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ABSTRACT

DISTURBANCE ATTENUATION IN MASS CHAINS WITH PASSIVE INTER-
CONNECTION

This thesis is concerned with disturbance amplification in interconnected systems which
may consist of a large number of elements. The main focus is on passive control of a chain
of interconnected masses where a single point is subject to an external disturbance. The
problem arises in the design of multi-storey buildings subjected to earthquake disturbances,
but applies in other situations such as bidirectional control of vehicle platoons. It is shown
that the scalar transfer functions from the disturbance to a given intermass displacement can
be represented as a complex iterative map. This description is used to establish uniform
boundedness of the H∞-norm of these transfer functions for certain choices of interconnec-
tion impedance. A graphical method for selecting an impedance such that the H∞-norm
is no greater than a prescribed value for an arbitrary length of the mass chain is given. A
design methodology for a fixed length of the mass chain is also provided. A case study for
a 10-storey building model demonstrates the validity of this method.

Kaoru Yamamoto
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CHAPTER 1

INTRODUCTION

This thesis studies disturbance amplification in mechanical systems. In particular, it is con-
cerned with interconnections which may have a large number of elements. Such systems
include, for example, vehicle platoons, electrical power grids, the Internet, gene regulatory
networks and financial markets. In such a system, one problem is ensuring the ability to
control a system behaviour independent of the size of the interconnections. This can be
characterised as a “scalability” property.

A particular focus in this thesis is passive interconnections in a chain of masses where
a single point is subject to an external disturbance. The primary motivating example is the
vibration control problem in multi-storey buildings subjected to earthquake disturbances.
One of the main objectives for seismic design is to limit the interstorey displacements in
response to disturbances. For this purpose, the installation of passive control devices be-
tween floors is widely accepted, e.g., [Constantinou et al., 1998; Soong and Dargush, 1997;
Takewaki, 2009]. The thesis considers passive interconnections of the most general type,
which may require the use of inerters [Smith, 2002] in addition to springs and dampers.

Another example is bidirectional control of vehicle platoons albeit with the passivity
constraint. An example of such a system is an automated highway system (AHS) which is
a transportation system in which vehicles are fully automated so that they travel together
tightly [Rajamani, 2005]. Bidirectional control schemes are one of the decentralised control
strategies for vehicle platooning in which the control action for each vehicle is dependent on
the spacing errors with the preceding vehicle and the following vehicle. Such a scheme has
an advantage that the necessary information can be obtained by on-board sensors alone and
it does not require sophisticated inter-vehicular communication [Barooah et al., 2009; Seiler
et al., 2004]. However, some literature has reported that platoons using symmetric bidirec-
tional control schemes are not scalable in the sense of lp string stability which has been
proposed in [Swaroop and Hedrick, 1996] and widely accepted as a measure of scalability
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in this field. In [Barooah and Hespanha, 2005] a general result has been shown that, using
symmetric bidirectional control, the infinity norm of the transfer function vector from lead
vehicle trajectory to spacing error grows without bound as the number of vehicles increases,
if the combined vehicle-controller dynamics contains a double integrator. This corresponds
to a positive static (spring) stiffness in the case of a mass chain with passive interconnection,
which is the usual case. However, it is a central point in this thesis to draw attention to the
fact that this measure may be too restrictive in general in the sense that the increasing length
of the error vector with the string length is playing a role in the unboundedness property.

Accordingly, this thesis proposes to employ the H∞-norm of individual entries of the
error vector as a scalability measure. The thesis will go on to show that this measure is
uniformly bounded with a suitable interconnection. The approach to prove uniform bound-
edness makes use of complex iterative maps. In particular, it is shown that the error transfer
functions can be defined recursively in N and these recursions can be interpreted as com-
plex iterative maps, more specifically, iterated Möbius transformations. It will be seen that
the properties of Möbius transformations provide additional insight into the asymptotic be-
haviours of the transfer functions beyond the uniform boundedness property. A graphical
means to design a suitable interconnection impedance is also provided so that the supremum
of the H∞-norm over N is no greater than a prescribed value. This can be thought of as an
H∞ control design for an infinite family of plants in which the interconnection impedance
is the controller.

The thesis goes further to build a design methodology for a fixed length of the mass
chain. For seismic design of a multi-storey building, it is important to ensure that the in-
terstorey drifts are well suppressed during an earthquake. A case study is presented to
demonstrate the effect of the techniques using a benchmark model of a 10-storey building.

1.1 Outline

This thesis is structured as follows:

Chapter 2 provides an overview of the theory and facts on passive mechanical networks
and vibration control in buildings. It begins with terminologies and definitions in
the field of passive mechanical network and introduces some significant achieve-
ments in this field. The chapter then continues to give a comprehensive review on
basic principles and techniques for vibration control in buildings, in particular against
earthquakes. Devices that interconnects neighbouring storeys (interstorey devices) are
mainly discussed as a control technique. Several types of dampers are introduced and
some recent works on inerters for a building application are also presented. Charac-
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teristics of earthquake ground motions are then discussed introducing some historical
earthquakes, mainly in the context of frequency domain analysis. The chapter con-
cludes with an overview of vehicle platooning, including a comprehensive review of
relevant literature in this field.

Chapter 3 introduces a mass chain model with passive interconnections. The chapter starts
with describing how a multi-storey building with base excitation is modelled as a pro-
posed mass chain model. Identical masses and identical interconnections are consid-
ered, i.e., a homogeneous mass chain. Then the transfer functions from a movable
point to a given intermass displacements are described as a function of a dimension-
less parameter depending on the interconnection impedance and mass. The stability of
the system is then studied in this chapter. The connection to a symmetric bidirectional
control problem of a vehicle platoon is also discussed.

Chapter 4 studies the transfer functions defined in Chapter 3. They are described in the
form of iterated Möbius transformations. The asymptotic behaviours of them are
first discussed. Then it is shown that the H∞-norm of these transfer functions are
uniformly bounded with respect to the number of masses N for a suitable choice of
the interconnection impedance. These results are also illustrated graphically in this
chapter.

Chapter 5 proposes a design methodology for a specific length of the mass chain in the
context of seismic design of a multi-storey building. A graphical technique is in-
troduced to choose a suitable interconnection. Several interconnection designs are
studied using a homogeneous 10-storey building model. The vibration suppression
performance of these designs is numerically tested for a 10-storey building model
which has a non-identical stiffness distribution. Weighting functions are introduced
based on the well-known Clough-Penzien and Kanai-Tajimi acceleration filter to rep-
resent the characteristics of earthquakes. Vibration suppression performance of these
designs is compared with respect to the frequency response and the time response
against some historical earthquakes.

Chapter 6 introduces some open problems related to the thesis. A conjecture on the uni-
form boundedness of disturbance amplification by the value one is discussed for the
transfer functions introduced in Chapter 4. Although an analytical proof has not been
obtained, heuristic justifications are given for the first intermass case. The techniques
introduced in this chapter is possibly useful for the exact computation of uniform
bound. The chapter continues to pose conjectures on higher intermass displacements
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with respect to uniform boundedness.

Chapter 7 summarises the conclusions and contributions of the thesis. Future research
directions are also discussed.



CHAPTER 2

BACKGROUND

This chapter provides an overview of background theory that underlies the contributions in
this thesis. For this purpose, it presents a comprehensive review of relevant background
literature.

2.1 Overview of Passive Mechanical Networks

This section introduces some terminologies and definitions in passive mechanical networks.

2.1.1 Multi-port networks

A multi-port network is a physical device consisting of a collection of elements that are
connected according to some scheme. A port is a pair of access points called terminals or
nodes. At each port of the network, other elements or the port of another network may be
connected. A fixed reference point in an inertial frame is called the ground [Anderson and
Vongpanitlerd, 2006; Smith and Walker, 2000]. Each port has a pair of port variables, which
may be classified as a through-variable and an across variable. The concept of through- and
across-variables is the basis of the force-current analogy [Firestone, 1933]. A through-
variable has the same value at the two terminals or ends of the element, and to make the
measurement, the system must be severed at a measurement point. On the other hand, an
across-variable is specified in terms of a relative value or difference between the terminals
and can be measured without breaking into the system. The impedance is then defined
by the ratio of the across variable to the through variable and admittance is defined as the
reciprocal of impedance.
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2.1.2 Passive mechanical networks and mechanical elements

In mechanical networks, an equal and opposite force F is applied to a port and the port
experiences a relative velocity v [Shearer et al., 1971]. Figure 2.1 is a free body diagram of
a one-port mechanical network showing a positive v = v2 − v1 and a compressive force F .
The force F is the through-variable and the relative velocity v is the across-variable.

Mechanical NetworkF F

v2 v1

Fig. 2.1 A free-body diagram of a one-port (two-terminal) mechanical network.

In the sequel only mechanical elements with nonnegative constant element values are
concerened. The class of all such elements is linear, lumped, time-invariant and passive.
Passivity of a mechanical one-port network is defined as follows:

Definition 2.1 (Passivity). A mechanical one-port network with force-velocity pair (F, v)
is passive if for all square integrable pairs F (t) and v(t) on (−∞, T ],∫ T

−∞
F (t)v(t)dt ≥ 0. (2.1)

♢

For a multi-port network, (2.1) is replaced by∫ T

−∞
F (t)′v(t)dt ≥ 0 (2.2)

where F (t)′v(t) =
∑

j Fj(t)vj(t). The left hand side of (2.2) can be interpreted as the
total energy delivered to the network up to time T . Therefore, a passive network cannot
deliver energy to the environment. Furthermore, a passive network is lossless if it satisfies
the condition ∫ T

−∞
F (t)v(t)dt = 0

or, for a multiport network, ∫ T

−∞
F (t)′v(t)dt = 0.
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It can be interpreted that a passive mechanical network is lossless if all the energy which
are put into the network can be extracted again. The spring and inerter (see Remark 2.1) are
lossless elements. Any network which is not passive is termed active.

It can be shown that a linear time-invariant network is passive if and only if the impedance
Z(s) or the admittance Y (s) = Z(s)−1 is positive real.

Definition 2.2 (Positive realness). A real-rational function G(s) is positive real if (i) G(s)

has no poles in Re(s) > 0 (i.e., G(s) is analytic in the open right half plane) and (ii)
Re(G(s)) ≥ 0 in Re(s) > 0. ♢

In the aforementioned definition, (ii) is equivalent to (ii’): Re(G(jω)) ≥ 0 for all ω at
which G(jω) is finite, and any poles of G(jω) on the imaginary axis or at infinity are simple
and have a positive residue. A pole is said to be simple if it has multiplicity one. The residue
of a simple pole of G(s) at p0 is equal to lims→p0(s − p0)G(s). Poles and zeros of G(s) at
s = ∞ can be defined as the poles and zeros of G(s−1) at s = 0. Thus, the residue of a
simple pole at s = ∞ is equal to lims→∞G(s)/s.

The following two theorems are key results on classical electrical network theory.

Theorem 2.1 ([Anderson and Vongpanitlerd, 2006]). Consider a network with real-rational
impedance Z(s) (or admittance Y (s)). The network is passive if and only if Z(s) (or Y (s))
is positive real.

Theorem 2.2 ([Bott and Duffin, 1949; Brune, 1931]). Any real-rational positive-real func-
tions can be realized as the impedance or admittance of a network with inductors, capaci-
tors, and resistors only.

Historically, Brune first showed in [Brune, 1931] that any real-rational positive-real
function can be realized as the driving-point impedance of an electrical network consisting
of resistors, capacitors, inductors, and transformers, and later, Bott and Duffin established
the possibility of achieving the synthesis without the use of transformers in [Bott and Duffin,
1949]. Theorem 2.2 can now be restated in mechanical terms:

Theorem 2.3 ([Smith, 2002]). Any real-rational positive-real functions can be realized as
the impedance or admittance of a network with springs, inerters, and dampers only.

Remark 2.1. The inerter is a mechanical two-terminal, one-port device with the property
that the applied force at the terminals is proportional to the relative acceleration between
the terminals, i.e., F = b(v̇2 − v̇1) where b is the constant of proportionality called the
inertance which has units of kilograms [Smith, 2002] and v1, v2 are the terminal velocities.
The inerter completes a standard analogy between mechanical and electrical networks which
allows classical results from electrical network synthesis to be translated over exactly to
mechanical systems. ♡
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2.2 Overview of Vibration Control in Buildings

This section provides an introduction to vibration control in building structures.

2.2.1 Basic principles and classification of control systems

In addition to gravity loads, buildings are often subjected to dynamic loads caused by winds,
earthquakes, road traffic etc. Although the characteristics of these types of loads are very
different from gravity loads which are static, the traditional approach treats such loads in the
same way for gravity loads. For example, winds and earthquake forces are often idealised
as lateral static loads of suitable magnitude and buildings are designed to resist such loads
by elastic action of the structure. This is based on the philosophy that for winds and small
earthquakes the building remains elastic and it is permitted to be damaged but not collapsed
by moderate or severe earthquakes. Although this approach has been reasonably successful,
more improvements can be achieved by considering the dynamic nature of these loads.

Various vibration control devices have been developed for this purpose. These devices
may be classified as passive, active or semi-active in terms of the external energy supply to
the device. Semi-active and active control devices control the motion of a structure through
external energy supply. However, semi-active control devices normally require only a little
amount of energy to adjust their mechanical properties. Active control devices require more
energy but can add energy to the structure using actuators. On the other hand, passive con-
trol devices consist of passive mechanical components only and do not require an external
supply of power. For seismic design, passive or semi-active control systems are normally
employed since it is not realistic to store huge amount of energy for severe earthquakes
which may happen in every decades.

Another classification of those control devices is based on how the device is imple-
mented in a structure. In this classification, the control systems may be classified broadly
into three categories [Takewaki, 2009]: base-isolation type, tuned mass damper (TMD) type
and interstorey type.

