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Abstract

In cue-based recall from working memory, incorrectly reporting features of an uncued item

may be referred to as a “swap” error. One account of these errors ascribes them to

variability in memory for the cue features leading to erroneous selection of a non-target

item, especially if it is similar to the target in the cue-feature dimension. However,

alternative accounts of swap errors include cue-independent misbinding, and strategic

guessing when the cued item is not in memory. Here we investigated the cause of swap

errors by manipulating the variability with which either cue or report features (orientations

in Exp 1; motion directions in Exp 2) were encoded. We found that swap errors increased

with increasing variability in memory for the cue features, and their changing frequency

could be quantitatively predicted based on recall variability when the same feature was

used for report. These results are inconsistent with the hypothesis that swaps are a

strategic response to forgotten items, and suggest that swap errors could be wholly

accounted for by confusions due to cue-dimension variability. In a third experiment we

examined whether spatial configuration of memory arrays in tasks with spatial cueing has

an influence on swap error frequency. We observed a specific tendency to make swap errors

to non-targets located precisely opposite to the cued location, suggesting that stimulus

positions are partially encoded in a non-metric format.

Keywords: swap error, intrusion error, visual working memory, short-term memory,

feature binding, cued recall
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Swap errors in visual working memory are fully explained by cue-feature

variability

1 Introduction

Short-term memory for a visual scene typically comprises the storage of multiple

items, each defined by a combination of visual features such as colour, shape and

orientation. Beyond storing these individual features, the memory system must also be

capable of maintaining the specific conjunctions between the features that belong to the

same item. The mechanism of feature binding in visual working memory (VWM) continues

to be an area of active research, and various aspects of it remain contentious (for a recent

review, see Schneegans & Bays, 2019).

One central question that is still a topic of debate is whether VWM representations

inherently contain binding information, or whether bindings are stored independently of

memory for individual features. The latter view was supported by the results of various

change detection tasks. In a study by Stefurak and Boynton (1986), participants’

performance was worse when they had to decide whether a single test stimulus matched a

specific color-shape combination seen in a memory array, compared to a task condition in

which they only needed to detect a change to a novel color or shape (see also Treisman,

Sykes, & Gelade, 1977). Based on observed change detection performance across various

task conditions, Wheeler and Treisman (2002) proposed that binding is selectively stored if

task-relevant, but that its storage is dependent on sustained attention, and that joint

object representations break down into their constituent features if attention is withdrawn.

However, the comparison of different change detection tasks does not reveal at which point

response errors arise, and the observed performance differences may also be explained as a

consequence of the additional computations required in tasks that involve comparisons of

feature conjunctions.

The application of cued recall tasks and continuous measures of recall errors in

VWM studies has led to significant advancements in our understanding of feature binding.
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Cued recall tasks usually involve the presentation of an array of visual items, each

combining two or more features, e.g. a colour and a location. After a delay, a cue is

presented consisting of one feature of one item (the target), and participants are instructed

to report a second feature of that item on a continuous scale (examples in Fig. 1). Tasks

involving analogue responses, rather than the binary outcomes of change detection tasks,

allow for the estimation of error distributions along the reported feature dimension. This

has led to an increased appreciation that the quality or precision of working memory

representations can vary substantially, beyond the binary distinction between memorized

and forgotten items (Ma, Husain, & Bays, 2014).

Importantly, cued recall tasks also inherently test memory for feature binding, since

the presented response cue must be used to retrieve the associated report feature of the

same item. This creates multiple opportunities for errors both in memory for the cue

feature and memory for the report feature to affect the response. It has been observed in

previous studies that response values are not only dispersed around the report feature of

the target item, but are often also clustered around the feature values of other, non-target

items from the memory array (Bays, Catalao, & Husain, 2009; Oberauer & Lin, 2017;

Schneegans & Bays, 2017). Reporting the feature value of a non-target item is often

referred to as a “swap” error, as the feature of a non-target item is “swapped” in for the

target feature. Furthermore, as swap errors reflect a failure in retrieving the correct item

from memory when cued with one of the item’s features, the mechanisms underlying swap

errors may provide important insight into feature binding.

A number of models of VWM have incorporated feature binding within memory for

single features to explain error distributions in cued recall tasks (Oberauer & Lin, 2017;

Schneegans & Bays, 2017; Swan & Wyble, 2014). Both the neural binding model of

Schneegans and Bays (2017) and the interference model of Oberauer and Lin (2017)

successfully reproduce swap errors seen in the behavioral data on the basis of imprecise

memory for the cue features of the sample items. Due to this imprecision, the given
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retrieval cue cannot unambiguously identify the target item, and the report feature of a

non-target item may be reported, especially if the target and non-target item have similar

cue feature values. We will refer to this as the feature variability account of swap errors.

Importantly, in this account, the incorrect item is retrieved from memory despite the

bindings between features of each item remaining intact.

The feature variability account is supported by the finding that the proportion of

swap errors in a cued recall task depends on which feature is used as the memory cue, with

swap errors being more frequent when location is reported using a color cue compared to

when color is reported using a location cue (Rajsic, Swan, Wilson, & Pratt, 2017; Rajsic &

Wilson, 2014). If swap errors were caused only by the loss of binding information, then the

proportion of swap errors should be equal irrespective of the feature used as the cue. The

link between swap errors and the cue-feature dimension is further supported by studies

using spatial cues that have found that non-target items more similar to the cue are more

likely to be the subject of swap errors than those with more dissimilar cue features (Bays,

2016a; Emrich & Ferber, 2012; Rerko, Oberauer, & Lin, 2014; Souza, Rerko, Lin, &

Oberauer, 2014).

While these results strongly support cue-feature variability as one cause of swap

errors, it has been debated whether it is the only or even the principal cause. The neural

binding model (Schneegans & Bays, 2017) assumes that the feature combinations of all

sample items are encoded in a conjunctive population code. At retrieval, cue and report

features of all items are decoded from the noisy neural activity, the item whose decoded

cue feature value is closest to the retrieval cue is selected, and the corresponding report

feature produced as a response. Due to imprecision in decoding, the cue feature of a

non-target item may be judged to be closest to the given cue, leading to a swap error. This

process is consistent with the feature variability account, and is the sole source of swap

errors within the neural binding model.

The interference model (Oberauer & Lin, 2017) similarly assumes a cue-dependent
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source of swap errors, in which the retrieval cue activates the report feature value of

non-target items to a certain degree due to imprecision in memory for the cue features.

However, this model additionally assumes a cue-independent source of swap errors. These

cue-independent swaps are attributed to uniform background noise in the cue feature space

that provides equal activation to all features in memory. Parameter estimates obtained by

fitting this model to data have indicated the cue-independent source makes a non-zero

contribution to swap frequency in both cued recall (Oberauer & Lin, 2017) and change

detection tasks (Lin & Oberauer, 2022).

Swap errors have also been ascribed by some authors to an informed guessing

strategy (Huang, 2019; Pratte, 2019). For example, Pratte (2019) proposed that, in

addition to swaps caused by cue-feature variability, participants might sometimes be

presented with a cue corresponding to an item that was not in memory at all, and that in

this case a viable strategy could be to respond with the report feature of a different item

that was in memory. Depending on how this item was chosen, this mechanism could also

be a source of cue-independent swaps.

In addition to these proposals, any swap errors caused by loss of binding

information, separately from memory for the individual features, would also be expected to

occur independently of cue similarity. On the other hand, if swap errors can be fully

accounted for by variability in the cue-feature dimension, this could be considered evidence

against separate memory storage of feature binding, on the assumption that such storage

would sometimes fail.

The main aims of the present study were: first, to provide a direct test of the

hypothesized causal connection between error in recall of cue-features and swap frequency,

by manipulating memory variability in the cue-feature dimension; and second, to determine

whether cue-feature variability provides a sufficient explanation for swap errors, or if there

is some proportion of swaps that cannot be explained by this mechanism. We used cued

recall tasks in which spatial location acted either as the cue or report feature dimension,
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while we manipulated variability in the other feature dimension. Because angular location

memory has natively high precision (Schneegans & Bays, 2017), we reasoned that in

combination with large minimum separations between items, it could be used as a reliable

cue, resulting in vanishingly rare swap errors. In contrast, manipulation of memory

variability for the other feature was expected to affect the utility of that feature as a

retrieval cue, resulting in a gradient of swap errors consistent with induced memory

variability. In Experiment 1, variability in memory for orientation was manipulated using

ellipse stimuli with differing elongations. In Experiment 2, memory variability for motion

direction was altered using random dot kinematogram (RDK) stimuli with varying motion

coherences. Similar stimulus manipulations have been used in previous VWM studies for

different but related purposes (Ester, Ho, Brown, & Serences, 2014; Keshvari, van den

Berg, & Ma, 2012).

Across both experiments we found an increase in swap errors as variability in

memory for the cue feature was increased, as predicted by the feature variability account.

To test whether the increase in memory variability could fully account for the observed

pattern of swap errors, we employed a Monte Carlo simulation. Based on the observed

recall errors for the non-spatial feature when cued with location, this simulation accurately

predicted how frequently a non-target location would be selected for report when the same

non-spatial feature was used as a cue. These results indicate that swap errors can be fully

explained by confusions in identifying the cued item due to variability in the cue-feature

dimension.

The results of the non-parametric simulation provide the strongest test of our main

hypothesis, that the feature variability account can fully explain swap errors. However, to

also assess a concrete implementation of the feature variability account that makes detailed

predictions for error distributions, we fit the behavioral data with a version of the neural

binding model of Schneegans and Bays (2017). This model allows for stochastic variation

in memory precision including the possibility that features are retrieved with zero
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precision, but does not implement any form of strategic guessing. The fit of the neural

binding model was compared with two variants of the interference model (Oberauer & Lin,

2017), the full model and a partial model with the cue-independent activation parameter

fixed at zero. The neural binding model was consistently a better fit to the data than both

variants of the interference model. Furthermore, the neural binding model produced close

quantitative fits to the pattern of swap errors on all trials, across changes in ellipse

elongation and RDK coherence. It also made a prediction of lower subjective confidence in

swap than non-swap responses that is consistent with previous observations.

One methodological difference that has been highlighted as a potential influence on

swap errors (Brady & Störmer, 2020; Schurgin, Wixted, & Brady, 2020) is between tasks in

which locations of items are selected randomly from a continuous range, as in our

Experiments 1 and 2, and experiments where they were selected from a fixed set of

locations, as was the case in the experiments providing evidence for the cue-independent

source of swap errors within the interference model (Oberauer & Lin, 2017). In Experiment

3 we directly compared these designs. While the results did not support a cue-independent

source of swap errors or an effect of design on overall swap frequency, they did reveal a

specific tendency to make swap errors to items located diametrically opposite to the cued

location in the circular array. We argue that these errors could result from item positions

being encoded in a partly non-metric format, in which diametrically opposing positions

(180° separation) were more confusable than other distant locations (e.g. 120° apart).

2 Experiment 1

Experiment 1 was a cued recall task designed to determine whether changes in

memory variability for the cue feature resulted in corresponding changes in swap error

frequency. Participants were presented with arrays of ellipse stimuli with different locations

and orientations. The precision with which orientations were encoded was manipulated by

varying the elongation of the ellipses across trials. Recall was tested either for the
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orientation of an item corresponding to a cued location, or the location of an item

indicated by a cued orientation.

2.1 Methods

2.1.1 Experimental protocol

Ten participants (aged 21–31 years; six male, four female) completed a cued recall

task testing their memory for orientation and location. The study was approved by the

Cambridge Psychology Research Ethics Committee. All participants reported normal or

corrected-to-normal visual acuity and gave informed consent in accordance with the

Declaration of Helsinki. Stimuli were presented on a 27-inch LCD monitor (ASUS PG279)

with a refresh rate of 144 Hz. Participants sat with their head supported by a forehead and

chin rest and viewed the monitor at a distance of 60 cm. Eye position was monitored

on-line at 1000 Hz using an infrared eye tracker (Eyelink 1000 Plus, SR Research).

Each trial of the task (illustrated in Fig. 1A) began with the presentation of a dark

grey central fixation dot (diameter, 0.25° of visual angle) against a lighter grey background.

Once a stable fixation was recorded within 3° of the dot, a memory array consisting of six

ellipses was presented for 2 s. The elongation (eccentricity) of the ellipses was constant

within a trial but varied between trials. Three eccentricities were used: 0.71, 0.86 and 0.97

(hereafter referred to as low, medium and high elongation, respectively), defined as√
1 − b2

a2 , where a and b specify the ellipse’s semi-major axis and semi-minor axis. The area

of the ellipses was held constant at 1.6 squared degrees of visual angle across changes in

elongation, with the major axis of the ellipse varying from 1.7° of visual angle (low

elongation) to 3° (high elongation). The center of each ellipse was positioned on an

invisible circle with a radius of 6° centered on the fixation dot. The location of each ellipse

was chosen at random, with a minimum separation between ellipse centers of 30° on the

circle. The ellipses’ orientations were also chosen at random, with a minimum separation of

15° between the orientations of different ellipses (considering the space of unique ellipse
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orientations covers only 180°, a 15° separation was chosen to match the 30° used for

location).

