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Abstract 
 
Different from traditional efficiency research and previous studies considering undesirable outputs, this 
paper proposes models which distinguish weak and strong disposability features among various 
undesirable outputs based on the technical nature of the undesirable outputs. The paper illustrates the 
approach using a research sample covering 582 base-load Chinese coal-fired power plants in 2002. Our 
final results show that (1) imposing the technically correct disposability features on undesirable outputs 
makes a significant difference to the final efficiency evaluation. This suggests the necessity of properly 
distinguishing disposability features among undesirable outputs in efficiency models; (2) compared to their 
US and European counterparts, Chinese power plants relatively waste more resources. This suggests a 
great urgency for the Chinese electricity industry to improve its efficiency in coal-fired electricity 
generation sector. 
 
Subject classifications: Economics: input-output analysis; Environment; Government: energy policies; 
Industries: electric; Statistics: nonparametric. 
Area of review: Environment, Energy and Natural Resources 
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1. Introduction 
 

In spite of widespread recognition that researchers should credit DMUs for their provision of 
desirable or marketable outputs, and penalize them for their provision of undesirable outputs, no 
agreement has been reached with regards to how to incorporate undesirable outputs into a 
non-parametric efficiency model. In terms of disposability assumptions for undesirable outputs, some 
authors have assumed that undesirable outputs are weakly disposable (e.g. Fare et al., 1989, 1996; 
Tyteca, 1997), and some have assumed that undesirable outputs are strongly disposable (e.g. 
Korhonen and Luptacik, 2004). When compared to traditional studies which ignore the issue of 
undesirable outputs, all of these efforts effectively broaden our understanding of the efficiencies of 
various production systems, in which desirable and undesirable outputs are jointly produced. However, 
because none of these papers distinguish undesirable outputs in terms of their specific technical 
features, the results of these papers might be, to some extent, misleading. The non-parametric DEA 
approach is selected in this paper as the main method of research. Previous literature on the inclusion 
of undesirable outputs is first summarized and discussed. Subsequently, six nonparametric models are 
constructed in the light of this discussion in order to measure the efficiency of Chinese coal-fired 
power plants using different ways of including undesirable outputs.  
 

The Chinese electricity system is currently the second largest in the world, both in terms of 
installed generating capacity and generated electricity. Despite its growing importance and rapidly 
increasing scale, few quantitative analyses have been made of its efficiency. To the authors’ 
knowledge, Lam and Shiu (2004) has so far been the only efficiency analysis study on the Chinese 
electricity generation sector using the DEA approach. However, this paper is more likely to be a 
snapshot than a complete analysis of the Chinese electricity industry. This is above all because the 
number of observations available is quite small. The data used comprises annual figures aggregated in 
terms of administrative provinces, and therefore there are only 30 annual observations available for 
analysis. Also, only traditional variables are included in the model, leaving the emissions of power 
plants unconsidered. Yet the large amount of coal-fired generating capacity in China has posed 
serious environmental problems. For example, in 2005 the total amount of SO2 emissions from China 
ranked as number one in the world, and the total amount of CO2 emissions ranked second only to US 
in absolute terms. In facing the increasing threat of environmental degradation, further 
environmentally aware studies are required when analyzing the efficiency of Chinese power plants. 
 

The research sample used in this paper is a large 2002 sample which includes approximately 582 
utility and non-utility coal-fired power plants, distributed across 31 provinces in the mainland of 
China. The aggregated installed capacity of the sample, mostly large grid-dispatched coal-fired power 
plants in China in 2002, is 211.71 GW. Besides traditional variables, the three main emissions of 
coal-fired electricity generation, namely CO2, SO2, and NOx, are included in the analysis. 
 

This paper is organized as follows. Section 2 contains a review of the current literature on how to 
include undesirable outputs in nonparametric models. Section 3 outlines the research methodology of 
this paper. Section 4 describes the research data. Section 5 reports the empirical results and section 6 
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concludes the paper. 
 

2. Literature Review 

2.1 Existing Literature  
In reality the joint production of desirable and undesirable outputs, such as pollution, causes 

difficulties in the measurement of the overall performance of DMUs. Kopp et al. (1982) pointed out 
that an efficiency ranking derived from a frontier production function model may be misleading if it 
ignores differences in environmental restrictions across the research sample.  
 

Pittman (1983) proposed that in holding the size of the overall capital stock constant, any increase 
in the capital devoted to the control of undesirable outputs will result in a corresponding reduction in 
the amount of desirable outputs. Therefore, any firm may potentially decrease both desirable and 
undesirable outputs synchronously without changing the inputs. He then extended Cave et al.’s (1982) 
trans-log multilateral superlative indexes to include undesirable outputs together with desirable 
outputs. In this model the desirable and undesirable outputs were treated asymmetrically. This new 
model was then used on a 1976 sample of 30 US mills which used pulp, together with capital, labour 
and energy, to produce paper and four undesirable pollutants. His results suggested that for industries 
in which undesirable outputs are important, the inclusion of undesirable outputs in the model results 
in some sizeable changes in the efficiency rankings of DMUs.  
 

