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Local Lyapunov Functions for Consensus in
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Abstract—This note presents two theorems on asymptotic state
consensus of continuous time nonlinear multi-agent systems.
The agents reside in Rm and have switching interconnection
topologies. Both the first theorem, formulated in terms of the
states of individual agents, and the second theorem, formulated
in terms of the pairwise states for pairs of agents, can be
interpreted as variants of Lyapunov’s second method. The two
theorems complement each other; the second provides stronger
convergence results under weaker graph topology assumptions,
whereas the first often can be applied in a wider context in
terms of the structure of the right-hand sides of the systems. The
second theorem also sheds some new light on well-known results
for consensus of nonlinear systems where the right-hand sides
of the agents’ dynamics are convex combinations of directions
to neighboring agents. For such systems, instead of proving
consensus by using the theory of contracting convex sets, a local
quadratic Lyapunov function can be used.

Index Terms—Consensus, multi-agent systems, nonlinear
systems, switched systems.

I. INTRODUCTION

In dynamical systems, state convergence to a desired set,
e.g., a set of equilibrium points, appears in many important
applications. Applications range from the platooning prob-
lem [1], where adjacent cars in the formation should keep
a constant distance between each other, to wireless cellular
networks, where the power usage in the cell phones should
converge to a constant low level – power rushes shall be
avoided [2]. In biology, concentrations of species governed
by mass-action kinetics, should converge to the set of equilib-
ria [3].

Complex nonlinear multi-agent systems have a large number
of states and conditions for convergence is often non-trivial.
One of the most studied problems, both in terms of the number
of applications and the number of theoretical results, is the
consensus set, i.e., the set where all the states are equal [4]–
[11]. In this case, consensus (rendezvous or state agreement)
refers to state convergence to the consensus set in which all
the states are equal. During the last decade a vast amount
of publications addressed consensus. A few examples are the
following books [5], [12] and surveys [13]–[15], addressing
the subject from different perspectives. The interest in the
consensus problem stems on the one hand from the properties
of the set – among other things, it is a linear subspace –
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and on the other hand from the applicability of the results.
For example, it can be shown that the problem of reaching
a formation in many cases can equivalently be posed as a
consensus problem [16].

Depending on the particular application, nonlinear multi-
agent systems can be described in discrete time [17], [18] or
continuous time [19]. For linear dynamics, many results have
centered around graph theoretic concepts such as the graph
Laplacian matrix and its importance for the convergence [4],
[5], [20]. Moreover, necessary conditions for consensus have
been formulated for homogeneous linear systems [21]. In [22]
an algorithm is provided for minimum time consensus.

This work addresses consensus for continuous time multi-
agent systems with switching interconnection topologies. In
many applications, such as networks of cameras [23] or
satellites in space [24] equipped with cameras, the topologies
change over time. In these scenarios cameras (or agents) that
are visible might, as time progresses, fall outside the field
of view. For the systems we study, the right-hand side of the
system dynamics switches between a finite set of functions that
are piece-wise continuous in time and uniformly Lipschitz in
state on some compact region containing the origin. Similar
to other papers on switching systems, we assume there is a
positive lower bound on the dwell-time between consecutive
switches [25], [26]. We also require, in order to consider piece-
wise continuously time-varying right-hand sides, an upper
bound on the dwell-time.

In the spirit of Lyapunov’s second method, this paper
presents two theorems for consensus. The two theorems differ
in the following sense: the first is formulated for the individual
states of the agents, whereas the second is formulated for pairs
of states. The theorems can be combined to show consensus
under the assumptions in [9], [25], [26]. However, there
are examples where those assumptions do not hold, but the
proposed theorems still can be applied.

Both theorems introduce local Lyapunov-like functions,
guaranteeing consensus in multi-agent systems. The benefits of
using these functions – compared to traditional approaches of
using common Lyapunov functions – is that the convergence
analysis can be conducted on a local level for individual agents
or pairs of agents. Hence, the convergence analysis can be seen
as distributed. If the conditions in the first/second theorem
are satisfied, then the consensus set is attractive/uniformly
asymptotically stable, respectively. While the second theorem
provides stronger guarantees for the convergence, the first
theorem can often be applied in a wider context. The type
of convergence considered in this work is defined relative to
compact invariant sets.
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The paper proceeds as follows. Section II introduces the
system dynamics and the definitions. Section III provides the
main results, i.e., the two main theorems. Section IV provides
two examples that illustrate how both theorems can be used.
Section V provides outlines of the proofs of the two main
theorems. The important steps of the proofs are described.
Also, the complete proofs of two support lemmas are contained
in this section.