After the presentation of the memory array, the fixation dot was shown for a further

1 s followed by the cue display. In the orientation-report condition, the cue was a dark grey

dot (diameter, 0.25° of visual angle) presented at a location corresponding to one of the six

ellipses in the previous display that was randomly selected as the target item. Participants

were instructed to begin turning a response dial (PowerMate USB Multimedia Controller,

Griffin Technology) once they were ready to respond with the orientation of the target

ellipse. Once participants began their response, the cue display was replaced with a central

dark grey line (length 2°, width 0.25°) which participants freely rotated using the dial until

it matched the remembered orientation of the target. Responses were not timed, and

participants were instructed to be as precise as possible. In the location-report condition,

participants were cued with a central line stimulus (as described above) with orientation

matching the ellipse randomly selected as the target, and used the response dial to move a

dot (as described above) around the invisible circle until it matched the remembered

location of the target. Any trial on which gaze deviated > 3° from the central dot, before

the cue display, was aborted and restarted with new feature values. Each participant

completed 12 blocks (8 in the location-report condition, 4 orientation-report, in a

randomized order), with each block consisting of 12 trials in each of the three elongation

conditions, randomly interleaved. The 12 blocks were completed across two one-hour

testing sessions. We dedicated a larger proportion of blocks to the location-report

condition because this was the critical condition for testing our main hypothesis.

2.2 Analysis

2.2.1 Response error distributions

Stimulus and response values in each feature dimension were analyzed and are

reported with respect to a circular space (−π to π radians) spanning the full range of
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possible feature values. This range corresponded to 360° of angular location, and 180° of

orientation. Recall error was calculated, for each trial, as the angular deviation between

the participant’s response and the target feature value. The circular standard deviation

(Fisher, 1995) of the response error was used as a measure of recall variability. Statistical

hypothesis testing was based on Bayesian (using JASP, 2019) and frequentist t-tests.

In order to evaluate the influence of non-targets on recall estimates, we calculated

the deviation of each response from the report feature values of each of the non-target

items in the memory array, and generated histogram estimates based on pooling these

deviations over trials and non-targets. Due to the minimum feature separation imposed

when generating the memory arrays, the distribution of deviations expected in the absence

of swap errors and any other effects of non-target items is not uniform. To see this,

consider a case in which all responses are tightly clustered around the true target value. If

there is a minimum separation between target and non-target feature values, all responses

will also have nearly the same separation from the non-target feature values, resulting in a

central dip in the distribution of response deviations from non-target values. A minimum

separation between the feature values of different non-target items within a trial will

further modulate the expected distribution.

We estimated the expected distribution in the absence of non-target effects using a

randomization method. We removed the report feature value of a single non-target item

from each trial, and replaced it with another randomly-selected value that still respected

the minimum separation constraints for that particular feature dimension. Then we

calculated the response deviation from the newly inserted non-target feature value (which

cannot have influenced the actual response), and repeated this over 1000 iterations for each

trial to obtain an expected histogram of non-target deviations. This expected histogram

was subtracted from the observed histogram of response deviations to produce plots in

which values consistently different from zero could be interpreted as evidence for an

influence of non-targets. The same method was also used to determine an expected mean
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absolute deviation (MAD) of responses from non-target features, which we compared with

the observed values.

2.2.2 Estimating swap frequencies

Non-target responses were of particular interest in the location-report condition,

where we expected the manipulation of ellipse elongation to affect the proportion of swap

errors. To obtain a non-parametric estimate of swap frequency in this condition, we

classified a response as a swap error if the reported location was closer to the location of

one non-target item than to the true target location. Given the relatively large minimum

separation between items and the precision of location memory observed in comparable

previous studies (Schneegans & Bays, 2017), we expected that this simple heuristic can

produce reliable estimates of swap error frequencies.

We further validated the estimates obtained from the nearest-item heuristic by

comparison with two established methods of estimating swap frequencies: the mixture

model method (Bays et al., 2009) and the resultant vector method of Bays (2016a). The

mixture model method describes the distribution of responses as a probabilistic mixture of

von Mises (circular normal) distributions centered on the target and non-target features,

and a uniform distribution. This method uses maximum likelihood optimisation to

estimate the mixing weights of each component distribution. Importantly, the accuracy of

this method’s estimates depends on the correct specification of the response error

distribution. In contrast, the resultant vector method is a non-parametric method that

does not make assumptions about the form of the response error distribution. Instead, it

utilizes the concept of the mean resultant vector of a circular distribution, whose direction

reflects the circular mean and whose length is related to the distribution’s concentration,

with a uniform distribution having a resultant length of zero. Critically, the resultant for a

mixture of distributions is equal to the weighted sum of the resultants for the component

distributions (e.g., target and non-target errors). This allows for the estimation of mixture
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weights without a fitting procedure, simply by calculating the ratios of the individual

resultant lengths to the resultant length of the entire response distribution. The resultant

vector method was modified from that in Bays (2016a) to take into account the minimum

feature separations, with a correction analogous to the one described above for histogram

estimates. This method requires more data than parametric methods to achieve a given

level of variability, so we estimated swap frequencies based on pooled group-level data

instead of participant by participant.

2.2.3 Predicting swap frequencies from cue-feature variability

To test whether the observed swap frequencies in the location-report condition

could be explained as an effect of memory variability for the cue feature (ellipse

orientation), we employed a parameter-free Monte Carlo simulation (Fig. 2). This

simulation aimed to predict the proportion of swap errors in the location-report condition

directly from the observed report errors in the orientation-report condition, and was

implemented as follows: For each trial of the location-report task, six orientation error

values (deviations from the target orientation) were randomly selected with replacement

from the full set of responses made by the same participant with the same ellipse

elongation in the orientation-report condition. These errors were added to the orientation

feature values of the six items in the location-report trial, simulating variability in memory

for these features. Then the circular distance of each resulting orientation from the cue

orientation was determined. If the nearest orientation to the cue belonged to one of the

non-target items, the simulated trial was considered to have produced a swap error. This

process was repeated 1000 times for each trial, separately in each elongation condition, and

the mean proportion of swap errors was calculated. We then compared these predicted

proportions of swap errors to the values that were estimated from the empirical responses

in the location-report condition using the nearest-item heuristic.
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2.2.4 Model comparison

Three alternative models of VWM were fit to each participant’s data using the

Nelder-Mead simplex method (function fminsearch in Matlab) to produce maximum

likelihood estimates of the model parameters (additional model fitting details provided in

the Appendix). These were the neural binding model, the interference model and a variant

of the interference model with the context-independent activation (Aa) parameter fixed at

zero. Model fit was evaluated using Akaike Information Criterion (AIC) and Bayesian

information criterion (BIC) based on each model’s maximum likelihood estimation. Each

model is described below, however full details for each model are provided elsewhere

(neural binding model: Appendix; interference model: Oberauer & Lin, 2017).

2.2.5 Neural binding model

We fit the neural binding model of Schneegans and Bays (2017) to the data of each

participant. This model assumes that the conjunction of features that describes each

stimulus (orientation-location in Exp. 1) is encoded in a population of idealized neurons.

More specifically, each neuron’s mean firing rate is based on an item’s feature values (cue

and report) and the neuron’s preferred value and associated tuning function over the two

feature dimensions. Discrete spikes are generated based on this firing rate via a Poisson

process. Recall is then modelled as maximum likelihood decoding of the memorized feature

values from the noisy neural activity. The item whose decoded cue feature value is closest

to the cue in a given trial is selected, and its decoded report feature value is produced as

response. This model has three free parameters, namely the tuning curve widths in the two

feature dimensions relevant for each task, and the mean total firing rate in the neural

population.

We adapted the model described in Schneegans & Bays (2017) to capture the effect

of varying the ellipse elongation on memory for orientation. Specifically, we assumed that

only a subset of the spikes generated by the neural population carried information about
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stimulus orientation, while all spikes contributed to the decoding of memorized locations

(see also Lugtmeijer et al., 2021). This reflects the fact that all stimuli provided clear and

unambiguous location information, but the strength of the orientation signal was reduced.

The strength of this effect was captured by an additional conjunction coding parameter,

that varied between zero (complete absence of orientation information) and one (all spikes

contributing equally to the decoding of all features). Depending on whether the affected

feature was used as cue or report feature in each task condition, a low value of this

parameter would either lead to impaired selection of the cued target item, or to reduced

recall precision in reporting the feature of the selected item.

Maximum likelihood fits of the model were obtained for the data of each participant,

at each level of ellipse elongation. The model applied six free parameters: the widths of the

von Mises tuning curves for orientation, and location, the mean total spike rate in the

neural population and the conjunction coding parameter which was allowed to vary as a

free parameter between the different elongation levels, but was fixed across the two

conditions within each level. All other free parameters were held fixed across all conditions.

In the model, precision is jointly determined by the tuning curve widths and gain

parameter. We generated mean precision estimates based on the best fitting model for each

participant, with precision expressed as Fisher Information (van den Berg, Shin, Chou,

George, & Ma, 2012). Precision estimates were made for all features of the target, or

selected non-target, comparing trials where the target item was correctly selected with

trials where a swap error occurred. Because estimation is based on a discrete sample of

spikes in this model, there is a probability of having zero spikes with which to recover one

or both of an item’s features. We assessed the conditional probability across trials that

there were no spikes reflecting the features of the target, or selected non-target, again

comparing swap and non-swap trials (see Appendix for further details).
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2.2.6 Interference model

In order to further evaluate the feature variability account of swap errors, we also fit

two variants of the interference model of working memory (Oberauer & Lin, 2017) to the

data. This model proposes that representations of feature conjunctions in working memory

can be conceptualized as distributions of binding strength in a binding space, spanned by

the report-feature dimension and the cue- (or context-) feature dimension. In cued recall,

the retrieval cue is fed as an activation pattern into the cue-feature dimension of the

binding space. It projects to the report-feature dimension via the pattern of binding

strengths reflecting the current memory content, and the response is drawn from the

resultant activation pattern over the space of possible report-feature values.

The resulting distribution of response values in this model can be described as a

mixture of multiple components. The first component reflects cue-based retrieval, in which

each memory item is selected with a probability based on the similarity of its cue-feature to

the given retrieval cue (determined via an exponential function of feature distance). The

response is then drawn from a von Mises distribution with fixed precision, centered on the

chosen item’s report-feature. A second component reflects cue-independent retrieval, in

which each item is selected with equal probability, and its report-feature likewise reported

with fixed precision. The third component is a uniform distribution, reflecting set-size

dependent background noise in the working memory representations. Additionally, the

model assumes that in each trial, a single sample item is held in the focus of attention. If

this item is the target, it is more likely to be selected in the cue-based retrieval and its

report feature value is reproduced with higher precision.

The interference model thus implements two sources of swap errors, one based on

cue-feature similarity and one that is cue-independent. To test whether this second source

of swap errors is needed, we fit the data both with the full interference model and with a

model variant without the cue-independent retrieval. The full interference model has six

free parameters, namely the two memory precision parameters for items within and outside
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of the focus of attention (κf and κ), the weights of the cue-independent retrieval

component (Aa) and of the background noise (Ab; the weight of the cue-based retrieval, Ac,

was fixed to one, as in Oberauer and Lin (2017)), the width of the exponential function

that determines item selection in the cue-based retrieval (s), and finally the proportional

reduction of weights Aa and Ab when the target item is in the focus of attention (r). For

the model variant without cue-independent retrieval, the weight Aa was fixed to zero.

Unlike the neural binding model, the interference model does not make any

predictions about the relationship between recall variability in the report of a feature and

the frequency of swap errors when that same feature is used as retrieval cue. Therefore, the

model was fit to each report feature condition independently.

2.2.7 Toolbox

A MATLAB toolbox implementing the mixture model and resultant vector methods

of estimating swaps is available to download from https://bayslab.com/toolbox.

2.3 Results

Participants viewed six oriented ellipses and in separate blocks were either cued with

the location of one ellipse and had to report its orientation, or they were cued with the

orientation of one ellipse and had to report its location. To determine to what degree swap

errors are caused by noise in the memory representation of the cue feature, we manipulated

the fidelity of the orientation representation by varying the elongation of the ellipse stimuli

from trial to trial. Based on the feature-variability account, we expected that this

manipulation would affect response variability, but not swap probability, when participants

reported stimulus orientation. In contrast, when orientation was used as a cue for reporting

stimulus location, we expected to see an effect specifically on the frequency of swap errors.

Fig. 3A displays the distributions of errors (response deviations from the target) for

the three ellipse elongation conditions when recalling orientation. As expected, error
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variability decreased with increasing elongation (mean circular standard deviation reported

as M ± SE, low: 1.18 ± 0.12, medium: 1.07 ± 0.16, high: 0.95 ± 0.19). There was a

significant decrease in variability between the medium and high (t9 = 3.59, p = 0.006, BF10

= 9.54) and between the low and high (t9 = 3.04, p = 0.014, BF10 = 4.75) elongation

conditions, though the difference between the low and medium conditions was not

significant (t9 = 2.08, p = 0.067, BF10 = 1.41). These results indicate that the

manipulation of elongation of the ellipses was successful in modulating the variability in

the memory representation for orientations.

