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Benthic ecosystem cascade effects in Antarctica
using Bayesian network inference
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Antarctic sea-floor communities are unique, and more closely resemble those of the
Palaeozoic than equivalent contemporary habitats. However, comparatively little is known
about the processes that structure these communities or how they might respond to
anthropogenic change. In order to investigate likely consequences of a decline or removal of
key taxa on community dynamics we use Bayesian network inference to reconstruct ecolo-
gical networks and infer changes of taxon removal. Here we show that sponges have the
greatest influence on the dynamics of the Antarctic benthos. When we removed sponges
from the network, the abundances of all major taxa reduced by a mean of 42%, significantly
more than changes of substrate. To our knowledge, this study is the first to demonstrate the
cascade effects of removing key ecosystem structuring organisms from statistical analyses of
Antarctica data and demonstrates the importance of considering the community dynamics

when planning ecosystem management.
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communities differs from the rest of the world. There is a

paucity of shell crushing predators (sharks, rays, dur-
ophagous decapods), leading to dominance by epifaunal suspen-
sion feeding groups such as sponges!~. Disturbance to dominant
benthic taxa, such as the sponges, has the potential to alter the
ecosystem, but it is not known how. Generally, there are limited
data on the structure and function of Southern Hemisphere
benthic ecosystems compared with other areas globally. Despite
this limited data, Antarctic benthic marine communities are
abundant and diverse® with complex functional diversity and a
highly structured, three-dimensional, physical configuration!-”~?,

The South Orkney Islands (SOI) are located in the Southern
Ocean, 604 kilometres north-east of the tip of the Antarctic
Peninsula, at a latitude of around 60° 35" S. The seafloor around
the SOI has an exceptionally high biodiversity; one-fifth of the
animals found in the entire Southern Ocean are represented!®:11,
Benthic biodiversity in the SOT has been studied previously!0-12.
Brasier et al.!% showed that benthic communities in the SOI were
strongly correlated with the hardness of the seafloor. Soft sedi-
ments were dominated by deposit feeders, hard surfaces had a
greater abundance and richness of taxa, and an overall higher
biomass. They were also dominated by filter feeding Vulnerable
Marine Ecosystem (VME) taxal®, VME’s are marine areas that
are vulnerable to the effects of anthropogenic activities, such as
fishing!3.

The South Orkney Islands Southern Shelf (SOISS) was the first
designated Marine Protected Area (MPA) from the high seas on
the planet (Fig. 1), established in 20091014, MPA’s are clearly
defined geographically, and managed using legal and protective
measures for the long-term conservation of nature, associated
ecosystem services, and cultural values!>. The SOISS MPA is
managed under the Commission for the Conservation of Ant-
arctic Marine Living Resources (CCAMLR)!0. Our data come

The ecological structure of modern Antarctic benthic marine

from within the South Orkney MPA and the surrounding area, at
the shelf break. Using in situ photographs, ten dominant phyla
can be identified from the SOISS benthic invertebrate commu-
nity. The community is dominated by VME taxa (these are
habitat forming taxa which could not be confidently identified
from photographs), echinoderms and cnidarians, with frequent
bryozoan and poriferan taxal.

New approaches for assessing biodiversity across MPA’s are
increasingly important given their increased prevalence in inter-
national conservation strategies and the associated costs of
assessment and monitoring!¥. Our study determines the com-
munity structure on different spatial scales using Bayesian Net-
work Inference (BNI) analysis. BNI is a technique to statistically
infer the causal relationships (or dependencies) between different
variables, which in this study are different taxa and different
environmental factors such as substrate type and depth!®. In the
BNI presented here, the variables such as a taxon, or an envir-
onmental factor, are described as ‘nodes’, and the relationship
between them as ‘connections’ (more usually known as ‘edges’ in
network literature), so that the network consists of a series of
connected nodes. The strength of the relationship between two
nodes (ie., the strength of the connection) is given by the
Influence Score (IS), which is calculated as a cumulative fre-
quency distribution over all possible discrete states!”. Discrete
Bayesian Network Inference Algorithms (BNIAs) enable the
inference of causal relationships (over just mutual correlations),
as well as non-linear interactions. We use BNIAs to determine the
key taxa and environmental factors that underpin Antarctic
benthic community dynamics and use the Bayesian networks to
infer likely changes of taxon removal within this MPA.