II. PRELIMINARIES

A. Notation

A vector x that belongs to Rm is a column vector. If nothing
else is mentioned, ‖ · ‖ is the Euclidean norm. Br,m(x0)
denotes the open ball in Rm centered around x0 ∈ Rm with
radius r > 0 and B̄r,m(x0) is the closure of said open ball.
When x0 is omitted and the notations Br,m respective B̄r,m
are used, it holds that x0 = 0.

B. System dynamics

Consider a multi-agent system with n agents. The state of
agent i at time t is xi(t) ∈ Rm, and the state of the entire
system is x(t) = [xT1 (t), xT2 (t), . . . , xTn (t)]T . The dynamics is

ẋ1 = f1(t, x),

ẋ2 = f2(t, x),
...

ẋn = fn(t, x).

(1)

The right-hand side of each agent i has the following structure:

fi(t, x) = f̃σi(t),i(t− γσi(t), x),

where
• the functions f̃l,i ∈ Fi, for all l ∈ {1, 2, . . . , |Fi|}. The

set Fi is a finite set of functions, where each function
is continuous in t and Lipschitz in x, uniformly with
respect to t, on some open connected set containing the
compact region D ⊂ Rmn, which contains the origin as
an interior point;

• the function σi(t) is piecewise right-continuous and
attains values in {1, 2, . . . , |Fi|};

• the sequence {τ ik} is a monotonically increasing se-
quence, such that τ ik →∞ as k →∞ and τ ik → −∞ as
k → −∞, where each τ ik ∈ R is such that for any k ∈ Z
the function σi is constant on [τ ik, τ

i
k+1) for all k, and

inf
k

(τ ik+1 − τ ik) > 0;

• it holds that
sup
k

(τ ik+1 − τ ik) <∞;

• the function γσi is defined (for finite times t) by

γσi(t) = max{τ ik : τ ik ≤ t, k ∈ Z}.

Let σ = [σ1, σ2, . . . , σn]T and F = F1 × F2 × · · · Fn.
Let SF be the set of all possible σ-functions that can be

constructed by σi-functions satisfying the conditions above.
For agent i, {τ ik} are the switching times for σi, i.e., the points
of discontinuity. The fi-functions are more general than time-
invariant functions, but the time dependence has a restricted
form. At the time t, fi is, besides a function of the state, a
function of the time passed since the preceding switching time,
see the definition of γσi(t) above.

Each agent i has its own switching signal function σi with
a corresponding switching sequence {τ ik} and there is no
dependence between the different σi-functions of the agents.
Let

xσ(t, t0, x0)

= [xσ1
1 (t, t0, x0)T , xσ2

2 (t, t0, x0)T , . . . , xσnn (t, t0, x0)T ]T

be the solution to (1) with initial state x0, initial time t0, and
switching signal functions given by [σ1, σ2, . . . , σn]T = σ.

C. Connectivity

The dynamical behavior depends on the connectivity be-
tween the agents. The connectivity is described by a graph.

Definition 1. A directed graph (or digraph) G = (V, E)
consists of a set of nodes, V = {1, ..., n} and a set of edges
E ⊂ V × V .

Each node in the graph corresponds to a unique agent. Let
Ni ∈ V comprise the neighbor set (sometimes referred to
simply as neighbors or neighborhood) of agent i, where j ∈ Ni
if and only if (i, j) ∈ E . It is assumed that i ∈ Ni i.e., the
collection of graphs is restricted to those for which (i, i) ∈ E
for all i ∈ V .

Definition 2. A directed path of G is an ordered sequence of
distinct nodes in V such that any consecutive pair of nodes in
the sequence corresponds to an edge in the graph.

Definition 3. An agent i is connected to an agent j if there
is a directed path starting in i and ending in j.

Definition 4. A digraph is strongly connected if each node is
connected to all other nodes.

Definition 5. A digraph is quasi-strongly connected if there
exists a rooted spanning tree or a center, i.e., at least one node
such that all the other nodes are connected to it.

Definition 6. The time-varying graph corresponding to σ, de-
noted by, Gσ(t) is defined by using time-varying neighborhoods
N σi(t)
i (also written as Ni(t) or N σi

i (t)), where i ∈ N k
i ⊂

{1, 2, . . . , n} for all i ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , |Fi|}.
The time-varying graph Gσ(t) = (V, Eσ(t)) is defined by

Gσ(t) = (V, Eσ(t)) = (V,
⋃
i

⋃
j∈Nσi(t)i

{(i, j)}).

