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Abstract. Catalyst assisted vapour-liquid-solid is the most common method to

realize bottom-up nanowire growth; establishing a parallel process for obtaining

nanoscale catalysts at pre-defined locations is paramount for further advancement

towards commercial nanowire applications. Herein, the effect of a selective area mask

on the dewetting of metallic nanowire catalysts, deposited within lithography-defined

mask pinholes, is reported. It was found that thin disc-like catalysts, with diameters of

120-450 nm, were transformed through dewetting into hemisphere-like catalysts, having

diameters 2-3 fold smaller; the process was optimized to about 95% yield in preventing

catalyst splitting, as would otherwise be expected due to their thickness-to-diameter

ratio, which was as low as 1/60. The catalysts subsequently facilitated InP and InAs

nanowire growth. We suggest that the mask edges prevent surface migration mediated

spreading of the dewetted metal, and therefore induce its agglomeration into a single

particle. This result presents a general strategy to diminish lithography-set dimensions

for NW growth, and may answer a fundamental challenge faced by bottom-up nanowire

technology.
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1. Introduction

Semiconducting nanowires (NWs) have gained significant attention for the past two

decades as building blocks for future electronics, photonics, sensing applications, and as

a platform for fundamental physics research [1–8]. Generally, bottom-up NW growth is

realized either using a metal catalyst, which can be of a foreign material, or an element of

the NW compound, or by catalyst-free methods, which are usually based on a selective-

area scheme [9–12].

The most common growth method is by a foreign metal catalyst, since it is relatively

easy to implement (as will be discussed below in detail), and it also provides a mean

to grow small diameter NWs. A potential shortcoming of this growth scheme is that

catalyst material may penetrate the NW, and affect its electronic and optical properties;

e.g., gold is the most common catalyst material, and it is known to create deep-level

traps in Silicon [13]. A possible solution for this problem is using catalysts of materials

which are compatible to the semiconductor processing technology. Indeed, palladium,

nickel, copper and more metals were used to catalyze both III-V and silicon NWs. An

extensive review regarding non-gold NW catalysts has recently been published by Dick

and Caroff [11].

The true challenge faced by catalyst assisted methods, is the lack of a large-scale,

spatially pre-defined, systematic growth process of sub-100 nm NWs, which remains

a barrier for commercialization of NW applications; photolithography, semiconductor

industry’s most common processing tool, cannot easily produce features of such

size. Herein we demonstrate the ability to significantly (2-3 fold) reduce the critical

dimensions for NW growth, which are usually dictated by the catalyst lithography

process. Potentially, this will allow photolithography based growth of sub-100 nm metal-

catalyzed NWs; such capabilities are fundamental to the effort of advancing electronic

NW device applications.

Nanoimprint techniques show great potential for rapid nano-scale lithography.

Although not as established as e-beam lithography (EBL), nanoimprint has been

successfully used to facilitate NW growth; both catalyst assisted and catalyst-free/self-

catalyzed NWs have been demonstrated [14–17]. In any case, the paradigm presented

in this work is applicable to nanoimprint, as well as e-beam and photo lithography,

therefore we shall not consider it in particular further-on.

1.1. Nanowire catalyst preparation methods

There are three approaches to create metallic NW catalysts, sorted here by increasing

process complexity: i) splitting (by dewetting) of a previously evaporated continuous

metallic layer; ii) dispersing metallic nanoparticles on the growth substrate; iii)

lithography and lift-off (usually e-beam lithography - EBL) [9, 12, 18–20]. The thermal

induced dewetting of a pre-deposited metallic layer, is the simplest method; however,

poor control over NW location and catalyst size is usually obtained. Using nanoparticles
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as catalysts increases process complexity but allows greater control of catalyst size,

nonetheless, the resulting NW positions are still random. For further details, see the

aforementioned references.

The lithography based process includes two steps: first, the location and lateral

size are determined, and second, a metallization step follows, where the evaporated

catalyst thickness is defined. In cost and efficiency terms, EBL catalyst definition is rated

considerably low compared to definition by metallic layer dewetting or by nanoparticles.

