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Sternberg (2011) elegantly formalizes how certain sets of hypotheses, specifically modularity and pure or
composite measures, imply certain patterns of behavioural and neuroimaging data. Experimentalists are
often interested in the converse, however: whether certain patterns of data distinguish certain hypotheses,
specifically whether more than one module is involved. In this case, there is a striking reversal of the rela-
tive value of the data patterns that Sternberg considers. Foremost, the example of additive effects of two
factors on one composite measure becomes noninformative for this converse question. Indeed, as soon as
one allows for nonlinear measurement functions and nonlinear module processes, even a cross-over
interaction between two factors is noninformative in this respect. Rather, one requires more than one
measure, from which certain data patterns do provide strong evidence for multiple modules, assuming
only that the measurement functions are monotonic. If two measures are not monotonically related to
each other across the levels of one or more experimental factors, then one has evidence for more than
one module (i.e., more than one nonmonotonic transform). Two special cases of this are illustrated
here: a “reversed association” between two measures across three levels of a single factor, and
Sternberg’s example of selective effects of two factors on two measures. Fortunately, functional neuroi-
maging methods normally do provide multiple measures over space (e.g., functional magnetic resonance
imaging, fMRI) and/or time (e.g., electroencephalography, EEG). Thus to the extent that brain modules
imply mind modules (i.e., separate processors imply separate processes), the performance data offered
by functional neuroimaging are likely to be more powerful in revealing modules than are the single
behavioural measures (such as accuracy or reaction time, RT) traditionally considered in psychology.
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1. INTRODUCTION: INFERENTIAL
LOGIC

Sternberg’s target article in this issue (Sternberg,
2011) illustrates the importance of formal analyses

of the methodological approaches adopted in exper-
imental psychology: formalization of ideas often
held implicitly by most researchers, but rarely exam-
ined explicitly for their assumptions and limitations.

Correspondence should be addressed to Dr. R. N. Henson, MRC Cognition & Brain Sciences Unit, 15 Chaucer Road,

Cambridge, CB2 7EF, UK. (E-mail: rik.henson@mrc-cbu.cam.ac.uk).

This work is funded by the UK Medical Research Council (MC_US_A060_0046). The author thanks John Dunn, Niko

Kriegeskorte, and the three reviewers for their helpful comments.

# 2011 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business 209
http://www.psypress.com/cogneuropsychology http://dx.doi.org/10.1080/02643294.2011.561305

COGNITIVE NEUROPSYCHOLOGY, 2011, 28 (3 & 4), 209–223

wiley-ds
Sticky Note
This is an open access article distributed under the Supplemental Terms and Conditions for iOpenAccess articles published in Taylor & Francis journals, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Sternberg has continued this worthy enterprise ever
since his pioneering work in the late 1960s (e.g.,
Sternberg, 1969, 2001), and his analyses are just as
relevant, if not more relevant (as I argue below), to
the more recent field of cognitive neuroscience,
which tackles the mind–brain relationship “head-
on”. For this pioneering work, Sternberg is to be
congratulated, and the wider research community
would do well to consider his arguments carefully.
In this reply, I suggest a related, but alternative,
perspective, at least for the specific question of infer-
ring the number of modules from behavioural and
neuroimaging data.

More specifically, while Sternberg’s recent analy-
sis (Sternberg, 2011) has focused on the implications
of modularity for patterns of behavioural or neuroi-
maging data, I consider the converse case of what
patterns of behavioural or neuroimaging data
support modularity. Interestingly, this “inverse” per-
spective actually diminishes the value of some of
Sternberg’s principles, such as “additive factors”,
and emphasizes the value of other principles, such
as “selective effects” of factors, when applied to mul-
tiple measurements. This argument is formalized
below, before three examples are given to illustrate
what one might conclude about modules from
certain patterns of behavioural and/or neuroima-
ging data, which are then discussed more generally
in terms of modules in mind and brain.

1.1. Form of present argument

The inferential logic in Section 2.2 of Sternberg’s
paper is of the form (where � should be read as
“implies”):

H1 &H2 � p1 & p2 (1)

where Hi are hypotheses (related to the number
of modules and the nature of their measurement,
M) and pi are properties of the data (e.g., signifi-
cant experimental effects). It follows logically
that (where � should be read as “not”):

� (p1 & p2) �� (H1 &H2)

This is the classical “modus tollens”, or
“denying the consequent”, argument: that failing

to find that both p1 and p2 are true (ignoring for
the moment the issues of null results in classical
statistics; see Sternberg’s Footnote 8) implies that
at least one of the original hypotheses Hi is incor-
rect. However, a possible danger here is inap-
propriate “affirmation of the consequent”—that
is, it does not follow logically that:

p1 & p2 � H1 &H2 (2)

I am not suggesting that Sternberg ever made
this logical error (he refers to this situation of con-
firming p1 and p2 as providing “support for joint
hypotheses Hi”). Nonetheless there is the danger
that finding additive effects in the data of the
type described by Sternberg is erroneously taken
by others to imply modules. Thus in a nutshell,
the gist of the present argument is that, while
modules might imply additive factors, additive
factors do not imply modules. I demonstrate this
in the first example (Section 3.1) below.

