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ABSTRACT

A given field theory action determines a set of field equations but other actions may

yield equivalent field equations; if so they are on-shell equivalent. They may also be

off-shell equivalent, being related by the elimination of auxiliary fields or by local field

redefinitions, but this is not guaranteed, as we demonstrate by consideration of the

linearized limit of 3D massive gravity models. Failure to appreciate this subtlety has

led to incorrect conclusions in recent studies of the “Minimal Massive Gravity” model.
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1 Introduction

A classical field theory is fully specified by a set of field equations but it is usually

possible to find an action from which the field equations may be derived as the condi-

tions for stationarity. Obviously, these conditions are unchanged by a change of either

the sign or the scale of the action but the sign is usually fixed by the requirement of

positive energy; or unitarity of the semi-classical theory, and in this context the scale

corresponds to choice of units for ~. As a result, there is usually no ambiguity in the

choice of action for an interacting semi-classical field theory if actions related by field

redefinitions and/or elimination of auxiliary fields are considered equivalent. Ambigu-

ities in relative scales and signs may arise after linearization but these can usually be

resolved by reference to the interactions, or by symmetries inherited from the inter-

acting theory. In the context of gauge theories, or gravity, the requirements of gauge

invariance and semi-classical unitarity are usually sufficient to eliminate ambiguities.

For these reasons, little attention has been paid to ambiguities arising in the choice

of action for fields subject to a given set of field equations. However, this issue has

become relevant recently in the context of 3D massive gravity models; in particular

Topologically Massive Gravity (TMG) [1] and Minimal Massive Gravity (MMG) [2].

This is partly because the field equations of TMG and MMG are third order, rather

than second order, and partly because of the “third-way consistency” of the MMG

equations (as reviewed in [3]).

A characteristic of gauge/gravity field equations that are third-way consistent is

that their off-shell extension requires an action with auxiliary fields that cannot be

consistently eliminated from the action, even though (by definition of “auxiliary”)

they can be eliminated from the field equations. The MMG model of [2], which is
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a simple modification of TMG, was the first example. This was followed by a gauge

theory example in which the usual 3D SU(2) Yang-Mills equation is modified in a

similar way [4]; the action is then equivalent to the difference of two SU(2) Chern-

Simons actions plus a mass term that breaks SU(2) × SU(2) to the diagonal SU(2)

subgroup, which is an action originally proposed in the context of multiple M2/D2-

brane dynamics [5].

A key issue for this paper is what happens to third-way consistent theories upon

linearization, and the spin-1 example of [4] provides a convenient starting point. Lin-

earization of the field equations yields a triplet of Maxwell actions, as for the standard

SU(2)-YM theory, and this suggests that the two quadratic actions must be equivalent.

This is indeed the case, as is shown by a simple local field redefinition. In this spin-1

case, no distinction arises between on-shell equivalence and off-shell equivalence.

Turning to the spin-2 case, we reconsider the linearization of MMG about an AdS3

vacuum. The field equations become equivalent to those of linearized TMG in this

vacuum, for a rescaled mass, and the corresponding quadratic actions are therefore on-

shell equivalent. If one assumes that there is no off-shell ambiguity then the quadratic

MMG action must be the quadratic TMG action with the rescaled mass; this leads to

the conclusion of [6] (recently reiterated in [7]) that the unitarity problems of TMG

with AdS asymptotics are shared by MMG, thus contradicting the main result of [2].

The problem with this conclusion is that the premise of no off-shell ambiguity is, in

this case, false.

The quadratic action for MMG in its AdS3 vacuum was obtained in [2] in a form

that leads directly to first-order equations. In this form, the Virasoro central charges

of the asymptotic conformal symmetry algebra can be read off from the coefficients of

the terms that survive in the limit of infinite graviton mass (in which limit the result of

Brown and Henneaux [8] for 3D GR is recovered). This step was dealt with briefly in [2]

and one purpose of this paper is to give a detailed derivation. We also explain precisely

how this quadratic action is related to an action that directly yields the third-order

linearized MMG equations.

However, it is another equivalent form of the quadratic action for linearized MMG

that is most useful to a discussion of the issue of on-shell versus off-shell equivalence.

This action is found by a local field redefinition (defined away from the chiral point)

followed by an elimination of variables; it is the sum of a linearized Einstein-Hilbert

term and a standard first-order action for a single free spin-2 mode in AdS3, with

coefficients that depend on the MMG parameters. This action makes clear how off-

shell ambiguities can arise because the relative sign between the two terms in this

quadratic action cannot be changed by any local field redefinition. Any two distinct

MMG models will be off-shell inequivalent if they differ in this relative sign.

