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Reduced proteasome activity in the aging brain
results in ribosome stoichiometry loss and
aggregation
Erika Kelmer Sacramento1,† , Joanna M Kirkpatrick1,†,‡, Mariateresa Mazzetto1,2,†, Mario Baumgart1,

Aleksandar Bartolome1, Simone Di Sanzo1, Cinzia Caterino1,2, Michele Sanguanini3 ,

Nikoletta Papaevgeniou4, Maria Lefaki4, Dorothee Childs5, Sara Bagnoli2, Eva Terzibasi Tozzini2,

Domenico Di Fraia1, Natalie Romanov5,§, Peter H Sudmant6 , Wolfgang Huber5, Niki Chondrogianni4,

Michele Vendruscolo3 , Alessandro Cellerino1,2,* & Alessandro Ori1,**

Abstract

A progressive loss of protein homeostasis is characteristic of aging
and a driver of neurodegeneration. To investigate this process
quantitatively, we characterized proteome dynamics during brain
aging in the short-lived vertebrate Nothobranchius furzeri combin-
ing transcriptomics and proteomics. We detected a progressive
reduction in the correlation between protein and mRNA, mainly
due to post-transcriptional mechanisms that account for over 40%
of the age-regulated proteins. These changes cause a progressive
loss of stoichiometry in several protein complexes, including ribo-
somes, which show impaired assembly/disassembly and are
enriched in protein aggregates in old brains. Mechanistically, we
show that reduction of proteasome activity is an early event
during brain aging and is sufficient to induce proteomic signatures
of aging and loss of stoichiometry in vivo. Using longitudinal tran-
scriptomic data, we show that the magnitude of early life decline
in proteasome levels is a major risk factor for mortality. Our work
defines causative events in the aging process that can be targeted
to prevent loss of protein homeostasis and delay the onset of age-
related neurodegeneration.
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Introduction

Although age is the primary risk factor for cognitive decline and

dementia (Assoc, 2018), the associated age-dependent molecular

changes are still not known in detail. Despite the presence of clear

functional impairments (Buckner, 2004), physiological brain aging

is characterized by limited loss of neurons (Schmitz & Hof, 2007)

and specific morphological changes of synaptic contacts (Dickstein

et al, 2013). Large collections of data for transcript dynamics in

human and animal brains indicate that systematic, age-dependent

changes in gene expression are also relatively minor (Cellerino &

Ori, 2017), although some shared transcriptional signatures have

been identified, including a chronic activation of cellular inflamma-

tory response (Aramillo Irizar et al, 2018), reactive changes in glial

cells (Clarke et al, 2018), and reduced expression of neuronal and

synaptic genes (Lu et al, 2004; Somel et al, 2010).

Since the vast majority of human neurons are generated during

fetal and perinatal life and neuronal turnover is limited in the post-

natal human brain (Sorrells et al, 2018), neurons are particularly

prone to accumulate misfolded proteins that are not properly

processed by the cellular proteolytic mechanisms (proteasomal and

autophagic pathways), thus forming aberrant deposits. Indeed,

neurodegenerative diseases are characterized by the prominent pres-

ence of protein aggregates, in particular due to mutations that facili-

tate misfolding and aggregation, and impairment of cellular quality

control systems (Soto & Pritzkow, 2018). Accumulation of protein

aggregates occurs also during physiological aging, as demonstrated
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by the presence of lipofuscin (Glees & Hasan, 1976) and ubiquiti-

nated cellular inclusions (Zeier et al, 2011; Matsui et al, 2019).

However, the exact composition of these spontaneous aggregates

and the mechanisms triggering their formation during brain aging

remain unknown.

Although age-dependent transcript changes in the brain have

been studied extensively (Blalock et al, 2003; Lu et al, 2004; Loerch

et al, 2008; Colantuoni et al, 2011; Wood et al, 2013), we are just

beginning to understand the corresponding global regulation of the

proteome during aging (Somel et al, 2010; Ori et al, 2015; Walther

et al, 2015). Substantial post-transcriptional regulation takes place

in the aging brain, with a sizeable proportion of proteins being up-

or down-regulated in the absence of changes in the levels of the

corresponding transcripts (Ori et al, 2015), resulting a progressive

mRNA-protein decoupling (Janssens et al, 2015; Wei et al, 2015).

Protein aggregation could play a role in generating an imbalance

between protein and transcript levels, but these aspects have not yet

been investigated systematically in vertebrate brains.

To address this challenge, we studied the annual killifish Notho-

branchius furzeri, which is the shortest-lived vertebrate that can

currently be bred in captivity. With a median lifespan of 3–7 months

(Valdesalici & Cellerino, 2003; Terzibasi et al, 2008; Ripa et al, 2017;

Hu & Brunet, 2018), it has emerged as a convenient model organism

to investigate genetic and non-genetic interventions on aging (Harel

et al, 2015; Cellerino et al, 2016; Kim et al, 2016; Platzer & Englert,

2016; Ripa et al, 2017), since it replicates many typical aspects of

vertebrate brain aging at the levels of behavior (Valenzano et al,

2006a,b), neuroanatomy (Tozzini et al, 2012), and global gene

expression (Baumgart et al, 2014; Aramillo Irizar et al, 2018). Age-

dependent processes are enhanced in this species, thus facilitating the

detection of differentially expressed genes as compared to other model

organisms (Wood et al, 2013; Baumgart et al, 2014; Frahm et al,

2017). Importantly, an age-dependent formation of inclusion bodies

containing a-synuclein and spontaneous degeneration of dopaminer-

gic neurons has been recently described in killifish (Matsui et al,

2019). This phenotype closely mimics human pathologies and make

killifish an extremely attractive vertebrate system to study age-related

neurodegenerative disorders and therapeutic strategy against them.

In this work, we applied RNA-seq, mass spectrometry-based

proteomics, and analysis of protein aggregates in killifish of different

ages to delineate a timeline of molecular events responsible for loss

of proteome homeostasis during brain aging. In particular, we set to

identify the nature and biophysical properties of proteins that prefer-

entially aggregate in old brains, to comprehensively investigate the

loss of stoichiometry of protein complexes and their assembly state,

and the role played by the proteasome as an early driver of protein

homeostasis collapse using in vivo pharmacological experiments.

Finally, we tested whether interindividual differences in proteasome

decline influence mortality.

Results

Transcript and protein levels become progressively decoupled
during brain aging

We initially analyzed whole brains from animals of three different

age groups by liquid chromatography–tandem mass spectrometry

using a label-free method. Based on previous phenotypic data, we

chose to compare young, sexually mature fish (5 weeks post-

hatching, wph), adult fish (12 wph) that do not show aging

phenotypes (Terzibasi et al, 2008), and old fish (39 wph) that

display neurodegeneration (Di Cicco et al, 2011; Tozzini et al,

2012) (Fig 1A and Dataset EV1). Principal component analysis

separated samples according to the age groups (Fig 1B). In order

to achieve higher proteome coverage, we split the age groups into

two separate experiments based on tandem mass tag (TMT) multi-

plexing, where we compared adult vs young fish and old vs adult

fish (Fig EV1A). This was necessary because of the limited

number of channels available (10 per experiment) and to do not

▸Figure 1. Transcript and protein levels become decoupled during Nothobranchius furzeri brain aging.

A Survival curve of N. furzeri in the FLI facility. Recording of deaths starts at age of 5 wph, which corresponds to sexual maturity, and the colored dashed lines
indicate the three age groups analyzed in this study (five animals/group), namely 5 weeks post-hatching (wph, young, sexual maturity), 12 wph (adult), and 39
wph (old, past median lifespan) of a wild-derived strain that exhibits a median lifespan of 7–8 months.

B Principal component analysis (PCA) of brain samples based on the abundance of all proteins identified by label-free mass spectrometry. The smaller dots represent
individual samples and the larger dots the centroids of each age-matched group. Ellipses represent 95% confidence intervals. The percentage of variance explained
by the first two PC axes is reported in the axis titles.

C Global protein–transcript correlation for each sample, grouped by age. RPKM and iBAQ values were used to estimate transcript and protein levels from matched
RNA-seq and TMT-based proteomics data obtained from the same animal. An ANOVA test was performed to evaluate significance among the age groups (mean
correlation at 5 wph: 0.48; at 12 wph: 0.43; and at 39 wph: 0.33; P = 3.05e�07, n = 5 per age group). In boxplots, the horizontal line represents the median, the
bottom, and top of the box the 25th and 75th percentile, respectively, and the whiskers extend 1.5-fold the interquartile range.

D, E Scatter plot of log2 fold changes for genes differentially expressed both at transcript and protein levels (adj. P < 0.05). The color gradients indicate gene density in
the regions where individual points overlap. Numbers of genes in each quadrant and the value of Pearson’s coefficient of correlation, r, are reported for each
graph. Solid lines represent a spline fit (r = 0.505 for genes significantly affected at both transcript and protein levels, P < 2.2 × 10�16, D; r = 0.126, P = 0.007, E).

F Mechanisms affecting protein abundance during aging. Barplots are based on all the proteins affected in either one of the age comparisons (adj. P < 0.05). Proteins
were divided into following five groups: (i) proteins and transcripts with significant and consistent changes (dark brown), (ii) proteins with significant changes, and
with consistent changes of the transcripts (light brown), (iii) proteins with no transcripts detected (dark gray), (iv) proteins with transcripts whose translation is
potentially regulated by miRNAs (light gray), as assessed by the workflow displayed in Fig EV2D, and (v) all the remaining proteins that we classified as regulated
by other post-transcriptional mechanisms (violet). pgs, protein groups.

G, H Barplots representing enriched KEGG pathways among genes that showed significant changes at both transcript and protein levels in aging. Genes were grouped
according to the four possible patterns of transcript and protein regulation, as visualized by their positions in the four quadrants shown in (D) and (E), respectively.
Only pathways significantly enriched (FDR < 0.05) are shown. The complete list of enriched pathways is reported in Dataset EV4.

Data information; Related to Figs EV1 and EV2, Table EV1, and Dataset EV1–EV4.
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reduce the number of animals analyzed per age group. A total of

8,885 protein groups were quantified with at least two proteotypic

peptides, of which 7,200 were quantified in both experiments

(Fig EV1B and Table EV1). Almost half of the quantified protein

groups (4,179/8,885) was significantly affected by aging in at least

one of the age comparisons (Dataset EV2). Functionally related

proteins showed different patterns of abundance change between

age groups, and pathways affected by aging in other species,

including inflammation-related pathways (Aramillo Irizar et al,

2018), the complement, and coagulation cascade (Clarke et al,

2018), were affected in killifish already in the transition from

young to adult (Fig EV1C and Dataset EV2).

Total RNA-seq after rRNA depletion and microRNA-seq were

obtained from the same samples (Fig EV1D, Table EV1 and

Dataset EV3). For each sample, absolute protein abundances esti-

mated from peptide intensities (iBAQ values, (Schwanhäusser

et al, 2011)) were correlated with the corresponding transcript

levels obtained by RNA-seq (RPKM values), obtaining global

protein–transcript correlation values for each sample separately.

We observed a progressive age-dependent reduction of protein–

transcript correlation values (Fig 1C), consistent with a decou-

pling between RNA transcripts and proteins during brain aging

(Wei et al, 2015). Decoupling was observed also when analyzing

an independent RNA-seq dataset from polyA+ RNA for animals
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of the same age groups (Baumgart et al, 2014) (Fig EV1E). Fold

changes of genes differentially expressed in the two RNA-seq

datasets were strongly correlated (Fig EV1F). For further analy-

sis, we then focused on the dataset with higher sequencing

depth and larger number of replicates, for which the absolute

number of differentially expressed genes was higher (polyA+

RNA dataset, Fig EV1G).