A base-isolation system is typically placed at the foundation of structure. The idea of
base isolation is to partially reflect and partially absorb the earthquake input energy before
this can be transmitted to the superstructure by means of its flexibility and energy absorption
capability. Elastomeric bearings, lead rubber bearings, sliding friction pendulum are the
examples of this type. They are normally designed to be effective for moderate to severe
earthquakes but not for winds or small earthquakes.

The simplest form of TMD consists of an auxiliary mass-spring-dashpot system an-
chored or attached to the main structure There are also active type in which an actuator is
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(a) Diagonal bracing type (b) Chevron bracing type

(c) V bracing type (d) Stud type

Fig. 2.2 Typical configurations of interstorey-installment type control devices in a building
frame.

used to move the auxiliary mass and semi-active type in which the mechanical parameters
of TMD are adjustable. A TMD is typically placed at the top of a building. They are mainly
used to suppress the vibration caused by winds.

The basic principle of control using interstorey devices, i.e., devices interconnecting
neighbouring storeys, is to add energy dissipation capability to the structure by installing
additional devices to reduce the damage of a structure. Therefore main components of this
type of control are energy dissipation devices such as various type of dampers. The other
devices such as the inerter may be incorporated to enhance the performance. The devices are
normally incorporated in a brace or a stud. Typical configurations are illustrated in Fig. 2.2.
The focus of this thesis is on this type of passive control systems. In the next section, some
examples of passive energy dissipation devices used in this control system are reviewed as
well as the inerter.
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2.2.2 Passive vibration control devices

This section gives a brief introduction to the typical passive energy dissipation devices and
the inerter and its similar devices for building vibration control.

Passive energy dissipation devices

The major types of passive energy dissipation devices can be classified into viscous fluid
dampers, viscoelastic dampers, metallic dampers and friction dampers. Note that there are
so many configurations of these devices that only some basic ones are introduced here.
More detailed reviews can be found in, for example, [Constantinou et al., 1998; Soong and
Dargush, 1997; Symans et al., 2008].

Viscous fluid dampers consist of a cylinder filled with viscous fluid. The piston head has
small orifices and as the damper piston rod and piston are stroked, fluid is forced to
flow through orifices either around or through the piston head causing friction. Prop-
erties are typically frequency and temperature independent. The idealised constitutive
model is a dashpot.

Viscoelastic dampers generally consist of viscoelastic materials bonded to steel plates.
Copolymers or glassy substances are typically used as viscoelastic materials. Prop-
erties are normally frequency and temperature dependent. Constitutive models of
viscoelastic dampers include the Maxwell model, the Kelvin-Voigt model (Fig. 2.2.2)
and complex combination of these elementary models. The suitable models depend
on the materials used for a damper. However, each model has drawbacks in terms of
its accuracy. More detailed discussion can be found in the literature, e.g., [Soong and
Dargush, 1997].

Metallic dampers dissipate energy due to the inelastic deformation of a metal. Usually
that metal is mild steel. Two major types of metallic dampers are buckling-restrained
brace (BRB) dampers and added damping and stiffness (ADAS) dampers. A BRB
damper consists of a steel core usually having a low-yield strength supported by a
concrete casing in order to prevent buckling. An ADAS damper consists of a series
of steel plates made of mild steel. The bottom of the plates are attached to the top of
a chevron bracing and the top of the plates are attached to the floor level above the
bracing (see Fig. 2.2b). They have a stable hysteretic behaviour. However, devices
are damaged after a severe earthquake and may need to be replaced.

Friction dampers employ solid sliding friction as their basic dissipative mechanism. There
are two solid bodies and they slide over each other during an earthquake. There is a
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(a) Kelvin-Voigt model (b) Maxwell model

Fig. 2.3 Constitutive models of viscoelastic dampers.

reliability concern since the sliding interface conditions may change during the cycle.
The device needs some sort of restoring force mechanism since it leaves permanent
displacements otherwise.

Note that metallic dampers and friction dampers both show highly nonlinear behaviour and
are out of scope of this thesis.

Inerter

As introduced in Section 2.1.2, the inerter is a mechanical device with the property that
the applied force at the terminals is proportional to the relative acceleration between the
terminals. Various physical realisations of an inerter are proposed in [Smith, 2002] and
[Smith, 2005]. Laboratory experimental testing of two types of inerter devices has been
reported in [Papageorgiou et al., 2009; Papageorgiou and Smith, 2005]. The first type is
the rack-and-pinion inerter and the second is the ball-screw inerter. Testing of a hydraulic
inerter was reported in [Wang et al., 2011].

Some successful applications of the inerter have been reported on vehicle suspensions [Pa-
pageorgiou and Smith, 2006; Smith and Wang, 2004], mechanical steering compensators of
high-performance motorcycles [Evangelou et al., 2007; Papageorgiou and Smith, 2007],
vibration absorption [Smith, 2002] and rail suspensions [Jiang et al., 2012; Wang et al.,
2009].

Applications of inerters for building vibration suppression have been also extensively
studied in the recent years. Some early arrangements in the literature can be interpreted
as acting like inerters in combination with other elements, e.g., [Arakaki et al., 1999a,b;
Okumura, 1997; Pradono et al., 2008]. These devices are sometimes referred to as “inertia
mass”, “inertial dampers”, “dynamic mass”, “angular mass damper” etc. Throughout the
thesis, the term “inerter” is used.
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Following the development of such devices, effective ways to use the inerter have been
investigated. A mode isolation method has been proposed in [Furuhashi and Ishimaru, 2004,
2006] in which inerters are placed in parallel to the storey stiffness in a multi-storey build-
ing so that the higher modes of vibration disappear. Also for a parallel inerter arrangement,
[Takewaki et al., 2012] has introduced an “influence vector”, though this is not clearly re-
lated to disturbance transmission paths. Enhancing the performance of the inerter has also
been considered by combining it with properly tuned springs and dampers, e.g., a tuned
viscous mass damper (TVMD) [Ikago et al., 2012a,b; Saito et al., 2007, 2008], a tuned-
inerter-damper (TID) [Lazar et al., 2014] and a tuned-mass-damper-inerter (TMDI) [Gi-
aralis and Taflanidis, 2015; Marian and Giaralis, 2014]. Those ideas have been mainly
inspired by TMDs and the fixed-point theory of Hartog [Hartog, 1985], which is an optimal
tuning method for TMDs employed for selecting the device parameters. A tuning method
for TVMDs in a multiple-degree-of-freedom (MDOF) building has also been proposed in
[Ikago et al., 2012a] based on a modal analysis.

These design methods, however, may only be applicable to a specific device. Although
the problem setup considered in [Wang et al., 2007, 2010] is applicable to more general
classes, the optimisation algorithms used in these articles resulted in a design which gives
a large resonance peak outside of the frequency range considered. This suggests that more
careful analysis will be required for incorporating inerters in buildings. This thesis proposes
a systematic and an intuitive design methodology which covers any layouts consisting of
springs, dampers and inerters in Chapter 5.

2.2.3 Characteristics of earthquake ground motions

Dynamic loads such as winds and earthquakes are dominant over certain frequency range.
The motion produced during an earthquake is complex and the dominant frequency range
varies. Loosely speaking, a rapid movement or a slip of a fault within the Earth’s crust due
to a sudden release of energy in its interior generates seismic waves and the characteristics
of these waves are not unique. Furthermore, these seismic waves are modified by the soil
and rock on the path before reaching the Earth’s surface, and also by the soil condition of
the ground beneath a building.

The acceleration records of historical earthquakes of (a) the 1940 Imperial Valley earth-
quake, El Centro record, north-south component (El Centro 1940 NS), (b) the 1952 Kern
County earthquake, Taft Lincoln School record, east-west component (Taft 1952 EW), (c)
the 1968 Tokachi-oki earthquake, Hachinohe record, north-south component (Hachinohe
1968 NS) and the 1995 Kobe earthquake, Kobe JMA station record, north-south compo-
nent (JMA Kobe 1995 NS) are shown in Fig. 2.4. It may be observed that these seismic
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(d) JMA Kobe 1995 NS

Fig. 2.4 Ground acceleration of historical earthquakes.

waves have quite different characteristics. Their Fourier amplitude spectra are also shown
in Fig. 2.5.

Instead of these recorded earthquakes, simulated earthquakes taking account of the soil
condition at the site are often used to design or analyse a building. One of the most well-used
methods is to describe the ground acceleration wave as a product of a sample function z(t)

which has a stationary power spectral density and an envelope function g(t). As a power
spectral density function S(ω), a band-limited white noise model or the Kanai-Tajimi model
are often employed.

Definition 2.3 (Kanai-Tajimi Power Spectrum, [Kanai, 1957; Tajimi, 1960]).

SKT (ω) = |WKT (ω)|2S0 =

1 + 4η2g
ω2

ω2
g(

1− ω2

ω2
g

)2

+ 4η2g
ω2

ω2
g

S0
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(d) JMA Kobe 1995 NS

Fig. 2.5 Fourier amplitude spectra of ground acceleration of historical earthquakes. NS
represents North-South component and EW represents East-West component.
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Table 2.1 Parameters for the Kanai-Tajimi filter and the Clough-Penzien filter.

Soil condition
Kanai-Tajimi WKT Clough-Penzien WCP

ωg (rad/s) ηg ωf (rad/s) ηf

Rock or stiff soil conditions 8π 0.60 0.8π 0.60

Deep cohesion-less soils 5π 0.60 0.5π 0.60

Soft to medium clays and sands 2.4π 0.85 0.24π 0.85

where S0 is a constant determining the intensity of the ground acceleration at a site. Parame-
ters ωg and ηg may be thought of as some characteristic ground frequency and characteristic
damping ratio, respectively. ♢

The function

WKT (ω) =

1 + 2jηg
ω

ωg(
1− ω2

ω2
g

)
+ 2jηg

ω

ωg

(2.3)

is sometimes referred as the Kanai-Tajimi filter. Note that the Kanai-Tajimi power spectrum
takes non-zero value at zero frequency. Clough and Penzien has proposed an additional
filter multiplied by the Kanai-Tajimi filter to deal with this [Clough and Penzien, 1975]:

W (ω) = WCP (ω)WKT (ω) =

(
ω

ωf

)2

(
1− ω2

ω2
f

)
+ 2jηf

ω

ωf

WKT (ω). (2.4)

In this thesis, the filter WCP (ω) is called the Clough-Penzien filter and the filter WCP (ω)WKT (ω)

is called the Clough-Penzien-Kanai-Tajimi filter. Some suggested values for parameters
ωg, ηg, ωf , ηf in (2.3) and (2.4) for three different soil conditions are shown in Table 2.1 [De-
odatis, 1996]. Figure 2.6 shows the frequency response of WKT (ω) and WCP (ω)WKT (ω)

using the parameters for rock or stiff soil conditions in Table 2.1.

2.3 Overview of Vehicle Platooning

As the control problem in this thesis is closely related to the bidirectional control of a string
of vehicles, this section provides an introduction to vehicle platooning. Vehicle platoons
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Fig. 2.6 Frequency responses of Kanai-Tajimi filter WKT and Clough-Penzien-Kanai-Tajimi
filter WCPWKT for rock or stiff soil conditions.
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refer to groups of tightly spaced vehicles moving together in the same direction. A proposed
application of such systems is automated highway systems (AHS) where the vehicles are
fully automated. This section first introduces the basic idea of AHSs. An important concept
so-called “string stability” to control such a system is then discussed. The section finishes
with introducing some significant works in this field.

2.3.1 Automated highway system

In an AHS, the vehicles are fully automated to travel together in a tightly spaced platoon
as depicted in Fig. 2.7. The principal motivation is to increase the traffic capacity on a
highway by operating the vehicles at a closer spacing than human drivers can operate. As
data suggest [Varaiya, 1993] that 90% of highway accidents are caused by human error, the
AHS is also expected to improve the safety. An additional benefit is also pointed out that the
tightly spaced vehicles reduce aerodynamic drag which results in lower fuel consumption
and vehicle emissions. This effect is more significant for heavy-duty vehicles such as trucks
(e.g., [Alam, 2014]). More detailed reviews for AHSs including the technology used in the
systems can be found in, for example, [Hedrick et al., 1994; Horowitz and Varaiya, 2000;
Varaiya, 1993].

x0

x1

xN

. . .

Fig. 2.7 Platoon of N vehicles.

2.3.2 Vehicle platooning specification

A major objective for vehicle platooning is that each vehicle maintains a desired spacing
from the preceding vehicle while satisfying individual vehicle stability and string stability.
There are two spacing policies; a constant spacing policy which requires a desired spacing to
be fixed and a constant time headway policy in which a desired spacing is proportional to the
vehicle velocity. Individual vehicle stability refers to the specification of the spacing error
of a vehicle converging to zero when the preceding vehicle is operating at a constant speed
[Rajamani, 2005]. Spacing error here refers to the difference between the actual and the
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desired inter-vehicle spacing. If the preceding vehicle accelerates or decelerates, a spacing
error will appear and may propagate from vehicle to vehicle in a string. The concept of
string stability is to ensure that spacing errors are not amplified downstream in a platoon.
This property is often described as uniform boundedness of the response to disturbances
with respect to the size of a platoon. Although it has not always been referred to as string
stability, such a problem has been considered as early as [Chien and Ioannou, 1992; Ioannou
et al., 1993; Levine and Athans, 1966; Melzer and Kuo, 1971; Peppard, 1974] for example.
The following definitions of string stability proposed in [Swaroop and Hedrick, 1996] have
now been widely accepted.

Definition 2.4 (l∞ string stability). Consider the following interconnected system:

ẋi = f(xi, xi−1, . . . , xi−r+1) (2.5)

where i ∈ N, xi−j ≡ 0 ∀i ≤ j, x ∈ Rn, f : Rn × · · · × Rn︸ ︷︷ ︸
r times

→ Rn and f(0, . . . , 0) = 0.