The BNIA Banjo!® was used to generate two different Bayesian
networks over different spatial scales'8. The fine-scale analysis
used 527 individual photographs, which covered 0.51 m? for each
sample and the large-scale analyses grouped photographs within
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Fig. 1 Locality map. a Location map of South Orkney Islands sampling and b-e photographs of key taxa and habitats from the South Orkney Region. b Soft
sediments dominated by echinoderms and arthropoda; ¢ soft sediment with dropstones colonised by cnidaria, bryozoans, sponges, and encrusting taxa;
d hard substrate dominated by echinoderms and encrusting taxa; e large sponge-dominated habitat.
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Fig. 2 Fine-scale Bayesian network. Dependencies between nodes are
indicated by the lines connecting them, the width of which indicates the
occurrence rate in the bootstrap analyses (wider lines indicate higher
occurrence). Arrows indicate nonmutual dependence between two nodes
where the head of the arrow is dependent taxa, for example the arrow from
region to substrate indicates that substrate depends on region. Mutual
dependencies are indicated as double headed arrows. Mean interaction
strengths of the correlations are indicated; positive interaction strengths
indicating aggregation, negative interaction strengths indicating
segregation. Taxa that have no dependencies on another node are not
shown. Purple arrows depict dependencies on substrate. The dark blue
arrow is between two physical nodes (Region and Substrate). Red arrows
are those dependencies resulting from Region and light blue arrows are
those that affect percent encrusting.
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21 transects of 1.2 km long for each sample. The raw data were
filtered to avoid Type I errors through zero-inflation. The fine-
scale analysis included the physical nodes: Depth, Substrate and
Region (Fig. 1, Supplementary Table 1) and seven taxonomic
groups (Supplementary Table 2). The large-scale analysis inclu-
ded Depth, Substrate and Region (Supplementary Table 3) and 12
taxonomic groups (Supplementary Table 4). The data were dis-
cretized into zero, low, and high groups!®, using medians to
differentiate the boundary for the low and high abundances. For
percentage encrusting and depth, quartiles were used, and modes
for region and substrate (Supplementary Tables 5-6). Quartiles
are used for percent encrusting and depth rather than medians
because there is no zero state for these group, and so in line with
previous work (e.g., Milns et al. 2010), we have used quartiles
because just two states would limit the information that could be
extracted from this factor, and three is not commonly used. To
minimise outliers bias, 100 samples were bootstrapped at 95%
level by randomly selecting 95% of the total number of samples
for each analysis?’. The subsample networks were then found
using Banjo, and the final network taken to be the network where
the connections occurred in the majority of bootstrapped sub-
sampled with the strength of dependency given by the mean
interaction strength of the bootstrapped connections (see
‘Methods’ for more details). This bootstrapping analysis was
applied to both the fine-scale and large-scale data sets.

One of the most powerful aspects of using BNIA is the ability
to make inferences of how one node (taxa or physical variable) is
likely to change given another node being in a given state (zero,
low, or high for a taxon). We used our BN to infer how the most
changes in abundance of the most connected taxon would affect
the abundances of the other taxa.

Results

Fine-scale network. Within the fine-scale network analyses
(~0.51 m?), of the ten nodes included in the analyses, eight were
connected within the network, with unidentified VME taxa and
arthropods not connected. Substrate was the most connected
node (five connections) and depth the least (one connection)
(Fig. 2). There was one dependency between two taxa—Cnidar-
ians and Echinoderms. The other dependencies were between
physical nodes and taxa and two physical nodes.