Instead, I focus on the idea that, if there is only
one module (H1), and measurements are monotonic
functions of a module’s output (H2), then certain
properties of the data cannot be found—that is:

H1 &H2 �� (p1 & p2),

and therefore if those patterns are found (and
assuming H2 is always true), then more than one
module can be inferred—that is:

p1 & p2 �� (H1 &H2)
� (H1 &H2)&H2 �� H1

(3)

Before proceeding, it should be noted that the
deductive “implications” in the above statements
of propositional logic (Statements 1–3) are predi-
cated on the terms (Hi, pi) being either true or
false. The truth value of a property of data, pi,
however, is difficult if not impossible to ascertain,
given that there are sources of measurement
noise and fundamental measurement limits that
generally make statements about data properties
probabilistic rather than absolute (even if those
probabilities satisfy conventional scientific levels
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of “significance”). With this in mind, for typical
behavioural or neuroimaging data, Statement 3
should be read as “assuming monotonic measure-
ment functions, certain patterns of data provide
evidence against a single module account” (for
further elaboration of deductive vs. abductive
inference in science, see Coltheart, 2011).

2. TERMINOLOGY

I will adopt the same terminology as that of
Sternberg (2011). In brief, let A and B be
modules, F and G be experimental factors, and
Mi(F,G) be a measurement function that maps
the response of Modules A and B to F and G to
the ith behavioural or neural dependent variable.
One important aspect of the present argument is
that Mi may not be linear in the levels of experimen-
tal factors (e.g., F, G); indeed, in the general case, it
would seem unwise to assume that our measures are
linearly related to underlying psychological pro-
cesses. For example, many perceptual judgements
(e.g., of “pitch”) are logarithmic functions of phys-
ical manipulations of a stimulus (e.g., frequency).
Rather, the only assumption necessary in what
follows is that Mi is monotonic.

Another important addition in the present argu-
ment is that Modules A and B perform nonlinear
operations on their inputs, expressed by the func-
tions a(F,G) and b(F,G) respectively—that is,
Mi(F,G) ¼ Mi(a(F,G),b(F,G)). The reason for this
assumption becomes more apparent when consider-
ing interconnected neural processors later:
However, in brief, there is little value in each pro-
cessor within a system performing a linear operation,
otherwise the same ultimate linear relationship
between the system’s inputs and outputs could be
implemented in a single processor (since any linear
combination of linear functions can be expressed
as a single linear function; an argument also used
to justify nonlinear activation functions within
layers of an artificial neural network; e.g.,
Grossberg, 1988). If the mapping between the
inputs to a module and its output (e.g., a), and
between its output and the experimental measure-
ment (Mi), are both nonlinear and unknown, it

may seem difficult to draw conclusions about
modules from Mi alone; fortunately, the assumption
that Mi is monotonic provides some leverage, as
illustrated in the examples below.

3. THREE EXAMPLES

To illustrate the different perspective arising from
making statements about modules from data,
rather than testing predictions of modules with
data, I consider three examples below. The first
example (Section 3.1) is based on applying
“additive factors” logic to two factors and a single
behavioural measure, as formalized in Section 2.2
of Sternberg’s (2011) article (when assuming a
“summation” rule for the composite measure
MAB). The purpose of this first example is to
demonstrate the invalidity of Statement 2 above
(i.e., to show how finding additive effects does
not constitute strong evidence for multiple
modules). This example also goes on to illustrate
that the same problem applies to interactions,
even cross-over interactions, between two factors
on a single measurement.

The purpose of the second example (Section 3.2)
is to illustrate the utility of Statement 3 above—
namely, to argue that certain other, nonadditive
patterns of data (with only a single factor but at
least two different measurements) do provide
strong evidence for multiple modules. This
example also extends the argument to functional
neuroimaging, which normally automatically pro-
vides multiple measurements (across different
brain regions and/or different time points).

The third and final example (Section 3.3) recon-
siders the case of two factors, but which now show
selective effects on two independent measure-
ments, a pattern that (providing one accepts the
null hypothesis of no interaction) again provides
strong evidence for multiple modules. This
example also raises the difficult problem of applying
the present argument to a network of modules,
where the output of one module becomes the
input of another (and where neural measurements
may only be available on a subset of modules).
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3.1. Two factors, one measurement:
Insufficiency of additive factors

If we start with Sternberg’s example of a single,
composite measure, then my slightly modified
version of his argument is as follows:

. H1: There are two modules, A and B, selectively
affected by factors F and G respectively—that is,
with processes a(F) and b(G).

. H2: The measurement MAB is a linear function of
a and b—that is, MAB(F,G) ¼ u . a(F) + v . b(G),
where u and v are constants (and ignoring an
overall intercept term).

These hypotheses are illustrated schematically in
Figure 1-A1. Now consider the case of a 3 × 2
design, where Factor F has three levels, and Factor
G has two levels. An elegant example of such as
design is the study of Pinel, Dehaene, Riviere, and
LeBihan (2001) that Sternberg considers in his
Section 6.3. In this first example, we consider just
the behavioural data from that study—namely, the
mean response times (MAB) to classify a probe
number as greater or smaller than a target number,
as a function of whether (a) the probe number is pre-
sented as a numeral or by its name (G), and (b) the
absolute numerical difference between the probe
and target, which was low, medium, or high (F).
The results are shown schematically in Figure 1-
B1, where F and G had additive effects on MAB.