However, it offers precise control over catalyst location, and lower particle diameter

variance; therefore it is favourable for systematic NW growth study, and is probably the

only option for practical applications which require location control. Should a rapid sub-

100 nm lithography process become available, significant advances in NW technology

are possible.

Herein, we report on the effect of a selective area mask on the dewetting process

of large-diameter, disc-like, metallic catalysts, in growth methods combining the two

approaches. By confining the catalyst inside a mask opening, considerable reduction

of NW diameters was obtained, compared to the initial catalyst diameter - set by the

lithography process. The induced agglomeration was not possible without the presence

of the selective area mask.

2. Experimental Methods

InP and InAs NWs were grown by metal-organic molecular beam epitaxy (MOMBE)

utilizing native-oxide selective area (NOSA) growth [21], and selective area vapour-

liquid-solid (SAVLS) [22, 23]; SAVLS has been used to study entangled and single

photon emission from NW embedded quantum dots [24, 25]. Although details of the

growth appear in the references, specifics relevant to the results will be discussed in

particular below (Fig. 1a). Briefly, InP or InAs (111)B oriented n-type wafers were

used as growth substrates; for SAVLS, a 15±1 nm SiNx layer, deposited by plasma

enhanced chemical vapour deposition, covered the substrates. E-beam lithography was

performed to realize large-diameter (120-450 nm), as well as standard-sized (about 40

nm), catalysts, by a standard lift-off procedure; this included PMMA coating, EBL, wet

etch prior to evaporation (BOE for SAVLS, H2SO4:H2O 1:10 for NOSA) and e-beam

based evaporation of gold. Gold deposition was performed in a high-vacuum e-beam

evaporator (Airco Temescal FC 1800), at about 0.3 nm/sec with ±1 nm accuracy. The

duration of BOE treatment determines the nitride mask opening, while the gold catalyst

diameter is determined by the EBL process (Fig. 1b, Fig. 1c).

For every EBL process, several thicknesses of evaporated gold were used - thus

taking advantage of the two-dimensional parameter space available for lithography

based catalyst definition. Nanowire growth temperature was 420-450 ◦C, and an in-

situ, 1-5 minute, pre-growth heating treatment, with temperatures 30-80 ◦C higher, was

employed. Nanowire length and diameter characterization was performed by scanning
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Figure 1: a) Fabrication process schematic: a substrate covered with a selective area

mask; (1) EBL and develope, this stage determines the initial catalyst diameter (solid

red arrow); (2) mask etch and metalliation, this stage determines the mask opening

diameter (solid red arrow - notice the difference between [b] and [c]) and the initial

catalyst thickness; (3) metal lift-off, ready for MOMBE. b,c) The process results: top-

view, false-colored, scanning electron micrographs of post metal-deposition catalysts on

InAs (8 nm metallization, diameter∼ 450 nm). The SiNx mask has been over-etched in

[c].

electron microscopy (SEM, Hitachi S4700); an example for a successful NW growth with

standard catalyst diameters (in terms of EBL defined dimensions) is shown in Fig. 2

inset.
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3. Results and discussion

Figure 1a shows a schematic of the catalyst fabrication process (discussed in detail in

Sec. 2), and corresponding results. As mentioned above, in lithography based processes,

the catalyst thickness and diameter are decoupled, and controlled separately; allowing

for very low thickness to diameter ratios to be examined. We explore the effects of

combining catalyst assisted methods with a selective area mask on NW growth by

catalysts of low thickness to diameter ratio. Figures 1b,c show the resulting disc-like

catalyst (on InAs in this case) [26]. Notice the different annular openings - a result of

different mask etching time using the same lithography.

3.1. Agglomeration of small diameter catalysts

In the native-oxide selective area (NOSA) NW growth regime, the native oxide is not

removed off the substrate prior to growth, leaving a ∼ 1 nm layer of indium and

phosphorous oxides; this layer prevents nucleation on the surface and induces long-range

surface diffusion of the metal-organic precursors towards the catalyst [21]. Recently we

have found that using different sets of lithography diameter and metallization thickness,

to realize NWs of similar diameters in this growth regime, may result in significantly

different NW lengths [27]; here however, we are mainly concerned with the resulting

NW diameter. For further information about NW lengths and the effect of different

pinhole diameters on NW growth see reference 27.