Definition 7. The union graph of Gσ(t) during the time interval
[t1, t2) is defined by

G([t1, t2)) =
⋃
t∈[t1,t2) Gσ(t) = (V,

⋃
t∈[t1,t2) Eσ(t)),

where t1 < t2 ≤ +∞.
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Definition 8. The graph Gσ(t) is uniformly (quasi-) strongly
connected if there exists a constant Tσ > 0 such that the union
graph G([t, t+ Tσ)) is (quasi-) strongly connected for all t.

D. Stability

The first definition regards stability of the origin. The
stability holds for all choices of the σ in SF . We assume
that all the balls or regions in the following definition are
contained in D. The existence of such regions is assured by
the assumption that the point 0 is in the interior of D.

Definition 9. The point 0 ∈ Rmn is uniformly stable for (1)
if for ε > 0, there is δ(ε) > 0 such that

xσ(t0, t0, x0) ∈ B̄δ,mn =⇒ xσ(t, t0, x0) ∈ B̄ε,mn,
for all t ≥ t0, σ ∈ SF .

Definition 10. For a set A ⊂ Rmn, let

dist(x,A) = inf
y∈A
‖x− y‖.

Definition 11. The state x(t) approaches A or x(t) → A as
t → ∞, on a subset of D if for all ε > 0, t0, and x0 in the
subset, there exists T (ε, x0, t0) such that dist(x(t),A) < ε for
all t ≥ T .

Let us proceed with the definition of invariance of a set for
the system (1).

Definition 12. A set A ⊂ D is (positively) invariant for the
system (1) if for all t0, it holds that

x0 ∈ A =⇒ xσ(t, t0, x0) ∈ A

for all t > t0 and σ ∈ SF .

Let

D∗(t̃) ={x0 ∈ Rmn : xσ(t, t0, x0) ∈ D
for all t0, t ∈ [t0, t0 + t̃), σ ∈ SF}.

Lemma 1. For any t̃ ∈ [0,∞], the set D∗(t̃) is compact and
the set D∗(∞) is also positively invariant.

In the definitions of stability of the origin and the definitions
of invariance, it was assumed that σ ∈ SF is arbitrary, i.e.,
the statements must hold for any σ ∈ SF . However, in the
definitions of stability of a set, which are to be formulated
now, only the case when σ is fixed is considered. Thus, in the
following definitions x is written instead of xσ . The state is
restricted to be contained in the invariant compact set D∗(∞).
Hence, the stability of a set is only defined in the relative sense,
relative to D∗(∞). In these definitions it is assumed D∗(∞) is
nonempty; later on conditions are provided in order to assure
this.

Definition 13. For (1) where σ ∈ SF , the set A is
1) stable relative to D∗(∞) if for all t0 and for all ε > 0,

there is δ(t0, ε) > 0 such that for x0 ∈ D∗(∞) it holds
that

dist(x0,A) ≤ δ =⇒
dist(x(t, t0, x0),A) ≤ ε for all t ≥ t0.

2) uniformly stable relative to D∗(∞) if it fulfills 1) and
δ as a function of t0 is constant;

3) attractive relative to D∗(∞) if there is c(t0) such that
x(t, t0, x0)→ A as t→∞ for all x0 ∈ D∗(∞) where
dist(x0,A) ≤ c;

4) uniformly attractive relative to D∗(∞) if it fulfills 3) and
c as a function of t0 is constant. Furthermore, it must
also hold that if dist(x0,A) ≤ c, then for any η > 0
there is T (η) such that

t ≥ t0 + T (η) =⇒ dist(x(t, t0, x0),A) < η for all t0;

5) asymptotically stable relative to D∗(∞) if it fulfills 1)
and 3);

6) uniformly asymptotically stable relative to D∗(∞) if it
fulfills 2) and 4);

7) globally uniformly asymptotically stable relative to
D∗(∞), if it fulfills 6) and

c = sup
y∈D∗(∞)

dist(y,A);

8) globally quasi-uniformly attractive relative to D∗(∞) if
x(t, t0, x0)→ A as t→∞ for all x0 ∈ D∗(∞) and all
t0. Furthermore, for all η > 0 there is T (η) such that

min
t∈[t0,t0+T (η)]

dist(x(t, t0, x0),A) < η

for all x0 ∈ D∗(∞) and t0.

III. MAIN RESULTS

In the following, the set A as is chosen as the consensus
set, i.e.,

A = {x = [xT1 , . . . , x
T
n ]T ∈ Rmn : xi = xj for all i, j}.