Using Sternberg’s notation, the properties of
the data associated with “additive factors” in this
example are (where F1 and F2 refer to first and
second level of F, etc.):

p1 : MAB(F1,G1) − MAB(F2,G1) =
MAB(F1,G2) − MAB(F2,G2)

p2 : MAB(F2,G1) − MAB(F3,G1) =
MAB(F2,G2) − MAB(F3,G2)

p3 : MAB(F1,G1) − MAB(F1,G2) =
MAB(F2,G1) − MAB(F2,G2)

p4 : MAB(F2,G1) − MAB(F2,G2) =
MAB(F3,G1) − MAB(F3,G2)

In a factorial analysis, this pattern entails (at a
minimum) significant main effects of F and G,
with no evidence for an interaction. In other
words, the pattern reflects no differences among
the simple main effects of the first factor over
the different levels of the second.

Now simple algebra (in terms of u and v) shows
that, provided the operations of the modules, a(F)
and b(G), are linear, the assumption of linear
measurement (H2) means that:

H1 &H2 � p1 & p2 & p3 & p4

In other words, finding additive effects would
be consistent with Sternberg’s “separately modifi-
able” modules, A and B. However, finding additive
effects can also be consistent with a single module.
To appreciate this, consider a single module, C,
whose operation depends on both F and G, as in
Figure 1-A2. In the general case, the module’s
output, c(F,G), can be nonlinear, and the measure-
ment of that output, MAB ¼ w(c(F,G)), is assumed
only to be monotonic. But to make the present
point, we can assume that both of these functions
are linear—that is, that c(F,G) ¼ u . F + v . G,
and MAB ¼ w . c(F,G) (ignoring intercepts, and
where u,v,w are now constants)—and still repro-
duce the pattern of additive factors. To see this,
define a new, unidimensional (latent) variable, E
¼ u . F + v . G, onto which the factors F and G
map, and on which the functionality of C solely
depends, and assume that the output c(E) is
measured proportionally by MAB. This is shown
in Figure 1-B2, which is simply a replotting of
the data in Figure 1-B1.1 In other words, the
fact that we do not know how experimental
factors F and G map onto the psychological
dimension over which C operates means that addi-
tive factors on a single dependent variable do not
constitute evidence for more than one module.

3.1.1. Insufficiency of other interaction patterns
Though the insufficiency of finding additive
effects on a single composite measure is the main

1Note that this still holds, even if the data points for different levels of F and G (i.e., red and blue points in Figure 1-B1) overlap;

in other words, the fact that MAB(F1,G3) , MAB(F2,G1) in these examples is just to aid visualization.
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message of this example, it is instructive to con-
sider other patterns of data. For example, what if
there is an interaction between F and G, of the

form shown in Figure 1-C1: Does this provide
strong support for two modules? The answer is
no, because even if the operation of module C,

Figure 1. Two factors, one measurement: insufficiency of additive factors. Possible manner in which two experimental factors, F and G, could

affect single measurement (MAB) of two modules, A and B (Panel A1), or of a single module, C (Panel A2). The functions a, b, and c describe

processes performed by modules; u, v, and w are measurement functions (or constants that control linear measurement functions in the discussion

of Sternberg’s, 2011, additive factors in the text). Example data when F (with three levels) and G (with two levels) have additive effects (Panel

B1), and how these data are explained by linear measurement of the single module C, whose output, c(E), is a linear function of E, itself a linear

combination of F and G (Panel B2; see text). Example data when F and G interact (Panel C1), and how these data are explained by nonlinear

(but monotonic) measurement of a single module whose output is a linear function of F and G (Panel C2). Example data when F and G show a

cross-over interaction (Panel D1), and how these data are explained by linear measurement of a single module, whose output is a nonlinear

function of F and G (Panel D2). None of these data patterns therefore constitute evidence against a single module account (according to present

framework).
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c(E), in Figure 1–A2 is linear (green line in Figure
1–C2), a nonlinear but monotonic (e.g., sigmoi-
dal) measurement function, w(c(E)), for MAB

(cyan line in Figure 1–C2) can still explain the
data (as could the converse case of a sigmoidal
module process, c, and a linear measurement func-
tion, w).

Or what if there is a cross-over interaction
between F and G, of the form shown in Figure
1-D1: Does this provide strong support for two
modules? The answer is again no. Unlike Figure
1-C, these data cannot be explained by a linear
module and a nonlinear but monotonic measure-
ment function. However, assuming that modules
should perform nonlinear operations on their
input (as argued in Section 2 above), a cross-over
interaction can be explained by a nonlinear func-
tion c(E) (green line in Figure 1-D2), even if the
measurement function, w, is linear (cyan line in
Figure 1-D2). Thus, while I have argued that non-
linearity is an important property of modules, the
reason that I refer to it as a “curse” in the title of
this article is that it makes the task of inferring
modules even more challenging.

Fortunately, there are more compelling ways to
question a single module account within the
present framework, provided one takes more
than one measurement of each experimental con-
dition. The reason for this is expanded below,
but in short, because the form of c is invariant
over any measurement, then assuming that each
measurement is monotonic in the output of c,
certain patterns of data across multiple measure-
ments cannot be explained even if c is nonlinear
and unknown.