Figure 2 shows NW diameter vs. metallization thickness for a ∼ 40 nm diameter

(measured by SEM prior to growth) pinhole, where the metallization was varied from

1 to 25 nm; each data point is the average of at least 10 NWs, as measured by SEM

(see Fig. 2 inset and Ref. [21] for typical growth results). Generally, with increased

metallization thickness, an increase in NW diameter was found. Interestingly, the

thinnest metallizations resulted in NWs which were of diameters smaller than the initial

catalyst diameter; moreover, the catalysts discussed here did not suffer any effect of

splitting, even at the most-thinnest metallizations. The yield of vertical NW growth in

these experiments was close to 100%.

Mårtensson et al. have found that for lithography based catalysts, a minimum

1/3-1/6 thickness to diameter ratio is required to prevent catalyst splitting [28]; in

other cases ratios of 1/15 yielded adequate results (6 nm thickness, 100 nm diameter,

by nanoimprint), following surface treatment optimization [15]. In the experiments

reported here however, using the simple NOSA scheme allowed avoiding the splitting

effect and opened-up the possibility of tuning the resulting NW diameter with extreme

thickness to diameter ratios; we note that the thinnest catalysts used (namely 1 and

2 nm) correspond to 1/40 and 1/20 thickness to diameter ratio, which is considerably

smaller than the ratios reported as mandatory for successful NW growth in the literature.

We apply a hemispherical model (dotted line in Fig. 2) to describe the catalyst
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Figure 2: Nanowire diameter vs. catalyst metallization thickness, for NWs grown

by NOSA (blue dots); the error bars correspond to the standard deviation in the

measurement. The dashed red line shows the hemispherical model calculation following

Eq. 1-2. The inset shows tilted SEM captures of typical growth results.

shape during the growth, in order to quantify the relation between the NW diameter

and the pinhole diameter and metallization used. If so, the diameter, DNW , is related

to the catalyst volume, Vcat, by

DNW = 2
(

6Vcat
4π

)1/3

(1)

and the catalyst volume is given by

Vcat =
πr2pinholeTM

1− β
(2)

where rpinhole is the pinhole radius, TM is the metallization thickness, and β is the ratio

of non-gold elements in the catalyst during growth. For InP and InAs NWs there is a

non-negligible amount of indium in the gold catalyst; we follow the report by Fröberg et

al. and use βInP = 0.45 and βInAs = 0.35 [29]. Using equations 1 and 2 with rpinhole = 20

nm and βInP , the experimental results were reproduced quite well, indicating that the

basic understanding of the process which the catalyst undergoes during growth is valid.

These results are not exclusive to growth by the NOSA regime, and we have

observed very similar results in growth by selective area vapour-liquid-solid (SAVLS);

we do not pay specific attention to that since the focus of this research is the controlled

agglomeration of large-diameter catalyst, as discussed below.

3.2. Agglomeration of large diameter catalysts

A natural subsequent step was to repeat the NOSA experiment with much larger

lithography pinholes, which could potentially be prepared by photolithography;
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a)

b)

Figure 3: a) Scanning electron micrographs of large-diameter (∼ 450 nm) growth results

obtained by NOSA; b) zoom-in to one of the growth sites in [a].

therefore, catalysts with pinholes ranging from 120-450, and a metallization of 10

nm, were prepared by EBL. However, this experiment did not yield satisfying growth

results: although only a small fragment of the catalysts experienced splitting, most

catalyst resulted in very short NWs with large, bulky, bases, of diameter exceeding

that of the original pinhole; figure 3 shows an example of this growth. If so, although

allowing significant catalyst size reduction for initially small pinhole diameters, NOSA

growth conditions did not facilitate successful size reduction for catalysts originating in

photolithography-scale pinholes. The origin of this result could be the long diffusion

length of group-III precursors on the native oxide, resulting in a high planar growth

rate on surface exposed by catalyst agglomeration.