The first assumption below is creating a relationship between
the functions in F and the neighborhoods of the agents.
Together with the two assumptions that follow, the assumption
is used in the two main theorems.

Assumption 1. For all i ∈ {1, 2, . . . ,V} and l ∈
{1, 2, . . . , |F|i} it holds that f̃l,i(t, z) ∈ Fi is, besides a
function of t, only a function of {zj}j∈N l on R × D, where
z = [zT1 , z

T
2 , . . . , z

T
n ]T ∈ D and zi ∈ Rm for all i.

Assumption 2. Let V : Rm → R be a continuously
differentiable function. The function V fulfills the following:

1) V is positive definite.

2) Suppose i ∈ V , l ∈ {1, 2, . . . , |F|i}, f̃l,i ∈ Fi, and
z = [zT1 , z

T
2 , . . . , z

T
n ]T ∈ D. If V (zi) ≥ V (zj) for all

j ∈ N l
i , it holds that

∇V (zi)f̃l,i(t, z) ≤ 0 (2)

for all t.



4

3) If 2) holds and there is j ∈ N l
i such that zi 6= zj , the

inequality in (2) is strict. Furthermore, if the inequality
in (2) is not strict for z and some t̄, then it holds that
f̃l,i(t, z) = 0 for all t.

Assumption 3. Let W : Rm × Rm → R+ be a continuously
differentiable function. The function W fulfills the following.

1) W (x, y) = 0 if and only if x = y.

2) Suppose (i, j) ∈ V × V , l1 ∈ {1, 2, . . . , |F|i}, l2 ∈
{1, 2, . . . , |F|j}, f̃l1,i ∈ Fi, f̃l2,j ∈ Fj , and z =
[zT1 , z

T
2 , . . . , z

T
n ]T ∈ D. If W (zi, zj) ≥ W (zk1 , zk2) for

all k1 ∈ N l1
i and all k2 ∈ N l2

j , it holds that

∇W (zi, zj)[f̃
T
l1,i(t, z), f̃

T
l2,j(t, z)]

T ≤ 0 (3)

for all t.

3) Furthermore, if 2) holds, the inequality in (3) is strict
if there is k1 ∈ N l1

i such that zi 6= zk1 , or if there is
k2 ∈ N l2

j such that zj 6= zk2 , and if the inequality in
(2) is not strict for z and some t̄, then it holds that
f̃l1,i(t, z) = 0 and f̃l2,j(t, z) = 0 for all t.

4) If 2) holds, the inequality in (3) is strict only if there is
k1 ∈ N l1

i such that zi 6= zk1 , or if there is k2 ∈ N l2
j

such that zj 6= zk2 .

Lemma 2. Suppose Assumption 2 1) and 2) hold for the
function V , then 0 is uniformly stable for (1). Furthermore,
suppose β̂1 and β̂2 are class K functions such that

β̂1(‖y‖) ≤ V (y) ≤ β̂2(‖y‖),

then for ε such that (B̄ε,m)n ⊂ D, it holds that for all t0 and
σ ∈ SF , if δ(ε) = β̂−12 (β̂1(ε)),

xσii (t0, t, x0) ∈ B̄δ,m for all i =⇒
xσii (t, t0, x0) ∈ B̄ε,m, for all i, t ≥ t0,

and B̄δ,m ⊂ D∗(∞).

Remark 1. What we mean when we say that Assumption 2
1) and 2) hold, is that everything in Assumption 2 hold except
possibly 3).

Now the two main theorems are presented, after which three
remarks explain some of the properties of the theorems. The
first theorem is formulated for V -functions in Assumption 2,
whereas the second theorem is formulated for W -functions
in Assumption 3. What essentially differ between the two
theorems are the assumptions on the convergence rate and the
graph topologies – Theorem 2 provides more in both regards.
But, there are systems for which it is unclear how Theorem 2
can be used, whereas application of Theorem 1 is straight
forward, See Section IV-B. A nice geometric understanding
of the differences of the two theorems can be obtained
in the classical example where the right-hand sides of the
agents’ dynamics are convex combinations of the directions
to neighboring agents, see Section IV-A and figures 1 and 2.
In this case the V and the W functions are chosen as the

Euclidean norms squared of the individual states respective
the difference between pairs of states.

Theorem 1. Suppose Assumption 1 and Assumption 2 2), 3)
hold and σ ∈ SF is such that Gσ(t) is uniformly strongly
connected. The consensus set A is globally quasi-uniformly
attractive relative to D∗(∞).