3.2. One factor, two measurements:
Reversed associations

Now consider the case of one experimental factor,
F, with three levels, and two measurements, MA

and MB (note that the labels MA and MB are not
meant to imply pure measures of A and B, as
will be seen below, but are used for consistency
with Sternberg’s article). The question then con-
cerns what pattern of data would constitute

evidence for two modules (Figure 2-A1) rather
than one single module (Figure 2-A2).

Let us start by considering the cross-over inter-
action in Section 3.1.1 above (Figure 1-D1), but
where the two lines in Figure 2-B1 now refer to
two measurements, rather than two levels of an
orthogonal experimental factor. This pattern is
not evidence against a single module explanation,
because MA and MB could both be monotonic
functions: one monotonic increasing (w, for MA)
and one monotonic decreasing (x, for MB), as
shown in Figure 2-B2.

Consider, however, the pattern shown in
Figure 2–C1. This pattern is called a “reversed
association” (Dunn & Kirsner, 1988), because it
involves an association (positive correlation
between effects of F2 versus F1 on both MA and
MB) that is reversed at other levels of F (a cross-
over interaction between F3 versus F2 on MA and
MB). More precisely, it consists of:

p1 : [MA(F2) . MA(F1)& MB(F2) . MB(F1)]
or [MA(F2) , MA(F1)& MB(F2) , MB(F1)]

p2 : [MA(F3) . MA(F2)& MB(F3) , MB(F2)]
or [MA(F3) , MA(F2)& MB(F3) . MB(F2)]

As Dunn and Kirsner originally observed, this
pattern questions a single underlying psychological
process (module). Given that the mapping from F
to the outputs c(F) of a single module C must be
invariant across all measurements, there is no
single way to remap the relative values of c(F1),
c(F2), and c(F3) (even if c is nonlinear) and simul-
taneously fit the reversed association when assum-
ing monotonic measurement functions (e.g.,
function x for MB in Figure 2-C2 would need to
be nonmonotonic in this case, violating our hypoth-
esis H2, as indicated by the cross by its legend). In
other words, a reversed association suggests that
the modules respond in a qualitatively different
manner to the levels of a factor, in that the relative
order of effect sizes across levels produced by one
module, a(F), does not match the relative order
across levels produced by another module, b(F).
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3.2.1. Processors and neuroimaging data
This is a suitable juncture to extend the present
argument to brain modules and functional neuroi-
maging data. As Sternberg (2011) observes, it is
important to distinguish psychological processes
from the neural implementation of those processes
(the “processors”). This is illustrated in Figure 3:
Two modules A and B might be implemented by
two separate processors, a and b (Figure 3-A1),
or two modules A and B might be implemented
within the same processor x (Figure 3-B1), or
the same module C might be implemented by
two separate processors, x1 and x2 (Figure 3-A2).

Furthermore, as Sternberg also notes: “The exist-
ence of functionally specialized processors (either
localized or distributed) is a sufficient condition
but not necessary one for functionally distinct
processes . . . ” (Sternberg, 2011, Section 1). In
other words, there is an asymmetry in the relation-
ship between processors and processes: Modular
processes need not imply modular processors, but
there would seem little point in evolving modular
processors unless they implemented modular pro-
cesses (see also Shallice, 1988, for a similar argu-
ment about the relationship between double
dissociations and isolable subsystems, and present

Figure 2. One factor, two measurements: reversed associations. Possible manner in which one experimental factor, F, could affect two

independent measurements (MA and MB) of two modules A and B (Panel A1), or a single module C (Panel A2). Example data when F

(with three levels) has opposite effects of MA and MB (Panel B1), which can be explained by two modules (even with linear

measurement functions u and v), but can also be explained by different, (non)linear but monotonic measurement functions, w and x, of

the single module C (Panel B2). Example data that comprise a reversed association (Panel C1), which monotonic functions MA and MB

cannot explain, given only a single module, even if that module implements a nonlinear function of F, c(F) (Panel C2; the cross by the

label for MB indicates that this measurement function has to be nonmonotonic in order to fit the data, violating the present assumptions).

This data pattern therefore does constitute evidence against a single module account (see text).
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Discussion for further consideration of modules in
mind and brain).

For existing, noninvasive human neuroimaging
techniques, the measurements (M) are now some
signal integrated over many neurons within a brain
region. This neural activity is also either integrated
over time, as in haemodynamic techniques like func-
tional magnetic resonance imaging (fMRI), or inte-
grated over multiple brain regions, as in extracranial
electrophysiological techniques like electro- and
magnetoencephalography (E/MEG). For the
present argument, we stick with fMRI, where the
measurements are now labelled R1 and R2 to rep-
resent the fMRI signal from two brain regions (cor-
responding to processors a and b, or x1 and x2).

However, the same basic argument can be extended
to E/MEG measurements at different time points
(or even electrophysiological signals occurring at
the same time but believed to derive from different
brain regions following source reconstruction of
E/MEG data; Baillet, Mosher, & Leahy, 2001).
Given the complex biophysical processes that
govern, for example, the blood-oxygenation-level-
dependent (BOLD) signal that is normally
measured by fMRI, it would seem even more judi-
cious to make minimal assumptions about how neu-
roimaging measurements relate to hypothetical
psychological processes—that is, assume only that
the measurement functions B1 and B2 in Figure 3
are monotonic.2 Nonetheless, the reason that I

Figure 3. Possible neural implementations of Modules A, B, and C. Greek lettersa,b, x1, andx2 refer to distinct neural components (processors).