The physical parameter space of semi-classical MMG is two-dimensional, and MMG

degenerates to TMG on a one-parameter curve in this space. On this ‘TMG curve’ the

relative sign in the quadratic action is fixed, and this is what leads to the unitarity

problem of TMG in an AdS3 vacuum: the so-called “bulk/boundary clash”. However,
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there is a region in the MMG parameter space in which the relative sign is opposite

to that of TMG, and this is how MMG evades the “bulk/boundary clash”. Within

a subregion (which is connected once account is taken of an equivalence relation in

parameter space [9]) all semi-classical unitarity conditions are satisfied [2].

TMG/MMG is not the only pair of 3D gravity theories that become on-shell equiv-

alent in the linearized limit but remain off-shell inequivalent, nor is it necessary for

the background to be AdS. In our concluding section we discuss another pair of mas-

sive 3D gravity theories that become on-shell equivalent when linearized about their

Minkowski vacua but for which off-shell equivalence, even in this linearized limit, is a

priori obvious!

2 The spin-1 case

The gauge-potential one-form A of an SU(2) Yang-Mills (YM) theory is a 3-vector in

the Lie algebra of SU(2). Its two-form field strength is

dA+
1

2
A× A = F ≡ 1

2
dxµdxνFµν , (2.1)

where we use the cross product notation of 3-vector algebra. We shall suppose that

A has dimensions of mass in units for which ~ = 1 so that F has dimension of mass-

squared. For a 3D background Minkowski spacetime, with metric η and standard

Minkowski coordinates, the first-order form of the standard 3D YM Lagrangian density

is

LYM = Gµ · F̃ µ − 1

2
ηµνGµ ·Gν

(
F̃ µ =

1

2
εµνρFνρ

)
, (2.2)

where Gµ is an auxiliary SU(2) triplet of Lorentz vectors (of dimension mass-squared)

and we use the dot product notation of 3-vector algebra to construct an SU(2) sin-

glet. Elimination of G from this action, by means of its field equation G = F̃ , yields

the standard second-order YM Lagrangian density in terms of F̃ , which leads to the

standard 3D YM field equation in the form

εµνρDνF̃ρ = 0 , (2.3)

where D is the covariant derivative with gauge potential A. This equation implies, as

a consequence of the Lie algebra Jacobi identity and the symmetry of mixed partial

derivatives, that

Dµ

[
εµνρDνF̃ρ

]
≡ 0 , (2.4)

which is the Noether identity required by gauge invariance of the YM action.

Consider now the following modified YM field equation [4]:

εµνρDνF̃ρ +
1

2m
εµνρF̃ν × F̃ρ = 0 , (2.5)
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where m is a mass parameter. In light of the identity (2.4), consistency requires that

Dµ

[
εµνρF̃ν × F̃ρ

]
= 0 , (2.6)

but this is not an identity. If it were an identity then we might expect to be able to

find an action I[A] from which the modified YM field equation could be derived by

variation1; as it is not an identity, no such action exists! Nevertheless, there is an

action involving the auxiliary 3-vector G; its Lagrangian density is [4]

L = LYM +
1

2m
εµνρ

(
Gµ ·DνGρ +

1

3m
Gµ ·Gν ×Gρ

)
. (2.7)

It appears that G is no longer auxiliary, but the field equations of A and G are jointly

equivalent to G = F̃ and (2.5). The attempt to find an action I[A] by setting G = F̃

in (2.7) fails because this equation for G is a linear combination of the field equations

found from variation of G and A, not the one found from variation of G alone. This is

characteristic of gauge field equations that are “third-way consistent”.

One might wonder whether the modification to the YM Lagrangian density in (2.7)

could be cancelled by a field redefinition of the form A = A′ − (α/m)G for some

constant α. Clearly, one may remove either the G ·DG term or the G ·G×G term in

this way, but one cannot remove both. For example, by choosing α = 1/2 we arrive at

the new Lagrangian density

L = LYM −
1

12m2
εµνρGµ ·Gν ×Gρ . (2.8)

The field equation for G is now algebraic, but still non-linear; it can be solved by an

infinite series in powers of F̃ /m2 [5] but there is no guarantee of convergence.