Direct comparison of protein and mRNA fold changes across age

groups revealed discrepancies between RNA and protein regulation

(Fig 1D and E and Dataset EV4). Protein and transcript changes

were significantly correlated in the adult vs young fish comparison

(Fig 1D), but the correlation was reduced in the old vs adult

comparison (Fig 1E), further supporting a progressive decoupling

between transcript and protein regulation. For validation, we

analyzed proteins previously identified to be very long-lived in

rodent brain (Toyama et al, 2013), including histones, collagens,

and myelin proteins. For these proteins, we found that transcript,

but not protein levels, were generally decreased in old fish, indicat-

ing that protein stability might contribute to the observed discrepan-

cies between transcripts and proteins (Fig EV2A). In contrast,

protein levels estimated by mass spectrometry and immunoreactiv-

ity for the glial fibrillary acidic protein (GFAP) were shown to

increase significantly in the aging brain (Tozzini et al, 2012), while

RNA levels remained unchanged (Fig EV2B). To exclude biases

deriving from changes in cellular composition of the brain with

aging, we analyzed the regulation of established cell markers

(Sharma et al, 2015) in the age group comparisons. We found only

minor changes that were consistent at the protein and transcript

level (Fig EV2C), thus excluding that the observed decoupling

between transcript and protein levels is due to changes in cellular

composition.

To find out whether microRNAs could contribute to transcript-

protein decoupling, we first analyzed miRNA expression levels

across the same three age groups (Dataset EV3) and then mapped

the targets of age-affected miRNAs to our proteome data

(Fig EV2D). By considering potential regulation mediated by

miRNAs, we defined a subset of proteins whose abundance is

affected by aging via mechanisms independent of both transcript

level and miRNA-mediated post-transcriptional regulation (Fig 1F).

This subset accounted for 30% of the affected proteins in the adult

vs young fish comparison and increased up to 43% in the old vs

adult comparison.

To clarify whether the transcript-protein decoupling preferen-

tially affects some specific pathways, we classified age-affected

genes according to their respective transcript and protein fold

changes, and performed pathway overrepresentation analysis

(Dataset EV4). In the comparison adult vs young fish, pathways

related to the complement coagulation cascade and synaptic func-

tion/plasticity were overrepresented in concordantly increased tran-

scripts and proteins (Fig 1G), in agreement with the notion that

synaptogenesis continues during this phase of residual brain growth

(Tozzini et al, 2012). By contrast, genes coding for biosynthetic

pathways such as RNA transport, splicing and surveillance of RNA,

ribosome biogenesis, and protein processing in the endoplasmic

reticulum (ER) were overrepresented in concordantly decreased

proteins/transcripts (Fig 1G). These changes may be related to the

reduction of adult neurogenesis (Tozzini et al, 2012) that accounts

for a significant fraction of global transcription regulation occurring

during this period (Baumgart et al, 2014). The same biosynthetic

pathways become discordant when old and adult animals are

compared, with protein levels decreasing further with age, while

transcript levels changed directionality and increased (Fig 1H,

bottom right quadrant).

Taken together, our data indicate that post-transcriptional

mechanisms regulating protein levels have an increasingly impor-

tant role in modulating protein abundance with age; they are

responsible for nearly half of the protein changes observed in old

brains, and they can lead to the opposite regulation trends for

proteins and mRNAs.

Loss of ribosome stoichiometry in the aging brain

Among genes showing opposite transcript and protein changes

already in the adult vs young fish comparison, we identified 13

genes encoding ribosomal proteins with transcript levels being

significantly increased and protein abundances decreased (Figs 2A

and EV3A). Fold changes of genes encoding for ribosomal proteins

split into two groups in the old vs adult fish comparison (Fig 1H):

While transcript levels continue to increase consistently, ribosomal

proteins show either increased (13 proteins, e.g., RPS20, RPL8,

and RPL21) or decreased (14 proteins, e.g., RPS6, RPLP2, and

RPL22L1) abundance (Figs 2A and EV3A). A similar pattern was

observed also for the mitochondrial ribosome (Fig EV3B). These

findings indicate a loss of stoichiometry of ribosomal proteins

(i.e., an imbalance in their relative levels) during aging, which is

likely to impair ribosome assembly and to create a pool of orphan

proteins at risk of aggregation. When mapped on the ribosome

structure (Khatter et al, 2015), age-affected proteins form clusters

of either consistently increased or decreased abundance (Fig 2B).

Since transcript level changes are consistent, while ribosomal

protein levels are not (Figs EV3A and B), the loss of ribosome

stoichiometry must result from an alteration of post-transcriptional

mechanisms mediating protein homeostasis. We obtained ribo-

some footprint data from young and old killifish brains and

showed consistently increased levels of transcript encoding for

ribosomal proteins to be associated with ribosomes in old brains,

as previously shown in rats (Ori et al, 2015) (Fig EV3C). These

data exclude changes in translation output as a cause for the

observed loss of ribosome stoichiometry and point to other mecha-

nisms such as protein degradation and aggregation.

In order to directly investigate the consequences of stoichiometry

loss on the assembly state of ribosomes, we performed size-exclu-

sion chromatography of brain lysates coupled to data independent

acquisition (DIA) quantitative mass spectrometry on two pools each

of young and old killifish (Fig 2C). Our analysis retrieved known

protein complexes as distinct co-eluting peaks in both young and

old brains (Fig 2D and E, Dataset EV5). Interestingly, we found

protein components of the ribosome to co-elute at lower than

expected molecular weight in old brain lysate. This effect was

particularly pronounced for the large cytoplasmic ribosome and the

mitochondrial ribosome (Fig 2F). Other complexes were not affected

and eluted at the same retention time in both young and old lysates

(Fig 2E), pointing to a specific effect on ribosomes. Taken together,

these data indicate that age-dependent loss of stoichiometry of ribo-

somes might derive from altered assembly/disassembly in old

brains.
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Widespread stoichiometric imbalance in protein complexes
during aging

We next asked whether the age-related loss of stoichiometry described

above occurs more widely in the proteome. We thus analyzed all

annotated protein complexes in the two age group comparisons (Ori

et al, 2013, 2016). We found that the number of complexes undergo-

ing stoichiometry changes increases from 11% (16 out of 140)

between 5 and 12 wph to 30% (39 out of 129) between 12 and

39 wph (Fig 2G and Dataset EV6). Consistently, the number of

affected complex members increases almost twofold in the old vs

adult comparison (from 6 to 13%; Fig EV3D). Loss of stoichiometry

was confirmed by an alternative metric, namely an increase in the

interquartile range (IQR) of fold changes of protein complex members

(Janssens et al, 2015) in the old vs adult fish comparison (Fig 2H). In

order to exclude potential batch effects, we repeated the analysis on a

subset of three animals for each age group that were analyzed in the

same TMT10plex experiment and confirmed an age-dependent

increase of IQR between protein complex members (Fig EV3E).

When individual complexes were ranked according to the dif-

ference of IQR between the two age comparisons, the majority of

the complexes showed an increase in IQR (76 out of 124, 61%,

Fig EV3F and Dataset EV6). The most affected complexes included

Complex IV and Complex V, but not Complex I and Complex III, of

the mitochondrial respiratory chain, the cytoplasmic ribosome, the

26S proteasome, the B complex of the spliceosome, and the lysoso-

mal V-type ATPase (Fig 2I). These complexes take part in biological

processes known to be causative in aging (Dillin et al, 2002; Lee

et al, 2003; Chondrogianni et al, 2014; Carmona-Gutierrez et al,

2016; Steffen & Dillin, 2016; Heintz et al, 2017), and the regulation

of transcripts coding for them is correlated with individual lifespan

in a longitudinal RNA-seq study in N. furzeri (Baumgart et al,

2016). Many of these complexes are affected by stoichiometry

changes already at the adult stage (Dataset EV6), identifying these

alterations as early events during aging progression.

Age-dependent protein aggregates are enriched for
ribosomal proteins

Loss of stoichiometry and altered assembly of protein complexes can

create a pool of orphan proteins at risk of aggregation. Since protein

aggregates are known to be SDS-insoluble (Reis-Rodrigues et al,

2012), we compared SDS-insoluble fractions from brain homogenates

of young and old animals (Figs 3A and EV4A). We used mice for this

analysis because of the larger brain size that allows retrieval of suffi-

cient amount of aggregates (that constitute only about 0.5% of total

proteins in old brains) for proteomic analysis. As expected, the yield

of SDS-insoluble protein aggregates was significantly higher from old

animals, confirming that aging is associated with enhanced protein

aggregation (Figs 3B and EV4B). We then analyzed the aggregate

composition by quantitative mass spectrometry to identify proteins

enriched in these aggregates as compared to the starting total brain

homogenates (Dataset EV7). Enriched proteins showed a predicted

higher molecular chaperone requirement for folding and were richer

in intrinsically disordered regions (Fig 3C). Among the enriched

proteins, we found collagens (Col1a1, Col1a2, and Col4a2), which

are well-known to undergo age-dependent crosslinking (Viidik,

1979), and ferritins (Fth1 and Ftl1), whose aggregation is linked to

the age-dependent brain accumulation of intracellular iron (Ripa

et al, 2017) (Fig 3D). Interestingly, protein aggregates were also

▸Figure 2. Loss of stoichiometry and disassembly of ribosomes in old killifish brain.

A Abundance changes of ribosomal proteins and their transcripts during aging. Cytoplasmic ribosomal proteins of large and small subunits are displayed separately,
and changes are shown for both the age comparisons as boxplots. Transcripts are displayed as light blue and proteins as dark blue boxes. Changes of individual
proteins are displayed as dots; orange dots identify significant cases (adj. P < 0.05, n = 4 per age group for proteome and n = 5 per age group for transcriptome). In
boxplots, the horizontal line represents the median, the bottom and top of the box the 25th and 75th percentile, respectively, and the whiskers extend 1.5-fold the
interquartile range.

B Visualization of age-related changes of proteins and transcripts projected on the 80S ribosome complex structure. Ribosomal RNAs are depicted in ribbon form: 28S
rRNA, 5S rRNA, and 5.8S rRNA of large subunit are depicted in light gray, and 18S rRNA of small subunit is depicted in black. Ribosomal proteins are depicted as
molecular surfaces and shown only if significant changes in the level of corresponding mRNA or protein were detected. Affected proteins of large and small
subunits are visualized in two different shades of red (up-regulated), or blue (down-regulated). For clarity, down-regulated components are displayed as
transparent molecular surfaces. Visualization was performed with USCF Chimera (version 1.12), according to Protein Data Bank archive— human 80S ribosome 3D
model: 4UG0.

C Brains from young (5 wph) and old (39 wph) were homogenized and clarified lysates separated by size-exclusion chromatography (SEC). For each age group, two
pools of brains were processed separately. For each experiment (four in total), 39 fractions were collected along the chromatogram, digested into peptides, and
analyzed by data independent acquisition (DIA) quantitative mass spectrometry.

D Co-elution of members of protein complexes in SEC. For each experiment, the distribution of pairwise correlations between members of the same protein complex
was analyzed (green). As expected, members of protein complexes tend to co-elute in all SEC experiments, as indicated by positive correlation values. A set of
randomly defined protein complexes was used as control (gray). For all the experiments, the correlations of real complexes are significantly higher than random
ones, Wilcoxon rank-sum test.

E, F Co-elution profiles for selected protein complexes. For each complex, the median abundance of all the quantified subunits was used to generate the complex
profile across fractions (Dataset EV5). All the complex profiles are scaled to the max value (set to 1) to make profiles comparable across experiments. The estimated
molecular weight of the displayed complexes is indicated in brackets.