Then the origin xi = 0, i ∈ N of (2.5) is string stable, if given any ϵ > 0, there exists a
δ > 0 such that

∥xi(0)∥∞ < δ ⇒ sup
i

∥xi(·)∥∞ < ϵ.

♢

Definition 2.5 (lp string stability). The origin xi = 0, i ∈ N of (2.5) is lp string stable if
given any ϵ > 0, there exists a δ > 0 such that

∥xi(0)∥p < δ ⇐⇒ sup
t

(
∞∑
1

|xi(t)|p
) 1

p

< ϵ.

♢

2.3.3 Control schemes and string stability

The control strategies for vehicle platooning can be classified into two broad categories:
centralised and decentralised. In the present context, centralised control schemes need the
inter-vehicle communication between all the vehicles in a platoon while decentralised con-
trol schemes only require the information obtained by on-board sensors and possibly wire-
less communication with a limited number of vehicles.

There are two typical decentralised control schemes. One is a predecessor-following
scheme which is a control law based only on relative spacing error from the preceding vehi-
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cle (predecessor). The other is a bidirectional scheme where the control action on each ve-
hicle is based on the relative spacing with respect to its immediate neighbours. On the other
hand, a predecessor-leader-following scheme is an example of centralised control schemes.
In this scheme, the information of the first vehicle in a platoon (leader) is communicated
to all the following vehicles in addition to a predecessor-following scheme. Optimal linear
quadratic regulator (LQR) methods considered in [Levine and Athans, 1966; Melzer and
Kuo, 1971] also typically result in centralised controllers.

Most of the control schemes, however, often experiences string instability under a con-
stant spacing policy. The difficulty is mainly due to the fact that the combined vehicle-
controller dynamics normally contains a double integrator. In particular, [Seiler et al., 2004]
has shown that for any linear controller disturbances are amplified as they propagate along
the string using a predecessor-following scheme. In [Barooah and Hespanha, 2005] it has
been shown that, using symmetric bidirectional control, the infinity norm of a spacing er-
ror vector due to deviation of lead vehicle trajectory grows without bound as the number
of vehicles increases. The term “symmetric” here implies that the control law is equally
dependent on the spacing errors with the predecessor and the following vehicle (follower).
It has also pointed out in [Jovanovic and Bamieh, 2005] that the solutions to the LQR meth-
ods in [Levine and Athans, 1966; Melzer and Kuo, 1971] are not scalable and that the least
stable eigenvalue of the closed loop tends to the imaginary axis as the size of the platoon
increases. The least stable closed-loop eigenvalue also tends to zero using a bidirectional
control scheme. The speed of the eigenvalue tending to zero can be made slower using
asymmetric bidirectional control than using symmetric one [Barooah et al., 2009].

Several ways to avoid string instability have been proposed. For example, [Seiler et al.,
2004] has shown that spacing errors can attenuate using a predecessor-leader-following
scheme. It has also been shown in [Lestas and Vinnicombe, 2007] that arbitrarily weak
coupling with the leader information makes symmetric bidirectional control schemes scal-
able, though this cannot be achieved with no leader information with respect to uniform
boundedness of the infinity norm. However, these centralised control schemes require a
global communication in a platoon and may encounter technical difficulties especially for a
large platoon. Indeed, it has been pointed out in [Middleton and Braslavsky, 2010] that lim-
ited forward communication range does not avoid string instability although it can reduce
the rate of disturbance amplification. Another way of avoiding string instability is using a
constant time headway policy [Swaroop and Rajagopal, 2001]. However, [Middleton and
Braslavsky, 2010] has reported that a small time headway is not much of help with respect
to string stability and a sufficiently large time headway is necessary.

Although some difficulties seem to exist to apply these decentralised control schemes
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for vehicle platooning as above, it may be noted that the results for symmetric bidirectional
control in [Barooah and Hespanha, 2005; Lestas and Vinnicombe, 2007] are based on an
analysis for uniform boundedness of the infinity norm of the transfer function vector and
the increasing length of the vector with the string length is playing a role in the unbounded-
ness property. In Chapter 4, it is shown that individual entries of the error vector is uniformly
bounded for a suitable choice of the interconnection when the system is subject to deviating
leader trajectory. This result could be viewed as a relaxation of the definition of string sta-
bility. Note that [Knorn et al., 2014] has considered a different alternative to string stability,
formulated in the time domain, and shown that this may be satisfied by a vehicle platoon
with integral action.

It is, however, worth noting that, in [Bamieh et al., 2012] it is observed that slow
accordion-like motion of the entire formation in a large vehicular platoon may not be in-
consistent with the spacing between each vehicle being well regulated.



CHAPTER 3

HOMOGENEOUS MASS CHAINS WITH PASSIVE INTERCON-

NECTION

3.1 Overview

A mass chain model with passive interconnection is introduced in this chapter. A lumped
mass system with base excitation is an elementary model to analyse the dynamical behaviour
of a multi-storey building during earthquakes. The interconnection of masses is often mod-
elled as a spring or other passive components in parallel to a spring i.e., a fixed-structure
admittance. In this thesis, a general passive admittance is employed as the interconnection to
capture common characteristics over the whole class of positive real functions. This chap-
ter first introduces how buildings are modelled as multi-degree-of-freedom lumped mass
systems with the interconnection of general admittances. The chapter continues to pose
the control problem of a chain of N identical masses in which there is an identical passive
interconnection between neighbouring masses and a similar connection to a movable point.

The transfer functions from a movable point displacement to a given intermass displace-
ments are studied. They correspond to inter-storey displacements of a building which should
be well suppressed to prevent damage to buildings, not only the structural components but
also utilities like water or gas pipes. They are described as a function of a dimensionless
parameter h depending on the impedance and mass. Then an explicit condition for stability
of the system is provided.

The problem is closely related to the spacing control of a vehicle string. The final section
in this chapter discusses this point further.
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3.2 A Lumped Mass System with Base Excitation

The shear-type building model of Fig. 3.1a is an idealised model for analysing the seismic
response of a building. It is assumed that:

1. The distributed mass of the structure is lumped at equidistant floor levels.

2. The floor slabs are infinitely rigid and do not rotate during deformation.

3. The columns or the walls are axially inextensible but laterally flexible so that the entire
shear stiffness at any column level is concentrated in one linear elastic shear spring.

4. There is no foundation rotation.

It is also assumed that the ground motion is essentially horizontal. There are several ways
of approximating the shear stiffness, which are reviewed in [Schultz, 1992]. A shear-type
building model is equivalent to the multi-degree-of-freedom (MDOF) lumped mass system
of Fig. 3.1b.

m1

m2

m3

m4

k1

k2

k3

k4

c1

c2

c3

c4

x0

x1

x2

x3

x4

(a) A damped shear-type building model.

m1 m2 m3 m4

k1 k2 k3 k4

c1 c2 c3 c4

x0 x1 x2 x3 x4

(b) A damped MDOF lumped mass model.

Fig. 3.1 Multi-storey building models.
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m m mZ Z Z

x0 x1 x2 xN

. . .

Fig. 3.2 Chain of N masses m connected by a passive mechanical impedance Z(s) (admit-
tance Y (s) = Z(s)−1), and connected to a movable point x0.

3.3 Problem Formulation

In the previous section, an MDOF lumped mass system has been introduced. In the sequel,
the interconnection of the masses is modelled as a general passive mechanical admittance in-
stead of a fixed structure to capture common characteristics over the whole class of positive
real functions. As the simplest case, a homogeneous mass chain is considered, i.e., a chain
of N identical masses m connected by identical passive mechanical networks (Fig. 3.2).
Each passive mechanical network provides an equal and opposite force on each mass and
is assumed here to have negligible mass. The system is excited by a movable point x0(t)

and the displacement of the ith mass is denoted by xi(t), i ∈ {1, 2, . . . , N}. Assume that
the initial conditions of the movable point and the mass displacements are all zero. The
equations of motion in the Laplace transformed domain are

ms2x̂i = sY (s)(x̂i−1 − x̂i) + sY (s)(x̂i+1 − x̂i) for i = 1, . . . , N − 1,

ms2x̂N = sY (s)(x̂N−1 − x̂N)

whereˆdenotes the Laplace transform. In matrix form this can be written as

ms2x̂ = sY (s)HN x̂+ sY (s)e1x̂0

and hence
x̂ = (h(s)IN −HN)

−1e1x̂0 (3.1)
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where IN is the N ×N identity matrix,

h(s) = sZ(s)m, Z = Y −1,

x̂ = [x̂1, . . . , x̂N ]
T,

e1 ∈ RN , e1 = [1, 0, . . . , 0]T,

HN ∈ RN×N ,

HN =



−2 1 0 · · · 0

1 −2 1
. . . ...

0
. . . . . . . . . 0

... . . . 1 −2 1

0 · · · 0 1 −1


.

Consider the characteristic polynomials di of Hi ∈ Ri×i in the variable h given by

di = det(hIi −Hi)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h+ 2 −1 0 . . . 0

−1 h+ 2 −1
. . . ...

0
. . . . . . . . . 0

... . . . −1 h+ 2 −1

0 . . . 0 −1 h+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.2)

for i = 1, . . . , N . Then d1 = h + 1. Suppose also d−1 = 1 and d0 = 1. Using the Laplace
expansion of (3.2), we find that

di(h) = (h+ 2)di−1(h)− di−2(h) for i = 1, . . . , N. (3.3)
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Equation (3.1) can be written using di as

x̂ =
adj(h(s)IN −HN)

det(h(s)IN −HN)
e1x̂0

=
1

dN


dN−1 ∗ · · ·

...
...

d0 ∗ · · ·





1

0

...

0


x̂0

=


dN−1/dN

...

d0/dN

 x̂0. (3.4)

Then the intermass displacement of the ith mass defined by δi = xi − xi−1 in the Laplace
domain is given by

δ̂i =
dN−i − dN−i+1

dN
x̂0 =: Tx̂0→δ̂i

x̂0 (3.5)

for i = 1, . . . , N .

3.4 Stability of Passive Interconnection

The stability of the system of Fig. 3.2 is discussed in this section. It is firstly shown that,
treating h as the independent variable, the sequence di(h) defined by (3.2) are Hurwitz with
real distinct roots in the interval (−4, 0) for i = 1, 2, . . . and form a Sturm sequence.

Theorem 3.1.

1. di(h) has negative real distinct roots which interlace the roots of di+1(h) for i =

1, 2, . . . .

2. The roots of di(h) lie in the interval (−4, 0) for i = 1, 2, . . . .

Proof.

1. It is evident that di(0) = 1 and di(h) are continuous and monic for all i. Let
am for m = 1, . . . , n+1 denote the roots of dn+1(h) and bm the roots of dn(h) for m =

1, . . . , n. Suppose the result holds for i = n, namely, 0 > a1 > b1 > a2 >
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b2 > · · · > an > bn > an+1. Since dn+1(0) = 1 and dn+2(a1) = −dn(a1) < 0,
dn+2(h) has at least one root in (a1, 0). Similarly, dn+2(h) has at least one root
in each interval (am, am−1) for m = 2, . . . , n + 1 since dn+2(am−1)dn+2(am) =

(−dn(am−1))(−dn(am)) < 0 using (6.2). Further dn(h) and dn+2(h) have the same
sign in the limit as h → −∞, which is opposite to that of dn+1(h). This implies there
exists at least one root of dn+2(h) in (−∞, an+1). Since dn+2(h) has at most n + 2

roots, it has exactly one root in each interval. Hence the result holds for i = n+ 1. It
is straightforward to check the case of i = 1, and the proof then follows by induction.

2. Let P = ∪Nσ(HN) where σ(· ) denotes the spectrum. Note that a Gershgorin disc
bound on the eigenvalues of HN [Barooah and Hespanha, 2005; Horn and Johnson,
1999; Lestas and Vinnicombe, 2007] (this holds for all N ) implies P ⊂ [−4, 0]. It is
straightforward to check that di(0) = 1 and di(−4) = (−1)i(2i+1). Hence, the roots
of di(h) lie in the interval (−4, 0).

■

Note that here the stability of the system of Fig. 3.2 implies that all poles in the transfer
functions Tx̂0→δ̂i

have negative real parts (in the s-domain). Note that [Hara et al., 2014]
has investigated the stability of systems which are a generalised version of our model using
the notion of “generalized frequency variables.” Here we provide an explicit condition for
stability for a general N .

Theorem 3.2. For 0 ̸≡ Z(s) positive real, the system of Fig. 3.2 is stable if sZ(s)m does
not take values in the interval (−4, 0) for any s with Re(s) = 0.

Proof. From (3.4), poles in Tx̂0→δ̂i
can only occur at an s for which dN(h(s)) = 0. From

[Brune, 1931] (Theorem VI) Re(Z(s)) > 0 for Re(s) > 0. The result now follows from
Theorem 3.1. ■

3.5 Bidirectional Control in Vehicle Platoons

The control problem introduced in the previous section is similar to the problem of symmet-
ric bidirectional control of a vehicle string, albeit with a passivity constraint. This is one of
the longitudinal control schemes for vehicles to travel together in a tightly spaced platoon
in an automated highway systems (AHS).

In the constant spacing policy, the aim of the control is to keep a desired spacing be-
tween successive vehicles when each vehicle in a platoon follows a lead vehicle that moves
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independently (Fig. 3.3). The position of the leader is denoted by x0(t) and the ith follow-
ing vehicle is denoted by xi(t), i ∈ {1, 2, . . . , N}. The spacing error of the ith vehicle is
then defined by xi−1(t)− xi(t)− L where L is a desired spacing. Symmetric bidirectional
control schemes use only the local spacing information from the immediate neighbours (the
predecessor and the follower) and the control law is equally dependent on the spacing errors
with the predecessor and the follower. The following assumptions or similar are often made
to consider this problem [Barooah and Hespanha, 2005; Barooah et al., 2009; Lestas and
Vinnicombe, 2007; Seiler et al., 2004]:

1. All vehicles have the same dynamical model.

2. This dynamical model is linear, single-input-single-output and the combined vehicle-
controller dynamics has two integrators.