The distribution of responses relative to the orientations of non-target items are

shown in Fig. 3B, for each elongation condition. Fig. 3C displays the same distributions

with a correction for minimum feature separations (see Methods). The distribution

expected in the absence of swap errors (Fig. 3B, black dashed lines), based on the

distribution of non-targets relative to targets, has been subtracted. The absence of a

central tendency in these plots indicates that there is little to no evidence for swap errors

in the orientation-report condition. To quantify this, we compared the observed MAD

between the reported orientation and the non-target orientations to the value expected if

non-targets had no influence on responses. There was no significant difference between

observed and expected deviation in the medium (1.68 ± 0.03, expected: 1.60 ± 0.03, t9 =

2.20, p = 0.056, BF10 = 1.63) and high (1.69 ± 0.03, expected: 1.62 ± 0.02, t9 = 2.15, p =

0.060, BF10 = 1.54) elongation conditions. In the low elongation condition the observed

deviation was significantly different from the expected one (1.64 ± 0.02, expected: 1.61 ±

0.02, t9 = 2.89, p = 0.018, BF10 = 3.92), but the difference was small and in the opposite

direction to that which would be produced by swap errors.

Fig. 3D displays the distributions of errors in the location-report condition for each

of the three ellipse elongations. Overall error variability as assessed by circular standard

deviation was again influenced by elongation (low: 1.59 ± 0.09, medium: 1.46 ± 0.15, high:

1.19 ± 0.09), with significant differences between medium and high (t9 = 3.33, p = 0.009,
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BF10 = 6.84), low and high (t9 = 7.57, p < 0.001, BF10 = 715.98) but not low and medium

conditions (t9 = 1.44, p = 0.183, BF10 = 0.69). In this case, however, we found evidence

that these changes reflected differences in the frequency of reporting non-targets rather

than variability in memory for location itself.

The response distributions centered on the locations of non-target items, corrected

for the effects of minimum separation, are shown in Fig. 3F. They display a clear central

tendency suggesting the presence of swap errors when reporting location. Supporting this,

the MAD between the reported location and the non-target locations was significantly

lower than the value expected in the absence of swap errors for every elongation condition

(low: 1.59 ± 0.02, expected: 1.68 ± 0.01, t9 = 5.23, p < 0.001, BF10 = 68.54; medium:

1.60 ± 0.02, expected: 1.71 ± 0.01, t9 = 7.43, p < 0.001, BF10 = 627.91; high: 1.64 ± 0.02,

expected: 1.70 ± 0.01, t9 = 3.64, p = 0.005, BF10 = 10.24).

2.3.1 Comparison with simulated swap frequencies

Qualitatively, the pattern of results in Figs. 3D, E & F suggests that the

manipulation of orientation variability affected the frequency of swap errors when

orientation was the feature used to cue which item to report. To quantify this effect, we

calculated a non-parametric estimate of swap error frequency in the location-report

condition based on a nearest-item heuristic (see Methods). This estimate ranged from 48%

± 5% of trials with high elongation to 65% ± 3% with low elongation, with the estimated

frequency increasing as ellipse elongation decreased (Fig. 4A). There was a significant

increase in swap error frequency between the low and medium (t9 = 2.49, p = 0.034, BF10

= 2.35), medium and high (t9 = 4.46, p = 0.002, BF10 = 28.08), and low and high (t9 =

5.24, p < 0.001, BF10 = 68.66) elongation conditions.

The key question we aim to answer in the present study is whether the observed

changes in the frequency of swap errors when reporting location can be explained in full by

differences in memory variability for orientation. To address this question, we employed a
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Monte Carlo simulation that predicts swap frequency in the location-report condition from

response errors in the orientation-report condition. This simulation is based on three

assumptions: first, that the response errors in the orientation-report condition for a given

ellipse elongation accurately reflect memory variability for orientation; second, that this

memory variability will be the same independent of whether orientation is used as cue or

report feature; and third, that to make a response, participants will compare the given cue

with the (imprecise) cue feature values of all items retrieved from memory, choose the item

that is closest to the given cue, and report its retrieved response feature value (compare

Schneegans & Bays, 2017). Note that the first assumption would be violated if a

considerable amount of swap errors occurred in the report-orientation condition (because

then the response errors in this condition would not reflect purely memory variability for

orientation), but our analysis of orientation report errors showed that this was not the case.

Based on these assumptions, we simulated the occurrence of swap errors in the

location-report condition as illustrated in Fig. 2. We added observed recall errors from the

orientation report condition to the actual orientation features of each location-report trial,

separately for each participant and elongation condition, and determined how often this

would lead to a non-target item being selected as the most likely target (because its

retrieved orientation was closest to the given cue; see Methods for details). As shown in

Fig. 4A, the frequency of swap errors predicted by the simulation (blue) closely

approximated the swap frequencies observed in the data (red) at each elongation level,

with no significant difference in the low (t9 = 1.32, p = 0.22, BF10 = 0.61) and the high (t9

= 0.63, p = 0.55, BF10 = 0.37) elongation conditions (Fig. 4A). There was a borderline

significant difference in the medium elongation condition according to the frequentist

t-test, but the Bayes factor indicated only very weak evidence for a difference (t9 = 2.3, p

= 0.047, BF10 = 1.85).
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2.3.2 Validating swap estimates

To facilitate comparison with the simulation, the empirical swap estimates above

were based on a simple nearest-item heuristic. To confirm their validity we compared these

estimates to those produced using two established methods: the three-component mixture

model (Bays et al., 2009) and the resultant vector method outlined in Bays (2016a).

Based on fitting the mixture model, the mean probability of swap errors (non-target

responses) in the orientation-report condition was low and did not change significantly with

ellipse elongation (low elongation = 15% ± 5%, medium elongation = 16% ± 9%, high

elongation = 6% ± 4%). Conversely, the estimated probability of swap errors in the

location-report condition was overall quite high, and decreased with increasing elongation

(low = 57% ± 4%, medium = 53% ± 5%, high = 39% ± 5%), with significant differences

between the low and high (t9 = 2.72, p = 0.024, BF10 = 3.14) and medium and high

conditions (t9 = 5.89, p < 0.001, BF10 = 139.95), though the difference between the low

and medium conditions was not significant (t9 = 0.57, p = 0.583, BF10 = 0.35).

Based on the resultant vector method, which was applied to pooled data, in the

orientation-report condition the swap error estimates decreased from 39% in the low

elongation condition to 14% and 10% in the medium and high elongation conditions

respectively. Similarly, in the location-report condition a high proportion of swap errors

was estimated in the low elongation condition (57%) which decreased to 54% and 36% in

the medium and high elongation conditions.

Overall, the estimates obtained with both methods for the location-report condition

follow a similar pattern to those based on the nearest-item heuristic, in that we found an

increase in swap errors as ellipse elongation decreased. Furthermore, swap frequencies from

both methods for the orientation-report condition were mostly low which is congruent with

the distributions of response errors in Fig. 3C. The one notable disagreement is in the low

elongation condition where the resultant vector swap estimate was higher than the mixture

model estimate. Estimates of swap frequency become more variable as report-dimension



SWAP ERRORS EXPLAINED BY CUE-FEATURE VARIABILITY 22

variability increases, because of the increasing overlap of response probability distributions

for swap and non-swap responses. This may explain the discrepancy occurring in the low

elongation condition where orientation report variability was greatest.

2.3.3 Model comparison

To further explore the mechanisms underlying swap errors, the behavioural data

from each participant were fit with three parametric models of VWM. This included the

neural binding model that represents feature binding through conjunctive coding. Recall is

captured as decoding of memorized feature values from noisy neural activity. Specifically,

the item whose decoded cue feature value is most similar to the cue is selected and its

decoded report feature value is output as the response.

Swap errors in the model occur when, due to decoding errors, the cue feature of a

non-target item is deemed more similar to the cue than the target (which exactly matches

the cue). In order to capture the effect of varying ellipse elongation on orientation

estimates, we included a free parameter for each level of elongation that changed how much

information about orientation was encoded in the spiking activity, while leaving the

information about location unchanged (see Methods for details).

Each participant’s behavioural data was also fit with full and partial versions of the

interference model. Within the full model, recall involves using the context feature to

retrieve a bound report (content) feature. Use of the context feature as a cue leads to

re-activation of target and non-target features and the most highly activated feature is

likely to be retrieved. Swap errors in this model can be caused either by context-dependent

activation which closely follows the feature variability account or by context-independent

activation which is not predicted by the feature variability account. The partial

interference model fixes context-independent activation at zero to investigate the ability of

cue-dependent processes to fully account for swap errors in the current task.

Both the neural binding model and interference model successfully reproduced the
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distributions of response errors across all elongations in both orientation and location

report conditions. However, quantitative comparisons using AIC and BIC demonstrated

that the neural binding model consistently provided a better fit to the data (Table. 1).

Furthermore, the fit of the partial interference model improved upon the full model by on

average 10.61 and 35.02 per participant for AIC and BIC respectively.

Summaries of the estimated parameters are provided for the neural binding model

and both versions of the interference model in the Appendix. Of note is the parameter

representing context-independent activation (Aa) which remains close to zero across

conditions.

As the best fitting model, the predictions of the neural binding model are explored

in more detail below. Predictions of the model, with best fitting parameters for each

participant are also shown by solid lines in Fig. 3.

Table 1

Model fit statistics for Experiment 1. N (Param) displays the number of free parameters

within each model. ∆ indicates the difference in model fit statistic (AIC or BIC), averaged

across participants, between each model and the best fitting model. N (Subj) indicates for

how many participants each model was the best fitting model, as determined using AIC and

BIC respectively.

AIC BIC

Model N (Param) ∆ N (Subj) ∆ N (Subj)

Neural binding model 6 0.00 10 0.00 10

Interference model (IM) 36 53.75 0 175.80 0

IM (Aa fixed at zero) 30 43.14 0 140.78 0
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2.3.4 Neural binding model

The neural model does not implement any explicit guessing strategy that would

produce swap errors specifically when the cued item is not held in memory, nor does it

implement an upper limit on the number of items or features stored. However, due to the

assumed stochasticity of neural activity, it is possible that no spikes contribute to the

decoding of one or both of the individual feature values, in which case the decoded feature

value is drawn from a uniform distribution. We assessed how these zero-spike cases

contributed to the occurrence of swap errors in the model. In consideration of our main

hypothesis, we focus here on the representation of the cue feature in the location-report

condition, the condition where we predominantly observe swap errors. Results for the other

conditions are reported in the Appendix.

Based on the neural model with best fitting parameters for each participant, group

median conditional frequency with which the target received zero spikes in the cue

dimension given that a swap error occurred was 31% (IQR: 11%-56%) in the low elongation

condition, 13% (IQR: 5%-48%) in the medium elongation and 3% (IQR: 0%-29%) in the

high elongation condition. Using the same method, we also determined the median

probability on swap trials that the reported non-target item received zero spikes in the cue

dimension: this was comparable to the results for the target item (low: 26%, IQR =

10%-51%; medium: 11%, IQR = 4%-44%; high: 2%, IQR = 0%-24%). In comparison, the

median conditional probability that the target item received zero spikes in the cue

dimension if the target item was correctly selected remained low across conditions,

decreasing as elongation increased (low: 8%, IQR = 4%-27%; medium: 3%, IQR =

1%-21%; high: 0%, IQR = 0%-9%). All estimated probabilities were significantly different

within levels of elongation as determined using a Wilcoxon signed-rank test (all p < 0.01,

BF10 > 23.32).

These results suggest that a majority of swap errors occurred in cases where

information about the target’s cue feature was available. To examine whether there was a
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relationship with the quality of this representation, we used the fitted neural model to

calculate the mean precision (expressed in terms of Fisher Information) for items in swap

and non-swap trials. This analysis showed that the mean cue-feature precision for target

items was higher on trials where the target item was correctly selected for report (low: 1.59

± 0.33, medium: 2.23 ± 0.45, high: 3.21 ± 0.60) than on swap trials (low: 1.09 ± 0.22,

medium: 1.69 ± 0.35, high: 2.61 ± 0.49). On swap trials, mean precision for selected

non-target items (low: 1.20 ± 0.25, medium: 1.82 ± 0.38, high: 2.78 ± 0.53) was

marginally higher than for target items. The mean precision estimates were all significantly

different within levels of elongation (all p < 0.03, BF10 > 2.57).

2.4 Discussion

In Experiment 1, the elongation of ellipse stimuli was varied with the purpose of

manipulating memory variability for their orientations. The results of the orientation

report condition indicated that this manipulation was successful, as demonstrated by

increases in response variability with decreasing ellipse elongation. In the location report

condition, where orientation was used as the cue feature, we observed an increased

concentration of responses around non-target locations as ellipse elongation decreased.

This pattern of results is consistent with the feature-variability account of swap

errors, whereby increased variability in recall of item orientations, when orientation is used

to indicate which item to report, results in an increasing probability of erroneously

reporting a non-target item. In order to determine whether swap errors could be explained

in their entirety by this mechanism, we simulated responses in the location report

condition based on the errors observed in the orientation report condition, using a

nearest-item heuristic to estimate swap frequency. The predicted swap frequencies very

closely matched the observed frequencies (Fig. 4) including the changes induced by varying

ellipse elongation.