Two modules implemented by two separate processors (Panel A1); the same module implemented by two separate processors (Panel A2); two

modules implemented within the same processor (Panel B1). In the example of functional magnetic resonance imaging (fMRI) data in the

text, B1 and B2 refer to the neural-to-BOLD (BOLD ¼ blood-oxygen-level-dependent) mappings (monotonic measurement functions) for

spatially resolvable brain regions R1 and R2. Panel B2 is a replotting of the reversed association data in Figure 2-C1, but now as BOLD

signal in one region against that in another; the fact that these data points do not fall on a monotonic function again suggests that a single

module (Panel A2)—that is, the same process that happens to be implemented across multiple processors—is unlikely.

2The measurement function B in Figure 3 subsumes both of Sternberg’s (2011) mappings from an experimental factor F to the neural

activity within a processor (akin to N in Section 7.2 of Sternberg’s article) and from neural activity within a processor to the BOLD signal

measured by fMRI (Sternberg’s B). The distinction between these mappings is not important for the present argument, but would

become important if relating fMRI data to more direct neurophysiological measures. In other words, a 10% change in a parametric

factor F—that is, (F2 – F1)/F1 ¼ 0.1 (e.g., visual contrast) may or may not result in a 10% increase in neuronal firing rate (or local

field potentials), which in turn may or may not result in a 10% increase in BOLD. Though Sternberg notes that the latter linearity

has been observed under some conditions (e.g., Rees, Friston, & Koch, 2000), other (monotonic) nonlinearities, particularly in the

mapping from blood flow to BOLD, have also been demonstrated (Friston, Mechelli, Turner, & Price, 2000). More generally,

however (e.g., in the example of networks of processors in Figure 5), it might be prudent to introduce additional mappings from exper-

imental factors (or psychological variables) to neural activity (e.g., that form the input to the “sensory” processors in a network) and poss-

ibly from the neural activity output from one processor to the input to another (reflecting effective connectivity between processors).
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refer to neuroimaging as a “blessing” in the title of
this article is that it normally automatically provides
multiple, simultaneous measurements of brain
activity.

Thus, according to the argument in Section 3.1
above, the finding of additive effects of two factors
on the BOLD signal within a single region (such
as the “parahippocampal place area” of the
Epstein, Parker, & Feiler, 2008, study considered
in Section 6.5 of Sternberg’s, 2011, article)
would not constitute evidence for multiple
modules. Rather, one must find certain patterns,
such as the reversed association described in
Section 3.2, in the BOLD signal across two or
more regions. This application of “reversed associ-
ation logic” to neuroimaging data was originally
outlined in Henson (2005), together with further
examples of how one might use neuroimaging
data from two or more brain regions to distinguish
between competing psychological theories (and
for a concrete example in the context of testing
single- versus dual-process theories of recognition
memory, see Henson, 2006a).

Note that another way of depicting the reversed
association in Figure 2-C1 is to plot the two
measurements directly against each other: If the
data points fall on a monotonic function, then
they can be explained by a single psychological
process (dimension). This is the basis of “state-
trace” analysis, of which the reversed association
is a special case (Newell & Dunn, 2008). The ana-
logous proposal here is that if neural measure-
ments for two brain regions, R1 and R2, do not
fall on a monotonic function (as in Figure 3-B2),
then those two regions are unlikely to be imple-
menting the same module. In other words, the
pattern of neuroimaging data in Figure 3-B2

questions the scenario depicted in Figure 3-A2
and supports the scenario depicted in Figure 3-A1.3

3.3. Two factors, two measures: Selective
effects on neuroimaging data

Despite their potential inferential power, few neu-
roimaging studies have produced a clear reversed
association across three or more conditions and
two or more brain regions, at least when those
brain regions are defined independently (Henson,
2006a; though see Weber & Huettel, 2008, for
one example). This is a shame, because reversed
associations can be defined simply by four signifi-
cant pairwise effects in the data (corresponding to
data patterns p1 and p2 in Section 3.2 above),
unlike the general case of “state-trace” analysis,
for which statistical methods for quantifying
deviations from monotonicity are yet to be fully
established (Newell & Dunn, 2008). On the
other hand, if one is prepared to accept the null
hypothesis of no effect in the data, there are
other patterns of data that also question a single
module account.4 Here the combination of two
or more factors that show selective effects on two
or more independent measurements (related to
Sternberg’s Section 6.4) become informative, as
illustrated below.