3. All vehicles use the same control law.

4. The desired spacing is a constant.

5. The string of vehicles start with zero spacing errors and the lead vehicle starts at
x0(0) = 0.

With these assumptions, the mass chain model of Fig. 3.2 applies to a platoon of vehicles.

x0

x1

xN

. . .

Fig. 3.3 Platoon of N vehicles.





CHAPTER 4

RECURSIVE FEATURES AND UNIFORM BOUNDEDNESS IN HO-

MOGENEOUS MASS CHAINS

4.1 Overview

In the previous chapter, the transfer functions from the ground displacement to a given inter-
mass displacement in a chain of N identical masses are introduced as a function of a com-
plex dimensionless parameter h. It is shown in this chapter that these transfer functions are
given recursively in N and therefore interpreted as a complex iterative map, i.e., a sequence
of complex numbers for a given fixed h. In particular, each map takes the form of a Möbius
transformation which has a rich mathematical background. To understand the behaviour
of these transfer functions against the change of system size, this chapter investigates the
dynamics of these iterated Möbius transformation. The conditions on h for the convergence
to fixed points are firstly derived. These fixed points determine the asymptotic behaviours
of the transfer functions. Subsequently these functions are shown to be uniformly bounded
with respect to N for a suitable choice of h. As mentioned in the introduction, in [Barooah
and Hespanha, 2005] it has been shown that, in the context of automatic control of vehicles,
the infinity norm of the vector of these transfer functions grows without bound as the number
of vehicles increases, if the combined vehicle-controller dynamics contains a double inte-
grator. This chapter focuses on the scalar transfer functions since well-regulated individual
intermass displacements may be a satisfactory performance objective for buildings. The
results are also illustrated graphically which are useful to design a suitable interconnection
impedance so that the supremum of the H∞-norm over N is no greater than a prescribed
value.
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4.2 Möbius Transformation

This section gives mathematical preliminaries which are used in this chapter.

Definition 4.1 ([Needham, 1997]). A Möbius transformation is a mapping of the form

f(z) =
az + b

cz + d

where a, b, c, d ∈ C and ad− bc ̸= 0. When ad− bc = 1, the Möbius transformation is said
to be normalised. ♢

Definition 4.2 ([Beardon, 2001; Needham, 1997]). For a normalised Möbius transformation

f(z) =
az + b

cz + d
, ad− bc = 1,

trace2(f) = (a+ d)2. Now suppose f is not the identity map. Then

1. f is parabolic if and only if (a+ d)2 = 4.

2. f is elliptic if and only if (a+ d)2 ∈ [0, 4).

3. f is loxodromic if and only if (a+ d)2 ̸∈ [0, 4].

♢

Note that the above definition uses the terminology of [Beardon, 2001] in which hyperbolic
maps are a subclass of loxodromic maps. The class of loxodromic maps divides into two
subclasses: a loxodromic map is hyperbolic if and only if (a + d)2 ∈ (4,+∞), and it is
strictly loxodromic if and only if (a+ d)2 ̸∈ [0,+∞).

Taking conjugation is one of the most important technique in studying Möbius transfor-
mations [Beardon, 2001].

Definition 4.3 (Conjugation). Let f1 and f2 be two Möbius transformations. Then f1 and
f2 are called conjugate if there exists a Möbius transformation φ with f1 = φ−1 ◦ f2 ◦φ. ♢

The transformation f1 = φ−1 ◦ f2 ◦ φ is called a conjugacy transformation. The classifi-
cation given in Definition 4.2 is now characterised in terms of the geometric action of the
transformations as follows: A Möbius transformation f is

1. parabolic if it is conjugate to z 7→ z + 1;

2. elliptic if it is conjugate to z 7→ κz for some κ with |κ| = 1, κ ̸= 1;

3. hyperbolic if it is conjugate to z 7→ κz for some κ with κ > 0 and κ ̸= 1;

4. loxodromic if it is conjugate to z 7→ κz for some κ with |κ| ≠ 0, 1.
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4.3 Intermass Displacements

In the previous chapter, the transfer functions Tx̂0→δ̂i
from the movable point displacement

x0 to the ith intermass displacement δi in a homogenous mass chain are introduced as

Tx̂0→δ̂i
=

dN−i − dN−i+1

dN
for i = 1, . . . , N,

where

di = det(hIi −Hi) for i = 1, . . . , N, (4.1)

Hi =



−2 1 0 · · · 0

1 −2 1
. . . ...

0
. . . . . . . . . 0

... . . . 1 −2 1

0 · · · 0 1 −1


∈ Ri×i

which satisfies the following recursion

di(h) = (h+ 2)di−1(h)− di−2(h) for i = 1, . . . , N (4.2)

supposing d−1 = 1 and d0 = 1. In the following theorem Tx̂0→δ̂i
is represented in the form

of complex iterative maps.

Theorem 4.1. For any i = 1, 2, . . . , intermass displacements in a chain of N masses satisfy
the recursion:

−Tx̂0→δ̂i
=: F

(i)
N =

di−2F
(i)
N−1 + h

F
(i)
N−1 + di

(4.3)

for N = i, i+1, . . . , where Tx̂0→δ̂i
is the transfer function from the disturbance x0 to the ith

intermass displacement δi, F
(i)
i−1 = 0, h(s) = sZ(s)m and di is as defined in (4.1).

Proof. See Appendix 4.A. ■

The above recursion describes a sequence of transfer functions in the complex variable
s. It can also be interpreted as a complex iterative map [Devaney, 1989] for a given fixed
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s ∈ C, or equivalently a fixed h ∈ C. In particular, writing

fi(z) =
di−2z + h

z + di
(4.4)

the sequence F (i)
N for N = i−1, i, i+1, . . . is the same as 0, fi(0), fi(fi(0)), . . . for a given

h ∈ C. This is called the orbit of 0 for the recursion (complex iterative map) defined by
(4.4).

4.3.1 Convergence to Fixed Points

A complex number µ is called a fixed point of a mapping f if f(µ) = µ. For a fixed h ∈ C,
the sequence F

(i)
N in (4.3) has at most two fixed points µ = µ

(i)
± which satisfy

µ2 + (di − di−2)µ− h = 0. (4.5)

It may be observed that (4.4) takes the form of a Möbius transformation which has the
normalised form

fi(z) =
az + b

cz + d
(4.6)

where a = di−2/di−1, b = h/di−1, c = 1/di−1, d = di/di−1 and ad− bc = 1 since

di−2di − d2i−1 = h (4.7)

which is easily shown by induction using (4.2).
The properties of the recursion (4.3) are then determined by trace2(fi) = (a + d)2 =

(h + 2)2 with fi in (4.6) as follows: fi is (i) parabolic when h = 0 or −4, (ii) elliptic when
h ∈ (−4, 0) and (iii) loxodromic when h ̸∈ [−4, 0]. The following theorem can be shown
by the use of a conjugacy transformation.

Theorem 4.2.

1. When h = 0 or −4, there is a unique fixed point, in this case µ
(i)
+ , and the sequence

{F (i)
N } defined by (4.3) converges pointwise for any initial condition.

2. When h ∈ (−4, 0), {F (i)
N } fails to converge for any initial condition other than the

fixed points.

3. When h ̸∈ [−4, 0], there are two fixed points, an attractive fixed point and a repulsive
fixed point, in this case µ

(i)
+ and µ

(i)
− respectively, and {F (i)

N } converges pointwise to
µ
(i)
+ for any initial condition other than µ

(i)
− .
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□

For the specific case of the orbit of 0, Theorem 4.2 specialises to: {F (i)
N } converges to

µ
(i)
+ when h ̸∈ (−4, 0) but fails to converge otherwise. Hence, if h(s) ̸∈ (−4, 0) for all s ∈

C+, supω limN→∞ |F (i)
N (h(jω))| = supω |µ

(i)
+ (h(jω))|. Furthermore, supω |µ

(i)
+ (h(jω))| ≤

supN ∥F (i)
N (h(s))∥∞ (since |µ(i)

+ (h(jω))| = limN→∞ |F (i)
N (h(jω))|). In Theorem 4.4 it is

shown that |µ(i)
+ (h)| < 2 for any h ̸∈ [−4, 0]. However, it is not clear whether supN ∥F (i)

N ∥∞
can be suitably bounded or indeed whether it is finite. This result will be shown in The-
orem 4.5. The proof relies on the conjugacy transformation of fi(z) which is explicitly
described in the next theorem.

Theorem 4.3. For h ̸∈ [−4, 0]

fi(z) =
di−2z + h

z + di
= φ−1

i ◦ λi ◦ φi(z) (4.8)

with

φi(z) =
z − µ

(i)
+

z − µ
(i)
−
,

φ−1
i (z) =

µ
(i)
+ − zµ

(i)
−

1− z
,

λi(z) =
di−2 − µ

(i)
+

di−2 − µ
(i)
−
z (4.10a)

= ζ2z (4.10b)

where

ζ =
di−2 − µ

(i)
+

di−1

. (4.10c)

Moreover, ζ is independent of i and is the root of

ζ2 − (h+ 2)ζ + 1 = 0 (4.10d)

satisfying |ζ| < 1.

Proof. (4.8) with (4.10a) follows by direct algebraic computation. In Appendix 4.B it is
shown that (4.10b) and (4.10d) hold for ζ as defined in (4.10c). One can check directly that
(4.10d) has roots ζ+, ζ− satisfying |ζ+| < 1 < |ζ−| if and only if h ̸∈ [−4, 0]. In this case
(4.10c) holds with ζ = ζ+. ■
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Remark 4.1. For h ̸∈ [−4, 0], the labelling of the roots µ(i)
+ , µ

(i)
− of (4.5) can be determined

by finding the root ζ+ of (4.10d) which satisfies ζ+ < 1 and then solving (4.10c) for µ(i)
+ . ♡

Theorem 4.4. For h ̸∈ [−4, 0]

µ
(i+1)
+ = ζµ

(i)
+ (4.11)

and
|µ(i)

+ | < |µ(i−1)
+ | < · · · < |µ(1)

+ | < 2 (4.12)

where ζ is as defined in (4.10c).

Proof. Since ζ is independent of i,

ζ =
di−2 − µ

(i)
+

di−1

=
di−1 − µ

(i+1)
+

di
.

Therefore,

µ
(i+1)
+ =

diµ
(i)
+ + d2i−1 − di−2di

di−1

=
diµ

(i)
+ − h

di−1

(
see (4.7)

)
=

diµ
(i)
+ − (µ

(i)
+

2
+ (di − di−2)µ

(i)
+ )

di−1

(
see (4.5)

)
=

di−2 − µ
(i)
+

di−1

µ
(i)
+

= ζµ
(i)
+ .

Since |ζ| < 1 if h ̸∈ [−4, 0] and µ
(1)
+ = 1− ζ given by substituting i = 1 in (4.10c),

|µ(i)
+ | < |µ(i−1)

+ | < · · · < |µ(1)
+ | = |1− ζ| < 2.

■

Remark 4.2. Equation (4.11) holds also for h ∈ [−4, 0]. In particular, if h = 0 or −4,
(4.10d) has a multiple root and (4.10c) determines a unique fixed point. If h ∈ (−4, 0), two
roots of (4.10d) ζ+ and ζ− satisfy |ζ+| = |ζ−| = 1, and either root may be selected for ζ+
with µ

(i)
+ then determined by (4.10c). Consequently, if h ∈ [−4, 0], |µ(i)

+ | = |µ(i−1)
+ | = · · · =

|µ(1)
+ | ≤ 2. The equality |µ(1)

+ | = 2 holds only when ζ = −1 corresponding to h = −4. ♡
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4.4 Bounds on Iterative Maps

Considering the orbit of 0 for (4.8), for N = i− 1, i, . . . ,

F
(i)
N = fN−i+1

i (0) = φ−1
i ◦ λN−i+1

i ◦ φi(0)

= µ
(i)
+

1− ζ2(N−i+1)

1− µ
(i)
+

µ
(i)
−
ζ2(N−i+1)

= µ
(i)
+

1− ζ2(N−i+1)

1 + ζ2N+1
(4.13)

since
φi(0) = µ

(i)
+ /µ

(i)
− = −ζ2i−1 (4.14)

(see Appendix 4.C).
Now upper bounds on |F (i)

N | are established for suitable choices of h(s) making use of
(4.13) .

Theorem 4.5. Suppose Z(s) = (k/s+ Ya(s))
−1 where k is a positive constant and Ya(s)

is a positive-real admittance satisfying Ya(0) > 0. Suppose h(jω) = mjωZ(jω) does not
intersect the interval [−4, 0) for any ω ≥ 0. Then

sup
N≥i

∥∥∥F (i)
N (h(s))

∥∥∥
∞

is finite for any i = 1, 2, . . . .

Proof. See Appendix 4.D. ■

Note that the condition that h(s) does not intersect [−4, 0) is equivalent to mωZ(jω) not
touching the imaginary axis between (0, j4] since Z(s) is positive real (Re(Z(jω)) ≥ 0 for
all ω). This essentially means that the mechanical impedance does not behave in a purely
lossless manner for any frequencies for which mωZ(jω) ∈ (0, j4], which is a very mild
condition that is easy to satisfy (and hard to violate) in practice. The condition Ya(0) > 0

can be interpreted in the same manner.
Theorem 4.5 shows that the individual transfer functions from x0 to a given intermass

displacement are uniformly bounded with respect to the size of the chain of masses for a
suitable choice of h. It is evident that the increasing length of the error vector as N → ∞
is playing a role in the unboundedness property of [Barooah and Hespanha, 2005], and that
the unboundedness of the vector need not imply that the H∞-norm of individual entries is
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unbounded with N . In this sense our result could be viewed as a relaxation of the definition
of string stability.