Fare et al. (1989) implemented the nonparametric approach to examine the same data set used by 
Pittman (1983). In this paper, Fare et al. distinguished between the strong and weak disposability of 

outputs[1]. Denote inputs by x R+∈ , desirable outputs by dy R+∈ , and undesirable outputs by uy R+∈ . 

To illustrate output disposability, the output set can be defined as 

( ) {( , ) : ( , , ) }u d u dP x y y x y y T= ∈ . 

Because uy cannot be reduced without cost, therefore, in Figure 1, under the weak disposability 

assumption of undesirable outputs, moving ( , )u dy y  horizontally leftwards to the vertical axis on 

which  is not possible unles 00uy = s dy = , an )dd u( ,y y  can only be proportionally scaled 

down t u do ( , )y yθ θ (0 1)θ< ≤ . 
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Figure 1: Production Sets and Output Disposability 
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Fare et al. (1989) then constructed several efficiency measures according to the different ways of 

including desirable and undesirable outputs asymmetrically. Their weak disposal reference technology 
is as follows: 

( ) {( , ) : , , , }u d d d u u
FareP x y y y Y y Y x X Rλ λ λ λ += ≤ = ≥ ∈ . 

Fare et al.’s (1989) results are broadly similar to those of Pittman (1983). That is to say, the DMU’s 
performance rankings are very sensitive to whether or not undesirable outputs are included. Therefore, 
traditional models might produce a misleading indication due to their exclusion of undesirable 
outputs. 
 

Yaisawarng and Klein (1994) followed Fare et al.’s (1989) modelling strategy, but their paper was 
different from Fare et al. (1989) in two respects. Above all, they further distinguished desirable fixed 
inputs, e.g. capital. They claimed that this consideration avoided the labelling of a power plant as 
inefficient just because of excess capacity reserved for load variation. Secondly, they introduced into 
the model an undesirable input, namely sulphur content in the fuel. In so doing an input vector x  is 

redefined as ( , , )v f ux x x x= , in which vx  refers to the variable desirable inputs, fx denotes the 

fixed desirable inputs, while ux  represents the undesirable inputs. Yaisawarng and Klein’s reference 

technology can be written as:  

&( , , ) {( , ) : , ,1 ,

, , , }

v f u u d d d u u
Y K

v v f f u u

P x x x y y y Y y Y

x X x X x X R

λ γ λ γ

λ λ λ λ +

= ≤ = ≤

≥ ≥ ≤ ∈

< +∞
 

where γ  is a scaling factor. In terms of Yaisawarng and Klein (1994), the scaling factor γ is 
required on the constraint for undesirable outputs in order to ensure that weak disposability is satisfied 
in the case of VRS. This model was then used to examine the effect of SO2 control on productivity 
change in US coal-fired power plants. By imposing strong disposability on sulphur content and weak 
disposability on SO2, they acknowledged that a reduction of emissions must be accompanied by a 
reduction in desirable outputs, holding constant inputs.  
 

Fare et al. (1996) introduced an environmental performance indicator by decomposing overall 
productivity into an environmental index and a productive efficiency index. Their disposability 
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assumption and modelling methods were similar to those used in Fare et al. (1989). Models were used 
to examine two data sets of US fossil-fuel electric utilities. The results showed that when compared 
with that of the conventional model, the ranking of utilities obtained by the new model exhibits 
significant divergence.  
 

Tyteca (1997) proposed three DEA models that include undesirable outputs. Tyteca defined a 
reference technology, as in Fare et al. (1989), in which undesirable outputs are assumed to be weakly 
disposable. The first model was designed to only reduce undesirable outputs in the technology set. It 
is called a undesirable output-oriented model and is equivalent to 

( , , ) min{ : ( , , ) }o d u d u
UOH x y y x y y Tθ θ= ∈ . 

The above problem may be formulated as a group of linear programming functions to minimize the 
ratio of the weighted sum of undesirable outputs, to the weighted sum of desirable outputs less the 
weighted sum of inputs.  
 

The second model was designed to minimise inputs along with undesirable outputs. Its functional 
form is 

( , , ) min{ : ( , , ) }o d u d u
IUOH x y y x y y Tθ θ θ= ∈  

It is equivalent to a group of linear programming functions which minimise the ratio of the weighted 
sum of inputs and undesirable outputs over the desirable outputs. In the sense that both undesirable 
outputs and inputs should be decreased, this model in fact treated undesirable outputs as inputs.   
 

Finally, the third model used a simpler form which no longer considered inputs. This model aimed 
to minimize the ratio of the weighted sum of undesirable outputs to that of desirable outputs. Its 
simpler functional form is 

( , , ) min{ : ( , ) }o d u d u
NUOH x y y y y Tθ θ= ∈  

These three models were later implemented on the same data set as that used in Fare et al. (1996). 
Given the similar models used in both papers, the results in Tyteca (1997) are also quite comparable 
with those achieved in Fare et al. (1996). 
 