The above discussion is easily generalized to other gauge groups G , and the choice

G = U(1) is directly relevant to linearization of the G = SU(2) choice, we shall now

focus on this. It is obvious that the modified YM field equation of (2.5) degenerates

to the 3D Maxwell equation for G = U(1) but this still leaves open the possibility of

inequivalent actions, and one might expect to find a new non-standard action from the

G = U(1) variant of (2.7). However, the alternative Lagrangian density (2.8) makes it

clear that this does not happen because the cubic term in G is absent for G = U(1);

the candidate for a new 3D Maxwell action is related to the standard action by a local

field redefinition. In this linearized spin-1 case, on-shell equivalence implies off-shell

equivalence.

3 Spin-2 in AdS3

A complication of the spin-2 case is that the vacuum spacetime must now be found as a

solution of the field equations. Here we shall be concerned with massive gravity models

1Although there is no theorem that guarantees this [10].
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that admit an AdS3 vacuum. These include TMG and MMG, and other massive gravity

theories that we shall discuss in our concluding section. We shall see that linearization

of TMG and MMG about an AdS3 vacuum leads to massive spin-2 field equations that

are equivalent except for the dependence of the mass parameter on the parameters

that define the TMG and MMG theories. This is to be expected from the fact that

MMG involves an additional parameter. However, we shall also see that the higher-

dimensional parameter space of MMG leads to an off-shell inequivalence within this

parameter space, which allows MMG to be unitary, at least at the semi-classical level,

even though TMG is not.

3.1 TMG and MMG actions

In first-order (Chern-Simons–like) formulation, the TMG Lagrangian can be written

in terms of three Lorentz-vector valued one-form fields: the dreibein ea, a dualized

spin-connection ωa and an auxiliary field ha, for a = 0, 1, 2. Using the dot and cross

notation for contractions with the invariant bilinear form (ηab) and structure constants

(εabc) of so(2, 1), following [2], we may write the Riemann curvature two-form and

torsion two-form as, respectively,

R(ω) = dω +
1

2
ω × ω , T (ω) = de+ ω × e , (3.1)

and the TMG Lagrangian 3-form as

Ltmg = −σe ·R(ω) +
Λ0

6
e · e× e+ h · T (ω) +

1

µ
Llcs(ω) , (3.2)

where σ is a sign2, Λ0 is a ‘cosmological parameter’, µ a mass parameter, and Llcs is

the Lorentz-Chern-Simons 3-form:

Llcs(ω) =
1

2
ω ·
(
dω +

1

3
ω × ω

)
. (3.3)

As this term breaks parity, we may choose µ > 0 without loss of generality.

After elimination of the auxiliary field h and the dualized spin connection ω by

their field equations, the TMG action can be written in terms of the metric alone.

In this form it is the sum of an Einstein-Hilbert term and a Lorentz-Chern-Simons

term [1]; the first of these has a coefficient inversely proportional to the 3D Newton

constant G3, which has dimensions of inverse mass. The cosmological parameter Λ0 is,

for TMG, the cosmological constant Λ in a maximally symmetric background. Here we

shall be interested in the AdS3 case, for which Λ = −1/`2, where ` is the AdS radius

of curvature. The semi-classical limit is one for which

`

~G3

→∞ , µG3 → 0 , for fixed
µ`

~
. (3.4)

2One may allow σ to be any real number, and this simplifies the description of the MMG parameter

space [9], but here we follow [2].
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The parameter space of semi-classical TMG is therefore one-dimensional, and it is

parametrized by the dimensionless parameter µ`/~ [11].

MMG is defined by the following simple modification of the TMG Lagrangian 3-

form:

Lmmg = Ltmg +
α

2
e · h× h , (3.5)

where α is a new dimensionless parameter. The parameter-space of semi-classical MMG

is therefore two-dimensional and MMG degenerates to TMG on the one-dimensional

subspace defined by α = 0. For α 6= 0 it is still true that h and ω can be eliminated

from the field equations, which can therefore be written in terms of the metric alone,

but the auxiliary field h can no longer be eliminated from the action. To understand

this unusual state of affairs it is convenient to express the action in terms of the new

(dualized) connection

Ω = ω + αh . (3.6)

The action is slightly more complicated in terms of the connection Ω; it reads3

LMMG =− σe ·R(Ω) +
Λ0

6
e · e× e+ (1 + ασ)h · T (Ω)− α

2
(1 + ασ)e · h× h (3.7)

+
1

µ
Llcs(Ω)− α

µ
h ·
(
R(Ω)− α

2
D(Ω)h+

α2

6
h× h

)
.