Remark 4.3. The proposed measure satisfies basic properties of norms:

sup
j

∥xj∥∞ = 0 if and only if xj = 0 for all j,

sup
j

∥αxj∥∞ = |α| sup
j

∥xj∥∞ ∀α ∈ C,

sup
j

∥xj + yj∥∞ ≤ sup
j
(∥xj∥∞ + ∥yj∥∞) ≤ sup

j
∥xj∥∞ + sup

j
∥yj∥∞ .

♡

4.4.1 Examples

For the purpose of graphical representations the inverse of h is now introduced:

g(s) = h−1(s) = Y (s)/(sm). (4.15)

From (4.13) the speed of convergence of F (i)
N to µ

(i)
+ is determined by |ζ|, with the slowest

convergence occurring for |ζ| close to 1. Fig. 4.1 shows a contour plot of |ζ| where h = g−1

which shows that the speed of convergence will be slower when g is closer to the real axis
between (−∞,−1/4) (corresponding to h ∈ (−4, 0)).

A contour plot of the magnitude of µ(1)
+ in the g-plane is shown in Fig. 4.2. The outermost

boundary represents ln |µ(1)
+ | = −1.5 and the spacing of the contour is 0.1. As stated in

Remark 4.2, |µ(1)
+ | takes its maximum value 2 (≈ ln(0.693)) when g = −1/4. The figure

shows that the asymptotic value of F (1)
N (jω) as N → ∞ is directly related to the proximity

of h(jω)−1 to the point −1/4.
The boundedness result of Theorem 4.5 is now illustrated graphically. Figure 4.3 shows

the region of the complex values of g (= h−1) for which maxN |F (1)
N (h)| ≤ γ with 1 ≤

N ≤ 200 for a positive constant γ. The spacing of the contours is 0.2 where ln(γ) takes
the value 0, 0.2, 0.4, . . . . The outermost boundary represents γ = 1 and G1 denotes the
set {g ∈ C : maxN |F (1)

N (g−1)| ≤ 1}. This means that maxN ∥F (1)
N (h(s))∥∞ ≤ 1 if and

only if g(s) ∈ G1 for s ∈ C+. Note that from Fig. 4.1 the sequence {F (1)
N } converges to the

fixed point µ(1)
+ quickly when g ∈ G1 so the choice of N = 200 is large enough to accurately

determine the shape of the boundary in the figure. Figure 4.4 is a similar figure to Fig. 4.3 but
shows a contours of maxi maxN |F (i)

N (h)| = γ ∈ R+ for i = 1, 2, . . . , N , i ≤ N ≤ 200 with
the Nyquist diagrams of g(s) of three passive vibration control devices. The layouts of these
devices are shown in Table 4.1a and their structural parameters are given in Table 4.1b. The



4.4 Bounds on Iterative Maps 37

parameters of the building model are fixed as m = 1.0×105 kg, k = 1.7×105 kN/m (based
on values given in [Léger and Dussault, 1992]). The outermost boundary of the contours
again represents γ = 1 so maxi maxN ∥F (i)

N (h(s))∥∞ ≤ 1 if the Nyquist diagram g(jω) lies
outside this boundary. It can be seen that devices 2 and 3 achieve this. It is also observed that
the use of the inerters improves the high frequency performance (corresponding to the origin
in the g-plane). The frequency domain plots of maxi |F (i)

N (jω)| (Figs. 4.5 and 4.6) confirm
these observations. Figure 4.7 shows the curves which represent maxN |F (i)

N | = 1 where
i = 1, 2, . . . , 5 with 1 ≤ N ≤ 200. It is observed that the set {g ∈ C : maxN |F (1)

N (g−1)| ≤
1} contains the sets {g ∈ C : maxN |F (i)

N (g−1)| ≤ 1}, i = 2, . . . , 5.
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Fig. 4.1 Contour plot of |ζ(h)| where h = g−1.
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N (h)| = γ for ln(γ) = 0, 0.2, 0.4, . . . where h = g−1.
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(a) Interconnection layouts and the corresponding admittances.

L1 L2

Y (s) = c+
k

s
Y (s) = bs+ c+

k

s

k

c

k

c

b

(b) Parameters of vibration control devices.

Layout c (kNs/m) b (kg)

Device 1 L1 4.0× 103 –

Device 2 L1 6.0× 103 –

Device 3 L2 6.0× 103 1.0× 105

Table 4.1 Interconnection layouts and their parameters.
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Fig. 4.4 Nyquist diagrams of g(s) = Y (s)/(sm) for the vibration control devices in Table
4.1b and contour plot of maxi maxN |F (i)

N (h)| = γ for ln(γ) = 0, 0.2, 0.4, . . . where h =
g−1.
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Appendix 4.A Proof of Theorem 4.1

Proof. Define

p(N, i) =
︷ ︸︸ ︷
(dN−i+1 − dN−i)(dN−i − dN−i−1+dN−1di)

− dNdi−2(dN−i − dN−i−1)− hdN−1dN . (4.16)

From (3.5) and the recursion of F (i)
N in (4.3), it may be seen that the theorem is equivalent

to p(N, i) = 0 for all i ∈ N and i ≤ N ∈ N. The proof will follow by induction after
establishing the following facts:

1. p(N, 1) = 0 for all N ≥ 1.

2. p(N, 2) = 0 for all N ≥ 2.

3. p(N, i) = p(N, i− 1) + p(N − 1, i− 1)− p(N − 1, i− 2) for any i ≥ 3, N ≥ i.

Now these facts are established in turn.

1. p(N, 1) =(dN − dN−1 − dNd−1)(dN−1 − dN−2)

+ dN−1(d1(dN − dN−1)− hdN)

=dN−1(dN − (h+ 2)dN−1 + dN−2)

=0,

where the second step uses d−1 = 1 and d1 = h + 1, and the third step follows from
(4.2).

2. p(N, 2) =(dN−1 − dN−2 − dNd0)(dN−2 − dN−3)

+ dN−1d2(dN−1 − dN−2)− hdN−1dN

=(−(h+ 1)dN−1)(dN−1 − (h+ 1)dN−2)

+ dN−1(h
2 + 3h+ 1)(dN−1 − dN−2)

− hdN−1dN

=− hdN−1(dN − (h+ 2)dN−1 + dN−2)

=0,

where the second step follows from dN−2 − dN−3 = dN−2 − ((h+ 2)dN−2 − dN−1),
dN−1 − dN−2 − dNd0 = dN−1 − ((h+ 2)dN−1 − dN) − dN and d2 = h2 + 3h + 1

using (4.2).
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3. Consider the expression

X(N, i) = p(N, i)− p(N, i− 1)

− p(N − 1, i− 1) + p(N − 1, i− 2). (4.17)

It may be observed that the four terms in (4.17) corresponding to the overbrace in
(4.16) cancel pairwise. Also the four terms in (4.17) of the form −hdN−1dN cancel
pairwise. Thus

X(N, i) = (dN−i − dN−i−1)(dN−1di−3 − dNdi−2)

+ (dN−i+1 − dN−i)(dN−1di + dNdi−3

− dN−2di−1 − dN−1di−4)

+ (dN−i+2 − dN−i+1)(dN−2di−2 − dN−1di−1). (4.18)

Using the following substitution

di = (h+ 2)di−1 − di−2

dN = (h+ 2)dN−1 − dN−2

di−1 = (h+ 2)di−2 − di−3

di−4 = (h+ 2)di−3 − di−2

in the second term of (4.18) and rearranging gives

X(N, i) = (dN−i − dN−i−1)(dN−1di−3 − dNdi−2)

+ (dN−2di−2 − dN−1di−1)(dN−i+2 − dN−i+1 − (h+ 2)(dN−i+1 − dN−i)).

Now note that

dN−i+2 − dN−i+1 − (h+ 2)(dN−i+1 − dN−i) = (h+ 1)dN−i − dN−i+1

= −(dN−i − dN−i−1).
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Hence

X(N, i) = (dN−i − dN−i−1)(dN−1di−3 − dNdi−2 − dN−2di−2 + dN−1di−1)

= (dN−i − dN−i−1)(dN−1di−3 − (h+ 2)dN−1di−2

+ dN−2di−2 − dN−2di−2 + (h+ 2)dN−1di−2 − dN−1di−3)

= 0.

■

Appendix 4.B Proof of (4.10b) and (4.10d)

Proof. First (4.10b) is shown.

di−2 − µ
(i)
+

di−2 − µ
(i)
−

=
di−2 − µ

(i)
+

di−2 − µ
(i)
−

× di−2 − µ
(i)
+

di−2 − µ
(i)
+

=

(
di−2 − µ

(i)
+

)2
d2i−2 − di−2

(
µ
(i)
+ + µ

(i)
−

)
+ µ

(i)
+ µ

(i)
−

=

(
di−2 − µ

(i)
+

)2
di−2di − h

=

(
di−2 − µ

(i)
+

di

)2

= ζ2

where the third step follows from µ
(i)
+ + µ

(i)
− = −(di − di−2) and µ

(i)
+ µ

(i)
− = −h

(
see (4.5)

)
and the fourth step follows from (4.7).
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To show (4.10d), note that

ζ +
1

ζ
=

di−2 − µ
(i)
+

di−1

+
di−1

di−2 − µ
(i)
+

=
d2i−2 − 2di−2µ

(i)
+ + µ

(i)
+

2
+ d2i−1

di−1(di−2 − µ
(i)
+ )

=
(di−2 + di)(di−2 − µ

(i)
+ )

di−1(di−2 − µ
(i)
+ )

= h+ 2

where the third step substitutes for µ(i)
+

2
and d2i−1 from (4.5) and (4.7) and the fourth step

uses (4.2). ■

Appendix 4.C Proof of (4.14)

Proof. Since µ
(i)
± are the solutions of (4.5), µ(i)

+ µ
(i)
− = −h. Therefore,

µ
(i)
+

µ
(i)
−

= −µ
(i)
+

2

h

= −

(
ζ i−1µ

(1)
+

)2
h

= −ζ2i−2
(
1− µ

(1)
+

)
= −ζ2i−1,

where (4.11), (4.5) and (4.10c) are used in the second, third and fourth steps above. ■

Appendix 4.D Proof of Theorem 4.5

Two lemmas are first established which are needed in the proof of this theorem. The first
lemma gives a relatively straightforward bound on supN≥i |F

(i)
N (h)| for h bounded away

from the interval [−4, 0]. The second lemma is significantly more delicate and deals with
the fact that h(jω) → 0 as ω → 0. The manner in which this convergence occurs is critical
to establish an upper bound.
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Lemma 4.1. Let h ∈ C lie on an ellipse with foci (−4, 0) and (0, 0), and semi-major axis
A. Then

sup
N≥i

|F (i)
N | ≤ (1 + |ζ|)(1 + |ζ|2)

1− |ζ|3

where ζ is defined by (4.10c). Moreover

|ζ| = A−
√
A2 − 4

2
, A =

|h|+ |h+ 4|
2

.

A
−4 0−2

h = ζ + ζ−1 − 2

Im

Re

h - plane

Fig. 4.8 The ellipse defined by h = ζ + ζ−1 − 2 for |ζ| fixed and arg(ζ) varying.

Proof. From (4.10d), ζ + ζ−1 = h+ 2. Letting ζ = |ζ|ejθ, −π ≤ θ ≤ π,(
|ζ|+ 1

|ζ|

)
cos θ + j

(
|ζ| − 1

|ζ|

)
sin θ = h+ 2. (4.19)

Keeping |ζ| fixed and solving (4.19) for h as a function of θ gives an ellipse in the h-plane
with centre (−2, 0), foci (−4, 0), (0, 0) and semi-major axis A = |ζ| + 1/|ζ| (Fig. 4.8).
Therefore |ζ| = (A−

√
A2 − 4)/2 where A > 2 and |ζ| < 1. Since the sum of the distances

from the two foci and to a point on the ellipse is constant and equal to the major axis,

A =
|h|+ |h+ 4|

2
. (4.20)
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Then from (4.13), for all N ≥ i ≥ 1,

sup
N≥i

|F (i)
N | ≤ |µ(1)

+ |1 + |ζ|2

1− |ζ|3

≤ (1 + |ζ|)(1 + |ζ|2)
1− |ζ|3

since |µ(i)
+ | < |µ(1)

+ | as shown in Theorem 4.4 and µ
(1)
+ = 1− ζ . ■

Lemma 4.2. Let h(s) be defined as in Theorem 4.5. Then h(jω) = −c1ω
2 + jc2ω

3 +

ω4h1(jω) for ω ≥ 0 where c1 and c2 are positive constants and |h1(jω)| ≤ c3 ∈ R+ for
0 ≤ ω ≤ ω1. Furthermore there exists ω0 with 0 < ω0 ≤ ω1 such that

sup
N≥i

|F (i)
N (h(jω))| < 2

√
c1 + c2 + c3ω0

1− exp

(
−(c2 − ω0c3)πω0

8c24

)
for 0 ≤ ω < ω0 where c4 =

√
2(2c1 + c2 + 2c3).

Proof. First note that when ω = 0, h(jω) = 0 and |F (i)
N | = 0 for any N ≥ i from (4.3).