Korhonen and Luptacik (2004) borrowed the concept of eco-efficiency and used it to name the 
DEA efficiency indicator in the presence of undesirable outputs. They used two approaches to 
formulate their research models. In the first approach they divided the problem into two parts by 
measuring both technical efficiency, using a traditional DEA model, and so called ecological 
efficiency (as the weighted sum of desirable outputs to the weighted sum of undesirable outputs). 
Then both efficiency scores were taken as output variables for a new DEA model with an input equal 
to one.  
 

In the second approach Korhonen and Luptacik treated undesirable outputs as inputs. Again, in the 
sense that given a certain number of desirable outputs, both inputs and undesirable outputs should be 
decreased. In terms of the different ways of including undesirable outputs when modelling, they 
constructed several DEA variants - similar to those used in Tyteca (1996, 1997). The first model was 
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constructed to maximize the ratio of the weighted sum of desirable outputs less the weighted sum of 
undesirable outputs, to the weighted sum of inputs. The second model was structured to maximize the 
ratio of a weighted sum of desirable outputs, to the weighted sum of both inputs and undesirable 
outputs. The third model was built to maximize the ratio of the weighted sum of desirable outputs less 
the weighted sum of inputs, to the weighted sum of undesirable outputs. The above three models are 
input-oriented, while the fourth model is output-oriented and was also set up as the reciprocal of the 
second model. That is, the objective function was to minimize the ratio of the weighted sum of both 
inputs and undesirable outputs, to the weighted sum of desirable outputs. Although Korhonen and 
Luptacik (2004) did not explicitly state their disposability assumption, they in fact assumed that 
undesirable outputs are strongly disposable in their models. They implemented these models in order 
to examine the effects of an emissions reduction programme on 24 coal-fired power plants in a 
European country. In a different form from that used in other studies, the input variable used here was 
not physical unit of production factors, but the total cost of the emission reduction programme. 
Undesirable outputs included were dust, NOx, and SO2. Their results showed that all model variants 
lead to similar results, although the efficiency scores may differ. 
 

2.2 Discussion 
 

It can be seen from the above that when building efficiency measurement models, there has been no 
disagreement among authors on the selection of the strong disposability assumption for inputs and 
desirable outputs. Conflict occurs when considering the disposability assumption for undesirable 
outputs. Yet in spite of this conflict, overall they assumed a uniform disposability for all different 
undesirable outputs in a production system. Because none of these authors distinguish undesirable 
outputs in terms of their specific technical features, the nature of the uniform disposability assumption 
they made might therefore be arbitrary. 
 

In reality the government or regulators may intervene in response to the joint production of 
undesirable outputs. For example, in the case of coal-fired electricity generation, power plants might 
be required to install desulphurization equipment in order to reduce SO2 emissions. In terms of the 
specific characteristics of different pollutants and applicable abatement technologies, the disposal of 
undesirable outputs then becomes a two-sided problem. On one side, some of the undesirable outputs, 
such as CO2 emissions, cannot be reduced using existing technology. Therefore, CO2 emissions meet 
the definition of Fare and Grosskopf (2004) for ‘Null-Joint Outputs’ exactly[2]. Reducing CO2 
emissions will inevitably lead to a decrease in the amount of electricity generated. Equivalently, if 
electricity is generated, then some CO2 emissions must also be produced. So for undesirable outputs 
like CO2 emissions, weak disposability assumption is appropriate.  
 

On the other side, some undesirable outputs can be disposed of. Although the disposal of these 
undesirable outputs may not be without cost, it is likely to be done with an acceptable increase in the 
cost of production. For example, it might first of all be likely for a coal-fired power plant to reduce 
SO2 emissions by simply switching to low-sulphur coal. Alternatively, plants can employ wet flue gas 
desulphurization (FGD) systems which typically operate at more than 90% efficiency (Nolan, 1998; 
Kawatra and Eisele, 2001; Wang, 2002). Although the cleaning up of SO2 emissions involves some 
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input cost (or output reduction), a coal-fired power plant need not do this at the cost of reducing 90% 
of its electricity generation. In this situation, the Null-Joint relationship between emissions and 
desirable outputs is actually broken and the weak disposability assumption subsequently becomes 
inappropriate for undesirable outputs like SO2 emissions. Therefore, we argue that a uniform 
disposability assumption may be arbitrary here because it conceals the specific technical features of 
different undesirable outputs. 
 

These two sides to the disposal of undesirable outputs show that it is necessary for us to distinguish 
the technical features of various undesirable outputs before making any uniform and arbitrary 
disposability assumption. Figure 2 shows different frontiers under different disposability assumptions 
for undesirable outputs. IS and IW represent the frontiers under the strong and weak disposability 
assumptions respectively. The authors further hypothesize that, in reality, the co-incidence of strong 
and weak disposability among multiple undesirable outputs in a particular production process must 
lead to results somewhere in between those given by assuming all undesirable outputs have either 
strong or weak disposability. That is to say, in Figure 2 the real frontier (IR) of a production system 
must be somewhere in between the strong and weak disposability extremes, and the real technical 

efficiency should be present in the interval between OB
OA

and OC
OA

.  