A model comparison of parametric models favoured the neural binding model over
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full and partial versions of the interference model. The cause of swap errors in the neural

binding model closely follows the feature variability account, whereas the interference

model includes an additional cue-independent source of swap errors. In the full model, the

estimated parameter representing cue-independent activation remained close to zero across

conditions. Moreover, the partial model with this parameter fixed at zero was a better fit

than the full model. Overall, this provides further support for the hypothesis that swap

errors can be fully accounted for by variability in memory for the cue feature.

Additional analysis was carried out based on the neural binding model to explore

how often swap errors occurred when zero spikes contributed to the decoding of one or

both of the feature values. Results from the location-report condition indicated that the

majority of swap errors occurred in cases where information about the target’s cue feature

was available. Furthermore, swap errors were more likely to occur when memory precision

for both the target and non-target’s cue feature was low suggesting that these responses

may be associated with low confidence ratings. This is explored further in the General

Discussion. Overall, the results of Experiment 1 support the hypothesis that variability in

the cue-feature dimension is sufficient to fully explain swap errors in cued recall.

3 Experiment 2

In order to determine whether the effect of orientation cue variability on swap errors

could be replicated in another feature dimension, in Experiment 2 motion direction took

the place of orientation. Participants were shown four motion stimuli at different locations

and asked to report one item’s direction of motion or location after being cued with the

alternate feature. The variability of the motion direction representation was manipulated

via motion coherence, which was varied across trials.
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3.1 Methods

3.1.1 Experimental protocol

Ten participants, reporting normal or corrected-to-normal visual acuity, took part in

the second experiment (aged 18–29 years; three male, seven female). The task (illustrated

in Fig. 1B) was identical to Experiment 1 with the following exceptions. Instead of ellipses,

each memory array consisted of four motion stimuli (random dot kinematograms, RDK).

Each RDK consisted of 45 dark grey dots (diameter, 0.1° of visual angle) moving at a

constant speed of 5°/s within a circular aperture (diameter, 2° of visual angle) bounded by

an annulus of the same colour. Dot lifetime was unlimited and dots reaching the boundary

of the circle were repositioned at the same point on the opposite side, maintaining a

constant dot density. Instead of ellipse elongation, RDKs varied from trial to trial between

three levels of motion coherence: 30%, 60% or 100% (low, medium or high coherence)

defined as the proportion of dots moving in the same direction (dots that were not coherent

were assigned random directions). The coherent motion direction for each RDK was chosen

at random, with a minimum separation of 60° between the directions of different RDKs

within a trial. The locations of the stimuli were also chosen at random with a minimum

separation between the centers of each RDK of 60° on the circle, matching the motion

separation. Locations were cued and reported in the same way as in Experiment 1. Motion

directions were cued and reported with a centrally presented dark grey arrow (length 3°,

width 0.1°).

3.2 Analysis

The analysis for Experiment 2 was equivalent to the analysis conducted for

Experiment 1, with motion direction and motion coherence in place of orientation and

ellipse elongation.
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3.3 Results

Fig. 5A displays the error distributions when reporting direction across the three

RDK coherence conditions in Experiment 2. There was a significant decrease in variability

(mean circular standard deviation, low: 1.63 ± 0.05, medium: 1.22 ± 0.18, high: 0.80 ±

0.16) between the low and medium (t9 = 2.57, p = 0.03, BF10 = 2.58), medium and high

(t9 = 8.46, p < 0.001, BF10 = 1540.56), and low and high (t9 = 5.54, p < 0.001, BF10 =

96.29) coherence conditions.

The error distributions centred on the motion directions of non-target items are

shown in Fig. 5B). The undulating patterns, with peaks in the response distribution at

approximately ±π/2 (±90°) and ±π (±180°) relative to the non-target, are a consequence

of the relatively large minimum distance (60°) enforced between the stimulus directions on

a trial, which in combination with the set size of four resulted in a higher probability of

target and non-target directions differing by these angles. Confirming this interpretation,

the same pattern was present in the distribution expected in the absence of swap errors

(dashed black line in Fig. 5B). Subtracting the expected distribution left an approximately

uniform function without central tendency (Fig. 5C), indicating few to no swap errors

occurred when reporting motion direction. The MAD between the reported motion

direction and the non-target directions was not significantly different from the value

expected in the absence of swap errors for any coherence condition (low: 1.68 ± 0.01,

expected: 1.67 ± 0.02, t9 = 0.37, p = 0.72, BF10 = 0.33; medium: 1.77 ± 0.04, expected:

1.77 ± 0.03, t9 = 0.27, p = 0.79, BF10 = 0.32; high: 1.84 ± 0.04, expected: 1.87 ± 0.03, t9

= 1.64, p = 0.14, BF10 = 0.85).

Fig. 5D displays the error distribution when reporting location across the three

RDK coherence conditions. There was a significant decrease in overall variability (mean

circular standard deviation, low: 1.60 ± 0.10, medium: 1.25 ± 0.15, high: 0.81 ± 0.16)

between the low and medium (t9 = 4.05, p = 0.003, BF10 = 17.03), medium and high (t9 =

7.36, p < 0.001, BF10 = 590.84), and low and high (t9 = 9.02, p < 0.001, BF10 = 2416.41)
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coherence conditions. Like the equivalent changes observed in Experiment 1, we found

evidence that this result is due to changes in swap frequency rather than an actual

difference in variability of memory for location information across conditions.

The error distributions centred on the locations of non-target items all displayed

clear central tendencies after correcting for the effects of minimum feature separation

(Fig. 5F), suggesting the presence of swap errors when reporting location. The MAD

between the reported location and the non-target locations was significantly different from

the expected value in the low (1.63 ± 0.02, expected: 1.71 ± 0.02, t9 = 6.10, p < 0.001,

BF10 = 173.93), medium (1.74 ± 0.03, expected: 1.78 ± 0.03, t9 = 3.79, p = 0.004, BF10 =

12.37) and high coherence conditions (1.84 ± 0.04, expected: 1.87 ± 0.03, t9 = 3.29, p =

0.009, BF10 = 6.52).

3.3.1 Comparison with simulated swap frequencies

We expected that manipulating coherence would elicit greater changes in variability

than produced by ellipse elongation in Experiment 1, resulting in even stronger effects on

swap error frequency, and this was indeed the case. Swap error frequency in location

report, as estimated by the nearest-item heuristic, decreased strongly with increasing

motion coherence (low: 55% ± 3%, medium: 42% ± 5%, high: 24% ± 6%; all p < 0.005,

BF10 > 12.6; Fig. 4B).

As in Experiment 1, we used a Monte Carlo simulation based on the cue-feature

variability account to predict the swap frequencies in the location-report condition from

response errors in the direction-report condition. Consistent with the estimates obtained

from the nearest-item heuristic, predicted swap frequencies decreased significantly as

motion coherence increased (low: 55% ± 3%, medium: 36% ± 6%, high: 22% ± 7%; all p

< 0.002, BF10 > 28.3). Critically, the predicted swap frequencies closely matched the

estimated values, showing no significant difference between estimate and prediction at any

coherence level (all p > 0.15, BF10 < 0.77).
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3.3.2 Validating swap estimates

The mean probability of swap errors (non-target responses) estimated using the

mixture model (Bays et al., 2009) in the direction-report condition was low and did not

change significantly with variation in the motion coherence (low coherence = 4% ± 2%,

medium coherence = 6% ± 2%, high coherence = 12% ± 7%). Conversely, the estimated

probability of swap errors in the location-report condition increased with decreases in

coherence with significant differences between the low and high (low = 51% ± 2%, high =

19% ± 6%, t9 = 5.25, p < 0.001, BF10 = 70.01), medium and high (medium = 38% ± 5%,

t9 = 5.98, p < 0.001, BF10 = 152.99) and low and medium conditions (t9 = 2.98, p =

0.016, BF10 = 4.36).

In the direction-report condition, the swap error estimates produced from the

pooled group data using the resultant vector method (Bays, 2016a) remained

predominantly low ranging from −5% in the low coherence condition to 2% and 21% in the

medium and high coherence conditions respectively (note that a negative estimate of swap

frequency obtained by this method can be interpreted as strongly favouring no swaps in

the data). In contrast, in the location-report condition a high proportion of swap errors

was estimated in the low coherence condition (55%) which decreased to 32% and 26% in

the medium and high coherence conditions, respectively.

Overall, similarly to Experiment 1, all estimation methods consistently indicated

that swap errors in the location-report condition increased as motion coherence decreased.

Additionally, when reporting direction the estimated swap errors remained low with no

evident link to the motion coherence condition which is congruent with the error

distributions in Fig. 5C.

3.3.3 Model comparison

The behavioural data from each participant were again fit with three models of

VWM. This included the neural binding model as well as the full and partial interference
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models.

Both the neural binding model and interference model successfully reproduced the

distributions of response errors across all levels of coherence in both direction and location

report conditions. However, quantitative comparisons using AIC and BIC indicated that

the neural binding model consistently provided a better fit to the data for all but one

participant whose data was fit better by the full interference model based on AIC values

only (Table. 2). The comparison of full and partial interference models produced mixed

findings with AIC indicating that the full model was a better fit, while BIC, which more

heavily penalizes free parameters, favoured the partial model.

Summaries of the estimated parameters are provided for the neural binding model

and both versions of the interference model in the Appendix. In contrast to the results of

Experiment 1, the parameter representing context-independent activation (Aa) deviated

substantially from zero in some levels of coherence in the location-report condition.

The predictions of the neural binding model are explored in more detail below.

Predictions of the model, with best fitting parameters for each participant are also shown

by solid lines in Fig. 5.

Table 2

Model fit statistics for Experiment 2. N (Param) displays the number of free parameters

within each model. ∆ indicates the difference in model fit statistic (AIC or BIC), averaged

across participants, between each model and the best fitting model. N (Subj) indicates for

how many participants each model was the best fitting model, as determined using AIC and

BIC respectively.

AIC BIC

Model N (Param) ∆ N (Subj) ∆ N (Subj)

Neural binding model 6 0.52 9 0.00 10

Interference model (IM) 36 20.28 1 141.82 0

IM (Aa fixed at zero) 30 36.65 0 133.77 0
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3.3.4 Neural binding model

The neural binding model was again used to explore how often swap errors occurred

in the location-report condition when the target item was attributed zero samples in the

cue dimension (motion direction). The group median conditional probability that the

target received zero samples in the cue dimension if a swap error occurred was 89% (IQR:

88%-91%) in the low coherence condition, 83% (IQR: 80%-88%) in the medium coherence

and 75% (IQR: 67%-76%) in the high coherence condition.

The group median conditional probability that the selected non-target item received

zero samples in the cue dimension if a swap error occurred was consistently lower than the

result for the target item (low: 82%, IQR = 79%-83%; medium: 70%, IQR = 60%-77%;

high: 39%, IQR = 36%-51%). Furthermore, the group median conditional probability that

the target item received zero samples in the cue dimension if the target item was correctly

selected was lower still across conditions (low: 44%, IQR = 43%-51%; medium: 28%, IQR

= 18%-34%; high: 7%, IQR = 5%-12%), though substantially higher than the probabilities

observed in Experiment 1. Furthermore, all estimated probabilities were again significantly

different within levels of coherence as determined using a Wilcoxon signed-rank test (all p

< 0.002, BF10 > 31.82).

The group mean cue-feature precision was again higher for target items in trials

where the target item was correctly selected for retrieval (low: 4.02 ± 0.64, medium: 6.67 ±

0.99, high: 11.96 ± 2.01) than both target items (low: 0.70 ± 0.11, medium: 1.40 ± 0.23,

high: 2.72 ± 0.42) and selected non-target items (low: 1.24 ± 0.22, medium: 2.90 ± 0.56,

high: 7.37 ± 1.49) in swap error trials. Furthermore, the mean precision estimates were

again all significantly different within levels of coherence (all p < 0.003, BF10 > 20.67).

3.4 Discussion

In Experiment 2, we aimed to determine whether the effect of orientation cue

variability on swap errors could be replicated with a different feature dimension. Instead of
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orientation, this experiment manipulated the memory variability for motion direction

through changes in motion coherence. The results closely replicated those of Experiment 1,

including increases in response error when reporting direction with decreasing motion

coherence, and an increased concentration of responses around non-target locations when

cueing with motion direction.

Furthermore, predicted swap frequencies based on simulated location responses once

again closely matched the observed frequencies across levels of motion coherence. This was

despite the range of swap error frequencies covered by the manipulation of coherence being

substantially larger than in Experiment 1.

The model comparison replicated the result of Experiment 1 favouring the neural

binding model over full and partial versions of the interference model. However, the

comparison of the full and partial interference model was less consistent than Experiment 1

and the best fitting model changed dependent on the criterion used. Furthermore, the

cue-independent activation parameter (Aa) was substantially above zero in some levels of

coherence in the location-report condition. One difference between the two experiments is

the minimum feature separation which was greater in this experiment (60°) than

Experiment 1 (30°). The increased distance between each item’s cue-feature may increase

the likelihood that swap errors are attributed to cue-independent processes. However, the

neural binding model remained the best fitting model overall, consistent with the

hypothesis that swap errors can be fully accounted for by variability in memory for the cue

feature.

