needed to determine whether cortical measures could
help to differentiate vPSP from other frontotemporal
lobar degeneration disorders that are primarily charac-
terized by frontal atrophy.

Other Subcortical Measures

Atrophy of subcortical structures, including the cau-
date nucleus, putamen, globus pallidus, subthalamus,

TABLE 3. Currently available neuroimaging biomarkers that fulfill each level of evidence in PSP

Level Utility PSP-RS vPSP

1 Research tool � Basal ganglia and thalamic atrophy
� DTI abnormalities in the dentatorubrothalamic
and frontal lobe tracts
� THK-5351 uptake in midbrain and globus pallidusa

� MRS metabolites
� Rates of whole-brain and midbrain atrophy
� Resting -fMRIa

� SPECT frontal hypoperfusion

� Midbrain atrophy (PSP-SL, PSP-F, PSP-P)
� Frontal atrophy (PSP-F, PSP-SL, PSP-CBS,
PSP-PGF, PSP-P)
� Basal ganglia atrophy (PSP-SL, PSP-CBS,
PSP-PGF, PSP-P)
� DTI abnormalities in frontal lobe tracts
(PSP-P)a
� Reduced striatal DAT (PSP-PGF, PSP-P)

2 Supportive of clinical diagnosis � Midbrain area
� Midbrain-pons area ratio
� MRPI
� Frontal atrophy in addition to midbrain atrophya

� DWI striatuma

� DWI/DTI superior cerebellar pedunclea
� FDG-PET frontal and midbrain hypometabolisma

� [18F]AV-1451 uptake in midbrain, thalamus,
basal ganglia, dentate nucleus of the cerebelluma

� Reduced striatal DAT/D2 receptor (sensitive only)
� Reduced brain stem DATa

3 Supportive of early clinical diagnosis � Midbrain-pons area ratio/MRPIa

� FDG-PET frontal hypometabolisma
� MRPI (PSP-P)a

4 Supportive of pathological diagnosis None
5 Definitive None

DTI, diffusion tensor imaging; DWI, diffusion-weighted imaging; MRS, magnetic resonance spectroscopy; fMRI, functional magnetic resonance imaging;
SPECT, single-photon emission computed tomography; FDG-PET, [18F] fluorodeoxyglucose positron emission tomography; MRPI, MR Parkinsonism Index;
DAT, dopamine transporter.
aLevel of evidence is supported by �3 published studies, suggesting lower level of reliability.
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and thalamus, has also been observed in group-level
studies of PSP-RS either using visual assessment or
volumetric measurements.13,28,62,63,74,80-82 There is
evidence that volumes of putamen, thalamus, and
globus pallidus are smaller in PSP-RS than in PD,82

with thalamus volumes also being smaller than in
MSA-P.28 However, studies have found that visual
assessments of putamen and globus pallidus atrophy
are not diagnostically useful in differentiating PSP-RS
from MSA or PD.13,20 The caudate nucleus, putamen,
and thalamus have also been reported to be atrophic
in CBS13,62,83 and are unlikely to be diagnostically
useful in differentiating PSP-RS and CBS. Basal gan-
glia structures have been reported to be atrophic in
patients with PSP-P,57 PSP-CBS,52,77 and PSP-SL,9

with thalamic atrophy reported in PSP-PGF.79 How-
ever, the diagnostic value of these findings is unclear
and limited to level 1 (Table 3). Abnormalities sugges-
ting the presence of iron deposition have been
observed in the putamen, globus pallidus, and thala-
mus in PSP-RS,84-87 with some evidence for differences
from PD and MSA,84,85,87 although diagnostic perfor-
mance was suboptimal.85,86 Results regarding signal
increase or decrease of these structures on T2-
weighted MRI in PSP-RS have been variable, with sig-
nal changes observed in fewer than 50% of
patients.13,20,88-90 Signal alterations in the SCP have
also been observed in PSP-RS, but not in MSA-P or
PD.91,92