In SAVLS method, a growth-stop layer (SiNx in this report) is deposited on the

growth substrate, prior to lithography and metal deposition; next, the lithography

pattern is used both as an etch mask, and as a metallization mask, thus the catalysts

are deposited inside pinholes etched in the mask (Fig. 1). Nanowire growth is facilitated

only by the catalysts inside the pinholes, while metal-organic growth precursors

scatter off the mask, and the scattered material fraction impinging the NW sidewall,

contributes to growth [22,23]. The listed references and subsequent publications include

thorough analysis of this growth method, however its application to large diameter

(photolithography scale) catalysts has not been reported.

Pinholes of about 120-450 nm were realized by EBL on InP and InAs substrates.

Metallizations of 4 and 8 nm for InP NWs, as well as 8 and 20 nm for InAs NWs were
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Table 1: Large-diameter catalysts of 8 nm on InP;

D1 = 130 nm, D2 = 230 nm, D3 = 340 nm, D4 = 450 nm

Growth #

Temp. [◦C] Non-split yielda Annular

Growth (Total yieldb) [%] opening H2SO4 See Fig.

(Pre-growth) D1 D2 D3 D4 [nm] etching

1. Non-SAc 420 (530) 33 (33) 13 (6) 6 (0) 0 (0) - No 4d-f

2. SAVLS 420 (530) 100 (73) 86 (73) 33 (13) 33 (13) 45-50 No 4a-c

3. SAVLS 420 (455) 67 (67) 72 (72) 67 (33) 0 (0) 45-50 Yes -

4. SAVLS + NOSAd 420 (455) 92 (46) 80 (80) 78 (78) 78 (78) ∼ 0d No 5c

5. SAVLS + NOSAd 450 (455) 96 (47) 94 (83) 94 (89) 93 (93) ∼ 0d No 5a,b

a - Yield of single particles per-catalyst

b - Yield of single vertical NWs per-catalyst

c - The 530 ◦C treatment removes the native oxide, rendering the growth non-selective in the

absence of a SiNx mask

d - The 455 ◦C treatment does not remove the native oxide, leaving the annular opening

covered by a selective mask

used to realize the disc-like catalysts; notice the thickness-to-diameter ratios examined

in this experiment, which are as small as 1/100. We shall first focus on a set of growth

experiments performed on 8 nm metallization on InP substrates, to explore the effect

of growth parameters on the yield of single vertical NWs from thin, disc-like, large

diameter gold catalysts. The remainder of the results, with specific consideration of the

catalyst-diameter reduction, will be subsequently presented.

Table 1 lists the growth conditions and the results for 8 nm metallization on InP

substrates. Two yield parameters are considered: first, the non-split yield, describing

the fraction of catalysts which underwent successful agglomeration into a single particle;

and second, the total yield, describing the fraction of catalysts resulting in single vertical

nanowires. High, medium and low non-split yield values are highlighted in green, yellow

and red, correspondingly. The diameters examined were about 130, 230, 340 and 450

nm. The statistics were taken from 18-20 catalyst locations per data point in the table.

All growth substrates were identical, except substrate 1, which did not include the

SiN layer (identical to growth substrates prepared for the NOSA experiment reported

above). The parameters examined were growth and pre-growth annealing temperatures

and the influence of an H2SO4:H2O dip prior to growth; the precursor flow rates

and growth time (50 minutes) were not changed. Dipping the sample in H2SO4:H2O

immediately before insertion to the growth chamber, removes the native oxide from the

annular opening (which is related to the duration of the BOE dip performed prior to

metallization). Another option to remove the native oxide from the annular opening is

by a pre-growth heating treatment higher than 480 ◦C [21].