Here D(Ω) denotes the covariant derivative with respect to the connection Ω. The field

equations are:

−σR(Ω) + (1 + ασ)D(Ω)h− α

2
(1 + ασ)h× h+

Λ0

2
e× e = 0 , (3.8a)

−σT (Ω) +
1

µ
R(Ω)− α

µ
D(Ω)h+ (1 + ασ)e× h+

α2

2µ
h× h = 0 , (3.8b)

(1 + ασ)T (Ω)− α

µ
R(Ω) +

α2

µ
D(Ω)h− α(1 + ασ)e× h− α3

2µ
h× h = 0 . (3.8c)

By taking linear combinations of these equations, one can show that they are equivalent

to the following simpler set:

T (Ω) = 0 , (3.9a)

R(Ω) + µ(1 + ασ)2e× h+
Λ0α

2
e× e = 0 , (3.9b)

D(Ω)h+ σµ(1 + ασ)e× h− α

2
h× h+

Λ0

2
e× e = 0 . (3.9c)

The first of these equations tells us that the connection Ω is torsionless; it can solved

for in terms of de. The second equation allows us to solve for h in terms of R(Ω) and e.

Substituting these solutions into the third equation leads to the MMG field equation

presented in [2]:
1

µ
Cµν + σ̄Gµν + Λ̄0gµν = − γ

µ2
Jµν , (3.10)

3We assume, as in [2], that (1 + ασ) 6= 0.
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where Cµν is the Cotton tensor, Gµν the Einstein tensor and Jµν a curvature squared

symmetric tensor given by

Jµν =
1

2 det g
εµ

ρσεν
τηSρτSση , Sµν ≡ Rµν −

1

4
gµνR . (3.11)

The coefficients appearing in the MMG field equations (3.10) are related to the coeffi-

cients of the Lagrangian 3-form (3.5) by

σ̄ = σ + α

[
1 +

αΛ0/µ
2

2(1 + σα)2

]
, γ = − α

(1 + σα)2
, (3.12)

Λ̄0 = Λ0

[
1 + σα− α3Λ0/µ

2

4(1 + σα)2

]
.

These manipulations are fine at the level of field equations, but they cannot be

used to obtain an action I[g] for which variation with respect to the metric g yields

the MMG metric equation (3.10). The reason for this is that a linear combination of

all field equations had to be used when solving for h and Ω, so back-substitution in

the action is not legitimate; it leads to an inequivalent action and a corresponding field

equation that is inequivalent to (3.10).

3.2 AdS vacuum and Linearization

For an AdS3 vacuum solution of the MMG field equations (3.9) , we have

R(Ω) =
Λ

2
e× e , h = Cµe , (3.13)

where Λ is the cosmological constant and C a dimensionless constant. These constants

are related to each other and the parameters of the action by

C = −(Λ + αΛ0)/µ2

2(1 + ασ)2
(3.14)

and

(Λ0 − σΛ)/µ2 − α(1 + σα)C2 = 0 . (3.15)

Let e = ē be a given AdS3 vacuum solution4 and Ω = Ω̄ the corresponding dual

spin-connecton 1-form. We expand about this background by setting

e = ē+ k , Ω = Ω̄ + v , h = Cµ(ē+ k) + p . (3.16)

The linearized field equations may now be found by expanding the full field equations

(3.9) to first order in the perturbation one-forms (k, v, p). We may also arrive at these

4There may be none, one or two, depending on the choice of parameters.
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linearized equations by first expanding the Lagrangian 3-form of (3.7) to second order;

using (3.14) and (3.15), we find that

L
(2)
MMG =− (σ + αC)

[
k · D̄v +

1

2
ē · v × v − Λ

2
ē · k × k

]
− Λ

µ

[
ē · v × k +

1

2
k · D̄k − αē · k × p

]
(3.17)

+ (1 + ασ + α2C)
[
p · D̄k + ē · v × p− α

2
ē · p× p

]
+

1

µ

[(
1

2
v − αp

)
· D̄v +

α2

2
p · D̄p

]
,

where D̄ is the covariant derivative with respect to the background spin-connection Ω̄.

The linearized MMG field equations now follow by variation of the quadratic MMG

action with respect to (k, v, p); the resulting equations are jointly equivalent to

D̄k + ē× v = 0 , (3.18a)

D̄v − Λē× k = −µ(1 + ασ)2ē× p , (3.18b)

D̄p+Mē× p = 0 , (3.18c)

where M (the mass of the spin-2 mode) is given by

M = µ(σ(1 + ασ)− αC) . (3.19)

These equations should be equivalent to those found by linearization of the third-order

metric field equation (3.10). To verify this, we first observe that equations (3.18) imply

the constraints

ē · k = ē · v = ē · p = 0 . (3.20)

If we define

kµν ≡ kµ
aēν

bηab , (3.21)

and likewise for the other fields, then the constraints state that the two-tensor fields