Pattern Approaches to Diagnosis

A number of studies have proposed that the assess-
ment of multiple regions of the brain will optimize
sensitivity and specificity for PSP-RS. These studies
typically develop optimal prediction models93 or use
automated machine-learning techniques to identify
diagnostic patterns.94-100 A number of these studies
have found that assessment of multiple regions includ-
ing the midbrain, basal ganglia,95,97,98,100 cerebel-
lum,98,100 or thalamus99 provided excellent sensitivity
and specificity to differentiate PSP-RS from PD and
MSA-P. One study found that a prediction model
using midbrain, putamen, and cerebellar gray-matter
volumes could differentiate PSP-RS from MSA and PD
with 90% sensitivity and 100% specificity in an early
stage of the disease when not all patients had yet ful-
filled clinical diagnostic criteria for these diseases.100 It
has also been suggested that volumetric white-matter
measurements may show greater diagnostic utility
than gray-matter measures.94,96 There is also some
evidence that a pattern-based approach using brain
stem and cortical gray- and white-matter measures
could be used in the differential diagnosis of autopsy-
confirmed PSP and CBD.93 Generally, assessing the
pattern of atrophy, rather than focusing on specific
regions, appears to be a sensible and sensitive and

specific approach to differential diagnosis, although
there is currently a lack of agreement across studies
on which specific regions should be used, and further
validation of these results in independent cohorts is
necessary. In addition, no data are yet available on
how well these approaches perform in vPSP. Further
work is needed before these approaches can be incor-
porated into clinical criteria.

Diffusion Imaging

Measurements of microstructural damage using
diffusion-weighted imaging (DWI) show some promise
as biomarkers of PSP-RS. Apparent diffusion coeffi-
cient (ADC) measurements from DWI have been
assessed in gray- and white-matter structures in PSP-
RS, showing elevated ADC values in putamen, cau-
date, globus pallidus, midbrain, SCP, and prefrontal
and precentral white matter.101-107 PSP-RS patients
typically show higher ADC values in the putamen,
caudate nucleus, globus pallidus, SCP, and midbrain
compared with PD,102,106-108 with 1 study obtaining
high sensitivity (90%) and specificity (100%) to differ-
entiate PSP-RS from PD using values from the puta-
men107 and another obtaining 100% sensitivity and
specificity using the SCP.103 Compared with MSA-P,
PSP-RS has higher ADC values in the caudate
nucleus106 and SCP103,106 but lower values in the
MCP,105,109 cerebellum,110 and putamen.101 Sensitiv-
ity and specificity values for differentiating PSP-RS
from MSA-P are high using DWI of the SCP (sensitiv-
ity, 96.4%; specificity, 93.3%103). Therefore, the diag-
nostic performance of DWI measurements is excellent,
supporting these measurements as level 2 biomarkers
(Table 3). There is no consensus regarding the best
structure to assess, although the SCP appears
promising.

Diffusion tensor imaging (DTI) allows for the assess-
ment of directional water diffusion and the interroga-
tion of specific white-matter tracts. White-matter tract
degeneration has been demonstrated to be a striking
feature of PSP-RS, with abnormalities observed pre-
dominantly in the SCP, cerebellum, body of the corpus
callosum, cingulum, white-matter laminar of the thala-
mus, and premotor aspects of the superior longitudinal
fasciculus.63,111-124 The majority of these white-matter
tracts show greater degeneration in PSP-RS compared
with PD112,118,122,125-127 and MSA-P.72,118,126 Little
data are currently available on the diagnostic utility of
DTI measures, although the corpus callosum113 and
SCP125 show high sensitivity and specificity in differ-
entiating PSP-RS and PD. There is also evidence that
adding DTI measures to the MRPI may help in the
differentiation of PSP-RS from controls.128 The diag-
nostic value of DTI measures to differentiate PSP-RS
and MSA-P is unclear. It is also unclear whether DTI
measures could differentiate PSP-RS and CBS,
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particularly given that patterns of DTI abnormalities
overlap to a large degree between these 2 syn-
dromes.112,129-131 A few studies have assessed DTI
measures in PSP-P, which appears to show similar
although slightly less severe patterns of tract abnor-
malities compared with PSP-RS.128 Some studies have
found regions with greater abnormalities in PSP-P
compared with PSP-RS, although the results have not
been consistent across studies.117,120,128 In summary,
DTI abnormalities are striking in PSP-RS and have the
potential to be useful diagnostic biomarkers (Table 3).
However, data are needed on the utility of both DWI
and DTI measures in vPSP and autopsy-confirmed
PSP. The issue of whether DWI and DTI measure-
ments can be translated into clinical practice is also
unclear, because there is little standardization of meth-
ods across studies and no established diagnostic cut
points for these measurements.