When ω ̸= 0, h ̸∈ [−4, 0] and therefore ζ as defined in (4.10c) is nonreal and |ζ| < 1.
Hence |1 − ζ2(N−i+1)| < 1 + |ζ|2. The magnitude of the denominator in (4.13) takes its
smallest value when ζ2N+1 is at the closest point to −1. Let p be the positive real number
such that ζp has the minimum real part. With p defined in this way, the smallest value is
always larger than 1− |ζ|p. Therefore,

sup
N≥i

|F (i)
N | ≤ |µ(1)

+ |1 + |ζ|2

1− |ζ|p
. (4.21)

Since µ
(1)
+

2
= h(1− µ

(1)
+ ) = hζ from (4.5) and (4.10c), for 0 < ω ≤ min{1, ω1},∣∣∣µ(1)

+

∣∣∣2 < |h|

≤ | − c1ω
2 + jc2ω

3|+ |ω4h1(jω)|

≤
√

(c21 + c22)ω
4 + |h1(jω)|ω2

≤ (c1 + c2 + c3)ω
2. (4.22)

Therefore, the numerator in (4.21) is bounded above:

|µ(1)
+ |(1 + |ζ|2) < 2

√
c1 + c2 + c3ω.
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Next, a lower bound on the denominator in (4.21) is shown. First note the general
inequality

|ζ|+ 1

|ζ|
> 2. (4.23)

Defining A as in (4.20), A ≤ 2+|h| is obtained. Writing ζ = |ζ|ejθ, from (4.10d), A cos θ =

Re(h+ 2) = 2− (c1 − ω2Re(h1(jω)))ω
2 ≥ 2− (c1 + c3)ω

2. Hence,

cos θ =
Re(h+ 2)

A

≥ 2− (c1 + c3)ω
2

2 + |h|
= 1− (c1 + c3)ω

2 + |h|
2 + |h|

and if ω ≤
√
2/(c1 + c3), −π/2 ≤ θ ≤ π/2. On the other hand, cos θ ≤ 1 − θ2/4 when

−π/2 ≤ θ ≤ π/2. Therefore, for 0 < ω ≤ min{1, ω1,
√

2/(c1 + c3)},

|θ| ≤ 2

√
(c1 + c3)ω

2 + |h|
2 + |h|

≤ 2

√
(c1 + c3)ω

2 + (c1 + c2 + c3)ω
2

2

=
√

2(2c1 + c2 + 2c3)ω

=: c4ω

using (4.22). Also, Im(h + 2) = (c2 + ω Im(h1(jω)))ω
3 ≥ (c2 − ωc3)ω

3 > 0 when
ω < c2/c3. Hence

1

|ζ|
− |ζ| =

∣∣∣∣Im(h+ 2)

sin θ

∣∣∣∣ ≥ (c2 − ωc3)ω
2

c4
(4.24)

for 0 < ω < min{1, ω1,
√

2/(c1 + c3), c2/c3}. Also note that −π < θ < 0 follows from
(4.19) when Im(h+ 2) > 0. Adding (4.24) to (4.23) gives

2

|ζ|
> 2 +

(c2 − ωc3)ω
2

c4

and therefore,

|ζ| < 2c4
2c4 + (c2 − ωc3)ω2

≤ 1− (c2 − ωc3)ω
2

4c4
(4.25)
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if 0 ≤ (c2 − ωc3)ω
2/ 2c4 ≤ 1. This condition is satisfied if ω ≤ c2/c3 and ω ≤

√
2c4/c2.

Now let ω0 = min{1, ω1,
√

2/(c1 + c3), c2/c3,
√

2c4/c2}. Since p is the positive real
number such that ζp has minimum real part, it is shown that −π ≤ pθ < 0 on noting that
−π/2 ≤ θ < 0 for ω < ω0. Further observe that −π ≤ pθ ≤ −π/2, which gives

p ≥ π

2|θ|
>

π

2c4ω
. (4.26)

Using (4.25) and (4.26), since (1− x/n)n < e−x for x/n ≤ 1,

|ζ|p <
(
1− (c2 − ωc3)ω

2

4c4

) π
2c4ω

< exp

(
−(c2 − ωc3)πω

8c24

)
< exp

(
−(c2 − ω0c3)πω

8c24

)
for ω < ω0 which establishes the required lower bound on the denominator in (4.21).

The proof is now complete since ax/(1 − e−bx) is a monotonically increasing function
with a and b positive. ■

Theorem 4.5 will be now proven.

Proof of Theorem 4.5. For h(jω) = mjωZ(jω), from Lemma 4.2, there exists ω0 > 0 such
that

sup
N≥i

|F (i)
N (h(jω))| < 2

√
c1 + c2 + c3ω0

1− exp

(
−(c2 − ω0c3)πω0

8c24

)
for 0 ≤ ω < ω0 where c1, c2, c3 and c4 are positive constants defined in Lemma 4.2. For
ω0 ≤ ω ≤ ∞, since h(jω) is bounded away from [−4, 0], from Lemma 4.1,

sup
N≥i

|F (i)
N (h(jω))| ≤ (1 + |ζ0|)(1 + |ζ0|2)

1− |ζ0|3

where

|ζ0| =
A0 −

√
A2

0 − 4

2
, A0 = min

ω≥ω0

(
|h(jω)|+ |h(jω) + 4|

2

)
.

From Theorem 3.2, Tx̂0→δ̂i
(= −F

(i)
N ) is a stable transfer function under the condition of

Theorem 4.5. Therefore the maximum modulus principle can be applied to complete the
proof. ■





CHAPTER 5

DESIGN OF PASSIVE INTERCONNECTION

5.1 Overview

In the previous chapter, a graphical approach has been introduced to design a passive inter-
connection which achieves a good disturbance rejection performance in an arbitrary length
of the mass chain. From a practical point of view, it is equally important to build a design
methodology for a specific length of the mass chain. For this aim, this chapter introduces
a systematic design method. The essential technique is the same as the one used for the
uniform boundedness in the previous chapter; contour plots of the magnitude of the trans-
fer functions. The chapter demonstrates the design methodology in the context of seismic
design of a multi-storey building.

The chapter first poses the control problem for a homogeneous mass chain model repre-
senting a multi-storey building with base excitation. The graphical technique to design the
interconnection is then introduced. A dominant frequency range of the ground displacement
due to earthquake is considered for design. The technique is demonstrated using a 10-storey
homogeneous building model and some simple configurations for the interconnection. Fre-
quency responses and time responses against historical earthquakes are presented to verify
the validity of the proposed design method. The disturbance suppression performance of
the designed interconnection is also verified for a 10-storey building model which has a
different stiffness distribution but with the same undamped first natural frequency as the
homogeneous model.

5.2 Disturbance Rejection and Design Objectives

Consider again the homogeneous mass chain introduced in Chapter 3. For convenience,
the system is depicted again in Fig. 5.1a. The transfer function from a movable point x0
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and the ith intermass displacement δi in a chain of N masses is again denoted as −F
(i)
N

for i = 1, 2, . . . , N . As shown in Chapter 3, this can be described as a function of a di-
mensionless parameter h = sZ(s)m. In particular for a multi-storey building model, the
interconnection is modelled as Fig. 5.1b where ks, cs represent the storey stiffness and the
structural damping. A passive interconnection Za(s) is to be designed to achieve good dis-
turbance rejection from x0. For this aim, it would be required that the magnitude of the
transfer function from x0 to δi for all i be made small in the frequency range where x0 is
significant. The design task is therefore to make the maximum value of |F (i)

N (jω)| over i
small by choosing a suitable interconnection Za(s).

m m mZ Z Z

x0 x1 x2 xN

. . .

(a) Mass chain.

ks

cs

Za

(b) Interconnection Z.

Fig. 5.1 Chain of N masses m connected by a passive mechanical impedance Z(s) (ad-
mittance Y (s) = Z(s)−1), and connected to a movable point x0. Each interconnection is
depicted in (b) where its admittance Y (s) = ks/s+ cs + Ya(s) (Ya(s) = Za(s)

−1).

5.2.1 Graphical design method

Let us revisit the recursions given in Theorem 4.1 of the form:

F
(i)
N =

di−2F
(i)
N−1 + h

F
(i)
N−1 + di

where F
(i)
i−1 = 0 and

di(h) = (h+ 2)di−1(h)− di−2(h)

supposing d−1 = 1 and d0 = 1 for i = 1, 2, . . . , N . Using these recursions, one can
compute the value of maxi |F (i)

N (h)| at each complex value h for each N . The contour plot
of maxi |F (i)

N (h)| in Fig. 5.2 is illustrated for N = 10 in the g-plane where g is again the
inverse of h, i.e., g = Y (s)/(sm). The spacing of the contours is 0.2 where ln(γ) takes
the value −3,−2.8,−2.6, . . . . The proposed design method involves essentially finding an
interconnection Ya = Z−1

a that moves the locus g(jω) away from the dark region in the
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contour map. Since g(s) = Y (s)/(sm) = (ks/s+ cs+Ya(s))/(sm), a large gain of Ya(jω)

would be required especially in the frequency range where the disturbance x0 is significant.
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Fig. 5.2 Contour plot of maxi |F (i)
10 (h)| where h = g−1.

5.2.2 Frequency content of ground displacements

Any information on the disturbance normally helps to improve a design. Although each
earthquake has a different characteristic, there are some tendencies as described in Chap-
ter 2. The weighting function W (s) based on Clough-Penzien-Kanai-Tajimi acceleration
filter WCP (s)WKT (s) is a commonly used model for the frequency content of strong ground
motions:

W (s) =
W0(s)

∥W0(s)∥∞
where

W0(s) =
1

s2
WCP (s)WKT (s) =

1

s2
−s2

s2 + 2ηfωfs+ ω2
f

2ηgωgs+ ω2
g

s2 + 2ηgωgs+ ω2
g

.

The typical parameters in WCP (s)WKT (s) for three different soil conditions are listed in
Chapter 2 and Fig. 5.3 shows the log-log plot of the magnitude of W (jω) using those pa-
rameters. As can be seen from the figure, x̂0 dominates in the low frequency range. Hence,
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|F (i)
N | needs to be made small in this frequency range. Throughout this chapter, the weight-

ing function for rock or stiff soil conditions is used for numerical examples:

W (s) =
−30.16s− 631.7

0.1654(s2 + 3.016s+ 6.317)(s2 + 30.16s+ 631.7)
. (5.1)
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Fig. 5.3 A log-log plot of weighting functions W (jω) for three different soil conditions:
rock or stiff soil conditions, deep cohesionless soils and soft to medium clays and sands.

5.3 Case Study

This section shows the design procedure proposed in the last section using a benchmark
model for a 10-storey building.

5.3.1 Multi-storey homogeneous building model

Consider a 10-storey building model depicted in Fig. 5.1 (N = 10). The structural pa-
rameters are shown in Table 5.1. The floor mass m and the storey stiffness ks are fixed as
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Table 5.1 Structural parameters of the homogeneous building model.

Parameter Value Description

N 10 Number of storeys

m 1.00× 105 kg Floor mass

ks 1.77× 105 kN/m Storey stiffness

cs 1.12× 103 kNs/m Structural damping

T1 1.00 s Undamped first natural period

ω1 6.28 rad/s Undamped first natural frequency

1.00×105 kg and 1.77×105 kN/m and a period T1 equal to 0.1N seconds is assumed for the
first natural frequency ω1 [Shibata, 2003]. The structural damping is assumed to be stiffness-
proportional damping with the damping ratio being 0.02, that is, cs = 2 × 0.02ks/ω1. The
frequency domain plot of maxi |F (i)

N (jω)W (jω)| for the uncontrolled model, i.e., Ya(s) = 0

is shown in Fig. 5.4 where W (s) is defined in (5.1).
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Fig. 5.4 A log-log plot of maxi |F (i)
10 (jω)W (jω)| for the uncontrolled homogeneous build-

ing model, i.e., Ya(s) = 0.
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5.3.2 Interconnection design

For this case study, the impedance Z as in Fig. 5.1b is considered with Ya being the simple
interconnection configurations listed in Table 5.2. Note that layout L3 is called a tuned-
inerter-damper (TID) in [Lazar et al., 2014] and layout L4 is called a tuned viscous mass
damper (TVMD) in [Ikago et al., 2012a,b]. The parameters of each element are selected
making use of the contour plot of Fig. 5.2. For layout L1, it is clear that larger values

Table 5.2 Interconnection configuration and corresponding admittance Ya(s).

L1 L2 L3 L4

bs+ c c+
bks

bs2 + k

bcs2 + bks

bs2 + cs+ k

bks+ ck

bs2 + cs+ k

c

b

c

k b c

k
b k

c

b

of c push g(jω) away from the dark region in Fig. 5.2. Here the value is fixed as c =

2× 0.2ks/ω1 = 1.12× 104 kNs/m assuming 20 % of critical damping. As can be seen from
Fig. 5.5a, although the inerter improves the performance in the mid to high frequency range
(see the white markers ◦), it makes the low frequency performance worse (see the black
markers •). This is confirmed by the frequency domain plots of maxi |F (i)

10 (jω)W (jω)| in
Fig. 5.5b.

The admittance Ya(s) of layout L2 has infinite gain at ω =
√
k/b. Here this frequency

is set to be the same frequency as the undamped first natural frequency of the building ω1.
The damping coefficient is again fixed as 1.12×104 kNs/m. The Nyquist diagrams of g(jω)
for three values of inertance and k = bω2

1 are drawn again on the contour plot in Fig. 5.6a.
The larger inerter is beneficial in a broad frequency range around ω1 which can be also seen
from the frequency domain plots of maxi |F (i)

10 (jω)W (jω)| in Fig. 5.6b.

Similarly, layouts L3 and L4 can be designed using the contour plot of maxi |F (i)
10 (h)|.

The parameters given in Table 5.3 are an example of good design with respect to the pro-
posed design method. Note that the inertance b = 0 for L1 which means L1 is just a damper
with no inerter in parallel. The Nyquist diagrams of g(jω) for each layout are illustrated in
Fig. 5.7a. The frequency domain plots of maxi |F (i)

10 (jω)W (jω)| are also shown in Fig. 5.7b.
Layout L1 can suppress the disturbance amplification well for the entire frequency range.
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Table 5.3 Parameters of vibration control devices.