Unlike Experiment 1, analysis using the neural binding model showed that in the

location-report condition a substantial proportion of swap errors occurred in cases where

information about the target’s cue feature was not available. The model accounted for

errors on these trials according to the same mechanism as trials where target information

was available. Furthermore, swap errors were again more likely to occur when memory

precision for both the target and non-target’s cue feature was low suggesting that these
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responses may be associated with low confidence ratings. Overall, the results of

Experiment 2 provide further support for the proposal that variability in memory for the

cue feature can fully explain swap errors.

4 Experiment 3

The results of Exps. 1 and 2 indicated that swap error frequencies on the

location-report tasks were fully accounted for by variability in the cue feature, as estimated

in a separate task. This suggests that cue-independent swaps, of the kind predicted by

failures of feature binding independent of individual features, did not occur in these tasks.

Superficially, this finding seems in conflict with a previous study by Oberauer and Lin

(2017) which found evidence in fitted model parameters for cue-independent as well as

cue-dependent swaps. One difference between this and the previous study is that we chose

stimulus features, including location, randomly from a uniform distribution on the circle,

whereas stimulus locations in the previous study were chosen from a fixed set of

evenly-spaced points on the circle that stayed the same from trial to trial. Such

predictability in spatial configuration has also been raised by other authors as a possible

influence on swap errors (Brady & Störmer, 2020; Schurgin et al., 2020).

To test this, Experiment 3 comprised an orientation report task with a spatial cue

(Fig 6A) and three between-participant experimental conditions (illustrated in Fig 6B).

Participants were shown memory arrays of six oriented Gabor patches, where the locations

of the six Gabors were either evenly distributed around an invisible circle and fixed for all

trials, evenly distributed but with a different random rotation of the whole array on each

trial, or randomly distributed on every trial.
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4.1 Methods

4.1.1 Experimental protocol

254 online participants carried out a cued recall task testing their memory for

orientation and location. All participants were recruited using Prolific

(https://www.prolific.co), reported normal or corrected-to-normal visual acuity and gave

informed consent in accordance with the Declaration of Helsinki. Eleven participants were

excluded from the analysis for one of the following reasons: they completed a high number

of trials without adjusting the orientation to make their response (two participants); they

did not complete all trials (six participants); they performed at chance level in both

experimental and catch trials (two participants); inattention was indicated by the extended

duration of their testing session (one participant). 243 participants (aged 18–36 years; 106

male, 129 female, 1 transgender, 7 not specified) were therefore included in the analysis.

Each trial of the task (illustrated in Fig. 6A) began with the presentation of a dark

grey central fixation circle (diameter, 10 pixels; online experiment stimuli are described in

pixels rather than degrees of visual angle due to varying displays) against a mid-grey

background. Participants were instructed to keep looking at the fixation circle throughout

each trial. After 0.75 s, a memory array consisting of six Gabor patches (width and height,

126 pixels; wavelength of sinusoid, 38 pixels/cycle; s.d. of Gaussian envelope, 20 pixels)

was presented for 1 s, outlined by light grey circles which served as placeholders for the

patches. The center of each Gabor was positioned on an invisible circle with a radius of 250

pixels centered on the fixation circle. The Gabors’ orientations were chosen at random

(without minimum separations). Participants were randomly assigned into one of three

conditions (see Fig. 6B). These were the fixed, rotated and random location conditions. In

the fixed location condition, the six Gabor patches were presented in the same six locations

on every trial, equally distributed around the circle (arc length of 60° between patch

centers). In the rotated location condition, the Gabor patches were again equally

distributed around the circle but the whole array was randomly rotated on each trial. In
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the random location condition, each Gabor’s location on each trial was randomly chosen

from a uniform distribution on the circle, with a minimum separation (arc length) of 36°

between patch centers.

After the presentation of the memory array, the fixation circle was shown for a

further 1 s followed by the cue display. The circle outlines reappeared in the locations of

the previously presented Gabor patches. One of the outlines was a darker grey to cue the

location of the randomly selected target item for that trial. Participants were instructed to

begin moving their cursor once they were ready to respond with the orientation of the

target Gabor. Once participants moved their cursor, a Gabor patch was presented centrally

and participants freely rotated it using their cursor until it matched the remembered

orientation of the target. Each participant completed approximately 109 trials. The trials

were split into two blocks separated by a one minute minimum break, with the complete

testing session lasting approximately 15 minutes.

4.2 Analysis

As in previous experiments, orientation values were scaled up to cover the same

range as location (−π to π) for easier comparison of results across features. To examine the

pattern of swap errors in each condition, the MAD of reported orientations from non-target

orientations was calculated and plotted as a function of the non-target’s angular distance

from the cued location. Deviations were compared with the value expected in the absence

of swap errors (π/2) using Bayesian (using JASP, 2019) and frequentist one-sample t-tests.

Since the orientation of each item was generated at random, it was not necessary to

account for minimum separations when calculating the expected MAD (as was done for

Experiments 1 and 2). MADs significantly below the expected level indicate biases towards

non-target orientation values indicative of swap errors.

Similarly to Experiments 1 and 2, swap error frequencies were estimated for each

condition using the mixture model method (Bays et al., 2009) applied to subject-level data
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and the resultant vector method of Bays (2016a) applied to pooled group-level data.

4.3 Results

To assess effects of cue similarity, Fig. 6C displays the MAD of reported orientations

from non-target orientations, plotted as a function of the non-target’s angular distance

from the cued location. Deviations below the value expected in the absence of swap errors

(π/2; dashed line) in these plots indicate biases towards non-target orientation values

indicative of swap errors.

For the fixed-location and rotated-location conditions, non-targets were located at

one of three possible angular distances from the cue: 60°, 120° and 180°. In both

conditions, the pattern of MADs (Fig. 6C, left and middle) suggested an approximately

equal probability of swaps to the 60° (nearest) and 180° (diametrically opposite) non-target

orientations, with no evidence for swaps to the intermediate non-targets at 120° from the

cue.

The MAD in the fixed-location condition was significantly lower than expected for

the non-targets at 60° from the target (MAD = 1.55 ± 0.01, t80 = 3.10, p = 0.003, BF10 =

10.02) and for non-targets positioned precisely opposite to the target (180°; MAD = 1.53 ±

0.01, t80 = 3.81, p < 0.001, BF10 = 77.85). The MAD for the non-target items two

positions away (120°) was not significantly different from the expected value (MAD = 1.57

± 0.01, t80 = 0.36, p = 0.723, BF10 = 0.13).

In the rotated location condition (Fig. 6C middle), the MAD was once again

significantly lower than expected for non-targets at 60° (MAD = 1.52 ± 0.01, t80 = 6.42, p

< 0.001, BF10 = 1,274,140) and 180° (MAD = 1.53 ± 0.01, t80 = 3.93, p < 0.001, BF10 =

115.90), but not 120° (MAD = 1.57 ± 0.01, t80 = 0.15, p = 0.882, BF10 = 0.12).

In the random location condition (Fig. 6C right), for purposes of analysis we

discretized the distance between non-targets and cue into seven bins of equal interval. The

MAD for non-target items in the two bins closest to the cued location (Distance bin 1 =
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34°-55°, MAD = 1.48 ± 0.01, t80 = 7.65, p < 0.001, BF10 = 238,478,000; Distance bin 2 =

55°-76°, MAD = 1.50 ± 0.01, t80 = 4.57, p < 0.001, BF10 = 1009.32) and the furthest bin,

which included non-targets located diametrically opposite to the cue (Distance bin 7 =

159°- 180°, MAD = 1.54 ± 0.01, t80 = 2.37, p = 0.020, BF10 = 1.70) were significantly

lower than the expected value. None of the intermediate bins differed significantly from the

expected MAD.

We further estimated swap error frequencies using the mixture model (fixed: 13% ±

2%, rotated: 18% ± 2%, random: 17% ± 2%) and the resultant vector method, which was

applied to pooled data (fixed: 21%, rotated: 32%, random: 32%). Though the swap

frequencies varied between methods of estimation, the mixture model estimates did not

vary significantly between conditions (all p > 0.13, BF10 < 0.49).

4.4 Discussion

In Experiment 3 we aimed to determine whether methodological differences between

previous studies in the predictability of spatial locations across trials could have influenced

the frequency of swap errors, when location was used as a cue.

For fixed, rotated and random configurations, we found evidence for swap errors

involving those non-target items closest to the cue location, but not for those at

intermediate distances. This is consistent with results from the present and previous

studies using random spatial configurations, and with the cue-feature variability account of

swap errors more generally. We did not find any consistent effect of spatial predictability

on swap frequency.

Additionally, in all three conditions we found that responses were on average

significantly closer than expected to non-targets located precisely opposite to the cued

location, suggesting a specific prevalence of confusions involving these items. This could be

evidence for a non-metric representation of stimulus locations in memory, a topic we

consider further in the General Discussion.
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5 General Discussion

In cued recall tasks, observers often report features belonging to display items other

than the one indicated by the cue. These erroneous responses, termed swap errors, are

more likely to reflect items that are similar to the target in the cue-feature dimension

(Bays, 2016a; Emrich & Ferber, 2012; Oberauer & Lin, 2017; Rerko et al., 2014; Sahan,

Dalmaijer, Verguts, Husain, & Fias, 2019; Schneegans & Bays, 2017; Souza et al., 2014).

Observations analogous to swap errors have also been made in serial recall tasks

commonly used in the fields of verbal and spatial short-term memory, in which participants

have to recall memory items in the order they were presented. So-called transposition

errors occur when participants report the correct sample items, but in an incorrect order,

and most commonly take the form of swapping temporally proximate items (see Hurlstone,

Hitch, & Baddeley, 2014 for review). Similarly, transposition errors are reliably observed in

both immediate and delayed free recall tasks typically used to investigate memory search

(Zaromb et al., 2006). Similar to serial recall, in free recall tasks transposition errors are

more likely to come from immediately preceding rather than earlier lists, reinforcing the

importance of temporal proximity in memory search (Kahana, 2012).

The VWM literature suggests that swap errors may be instances of a broader

phenomenon reflecting the mechanism of binding items in working memory to different cue

or context dimensions (Oberauer & Lin, 2017; Schneegans, McMaster, & Bays, 2022). This

is consistent with broader memory literature in which transposition errors are assumed to

arise from confusing contextual cues associated with each item. For example,

computational models of serial recall can explicitly account for gradients of transposition

errors by assuming items are bound to an evolving context built from fading records of

previously encoded or retrieved items (Logan, 2021; see also Howard & Kahana, 2002). In

addition, noisy coding theories (e.g., Estes, 1997) propose that transposition errors in serial

recall reflect place changes between adjacent items due to the noise-driven perturbations

arising from the recall of previously learned items or the study of new items. Together, in
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recent decades different lines of work investigating memory processes found converging

empirical evidence on swap and transposition errors, as well as on the mechanistic accounts

of how these errors arise.

The feature variability account proposes that swap errors are the result of

confusions in identifying which item is indicated by the cue (Bays et al., 2009; Schneegans

& Bays, 2017). However, some proportion of swap errors have also been ascribed to an

informed guessing strategy on trials where the probed item was not in memory (Huang,

2019; Pratte, 2019), and more generally it has been suggested that at least some swap

errors arise from a mechanism unrelated to cue-feature similarity (Oberauer & Lin, 2017).

To address these alternative accounts, we first assessed whether changes in

variability in the cue-feature dimension induced matching changes in swap error frequency.

In Experiment 1, we parametrically manipulated the precision with which stimulus

orientations were encoded by varying elongation, and in Experiment 2 we manipulated

encoding of stimulus motion directions by varying coherence. In each case, we tested recall

performance when orientation (direction in Experiment 2) of one item was reported based

on a cued location, and when location was reported based on a cued orientation (direction).

Both forms of encoding manipulation were successful, as demonstrated by monotonic

increases in error dispersion with decreasing elongation (coherence) when features from the

manipulated dimension were reported, and an increasing concentration of responses around

non-target locations when the manipulated feature dimension was used as a cue.

This latter result suggested that increasing variability in recall of orientation

(direction) resulted in an increasing probability of erroneously reporting a non-target item.

To assess what proportion of swap errors could be explained by this feature-variability

account, we simulated responses on the location report tasks of Exps. 1 and 2 based on the

errors observed on the orientation (direction) report tasks in the same experiment, using a

nearest-item heuristic to estimate swap frequency. The predicted frequencies very closely

matched the observed frequencies in both experiments (Fig. 4), accurately reproducing the
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effects of the encoding manipulations on swap frequency. This close correspondence was

observed over conditions exhibiting a broad range of swap frequencies, from approximately

20% of responses in the high coherence condition of Experiment 2 to about 65% of

responses in the low elongation condition of Experiment 1. These results provide evidence

that variability in the cue-feature dimension is sufficient to explain swap errors in their

entirety, and may be the only significant mechanism for their generation.

5.1 Cue-independent mechanisms

According to the feature-variability account, an erroneous report of a non-target

item occurs when its cue-dimension feature retrieved from memory is more similar to the

cue than the cue-dimension feature retrieved for the target. This account predicts that

non-targets whose actual cue-features more closely resemble the cue (and so the target)

should be reported more frequently than those less similar: a prediction that has been

supported empirically (see above). However, previous work conducted by Oberauer and Lin

(2017) identified a component of swap errors seemingly unrelated to cue-feature similarity.