Comparing growth experiments 1 and 2, directly probes the effect of the SiNx
mask with an exposed annular opening, on the agglomeration of large-diameter disc-
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d)
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Figure 4: 30 ◦ tilted scanning electron micrographs of: a-c) Growth #2 - SAVLS; d-f)

Growth #1 - non selective. [a,b] and [d,e] show results for D2 = 230 nm catalysts on

the two samples; [c] and [f] show growth from catalysts of D4 = 450 nm. Lower scale

bars are 500 nm in [b,c,f] and 3 µm in [e].

like catalysts. The trend is clear - the existence of a selective area mask, even if not

directly around the catalyst (due to the annular opening) resulted in significant increase

of both yield parameters. Figures 4a,b,d,e demonstrate this for the 230 nm catalysts -

exhibiting a 6-fold increase in non-split yield; while figures 4c,f show the growth results

of single 450 nm catalyst in the selective and non-selective schemes, showing a single

nanowire growing from the mask opening, while at the unmasked catalyst location,

splitting occurred, resulting in spreading of the catalyst fragments - most noticeably, in

an area much larger than the original catalyst diameter.

Next, comparing growth experiments 3-5, shows the effect of the native oxide in the

annular opening (experiments 3,4), and that of the growth temperature (experiments

4,5). If so, by not removing the native oxide, hence combining the SAVLS method

with a NOSA annular opening, the yield increases dramatically. Specifically, in the

largest diameter examined, from zero yield to about 80% in both parameters, with all

the successfully agglomerated catalysts resulting in vertical NWs. An example of these

results can be seen in Fig. 5a-c. Standing out is the reduction in vertical yield in the

smallest diameters, despite the increase in non-split yield (The difference between non-

split and growth yield values of D1 in table 1 rows #4, 5 - no figure is shown); we

believe this result is related to the increased intake of indium due to the efficient surface

diffusion of the group-III precursor on the NOSA surface [21], which may impede vertical

growth [9, 30]. Considering the high yield of vertical NWs in the larger catalysts, it is
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not likely that there is a fundamental barrier for growth in these conditions.

Growth experiments 4 and 5 show the effect of the growth temperature. Growth

a)

#5

b) c)

#5 #4

Figure 5: 30 ◦ tilted scanning electron micrographs of: a,b) Growth #5; c) Growth

#4 for D4 = 450 nm. The difference in NW height results from the different growth

temperature. Lower scale bars are 500 nm.

at 450 ◦C resulted in improved yield compared to growth at 420 ◦C, when all

other parameters are similar; non-split yield was close to 95% in all diameters, and

the vertical yield was in accordance (except for the abnormality in the smallest

diameters, as discussed above). We suggest that this is an outcome of the growth

process involving annealing: when the catalyst is heated up to 455 ◦C the indium

concentration and chemical potential reaches equilibrium with the surroundings; next,

when the temperature is dropped toward growth temperature, different concentrations

and chemical potentials are reached - probably influencing the contact angle and catalyst

diameter. Indeed, we have generally observed slightly thinner and longer NWs for

growth at 420 ◦C. It is also possible that during this process the catalyst is more likely

to split due to the changes in its composition. Contrary, when the cool-down is merely

5 ◦C (as in growth experiment 5) less splitting occurs; this point, however, requires

further inquiry.

If so, the reported set of experiments points out to several conclusions: first

and foremost, the presence of a selective area mask around the catalyst, induces its

agglomeration into a single particle, which then facilitates NW growth with diameters

significantly smaller than the original pinhole dictated by lithography (e.g., from 450 to

200 nm in 8 nm metallization); second, nearly perfect yield of single vertical nanowires

per large-diameter (with less than 1/50 thickness to diameter ratio) catalyst site, is
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achievable by correctly tuning the process parameters; third, the process yield increases

with better confinement of the catalyst by the mask (a native oxide covering the annular

opening in this case [31]).