Theorem 2. Suppose Assumption 1 and Assumption 3 hold,
and σ ∈ SF . The consensus set A is globally uniformly
asymptotically stable relative to D∗(∞) if and only if Gσ(t) is
uniformly quasi-strongly connected.

Remark 2. If Assumption 1 holds and Assumption 3 1), 2)
and 3) hold, Theorem 2 holds provided the phrase “if and
only if” is replaced with “if”.

Remark 3. Provided Assumption 2 1), 2) hold, we can
show that D∗(∞) is nonempty, and an easy way of guar-
anteeing that x0 ∈ D∗(∞) is to use Lemma 2 and let
x0 ∈ (B̄δ,m)n ⊂ D∗(∞). When we know that D∗(∞) is
nonempty and x0 ∈ D∗(∞), we do not require V to be positive
definite in Theorem 1, i.e., it is sufficient that only conditions
2) and 3) hold for V in Assumption 2. This means that we
can use one positive definite function V1 in Lemma 2 in order
to construct a set that is contained in D∗(∞), and another
– not necessarily positive definite function – V2 in order to
show that A is attractive in Theorem 1.

IV. EXAMPLES AND INTERPRETATIONS

In this section two examples of systems on the form (1) are
provided for which the theorems are applicable.

A. A convexity assumption

In this subsection V and W are chosen as the Euclidean
norm squared of the states and the relative states, respectively.
Under certain conditions, these choices of functions can be
used to show a well-known result that, provided the right-
hand side of each agent’s dynamics as an element of the
tangent space TxiRm is inward-pointing [27] relative to the
convex hull of its neighbors, the system reaches consensus
asymptotically [25], [26]. We define the tangent cone to a
convex set S ∈ Rm at the point y as

T (y, S) =

{
z ∈ Rm : lim inf

λ→0

dist(y + λz, S)

λ
= 0

}
.

This definition is provided in [25], and ξ is inward-pointing
relative to S, where 0 6= ξ ∈ TyRm (TyRm is the tangent space
of Rm at the point y), if ξ belongs to the relative interior of
T (y, S). We use the term relative interior, since the dimension
of S might be smaller than m. Let us denote the convex hull
for {xi}ni=1 by conv({xi}ni=1). Similarly, we can denote the
convex hull for the positions of the neighbors of agent i as
conv({xj}j∈Ni).

Suppose Assumption 1 is fulfilled. We consider the case
when

V (xi) = xTi xi and W (xi, xj) = (xj − xi)T (xj − xi).
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x

y

Fig. 1. m = 2. The positions of the agents at a time t are denoted by stars.

Suppose the functions in F are Lipschitz in x on Rmn,
uniformly with respect to t, and continuous in t. Furthermore,
suppose V fulfills Assumption 2, then in Lemma 2 we can
choose β̂1(‖xi‖) = β̂2(‖xi‖) = ‖xi‖2, and obtain the result
that any closed ball B̄r,m in Rm is invariant and we can choose
D = D∗(∞) = (B̄r,m)n. The point x = 0 is uniformly
stable. Thus, by Theorem 1 we obtain the result that if Gσ(t)
is uniformly strongly connected, then A is globally quasi-
uniformly attractive relative to D∗(∞). Unless xi = xj for
all j ∈ Ni, for any agent i that is furthest away from the
origin, fi(t, x) as an element of the tangent space TxiRm is
inward-pointing on the boundary of the closed ball with radius
equal to the norm of agent i. This is illustrated in Figure 1.

Suppose not only that V fulfills Assumption 2, but also that
W fulfills Assumption 3. In this case, any closed ball in Rm
is invariant and can be chosen as D∗(∞), but also the largest
Euclidean distance between any pair of agents is decreasing.
This is illustrated in Figure 2. The solid circle denotes the
boundary of the ball B̄r1,2 and the dashed circle denotes the
boundary of the ball B̄r2,2, where

r1 = max
k∈V
‖xk(t)‖ and r2 = max

(k,l)∈V×V
‖xk(t)− xl(t)‖.

The dashed line denotes the distance between the two agents
that are furthest away from each other.

Now Theorem 2 can be used to show that A is globally
uniformly asymptomatically stable relative to D∗(∞) if and
only if Gσ(t) is uniformly quasi-strongly connected. For agent
i, if fi(t, x) is inward-pointing relative to the convex hull of
its neighbors [25], [26], then these conditions are fulfilled.