Their interference model of working memory can produce erroneous reports of non-target

features through two routes. First, similar to our feature variability account, coactivation

of closely located items by spatial cues may result in a non-target item being erroneously

recalled. Second, background noise in the ‘context space’ can feed through to the ‘binding

space’ during the delay period of the task, reactivating the report-feature representations of

all items independent of their cue-feature value. The fitted parameters of their model

implied that both cue-dependent and cue-independent swaps were present in their data,

which came primarily from colour report tasks using a spatial cue. Furthermore, in a

recently published study using the interference model, they propose that swap errors in a

change-detection task were predominantly produced by cue-independent processes (Lin &

Oberauer, 2022).

It is important to note that there is no simple criterion to determine whether an
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individual swap error was the result of confusability between a non-target item’s

memorized cue feature and the given cue, or arose in a cue-independent manner. If

memory precision for the cue feature is low, as is typically the case at high set sizes, then

even very distant values in feature space may be confusable. The interference model makes

parametric assumptions about how cue-dependent swaps are generated (specifically, a

double exponential function was chosen in that model to describe the spread of activation

to items similar to the cue) in order to estimate frequencies of cue-dependent and

cue-independent swaps. Critically, if the parametric function chosen to describe the effect

of cue-similarity is not precisely matched to the underlying generative process, swap errors

that are not well-described by this distribution may instead be captured by a non-zero

value for the cue-independent parameter.

In a comparison of the neural binding model with both the full interference model

and a partial interference model with cue-independent activation fixed at zero, we found

that the neural binding model was a consistently better fit of the data from Experiment 1

and 2. Furthermore, in Experiment 1 the partial interference model was a better fit than

the full interference model which estimated cue-independent activation to be close to zero

across conditions. For Experiment 2, the estimated cue-independent activation was

substantially above zero in some levels of coherence in the location-report condition. The

large feature separations in this experiment may increase the likelihood of the interference

model attributing swap errors to cue-independent processes. However, the neural binding

model remained the best fitting model overall, consistent with the feature variability

account.

The neural binding model is also limited by the validity of the parametric function

chosen to describe the effect of cue-similarity. While this function is to some extent

validated on the basis that it is the same as the one used for report-feature variability, it

could nonetheless be contested on similar grounds to the interference model. This is why

we employed a non-parametric, simulation-based approach as the primary basis of our
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conclusions. In this approach, we only assumed that errors in memory for a feature would

be distributed identically whether that feature was used as a cue or for report. Coupled

with a simple cue-dependent mechanism in which the item remembered as most similar to

the cue is selected for report, this proved sufficient to accurately predict the frequency of

swap errors across different cue feature dimensions and reliabilities. This provides the

strongest evidence against a separate cue-independent route to swap generation, because

swaps generated by such a process would not be predicted on the basis of our

cue-dependent method and so we would expect to observe them as a consistent

underestimation of empirical swap frequency by the simulation.

We note that the relationship between cue- and report-dimension errors described

above is a central assumption of the neural binding model Schneegans and Bays (2017),

which is fit successfully in the current study to the data from multiple conditions

simultaneously. The same assumption is not present in the interference model, which

makes no particular predictions about the relationship between recall variability for a

reported feature and swap errors when that same feature is used as a cue. Consequently, it

was necessary to fit the interference model to each report and elongation/coherence

condition separately requiring a greater number of free parameters. This is one of a

number of significant differences between the models that limit the the conclusions we can

draw from model comparison. A systematic factorial comparison between models may be a

valuable direction for future research.

5.2 Effects of spatial configuration

One difference between the task designs of our Exps 1 and 2 and some previous

studies, including Oberauer and Lin (2017), is that our item locations were drawn

randomly and uniformly on the circle (with a minimum distance constraint), whereas in

their experiments item locations were selected from a fixed set of equidistant points. It has

been suggested that using a consistent fixed set of locations may reduce location noise and,
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as a result, influence swap frequency (Brady & Störmer, 2020; Schurgin et al., 2020). Our

Experiment 3 was intended to assess this possibility.

Contrary to the proposal that using a consistent set of locations would inhibit swap

errors, we found clear evidence for swaps and no significant differences in overall swap

frequency when recalling stimulus arrays with fixed equidistant locations, equidistant but

randomly rotated locations, or random locations. Consistent with our previous

experiments, there was evidence for swap errors in Experiment 3 for non-targets closest in

location to the target, in every spatial configuration (Fig. 6C). However, in each condition,

we also observed a substantial dip below expected levels in the deviation of responses from

non-targets positioned diametrically opposite the target, suggesting that swap errors

involving these particular items were more frequent than would be predicted based on their

physical (angular or Euclidean) distance from the cue.

These results could be explained by encoding of item locations in a non-metric or

qualitative format (Landau & Jackendoff, 1993), in which diametrically opposing positions

(180° separation on the circle) were more easily confused than some positions that were

physically closer together (e.g. 120° separation). An intuitive hypothesis would be that

categorical encoding would be encouraged by using a fixed set of locations across trials.

However, we observed an effect of similar magnitude in the condition where locations

varied from trial to trial while maintaining a regular equidistant arrangement, and of only

slightly lesser magnitude in the condition where locations were generated randomly. This

suggests that the opposite-item effect does not require a predictable spatial arrangement,

however the effect appears confined to a narrow enough window around 180° that swaps to

opposite items would be expected to occur rarely when locations are drawn at random.

We note that, despite their strict dependence on the cue, we would expect

opposite-item swaps to be poorly captured by any parametric model that assumes spatial

confusability declines monotonically with physical distance (e.g. Oberauer and Lin 2017;

Schneegans and Bays 2017), and indeed could be mistakenly identified as having a
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cue-independent source.

5.3 Strategic accounts of swap errors

Several previous studies have argued that swap errors reflect a form of strategic

behaviour, rather than a consequence of noise (Huang, 2019; Pratte, 2019; Utochkin &

Brady, 2020). In particular, Pratte (2019) proposed that, when participants are instructed

to recall the location of an item for which they have no memory, they may adopt a strategy

of reporting a location close to where other items had been presented, rather than

producing a random response. On this basis, the study concluded that the frequency of

‘guessing’ (i.e. non-target reports interpreted as guesses) in location report tasks is similar

to estimates for other report feature dimensions and consistent with slot-based accounts of

working memory (Cowan, 2001; Luck & Vogel, 1997; Zhang & Luck, 2008).

The hypothesis that swap errors occur when the target item is not in memory

makes the clear prediction that their frequency will not depend on which feature is used as

the cue. Contrary to this, and consistent with previous results of Rajsic and Wilson (2014),

we observed substantially lower swap frequencies when location was the cue feature

compared to when it was the report feature. Furthermore, we found that varying the

reliability of the non-spatial feature (orientation or motion direction) strongly modulated

swap frequencies when it was used for cueing, but had minimal effect on swap frequency

when it was the reported feature. If the reliability manipulations had caused some

proportion of items not to be stored, this frequency would not depend on which feature

was subsequently cued for report.

The strategic guessing acount assumes a dichotomy between items that are held in

memory, and those that are not, with different decision processes associated with each case.

Whether this conceptualization of working memory is accurate has been a point of

contention in the long-standing debate of slot versus resource models, with the latter

viewing zero-information states merely as one end of a continuum of memory precisions
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(van den Berg et al., 2012) and recall estimates generated by a single decision process.

The feature variability account as employed here is agnostic with respect to the

format and granularity of memory representations, and merely posits that the same

limitations that give rise to response variability in the spatial cue condition also underlie

swap errors when location is reported.

Whether a particular feature is remembered with very low precision or with zero

precision makes no meaningful difference to the predictions of this account, as these cases

are treated identically. Indeed, the strategy described in Pratte (2019) for guesses in spatial

working memory tasks, i.e. reporting the location of whichever item’s representation in

memory most closely resembles the cue, is identical to the mechanism assumed to underlie

all responses in the feature variability account (Bays, 2016a; Schneegans & Bays, 2017).

The difference between these proposals does not lie in the selection strategy, therefore, but

in the claim that a majority of swap errors occur when the target item is not in memory.

As a corollary, the previous study’s finding that participants reported non-target items

when cued with a feature that wasn’t in the memory array is equally consistent with either

account, and does not provide evidence for the claim that swaps are strategic guesses.

It is also worth noting that a strategy of reporting a non-target location when the

cue does not match any item in memory would be highly suboptimal under a slot-based

account in which only whole items can be encoded into and lost from WM: in fact, one

should choose any location except those of items in memory, as those are the locations one

can be certain the target did not occupy.

The neural correlates of swap errors in VWM were investigated in a recent study

which found that swap error responses were preceded by active maintenance of the

swapped item (Mallett, Lorenc, & Lewis-Peacock, 2022). This suggests that swap errors

are not spontaneously produced random guesses at the response stage but rather memory

representations for incorrect items that are maintained in VWM. Although this finding

cannot rule out strategic guessing which may take place once the cue is presented but prior
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to the response stage, participants subjectively reported that they had a degree of

confidence in their response rather than guessing.

5.4 Implementing the feature variability account

While not consistent with accounts in which items or slots are lost as whole units,

our results could potentially be explained by accounts in which different features of an item

are subject to independent variability (Bays, Wu, & Husain, 2011; Fougnie & Alvarez,

2011). To investigate this possibility, we fit the data with multiple models of VWM.

Consistently the best fitting model was a previously-proposed implementation of working

memory based on population coding (Schneegans & Bays, 2017). This “neural binding”

model assumes that the features of stimuli are encoded in an idealized conjunctive neural

code and recalled via maximum likelihood decoding from noisy neural activity. Within the

model, swap errors occur when a non-target item is erroneously deemed more similar to the

cue than the target (which matches the cue exactly). This process is consistent with the

feature variability account of swap errors outlined previously.

The model was adapted to capture the effects of manipulating the ellipse elongation

and RDK coherence by incorporating a new conjunction coding parameter. This addition

to the model specifies a proportion of spikes that carry orientation (direction) information,

in addition to the location information carried by all spikes. This reflects the expectation

that stimuli with lower elongation (coherence) provide reduced orientation (direction)

information, without a reduction in location information. The spiking activity resembles

that of a mixed population code (Matthey, Bays, & Dayan, 2015), in which all neurons are

spatially selective but only some are sensitive to orientation (direction), the activation of

this latter group depending on visual discriminability of the angular feature.

The best fitting conjunction coding parameter (proportion of spikes available for

orientation/direction decoding) increased significantly with increasing ellipse elongation

and RDK motion coherence. The model provided a quantitatively precise account of



SWAP ERRORS EXPLAINED BY CUE-FEATURE VARIABILITY 48

empirical response distributions that was also parsimonious, using just six free parameters

to capture full response distributions relative to both targets and non-targets across all six

conditions of each experiment (i.e. all panels in Figure 3).

This idealized neural population model has a simple mathematical interpretation in

terms of sampling, with each individual spike representing one noisy sample of a

memorized feature value (or a combination of feature values). In this interpretation, it is

intuitive that recall precision is determined by the number of spikes, or samples, that

contribute to the estimation of a memorized feature. This number varies randomly and

independently between items, following a Poisson process, and this stochasticity – rather

than discreteness of the samples – has been shown to be critical for explaining human

recall errors (Schneegans, Taylor, & Bays, 2020).

In particular, this implementation of the neural population model allows for the

possibility that no samples are available for the decoding of one or more of an item’s

features. Importantly this case is not dealt with differently than cases with samples

available, but merely constitutes one extreme in the probabilistic distribution of recall

precision (van den Berg et al., 2012). While states of strictly-zero information are not a

feature of more biologically realistic population models, they have near-equivalents in

states of very low precision. We tested the extent to which the zero-sample case

contributed to swap errors in the model fit to the present behavioral results. While the

target item had zero samples for decoding of its cue feature on a significant minority of

swap trials, this proportion varied substantially between experiments and conditions.

Crucially, the reported non-target item on swap trials was almost equally likely to have

zero samples. This result would not be expected if observers adopted a heuristic strategy of

choosing a remembered non-target when no information about the target item’s cue feature

is available, but is consistent with a feature variability account in which zero-samples is

simply a state of maximal variability.

More generally, the number of samples available for an individual item determines
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the reliability (likelihood or posterior width) of an estimate: this has been proposed as a

basis for confidence judgments, accounting for trial-by-trial correlations between recall error

and subjective confidence (Bays, 2016b; Fougnie, Suchow, & Alvarez, 2012; Rademaker,

Tredway, & Tong, 2012; van den Berg, Yoo, & Ma, 2017). Here, we found that swap errors

were more likely to occur when recall precision was low for the cue feature of both the

target item and the selected non-target item. The model therefore predicts that swap trials

should be associated with lower confidence ratings, explaining an empirical observation

that was previously interpreted as evidence for a strategic guessing account (Pratte, 2019).