 
 
Figure 2: Inputs – Undesirable Outputs Curves Under Different Disposability Assumptions 
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3. Methodology 
 

Assume we have N (homogeneous) DMUs each using M inputs to produce P desirable outputs and 

S undesirable outputs. Vectors  and  refer to the desirable and undesirable outputs of DMU j 

respectively. Let 

d
jy u

jy

Y R+∈  be the output matrix, consisting of non-negative elements. Then the output 

matrix  can be decomposed as Y
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d

u

Y
Y

Y
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

where a P × N matrix  stands for desirable outputs and an S× N matrix  stands for 

undesirable outputs. Also, we define 

dY uY

jx (an M-dimension vector) as the inputs consumed by DMU j, 

and M NX R ×
+∈  as the input matrix. We assume that, given a certain amount of desirable output, we 

would like to use as little input as possible and to produce as little undesirable output as possible. 

Using ( , , )d u
jF X Y Y  to represent the efficiency measurement for DMU j, then various DEA models 

can be set up as shown in the following subsections.  
 

3.1 Model 1 
 
In Model 1, following Fare et al. (1989), weak disposability is assumed for all undesirable outputs. 

The corresponding reference technology is then as follows: 

{( , , ) : , , , }w d u d d u uT x y y y Y y Y x X Rλ λ λ λ += ≤ = ≥ ∈ . 

The efficiency measure of a DMU can be computed by solving the following linear programming 
function: 
 

( , , ) min

. .

d u
j

d d
j

u u
j

j

y Y

y Y

x X

R

F X Y Y

s t

λ

θ λ

θ λ

λ

θ

+

≤

=

≥

∈

=

 

3.2 Model 2 
 
In Model 2, contrary to Model 1, strong disposability is assumed for all undesirable outputs. The 

strong disposal reference technology satisfying this assumption is therefore as follows: 
 

{( , , ) : , , , }s d u d d u uT x y y y Y y Y x X Rλ λ λ λ += ≤ ≥ ≥ ∈ . 

In line with Korhonen and Luptacik (2004), the corresponding efficiency measure is constructed to 
solve the following linear programming problem:  
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( , , ) min

. .

d u

d d
j

u u
j

j

j

y Y

y Y

x X

R

F X Y Y

s t

λ

θ λ

θ λ

λ

θ

+

≤

≥

≥

∈

=

 

3.3 Model 3 
In Model 3, as discussed in the previous section, different disposability assumptions are used for 

different undesirable outputs in order to reflect the status quo of the pollution abatement technologies 

which are used in real life. In so doing, undesirable outputs with weak disposability are denoted by , 

while undesirable outputs with strong disposability are denoted by

u
wy

u
sy . The corresponding reference 

technology satisfying this assumption is therefore as follows: 
 

& {( , , , ) : , , , , }s w d u u d d u u u u
w s w w s sT x y y y y Y y Y y Y x Xλ λ λ λ λ += ≤ = ≥ ≥ R∈ . 

Accordingly, the efficiency measure is as follows. 
 

,

,

( , , , ) min

. .

d u u
w s

d d
j

u u
w j w

u u
s j s

j

j

y Y

y Y

y Y

x X

R

F X Y Y Y

s t

λ

θ λ

θ λ

θ λ

λ

θ

+

≤

=

≥

≥

∈

=

 

 
Up to this point Model 1, Model 2, and Model 3 have been constructed to examine the effects of 

different disposability assumptions on the efficiency measurement. From now on another three 
models will be set up to check the effects of desirable fixed inputs. There are mainly two 
considerations to be acknowledged for this setup. Firstly, following Yaisawarng and Klein (1994), this 
setup avoids labeling a power plant as inefficient because of load variation, something which can be 
found in many power plants. Secondly, the managers of power plants have, in reality, little control 
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over generating capacity in the short run. Therefore, we can only seek radial reduction in the inputs 
which may be adjusted in the short term. This setup ensures a reduction in the quantity of labour and 
fuel needed, while holding a fixed capital quantity.  
 

To facilitate our comparison Model 4, Model 5, and Model 6 use the same disposability 
assumptions as Model 1, Model 2, and Model 3, respectively. That is to say, the difference between 
Model 1 and Model 4 is whether or not some desirable fixed inputs are considered. The same is so for 

the other two model pairs, e.g. Model 2 and Model 5, and Model 3 and Model 6. We define v
jx  as 

inputs whose values are varied in the report period, and f
jx  as inputs whose values are fixed in the 

report period. The input matrix can then be interpreted as: 
v

f

X
X

X
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

where vX R+∈ and fX R+∈  refer to variable and fixed inputs respectively. Model 4, Model 5, and 

Model 6 are then formulated correspondingly.  
 
 

3.4 Model 4 
 
As is the same in Model 1, weak disposability is assumed for all undesirable outputs. The 

corresponding reference technology is then structured as 
 

1
{( , , , ) : , , , , }

N
w v f d u d d u u v v f f

i
i

T x x y y y Y y Y x X x X Rλ λ λ λ λ λ +
=

= ≤ = ≥ ≥∑ ∈ . 

The efficiency measurement of Model 4 can be computed by solving the following linear 
programming function[3], 
 

1

 

( , , , ) min

. .

v f d u

d d
j

u u
j

v v
j

N
f f
j i

i

j

y Y

y Y

x X

x X

R

F X X Y Y

s t

λ

θ λ

θ λ

λ λ

λ

θ

=

+

≤

=

≥

≥

∈

=

∑
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where θ is a scalar equal to the efficiency score and λ is a 1N × constant vector describing the 
weights of other DMUs used to construct the virtual frontier DMU. 
 