(k, v, p) are symmetric. We may solve equations (3.18a) and (3.18b) for the symmetric

two-tensors v and p:

vµν = det(ē)−1εν
αβ∇̄αkβµ , pµν =

2

µ(1 + ασ)2

(
Gµν(k)− 1

2
ḡµν G λ

λ (k)

)
, (3.22)

where Gµν(k) is the linearized Einstein tensor and ḡµν = ēµ
aēν

bηab is the background

AdS3 metric. Equation (3.18c) then becomes

εµ
αβ∇̄αGβν(k) +MGµν(k) = 0 . (3.23)

This is indeed equivalent to the equation that one obtains from direct linearization of

(3.10). It is also equivalent to the linearized TMG equation, albeit with a different

value for the mass of the spin-2 mode. It is therefore tempting to suppose that the
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quadratic action of linearized MMG must be equivalent to the quadratic action of

linearized TMG. This was the premise of [6], which led to the conclusion that the

known unitarity problems of TMG persist in MMG. We show here that this reasoning

is mistaken because the quadratic action of linearized MMG is inequivalent to the

quadratic action of TMG.

3.3 MMG versus TMG

For any massive 3D gravity model with AdS asymptotics, semi-classical unitarity re-

quires positive energy of the bulk spin-2 modes and positive Virasoro central charges

for the asymptotic conformal algebra. For TMG it is not possible to satisfy both

these conditions simultaneously. The standard “wrong sign” choice for the Einstein

Hilbert term in the standard TMG action ensures that the spin-2 mode is physical

but this comes at the cost of positivity of the central charges; at least one must be

negative. Changing the overall sign of the action (thereby restoring the “right sign” for

the Einstein-Hilbert term) will allow both central charges to be positive but this now

comes at the cost of negative energy for the bulk spin-2 mode. The main result of [2] is

that this “bulk/boundary clash” is resolved by MMG; we shall re-investigate this claim

in a way that clarifies its relation to the issue of on-shell versus off-shell equivalence.

In what follows, we shall assume that the overall sign of the action has been chosen

such that the Virasoro central charges are positive. We introduce a new set of one-form

fields (k̃, ṽ, p) to replace the one-form fields (k, v, p) of (3.17) by setting

k =
1

2
(
√
λ− −

√
−λ+)k̃ +

`

2
(
√
λ− +

√
−λ+)ṽ +

1

µ(1− 2C)
p (3.24a)

v =
1

2`
(
√
λ− +

√
−λ+)k̃ +

1

2
(
√
λ− −

√
−λ+)ṽ +

M

µ(1− 2C)
p (3.24b)

where

λ± = 1∓ (σ + αC)µ` . (3.25)

This is an invertible field redefinition provided that

1. ∓λ± > 0. As we explain in the following section, this is equivalent to positivity

of both Virasoro central charges. We note here that this implies that

λ+λ− < 0 . (3.26)

2. 1− 2C 6= 0. From the identity

1− 2C ≡ (M`)2 − 1

(1 + σα)2(µ`)2
, (3.27)

we see that this condition is equivalent to |M`| 6= 1. In other words, the change

of variables is defined away from the “chiral point” |M`| = 1.
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In terms of the new set of one-form fields (k̃, ṽ, p), the Lagrangian 3-form of (3.17)

takes the form

L
(2)
MMG =

λ+λ−
µ`2

(
k̃ · D̄ṽ +

1

2
ē · ṽ × ṽ +

1

2`2
ē · k̃ × k̃

)
(3.28)

+
1

2µ(1− 2C)

[
p · D̄p+Mē · p× p

]
.

Varying ṽ now yields the equation D̄k̃ + ē × ṽ = 0, which can be solved for ṽ; the

corresponding two-tensor is symmetric and given by (3.22) with k and v replaced by k̃

and ṽ. Using this solution for ṽ we arrive at the following equivalent quadratic action

for linearized MMG:

L
(2)
MMG =

λ+λ−
µ`2

k̃µνGµν(k̃) +
1

2µ(1− 2C)

[
pµνεµ

αβ∇̄αpβν +M(pµνpµν − p2)
]
. (3.29)

This action is the sum of two terms: a second-order action for linearized 3D gravity

with metric perturbation k̃, which contains no gauge-invariant local degrees of freedom,

and a first-order action for p that describes a single spin-2 mode of mass M . Further

field redefinitions can change the magnitudes of the coefficients of these terms but not

their signs. Our initial assumption of positive Virasoro central charges has fixed the

sign of the coefficient of the k̃ term, because it implies that λ+λ− < 0, but either sign

remains possible for the coefficient of the other term, and this leads to the possibility

of off-shell inequivalence.