Consider an fMRI study with two experimental
factors, F with three levels and G with two levels,
and data from two regions of interest, R1 and R2.
The desire is to distinguish the multiple modules
(and multiple processors) from the single module
(implemented by multiple processors) depicted in
Figures 4-A1 and 4-A2, respectively. Now if one
finds a main effect of Factor G but no effect of
Factor F in region R1 (Figure 4-B1), plus a main

3The scenario depicted in Figure 3-B1 is not relevant because it only entails one brain measurement (R1), but serves to remind us

that this measurement may itself be the product of multiple modules. This may be either because the spatial resolution of the neu-

roimaging technique is not sufficient to distinguish activity of different processors, or even because the same processor might

implement different processes, dependent, for example, on control signals from other processors (i.e., networks of connected

brain regions; see Section 3.3.1).
4The issue of null effects in classical statistics is discussed by Sternberg in his Footnote 8. While not in total agreement, I am

happy to confer them with the same evidential value for the purpose of the present argument. More generally, Bayesian approaches

would seem more suitable, in which one can assign a probability to an effect being within a certain range of zero (particularly “empiri-

cal Bayesian” approaches, in which the prior can be defined by the data themselves, provided there is an implicit hierarchical model;

see Friston et al., 2002, for an example application in fMRI analysis).
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effect of Factor F but no effect of Factor G in region
R2 (Figure 4-B2), then one can question the single
module in Figure 4-A2. (This was actually the
general pattern and claim made from the fMRI
data of the Pinel et al., 2001, study described in
Section 3.1 above.) This is because again, there is
no way that a single nonlinear function within
Module C can simultaneous fit the data from two
monotonic measurement functions, even if that
same function c(F,G) happens to be implemented
in two different brain regions, x1 and x2, on
which the two independent measurement

functions operate (to produce R1 and R2). This is
illustrated in Figures 4-C1 and 4-C2. In Figure
4-C1, a linear mapping of F and G to E1–E6,
over which c(E) operates, in conjunction with a
sharp, sigmoidal measurement function R1 (cyan
line), can fit the main effect of Factor G on R1,
but cannot simultaneously fit the main effect of
Factor F on R2, whatever the measurement func-
tion (i.e., the magenta dotted line requires a differ-
ent relative ordering of E1–E6 in order to fit the
data and remain monotonic, as indicated by the
cross by its legend). In Figure 4-C2, this is

Figure 4. Two factors, two measurements: selective effects on two brain regions. Two modules implemented by two separate processors (Panel

A1); the same module implemented by two separate processors (Panel A2). Example neuroimaging data where measurement R1 of one region

shows a main effect of Factor G but not Factor F (Panel B1), and measurement R2 of a different region shows a main effect of F but not G

(Panel B2). These data (accepting null hypotheses of no effects) are evidence against a single module C—that is, a single nonlinear function

c(F,G) ¼ c(E), where E is a linear function of F and G—even with different neural-to-BOLD (BOLD ¼ blood-oxygen-level-dependent)

mappings (measurements) in the two regions (Panel C1; the cross by the label for R2 indicates that this measurement function has to be

nonmonotonic in order to fit the data, violating the present assumptions). This is again illustrated by fact that a plot of BOLD signal in

two regions against one another (Panel C2) cannot be fitted by a monotonic function (see text).
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demonstrated by the fact that the six data points
from plotting R1 against R2 do not fall on a mono-
tonically increasing or decreasing function (Newell
& Dunn, 2008). Thus, while I agree with
Sternberg that the combination of factorial exper-
imental designs and neuroimaging techniques
offers a powerful way to find evidence of “separately
modifiable” processors, which in turn provides evi-
dence for multiple modules, I would emphasize
different aspects of the data, particularly the value
of having multiple measurements across brain
regions.

3.3.1. Networks of processors
Once one begins to consider seriously the oper-
ation of a complex system like the brain, in
which a number of modules are assumed to inter-
act with one another, the inferences one can make
from neuroimaging (or behavioural) data become
less specific, however. To see this, consider the
toy network shown in Figure 5. Here there are
three modules, implemented across four pro-
cessors, where Module C is implemented in two
separate processors, x1 and x2, and where the
inputs to C are the outputs of A and B.
According to the argument in Section 3.2 above,
a reversed association across three levels of a
factor F and the two measurements R1 and R2 of
x1 and x2 would question the existence of a
single module C. However, the perturbations to
the system induced by manipulating the levels of
F may not impinge directly on module C (as was
assumed in the examples above), but only
indirectly via two earlier modules, A and B. For
example, the levels of F could correspond to differ-
ent levels of visual contrast, and the processors a

and b could correspond to brain regions early in
the visual processing pathway, while processors
x1 and x2 could correspond to “higher order”
brain regions further along that pathway, related,
for example, to perceptual decisions (e.g., in pre-
frontal cortex).

In this case, because A and B are able to
implement different, nonlinear operations on
their input (the levels of F), and because their
resulting outputs form separate inputs to x1 and
x2, respectively, a reversed association on

measurements R1 and R2 of x1 and x2 is no
longer evidence against a single module C—that
is, x1 and x2 may implement the same function, c,
but the relative values of the input to x1 and x2

may differ by virtue of different prior nonlinear
operations a(F) and b(F), respectively, causing a
reversed association. For example, a(F) may be a
linear function that maintains the relative order of
F1 ,F2 , F3, while b(F) may be a nonlinear func-
tion, like that in Figure 1-D2, which reorders the
relative levels of F to F1 , F2 . F3, thereby
jointly allowing C to produce a reversed association
of the type shown in Figure 3-B2. This ambiguity
can be resolved by simultaneous consideration of
neuroimaging data from processors a and b (e.g.,
R3 and R4, not shown in Figure 5), but it is possible
that such data might simply not be available for
these processors for some reason (e.g., because of
types of neural activity that are undetectable by