PET/SPECT

[18F]FDG-PET

Studies of [18F]-fluorodeoxyglucose PET (FDG-PET)
have shown hypometabolism in the midbrain, basal
ganglia, thalamus, and frontal lobes in PSP-RS,132-145

with frontal involvement particularly targeting premo-
tor, precentral, and prefrontal regions134 and anterior
cingulate146 (Fig. 2A). In an autopsy cohort including
7 PSP patients (all PSP-RS), the most common FDG-
PET findings were hypometabolism of the thalamus
(100%), caudate (86%), midbrain (86%), and frontal
lobes (71%).145 PSP-RS tends to show greater frontal
hypometabolism than PD and MSA,146 with visual
assessments of frontal hypometabolism producing
good sensitivity (76%) and specificity (98%) for PSP-
RS in 1 study.147 Visual assessments of midbrain
hypometabolism have performed modestly, with 1
study finding 79% sensitivity and 69% specificity in
differentiating PSP-RS from MSA and CBS.144 Consid-
eration of the pattern of hypometabolism may hold
more diagnostic promise. Visual assessment of the pat-
tern of hypometabolism associated with PSP-RS (eg,
anterior cingulate, midbrain, basal ganglia) gave 93%
sensitivity and 90% specificity to differentiate PSP-RS
from PD, MSA, and CBS in 1 study.147 Automated
pattern detection techniques have given mixed
results.148-152 Differentiating PSP-RS from CBS can be
challenging, given that patterns of hypometabolism
overlap between these 2 syndromes to a large
degree138,145,152 although there is some suggestion
that PSP-RS may have greater hypometabolism in mid-
brain and thalamus,136,153 and CBS patients have
greater hypometabolism in parietal lobes.135,138,153

The presence of hemispheric asymmetry in CBS may
further help to differentiate it from PSP-RS.145,152

Therefore, current evidence provides some support for

frontal and midbrain hypometabolism or the combina-
tion of both as potential level 2 biomarkers of PSP-RS
(Table 3). There is some evidence that hypometabo-
lism in the striatum and cortex can be present before
the development of clinical PSP-RS (level 3 bio-
marker), although this has only been observed in
familial PSP.154

Some FDG-PET findings have been reported in
vPSP. One study found that PSP-P was associated with
slightly greater hypometabolism of the putamen than
PSP-RS, with less severe involvement of the thalamus,
and that a putamen-to-thalamus ratio differentiated
PSP-RS from PSP-P and PD with 100% sensitivity and
75% specificity.155 The PSP-P patients in that study
did not show much frontal hypometabolism.155 Fron-
tal hypometabolism has also not been observed in
PSP-PGF, with midbrain hypometabolism only
observed in 25% of patients.156 Patients with PSP-SL
have shown frontal, basal ganglia, and midbrain hypo-
metabolism,157,158 although these studies did not have
autopsy confirmation. Taken together, these studies
show that neither frontal nor midbrain hypometabo-
lism is present consistently across the vPSP syndromes.
Therefore, the presence of these features could be sup-
portive of PSP, but the absence does not preclude
underlying PSP.