G Statistics of protein complexes undergoing stoichiometry changes with aging. Only protein complexes that had at least five members quantified were considered
for each comparison. Complexes were considered affected if at least two members showed significant stoichiometry change (adj. P < 0.05 and absolute log2 fold
change > 0.5). The complete list of stoichiometry changes is available in Dataset EV6.

H Violin plots depicting interquartile ranges (IQRs) of individual members of protein complexes during aging. The IQR for each protein complex considered in G was
calculated using transcript (total RNA dataset, light blue) or protein (dark blue) log2 fold changes between two age groups (n = 4 per age group for proteome and
n = 5 per age group for transcriptome). *P < 0.05, Wilcoxon rank-sum test. The central line of the violin plots indicates the median value.

I Heatmap showing relative protein fold changes for members of selected complexes affected by aging. Names of significantly affected members in the 39 vs 12 wph
comparison (adj. P < 0.05 and absolute log2 fold change > 0.5) are highlighted in bold with a star.
Data information: Related to Fig EV3 and Dataset EV5 and EV6.
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enriched for ribosomal proteins (P = 4.4e�05, Fisher test, Figs 3D

and EV4D) that are both characterized by protein transcript decou-

pling (Fig 1H) and loss of complex stoichiometry (Fig 2A and B)

during aging. Other protein complexes that displayed loss of stoi-

chiometry (i.e., Complex V and vATPase) did not show significant

enrichment in aggregates, indicating that stoichiometry imbalance

does not always correlate with protein aggregation (Fig EV4D).

To confirm the aggregation of ribosomal proteins in killifish, we

performed staining of young (7–10 wph) and old (27–30 wph) brain

slices using Proteostat, an amyloid-specific dye (Shen et al, 2011).

As expected, we detected lysosomal aggregates in old, but not in

young brains (Fig EV4E, F, and H). These aggregates appeared to

contain the ribosomal protein RPS6 (Figs 3E and EV4G), which was

found to be significantly enriched in aggregates in mice (Dataset

EV7). In addition, we performed mass spectrometry on aggregates

from killifish. Although the limited amount of material precluded a

quantitative analysis as performed in mouse, we were able to confi-

dently identify several ribosomal proteins also in killifish brain

aggregates (Fig EV4I and Dataset EV7). Taken together, these data

demonstrate that aggregation of ribosomal proteins is a conserved

trait of brain aging in fish and mice.

Acute partial reduction of proteasome activity is sufficient to
induce loss of protein stoichiometry in vivo

Protein stoichiometry loss could be due to decreased proteolysis

rates. We focused on the proteasome, which is one of the main

degradation machineries and itself undergoes stoichiometry loss
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Figure 3. Aggregation of ribosomal proteins during brain aging.

A Representative Coomassie-stained SDS–PAGE gel showing the isolation of SDS-insoluble aggregates from mouse brain lysates. SUP = supernatant, TH = total
homogenate, W1 = SDS-soluble fraction, Pellet = formic acid soluble fraction (see Fig EV4A).

B Quantification of the yield of SDS-insoluble aggregates from young and old brain lysates was based on densitometry analysis of Coomassie-stained gel bands
obtained from different animals, n = 5 per age group (Fig EV4B); **P < 0.01, unpaired t-test. In boxplots, the horizontal line represents the median, the bottom, and
top of the box the 25th and 75th percentile, respectively, and the whiskers extend 1.5-fold the interquartile range.

C Proteins enriched in aggregates show a predicted higher molecular chaperone requirement for folding (top vs bottom 20% P = 0.0055, Kolmogorov–Smirnov test) and
are richer in intrinsically disordered regions (s2D-derived scores, top vs bottom 20% P = 0.0019, Kolmogorov–Smirnov test). Violin plots: The solid line shows the
median and the dotted lines the interquartile ranges. The same result was obtained with cleverSuite-derived scores (top vs bottom 20% P = 0.0201, Kolmogorov–
Smirnov test; Fig EV4C). **P < 0.01, Kolmogorov–Smirnov test.

D Volcano plot based on protein quantification by label-free mass spectrometry depicting the enrichment of specific proteins in protein aggregates. The x-axis indicates
the log2 ratio between protein abundance in aggregates (Pellet) and starting total homogenate (TH). The horizontal dashed line indicates a P value cut-off of 0.05 and
vertical lines a log2 fold change cut-off of � 0.5. Selected proteins are highlighted as colored dots as indicated in the figure legend. Protein quantification was based
on samples obtained from three independent isolations.

E Double labeling of telencephalic sections of Nothobranchius furzeri with anti-RPS6 (green) as ribosomal marker and Proteostat as a marker for aggregated proteins
(red). Nuclear counterstaining was performed with DAPI (blue). Scale bar = 10 lm.

Data information: Related to Fig EV4 and Dataset EV7.
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upon aging in killifish (Fig EV3F). First, we observed a decrease in

the levels of both proteasome proteins and their transcripts in adult

killifish, which was followed by a stoichiometry imbalance that

manifested in old fish exclusively at the protein level. In particular,

we observed an imbalance between proteins belonging to the 19S

and the 20S complexes, with the latter being exclusively up-regu-

lated in old fish (Fig 4A and 4B). We confirmed an age-dependent

increase of 20S relatively to single- (26S) and double-(30S) capped

proteasomes using immunoblots based on native gel electrophoresis

from an independent cohort of samples (Fig 4C and EV5A).

To further investigate the proteasome functional status in killifish

brains of different age groups, we performed native gel elec-

trophoresis of proteasomes accompanied by in-gel proteasome activ-

ity assays (Chondrogianni et al, 2015). A significant decrease in the
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Figure 4. Reduced proteasome activity and assembly in old brains.

A Abundance changes of proteasome proteins and their transcripts during aging. Members of the 19S and 20S complex are displayed separately, and changes are shown
for both the age comparisons as boxplots. Transcripts are displayed as light blue and proteins as dark blue boxes. Changes of individual proteins are displayed as dots
and orange dots represent significant cases (adj. P < 0.05, n = 4 per age group for proteome and n = 5 per age group for transcriptome). In boxplots, the horizontal
line represents the median, the bottom, and top of the box the 25th and 75th percentile, respectively, and the whiskers extend 1.5-fold the interquartile range.

B Heatmap showing transcript and protein fold changes for members of the 26 proteasome (19S and 12S complexes). Genes are annotated according to significance of
their changes at the level of transcript (adj. P < 0.05: black, adj. P > 0.05: white) or protein (adj. P < 0.05: green, adj. P > 0.05: white).

C The between 20S and 26S + 30S proteasome abundance assessed by immunoblot on native gels (Fig EV5A). **P < 0.001, Wilcoxon rank-sum test. The bars indicate
mean � SD.

D In-gel proteasome assay following native gel electrophoresis (top) and immunoblotting of proteasome complexes (30S, 26S and 20S; bottom) in young (5 wph), adult
(12 wph), and old (39 wph) killifish brains. For additional samples and low exposure pictures, see Fig EV5B and C.

E Barplots depicting the quantification of chymotrypsin-like (CT-L) activity from native gels calculated for doubly capped (30S) or singly capped (26S) proteasomes.
n ≥ 5 per sample group; error bars indicate standard error of the mean. *P < 0.05, **P < 0.005, ***P = 0.0001, ****P < 0.001, one-way ANOVA, Holm–Sidak’s multiple
comparison test. For each sample group, the mean value of activity in young samples (5 wph) was set to 100%.

F Percentage (%) of chymotrypsin-like (CT-L), trypsin-like (T-L), and peptidylglutamyl peptide hydrolyzing or caspase-like (PGPH) proteasome activities in brain extracts
of killifish of different ages. n ≥ 6 per sample group; error bars indicate standard error of the mean. **P < 0.005, ***P = 0.0001, ****P < 0.001, one-way ANOVA,
Holm–Sidak’s multiple comparison test. For each sample group, the mean value of each activity in young samples (5 wph) was set to 100%.

G Age-related changes of proteins involved in the ubiquitin cycle. All the displayed proteins showed significant protein level changes in the 39 vs 12 wph comparison
(adj. P < 0.05).

Data information: Related to Fig EV5.
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Figure 5. Partial pharmacological inhibition of proteasome activity in adult killifish brain affects aging protein networks and induces stoichiometry changes
in a subset of protein complexes.

A Study design. Adult (12–14 wph) killifish were treated with different proteasome inhibitors or vehicle control for 4 days. Proteasome activity and proteome changes
were analyzed in brains from treated and control fish.

B Chymotrypsin-like (CT-L) proteasome activity in brain extracts of killifish treated with different proteasome inhibitors. The activity was measured at day 4 after the
beginning of treatment. n = 8 per sample group; error bars indicate standard deviation. **P < 0.01, ****P < 0.0001, one-way ANOVA followed by Holm–Sidak’s
multiple comparisons test.

C Principal component analysis (PCA) of brain samples based on proteome profiles obtained by data independent acquisition (DIA) quantification treated with
Bortezomib or vehicle control (DMSO). n = 10 per sample group. The smaller dots represent individual samples and the larger dots the centroids of each age-
matched group. Ellipses represent 95% confidence intervals. The percentage of variance explained by the first two PC axes is reported in the axis titles.

D Proteasome inhibition induces proteasome activators (PSME4), assembly factors (POMP) ubiquitin ligases (UBE3C), mediators of autophagosome formation (ATG2B),
heat shock proteins, and chaperones in killifish brain. Protein abundances were quantified by DIA mass spectrometry, and they are shown relative to the mean value
of vehicle control samples (DMSO) set to 1, n = 10 per sample group. Adj. P < 0.05 for all the displayed proteins. Error bars indicate mean � SD.

E Overlap between proteins affected by Bortezomib treatment and aging in killifish brain. For all comparisons, only significantly affected proteins adj. P < 0.05 were
considered. A significant overlap between Bortezomib and aging-affected proteins is detected (Fisher’s test, as indicated in the figure panel). Significantly enriched GO
biological process terms in the subset of overlapping proteins are indicated (FDR < 0.05).

F Bortezomib treatment affects the stoichiometry of a subset of protein complexes. The number of affected proteins (adj. P < 0.25) for each protein complex is
indicated. Only protein complexes that had at least two members affected are shown.

G Members of the mitochondrial and cytoplasmic ribosomes affected by Bortezomib treatment. Relative protein abundances (normalized to the mean of the protein
complex to which they belong) are shown. The mean value of vehicle control samples (DMSO) was set to 1. n = 10 per sample group. Adj. P < 0.25 for all the
displayed proteins. Error bars indicate mean � SD.

Data information: Related to Dataset EV8.
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levels of both 30S and 26S proteasomes was revealed already in

adult animals (Figs 4D and EV5B and C). This decrease was accom-

panied by a significant reduction of all three proteasome activities in

adult and old samples as compared to young samples (Fig 4E and

F). Additionally, we detected down-regulation of enzymes involved

in the ubiquitin cycle (ubiquitin-conjugating enzymes and ubiquitin

ligases) in the old killifish brain (Fig 4G). These include the ubiqui-

tin ligase UBE2O that has been shown to mediate recognition, ubiq-

uitination, and targeting for proteasomal degradation of

mislocalized ribosomal proteins (Yanagitani et al, 2017).