3.5 Model 5 
As in Model 2, strong disposability is assumed for all undesirable outputs. The strong disposal 

reference technology satisfying this assumption is as follows: 

1
{( , , , ) : , , , , }

N
s v f d u d d u u v v f f

i
i

T x x y y y Y y Y x X x X Rλ λ λ λ λ λ +
=

= ≤ ≥ ≥ ≥∑ ∈ . 

The corresponding efficiency measure is then constructed to solve the following linear programming 
problem: 

1
 

( , , , ) min

. .

v f d u

d d
j

u u
j

v v
j

N
f f
j i

i

j

y Y

y Y

x X

x X

R

F X X Y Y

s t

λ

θ λ

θ λ

λ λ

λ

θ

=

+

≤

≥

≥

≥

∈

=

∑

 

where θ is a scalar equal to the efficiency score and λ is a 1N × constant vector describing the 
weights of other DMUs used to construct the virtual frontier DMU. 
 

3.6 Model 6 
 
Model 6 incorporates different disposability assumptions among undesirable outputs and considers 

the effects of desirable fixed inputs at the same time. The corresponding reference technology 
satisfying both requirements is therefore as follows: 

&

1
{( , , , , ) : , , , , , }

N
s w v f d u u d d u u u u v v f f

w s w w s s i
i

T x x y y y y Y y Y y Y x X x Xλ λ λ λ λ λ λ R+
=

= ≤ = ≥ ≥ ≥∑ ∈  

Accordingly, the efficiency measure is constructed to solve the following linear programming 
problem: 
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where θ is a scalar equal to the efficiency score and λ is a 1N × constant vector describing the 
weights of other DMUs used to construct the virtual frontier DMU. 
 

Based on the above six models, two different kinds of comparison can be made. Firstly, models 1, 2, 
and 3, and models 4, 5, and 6 form two respective comparison groups in terms of different 
disposability assumptions for undesirable outputs. Comparing the three sets of efficiency scores in a 
group demonstrates whether or not different disposability assumptions distort the values, and even the 
rankings, of the performance measurement. Secondly, models 1 and 4, models 2 and 5, and models 3 
and 6, form three comparison pairs. Comparing each pair demonstrates the extent to which ignoring 
the effects of desirable fixed inputs varies the final efficiency results. Table 1 shows an overview of 
these models. 

 
Table 1: Overview of models 

 
Group 1 Group 2 

Variables 
Traditional 

Model 
Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

5 

Model 

6 

Desirable output:        
Annual generation S S S S S S S 

Inputs:        

Installed capacity S S S S F F F 

Labour S S S S S S S 

Fuel S S S S S S S 

Undesirable output:        

SO2 emissions -- W S S W S S 

         NOx emissions -- W S S W S S 

CO2 emissions -- W S W W S W 

Note: Inputs and desirable outputs are assumed to be strongly disposable by default. The signs ‘W’ 
and ‘S’ denote weak and strong disposability respectively. The sign ‘F’ denotes desirable fixed input 
and the sign ‘—’ denotes exclusion of undesirable outputs in the traditional model.  
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4. Data and Variables 
The research data sample used covers 582 Chinese coal-fired power plants during 2002, which 

mostly consisted of large grid-dispatched coal-fired power plants. The total installed capacity of the 
sample power plants is 211.71GW. The total annual generation is 1117.59 TWh. Data, such as 
installed capacity, annual fuel consumption (coal and oil), number of employees, annual electricity 
generation, heat rates, and quality of fuel, were collected by one of the author’s through fieldwork in 
China during 2005 and 2006. Other data used, such as energy input and CO2, SO2, and NOx emissions, 
is calculated in terms of the IPCC Reference Approach, explained below.  
 

4.1 Traditional Variables 
Traditional variables used include electricity generated, capital, labour, and fuel. Electricity 

generated is considered a desirable output and is measured in the unit of MWh. Capital is measured 
by installed capacity (MW). Labour is measured by number of employees. Quality of labour can be 
very different in terms of education, training, experience, etc. However, because it is hard to measure, 
in this research, we simply assume that there is no noticeable difference among workers. Because this 
number varies during the report period, the yearly average at the end of 2002 is adopted. Fuel is 
measured by energy (or heat) input. This is because in almost all Chinese coal-fired power plants 
oil-fired (sometimes gas-fired) equipment is also installed for boiler-preheating and standby purposes. 
The capacity of oil-fired or gas-fired equipment can be very different in terms of types of boiler and 
designs of combustion facilities. Commonly, given a certain loading on a boiler, the more oil or gas it 
uses, the lower the amount of coal consumed. Therefore, in order to make the final efficiency 
evaluation accurate and a comparison between plants meaningful, all coal, oil, and gas consumption 
are converted to energy (or heat) input which is measured in terajoules (TJ). 
 