As a special case let

fi(t, x) =
∑

j∈Nσii (t)

aij(t− γσi(t))(xj − xi),

where αij(t) > 0 is continuous, positive and bounded for all
t. Let us construct the set of functions F in the following
way. There are 2n

2−n graphs. For the k-th graph we define a
corresponding function

f̃k(t, x)

=

∑
j∈N1

αij(t)(xj − x1)T , . . . ,
∑
j∈Nn

αij(t)(xj − xn)T

T ,
where (by a slight abuse of notation) Ni in this context is the

x

y

Fig. 2. m = 2. The positions of the agents at time t are denoted by stars.

neighborhood of agent i in the graph k-th graph. Now we let

F = {f̃k}2
n2−n

k=1 .

Now, using the functions

V (xi) = xTi xi and W (xi, xj) = (xj − xi)T (xj − xi),

one can show global uniform asymptotic consensus relative to
D∗(∞).

B. Consensus on SO(3) using the Axis-Angle Representation

Consider a system of n rotation matrices in SO(3) (con-
trolled on a kinematic level) that asymptotically will reach
consensus in the rotation matrices. For a rotation matrix
Ri there is a corresponding vector xi, referred to as the
Axis-Angle Representation of Ri. Locally around the identity
matrix, in terms of kinematics we have that

Ṙi = Riω̂i or ẋi = Lxiωi,

where

Lxi = I3 +
x̂i
2

+
1

‖xi‖2

1− sinc(‖xi‖)

sinc2
(
‖xi‖
2

)
 x̂2i ,

and ω̂i, x̂i are the skew-symmetric matrices generated by
ωi, xi ∈ R3, respectively. We require that xi(t0) ∈ Bπ,3 for
all i. Now we consider the case when

ωi =
∑

j∈Ni(t)

αij(t− γσi(t))(xj − xi), (4)

where the function αij(t) is continuous, positive and bounded,
and σ ∈ SF . The set F is constructed in the same manner
as outlined in the example in the previous section. The
symmetric part of the matrix Lxi is positive definite on
Bπ,3, and the system is at an equilibrium if and only if
x = (x1, x2, . . . , xn)T ∈ A.

Let V (xi) = xTi xi. By observing that xTi Lxi = xTi , it is
easy to show that Assumption 2 holds for V . We can apply
Lemma 2 with β̂1(‖xi‖) = β̂2(‖xi‖) = ‖xi‖2, and show that
any ball B̄r,3 is invariant for r < π and can be chosen to
D = D∗(∞). Now, by using Theorem 1, we can conclude
that if the graph Gσ(t) is uniformly strongly connected, then
A is globally quasi-uniformly attractive.
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In Figure 3 we illustrate the convergence of the xi-states to
consensus when controller (4) is used. In this simulation the
aij-weights were constant, i.e., they are not time-varying. The
dwell-time between consecutive switches was bounded from
below by 0.25. The left sub figure shows the time evolution
of ‖xj(t) − x1(t)‖ for all i. The right sub figure shows the
time evolution of [1, 0, 0](xj(t)−x1(t)), i.e., the first element
of (xj(t)− x1(t)) for all i.
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Fig. 3. Convergence to consensus for controller (4).

V. PROOFS AND OUTLINE OF PROOFS

In this section, first the explicit proofs for Lemma 1 and
Lemma 2 are provided. Then outlines for the proofs of
Theorem 1 and Theorem 1 are provided.

A. Proofs for the lemmas

Proof of Lemma 1: Since D is compact, we only need
to verify that D∗(t̃) is closed in order to show that D∗(t̃) is
compact. Suppose there is x0 /∈ D∗(t̃), such that there is a
sequence {xi0}∞i=1 that converges to x0, where each element
in the sequence is in D∗(t̃). We would like to obtain a
contradiction by showing that the solution xσ(t, t0, x0) does
exist in D on the interval [t0, t0 + t̃) for any t0, and σ ∈ SF .

By using the fact that D is compact and that the right-
hand side of (1) is uniformly Lipschitz in x on D and
piecewise continuous in t, we can use the Continuous De-
pendency Theorem of initial conditions in order to guarantee
that {xσ(t, t0, x

i
0)}∞i=1 is a Cauchy sequence for arbitrary

t ∈ [t0, t0 + t̃). Now we know, since D is compact, that
x∗(t) = limi→∞ xσ(t, t0, x

i
0) exists and x∗(t) ∈ D. We want

to prove that x∗(t) is the solution for (1) on [t0, t0 + t̃) for
the given σ, t0 and x0.

x∗(t) = lim
i→∞

xσ(t, t0, x
i
0)

= lim
i→∞

∫ t

t0

f(s, xσ(s, t0, x
i
0))ds

=

∫ t

t0

lim
i→∞

f(s, xσ(s, t0, x
i
0))ds

=

∫ t

t0

f(s, x∗(s)).