Layout c (kNs/m) b (kg) k (kN/m)

L1 1.12× 104 0 –

L2 1.12× 104 5.0× 106 1.97× 105

L3 1.12× 104 5.0× 106 1.00× 105

L4 1.12× 104 1.5× 106 1.06× 105

The other layouts L2 – L4 improve the disturbance rejection performance around the first
natural frequency ω1 but mild peaks appear at some other frequencies.

5.3.3 Time response

To verify the validity of the proposed design method, this section shows the time response
of the system of Fig. 5.1 against historical earthquakes. The interconnection configurations
and their parameters for Ya(s) designed in the previous section are listed in Table 5.2 and
5.3. The system with Ya(s) = 0 is again referred to as the uncontrolled model.

Figure 5.8 illustrates the time response of the first interstorey drift for these four con-
figurations against JMA Kobe 1995 NS earthquake. All the devices L1 – L4 suppress the
vibration well. The interstorey drifts are under 4 cm while the uncontrolled model experi-
ences an interstorey drift as large as 8 cm. The vibration also attenuates much quicker than
the uncontrolled model. The maximum interstorey drifts of each floor during the earthquake
are shown in Fig. 5.9 against JMA Kobe 1995 NS earthquake and El Centro 1940 NS earth-
quake. These figures confirm that the proposed designs reduce the interstorey drifts for all
the floors.

5.3.4 Heterogeneous mass chain model

In the previous sections in this chapter, a graphical technique to design the interconnection
when a multi-storey building is modelled as a homogeneous mass chain depicted in Fig. 5.1.
However, for many tall buildings, the storey stiffness is smaller in the higher storeys. The
aim of this section is to demonstrate the effectiveness of the proposed design in Table 5.3
for such a building when the undamped natural frequency ω1 is the same. Hence, the model
considered here is a heterogeneous mass chain depicted in Fig. 5.10 where the number of
masses N = 10, all the masses have the same value as the homogeneous building model,
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Fig. 5.5 Design of layout L1. The parameters are: – – c = 1.12 × 104 kNs/m, b = 0 kg,
— c = 1.12 × 104 kNs/m, b = 1.0 × 106 kg, – · – · c = 1.12 × 104 kNs/m, b = 5.0 × 106

kg. (a) Nyquist diagrams of g(s) = (ks/s + cs + Ya(s))/(sm) and the contour plot of
maxi |F (i)

10 (h)|. The black and white markers •, ◦ indicate g(4j) and g(10j). (b) A log-log
plot of maxi |F (i)

10 (jω)W (jω)|.
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Fig. 5.6 Design of layout L2. The parameters are: – – c = 1.12× 104 kNs/m, b = 1.0× 106

kg, k = 3.93×104 kN/m, — c = 1.12×104 kNs/m, b = 3.0×106 kg, k = 1.18×105 kN/m,
– · – · c = 1.12×104 kNs/m, b = 5.0×106 kg, k = 1.97×105 kN/m. (a) Nyquist diagrams of
g(s) = (ks/s+cs+Ya(s))/(sm) and the contour plot of maxi |F (i)

10 (h)|. The black and white
markers •, ◦ indicate g(4.7j) and g(10j). (b) A log-log plot of maxi |F (i)

10 (jω)W (jω)|.
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Fig. 5.7 The design of L1 – L4 in Table 5.2. The parameters are given in Table 5.3.
(a) Nyquist diagrams of g(s) = (ks/s + cs + Ya(s))/(sm) and the contour plot of
maxi |F (i)

10 (h)|. (b) A log-log plot of maxi |F (i)
10 (jω)W (jω)| for the uncontrolled homoge-

neous building model of and the model controlled by the vibration control devices L1 – L4.
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Fig. 5.8 Time response of the first interstorey drift against JMA Kobe 1995 NS earthquake.
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Fig. 5.9 Maximum interstorey drifts against historical earthquakes for the uncontrolled ho-
mogeneous building model and the model controlled by the vibration control devices L1 –
L4.
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m1 m2 mN

ks1 ks2 ksN

cs1 cs2 csN

Ya1 Ya2 YaN

x0 x1 x2 xN

. . .

Fig. 5.10 Chain of N masses mi and a movable point x0 with passive interconnections

corresponding to the admittance
ksi
s

+ csi + Yai(s).

i.e., mi = 1.00 × 105 kg and the ith storey stiffness ksi for i = 1, 2, . . . , 10 is given by the
following equation:

ksi =
1

2
{N(N + 1)− i(i− 1)}mω2

1 (5.2)

assuming that the shape of the fundamental eigenmode of the main frame is a straight line
[Penzien, 1960; Shibata, 2003]. The structural damping is assumed to be proportional to the
stiffness with the damping ratio 0.02. Hence,

csi =
2× 0.02

ω1

ksi (5.3)

for i = 1, 2, . . . , 10. These structural parameters are summarised in Table 5.4. All the
interconnection Yai is assumed to be identical and the layout L1 – L4 in Table 5.2 for
Yai(s) for the parameters given in Table 5.3 are considered here. The log-log plot of
maxi |F (i)

10 (jω)W (jω)| in Fig. 5.11 and the figure of the maximum interstorey drift of the
building agains JMA Kobe 1995 earthquake in Fig. 5.12 confirm that the interconnections
designed in the previous section give a good disturbance rejection/suppression performance.

The equations of motion and the system description of the heterogeneous mass chain
used for the numerical examples in this section are given in Appendix 5.A. Also, it may
be of interest whether there exist some recursive features in a general heterogeneous mass
chain model like the ones in the homogeneous case. They indeed exist and are presented in
Appendix 5.B.
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Table 5.4 Structural parameters of the heterogeneous building model.

Parameter Value Description

N 10 Number of storeys

m 1.00× 105 kg Floor mass

ksi Determined by (5.2). Storey stiffness of the ithe floor

csi Determined by (5.3). Structural damping of the ith floor

T1 1.00 s Undamped first natural period

ω1 6.28 rad/s Undamped first natural frequency
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Fig. 5.11 A log-log plot of maxi |F (i)
10 (jω)W (jω)| for the uncontrolled heterogenous build-

ing model and the model controlled by the vibration control devices L1 – L4.
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Fig. 5.12 Maximum interstorey drift against JMA Kobe 1995 NS earthquake for the un-
controlled heterogenous building model and the model controlled by the vibration control
devices L1 – L4.
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Appendix 5.A Heterogeneous Mass Chains

Consider a heterogeneous mass chain depicted in Fig. 5.10. Assuming the initial conditions
of the ground displacement and the mass displacements are all zero, the equations of motion
in the Laplace transformed domain are given as follows:

s2mix̂i = −sYi(s)δ̂i + sYi+1(s)δ̂i+1 for i = 1, . . . , N − 1,

s2mN x̂N = −sYN(s)δ̂N

where the ith interstorey drift δ̂i(s) = x̂i(s)− x̂i−1(s). Let δ̂ = [δ̂1, δ̂2, . . . , δ̂N ]
T and û =

[û1, û2, . . . , ûN ]
T. Then the interstorey displacement vector δ̂ is written as

δ̂ = −(I + PK)−1e1x̂0

and the ith interstorey displacement δ̂i as

δ̂i = −eTi (I + PK)−1e1x̂0

=: −F
(i)
N x̂0

where I is the N×N identity matrix, where ei is the standard basis in RN for i = 1, 2, . . . , N

(e.g., e1 = [1, 0, . . . , 0]T),

P =



1

s2m1

0

−
1

s2m1

1

s2m2

. . . . . .

0 −
1

s2mN−1

1

s2mN


,

K =



ks1 + scs1 + sYa1(s) −(ks2 + scs2 + sYa2(s)) 0

ks2 + scs2 + sYa2(s)
. . .

. . . −(ksN + scsN + sYaN(s))

0 ksN + scsN + sYaN(s)


.
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The feedback configuration is illustrated in Fig. 5.13.

K P
u + δ

−e1x0

−

Fig. 5.13 Feedback configuration of the system of Fig. 5.10.

Appendix 5.B Recursions in Heterogeneous Mass Chains

mN mN−1 m1ZN ZN−1 Z1

x0 x1 x2 xN

. . .

Fig. 5.14 Chain of N masses mi connected by a passive mechanical impedance Zi(s) and
connected to a movable point x0.

The transfer function from a movable point x0 to a first intermass displacement x1−x0 in
a heterogeneous mass chain of Fig. 5.14 are also given recursively in the number of masses
N . Note that the labelling of the indices is unusual: the first mass from the left has mass
mN and is connected to a movable point by an impedance ZN and the indices decrease as
it goes to the right in a chain of N masses of Fig. 5.14. Consider the transfer function T

(1)
N

from x0 to the first mass displacement x1 in a chain of N masses. It may be observed that
the transfer function from x1 to x2 in a chain of N masses is equal to T

(1)
N−1. Similarly, the

transfer function from xi to xi+1 in a chain of N masses is equal to T
(1)
N−i. Therefore,

x̂i =

(
i−1∏
j=1

T
(1)
N−j

)
x̂1 (5.4)

whereˆdenotes the Laplace transform and
∏

represents the product operator.
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The equations of motion in the Laplace transformed domain are

mNs
2x̂1 = −sYN(s)(x̂1 − x̂0) + sYN−1(s)(x̂2 − x̂1)

mN−1s
2x̂2 = −sYN−1(s)(x̂2 − x̂1) + sYN−2(s)(x̂3 − x̂2)

...

m1s
2x̂N = −sY1(s)(x̂N − x̂N−1).

Summing these equations gives

mNs
2x̂1 +

(
N−1∑
i=1

mN−is
2x̂i+1

)
= −sYN(s)(x̂1 − x̂0),

and hence, substituting (5.4) into the above equation gives(
hN +

N−1∑
i=1

mN−i

mN

hN

i−1∏
j=1

T
(1)
N−j + 1

)
x̂1 = x̂0

where hN = sZN(s)mN . Hence the transfer function F
(1)
N from x0 to the first intermass

displacement x1 − x0 (with a negative sign) is equal to:

F
(1)
N := 1− T

(1)
N =

hN +
N−1∑
i=1

mN−i

mN

hN

i−1∏
j=1

T
(1)
N−j

hN +
N−1∑
i=1

mN−i

mN

hN

i−1∏
j=1

T
(1)
N−j + 1

. (5.5)

Further,

hN +
N−1∑
i=1

mN−i

mN

hN

i−1∏
j=1

T
(1)
N−j

= hN +
hN

hN−1

mN−1

mN

T
(1)
N−1

(
hN−1 +

N−2∑
i=1

mN−i−1

mN−1

hN

i−1∏
j=1

T
(1)
N−j−1

)

= hN +
hN

hN−1

mN−1

mN

F
(1)
N−1.

Substituting this to (5.5) gives the recursion:

F
(1)
N =

hN + αN−1F
(1)
N−1

hN + αN−1F
(1)
N−1 + 1

(5.6)
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for N = 1, 2, . . . , where F
(1)
0 = 0, α0 = 0 and

αi =
hi+1

hi

mi

mi+1

=
Zi+1

Zi

for i = 1, 2, . . . , N − 1.
The transfer functions for higher intermass displacements F

(i)
N in a chain of N masses

are given by

F
(i)
N = − x̂i − x̂i−1

x̂0

= − x̂i − x̂i−1

x̂i−1

x̂i−1

x̂1

x̂1

x̂0

= (1− T
(1)
N−i+1)

(
i−2∏
j=1

T
(1)
N−j

)
T

(1)
N

= F
(1)
N−i+1

i−2∏
j=0

(
1− F

(1)
N−j

)
.

These expressions may be useful for further analysis, e.g., the analysis for uniform
boundedness. This is referred to in the future work section in Chapter 7.





CHAPTER 6

TOWARDS EXACT COMPUTATION OF SUPREMAL BOUNDS

AND CONJECTURES

6.1 Introduction

In Chapter 4, it has been shown that the homogeneous mass chain system is scalable with
respect to the H∞-norm of the transfer functions from disturbance to a given intermass
displacement. Conditions have been derived for the H∞ norm to remain bounded by a fixed
value independent of the length of the mass chain.

In this chapter, the scalability problem is further considered. In particular, a conjecture
is made for a special impedance that the H∞-norm of the transfer function from the distur-
bance to the first intermass displacement is smaller than one for an arbitrary length of the
mass chain. Although an analytical proof has not been obtained, some heuristic justifica-
tions are given in this chapter. Several techniques introduced in this chapter are possibly
useful for obtaining a rigorous uniform bound.

The chapter continues to pose conjectures on higher intermass displacements. A graph-
ical observation suggests that the supremum magnitude of the first intermass displacement
transfer function over N be bigger than that of any other intermass displacement transfer
functions at any frequencies. Further, numerical observations suggest that the H∞-norm of
the transfer functions monotonically decrease along the mass chain for a fixed number of
the mass chain.
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m m mZ Z Z

x0 x1 x2 xN

. . .

Fig. 6.1 Chain of N masses m connected by a passive mechanical impedance Z(s) (admit-
tance Y (s) = Z(s)−1), and connected to a movable point x0.

6.2 Description of the Problem and Motivations

Consider again the recursions introduced in Theorem 4.1 of the form:

F
(i)
N =

di−2F
(i)
N−1 + h

F
(i)
N−1 + di

(6.1)

for N = i, i+ 1, . . . where F
(i)
i−1 = 0, h(s) = sZ(s)m and

di(h) = (h+ 2)di−1(h)− di−2(h) for i = 1, . . . , N

with d−1 = 1 and d0 = 1. For convenience, the system is depicted again in Fig. 6.1. For
i = 1 in particular, it can be written as:

F
(1)
N =

F
(1)
N−1 + h

F
(1)
N−1 + h+ 1

(6.2)

for N = 1, 2, . . . where F
(1)
0 = 0. Then the conjecture is as follows:

Conjecture 6.1. Suppose h(s) has a normalised form s2/(
√
2s+ 1). Then∥∥∥F (1)

N (s)
∥∥∥
∞

= 1 for all N ∈ N.