4.2 Undesirable Outputs 
Undesirable variable refers to emissions from the electricity generation process. Coal is a combustible 
mineral composed primarily of carbon and hydrocarbon, along with other assorted elements including 
nitrogen and sulphur. Emissions from coal combustion mainly comprise CO2, SO2, CH4, N2O, NOx, 
CO, and Non-methane volatile organic compounds (NMVOC). An accurate estimation of these emissions 
depends upon having knowledge of several interrelated factors, including combustion conditions, 
technology and emission control policies, as well as fuel characteristics. In general, the identification 
and quantification of emissions by fuel type is essential for the performance evaluation of power 
plants in this research. There are numerous different methods for estimating emissions. The methods 
used here are derived from the reference approaches of the IPCC Guidelines for National Greenhouse 
Gas Inventories. Emissions are estimated in terms of annual fuel consumption and average emission 
factors. On the basis of currently available data resources, the emissions considered are CO2, SO2, and 
NOx. Table 2 presents the statistics of the variables used. 

 
Table 2: Descriptive Statistics of Research Sample 
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Variable Unit Mean Maximum Minimum Std. Err. 
Desirable output:      

Annual Generation 1000 MWh 1920 12423 17 2114 

Inputs:      

Installed Capacity MW 364 2520 12 400 

Labour no. 817 4627 107 680 

Fuel TJ 20715 124968 219 21194 

Undesirable output:      

         SO2 Emissions tonne 16493 194595 350 21054 

         NOx Emissions tonne 6215 37490 66 6358 

         CO2 Emissions 1000 tonnes 1913 11541 20266 1957 

Note: sample size = 582 
 
 
 
 

5. Results  
 
The application of this research includes the implementation of all models explained in section 3. For 
comparison purposes a ‘traditional model’, which only considers traditional variables (annual 
generation, installed capacity, labour and fuel) has also been built (Table 1). The calculation of all 
DEA models in this section is carried out by Matlab programs written by one of the authors. Table 3 
shows the summary statistics of efficiency scores for the different models. 
 

Table 3: Summary Statistics of efficiency scores 
 

Group 1 Group 2 
Models 

Traditional 
model Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 

Mean 0.759 0.881 0.803 0.853 0.875 0.811 0.856 

Std. Err. 0.115 0.108 0.119 0.115 0.110 0.121 0.114 

Min. 0.391 0.548 0.404 0.527 0.425 0.381 0.405 

Max 1 1 1 1 1 1 1 

No. of efficient 
DMUs 

21 114 40 69 118 57 78 

 
 

5.1 Efficiency Scores 
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Table 3 shows that, above all, there is a substantial difference in efficiency scores between the 

traditional model and those including undesirable outputs. First of all, the traditional model tends to 
have a smaller efficiency score. The average efficiency score of the traditional model is 0.759 and the 
average efficiency scores of models 1 to 6 are located in the interval of 0.81-0.89. That is to say, in 
both situations a large inefficiency can be found in the sample power plants. Secondly, the traditional 
model tends to have less efficient DMUs. This agrees with the features of DEA – as variables included 
in DEA increase, the number of efficient DMUs will also increase. This result shows that the inclusion 
of undesirable outputs into DEA gives some advantages to those power plants which produce less 
emissions. 
 

Secondly, Table 3 shows that in each comparison group the mean values of the models with weak 
and strong disposability assumptions respectively (Model 1 and Model 2 in Group 1, and Model 4 and 
Model 5 in Group 2) form two extremes on the efficiency score interval. Models with strong 
disposability assumptions for undesirable outputs (Model 2 in Group 1 and Model 5 in Group 2) 
achieve the lowest values in their efficiency scores. The efficiency scores of the models differentiating 
disposability features among undesirable outputs (Model 3 in Group 1 and Model 6 in Group 2) lie in 
the middle of the interval. This agrees with the discussion made in the section 2.  
 

Thirdly, those models with a desirable fixed input arrangement (Group 2) tend to average lower 
efficiency scores than those without (Group 1). To some extent this supports Yaisawarng and Klein’s 
(1994) introduction of fixed capital input. This also shows that the fixed input arrangement has a 
negative effect on the efficiency scores of DEA models (e.g. Banker and Morey, 1986). The reason for 
this is that the efficiency scores between Group 1 and Group 2 have a different interpretation. Group 1 
scores indicate the extent to which all inputs can be proportionately reduced, whereas Group 2 scores 
indicate the extent to which only non-fixed inputs can be proportionately reduced. 
 

Fourthly, models with a desirable fixed input arrangement (Group 2) tend to have more efficient 
DMUs than those without (Group 1) in terms of different disposability assumptions. Models with a 
weak disposability assumption for undesirable outputs have the largest number of efficient DMUs in 
both groups, and models with a strong disposability assumption have the least number of efficient 
DMUs. 

 

5.2 Correlation Coefficients 
  Tables 4 and 5 exhibit the simple and the rank correlation coefficients of the efficiency scores 
respectively. Correlation coefficients and statistical tests were performed using the statistical package 
STATA.  