Next we turn to a quantitative analysis of the agglomeration, comparing the

final NW diameter to the original pinhole diameter, for InAs and InP NWs of

different metallization thicknesses. To do so we have only considered catalysts which

agglomerated with a relatively high yield. Figure 6 summarizes the growth results

obtained by SAVLS with large catalysts [32]; the predicted diameter values according

to Eq. 1 are plotted as well, no fitting was performed. Generally, the thin discs followed

the hemispherical trend on both materials, and resulted in catalysts with diameters

2-3 times smaller. A shape slightly different than hemisphere, or a different intake of

indium into the catalyst, could be the reason for the discrepancies between model and

experimental data for the 20 nm gold discs deposited on InAs. The 120 nm data point

of the 20 nm metallization in Fig. 6a is missing due to unsuccessful processing; while

the two wider data points of the 4 nm metallization in Fig. 6b are missing since these

catalysts did not result in single NWs and experienced splitting. We conclude that in

these conditions (similar to growth experiment 4), a thickness-to-pinhole ratio of 1/60

is the limit for systematic use of this method to reduce lithography based InP NW

catalysts diameters. The figure inset shows an example of an InAs NW grown in this

process.

The results presented in Fig. 6, demonstrate the generality of the process, indicating

it could be applied to other material systems, and perhaps be used to defy the limits of

photo-lithography for the bottom-up realization of nanomaterials. It should be noted

that this process suffers from a limitation on the NW area fill-factor available, since

inherently, a large part of the area initially covered by metal does not facilitate growth;

e.g. for a 3-fold reduction of catalyst size the fill factor may only be as high as ∼ 10%.

This should be taken into consideration when thinking about possible applications.

3.3. Dewetting: splitting vs. agglomeration

The main finding presented in this paper is that metallic thin-film dewetting can be

engineered to result in a single-particle agglomeration, although the deposited layer

dimensions suggest it should undergo splitting; this is done be metal deposition inside

predefined physical barriers (pits). Therefore we conclude that the barriers induce a

process which counter-acts the expected splitting, and enables realization of catalysts

with diameters considerably smaller than the original particle diameter (see Fig. 4c,f).

The underlying mechanism for thin-film dewetting is energy minimization, mediated

by surface diffusion of atoms to reach the equilibrium shape [33–36]. The quantitative

analysis of this phenomenon is highly complex and has to take into account the materials

in question, system temperature, thermal expansion coefficients, time evolution, and also

issues such as the crystalline nature of the substrate, and the interaction between the

ad-layer and the substrate [37–40]. We will provide a semi-quantitative discussion of
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Figure 6: Nanowire diameter vs. resist pinhole diameter for (a) InAs NWs; (b) InP

NWs. Different data sets correspond to different metallization thicknesses used (20 and

8 nm in [a], 8 and 4 nm in [b]), and the dashed lines are predictions based on the

hemispherical model (Eq. 1 and 2). The inset shows a 140 nm InAs NW grown from a

350 nm catalyst disc at 20 nm metallization; scale bar is 500 nm.

the results presented here, in light of major effects in thin-film dewetting.

Generally, two main guidelines for energy minimization dictate the dewetting

process and results, considering the geometry and the materials in question: 1) the

total surface/interface energy of the system increases with increasing curvature, at a

fixed volume; 2) the equilibrium contact angle balances the interfacial tensions between

the phases (Young-Laplace equation). The former indicates that sharp features such

as corners, peaks and valleys would be smoothed during dewetting, and that wetting

of steps and corners is not energetically favored; the latter defines the shape of the

layer termination. These guidelines do not, however, determine whether the layer will

agglomerate into a single particle, or split into several particles. It is important to note

that in the context of NW growth, there is usually significant interaction between the

catalyst and the substrate, manifested by a significant intake of substrate material into

the catalyst [29,41,42]; therefore in addition to the effects mentioned above, the reaction

between the catalyst and the substrate may effect the conditions for the dewetting

evolution.
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Typically, the dewetting process involves an initial nucleation stage, where defects

and grain boundaries mediate the creation of pores (and subsequently islands) in

the film, according to the guidelines mentioned above; next, depending on time and

temperature, surface diffusion of atoms, and surface reactions, will change the size

distribution, location and morphology of the islands. The thermodynamically favoured

result of the process is a single particle, containing all the film material - due to surface

energy minimization; practically, however, the result will usually be some distribution

of particles on the surface. The initial distribution of defects and subsequent pores will

determine the final result.