However, there is a lack of standardization in the
quantitative methods used across FDG-PET studies,
particularly in regard to the choice of reference
regions used to standardize regional uptake values,
which vary across studies, including cerebellum, pons,
cortical regions, or global mean values, each of which
may have different limitations in PSP.

Dopamine Imaging

Striatal presynaptic dopamine binding, measured
using dopamine active transporter (DAT) imaging
using [123I]-FP-CIT SPECT or [18F]FP-CIT-PET, is
consistently decreased in PSP-RS compared with con-
trols159 (Fig. 2B). However, decreased DAT binding
has also been observed in PD, MSA-P, and CBS,160-164

without differences in the degree of general striatal
binding observed across groups.160,162,165 However,
studies have found that the caudate nucleus is affected
to a greater degree in PSP-RS than in PD161,163,166,167

and that regional patterns of binding, such as ratio of
caudate to ventral striatum (sensitivity, 94%; specific-
ity, 92%),163 ratio of caudate to putamen,166 or ratio
of anterior-posterior putamen,167 could help to differ-
entiate PSP-RS from other parkinsonian disorders;
however, diagnostic performance has not always been
consistent with these measures.164,167 It has also been
shown that PSP-RS shows more symmetric striatal
binding than PD,168 although the diagnostic value of
this finding is unclear. Overall the finding of reduced
striatal DAT binding is highly supportive and sensitive
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for a diagnosis of PSP-RS, but heterogeneity across
studies and lack of diagnostic data limit its value in
differentiating across parkinsonian disorders (Table 3).
Midbrain DAT binding is also decreased in PSP-RS,
with lower binding than in PD but a degree of binding
similar to in MSA.160,169 Brain stem DAT levels could
differentiate PSP-RS and MSA from PD with 89.7%

sensitivity and 94.1% specificity in 1 study.169 Little is
currently known about the diagnostic utility of DAT
findings in vPSP, although there is evidence from a
few studies that both PSP-PGF and PSP-P are associ-
ated with striatal DAT reductions similar to those in
PSP-RS,156,170-172 with similar putamen-to-caudate
ratios.171,172

FIG. 2. FDG-PET, DAT, and tau PET findings in PSP-RS. (A) Statistical stereotactic surface projection map of an FDG-PET scan for a PSP-RS patient
for whom Z scores represent differences from a normal cohort and are color-coded, as indicated in the color scale (0 5 normal; 7 5 most abnor-
mal). Hypometabolism is observed in the frontal lobes, midbrain, and caudate nucleus. (B) Absent putamen DAT binding and reduced caudate bind-
ing in a patient with PSP-RS compared with a control subject. (C, E) [18F]AV-1451 results. (C) [18F]AV-1451 tau-PET scans in a patient with PSP-RS
and an age-matched control. The control shows some uptake in midbrain and basal ganglia, although uptake in these regions is greater in the PSP-
RS patient. In addition, the PSP-RS patient shows uptake in the dentate nucleus of the cerebellum and thalamus. (E) Group-level [18F]AV-1451 find-
ings in 10 patients with PSP-RS compared with healthy controls. Increased uptake in PSP-RS compared with controls is identified in dentate
nucleus of the cerebellum, midbrain, thalamus, and basal ganglia (modified from reference 183). (D, F) THK-5351 results. (D) THK-5351 tau-PET
scans in a patient with PSP-RS and a healthy control. The control and PSP-RS patient show uptake in the midbrain, thalamus, and basal ganglia,
although the degree of uptake is greater in PSP-RS. (F) Group-level THK-5351 findings in 10 patients with PSP-RS compared with healthy controls.
Increased uptake in PSP-RS compared with controls is identified in midbrain, thalamus, basal ganglia, and posterior lateral and medial frontal lobes.
Modified from reference.232
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Imaging using D2 receptor ligands, most commonly
[123I]-IZBM SPECT, to assess postsynaptic dopami-
nergic function also appears to be sensitive in PSP-RS,
with the majority of patients showing striatal reduc-
tions.172-176 However, the value of D2 receptor ligand
imaging in the differential diagnosis from other par-
kinsonian disorders is unclear.162,175,176 In addition,
there is some evidence that striatal uptake may not be
reduced in PSP-P.172