Table 4: Correlation of Efficiency Scores for Different Models 
 

Group 1 Group 2 
Models Traditional 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Traditional 1.0000       

Model 1 0.5523 1.0000      
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Model 2 0.9210 0.5707 1.0000     

Model 3 0.6870 0.7635 0.7505 1.0000    

Model 4 0.4997 0.7723 -- -- 1.0000   

Model 5 0.7830 -- 0.8701 -- 0.6680 1.0000  

Model 6 0.5734 -- -- 0.7640 0.7868 0.7600 1.0000 

 
Table 5: Spearman’s Rank Correlation of Efficiency Scores 

 
Group 1 Group 2 

Models Traditional 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Traditional 1.0000       

Model 1 0.4931 1.0000      

Model 2 0.9048 0.5247 1.0000     

Model 3 0.6386 0.7476 0.7217 1.0000    

Model 4 0.4646 0.7897 -- -- 1.0000   

Model 5 0.7918 -- 0.8804 -- 0.6349 1.0000  

Model 6 0.5562 -- -- 0.7725 0.7833 0.7442 1.0000 

 
A high correlation coefficient between the two sets of efficiency scores generally indicates a high 

consistency for both sets. From Table 4 and Table 5 it can be seen that, firstly, the efficiency scores of 
Model 3 in Group 1 and Model 6 in Group 2 have higher correlation coefficients with other models 
which incorporate undesirable outputs. This corresponds with the fact that Model 3 and Model 6 
incorporate both strong and weak disposability features for undesirable outputs.  

 
Secondly, for each comparison pair the correlation coefficient is very high in both simple and rank 

correlations. This is to be expected given that the only difference between the two models in each pair 
is the inclusion of the fixed capital input. From another aspect, the high correlation coefficient also 
suggests that the introduction of desirable fixed inputs does not have as much influence on final 
efficiency scores as the choice of disposability assumption.  

 

5.3 Rank-sum test 
 
One question which can be asked here is whether or not the difference among various models is 

significantly important. This research uses the rank-sum test and significance test. This is because, 
firstly, the classic T-test assumes normality of the distributions, while the rank-sum test is 
distribution-free (Lehmann, 1975; Cooper et al., 2000). Since the theoretical distribution of efficiency 
scores in DEA is usually unknown, the use of the T-test in this context is not recommended. Secondly, 
the rank-sum test is a nonparametric technique by nature and this is consistent with the characteristics 
of DEA.  

In line with the model specifications in the previous section, two kinds of rank-sum tests are 
performed in this research. The first kind tests the effects of different disposability arrangements in a 
group. As there are three efficiency score series in a group, the Kruskal-Wallis test is used to conduct 
the test (Lehmann, 1975; Brockett and Golany, 1996). The second kind of rank-sum test is used to test 
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the effect of setting up fixed capital input. The Wilcoxon-Mann-Whitney Test has been selected to test 
the hypothesis of no difference in any two series of the efficiency scores of models. Table 6 and Table 
7 show the test statistics of the Kruskal-Wallis test and Wilcoxon-Mann-Whitney Test respectively. 

 
  

Table 6: Kruskal-Wallis Test Statistic 
 

Group 1 Group 2 
Test statistic 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

2χ  134.69*** 92.708*** 

2χ with ties 135.284*** 93.200*** 

Note: *** denotes that the parameter is significantly important at 0.1%. 
 
 
 

Table 7: Wilcoxon-Mann-Whitney Test Statistic 
 

Group 1 Group 2 
Models 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Model 1 0.000      

Model 2 11.386*** 0.000     

Model 3 4.409*** -7.334*** 0.000    

Model 4 0.890 -- -- 0.000   

Model 5 -- -0.979 -- 9.323*** 0.000  

Model 6 -- -- -0.442 3.068** -6.589*** 0.000 

Note: ***, **, and * denote that the parameter is significantly important at 0.1%, 1%, and 5%, respectively.  
 

From Table 6 it can be seen that the hypothesis of no difference within both groups can be rejected 
at 0.1% significance level. This indicates that different disposability arrangements for undesirable 
outputs do affect final efficiency measurements.  
 

From Table 7 we can see that, firstly, in either Group 1 or 2 the hypothesis of no difference between 
any two models can be rejected at 0.1% significance level. This confirms the results of the 
Kruskal-Wallis test in Table 6. Secondly, test statistics suggest again that the introduction of desirable 
fixed inputs does not have as much influence on the final results of models. The test statistics for all 
three pairs (models 1 and 4, models 2 and 5, and models 3 and 6) cannot be rejected at any sensible 
level.  

To summarize, the empirical results suggest that the assumption of a strong or weak disposability 
for undesirable outputs does influence the final efficiency measurement, while the effect of treating 
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capital as a fixed input rather than a variable one is not very significant in the research sample of 
Chinese coal-fired power plants in operation during 2002.   