Recalling growth experiments 1-2 and 3-4, the results point to the role of the mask

in inducing agglomeration; moreover, as the mask becomes closer to the catalyst (by

the native oxide covering the annular opening in the second set of experiments), single-

particle agglomeration becomes more efficient. Considering that the catalyst deposition

was identical in all cases, we conclude that the mask affects the second stage in the

evolution of the catalyst - the movement of the islands created from the original catalyst.

But what is the nature of this effect?

Taking a closer look at Fig. 4d-f, it is clear that when splitting occurs, the catalyst

fragments end up spread across an area which is much larger than that of the deposited

catalyst; similarly, even in those cases where the mask did not manage to prevent

splitting (Fig. 5e,f), catalyst fragments were found close to the opening periphery,

indicating some level of spreading. Therefore, we suggest that preventing the catalyst

fragments from spreading, is the key to inducing their agglomeration.

Due to material and energy considerations, the catalyst fragments are highly

unlikely to wet the mask layers; specifically, with surface energies of 1.2 and 0.046 J·m-2,

gold and SiNx exhibit poor wetting [43]. Evidently, even the native oxide layer, which

is less than one nanometer thick, acts to prevent wetting, and subsequently splitting

(Fig. 3). Next, considering that the catalyst fragments tend to spread across the surface

in a motion mediated by adatom diffusion and catalyst-substrate reactions, it stands

to reason that preventing the motion of the fragments outside a given area, would

significantly increase their chances to come across each other and make adatom diffusion

and exchange of material between fragments easier. Although the surface diffusion

coefficient itself is not the most relevant parameter to describe the rate of dewetting

(rather, it is the product of that coefficient and the surface density of mobile atoms),

it indeed does provide partial indication on mass transfer rate. At the temperatures

employed in this work, the Au surface diffusion coefficient, Ds, is of the order of 10-16

m2s-1 [44]. For a heat treatment of only 1 min at 400 C, the characteristic diffusion

length, X =
√
Dst, is already roughly 200 nm; this length is of the order of the

mask pinhole size. It should be mentioned that the diffusion length is a very crude

underestimate, since it is derived simply from random walk theory, while the driving

force for dewetting is capillary. This capillary driving force is very high during the

initial period of dewetting, when the curvature is highest. Therefore, it is likely that

most of the catalyst film agglomerated into particles during the first few moments of
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the heat treatment, after which these particles change their shape slowly en route to

their equilibrium crystal shape. In nanocrystalline thin films this process is facilitated

by the presence of a large fraction of grain boundaries, which are preferred sites for

hole formation [45]; indeed, even Au films of 25 nm in thickness and heat treated at

400 C form micrometer-sized holes after similar durations [46]. Since the dewetting

rate is proportional to the curvature (and therefore inversely proportional to the film

thickness [36]), the 8 nm Au films employed in this work are expected to agglomerate

much faster. Furthermore, the fixed boundaries for a catalyst fragment at the mask

edges may also induce a driving force for agglomeration as a mean to reduce its surface

energy. If so, the proposed route for efficient catalyst agglomeration starts with the

reduced chance of catalyst fragments to wet the mask edges, resulting in an increased

probability of adatom diffusion, and of the fragments to reduce their surface energy

within the pinhole - leading to an overall tendency of the catalyst to agglomerate as the

mask opening confinement increases.

3.4. From metallic thin-films to nanoparticles - an outlook

Finally, we discuss recent advances in the ability to control the dewetting processes, and

significantly reduce the dimensions of thin metallic films; a comparison is made in the

context of VLS NW growth. The Control of dewetting procedure outputs is challenging,

and various concepts have been explored. For example, the the effect of substrate

crystalline structure and orientation was examined by Ye and Thompson [38]; they have

shown that the original template orientation, relative to the substrate, could significantly

impact shape of the dewetted structure. Dewetting of layers on templated substrates

was examined as well; Oh and co-workers, have studied the dewetting of cobalt films

deposited on selectively etched oxidized silicon substrates, to find that by pre-patterned

etching of the substrate, the final shape of the dewetted film could be controlled to

prefer specific locations inside etched inverted pyramids; thus manifesting control over

dewetting down to a single particle level. Interestingly, in the right conditions, dewetting

can even result in the formation of metallic NWs directly from the thin-film [47].