Tau-PET Imaging

The development of PET ligands that can bind to
aggregated tau inclusions in the brain has been
an exciting recent advance in the field with the poten-
tial of becoming a biomarker of tau pathology. A
number of tau-PET ligands have been developed,177

but the [18F]AV-1451 (previously known as T807)
ligand178,179 has been the most widely used to date.
Studies have demonstrated relatively consistent pat-
terns of increased [18F]AV-1451 uptake in PSP-RS
compared with controls in the globus pallidus, puta-
men, caudate nucleus, thalamus, subthalamic nucleus,
midbrain, and dentate nucleus of the cerebellum180-184

(Fig. 2C and E). The cortex has typically shown less
striking uptake in PSP-RS,183 with measures from sub-
cortical structures showing the most promise as poten-
tial diagnostic biomarkers.180,182,183 Quantification of
globus pallidus retention provided sensitivity and spe-
cificity of 93% in differentiating PSP-RS from controls
and 93% sensitivity and 100% specificity in differenti-
ating PSP-RS and PD in 1 study,180 although the thal-
amus provided the best separation between PSP-RS
and controls in another.182 There is also evidence that
the pattern of uptake in PSP-RS differs from that in
Alzheimer’s disease (AD), with many of the PSP-RS-
related regions showing greater uptake in PSP-RS than
in AD despite AD showing greater cortical [18F]AV-
1451 uptake.183,184 Therefore, there is some evidence
to support [18F]AV-1451 as a level 2 biomarker of
PSP-RS. A caveat is that overlap in the [18F]AV-1451
signal is observed between PSP-RS and controls,182

with 1 study failing to observe differences between
PSP-RS and controls.185 Standardization of methods
will also be required, including optimizing scan time
and quantitative outcomes. Current studies have ana-
lyzed standard uptake value ratio (SUVR) values refer-
enced to cerebellar gray-matter180,182,183 or binding
potentials.184

Although early studies are certainly encouraging,
several limitations of [18F]AV-1451 need to be consid-
ered. One caveat is that regions that show [18F]AV-
1451 uptake in PSP, including the basal ganglia,
thalamus, midbrain, and dorsal cerebellum, also show
some degree of “off-target” binding in normal sub-
jects, which increases with age.186,187 The nature of
this binding is unclear. Although age correction in

quantitative studies may go some ways to correct for
this off-target binding, it will likely limit the value of
[18F]AV-1451 in the differential diagnosis of individ-
ual patients. Furthermore, it is unknown whether the
off-target signal may also be altered by the disease in
PSP, confounding any potential true signal of tau.
Another caveat comes from an apparent disconnect
between in-vivo and ex vivo studies. Although regions
that show elevated binding typically show tau deposi-
tion at autopsy, autoradiographic studies have found
little or no binding of [18F]AV-1451 to tau in autop-
sied brains of PSP patients,182,187-192 casting doubt on
whether the signal identified by [18F]AV-1451 reflects
tau pathology and whether it could be considered a
level 5 biomarker of tau. This kind of disconnect is
not uncommon for PET tracers, and the utility of such
in vitro studies has been questioned.193 However, a
recent article found that tau pathology discovered
postmortem in a patient with PSP correlated with
antemortem FDG-PET but not with [18F]AV-1451 sig-
nal.190 Another caveat is that elevated [18F]AV-1451
uptake has also been observed in nontau dis-
eases,187,194 which again questions the specificity of
the ligand to 4R tau. Another chemically distinct tau
PET ligand, THK-5351,195 was found to have high
affinity for PSP tau lesions in an autoradiographic
study196 and has shown uptake in the globus pallidus
and midbrain196 in patients with PSP-RS (Fig. 2D and
F). However, the degree of off-target THK-5351 bind-
ing in PSP-related regions is at least as high, if not
higher, than that observed with [18F]AV-1451.197

Overall, much more work needs to be done to evalu-
ate these PET tracers. It is likely that different tau-
PET ligands may bind to tau conformers with differing
sensitivity and specificity and show different off-target
binding, and hence head-to-head and indirect compari-
sons of the currently available tau imaging agents are
needed.