Next, we investigate whether an acute partial reduction of protea-

some activity is sufficient to induce age-related phenotypes in killifish

brain. Thus, we treated adult (12 wph) killifish with Bortezomib, a

reversible proteasome inhibitor, for 4 days and achieved ~ 50% inhi-

bition of proteasome activity in brain, mimicking the activity observed

in old fish (Fig 5A and B). Quantitative mass spectrometry revealed

distinct proteome changes induced by partial proteasome inhibition in

brain (Fig 5C and Dataset EV8). These changes included a

compensatory up-regulation of proteasome activators (e.g., PSME4),

ubiquitin ligases (e.g., UBE3C), autophagy-related proteins (e.g.,

ATG2B), and heat shock proteins (e.g., HSPB1; Fig 5D). Interestingly,

this proteomic signature mimicked an aging phenotype, as indicated

by a significant overlap with proteins whose abundance changes with

age (Fig 5E). Using the same approach applied for aging data, we were

able to detect protein complexes whose stoichiometry was affected by

acute proteasome inhibition. These include the large subunits of both

cytosolic and mitochondrial ribosomes (Fig 5F and G, and Dataset

EV8). Taken together, these data indicate that decreased proteasome

activity is an early event during brain aging that is sufficient to induce

loss of stoichiometry of ribosomes in the brain in vivo.

Early in life decrease of proteasome is a major risk factor for
early death

To assess whether decline of proteasome levels is relevant for lifes-

pan determination, we analyzed a longitudinal dataset of RNA-seq
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Figure 6. Longitudinal study in 159 killifish identifies early in life decrease of proteasome transcripts as a major risk factor for reduced lifespan.

A Study design. Two fin clips were taken at 10 and 20 weeks post-hatching (wph) from 159 killifish and individual lifespans monitored. RNA sequencing was employed
to compare transcriptome changes between 10 and 20 wph for each individual fish.

B A Cox–Hazard model was used to correlate lifespan to gene expression changes. Two groups of genes were identified: (i) genes whose increased expression between
20 and 10 wph is a risk factors (i.e., associated to increased mortality risk; red) and (ii) genes whose decreased expression is a risk factors (blue).

C KEGG pathways enriched among genes whose regulation is associated to mortality. Only pathways with FDR < 0.05 are shown.
D Distribution of change in expression for proteasome transcripts across the entire cohort of 159 fish. Lifespan was compared among fish that showed extreme changes

in proteasome levels between 10 and 20 wph (32 fish showing the most pronounced decreases, shown in black vs 32 fish showing the most pronounced increases).
***P < 0.001 log-rank test.

Data information: Related to Dataset EV9.
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comprising 159 killifish where transcripts from fin biopsies were

quantified at 10 and 20 wph. Age-dependent variations in gene

expression were related to the lifespan of individual fish (Fig 6A).

By implementing a Cox–Hazard model, we identified genes for

which the amplitude of age-dependent regulation significantly corre-

lates with mortality risk (Fig 6B and Dataset EV9). We found the

proteasome to be the most enriched category among genes predic-

tive of lifespan (Fig 6C). In particular, a decrease of expression of

proteasomal transcript between 10 and 20 wph increases mortality

risk and is, thereby, associated with shorter lifespan. Accordingly,

when we classified the 159 fish on the basis of changes in protea-

some expression, we found that the lifespan of individuals showing

the largest age-dependent down-regulation of transcripts coding for

proteasomal proteins was significantly shorter than the lifespan of

individuals showing the largest up-regulation (Fig 6D). These data

support the finding obtained in the brain that the decrease of protea-

some levels is an early event during aging and demonstrate that the

rate of proteasome down-regulation in early adult life is predictive

of lifespan in killifish.

Discussion

A molecular timeline for aging

Our results delineate a timeline of events associated with loss of

protein quality control during aging. An early event, detectable al-

ready in adult fish, is a decreased proteolytic activity of the protea-

some, which is driven by a down-regulation of transcripts coding

for components of the 19S and 20S complexes in adult fish brain

(Fig 4A and B). The amplitude of this down-regulation correlated

with individual lifespan and could represent an early driver of aging

(Fig 6D). The reduction of proteasome activity precedes chronologi-

cally the decoupling of transcript/protein levels, suggesting a causa-

tive role in this aspect of the aging process. Decreased proteasome

activity can lead to the accumulation of proteins that are synthe-

sized in excess relative to their binding partners, thus causing a stoi-

chiometric imbalance of protein complexes (McShane et al, 2016).

For instance, deletion of the ubiquitin ligase Tom1 (yeast homo-

logue of Huwe1), which is responsible for the labeling for degrada-

tion of overproduced ribosomal proteins, leads to accumulation of

multiple ribosomal proteins in detergent-insoluble aggregates in

yeast (Sung et al, 2016). Accumulation of ribosomes in detergent-

insoluble aggregates (David et al, 2010) and a loss of stoichiometry

in the proteasome (Walther et al, 2015) were previously reported to

occur during aging in Caenorhabditis elegans. Our work demon-

strates the conservation of these mechanisms in the vertebrate

brain, by showing alteration of stoichiometry in several large

protein complexes (Fig 2G–I) and aggregation of ribosomes in old

brain (Fig 3D and E). Specifically, we establish a mechanistic link

between the partial reduction of proteasome activity observed in

adult brains and the loss of stoichiometry of protein complexes

(Fig 5F and G).

Later in life, the stoichiometry imbalance in protein complexes

contributes to exacerbate the loss of protein homeostasis. Protea-

some activity is further reduced in the old brain, correlating with an

increased imbalance between the 19S and 20S complexes over time

(Fig 4B and C). In addition, altered stoichiometry of the ribosome

can underlie both the reduction and the qualitative changes of

protein synthesis in brain aging (Schimanski & Barnes, 2010; Ori

et al, 2015; Sudmant et al, 2018). An alteration of the stoichiometry

between membrane-bound and cytosolic components of the lysoso-

mal v-type ATPase (Fig 2I) might influence the acidification of lyso-

somes and the activation of mTORC1 (Zoncu et al, 2011), thus

hampering the clearance of protein aggregates. These aggregates in

turn may further impair the proteasome activity (Grune et al, 2004),

thus creating a negative feedback loop. The interconnectivity

between proteasome and lysosome/autophagy system is further

highlighted by the fact that partial inhibition of the proteasome in

the adult brain induces mediators of autophagosome formation

(e.g., ATG2B) and autophagy receptors (e.g., SQTSM/p62), likely as

a compensatory mechanism to ensure removal of non-degraded

proteins at risk of aggregation. It is tempting to speculate that a

progressive decline of proteasome activity might be the trigger for

the impairment of lysosomal function that characterize aging and

late-onset neurodegenerative disorders (Wallings et al, 2019). The

combination of reduced proteasome activity and impaired lyso-

some/autophagy would make old brains more vulnerable to the

accumulation of protein aggregates, neuronal loss, and, conse-

quently, favor the onset of neurodegenerative disorders.

Other key pathways implicated in aging are affected by loss of

stoichiometry. In particular, alterations of respiratory chain

complexes (particularly Complex IV and V) might contribute to their

decreased activity and increased ROS production in old brain

(Stefanatos & Sanz, 2018), and changes in multiple spliceosome

complexes might underlie previously observed qualitative changes

of splicing (Mazin et al, 2013; Ori et al, 2015). More detailed mecha-

nistic studies are needed to demonstrate whether the alterations that

we describe contribute to functional impairment of these protein

complexes during aging or, rather, they represent adaptive

responses to the aging process itself.

It remains to be determined which mechanisms promote the

early decrease of proteasome activity in adult fish. Our data point to

multiple processes being involved, including in particular: (i)

decreased levels of rate-limiting proteasome members for the

production of 20S assembled/functional proteasomes (e.g., PSMB5

or PSMB6, (Chondrogianni et al, 2015)), which we found to be

significantly decreased already in the adult fish (Fig 4B); and (ii)

changes in abundance of proteasome proteins that are important for

the assembly and activity of the 19S proteasome complex, such as

PSMD5. PSMD5 has been also shown to inhibit the assembly and

activity of the 26S proteasome, and this proteasome member has

been shown to be induced by inflammation (Shim et al, 2012).

Accordingly, we detected also in killifish an activation of inflamma-

tion-related pathways (Fig EV1C) and, importantly, we identified

PSMD5 as one of the few proteasome members to be up-regulated

in the adult fish (Fig 4B). Finally, PSMD11 (known as RPN-6 in

C. elegans), which has been shown to be responsible for increased

proteasome assembly and activity in human embryonic stem cells

and in C. elegans (Vilchez et al, 2012), was significantly down-regu-

lated already in adult fish (Fig 4B). Identifying ways of counteract-

ing these mechanisms might provide new avenues to delay organ

dysfunction in aging and to increase lifespan. In this context, multi-

ple studies have reported that transgenic animals (from various

species) engineered to have enhanced proteasome activity show

increased health- and lifespan (Vilchez et al, 2012; Chondrogianni
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et al, 2015; Augustin et al, 2018) and that proteasome activity is

preserved in cells from centenarians (Chondrogianni et al, 2000).

Correspondingly, we have shown that expression level of protea-

some genes predicts life expectancy in killifish (Fig 6C and D).

In conclusion, our work identifies the maintenance of protea-

some activity upon aging as being critical to ensure the correct stoi-

chiometry of protein complexes involved in key biological functions

such as protein synthesis, degradation, and energy production.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source
Identifier or catalog
number

Experimental models

C57BL/6JRj, Mus musculus Janvier Labs

Nothobranchius furzeri https://www.leibniz-fli.de/research/cooperations/networking-
projects/notho-project/

Antibodies

S6 Ribosomal Protein (RPS6) 1:100 Cell Signaling 2317

Anti-LAMP1 1:500 AbCam Ab24170

Anti-S100 1:400 Dako Z0311

Anti-Glial Fibrillary Acidic Protein (GFAP) 1:800 Dako M0761

Proteasome 20S a1, 2, 3, 5, 6 & 7 subunits monoclonal antibody
(MCP231) 1:1,000

Enzo BML-PW8195

Alexa-Fluor 488 1:400 Invitrogen A11001

Alexa-Fluor 488 1:400 Invitrogen A11008

Chemicals, enzymes and other reagents

Bortezomib Sigma Aldrich 5043140001

Carfilzomib Selleck Chemicals S2853

MG-132 Sigma Aldrich 474787

Marizomib Sigma Aldrich SML1916

MG132 Enzo Life Sciences BML-PI102-0005

ProteoStat Aggresome Detection Kit Enzo Life Sciences Inc. ENZ-51035-K100

LysC Wako 125-05061

Trypsin Promega V5111

Suc-LLVY-AMC UBPBio J4120

Boc-LRR-AMC UBPBio J4120

Z-LLE-AMC UBPBio J4120

iRT kit Biognosys AG Ki-3002

Software

STAR sequence aligner Dobin et al (2013) v2.7.1a

RSEM Li and Dewey (2011) v1.3.1

Proteome Discoverer Thermo Fisher Scientific v2.0

Xcalibur Thermo Fisher Scientific v4.0

MaxQuant https://www.maxquant.org/ v1.5.3.28

Spectronaut Professional+ https://biognosys.com/shop/spectronaut v12.0.20491.0.21234

GraphPad Prism https://www.graphpad.com/ v7 and v8

R Studio https://www.r-project.org/

Other

Orbitrap Fusion Lumos Thermo Fisher Scientific

Q Exactive HF-X Thermo Fisher Scientific
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Methods and Protocols

Experimental animals including strain and husbandry details
Fish maintenance

The N. furzeri strain was maintained at the FLI facility as described

in Baumgart et al (2014). To avoid effects of circadian rhythms and

feeding, animals were always sacrificed at 10 am in fasted state. For

tissue preparation, fish were euthanized with MS-222 (PharmaQ)

and cooled on crushed ice. Animals used for in vivo pharmacologi-

cal interventions (section In vivo proteasome inhibition) were eutha-

nized by rapid-chilling. A complete list of fish used for the different

experiments and is reported in Dataset EV1.

Mouse maintenance

All mice were C57BL/6JRj obtained from Janvier Labs or from inter-

nal breeding. Animals were maintained at the Leibniz Institute on

Aging-Fritz Lipmann Institute (FLI) in a specific pathogen-free

animal facility with a 12-h light/dark cycle. Mice were euthanized

with CO2. A complete list of mice used for the different experiments

is reported in Dataset EV1.