For MMG it is possible to choose parameters such that the sign of the first-

order action for p is either the same as or opposite to the sign for the k̃ term. The

bulk/boundary clash can be resolved only if the signs are the same; this condition

just restricts the parameter space of MMG but it cannot be satisfied by TMG because

TMG is the α→ 0 limit of MMG and

µ(1− 2C)
α→0
= µ

(
σ − 1

µ`

)(
σ +

1

µ`

)
= − λ+λ−

µ`2

∣∣∣∣
α=0

. (3.30)

What we wish to stress here is that the quadratic action for linearized TMG, with

its opposite signs for the two independent terms in the quadratic Lagrangian 3-form

(3.29), is inequivalent to the quadratic action for linearized MMG when its parameters

are chosen such the signs are the same, as required by unitarity.

We have stated that the Virasoro central charges in the asymptotic conformal sym-

metry algebra are both positive when ∓λ± > 0. Although this fact did not play an

essential role in the above analysis, it is necessary to know how the parameters λ± are

related to the central charges if one wishes to read them off from the quadratic action.

This relation was explained briefly in [2]; in the following section we provide a more

complete derivation.
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4 Asymptotic symmetries in CS-like theories

The action for MMG belongs to the class of theories with a Chern-Simons–like formu-

lation [12,13]. These models can be defined in terms of so(2, 1)-vector valued one-form

fields with a bulk action resembling a Chern-Simons theory; these are now included as

special cases. For a review and Hamiltonian analysis of this type of theory we refer

to [13, 14]. Here we first recall some results presented in [15], where the procedure

of computing the asymptotic symmetry algebra in general Chern-Simons–like theories

was presented. and we then use this to rederive the central charges in MMG for asymp-

totically AdS3 boundary conditions and compare with the results of [2] and [6]. We

also explain how these results determine thermodynamic properties of the BTZ black

hole in the context of a given CS-like theory, in particular MMG.

4.1 The algebra of asymptotic charges

CS-like models can be defined in terms of a set of so(2, 1)-vector valued one-form fields

labeled by field-space indices p, q, r, with an action reminiscent of a CS theory:

I =
k

4π

∫ (
gpq a

p · daq +
1

3
fpqr a

p · aq × ar
)
. (4.1)

Here gpq and fpqr are a completely symmetric field-space metric and structure constants,

respectively and k is the overall coupling constant of the theory. As in section 3, we

are suppressing wedge products and using dot and cross notation for the contraction

of Lorentz indices with ηab and εabc respectively.

The Chern-Simons–like action is invariant under diffeomorphisms by construction

and it was shown in [15] that diffeomorphisms are generated by gauge-like transforma-

tions which take the fields ap → ap + δξa
p with

δξa
p = dξp + f pqr(a

q × ξr) . (4.2)

When ξp is chosen as

ξp = aν
pζν , (4.3)

the transformation (4.2) generates diffeomorphisms on shell

δζaµ
p = ζν∂µaν

p + aν
p∂µζ

ν + . . .
on−shell

= Lζaµ
p , (4.4)

where the dots refer to terms which vanish by the equations of motion.

In the presence of boundaries, the constraint function generating bulk diffeomor-

phisms needs to be improved by a boundary term whose variation reads

δQ[ξp] =
k

2π

∮ (
gpq ξ

p · δaqϕ
)
dϕ . (4.5)

This defines the boundary charge of a diffeomorphism parameterized by (4.3).

11



In order to find the asymptotic symmetry algebra in the general CS-like theories

we first specify the boundary conditions for our fields ap. They have to solve the field

equations (at least asymptotically) and they should come equipped with the specifica-

tion of what is allowed to fluctuate on the boundary and what is kept fixed; i.e., which

components of the fields carry state-dependent information.

Then we determine the transformations (4.2) with gauge parameter (4.3) that pre-

serve the boundary conditions, up to the transformation of state-dependent functions.

In other words, on the left hand side of (4.2) we specify which components of the fields

are allowed to fluctuate. Then we find the asymptotic gauge parameters ξp by solving

for the right hand side of (4.2).