Other Biomarkers

There are a number of other neuroimaging bio-
markers that have been assessed in PSP-RS with fewer
data available to assess diagnostic value. MR modali-
ties that demonstrate abnormalities in PSP-RS include
magnetic resonance spectroscopy and magnetization
transfer imaging,73,198-205 although the ability of these
modalities to differentiate PSP-RS from other parkin-
sonian disorders is unclear.181,184,185,205 Resting-state
(task-free) functional MRI has also been used to dem-
onstrate abnormalities in functional connectivity in
PSP-RS across the network of PSP-RS-associated
regions,63,206,207 but the loss of cortical connectivity is
not specific to PSP-RS versus PD.208 Longitudinal MR
studies have shown increased rates of whole-brain,
cortical, and midbrain atrophy and SCP diffusivity
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in PSP-RS compared with controls,209-218 with some
evidence for greater rates than in PD, but similar rates
of whole-brain and midbrain atrophy as in MSA-
P.212,215 However, cortical and whole-brain rates of
atrophy are greater in CBS than in PSP-RS.209,213

Cerebral blood flow single-photon emission computed
tomography studies have demonstrated frontal219-225

and, less commonly, thalamic220 and striatal222 hypo-
perfusion in PSP-RS.221,226 Findings concerning
differentiating PSP-RS from other parkinsonian disor-
ders are lacking here, although PSP-RS may show
greater frontal hypoperfusion than PD.224,227 Abnor-
malities in other neurotransmitter systems, such as the
cholinergic228-230 and serotoninergic231 systems, have
also been demonstrated in PSP-RS.

Conclusions

Neuroimaging research over the last several decades
has improved our understanding of the neurobiology
of PSP but has not yielded many confirmed diagnostic
biomarkers (Table 3). The most mature research area
is the assessment of midbrain measurements, which
has yielded a number of measures that have good sen-
sitivity and specificity for PSP-RS versus other parkin-
sonian disorders, such as midbrain-pons area and the
MRPI, which appear to be the most reliable bio-
markers for the diagnosis of PSP-RS. The presence of
frontal atrophy and hypometabolism are also promi-
nent features of PSP-RS and may improve diagnosis
when considered together with midbrain atrophy. It is
clear that PSP-RS is associated with striking damage
to the white matter, with DWI measures of the SCP
providing good sensitivity and specificity for PSP-RS
diagnosis, although data supporting this measure
come from only a couple of studies. DTI measures
could prove to be very valuable, although more work
is needed to provide and validate standardized mea-
sures of the kind that could be used in diagnostic cri-
teria. Measures of dopamine function are highly
sensitive to PSP-RS and many of the vPSP syndromes,
but specificity is low, and thus they are less useful in
ruling out other parkinsonian syndromes. Data so far
only support neuroimaging biomarkers as level 2 bio-
markers for PSP-RS. Only a handful of studies have
assessed patients early in the disease course to suggest
level 3 biomarkers. More work is needed to assess the
value of these measures in vPSP and in autopsy-
confirmed cases to determine whether they could be
useful level 4 biomarkers. Capturing the disease in its
earliest phase will also be critical for developing well-
validated level 3 biomarkers. Last, tau-PET imaging
techniques are exciting, but more work is needed to
truly understand the biological underpinnings of the
tau-PET signal in PSP. However, these are early days
in tau-PET imaging, and we expect our understanding

of these biomarkers to increase exponentially over the
coming years.
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