Sundar et al. presented a method to reduce the mean diameter and the variation

of gold particles created by dewetting. A platinum foil deposited on top of the gold

film acted to consume some of the dewetted gold, in a selective process which singles

out the larger particles [48]. Farzinpour et al. have also used a two-material approach

to control dewetting; by depositing the layer of interest on top of an antimony layer.

During annealing the antimony layer sublimates, from the periphery towards the center,

leaving an agglomerated particle of the second deposited layer [49]. Pan et al. used a

thin-film of silver to grow InAs NWs on Silicon; they have demonstrated that adding

a low-temperature anneal step, preceding the common high-temperature one (usually

employed to dewet the metallic film and remove substrate surface oxide), resulted

in high-density, small-diameter NWs. They suggest that the low-temperature anneal
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Table 2: Nano-particle by controlled thin-film dewetting

Method
Relative process

complexity

Max.

Temperature
Achievements

Implications on

NW growth

Nanowires

demonstrated

Top Pt

cover [48]

Additional layer

deposition and

removal a

600-1000 ◦C b

NP size and

variation

reduction

Possible different

catalyst substrate

interaction

No

Dynamic

templating

[49]

Additional layer

deposition;

heating

600-1000 ◦C

Very high

aspect ratio

coalescence

Antimony residue;

substrate heating
No

Low

temp. an-

nealing [50]

Negligible
Same as

control

NP size and

variation

reduction

Possible different

catalyst substrate

interaction

Yes

This work

Additional layer

deposition and

etch c

Same as

control

NW diameter

2-3 times

smaller than

lithography

Limited aspect

ratio
Yes

a - Removal after NPs are formed

b - Not necessarily higher than the control process

c - Etching prior to catalyst deposition

step acts to suppress Ostwald ripening of the droplets [50]. Table 2 compares the

approach presented here and the above methods, with specific considerations regarding

NW growth.

The first two methods, since they involve the deposition of an additional metallic

layer, may result in unwanted residues in the NW catalyst, or unwanted catalyst-

substrate chemical interactions, due to different temperature ranges used; indeed,

antimony was found to impede SiNW growth [51]. Nonetheless the successful control

over dewetting properties is promising in terms of NW growth. The later, low-

temp. annealing, and the work presented here, do not require significant complications

compared to the standard process, and indeed NW growth has been demonstrated.

In is noteworthy that contrary to the other methods surveyed, the low-

temp. annealing method is essentially about counteracting agglomeration and achieving

a uniform metallic layer splitting by dewetting. This is a significant distinction, since

combining two of the above methods might result in further improvement or better

control of dewetting results; yet, the fundamental difference stated above suggests that

the low-temp. annealing method cannot be combined with any of the other methods to

facilitate NW catalysts by agglomeration. A combination of the three other methods

might be useful in further reduction on NW catalyst diameters beyond lithography

limits.
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4. Summary

We have demonstrated that combining selective area and lithography based catalyst-

assisted approaches allows growing NWs of diameters considerably smaller than the

initial catalyst diameter, which is dictated by the lithography process. The effect of

the selective area mask on the metal catalyst was examined in two different growth

methods; however, only by using SAVLS, disc-like catalysts of hundreds of nanometers

in diameter, exhibited successful NW growth with 2-3 fold decrease of the resulting

diameter. The generality of this concept was demonstrated by growing both InAs and

InP NWs of different metallization thicknesses using this method, as well as NOSA

based NWs of ∼ 20 nm.

The diminishing diameter of the catalyst was modelled by assuming that the final

catalyst shape is hemispherical; this assumption was found sufficient in describing the

experimental results. We explain the effect of eliminating catalyst splitting by the

selective area mask, in the confinement of the dewetted metallic disc to an area who’s

size is much smaller than the un-masked spreading area of a similar disc, thus increasing

the chance of agglomeration. This result offers promise for bottom-up growth of sub-100

nm NWs by photolithography.
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