After having found the gauge parameters which preserve (4.2), the consistency of

the boundary conditions can be checked by inserting the result for the gauge parameter

into the variation of the charges (4.5). This should be finite on the boundary, integrable

and conserved. Once these conditions are met, the Poisson brackets will solely receive

contributions from the boundary charges on-shell and reduce to the Dirac bracket

algebra of boundary charges [15]

{Q[ξp], Q[ηq]}∗ = −δηQ[ξp] =
k

π

∮
dϕ tr (gpq ξ

p · δηaϕq) (4.6)

Imposing boundary conditions on aϕ
p suffices to determine the asymptotic symmetry

algebra. The conditions on the radial component of the fields can be derived by solving

the field equations asymptotically. The time components of the fields can then be found

by demanding the boundary conditions on aϕ
q to be conserved under time evolution.

4.2 Asymptotically AdS3 boundary conditions in MMG

We will now investigate the asymptotic symmetry algebra for MMG when choosing

asymptotically AdS3 boundary conditions. These boundary conditions can be formu-

lated by expanding the metric in Fefferman-Graham gauge, which in three dimensions

leads to the Bañados metrics [16]

ds2 = dr2 − `2
(
er/`dx+ − e−r/`L −(x−)dx−

) (
er/`dx− − e−r/`L +(x+)dx+

)
, (4.7)

where x± = t±ϕ. We formulate our boundary conditions in terms of the dreibein in a

suitable local Lorentz gauge. In terms of the generators T a of the 3D Lorentz algebra

so(2, 1) we choose

eϕ = − `
2
e−r/`(L + −L −)T 0 +

`

2

(
2er/` + e−r/`(L + + L −)

)
T 1 , (4.8a)

et =
`

2

(
2er/` − e−r/`(L + + L −)

)
T 0 +

`

2
e−r/`(L + −L −)T 1 , (4.8b)

er = T 2 . (4.8c)

The functions L ± carry state dependent information and are allowed to fluctuate on

the boundary. We wish to find the asymptotic symmetry algebra of diffeomorphisms
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which preserve this form of the dreibein, up to L ± → L ± + δξL ±. First, we need to

solve the constraint equations

gpq daq +
1

2
fpqr a

q × ar = 0 , (4.9)

where gpq and fpqr are such that (4.1) gives the MMG action (3.5). The solution is

given as

ω = Ω− αh , h = Cµe , (4.10)

with

Ωϕ =
1

2

(
−2er/` + e−r/`(L + + L −)

)
T 0 − 1

2
e−r/`(L + −L −)T 1 , (4.11a)

Ωt =
1

2
e−r/`(L + −L −)T 0 − 1

2

(
2er/` + e−r/`(L + + L −)

)
T 1 , (4.11b)

Ωr = 0 . (4.11c)

We are now ready to compute the transformations (4.2) on the fields. We are

assisted in this process by the secondary constraint of MMG, which reads

e · h = 0 . (4.12)

This implies for gauge parameters ξp = apµζ
µ that

e · ξh = h · ξe , (4.13)

and hence, by (4.10), that ξh = Cµξe. The diffeomorphisms preserving the form of

(4.8) are given by gauge parameters ξe and ξω = ξΩ−αCµξe expressed in terms of two

arbitrary functions f±(x±)

ξe =
`

2
e−r/`

(
f+(e2r/` −L +) + f−(e2r/` −L −) +

1

2
(f+′′ + f−′′)

)
T 0 (4.14)

+
`

2
e−r/`

(
f+(e2r/` + L +)− f−(e2r/` + L −)− 1

2
(f+′′ − f−′′)

)
T 1

− 1

2
(f+′ + f−′)T 2

and

ξΩ = − `
2
e−r/`

(
f+(e2r/` −L +)− f−(e2r/` −L −) +

1

2
(f+′′ − f−′′)

)
T 0 (4.15)

− `

2
e−r/`

(
f+(e2r/` + L +) + f−(e2r/` + L −)− 1

2
(f+′′ + f−′′)

)
T 1

+
1

2
(f+′ − f−′)T 2 .

These gauge parameters solve (4.2) with state dependent functions L ± transforming

as CFT stress tensors

δξL
± = f±L ±′ + 2f±′L ± − 1

2
f±′′′ . (4.16)
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The next step is to compute the variation of the charges (4.5) and check whether it

is well-defined, finite and integrable. The result we obtain is all of those things and

integrates to

Q±[f±] =
`

8πG

(
σ ± 1

µ`
+ αC

)∫
dϕ f±(x±)L ±(x±) . (4.17)

Finally, using (4.6) together with the transformation properties of the functions

L ± (4.16), we find that the asymptotic symmetry algebra is given by two copies of the

Virasoro algebra for the Fourier modes of L ± with central charges

c± =
3`

2G

(
σ ± 1

µ`
+ αC

)
= ± 3`

2G

λ∓
µ`

. (4.18)

This result shows that positivity of both c+ and c− is equivalent to ±λ∓ > 0, as claimed

in subsection 3.3. It also agrees with [2] but differs from the result of [6], which is based

on a quadratic action that is inequivalent to the quadratic approximation to the non-

linear MMG action.