Hence, x∗(t) is contained in D for all t and x∗(t) is a solution
for (1). But since σ and t0 were arbitrary, it follows that x0 ∈
D∗(t̃), which is a contradiction.

Now we prove the statement that D∗(∞) is invariant.
Suppose x0 ∈ D∗(∞) is arbitrary and let

y = xσ
′
(t1, t0, x0)

for σ′ ∈ SF and t1 ≥ t0. Consider xσ
′′
(t, t′1, y) for some

arbitrary σ′′ ∈ SF and t′1. We need to show that xσ
′′
(t, t′1, y)

is contained in D for all t ≥ t′1.
We define

σ(t) =

{
σ′(t− (t′1 − t1)) if t < t′1,

σ′′(t) if t ≥ t′1,

which is contained in SF . Thus

xσ
′′
(t, t′1, y) = xσ(t, t0 + (t′1 − t1), x0),

which is contained in D for all t ≥ t0 since x0 ∈ D∗(∞).
Thus, y ∈ D∗(∞). �

Proof of Lemma 2: In this proof, for ease of notation, we
omit to denote the explicit dependence on σ for x.

Since the origin is an interior point of D, there is a
ball Bε,m such that (Bε,m)n ⊂ D and ε > 0. Let x0 =
[xT10, x

T
20, . . . , x

T
n0]T . Suppose x0 ∈ (Bε,m)n, then there is a

closed ball

B̄ε′,mn(x0) ⊂ (Bε,m)n

with ε′ > 0. Now according to Theorem 3.1. in [28], there is a
δ′ > 0 such that the system has a unique solution x(t, t0, x0)
on [t0, t0 + δ′] in D. We choose [t0, t0 + T ′) as the maximal
half-open interval of existence of the unique solution. We
know there are class K functions β1 and β2 such that

β1(‖y‖) ≤ V (y) ≤ β2(‖y‖)

for y ∈ Rm.
Now, by using property (2) of Assumption 2 we get from

the Comparison Lemma (Lemma 3.4 in [28]), that

max
i∈V
{‖xi(t)‖} ≤ max

i∈V
{‖x0i‖}

for t ∈ [t0, t0 + T ′). Now let δ = β−12 (β1(ε)). We suppose
that x0 was chosen such that

xi(t0) ∈ B̄δ,m ⊂ B̄ε,m for all i.

It follows that for t ∈ [t0, t0 + T ′),

max
i∈V
{‖xi(t)‖} = β−11 (β1(max

i∈V
{‖xi(t)‖}))

= β−11 (max
i∈V
{β1(‖xi(t)‖)}) ≤ β−11 (max

i∈V
{‖xi(t)‖})

≤ β−11 (max
i∈V
{‖xi(t0)‖}) ≤ β−11 (max

i∈V
{β2(‖xi(t0)‖)})

≤ β−11 (β2(max
i∈V
{(‖xi(t0)‖)})) ≤ β−11 (β2(δ)) = ε.

Now it follows by using Theorem 3.3 in [28], that the solution
will stay in (B̄ε,m)n for arbitrary times larger than t0, i.e.,
T ′ =∞. �
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B. outline of the proofs of the theorems

Outlines of the proofs of Theorem 1 and Theorem 2 are
described here as a series of consecutive steps. We begin with
Theorem 1.

Outline of the proof of Theorem 1
Step 1. The first step is to prove Lemma 3 below. In the lemma
it is assumed that σ ∈ SF is fixed. Hence, for ease of notation,
we omit to denote the explicit dependence on σ for x.

Lemma 3. Suppose x0 = [xT10, x
T
20, . . . , x

T
n0]T ∈ Ac∩D∗(∞)

and Assumption 2 2) holds. Suppose there is a non-negative
function β(y, t̃), which is increasing in t̃ for y ∈ Ac∩D∗(∞).
Furthermore, suppose that for y ∈ Ac ∩ D∗(∞) there is
t̃′(y) > 0 such that for t̃ ≥ t̃′(y) it holds that β(y, t̃) > 0.

If

max
i∈V
{V (xi(t0 + t̃, t0, x0))} −max

i∈V
{V (xi0)} ≤ −β(x0, t̃),

then x(t)→ A as t→∞ for all t0.
Furthermore, if β is lower semi-continuous in y, and t̃′ is

independent of y, then A is globally quasi-uniformly attractive
relative to D∗(∞).