Ethical statements

All experiments were performed in accordance with relevant guide-

lines and regulations. Fish were bred and kept in FLI’s fish facility

according to §11 of German Animal Welfare Act under license

number J-003798. The protocols of animal experimentations were

approved by the local authority in the State of Thuringia (Veteri-

naer- und Lebensmittelueberwachungsamt; proteasome inhibition:

reference number 22-2684-04-FLI-19-010). Sacrifice and organ

harvesting of non-experimental animals were performed according

to §4(3) of German Animal Welfare Act.

Size-exclusion chromatography coupled to mass spectrometry
Sample preparation

Individual brains of young (5 wph) and old (39 wph) fish were

collected and snap-frozen in liquid nitrogen (Dataset EV1). On the

preparation for size-exclusion chromatography (SEC), at least four

brains were pooled for each replicate in order to obtain ~ 3 mg of

protein extract as starting material and lysed in 1.5 ml of lysis buffer

(50 mM HEPES, pH 6.8, 1 mM MgCl2, 1 mM DTT, 150 mM NaCl,

5 mM ATP, cycloheximide 100 lg/ml, RNAse inhibitor 50 U,

protease and phosphatase inhibitors). Samples were then vortexed

(five times) prior to sonication using a Bioruptor Plus (Diagenode)

for five cycles (30 s ON/60 s OFF) at high setting, at 4°C. The

samples were then clarified by subsequent centrifugation steps as

follows: (i) 500 g for 5 min at 4°C, (ii) 1,000 g for 13 min at 4°C,

and (iii) 100,000 g for 30 min at 4°C. The final supernatant was

concentrated using 30 kD spin filters (Merck Amicon Ultra �0.5 ml,

centrifugal filters, UFC503096) to a final concentration of 10 lg/ll,
as judged by OD280, and subjected to SEC as indicate below. Experi-

ments were performed in duplicates for each age group and

conducted in different days.

Size-exclusion chromatography

Size-exclusion chromatography was performed using an ÄKTA

avant system equipped with UV detection at 280 nm wavelength.

The column was a Yarra-SEC-4000 column (300 × 7.8 mm, pore

size 500 Å, particle size 3 lm) with a SecurityGardTM cartridge

GFC4000 4 × 3.0 mm ID as a guard column. Running conditions

were temperature 4°C, flow rate 0.5 ml/min, and run time of

40 min, and mobile phase was 50 mM HEPES, pH 6.8, 1 mM MgCl2,

1 mM DTT, 150 mM NaCl, and 5 mM ATP. A standard sample

(Phenomenex, ALO-3042) was injected prior to each sample to

verify column performance. Sample amounts of 100 ll of a 10 mg/

ml lysate were injected, corresponding to 1 mg protein extract on

column. Fractions (200 ll each) were collected along with the LC

separation directly in SDS buffer, to a final concentration of 4%.

Thirty-nine fractions were further processed for LC-MS/MS analysis

(see section Sample preparation for SEC fractions for sample prepa-

ration and section Data independent acquisition for SEC fractions

for data acquisition).

In vivo proteasome inhibition
Adult animals (12–14 wph) were subjected twice to pharmacologi-

cal intervention via intraperitoneal injections (IP) during a 4-day

period treatment. On the first and third day of the experiment (t = 0

and t = 48 h), fish were anesthetized with 200 mg/l buffered MS-

222 (PharmaQ) and gently manipulated to deliver IP of either dif-

ferent drugs at 500 lM or vehicle (DMSO) at a dosage of 10 ll/g
body weight. Animals from the same hatch were randomly allocated

to the experimental groups. Both male and female fish were

included in each experimental group. Adverse events were observed

for some of the marizomib-treated animals as reported in Dataset

EV1. After the fourth day of treatment (t = 96 h), fish were eutha-

nized as previously described (Fish maintenance), brains harvested

and used either for proteasome activity assay (Proteasome peptidase

assay) or sample preparation for mass spectrometry (section Sample

preparation for proteome analysis (Nothobranchius furzeri)). Dif-

ferent compounds were tested (see list above) in order to reach an

optimal reduction of proteasome activity similar to the levels

observed in old animals.

Sample preparation for mass spectrometry analysis and data
acquisition
Sample preparation for proteome analysis (Nothobranchius furzeri)

Individual brains from the fish were collected and snap-frozen in

liquid nitrogen (Dataset EV1). On preparation for MS, protein

amount was estimated based on fresh tissue weight (assuming 5%

of protein w/w) and lysis buffer (4% SDS, 100 mM HEPES, pH8,

1 mM EDTA, 100 mM DTT) was added accordingly to a final

concentration of 1 lg/ll. Samples were then vortexed (five times)

prior to sonication (Bioruptor Plus) for 10 cycles (30 s ON/60 s

OFF) at high setting, at 4°C. The samples were then centrifuged at

3,000 g for 5 min at room temperature, and the supernatant trans-

ferred to 2-ml Eppendorf tubes. Reduction (15 min, 45°C) was

followed by alkylation with 20 mM iodoacetamide (IAA) for 30 min

at room temperature in the dark. Protein amounts were confirmed,

following an SDS–PAGE gel of 4% of each sample against an in-

house cell lysate of known quantity. Between 200 and 300 lg of

each sample was taken along for digestion. Proteins were precipi-

tated overnight at �20°C after addition of a 4× volume of ice-cold

acetone. The following day, the samples were centrifuged at

20,800 g for 30 min at 4°C and the supernatant carefully removed.

Pellets were washed twice with 1 ml ice-cold 80% (v/v) acetone in

water then centrifuged at 20,800 g at 4°C. They were then allowed

to air-dry before addition of 120 ll of digestion buffer (3 M urea,
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100 mM HEPES, pH8). Samples were resuspended with sonication

(as above), LysC (Wako) was added at 1:100 (w/w) enzyme:pro-

tein, and digestion proceeded for 4 h at 37°C with shaking (Eppen-

dorf ThermoMixer�C, thermoblock for 1.5 ml tubes, at 1,000 rpm

for 1 h, then 650 rpm). Samples were then diluted 1:1 with Milli-Q

water, and trypsin (Promega) added at the same enzyme to protein

ratio. Samples were further digested overnight at 37°C with shaking

(650 rpm). The following day, digests were acidified by the addition

of TFA to a final concentration of 2% (v/v) and then desalted with

Waters Oasis� HLB lElution Plate 30 lm (Waters Corporation,

Milford, MA, USA) in the presence of a slow vacuum. In this

process, the columns were conditioned with 3 × 100 ll solvent B

(80% (v/v) acetonitrile; 0.05% (v/v) formic acid) and equilibrated

with 3 × 100 ll solvent A (0.05% (v/v) formic acid in Milli-Q

water). The samples were loaded, washed 3 times with 100 ll
solvent A, and then eluted into 0.2-ml PCR tubes with 50 ll solvent
B. The eluates were dried down with the speed vacuum centrifuge

and dissolved at a concentration of 1 lg/ll in reconstitution buffer

(5% (v/v) acetonitrile, 0.1% (v/v) formic acid in Milli-Q water).

Reconstituted peptides were either analyzed directly (label-free anal-

ysis, see section Data acquisition for label-free analysis, used for

TMT labeling, see section TMT labeling, or DIA, see section Data

independent acquisition for In vivo proteasome inhibition).

Sample preparation for SEC fractions

Additional DTT (to a final concentration of 50 mM) in 100 mM

HEPES, pH 8 was added to each fraction, followed by sonication

(Bioruptor Plus) for 10 cycles (30 s ON/60 s OFF) at high setting, at

20°C. Reduction and alkylation were performed as previously

described (section Sample preparation for proteome analysis (Notho-

branchius furzeri)). Protein amounts were estimated following an

SDS–PAGE gel of 4% of each sample against an in-house cell lysate

of known quantity. Between 10 and 40 lg of each fraction were

taken along for digestion. Proteins were digested and peptide

desalted as described in section Sample preparation for proteome

analysis (Nothobranchius furzeri) and analyzed as described in

section Data independent acquisition for SEC fractions.

Isolation of SDS-insoluble protein aggregates

Individual brains from young (5 months) and old animals (21 or

26 months, Dataset EV1; between 481 and 533 mg wet tissue

weight, n = 5) were lysed at a protein concentration of 30 lg/ll in
lysis buffer (4% SDS, 100 mM HEPES, pH 8, 1 mM EDTA, 100 mM

DTT). Samples were then vortexed (five times) prior to sonication

with a Bioruptor Plus (high setting, 20°C, 20 cycles of 60 s ON/30 s

OFF). Samples were then centrifuged at 20,000 g for 5 min at room

temperature, and the supernatant transferred to fresh 2-ml Eppen-

dorf tubes (total homogenate; TH). In order to obtain pellets of

aggregates, 200 ll of brain lysates (TH) was transferred to

polypropylene thick wall tubes (Beckman Coulter), in duplicate, and

submitted to ultracentrifugation at 100,000 g for 30 min at 20°C.

Supernatant was transferred to a fresh tube (supernatant; SUP) and

remaining pellet washed twice, by resuspension with 200 ll of lysis
buffer, followed by ultracentrifugation. Supernatant from each of

the washes was transferred to fresh tubes (wash 1; W1 and wash 2;

W2). In order to facilitate their solubilization, pellets (SDS-insoluble

proteins) were then submitted to 50 ll of neat formic acid for 1 h at

37°C with shaking (Eppendorf ThermoMixer� C, thermoblock for

1.5 ml tube, at 400 rpm). After incubation, samples were speed

vacuum centrifuged at 45°C, resuspended in 50 ll of lysis buffer,

and boiled at 95°C for 10 min. Samples were then transferred to 0.5-

ml Eppendorf tubes and rebuffered with 5 M NaOH. To obtain

protein aggregates of N. furzeri, same procedure was repeated for

young (5 wph) and old (30 wph) animals (Dataset EV1), including

minor protocol modifications. At least 3 animals were pooled for

each replicated (n = 5) and lysed to 30 lg/ll. Because of the small

brain size, only 30–120 ll lysate (TH) were obtained for replicate.

An equal volume of TH across samples were kept for further mass

spectrometry analysis and the remaining volume were submitted to

ultracentrifugation. On preparation for MS, total homogenate

(10 lg) and equal volumes of resuspended pellets (estimated

amount of protein between 5 and 15 lg, for mice samples) for each

sample were submitted to protein precipitation, digestion, and clean

up as described in section Sample preparation for proteome analysis

(Nothobranchius furzeri).

Quantification of SDS-insoluble aggregates from young and old brains

(Mus musculus)

Resuspended pellets were loaded in SDS–PAGE gel, and their

protein content compared. In this process, equal volumes of resus-

pended/rebuffered pellets were mixed with 2× loading buffer (1.5 M

Tris–pH 6.8, 20% SDS, 85% glycerin), loaded in precast protein gel

(Bio-Rad, Mini-PROTEAN TGX 4–20%, 10-well), and run under

constant mode (100 V, 1:30 h) in 1% SDS running buffer. The gel

was then stained with Coomassie overnight at room temperature,

with shaking, followed by extensive washing with Milli-Q water.

The image was acquired using the ChemiDoc XRS+ system (Bio-

Rad) with the standard colorimetric settings (Image Lab 5.2.1). A

high resolution image was then exported for further densitometry

analysis of full-length lanes with the open source software ImageJ

1.52a on a Windows 7 Professional 64-bit install (NIH) (Schneider

et al, 2012). Prior to analysis, the image was converted to gray scale

8-bit mode. In brief, a rectangular selection of same size was drawn

across the full lane of each sample. Profile plots with the relative

density of the contents from each rectangle were generated (func-

tion Plot Lanes). The generated area under the curve for each

sample was measured (function Wand). In order to test for signifi-

cant differences between young and old brains, density area values

were tested for normal distribution (Shapiro–Wilk test). An

unpaired parametric t-test was performed. Statistical analysis was

done using built-in functions of GraphPad Prism 8.