4.3 BTZ thermodynamics

For constant L ± = 2G
`

(`m± j) the Bañados solutions (4.7) describe BTZ black holes in

Einstein gravity with mass m and angular momentum j. These metrics also solve the

MMG field equations, but the mass and angular momentum get extra contributions.

Using the results of the last section it is particularly easy to compute the BTZ mass

in MMG, which corresponds to the asymptotic charge for time translations. From

(4.3) we see that the gauge parameter corresponding to a time translation is simply

ξp = at
p. By inspection of (4.8b) and (4.14) one can easily verify that this corresponds

to choosing f± = 1. The BTZ mass is now readily computed from (4.17) as

`MMMG = Q+[f+ = 1] +Q−[f− = 1] = (σ + αC) `m +
j

µ`
. (4.19)

Similarly, the angular momentum of the black hole, corresponding to the asymptotic

charge associated to the Killing vector ∂ϕ, is easily obtained as:

JMMG = Q+[f+ = 1] +Q−[f− = −1] = (σ + αC) j +
m

µ
. (4.20)

The mass and angular momentum satisfy the first law of black hole thermodynamics

when the entropy of the BTZ black hole in MMG is given by

S =
2π

4G

(
(σ + αC)r+ +

1

µ`
r−

)
=

π

6`

(
c+(r+ + r−) + c−(r+ − r−)

)
, (4.21)

where r± are the horizon radii of the BTZ black hole; these are given in terms of m

and j by

r± =
√

2G`(`m + j)±
√

2G`(`m− j) . (4.22)

14



The microscopic Cardy formula for the entropy in the canonical ensemble is (see,

e.g. [17])

S =
π2`

3

(
c+T+ + c−T−

)
, (4.23)

where T± are the left and right temperatures. Identifying these as the temperatures

of the outer and inner Killing horizons, which are T± = (r+± r−)/(2π`2), one recovers

the macroscopic entropy formula (4.21).

5 Discussion

The massive 3D gravity models TMG and MMG both propagate a single massive spin-2

mode. Although they differ in their interactions, linearization about an AdS3 back-

ground yields locally equivalent field equations. Nevertheless, the quadratic actions of

linearized TMG and MMG are inequivalent. This is possible because these quadratic

actions include, for an appropriate basis of fields, a 3D linearized Einstein-Hilbert term

in addition to an action for the spin-2 mode, and this introduces a relative sign that

cannot be changed by field redefinitions. Moreover, this relative sign is physically sig-

nificant because it determines whether there will be a concordance or a clash between

the twin requirements of positive energy for the massive graviton and positive Vira-

soro central charges for the asymptotic conformal symmetry algebra, both of which

are required for semi-classical unitarity. Semi-classical MMG avoids this clash within

a region of its two-parameter space, whereas semi-classical TMG does not, and this is

possible because the linearized action of MMG is inequivalent to the linearized action

of TMG.

In other words, the on-shell equivalence of linearized TMG and NMG does not

imply an off-shell equivalence of the quadratic approximations to the TMG and MMG

actions. This is important because all semi-classical unitarity conditions are constraints

on the coefficients of the terms in this action, and these coefficients, are determined

(up to an overall factor) by the respective inequivalent interactions.

We have spelled this out in detail here because the distinction between on-shell

and off-shell inequivalence of linearized TMG and MMG is a subtle one that has been

overlooked in other discussions in the literature on these massive 3D gravity models.

However, the distinction is an obvious one in the context of another pair of 3D massive

gravity theories, even when linearized about a Minkowski vacuum: this pair is “New

Massive Gravity” (NMG) [18] and (the third-way consistent) “Exotic Massive Gravity”

(EMG) [19].

The field equations of NMG and EMG become equivalent when linearized about a

Minkowski vacuum: they both propagate a parity doublet of spin-2 modes. However,

the quadratic action for linearized EMG is inequivalent to that of linearized NMG. This

is because the EMG action is parity odd whereas the NMG action is parity even and

this distinction survives in the quadratic approximation, even though the linearized

field equations are equivalent. A similar result holds for linearization about an AdS
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vacuum, with important implications for the two Virasoro charges of the asymptotic

conformal algebra: they are equal in magnitude for both NMG and EMG but they

have the same sign for NMG and opposite sign for EMG.
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