5.4.1 Spatial binding and recall of multiple features

The tasks used in the present study required observers either to retrieve a

non-spatial feature corresponding to a cued location, or one location associated with a cued

non-spatial feature. Several previous studies have examined swap errors in contexts where

one non-spatial feature is used to cue another non-spatial feature for recall (Gorgoraptis,

Catalao, Bays, & Husain, 2011; Pertzov & Husain, 2014; Pertzov, Manohar, & Husain,

2017; Rajsic et al., 2017), or where observers are cued with one feature of an object to

report multiple other feature dimensions (Fougnie & Alvarez, 2011; Fougnie, Cormiea, &

Alvarez, 2013; Schneegans & Bays, 2017). Bays et al. (2011) found that when observers

were asked to report two non-spatial features of an object on the basis of a location cue,

swap errors occurred largely independently in the two reported features. This was initially

interpreted as evidence against a feature variability account of swap errors, on the

assumption that if variability in memory for location caused the wrong item to be

identified as matching the cue, both non-spatial features of that item would be selected for

report. However, subsequent investigation led to an alternative explanation for those

results, compatible with the feature variability account, in which independent

representations exist for the conjunction of each non-spatial feature dimension with spatial
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location. Because feature variability in these different representations is independent, a

swap error in retrieving one non-spatial feature of an item can be accompanied by correct

retrieval of a second non-spatial feature based on the same location cue. This

spatial-binding model successfully accounts for the earlier results as well as a range of other

tasks in which spatial and non-spatial features are used in different combinations for cueing

and report (Kovacs & Harris, 2019; Schneegans & Bays, 2017, 2019).

5.5 Conclusion

We showed in two experiments that manipulating the reliability of a non-spatial

feature in cued recall tasks produces consistent effects on recall precision (when the feature

is reported) and swap probability (when the feature is used as cue). The effect on swap

probability was explained in full by a feature variability account of swap errors, attributing

them to variability in decoding memorized cue features, and did not require alternative

explanations such as guessing strategies. In a third experiment using spatial cues, we

observed a specific tendency to swap features of diametrically opposite items. While

compatible with the feature variability account, this finding is not predicted by feature

variability based models that assume a monotonic decrease in confusability with physical

separation in space, and may contribute to discrepant findings regarding the sources of

swap errors in different cued recall experiments.
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Figure 1

Experimental tasks. (A) In Experiment 1, a stimulus array was presented on each trial consisting of six

oriented ellipses with one of three levels of elongation (top to bottom: low, medium and high). After a

delay, participants were cued with the location or orientation of one item from the preceding array, and

used a response dial to report the other feature of the same item. (B) The task in Experiment 2 was

similar except that each memory array consisted of four motion stimuli with different directions of motion,

at one of three levels of motion coherence. The location or motion direction of one item was subsequently

cued and participants reported the other feature of the same item. Displays are not to scale.



SWAP ERRORS EXPLAINED BY CUE-FEATURE VARIABILITY 57

Location on circle

O
rie

nt
at

io
n

Location report trial Add orientation errors Simulated recall

Cue
Target

Non-target

Cue Cue

Target

Orientation response error

Fr
eq

ue
nc

y 
D

en
si

ty
O

rie
nt

at
io

n

O
rie

nt
at

io
n

Non-target

Example 
non-targetTarget

Target

Time

Cue

Location on circle Location on circle

Errors on orientation report task 
with same ellipse elongation

Random draws

A

B

C

D E

– 0

Non-target now closest
to cue  swap error 

Figure 2

Monte Carlo simulation of swap errors in Experiment 1. (A & B) Each trial in the location-report

condition (A) is represented by six orientation-location pairs, one for each item, along with the cued

orientation (B). (C & D) For each such trial, six response errors were drawn at random from trials in the

corresponding orientation-report condition (C) and added to the six item orientations on the location-report

trial (D). (E) If, after the addition of simulated error, the closest orientation to the cued value now

belonged to one of the non-targets, the trial was categorised as a swap error. This process was repeated

1000 times for each location-report trial to obtain a predicted mean swap frequency.
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Figure 3

Distributions of responses in Experiment 1. (A–C) Orientation recall, based on a location cue. Response distributions are

plotted (A) relative to the target orientation, (B) relative to non-target orientations and (C) relative to non-target

orientations with the expected distribution in the absence of swap errors (black dashed line in B) subtracted (see Methods),

for each elongation condition. (D–F) Location recall, based on an orientation cue. Response distributions (D) relative to

target location, (E) relative to non-target locations and (F) relative to non-target locations with expected distribution

subtracted. In all plots, data points display the behavioural results (error bars indicate ±1 SE) whereas the solid lines indicate

the mean results from the fitted neural binding model (shading indicates ±1 SE). Black dashed lines (B and E) indicate the

expected distribution in the absence of swap errors applied to the results from the fitted neural binding model. Orientation

values are scaled up to the range (−π to π) to allow easier comparison between features.
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Figure 4

Swap error estimates. (A) Experiment 1. The proportion of trials in which a swap error occurred

estimated from the data (red) or the simulation (blue) across the three different levels of ellipse elongation.

(B) Experiment 2. The proportion of trials in which a swap error occurred estimated from the data (red)

or the simulation (blue) across the three different levels of RDK coherence. Coloured lines show estimates

for individual participants. The error bars indicate the ±1 SE.
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Figure 5

Distributions of responses in Experiment 2. (A–C) Direction recall, based on a location cue. Response

distributions are plotted (A) relative to the target direction, (B) relative to non-target directions and (C)

relative to non-target directions with expected distribution in the absence of swap errors (black dashed line)

subtracted (see Methods), for each coherence condition. (D–F) Location recall, based on a direction cue.

Response distributions (D) relative to target location, (E) relative to non-target locations and (F) relative

to non-target locations with expected distribution subtracted. In all plots, data points display the behavioural

results (error bars indicate ±1 SE) whereas the solid lines indicate the mean results from the fitted neural

binding model (shading indicates ±1 SE). Black dashed lines (B and E) indicate the expected distribution in

the absence of swap errors applied to the results from the fitted neural binding model.
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Experiment 3. (A) Experiment design. A stimulus array was presented on each trial consisting of six

Gabor patches. After a delay, participants were cued with the location of one patch from the preceding

array, and used their cursor to report the orientation. Displays are not to scale. (B) Memory array

examples. The locations of the Gabor patches were either fixed for all trials and evenly spaced (Left),

evenly spaced but rotated each trial (Middle) or randomly generated each trial with a minimum separation

(Right). (C) The MAD of orientation responses from each non-target orientation as a function of spatial

(angular) distance between the target and the non-target. (Left) For the fixed location condition; (Middle)

for the rotated location condition. (Right) for the random location condition. Orientation values are scaled

up to the range (−π to π). Error bars indicate ±1 SE. Asterisks indicate significant differences from

expected level (marked by dashed line): * p < 0.05, ** p < 0.001.
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Appendix A

Neural binding model

The neural binding model assumes that the features of stimuli, such as their location,

orientation or direction of motion, are encoded in an idealized conjunctive population code.

Recall is modelled as maximum likelihood decoding from noisy neural activity. The mean

firing rate of neuron k encoding cue feature ψj and report feature θj of item j in the

memory array is given as

rk,j(ψj, θj) = γ

NM
ϕ◦(ψj;ψ′

k, κψ)ϕ◦(θj; θ′
k, κθ) (A1)

Within Eq. 1, γ is the population’s mean total firing rate, which is normalised over

the number of items in the memory array N , and the number of neurons M involved in

encoding each item. Von Mises functions with concentrations parameters κψ and κθ for the

cue and report feature and preferred values ψ′
k and θ′

k reflect the feature tuning of the

neuron.

Discrete spikes are produced based on each neuron’s firing rate via independent

Poisson processes,

rk,j ∼ Pois(rk,j) (A2)

Due to the superposition property of the Poisson distribution, the total number of

spikes, nj, that contribute to representing the features of each item j is then likewise a

Poisson random variable,

nj ∼ Pois
(
γ

N

)
. (A3)

Response probabilities

Recall is modeled as maximum likelihood decoding from noisy neural activity over a

fixed time window. For a given number of spikes nj available for decoding the features of
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item j, the distribution of decoded values θ̂j can be described as a von Mises distribution1

pdec (θ̂j|θj, nj) = ϕ◦(θ̂j; θj, κ(njωθ)) (A4)

Here, ωθ is the precision (as Fisher information) corresponding to the tuning curve

concentration κθ, which is determined as ω = κ I1(κ)
I0(κ) . The term κ(njωθ) describes the

concentration parameter yielding a von Mises distribution with precision njωθ, which can

be obtained by numerical inversion of the same relationship. The joint distribution of

decoded cue and report feature values can then be described as weighted sum of decoding

probabilities for each possible spike count nj,

pdec (θ̂j, ψ̂j|θj, ψj) =
∞∑

nj=0
PrPois

(
nj,

γ

N

)
pdec(θ̂j|θj, nj)pdec(ψ̂j|ψj, nj). (A5)

As both feature dimensions depend on the same number of spikes, the decoding

errors in each dimension are not independent. The model assumes that cue and report

features of all items within the memory array are decoded upon presentation of the cue.

The item with the closest decoded feature to the cue feature would then be used to

produce the response (of the item’s report feature). The probability that a certain report

feature value θr is chosen as a response in a trial with item report and cue feature values θ

and ψ, respectively, is then

presp (θr|θ,ψ) =
N∑
j=1

p(θ̂j = θr ∧ item j selected |θ,ψ). (A6)

The probability that an item is selected for response generation is determined by its

decoded cue feature, and due to the aforementioned dependence between decoding errors it

1 Note that this is not an exact solution for the maximum likelihood decoding in circular feature spaces,

but it provides a close approximation within the range of typical parameter values of the neural population

model (Schneegans et al., 2020)., which is centred on the true feature value θj and whose precision is

linearly increasing with the number of spikes, nj :
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is not independent from the obtained report feature value. But we can separate these

probabilities by conditioning on the number of available spikes, nj :

presp (θr|θ,ψ) =
N∑
j=1

∞∑
nj=0

PrPois

(
nj,

γ

N

)
pdec(θr|θj, nj)Prsel(j|ψ, nj) (A7)

The conditional probability of decoding a certain report feature value given the

spike count and true feature value in this equation can be determined as in Eq. 4. The

probability that an item is selected (i.e., its decoded cue feature value is closest to the

actual cue) can be computed by numerical integration as

Prsel (j|ψ, nj) =
∫ π

0
p(D◦(ψ̂j − ψc) = s|ψj, nj)

∏
j′ ̸=j

p(D◦(ψ̂j′ − ψc) > s|ψj′)ds, (A8)

where ψc is the feature value of the actually given cue. The first probability term in

this integral can be evaluated based on Eq. 4, while the second term requires marginalizing

over the possible sample counts,

pdec (ψ̂j|ψj) =
∞∑

nj=0
PrPois(nj,

γ

N
)pdec(ψ̂j|ψj, nj). (A9)

Conjunction coding parameter

The model was adapted in order to capture the effect of varying the ellipse

elongation and the motion coherence of the RDK on memory for orientation and motion

direction respectively. Specifically, the number of spikes that contribute to orientation or

direction decoding, irrespective of whether it is the cue or report feature, was allowed to

vary from the number of spikes contributing to location decoding. An analogous

modification of this model has been employed previously to capture specific impairments in

feature binding or report precision following stroke (Lugtmeijer et al., 2021).

The parameter s was added to the model, which specifies the mean proportion of

the total spikes, nj, that are available for decoding an item’s orientation or direction value,
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respectively. The adjusted number of spikes was assumed to be drawn from a binomial

distribution with success rate s. If the feature with reduced number of spikes was used as

cue feature in the task under consideration, the selection probability (used in Eq. A7) is

adjusted to

Prsel (j|ψ, nj, s) =
nj∑
ñj=0

PrBinom(ñj;nj, s)Prsel(j|ψ, ñj), (A10)

If the feature with reduced number of spikes contributing to its decoding is the

report feature, the decoding probability (likewise used in Eq. A7) has to be adjusted,

yielding

pdec (θ|θj, nj, s) =
nj∑
ñj=0

PrBinom(ñj;nj, s)pdec(θ|θj, ñj). (A11)

Estimating spike count for swap trials

The probability that the item which is selected for response generation has a certain

associated spike count, nj, can be determined via Bayes’ theorem from the conditional

probability that the item is selected if it has that spike count:

Pr(nj| item j selected ) ∝ Prsel (j|ψ, nj)Pr(nj) (A12)

The selection probability is given in Eq. A8, and the a-priori probability for nj follows a

Poisson distribution, as given in Eq. A3. If the decoded feature has a reduced number of

spikes available due to the conjunction coding parameter s, the conditional selection

probability is instead given by Eq. A10.

To obtain the conditional probability that the selected item in a trial has a spike

count nj given that a swap error occurred in that trial, we compute the sum over the

probabilities given in Eq. A12 for all non-target items, weighted with the probabilities that

each non-target item is selected (Eq. A8 or A10).
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Appendix B

Model fitting

Neural binding model

Maximum likelihood fits of the model were obtained for the data of each

participant, at each level of ellipse elongation (Experiment 1) or RDK motion coherence

(Experiment 2). The model applied six free parameters. The widths of the von Mises

tuning curves for orientation or direction, and location (initial value: location = 8,

orientation = 3, direction = 3), the mean total spike rate in the neural population (initial

value: 8) and the conjunction coding parameter for each level of elongation or motion

coherence (initial value: 0.5).

A hierarchical optimisation approach was applied in order to avoid local minima.

This involved running an initial maximum likelihood fit to determine the best fitting

tuning curve and mean total spike rate parameters. Then, for each iteration of these

parameter values applied in the search, a secondary fit was carried out to determine the

best fitting conjunction coding parameter for each condition.