□

Graphical observations motivate the conjecture. In Fig. 6.2, the locus g(jω) = h−1(jω)

where h = s2/(
√
2s + 1) is plotted on a contour plot of maxN |F (1)

N (h)| where G1 denotes
the set {g ∈ C : maxN |F (1)

N (g−1)| ≤ 1}. It can be observed that g(jω) ∈ G1 and also g(jω)

touches the boundary at ω = ∞, indicating ∥F (1)
N (s)∥∞ = 1 for all N ∈ N. Further, as

seen from Fig. 6.3, the Nyquist diagrams of F (1)
N (jω) stay inside the unit circle for 1 ≤ N ≤

100.
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Note that an interconnection arrangement of a spring and a damper in parallel gives the
form

h(s) =
ms2

cs+ k

which has the normalised form in Conjecture 6.1 when c =
√
2mk and frequency is

rescaled. For N = 1, this corresponds to a simple mass-spring-damper system of Fig. 6.4
with the damping ratio being 1/

√
2. This value is well known in mechanical engineering

as the limiting value achieving the H∞-norm being one for the transmission from x0 to
x1−x0. The values of supN ∥F (1)

N (s)∥∞ with respect to the damping coefficient c is plotted
in Fig. 6.5.
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Fig. 6.4 A mass-spring-damper system.
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Fig. 6.5 Values of supN ∥F (1)
N (s)∥∞ with respect to the damping coefficient c in the system

of Fig. 6.4.
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Available results

The closed form of the recursions (6.1) are given in (4.13). For i = 1, it is in the form:

F
(1)
N = µ

(1)
+

1− ζ2N

1 + ζ2N+1

=
(1− ζ)(1− ζ2N)

1 + ζ2N+1
(6.3)

where ζ is the root of the quadratic equation ζ2 − (h+ 2)ζ + 1 = 0 satisfying |ζ| < 1. It is
clear that ζ(j∞) = 0 where h(s) = s2/(

√
2s + 1). Hence, from (6.3), |F (1)

N (j∞)| = 1 for
all N ∈ N.

The conjecture in regard to other frequencies, i.e.,

sup
N∈N

|F (1)
N (jω)| ≤ 1

for finite ω is unsolved.

6.3 Possible Solution Paths

The following statements are all equivalent:

1) sup
N∈N

∥∥∥F (1)
N (s)

∥∥∥
∞

≤ 1.

2) 1− F
(1)
N (s)F

(1)
N (−s) ≥ 0 for all N ∈ N, s ∈ C+.

3) inf
N∈N

Re(F
(1)
N−1(jω) + h(jω)) +

1

2
≥ 0 for all ω ∈ R.

It is straightforward to see the equivalence between the first and the second statements. The
third statement follows from (6.2):

|F (1)
N | ≤ 1 ⇔

∣∣∣∣∣1 + 1

F
(1)
N−1 + h

∣∣∣∣∣ ≥ 1

⇔ Re(F
(1)
N−1 + h) ≥ −1

2
.

Sturm’s theorem

Proving the second statement is also equivalent to showing that there is no real root of the
polynomial 1 − F

(1)
N (jω)F

(1)
N (−jω) in the interval [0,∞). Sturm’s theorem [Gantmacher,
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2000] may be suitable for the test. The algorithm implemented in the software Maple18 has
been used to check that the statement is true for N = 1, 2, . . . , 100. However, to prove for
infinitely many numbers of N , some sort of inductive relations may be needed. Similarly,
the third statement may require an inductive relation. They have not yet been discovered.

Logarithmic spiral

Another possibility is to work on the expression (6.3). It is, however, problematic to directly
compute the magnitude of (6.3). In fact, ζp, p ∈ R+ is shown to be a logarithmic spiral
which may be useful for further analysis.

Definition 6.1 (logarithmic spiral). A logarithmic spiral is a spiral which has a polar form

r = aebθ

where a and b are arbitrary positive real constants. ♢

Note that in parametric form, it can be written asx = a cos θebθ

y = a sin θebθ.

Let ζ = |ζ|ejϕ. Then ζp is a logarithmic spiral with θ = pϕ since:

(|ζ|ejϕ)p = (eln |ζ|ejϕ)p

= ep ln |ζ|+jpϕ

= e(ln |ζ|/ϕ)θ+jθ

= e(ln |ζ|/ϕ)θejθ

where ln |ζ|/ϕ > 0 since |ζ| < 1 and ϕ < 0 which is straightforward to check. The locus
ζ(jω) where h(s) = s2/(

√
2s + 1) is shown in Fig. 6.6. Note that the spiral is clockwise

since θ < 0.
In particular, the logarithmic spiral expression is potentially useful to develop an upper

bound of (6.3) by finding a positive real number p1 which maximises the modulus of the
numerator and p2 which minimises the modulus of the denominator for a fixed ζ , i.e.,

maxp |(1− ζ)(1− ζp)|
minp |1 + ζp|

. (6.4)

Figure 6.7 illustrates an example of a spiral ζp and its closest point to (−1, 0) which gives
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the minimum value of the denominator in (6.3). The values of (6.4) for each frequency are
plotted in Fig. 6.8. Although the bound is greater than one for some frequencies, it is less
than one in the lower frequency range where the effect of the low frequency resonances
make the other analysis methods difficult. Furthermore, it is observed in Fig. 6.9 that the
behaviour of |F (1)

N (jω)| is simple for ω ≥ 1 and it may be possible to construct another
upper bound for this frequency range using a different technique.
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Fig. 6.7 A spiral ζp and its closest point to (−1, 0).
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Redheffer’s lemma

The following approach based on Redheffer’s lemma or Lemma 15 in [Doyle et al., 1989]
appears initially promising. Consider the system of Fig. 6.10 in which

P =

P11 P12

P21 P22

 ∈ RH∞,

Q ∈ RH∞.

P

Q

w z

yu

Fig. 6.10 A lower linear fractional transformation in Redheffer’s lemma.

Suppose ∥P∥ ≤ 1 and P21 is invertible. Then ∥Q∥ ≤ 1 implies ∥Tw→z∥ ≤ 1 where
∥Tw→z∥ denotes the transfer function from w to z. This is shown since ∥P∥ ≤ 1 implies
∥z∥2 + ∥y∥2 ≤ ∥w∥2 + ∥u∥2, and therefore ∥z∥2 − ∥w∥2 ≤ ∥u∥2 − ∥y∥2 = ∥Qy∥2 − ∥y∥2.
∥Q∥ ≤ 1 then implies ∥z∥2 − ∥w∥2 ≤ 0 and hence ∥Tw→z∥ ≤ 1.

To see how the conjecture can be posed in the setup of Fig. 6.10, let

Q = F
(1)
N−1

P =

 h

h+ 1
P12

P21
−1

h+ 1

 (6.5)

where P12P21 = 1/(h + 1)2 and h = s2/(
√
2s + 1), and note that Tw→z = F

(1)
N . This

block diagram generates the recursion (6.2). Although it may look promising at first sight,
it turns out that a P with ∥P∥ ≤ 1 cannot be found. An explanation for this can be seen
by noting that the above argument is equally applicable frequency by frequency, whereas
the maximum value of |F (1)

N (jω)| is not monotonically decreasing with N as can be seen
in Fig. 6.9. The frequency plot of the largest singular values of P is shown in Fig. 6.11



80 Towards Exact Computation of Supremal Bounds and Conjectures

! (rad/s)
10-1 100 101 102

<
(P

)

0

0.5

1

1.5

2

2.5

Fig. 6.11 Frequency plot of the largest singular values of P defined in (6.5) with P12 =
P21 = 1/(h+ 1) where h = s2/(

√
2s+ 1)

where P12 = P21 = 1/(h + 1). It may be observed the values are greater than one for any
frequency.

6.4 Conjectures on Higher Intermass Displacements

It has been pointed out in Chapter 4 that the set {g ∈ C : maxN |F (1)
N (g−1)| ≤ 1} contains

the sets {g ∈ C : maxN |F (i)
N (g−1)| ≤ 1}, for i = 2, . . . , 5 in Fig. 4.7. This observation

leads to the following conjecture:

Conjecture 6.2. For F (i)
N described in (6.1),

sup
N∈N

∣∣∣F (i)
N (h)

∣∣∣ ≤ sup
N∈N

∣∣∣F (1)
N (h)

∣∣∣
for any h ∈ C \ [−4, 0). □

Further, another conjecture follows from numerical studies shown in Table 6.1:

Conjecture 6.3. Suppose h(jω) does not intersect the interval [−4, 0) for any ω ≥ 0. Then
for F (i)

N described in (6.1),∥∥∥F (N)
N (h(s))

∥∥∥
∞

≤
∥∥∥F (N−1)

N (h(s))
∥∥∥
∞

≤ · · · ≤
∥∥∥F (1)

N (h(s))
∥∥∥
∞
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Table 6.1 Values of ∥F (i)
10 (h(s))∥∞.

i h(s) =
s2√
2s+ 1

h(s) =
s2

s2 + s+ 1
h(s) =

s2

s+ 1

1 1.00 0.87 1.27

2 0.88 0.85 1.24

3 0.84 0.80 1.18

4 0.78 0.75 1.10

5 0.70 0.67 0.99

6 0.61 0.58 0.86

7 0.51 0.49 0.71

8 0.39 0.38 0.55

9 0.27 0.25 0.37

10 0.13 0.13 0.19

for a fixed N ∈ N. □

If Conjecture 6.1 is true and at least one of the Conjectures 6.2 and 6.3 is true, it can be
shown that the transfer functions from x0 to the ith intermass displacement are uniformly
bounded by one in N for any i:

Conjecture 6.4. Suppose h(s) has a normalised form s2/(
√
2s+ 1). Then∥∥∥F (i)

N (s)
∥∥∥
∞

= 1 for all i ∈ N and N ≥ i.

□





CHAPTER 7

CONCLUSIONS

This thesis has studied the interconnection of a chain of N identical masses in which neigh-
bouring masses are connected by identical two-terminal passive mechanical impedances,
and where the first mass is also connected by the same impedance to a movable point. The
motivation of the problem is vibration suppression in multi-storey buildings subjected to
earthquake disturbances. The problem is similar to that of symmetric bidirectional control
of a vehicle string, albeit with a passivity constraint.

7.1 Contributions

The principal contributions of this thesis are summarised below.

Recursive features in mass chains. Formulae for the transfer functions from the movable
point displacement to a given intermass displacement have been derived in the form of
complex iterative maps as a function of a dimensionless parameter h depending on the
impedance and mass. The maps take the form of an iterated Möbius transformation. It
is shown that the fixed points of the mappings provide information on the asymptotic
behaviour of the disturbance transfer functions. Similar recurrence relations have
been found in a heterogeneous mass chain, i.e., a chain of N non-identical masses
with non-identical passive interconnections.

Scalability. The scalar transfer functions from the movable point displacement to a given
intermass displacement have been employed as a scalability measure. They have been
shown to be uniformly bounded with respect to the size of the chain of masses for a
suitable choice of the interconnection. The recursive features in these transfer func-
tions have been used for an analytical proof: the use of a conjugacy transformation
allows the iterative map to be written in a convenient form to derive formal upper
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bounds on the infinity norm of the individual transfer functions from the movable
point displacement to a given intermass displacement. In particular they are shown to
be uniformly bounded with respect to N for a suitable choice of h. This boundedness
result was illustrated graphically. The graph can be used to design a suitable intercon-
nection impedance so that the supremum of the H∞-norm over N is no greater than a
pre-specified value.

Passive interconnection design. A systematic approach to design a passive interconnec-
tion which achieves good disturbance rejection has been proposed. The method makes
use of contour maps of the magnitude of the transfer functions and is applicable to any
layouts for the passive interconnection.

Case study. The design methodology for the interconnections developed in this thesis has
been demonstrated using a 10-storey homogeneous building model. Numerical eval-
uations for the disturbance suppression performance under several historical earth-
quakes have shown the efficacy of the proposed method. The validity of the designed
interconnection has also been verified for a 10-storey building model which has a dif-
ferent stiffness distribution but with the same undamped first natural frequency as the
homogeneous model.

7.2 Future Research Directions

The following can be thought of as future research directions.

Exact computation of uniform bound. The upper bound given in the thesis for the H∞-
norm of the transfer functions may not be a tight bound. However, some observa-
tions suggest that the norm be bounded by one for a certain class of interconnection
impedances. Several conjectures have been made in Chapter 6 for this problem. The
techniques introduced in this chapter also have a possibility to find a rigorous upper
bound not only for the specific interconnection impedance discussed in the chapter
but also other impedances.

Conjectures on higher intermass displacements. If Conjecture 6.2 based on a graphical
observation is true, the supremum value of the magnitude of the transfer function
for the first intermass displacement is always greater than that of the higher ones,
with respect to the size of the mass chain. This means that the upper bound for the
first intermass displacement is only needed to consider for the uniform bound of the
disturbance amplification to any given intermass displacement.
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Disturbance propagation along the mass chain. Numerical observations suggest that the
H∞-norm of the transfer function from the disturbance to a given intermass displace-
ment be monotonically decreasing along a fixed length of the mass chain (Conjec-
ture 6.3).

Scalability in heterogeneous mass chains. The recurrence relations in heterogeneous mass
chains has been derived in Appendix 5.B in Chapter 5. They could be used for de-
riving conditions on the heterogeneous interconnections for achieving the uniform
boundedness.

Different topology. The extension of the proposed analysis method to different topologies
could be considered. This will enable to investigate many different applications such
as power networks and internet congestion problems.

H2-norm of the transfer functions. The vibration due to the disturbance at the movable
point in the mass chain propagates to the higher masses and comes back down to the
lower masses. Therefore, the vibration may continue for a very long time when the
mass chain is infinitely long, even though the H∞-norm is small. To analyse this
effect, the H2-norm might be suitable.
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