Figure 5. Example network of modules, where different inputs to

Module C, by virtue of different “upstream” modules A and B,

mean that a reversed association between Factor F and

measurements of two regions R1 and R2 (or any other

discriminative data pattern considered in Figures 3–4) does not

constitute evidence that regions x1 and x2 implement distinct

modules, only that at least two different modules exist somewhere

within the network including, or upstream of, x1 and x2 (see

text). Note that the arrows between a and x1, and between b

and x2, refer to the direction of causal influence (but not to a

specific form of temporal interaction, e.g., staged or cascaded)—

that is, a feedforward architecture here. In the alternative case of

bidirectional arrows—that is, a fully interactive architecture

where the outputs of Process c could also affect the outputs of

Processes a and b—the same reversed association across

measurements R1 and R2 would only constitute evidence of more

than one module somewhere in the network (i.e., could arise from

any two processors whose influence could be traced directly or

indirectly to x1 and x2; see text).
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fMRI). In this case, the specificity of the inference
drawn from the reversed association on measure-
ments R1 and R2, given the network depicted in
Figure 5, is reduced to the claim that there are at
least two different modules either within x1 and
x2, or upstream of those processors. The same limit-
ations would seem to apply to neuroimaging dis-
sociations over time, as in the EEG examples
considered in Sternberg’s Section 3.1: Selective
effects of factors on different poststimulus time
windows would allow one to claim only that “separ-
ately modifiable” processes occur at some time prior
to, or including, the measured time windows.
Relating such neuroimaging data to simultaneous
behavioural data also becomes a challenge, given
that a behavioural measurement, MABC (e.g., accu-
racy), will be influenced by more than one module
(e.g., a motor region driving that behavioural
response, not shown in Figure 5, might “read out”
the activity of both b and x2, i.e., depend directly
on both B and C, and indirectly on A).

However, even the above restriction of inferring
modules to “within or upstream of x1 and x2” is
predicated on unidirectional communication
from a to x1, and from b to x2—that is, a “feedfor-
ward” architecture. In the alternative case of a fully
interactive architecture (i.e., bidirectional arrows
between modules in Figure 5), where the outputs
of Process c could also affect the outputs of
Processes a and b, the same reversed association
between the levels of F and measurements R1

and R2 would only constitute evidence of more
than one module somewhere in the network as a
whole (i.e., the reversed association could arise
from any two processors whose influence could
be traced directly or indirectly to x1 and x2).
Indeed, in this highly interactive case, even
knowing the BOLD signal in all the relevant pro-
cessors will not help localize the multiple modules.
While one might think that evidence for more
than one module (nonlinear process) somewhere
in the brain is not particularly informative, it
should be remembered that one still has evidence
for more than one module that is sensitive specifi-
cally to the experimental manipulation (F), which
can still be theoretically important. More gener-
ally, this challenge of localizing modules within

highly interactive systems probably requires
testing multiple explicit, network models (e.g.,
structural equation modelling; see below).

4. DISCUSSION: MODULES IN BRAIN
AND MIND

The present methodological argument continues a
line of thinking introduced by Henson (2005),
where it was called “function-to-structure deduc-
tion”, as one of two types of inference about
psychological processes that one might make
from neuroimaging data. The critical pattern of a
reversed association across three experimental con-
ditions and two brain regions was later spelled out
in more detail by Henson (2006a), where it was
called an example of “forward inference” (in con-
trast to the “reverse inference” coined by
Poldrack, 2006). Here, the same basic argument
is formalized more explicitly, using the terminol-
ogy introduced by Sternberg (2011), and extended
to data patterns beyond a reversed association (e.g.,
the selective effects of two factors described in
Section 3.3 above). It has been explained how
this perspective questions what Sternberg would
conclude from additive effects on a single behav-
ioural measure (e.g., the RT data of Pinel et al.,
2001, considered in Sternberg’s Section 6.3), or
from additive effects on a single neural measure
(e.g., the fMRI data from the parahippocampal
place area of Epstein et al., 2008, considered in
Sternberg’s Section 6.5), but concurs with what
Sternberg would conclude from selective effects
on multiple neural measures (e.g., the fMRI data
of Pinel et al., 2001, considered in Sternberg’s
Section 6.3).

More theoretical issues—for example, of what
defines a module—have deliberately been
avoided (though see Henson, 2006b, for some
thoughts along these more philosophical lines,
e.g., in terms of “locality” and “directionality”).
Indeed, in many of these issues, I am in agreement
with Sternberg. Thus I also accept the compu-
tational/evolutionary argument for the existence
of modules (exemplified by the elegant quote of
Marr’s given in Footnote 2 of Sternberg’s article
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in this issue) and do not use the word “module” in
the strict Fodorian sense (Fodor, 1983).5 Rather, I
use it in the same, simpler sense of Sternberg—
that is, of being “separately modifiable”, analogous
to Shallice’s definition of “isolable subsystems”
(Shallice, 1988). In this sense, modularity really
describes a methodological approach, rather than
purely theoretical enterprise—that is, the proposal
that a complex system may be “decomposed” into
its constituent parts (before those parts can be
reassembled in a model of the system), an
approach that has dominated biology (Bechtel,
2003).