For all fits, we set an upper limit for the gain parameter γ (mean total number of

spikes in the neural population). In the model, there is a possible trade-off between tuning

curve widths and gain parameter, which jointly determine the decoding precision. If the

model is fit to behavioral data with different set sizes, the model’s assumption of a fixed

total spike rate that is distributed across all items in a trial is typically sufficient to

constrain estimates for all parameters. However, since only a single set size is used in the

present study, the optimization procedure to determine parameter values can produce an

unbounded increase in the gain parameter (and concurrent decrease of the tuning curve

widths), without significant changes in the resulting decoding distributions. The limit on γ

was set to 40 for all model fits, based on typical parameter ranges observed in previous fits

to similar experiments (Schneegans & Bays, 2017).
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Interference model

The interference model was fit to the data using a range of initial values for each

free parameter. The six free parameters in the model were the precision of memory for

items when they are outside of the focus of attention (κ; initial values: 4, 8, 15), the

precision of the one item within the focus of attention (κf; initial values: 5, 20, 40), the

weights of the cue-independent retrieval component (Aa; initial values: 0.01, 0.2, 0.5, 1.0)

and, background noise (Ab; initial values: 0.01, 0.2, 0.5, 1.0), the width of the exponential

function that determines item selection in the cue-based retrieval (s; initial values: 0.1, 1,

5, 10), and finally the proportional reduction of weights Aa and Ab when the target item is

in the focus of attention (r; initial values: 0.1, 0.4, 0.8).

The partial model used the same initial values for each parameter, as specified

above, apart from context-independent activation (Aa) which was fixed at zero. Once

parameter estimates were obtained for the partial model, the full model was fit to the data

again using the parameter estimates from the partial model as initial values (Aa initial

value: 0.01). The full model with the greatest maximum likelihood was used in the model

comparison.
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Table A1

Neural binding model parameters (Experiment 1). Group mean and SE values for mean total

firing rate in the neural population (γ), tuning curve widths for orientation (κori) and

location (κloc) as well as the conjunctive coding parameters for the low (slow), medium (smed)

and high (shigh) elongation conditions.

γ κori κloc slow smed shigh

Mean

SE

34.70

3.02

1.40

0.15

3.54

0.44

0.70

0.05

0.54

0.10

0.33

0.11
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Table A2

Interference model parameters (Experiment 1). Group mean values (SE in parentheses) for

the relative weights of the context-independent (Aa) and background noise (Ab) activation,

the proportional reduction of interference within the focus of attention r, the steepness of the

cue-based retrieval function (s), and the precision of representations outside (κ) and inside

(κf) the focus of attention.

Model Aa Ab r s κ κf

Interference model (IM)

Ori cue, Low
0.19

(0.19)

0.07

(0.04)

0.50

(0.09)

0.86

(0.12)

16.85

(2.43)

89.88

(31.10)

Ori cue, Medium
0.05

(0.04)

0.00

(0.00)

0.35

(0.11)

1.15

(0.14)

19.28

(3.86)

6.62

(2.24)

Ori cue, High
0.02

(0.01)

0.02

(0.01)

0.43

(0.09)

1.52

(0.18)

20.88

(3.36)

18.50

(5.64)

Loc cue, Low
0.05

(0.05)

0.05

(0.04)

0.34

(0.09)

8.51

(3.12)

2.59

(0.49)

1312.77

(1304.64)

Loc cue, Medium
0.02

(0.01)

0.04

(0.03)

0.34

(0.10)

12.32

(3.83)

3.66

(1.09)

82.29

(62.64)

Loc cue, High
0.04

(0.03)

0.02

(0.01)

0.29

(0.08)

20.47

(6.96)

4.13

(0.87)

14.32

(5.70)

IM (Aa fixed at zero)

Ori cue, Low 0
0.03

(0.03)

0.40

(0.11)

0.79

(0.13)

15.63

(2.65)

63.94

(23.12)

Ori cue, Medium 0
0.00

(0.00)

0.37

(0.10)

1.04

(0.15)

18.65

(3.69)

11.78

(3.64)

Ori cue, High 0
0.02

(0.02)

0.34

(0.08)

1.46

(0.17)

20.86

(3.35)

18.32

(6.00)

Loc cue, Low 0
0.01

(0.00)

0.33

(0.09)

9.49

(5.85)

2.24

(0.34)

14.66

(9.05)

Loc cue, Medium 0
0.04

(0.03)

0.54

(0.09)

17.76

(7.02)

3.73

(1.07)

78.04

(56.93)

Loc cue, High 0
0.20

(0.17)

0.37

(0.07)

23.31

(7.48)

9.22

(4.87)

14.64

(5.72)



SWAP ERRORS EXPLAINED BY CUE-FEATURE VARIABILITY 70

Table A3

Neural binding model parameters (Experiment 2). Group mean and SE values for mean total

firing rate in the neural population (γ), tuning curve widths for motion direction (κdir) and

location (κloc) as well as the conjunctive coding parameters for the low (slow), medium (smed)

and high (shigh) coherence conditions.

γ κdir κloc slow smed shigh

Mean

SE

28.55

4.04

6.55

0.84

4.45

0.50

0.94

0.01

0.90

0.02

0.74

0.04
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Table A4

Interference model parameters (Experiment 2). Group mean values (SE in parentheses) for

the relative weights of the context-independent (Aa) and background noise (Ab) activation,

the proportional reduction of interference within the focus of attention r, the steepness of the

cue-based retrieval function (s), and the precision of representations outside (κ) and inside

(κf) the focus of attention.

Model Aa Ab r s κ κf

Interference model (IM)

Dir cue, Low
0.82

(0.16)

0.06

(0.05)

0.19

(0.04)

8.13

(3.00)

24.50

(4.12)

120.58

(64.39)

Dir cue, Medium
0.62

(0.24)

0.08

(0.07)

0.37

(0.10)

9.37

(2.35)

25.48

(2.52)

33.09

(16.96)

Dir cue, High
0.13

(0.05)

0.01

(0.00)

0.17

(0.05)

7.64

(2.66)

23.92

(3.32)

35.23

(10.12)

Loc cue, Low
0.04

(0.02)

0.55

(0.13)

0.39

(0.10)

8.64

(3.01)

7.02

(1.58)

150.55

(76.15)

Loc cue, Medium
0.03

(0.01)

0.20

(0.08)

0.33

(0.07)

12.31

(4.06)

11.70

(2.51)

13.49

(6.21)

Loc cue, High
0.19

(0.16)

0.03

(0.02)

0.37

(0.10)

14.30

(4.02)

7.79

(0.88)

93.33

(60.59)

IM (Aa fixed at zero)

Dir cue, Low 0
0.06

(0.05)

0.15

(0.07)

0.25

(0.05)

23.27

(3.12)

55.64

(25.55)

Dir cue, Medium 0
0.03

(0.01)

0.29

(0.05)

0.76

(0.28)

24.44

(2.73)

46.08

(21.33)

Dir cue, High 0
0.03

(0.01)

0.51

(0.11)

1.89

(0.35)

23.53

(3.19)

49.99

(10.55)

Loc cue, Low 0
0.64

(0.16)

0.40

(0.09)

8.82

(3.23)

10.95

(4.16)

74.56

(44.88)

Loc cue, Medium 0
0.22

(0.08)

0.44

(0.11)

11.30

(3.68)

11.53

(2.58)

24.22

(11.21)

Loc cue, High 0
0.05

(0.03)

0.32

(0.05)

14.44

(4.29)

8.07

(0.95)

122.83

(82.25)
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Table A5

Group mean cue-feature memory precision, of the target and selected non-target item, in

target or swap error trials (mean ±1 SE across participants).

Target trials Swap error trials

Condition Target item Target item Selected item

Experiment 1

Orientation cue

Low 1.59 (0.33) 1.09 (0.22) 1.20 (0.25)

Medium 2.23 (0.45) 1.69 (0.35) 1.82 (0.38)

High 3.21 (0.60) 2.61 (0.49) 2.78 (0.53)

Location cue

Low 17.84 (3.09) 13.23 (2.18) 14.68 (2.46)

Medium 17.68 (3.08) 13.20 (2.15) 14.52 (2.42)

High 17.83 (3.09) 13.44 (2.21) 14.52 (2.38)

Experiment 2

Direction cue

Low 4.02 (0.64) 0.70 (0.11) 1.24 (0.22)

Medium 6.67 (0.99) 1.40 (0.23) 2.90 (0.56)

High 11.96 (2.01) 2.72 (0.42) 7.37 (1.49)

Location cue

Low 24.59 (3.35) 9.06 (1.15) 18.15 (2.79)

Medium 24.56 (3.35) 8.90 (1.88) 18.44 (3.60)

High 24.56 (3.36) 9.91 (1.48) 18.61 (4.21)
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Table A6

Group mean report-feature memory precision, of the target and selected non-target item, in

target or swap error trials (mean ±1 SE across participants).

Target trials Swap error trials

Condition Target item Target item Selected item

Experiment 1

Orientation cue

Low 18.55 (3.27) 16.70 (2.94) 17.10 (3.02)

Medium 18.30 (3.23) 16.35 (2.89) 16.80 (2.98)

High 18.37 (3.20) 16.23 (2.87) 16.84 (2.98)

Location cue

Low 1.35 (0.28) 1.00 (0.22) 1.11 (0.24)

Medium 2.01 (0.42) 1.53 (0.33) 1.67 (0.35)

High 3.03 (0.58) 2.33 (0.46) 2.51 (0.49)

Experiment 2

Direction cue

Low 25.38 (3.45) 23.56 (3.38) 23.85 (3.39)

Medium 25.40 (3.51) 22.70 (3.29) 23.43 (3.33)

High 25.20 (3.45) 20.24 (3.04) 22.67 (3.29)

Location cue

Low 2.25 (0.39) 0.96 (0.26) 1.59 (0.23)

Medium 4.79 (0.83) 2.05 (0.63) 2.77 (0.56)

High 10.67 (1.98) 4.89 (1.66) 7.41 (1.34)
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Table A7

The conditional probability that the target or selected non-target item received zero samples

in the cue-feature dimension in target or swap error trials (median % and interquartile

range across participants).

Target trials Swap error trials

Condition Target item Target item Selected item

Experiment 1

Orientation cue

Low 7.52 (3.54-26.84) 31.42 (11.39-55.76) 25.74 (9.58-51.36)

Medium 2.95 (1.13-20.67) 13.17 (5.20-48.43) 10.63 (4.19-43.67)

High 0.48 (0.08-8.77) 3.17 (0.48-29.07) 2.16 (0.36-24.12)

Location cue

Low 0.03 (0.03-0.11) 2.90 (2.46-7.45) 0.98 (0.68-2.71)

Medium 0.04 (0.03-0.12) 2.71 (2.43-7.41) 0.89 (0.73-3.35)

High 0.04 (0.03-0.10) 2.78 (1.78-7.26) 1.05 (0.66-3.47)

Experiment 2

Direction cue

Low 44.34 (43.35-51.42) 88.64 (87.51-90.80) 82.14 (79.19-83.25)

Medium 27.80 (18.08-33.63) 83.06 (80.34-87.88) 70.22 (59.59-76.71)

High 6.59 (5.32-12.29) 74.65 (67.40-76.44) 39.22 (36.03-50.59)

Location cue

Low 0.07 (0.00-0.44) 44.32 (11.82-56.54) 8.88 (0.82-19.66)

Medium 0.07 (0.00-0.48) 53.15 (13.23-61.98) 5.34 (0.54-19.81)

High 0.06 (0.00-0.50) 48.46 (9.52-55.27) 14.74 (0.00-19.21)
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Table A8

The conditional probability that the target or selected non-target item received zero samples

in the report-feature dimension in target or swap error trials (median % and interquartile

range across participants).

Target trials Swap error trials

Condition Target item Target item Selected item

Experiment 1

Orientation cue

Low 0.06 (0.05-0.18) 0.22 (0.18-0.63) 0.18 (0.17-0.56)

Medium 0.05 (0.04-0.16) 0.28 (0.21-0.76) 0.18 (0.17-0.64)

High 0.05 (0.04-0.14) 0.32 (0.27-0.79) 0.23 (0.20-0.62)

Location cue

Low 19.11 (7.28-42.13) 30.40 (21.92-57.97) 26.12 (14.51-52.42)

Medium 7.11 (2.79-32.89) 16.47 (10.84-45.34) 11.69 (6.74-42.36)

High 1.22 (0.06-14.05) 9.04 (3.71-31.15) 4.66 (1.47-26.55)

Experiment 2

Direction cue

Low 0.10 (0.00-0.79) 0.20 (0.01-1.51) 0.19 (0.00-1.40)

Medium 0.08 (0.00-0.67) 0.22 (0.01-1.80) 0.20 (0.01-1.53)

High 0.08 (0.00-0.56) 0.29 (0.03-3.72) 0.19 (0.01-2.13)

Location cue

Low 68.89 (68.16-72.95) 88.83 (77.96-91.76) 79.35 (74.96-81.28)

Medium 50.20 (36.84-58.13) 82.40 (53.86-92.61) 67.80 (51.71-75.69)

High 15.09 (11.48-26.53) 63.19 (34.29-84.36) 37.89 (33.32-48.50)
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