To prove the statement in the lemma we use the positive
limit set L+(x0, t0) of the solution x(t, t0, x0) when
x0 ∈ D∗(∞). This limit set exists and is compact, and
x(t) approaches it as the time goes to infinity, however
we do not guarantee that it is invariant, which is the case
for an autonomous system. The set L+(x0, t0) is contained
in D∗(∞), so any alternative solution of (1) that starts in
L+(x0, t0) will remain in D∗(∞).

Step 2. In this step Lemma 4 below is proven.

Lemma 4. Suppose that Assumption 1 and Assumption 2 2),
3) hold, σ ∈ SF , xσ(t0) ∈ D∗(∞)∩Ac and Gσ(t) is uniformly
strongly connected. If t0 is a switching time of σ, it follows
that

max
i∈V
{V (xσii (t))} −max

i∈V
{V (xσii (t0))} < 0 (5)

for any t ≥ n(Tσ+2τD)+t0, where Tσ is given in Definition 8
and τD is the lower bound on the dwell-time between two
consecutive switches of the switching signals in σ.

Step 3. In this step we prove the theorem by showing that
there is a function β with the properties given in Lemma 3. For
each σ ∈ SF , there is a corresponding β. The key idea is to
use Lemma 4 on the one hand, and the fact that the dwell-time
between consecutive switches is bounded on the other. The
solution depends continuously on the switching times, which,
due to the bounded dwell-time assumption, are contained
in a compact set. Thus, the supremum of the expression in
the left-hand side of (5) is strictly negative, which in turn
can be used to show the existence of a β-function that we seek.

Outline of the proof of Theorem 2
The procedure to prove the theorem is in the spirit of the
proof of Theorem 1, with some key differences.

Step 1. We prove Lemma 5 below. Similar to Lemma 3, it is
assumed that σ ∈ SF is fixed. Hence, for ease of notation, we
omit to denote the explicit dependence on σ for x.

Lemma 5. Suppose that x0 = [xT10, x
T
20, . . . , x

T
n0]T ∈ Ac ∩

D∗(∞) and Assumption 3 1), 2) hold. Let

β(y, t̃) : R+ × R+ → R+

be increasing in t̃ and lower semi-continuous in y. Further-
more, suppose that there is t̃′ > 0, such that for t̃ ≥ t̃′, it
holds that β(y, t̃) > 0 for all positive y.

If

max
i,j∈V
{W (xi(t, t0, x0), xj(t, t0, x0))}

−max
i,j∈V
{W (xi(x0), xj(x0))} ≤ −β(dist(x0,A), t− t0),

then A is globally uniformly asymptotically stable relative to
D∗(∞).

Step 2. In this step Lemma 6 below is proven.

Lemma 6. Suppose Assumption 1 and Assumption 3 1), 2),
and 3) hold, x0 ∈ D∗(∞) ∩ Ac and σ ∈ SF . Furthermore,
suppose Gσ(t) is uniformly quasi-strongly connected, then

max
i,j∈V
{W (xσii (t), xσij (t))} − max

i,j∈V
{W (xi0, xj0)} < 0

if t0 is a switching time and t ≥ n(Tσ + 2τD) + t0, where
Tσ is given in Definition 8 and τD is the lower bound on the
dwell-time between two consecutive switches of the switching
signals in σ.

Step 3. Now the “if-part” of the theorem is proved. The
approach resembles that of step 3 in the proof of Theorem 1.
We use Lemma 6 together with the bounded dwell-time
assumption to show that there is a β-function that satisfies
the assumptions in Lemma 5.

Step 4. Now the “only if-part” of the theorem is proved by
a contradiction argument. If the graph is not quasi-strongly
connected we show that we get a contradiction to the
assumption that the convergence to A is uniform. We do not
actually disprove the statement that the convergence to A
occurs. But if such convergence occurs, it cannot be uniform.

CONCLUSIONS AND OUTLOOK

This note presented two theorems for consensus in nonlinear
continuous-time multi-agent systems with switching time-
varying interconnection topologies. The two theorems are
along the lines of Lypunov’s second method for consensus.
A key point is that the Lyapunov-like functions are local.
They are either functions of the individual states of the agents,
Theorem 1, or functions of pairs of states, Theorem 2. This
local structure can simplify the convergence analysis, as the
state of the whole system does not need to be considered –
only individual states, pairs of states, and neighboring states.

In industrial applications there are other issues than
switching topologies. Those include time-delays, packet
dropouts or quantization [29], [30]. It would be interesting to
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explore the possibilities of augmenting the presented theory in
such directions.
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