 
 

6. Conclusion 
 
Studies on how to incorporate undesirable outputs into performance measurements have been 

conducted for about two decades. However, no agreement has been reached regarding how to do this. 
Different authors have used different ways to formulate their efficiency measurement models (e.g. 
Fare et al., 1989, 1996; Yaisawarng and Klein, 1994; Tyteca, 1996, 1997; Korhonen and Luptacik, 
2004). When compared to traditional studies these efforts effectively broaden our understanding of the 
efficiency of various production systems in which desirable and undesirable outputs are jointly 
produced. However, because none of these papers distinguish undesirable outputs in terms of their 
specific technical features, the authors suggest that assuming a uniform disposability assumption for 
various undesirable outputs in a production system might be arbitrary. Taking coal-fired power plants 
as an example, the authors point out that in reality some undesirable outputs might be strongly 
disposable and some might be weakly disposable.  
 

In this paper, previous literature on the inclusion of undesirable outputs has been examined and 
summarized. The strengths of existing papers are combined in order to construct a set of new models. 
Based on the general guideline that given a certain amount of desirable output we would like to use as 
little input as possible and produce as little undesirable output as possible, six DEA models have been 
constructed to test two different effects: namely, the effects of different disposability arrangements for 
undesirable outputs and the effects of introducing fixed capital inputs into DEA models.  
 

The empirical results show that, firstly, the strong or weak disposability assumption does affect the 
final efficiency measurement, while the influence of fixed capital input is not significant in this 
research sample. Secondly, the mean values of the efficiency scores under weak disposability are 
greater than those under strong disposability. Together they form two extremes to envelop reality. It is 
therefore necessary for us to distinguish disposability features on the basis of technical reality among 
various undesirable outputs before a more objective evaluation can be achieved.  
 

This research not only contributes to the research methodology regarding how to incorporate 
undesirable outputs, but also entails various policy implications. This paper, first of all, attempts to 
find out the way to give a more objective efficiency evaluation for current coal-fired power plants in 
China by building and comparing seven different research models. Results show that whether 
considering undesirable outputs and whether distinguishing disposability features among undesirable 
outputs pose a significant difference in the final efficiency evaluation. Then, which model would be 
the best for adoption for assessing the environmental efficiency of Chinese coal-fired power plants?   
The authors support models distinguishing disposability features among undesirable outputs. Against 
the increasing environment concern, it makes sense for us to give some priority to those coal-fired 
power plants which are more effective in emissions control. The research models distinguishing 
disposability features can be used as a starting point for this purpose. 
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Also, compared to similar studies for other countries, this paper shows that the efficiency 

divergence in Chinese coal-fired power plants is much bigger. For example, after considering the 
effects of SO2 emissions, Yaisawarng and Klein (1994) reported that on average the inefficiency was 
found to be less than 8% in their research sample, which covered 61 US coal-fired power plants. 
When including DUST, NOx, and SO2 as undesirable outputs in the efficiency models, Korhonen and 
Luptacik (2004) obtained an average inefficiency of around 7% using a research sample with 24 
coal-fired power plants in a European country. However, in this paper the average inefficiency is 
found to be about 12% in models assuming weak disposability for undesirable outputs, about 20% in 
models assuming strong disposability for undesirable outputs, and about 15% in models 
distinguishing disposability features among undesirable outputs. This indicates that, relatively, 
Chinese coal-fired power plants waste more resources than their counterparts in US and Europe. The 
existence of the large inefficiency in current facilities suggests a great urgency for the Chinese 
electricity industry to improve its efficiency in coal-fired electricity generation sector. Statistics shows 
that in 2003 electricity demand increase in China was about 15% (SPIN, 2004). This implies that if 
Chinese coal-fired power plants can operate more efficiently, there is no need for China to install that 
much coal-fired generating capacity.  
 

Furthermore, this paper also tests the effect of fixed capital input. Results show that this effect is 
not very significant. However, given that almost all coal-fired power plants were relatively fully 
utilized in an environment of electricity shortage in 2002, the result of insignificant effect of fixed 
capital input should be used very cautiously and needs further examination in the future.  

 
 
 

 

Endnotes 
[1] Strong disposability of outputs implies that given an input vector x , if an output vector can be 
produced, then can also be produced as long as

y
*y *y y≤ . Strong disposability is also called free 

disposability. Weak disposability of outputs means that if can be produced, theny (0 1)yθ θ≤ ≤ can also 
be produced proportionally. 
 

[2] In terms of Fare and Grosskopf (2004), we can say that the desirable output vector dy is 

Null-Joint with the undesirable outputs uy if ( , )u dy y ∈output set , and then( )P x 0uy = 0dy = . 

That is, if ( , )u dy y is feasible and there are no undesirable outputs produced, then under null 

jointness no desirable outputs can be produced. 
 
[3] There are two factors worthy of emphasizing here. Above all, the constraint for the fixed capital 
input is set in terms of constraint (32) of Banker and Morey (1986), except for some notation 
differences. In Banker and Morey’s, the DMU under evaluation was represented by ‘0’, but in this 
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paper, it is represented by ‘j’; in Banker and Morey’s, the summation ofλ was over ‘j’, but in this 
paper, it is over ‘i’. Also, the constraint for the fixed capital input is set under CRS in this paper. If 

VRS is assumed, then , and then this constraint will collapse to the following format:  
1

1
N

i
i
λ

=

=∑

f f
jx X λ≥ . 

That is to say, if VRS is assumed, Model 4 will take the form of the efficiency measure from (19)-(24) 
in Banker and Morey (1986). 
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