Data acquisition for label-free analysis

Peptides were separated using the nanoAcquity UPLC system

(Waters) fitted with a trapping (nanoAcquity Symmetry C18, 5 lm,

180 lm × 20 mm) and an analytical column (nanoAcquity BEH C18,

1.7 lm, 75 lm × 250 mm). The outlet of the analytical column was

coupled directly to an Orbitrap Fusion Lumos (Thermo Fisher Scien-

tific) using the Proxeon nanospray source. Solvent A was water,

0.1% (v/v) formic acid, and solvent B was acetonitrile, 0.1% (v/v)

formic acid. The samples (500 ng) were loaded with a constant flow

of solvent A at 5 ll/min onto the trapping column. Trapping time

was 6 min. Peptides were eluted via the analytical column with a

constant flow of 0.3 ll/min. During the elution step, the percentage

of solvent B increased in a linear fashion from 3 to 25% in 30 min

and then increased to 32% in five more minutes and finally to 50%
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in a further 0.1 min. Total runtime was 60 min. The peptides were

introduced into the mass spectrometer via a Pico-Tip Emitter

360 lm OD × 20 lm ID; 10 lm tip (New Objective), and a spray

voltage of 2.2 kV was applied. The capillary temperature was set at

300°C. The RF lens was set to 30%. Full scan MS spectra with mass

range 375–1,500 m/z were acquired in profile mode in the Orbitrap

with resolution of 120,000 FWHM. The filling time was set at maxi-

mum of 50 ms with limitation of 2 × 105 ions. The “Top Speed”

method was employed to take the maximum number of precursor

ions (with an intensity threshold of 5 × 103) from the full scan MS

for fragmentation (using HCD collision energy, 30%) and quadru-

pole isolation (1.4 Da window) and measurement in the ion trap,

with a cycle time of 3 s. The monoisotopic precursor selection ()

peptide algorithm was employed but with relaxed restrictions when

too few precursors meeting the criteria were found. The fragmenta-

tion was performed after accumulation of 2 × 103 ions or after filling

time of 300 ms for each precursor ion (whichever occurred first).

MS/MS data were acquired in centroid mode, with the Rapid scan

rate and a fixed first mass of 120 m/z. Only multiply charged (2+–

7+) precursor ions were selected for MS/MS. Dynamic exclusion

was employed with maximum retention period of 60 s and relative

mass window of 10 ppm. Isotopes were excluded. Additionally,

only one data-dependent scan was performed per precursor (only

the most intense charge state selected). Ions were injected for all

available parallelizable time. In order to improve the mass accuracy,

a lock mass correction using a background ion (m/z 445.12003) was

applied. For data acquisition and processing of the raw data, Xcal-

ibur 4.0 (Thermo Scientific) and Tune version 2.1 were employed.

TMT labeling

The resuspended peptides (at 1 lg/ll) were rebuffered to pH 8.5

using 1 M HEPES prior labeling. For the total proteome experiment,

12 wph samples were used as common reference for 5 and 39 wph

samples (see Dataset EV1 for labeling scheme). In this case, 30 lg
and 15 lg of peptides were taken for each labeling reaction, from 12

and 5 wph/39 wph samples, respectively. For TPP experiments,

10 lg of peptides from each temperature point from each replicate

was labeled (see Dataset EV1 for labeling scheme). TMT-10plex

reagents (Thermo Scientific) were reconstituted in 41 ll of anhy-

drous DMSO. TMT labeling was performed in two steps by addition

of 2× of the TMT reagent per lg of peptide (e.g., 60 lg of TMT

reagent for 30 lg of peptides). First, sample amount of TMT reagent

was added to samples at room temperature, with shaking at

600 rpm in a thermomixer (Eppendorf) for 30 min. After incuba-

tion, a second portion of TMT reagent was added and incubated for

another 30 min. After checking labeling efficiency by MS, samples

were pooled (50 lg total), desalted as described in Sample prepara-

tion for proteome analysis (Nothobranchius furzeri), and subjected

to high pH fractionation prior to MS analysis.

High pH peptide fractionation for TMT labeled samples

Offline high pH reverse phase fractionation was performed using an

Agilent 1260 Infinity HPLC System equipped with a binary pump,

degasser, variable wavelength UV detector (set to 220 and 254 nm),

Peltier-cooled autosampler (set at 10°C), and a fraction collector. The

column was a Waters XBridge C18 column (3.5 lm, 100 × 1.0 mm,

Waters) with a Gemini C18, 4 × 2.0 mm SecurityGuard (Phenom-

enex) cartridge as a guard column. The solvent system consisted of

20 mM ammonium formate (pH 10.0) as mobile phase (A) and 100%

acetonitrile as mobile phase (B). The separation was accomplished at

a mobile phase flow rate of 0.1 ml/min using a non-linear gradient

from 95 A to 40% B in 91 min. Forty-eight fractions were collected

along with the LC separation that were subsequently pooled into 16

non-consecutive fractions. Pooled fractions were dried in a Speed-Vac

and then stored at �80°C until LC-MS/MS analysis.

Data acquisition TMT labeled, high pH fractionated samples

For TMT experiments, fractions were resuspended in 10 ll reconstitu-
tion buffer (5% (v/v) acetonitrile, 0.1% (v/v) TFA in water), and

3 ll was injected. Peptides were separated using the nanoAcquity

UPLC system (Waters) fitted with a trapping (nanoAcquity Symmetry

C18, 5 lm, 180 lm × 20 mm) and an analytical column (nanoAc-

quity BEH C18, 2.5 lm, 75 lm × 250 mm). The outlet of the analyti-

cal column was coupled directly to an Orbitrap Fusion Lumos

(Thermo Fisher Scientific) using the Proxeon nanospray source.

Solvent A was water, 0.1% (v/v) formic acid, and solvent B was

acetonitrile, 0.1% (v/v) formic acid. The samples were loaded with a

constant flow of solvent A at 5 ll/min, onto the trapping column.

Trapping time was 6 min. Peptides were eluted via the analytical

column at a constant flow of 0.3 ll/min, at 40°C. During the elution

step, the percentage of solvent B increased in a linear fashion from 5

to 7% in 10 min and then from 7 B to 30% B in a further 105 min

and to 45% B by 130 min. The peptides were introduced into the

mass spectrometer via a Pico-Tip Emitter 360 lm OD × 20 lm ID;

10 lm tip (New Objective), and a spray voltage of 2.2 kV was

applied. The capillary temperature was set at 300°C. Full scan MS

spectra with mass range 375–1,500 m/z were acquired in profile

mode in the Orbitrap with resolution of 60,000 FWHM using the

quadrupole isolation. The RF on the ion funnel was set to 40%. The

filling time was set at maximum of 100 ms with an AGC target of

4 × 105 ions and 1 microscan. The peptide MIPS was enabled along

with relaxed restrictions if too few precursors were found. The most

intense ions (instrument operated for a 3 s cycle time) from the full

scan MS were selected for MS2, using quadrupole isolation and a

window of 1 Da. HCD was performed with collision energy of 35%.

A maximum fill time of 50 ms for each precursor ion was set. MS2

data were acquired with fixed first mass of 120 m/z in the ion trap.

The dynamic exclusion list was with a maximum retention period of

60 s and relative mass window of 10 ppm. The instrument was not

set to inject ions for all available parallelizable time. For the MS3, the

precursor selection window was set to the range 400–2,000 m/z, with

an exclude width of 18 m/z (high) and 5 m/z (low). The most

intense fragments from the MS2 experiment were co-isolated (using

synchronous precursor selection = 8) and fragmented using HCD

(65%). MS3 spectra were acquired in the Orbitrap over the mass

range 100–1,000 m/z and resolution set to 30,000 FWHM. The maxi-

mum injection time was set to 105 ms, and the instrument was set

not to inject ions for all available parallelizable time.

Data independent acquisition for in vivo proteasome inhibition

Reconstituted peptides were spiked with retention time iRT kit

(Biognosys AG, Schlieren, Switzerland). Peptides were separated

using the nanoAcquity UPLC system (Waters) with a trapping

(nanoAcquity Symmetry C18, 5 lm, 180 lm × 20 mm) and an

analytical column (nanoAcquity BEH C18, 1.7 lm,

75 lm × 250 mm). The outlet of the column was coupled to a Q
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exactive HF-X (Thermo Fisher Scientific) using the Proxeon nanos-

pray source. Solvent A was water, 0.1% FA, and solvent B was

acetonitrile, 0.1% FA. Samples were loaded at constant flow of

solvent A at 5 ll/min onto the trap for 6 min. Peptides were eluted

via the analytical column at 0.3 ll/min and introduced via a Pico-

Tip Emitter 360 lm OD × 20 lm ID; 10 lm tip (New Objective). A

spray voltage of 2.2 kV was used. During the elution step, the

percentage of solvent B increased in a non-linear fashion from 0 to

40% in 120 min. Total run time was 145 min. The capillary temper-

ature was set at 300°C. The RF lens was set to 40%. MS conditions

were as follows: Full scan MS spectra with mass range 350–

1,650 m/z were acquired in profile mode in the Orbitrap with reso-

lution of 120,000 FWHM. The filling time was set at maximum of

60 ms with limitation of 3 × 106 ions. DIA scans were acquired with

40 mass window segments of differing widths across the MS1 mass

range. The default charge state was set to 3+. HCD fragmentation

(stepped normalized collision energy; 25.5, 27, 30%) was applied,

and MS/MS spectra were acquired with a resolution of 30,000

FWHM with a fixed first mass of 200 m/z after accumulation of

3 × 106 ions or after filling time of 35 ms (whichever occurred first).

Data were acquired in profile mode. For data acquisition and

processing of the raw data, Xcalibur 4.0 (Thermo Scientific) and

Tune version 2.9 were employed.

Data independent acquisition for SEC fractions

Data acquisition was performed as described above, including modifi-

cations in the gradient settings and MS as follows. During the elution

step, the percentage of solvent B increased in a non-linear fashion

from 0 to 40% in 60 min. Total run time was 75 min. DIA scans were

acquired with 30 mass window segments. HCD fragmentation

(stepped normalized collision energy; 25.5, 27, 30%) was applied,

and MS/MS spectra were acquired with a resolution of 30,000 FWHM

with a fixed first mass of 200 m/z after accumulation of 3 × 106 ions

or after filling time of 47 ms (whichever occurred first).

Data processing for TMT labeled samples (total proteome analysis)

TMT-10plex data were processed using Proteome Discoverer v2.0

(Thermo Fisher Scientific). Data were searched against the relevant

species-specific fasta database (in-house N. furzeri or UniProt data-

base, SwissProt entry only, release 2016_01 for mouse or UniProt

database, SwissProt entry only, release 2016_01 for human) using

Mascot v2.5.1 (Matrix Science) with the following settings: Enzyme

was set to trypsin, with up to 1 missed cleavage. MS1 mass tolerance

was set to 10 ppm and MS2 to 0.5 Da. Carbamidomethyl cysteine

was set as a fixed modification and oxidation of methionine as vari-

able. Other modifications included the TMT-10plex modifications

from the quantification method used. The quantification method was

set for reporter ions quantification with HCD and MS3 (mass toler-

ance, 20 ppm). The false discovery rate for peptide-spectrum matches

(PSMs) was set to 0.01 using Percolator (Brosch et al, 2009).