Do dissociable processors imply separate pro-
cesses (modules)? Page (2006) gives an example
that questions the inference of multiple psycho-
logical processes from a reversed association in
neuroimaging data: Imagine that one measured
neural activity at distinct locations along a topolo-
gically organized part of cortex, where neurons
show nonlinear (e.g., Gaussian) tuning curves as
a function of a factor F (e.g., tone frequency).
Comparison of three levels of F (e.g., three fre-
quencies) might then produce a reversed associ-
ation across two locations within that
topographic map (see Henson, 2005, and Page,
2006, for further explanation). Does this imply
two modules operating at those two locations?
Well the answer depends on the level of theoretical
description. At the level of those two processors
(implementing nonlinear functions of their
input), one would have to argue that they
implement different processes—that is, are tuned
to detect different frequencies. At the level of
part of cortex as a whole, one could describe it as
one module, whose function is to code the fre-
quency of auditory input. This issue of multiple
levels of description is discussed at greater length
by Henson (2005).

Inferring the existence of more than one
module is of course not the end goal of cognitive
(neuro)scientists. The present criteria for inferring
multiple modules do not proscribe the precise

processes performed by each. The same scientists
normally want to go further and describe the
precise operation of those modules (e.g., the nature
of processes a,b,c in examples above). This is
generally achieved by hypothesizing further factors
that affect those modules and testing these hypoth-
eses in new experiments (see Henson, 2006a, for an
example in the context of theories of recognition
memory). Indeed, these hypothesize–test–hypoth-
esize iterations appear a good description of most
empirical sciences. This is the counterargument to
the claim that one can always find dissociable data
patterns (whatever the precise definition of “dissoci-
able”), in the sense that if a participant can tell you
the difference between two stimuli/tasks/contexts,
then there must be a difference somewhere in their
brain: It is the nature of that difference that is
vital. So, for example, I was once asked whether, if
one found different patterns of fMRI activity for
pictures of Chinese versus Japanese food, would
one infer separate modules for these two types of
cuisine? Well, one might infer that (assuming that
the fMRI data met the criteria for multiple
modules in Section 3), but one would not stop
there, but rather propose further experiments
(experimental manipulations) that attempt to
distinguish the “national cuisine” hypothesis from
alternative hypotheses related to, for example,
differences in the form or colour of the pictures of
the foodstuffs (e.g., by using verbal labels instead),
or gustatory differences normally experienced
in the sugar/salt content of those foodstuffs,
and so on.

A practical point that emerges from the above
considerations is the importance of multifactorial,
parametric designs for neuroimaging experiments:
multiple factors in order to find selective effects of
the type described in Section 3.3 above, and para-
metric in order to provide at least some insight
into the nature of the psychological–neural (or
“neurometric”) mapping (e.g., possibility of a
linear mapping). This is, of course, advice that
Sternberg has long given for behavioural

5Nonetheless, a potentially important additional criterion I have proposed here for a module is that it implement a nonlinear

function of its input (for the reasons given in Section 2). Whether this criterion is strictly necessary might be a topic for future

discussion.
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experiments, though he states that “factorial exper-
iments are relatively rare in studies of brain acti-
vation” (Sternberg, 2011, Section 2.3). While it is
true that in practice most early neuroimaging
studies focused on categorical, subtraction
designs—where a handful of conditions are com-
pared that are assumed to differ qualitatively in
their component processes (often entailing different
tasks), rather than conforming to parametrically
related factors—the theoretical importance of fac-
torial, parametric designs for neuroimaging has, in
fact, been appreciated for many years (e.g., Friston
et al., 1996; see also Friston & Price, 2011).

I should also note that much of Sternberg’s
article in this issue (Sternberg, 2011) concerns the
use of additive factors on time-resolved measure-
ments like reaction times (RTs) and event-related
potentials (ERPs), in order to infer serial or parallel
processing “stages” (e.g., Sternberg’s Sections 3 and
4). This has perhaps been the most influential
application of Sternberg’s work since his seminal
1969 paper (Sternberg, 1969). I have not con-
sidered such temporal issues here. Rather, my
focus has been on the basic process decomposition
approach (outlined in Sternberg’s Section 2) and
its application to “stationary” data like behavioural
accuracy or fMRI data (as in Sternberg’s Section
6). Nonetheless, I do believe that an important
future goal for neuroscientific methodological con-
sideration will be to establish the types of inference
one can make, if any, about staged versus cascaded,
and/or independent versus interactive, processing
of modules (Coltheart, 2011). Given what we
know about the highly connected and complex
dynamics of the brain’s physiology, I suspect such
direct inferences will be limited, and instead we
will need to rely on indirect inferences based on
formal model comparison of a range of explicit,
dynamic, network models, which differ in the sets
of connections, “forward” and/or “backward”,
that are affected by an experimental manipulation
(e.g., Stephan et al., 2007).

Finally, while I have argued for certain pat-
terns of data being necessary to provide evidence
for modules, I accept that scientists in practice
normally consider a continuum of evidence, with
some data patterns simply being more compelling

than others (Henson, 2005). Nonetheless, the
formalization of the assumptions and limitations
associated with each type of evidence, as exempli-
fied by Sternberg’s continued endeavours, are vital
for determining the relative value of that evidence
for the precise inference intended.
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