Reporter ion intensity values for the PSMs were exported and

processed with procedures written in R (version 3.5.0) using R-

studio (version 1.0.153), as described in Heinze et al (2018). Briefly,

PSMs mapping to reverse or contaminant hits, or having a Mascot

score below 15, or having reporter ion intensities below 1 × 103 in

all the relevant TMT channels were discarded. TMT channels inten-

sities from the retained PSMs were then log2 transformed, normal-

ized, and summarized into protein group quantities by taking the

median value. At least two unique peptides per protein were

required for the identification, and only those peptides with no miss-

ing values across all 10 channels were considered for quantification.

Protein differential expression was evaluated using the limma pack-

age (Ritchie et al, 2015). Differences in protein abundances were

statistically determined using Student’s t-test moderated by the

empirical Bayes method. P values were adjusted for multiple testing

using the Benjamini–Hochberg method (FDR, denoted as “adj. P”)

(Benjamini & Hochberg, 1995). The results are reported in Dataset

EV2.

To obtain iBAQ values (Schwanhäusser et al, 2011) from TMT

data, all samples were re-analyzed with MaxQuant 1.5.3.28. The

parameters were set identically to the analyses above. For each

identified peptide in each separate LC-MS analysis file, we

extracted both precursor intensities and corresponding PSMs from

the evidence files. For further analysis, we only considered PSMs

that were common to both the TMT quantification approach as

described above and the MaxQuant analysis and were filtered as

before. For each resulting peptide per LC-MS analysis, we calcu-

lated a peptide ratio corresponding to the median of the ratios

derived from its PSMs. Given that the total area (MS1/precursor

intensity) of a peptide species represents the sum of the 10 TMT

channels, splitting the total area into individual channels using the

TMT ratios gives the intensity portions for each channel. After

splitting, we corrected for potential sampling aberrations by multi-

plying the area intensities per channel with the median ratio deter-

mined from the TMT ratios. For each channel and peptide, we

calculated label-free scores by dividing through the number of

potentially observable unique tryptic peptides per protein (criteria:

peptide length 8–25 amino acids, no missed cleavage allowed).

The resulting iBAQ scores of unique peptides were summed up

per protein, and protein scores were normalized across samples

using median normalization.

Data processing for label-free quantification (protein aggregates)

Software MaxQuant (version 1.5.3.28) was used to search the data.

The data were searched against a species-specific (N. furzeri in-

house or UniProt database, SwissProt entry only, release 2016_01

for mouse) database with a list of common contaminants appended.

The data were searched with the following modifications: Carbami-

domethyl (C) (fixed) and Oxidation (M) and Acetyl (Protein N-term;

variable). The mass error tolerance for the full scan MS spectra was

set at 20 ppm and for the MS/MS spectra at 0.5 Da. A maximum of

two missed cleavages was allowed. For aggregate analysis, iBAQ

values (Schwanhäusser et al, 2011) from the MaxQuant output were

used to perform quantitative analyses. Only protein groups quanti-

fied in at least two replicates per sample group were retained. To

reduce technical variation, data were log2 transformed and quantile

normalized using the preprocessCore library. Differential protein

expression was assessed using the limma package, as described in

section Data processing for TMT labeled samples (total proteome

analysis). The results are reported in Dataset EV7.

Data processing for DIA

For experiment-specific library creation, the DIA data were searched

against either a N. furzeri in-house database (59,154 entries) or a

N. furzeri UniProt database (35,275 entries) and a list of common

contaminants using Pulsar engine in Spectronaut Professional+
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(version 12.0.20491.0.21234, Biognosys AG, Schlieren, Switzer-

land). The following modifications were included in the search:

Carbamidomethyl (C) (Fixed) and Oxidation (M)/Acetyl (Protein N-

term; Variable). A maximum of 2 missed cleavages for trypsin were

allowed. The identifications were filtered to satisfy FDR of 1% on

peptide and protein level.

For the SEC experiment (see section Size-exclusion chromatog-

raphy coupled to mass spectrometry), a library containing all

samples (5 wph and 39 wph, in duplicates) was generated and

contained 117,755 precursors. The same library was used to

search data from different experiments separately. Precursor

matching, protein inference, and quantification were performed in

Spectronaut using default settings.

For the in vivo proteasome inhibition experiment (see section

In vivo proteasome inhibition), the library generated from all DIA

data (DMSO and Bortezomib) contained 70,301 precursors, corre-

sponding to 6.636 protein groups.

The protein quantity report was then exported, and further data

analyses and visualization were performed with R using in-house

pipelines and scripts. For in vivo proteasome inhibition experiment,

differential protein expression was assessed using the limma pack-

age, as described in section Data processing for TMT labeled

samples (total proteome analysis). SEC analysis was performed as

described in section Analysis of SEC-MS data.

Sample preparation and data processing for RNA sequencing
RNA isolation

RNA from each sample was extracted from protein lysates using

QIAzol lysis reagent (Qiagen). In brief, 1 ml of QIAzol reagent was

added to 100 ll of lysate, followed by the addition of 200 ll of chlo-
roform. Samples were mixed vigorously and centrifuged at 12,000 g

for 20 min at 4°C, after 3-min incubation at room temperature. The

upper aqueous phase was carefully transferred into a fresh tube and

mixed with one volume of isopropyl alcohol, 0.16 volumes of

sodium acetate (2 M; pH 4.0), and 1 ll of GlycoBlue (InvitrogenTM)

in order to precipitate RNA. After 10-min incubation at room

temperature, samples were centrifuged at 12,000 g for 30 min at

4°C. The supernatant was completely removed, and RNA pellets

were washed by adding 80% (v/v) ethanol and centrifuging at

7,500 g for 5 min at 4°C. The washing steps were performed twice.

The resulting pellets were air-dried for no more than 5 min and

dissolved in 10 ll nuclease-free water. To ensure full dissolution of

RNA in water, samples were then incubated at 65°C for 5 min,

before storage at �80°C.

Library preparation

Sequencing of RNA samples was done using Illumina’s next-

generation sequencing methodology (Bentley et al, 2008). In

detail, quality check and quantification of total RNA were done

using the Agilent Bioanalyzer 2100 in combination with the RNA

6000 pico kit (Agilent Technologies). Total RNA library prepara-

tion was done introducing 250 ng total RNA into the Illumina’s

TruSeq Stranded Total RNA Library Prep Kit/RiboZero Gold kit,

following the manufacturer’s instructions. Small RNA library

preparation was done using Illumina’s TruSeq small RNA library

preparation kit following the manufacturer’s description. Quality

and quantity of all libraries were checked using Agilent’s Bioana-

lyer 2100 and DNA 7500 kits.

Sequencing

All libraries were sequenced on a HiSeq2500 running in 51 cycle/

single-end/high-output mode (sequencing chemistry v3). Total RNA

libraries were pooled and sequenced in three lanes. Small RNA

libraries were pooled and sequenced in one lane. Sequence informa-

tion was extracted in FastQ format using Illumina’s bcl2fastq

v.1.8.4. Sequencing of total RNA libraries resulted in around 42 mio

reads per sample and sequencing of small RNA libraries in around

12 mio reads per sample.

Data processing for small RNAs

Sequence information was extracted in FastQ format using Illu-

mina’s bcl2fastq software v1.8.3. The processing and annotation of

small RNA-seq raw data were performed using the R programming

language (version 3.0.2) and the ShortRead Bioconductor package

(Morgan et al, 2009). First, raw data were preprocessed with the

following parameters: Quality filtering, eliminating all reads contain-

ing an “N”; Adapter trimming, by use of the function trimLRPat-

terns(), allowing up to two mismatches and using as adapter

sequence “TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC”. Size

filtering removed all the reads with lengths shorter than 18 and

longer than 33 nucleotides. Reads were aligned using Bowtie 1.1.2

(Langmead et al, 2009), resulting in a direct annotation and quan-

tification. The alignment was divided in two steps, to allow the

recognition and the annotation of the reads exceeding reference

length. First, we performed alignment against the reference (mature

miRNAs, N. furzeri reference catalogue (Baumgart et al, 2017)) with

up to two mismatches. In this step, the reference used was the

mature sequence of microRNAs. Each read was aligned using these

criteria with Bowtie (settings: “-q”, “–threads 8 –best”, “—norc”).

The remaining reads, which could not be aligned in the previous

step, were used as reference for a second alignment step with

Bowtie 1.1.2 (settings: -f”, “-a”, “–threads 8 –norc”). In this case,

the annotated mature microRNAs were aligned against the reads.

The information obtained in the two alignment phases was

conveyed in one single Dataset, containing a list of all the retrieved

sequences and their relative counts.

RNA-seq data were then processed as follow: Sequences were

mapped using Tophat2 (-T -x 1) (Kim et al, 2013) to the

Nfu_20150522 genome. Counting was performed using feature-

Counts -s 0 on the genebuild_v1.150922 N. furzeri annotation. For

both small and coding RNAs, the raw counts were analyzed with

DESeq2 package (Love et al, 2014) for differential expression. Dif-

ferential expression was performed independently for the two

comparisons shown in the work (12 vs 5 wph and 39 vs 12 wph)

with a = 0.05. The analysis was applied to both coding and non-

coding RNAs (miRNA-seq data). For miRNA analysis, only

miRNAs up-regulated with aging (log2 fold change > 0 and adj.

P < 0.05) were considered. The results are reported in Dataset

EV3.

Longitudinal study

Nothobranchius furzeri longitudinal data were obtained from: (i) an

already published data set (GSE66712, 90 longitudinal fin-clip data-

sets from 45 animals, (Baumgart et al, 2016)), and (ii) newly

sequenced 228 fin-clip samples from additional 114 animals of the

same cohort. Sample preparation, sequencing, and data analysis

were done as described in Baumgart et al (2014, 2016).
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Ribosome footprinting

RNA from additional samples (young, 6 wph; old, 26 wph; four

replicates each age group) were extracted and sequenced as previ-

ously described (section RNA isolation and Sequencing). Libraries

were prepared following manufacturer’s instructions without deple-

tion of ribosomal RNA (ARTseq, Epicentre).

Measurements of proteasome activity
Native gel electrophoresis and in-gel proteasome assay

Brains from young, adult, and old fish were lysed by sonication

using a Bioruptor for five cycles (30 s ON/60 s OFF) at high

setting, at 4°C, in proteasome activity lysis buffer (50 mM Tris–

HCl, pH 7.4, 5 mM MgCl2, 5 mM ATP, 1 mM DTT, 10% glycerol).

Cell lysates were then centrifuged at 16,000 g for 10 min, at 4°C.

Protein concentration was determined using the Bradford method

with bovine serum albumin as standard. Forty microgram of total

cell lysates was subjected to native gel electrophoresis to reveal

the various proteasome complexes (30S, 26S, 20S). The gel was

then incubated in 50 mM Tris, pH 7.4, 5 mM MgCl2, 1 mM ATP,

and 300 lM proteasome substrate (Suc-LLVY-AMC; UBPBio) for

30 min at 37°C to assay chymotrypsin-like (CT-L) activity. Protea-

some bands were visualized under UV. Following the CT-L activity

assay, proteins in native gels were transferred to nitrocellulose

membranes for immunoblotting with a monoclonal antibody

against the a1, 2, 3, 5, 6, and 7 members of the 20S proteasome

subunit (MCP231, Enzo BML-PW8195, 1:1,000 dilution in TBS

(0.1% Tween) and 5% milk). Equal protein loading was confirmed

by Ponceau staining and immunoblotting with a-tubulin antibody.

Briefly, 20 lg of the same total cell lysates used for loading native

gels was then fractionated by SDS–PAGE and transferred to nitro-

cellulose membranes for probing with a monoclonal antibody

against a-tubulin (T9026, Sigma, 1:5,000). Secondary antibodies

used were conjugated with horseradish peroxidase, and ClarityTM

Western ECL substrate (Bio-Rad Laboratories, Hercules, USA) was

used to develop the blots.

Proteasome peptidase assay

Brains from young, adult, and old animals were sonicated as

described in 6.1. CT-L, T-L, and PGPH proteasome activities were

assayed with the hydrolysis of specific fluorogenic peptides

(UBPBio), namely Suc-LLVY-AMC (for CT-L activity), Boc-LRR-AMC

(for T-L activity), and Z-LLE-AMC (for PGPH activity), respectively,

for 1 h at 37°C. 10 lg of total cell lysates was incubated in 50 mM

Tris–HCl, pH 7.4, 5 mM MgCl2, 1 mM ATP, 1 mM DTT, 10% glyc-

erol, and 10 lM proteasome substrate for 1 h at 37°C. Specific

proteasome activity was determined as the difference between the

total activity of protein extracts and the remaining activity in the

presence of 20 lΜ MG132 (Enzo Life Sciences). Fluorescence was

measured by multiple reads for 60 min at 37°C by TECAN Kinetic

Analysis (excitation 380 nm, emission 460 nm, read interval 5 min)

on a Safire II microplate reader (TECAN).

Immunofluorescence
The whole brains of young (7–10 wph) and old (27–30 wph) fish

were fixed overnight using a solution of paraformaldehyde (PFA)

4% in phosphate buffer (PB) 100 mM and cryoprotected with a

solution of Sucrose 30% for 24 h. Finally, tissues were included in

OCT embedding medium (Tissue-tek, Sakura) and stored at �20°C

until use. Brain sections (20 lm) were cut using a Leica cryostat,

collected on Superfrost Plus slides (Menzel-Glaeser), and dried at

37°C for 2 h and then washed in PBS (three washings for 5 min

each) to remove the embedding medium followed by an acid anti-

gen retrieval treatment (10 mM Tri-sodium citrate, 0.05% Tween,

pH 6). The solution was brought to the boiling point in a micro-

wave, and the slides were dipped in the hot solution for 1 min,

three times.

To visualize protein aggregates (Figs 3E and EV4E–H), an aggre-

some fluorescent staining kit that binds to the beta-sheets of protein

aggregates was applied. Following the protocol described from Shen

et al (2011), a solution 1:2,000 of aggresome dye in PBS was used

for 3 min, followed by washing in PBS (three washings for 5 min

each), and the sections were immersed in a solution of 1% acetic

acid for 30 min at room temperature to remove the excess of stain-

ing (destaining step). This step was followed by an immunofluores-

cence procedure: Blocking solution (5% (w/v) BSA, 0.3% (v/v)

Triton-X in PBS) was applied for 2 h at room temperature (RT), then

the primary antibodies at the specific dilution in a solution of 1%

(w/v) BSA, 0.1% (v/v) Triton in PBS, and the samples left over-

night at 4°C. The following day, sections were washed in PBS (three

washings for 5 min each) to eliminate the primary antibodies solu-

tions, and the secondary antibody was applied (Alexa fluor 488,

working dilution 1:400) for 2 h at RT. Samples were then washed

with PBS (three washings for 5 min each) and mounted with a fluo-

rescence mounting medium supplemented with DAPI as a nuclear

staining (DAPI-Fluoroshield). Images were collected at different

magnifications with a Zeiss Apotome.2 microscope provided with a

ZEN 2 Pro software for the image processing and saved as TIFF

format.

To detect age-dependent gliosis (Fig EV2B), double staining for

S100 and glial fibrillary acidic protein (GFAP) was performed,

following the standard immunohistochemistry protocols already

described above: The specific primary antibodies were incubated

simultaneously overnight at 4°C, followed by PBS washings and

simultaneous incubation with the specific secondary antibodies for

2 h at room temperature.

Data analysis
Mapping of N. furzeri genes to human orthologues

In order to map N. furzeri genes to human orthologues, the N. furz-

eri proteome (Reichwald et al, 2015) was directly mapped against

the Homo sapiens UniProt reference proteome (accessed July 2017)

using BLASTp. The hit with highest alignment score was selected as

the orthologue. This procedure made it possible to assign 13,484

orthologues. Teleost fish underwent whole-genome duplication after

their lineage separated from the one that includes mammals; thus,

paralogue fish genes might diverge from the correspondent mamma-

lian orthologue (hidden orthology). In order to detect possible

candidates, the N. furzeri proteome was aligned against the spotted

gar (Lepisosteus oculatus) proteome, and these orthologues conse-

quently mapped on the human proteome. Spotted gar is a fish

whose lineage diverged from teleosts before their genome duplica-

tion; thus, its genome could be used as a bridge to identify hidden

orthologues between teleosts and mammals (Braasch et al, 2016).

The procedure resulted in the assignment of further 146 (hidden)

orthologues, equivalent to 1.1% of total orthologues mapped. The

mapping table is reported in Dataset EV1.
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Transcriptome/proteome comparison

For the comparison between transcriptome and proteome two inde-

pendent analyses were performed, one comparing 12 vs 5 wph brain

samples, and the other one comparing 39 vs 12 wph samples. Dif-

ferentially expressed genes and proteins were obtained for these and

then plotted: For the visualization of the comparison (Fig 1D and E),

only genes differentially expressed in both the comparisons (adj.

P < 0.05) were considered. To identify enriched KEGG pathways

(Fig 1G and H), a metanalysis was performed on the two dataset: P

values were combined using Fisher’s method and then adjusted for

multiple testing using the Benjamini–Hochberg method (Benjamini &

Hochberg, 1995). For the gene enrichment, genes contained in each

quadrant were analyzed separately with WebGestalt using KEGG

pathways with a cut-off of FDR < 0.05. To obtain the correlation

between protein and transcript levels for the different time points,

normalized counts (obtained from DESeq2 package) and IBAQ (ob-

tained from MaxQuant) were, respectively, used. Pearson correlation

was calculated for every sample pair (Fig 1C).

Analysis of SEC-MS data

The same complex definitions used for stoichiometry analysis were

used (Dataset EV6). Protein quantification report exported from Spec-

tronaut (see section Data processing for DIA) was processed using R

3.5.3, using in-house generated functions. Intensity values for each

protein across the 39 fractions were normalized, dividing each value

by the total sum of intensities along the fractions. Only complexes

with at five subunits identified were considered for further analysis.

For each experiment, the distribution of pairwise Pearson’s correla-

tion between members of the same protein complex was analyzed. A

set of randomly defined protein complexes of same length was gener-

ated as a control for this analysis. For each complex, the median

abundance of all the quantified subunits was used to generate the

complex profile across fractions. All the complex profiles were scaled

to the max value (set to 1) to make profiles comparable across experi-

ments. A heatmap of the different protein complexes across the frac-

tions was generated using the R package pheatmap. The results of

SEC-MS data are reported in Dataset EV5.

Protein complex analysis

Protein complex stoichiometries were analyzed using method and

complex definitions described in Ori et al (2016). Briefly, protein inten-

sities obtained from TMT experiments were assigned to the respective

protein complex and normalized by the mean complex abundance (es-

timated using the trimmed mean protein intensity of all complex

members). In order to identify stoichiometry changes, the complex-

normalized protein matrix was used for differential expression analysis

using limma as described in section Data processing for TMT labeled

samples (total proteome analysis). Only protein complexes that had at

least five members quantified were retained for analysis. Protein

complexes were considered as “affected” if they had at least two

members that showed differential expression across the conditions

tested (adj. P < 0.05 and absolute log2 fold change > 0.5), unless other-

wise stated. The results are reported in Dataset EV6 for N. furzeri aging

and Dataset EV8 for in vivo proteasome inhibition experiment.

Calculation of biophysical properties for aggregates

Predictions of biophysical properties from the amino acid sequence

of proteins in the dataset were computed using the cleverSuite (Klus

et al, 2014) (chaperone requirement, intrinsic disorder) and s2D

(Sormanni et al, 2015) (intrinsic disorder) classifiers. A biophysical

property score is then assigned to proteins from the output of the

classifier. CleverSuite is trained on a dataset of proteins that show

the property under study (e.g., proteins requiring chaperons to fold,

positive database) vs a “negative” database (e.g., self-folding

proteins). The minimal output of the classifier is a label according

to the similarity to one of the two datasets (positive, negative, or

indeterminate) and the associated probability P of correct classifi-

cation, that can be converted to the score:

scSbp ¼
�1 � P sbp ¼ x

� �
if negative

0 if indeterminate
P sbp ¼ x
� �

if positive

8<
: :

The s2D classifier determines the likelihood that a residue in a

protein sequence would be included in an a-helix, b-sheet, or

random coil; its minimal output is a string of predicted secondary

conformations for each amino acid of the protein. A global score of

disorder could be then determined from the number of residues

predicted in a random coil state as follows:

ss2Dc ¼ nc

N

where nc is the number of residues predicted to assume a random

coil conformation, and N is the total number of residues. Analysis of

correlation between predicted scores and Tm or protein enrichment

in aggregates was performed using custom Python 3.5 scripts. Statis-

tical analysis was done using built-in functions of GraphPad Prism 7.

Analysis of N. furzeri ribosome footprinting data

Ribosome footprinting data were generated from young and aged

killifish brain extracts (6 and 26 wph, respectively, see section Ribo-

some footprinting). Footprints were mapped to the N. furzeri refer-

ence genome (NotFur1) using the STAR sequence aligner (version

2.7.1a, (Dobin et al, 2013)). The relative abundance of footprints per

gene was quantified with RSEM (version 1.3.1, (Li & Dewey, 2011)).

Cox–Hazard model for longitudinal RNA-seq data

In order to isolate predictive factors of aging, survival analysis was

performed to correlate mortality risk to gene expression. Cox–Hazard

model (also called Cox regression) was applied using the formula:

h tjDij

� � ¼ h0ðtÞ exp ciDij

� �

Dij ¼ log2 gijð20Þ=gijð10Þ
� �

were h0(t) is the baseline hazard function, gij(20) is the expression

of gene i in the sample j at age 20 weeks, gij(10) is the expression

of gene i in the sample j at age 10 weeks and ci is a coefficient.

If ci > 0, mortality increase the larger Dij, if ci < 0, mortality

decreases the larger Dij.

The analysis was performed using the survival package in R

environment for all 159 animals that survived longer than 20 weeks.

Normalized pseudo-counts obtained from DESeq2 were used as

input, and the ci values were used as input for gene set enrichment

using gage (Luo et al, 2009). The results of the Cox–Hazard analysis

are reported in Dataset EV9.
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Data availability

The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE (Vizcaino et al, 2016)

partner repository with the following dataset identifiers: PXD0123

14 (http://www.ebi.ac.uk/pride/archive/projects/PXD012314; TMT

aging data), PXD018399 (http://www.ebi.ac.uk/pride/archive/pro

jects/PXD018399; protein aggregate analysis), PXD016587 (http://

www.ebi.ac.uk/pride/archive/projects/PXD016587; SEC), and PXD016459

(http://www.ebi.ac.uk/pride/archive/projects/PXD016459; protea-

some inhibition experiments).

The sequencing data discussed in this publication have been

deposited in NCBI’s Gene Expression Omnibus and are accessible

through GEO with the following dataset identifiers: GSE52462

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52462;

polyA+ RNA-seq data from (Baumgart et al, 2014)), GSE125373

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125373;

total RNA-seq data from the same samples used for proteome anal-

ysis), GSE150149 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE150149; (small RNA-seq data from the same samples used

for proteome analysis), GSE124638 (http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE124638; ribosome foot printing

data), GSE66712 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE66712; longitudinal data from (Baumgart et al, 2016)), and

GSE150318 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE150318; longitudinal data from this study).

Expanded View for this article is available online.
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