Porifera
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Fig. 3 Bayesian networks of large-scale data. Dependencies between
nodes are indicated by the lines connecting them, the width of which
indicates the occurrence rate in the bootstrap analyses (wider lines indicate
higher occurrence). Single-headed arrows indicate nonmutual dependence
between two taxa; mutual dependencies are indicated by double headed
arrows. Mean interaction strengths of the correlations are indicated;
positive interaction strengths indicating aggregation, negative interaction
strengths indicating segregation. Taxa that have no dependencies with
another node are not shown. Light blue depicts dependencies between
different taxa and purple between physical nodes and taxa.

Large-scale network. The large-scale network (between sampling
events) had 14 nodes within the analyses, of which Depth,
Actinopteri (fish) and Annelids were not connected (Fig. 3). At
this spatial-scale there were insufficient samples in the different
Region groups to include Region in the analysis. Porifera was the
most connected taxon (five connections) and substrate the most
connected physical variable (three connections). The strongest
dependency was between bryozoans and percentage of encrusting
organisms (0.5639) and the only negative dependency was
between euryalids (basket stars) and arthropods (—0.1664). All
taxa had a direct or indirect connect with Porifera. There were
two mutual dependencies between VME unknown and Porifera
and between Bryozoa and VME unknown.

Inferred taxon abundance changes with Porifera removal. In
the large-scale network Porifera is the most connected node and
taxon (Fig. 3), and changes in their abundance will influence all
taxa apart from the unconnected Annelida. The inferred changes
in abundance state for all taxa connected to Porifera are given in
Fig. 4 and Supplementary Table 7. For example when Porifera
change from ‘High’ to “Zero’ abundance, the probability of
Echinoderms existing in a “Zero’ abundance state increases by
80%, while the probability of ‘High’ state decreases by 60% (Fig. 4,
Supplementary Table 7). This result suggests that if sponges
decrease in abundance, the echinoderms will as well. This pattern
of decreasing taxa abundance with decreasing Porifera is seen for
all connected taxa except arthropods. Arthropods appear robust
to changes, owing to negative dependency with Euryalida, which
has a positive dependency with Porifera. With this being the
smallest effect with a <20% change. Porifera have the greatest
impact on Bryozoa, with a 100% change to zero state when
Porifera are in zero state. Ophiuroidea see an increase in the
probability of a ‘Low’ abundance state with “Zero’ Porifera state,
but this is coupled to an increase in “Zero’ state probability,
reflecting an overall abundance decrease. The strength of the
effect of a decrease in Porifera on taxa decreases as the length of
the chain of dependencies, number of nodes connecting the taxon
to Porifera, decreases.
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Fig. 4 Schematic diagrams showing how the probabilities of each taxa
being in a given state (zero, low, high) change given Porifera states. The
thickness of the arrow connecting different states indicates the percentage
change between the two connected states. The thickness of the node
indicates the proportion of samples in that state.

The effect of the changing abundance state of Porifera had a
significant influence on the community, with a mean change in
probability state (from High to Zero) ApForifera—0.4210. In
contrast, the mean change in probabilities between different
substrates is smaller (Supplementary Tables 7-9): between Silt to
Rocky (ApSilt to Rocky — 0 2181), Silt to Gravel (ApSilt to Gravel —
0.3569) and Rocky to Gravel (ApRocky to Gravel — ( 1883).

Discussion

To our knowledge, this study is the first time the cascade effects of
removing key ecosystem structuring organisms has been found
with statistical analyses of data from a Marine Protected Area. By
considering the community as a network of interactions, we were
able to quantify the relative importance of different taxa. Porifera
was the most connected variable within the large spatial-scale
network and we were able to demonstrate the cascading effects
that changing their abundance had on other taxa. These effects
varied, depending on the proximity of each taxon to Porifera and
the nature of the dependency, suggesting that different taxa have
different resilience to the removal of sponges. However, the
effects were mostly negative: a decrease in Porifera led to a
decrease in echinoderms, molluscs, bryozoans and ophiuroids.
Cnidarians had an intermediate dependency, and showed a
smaller reduction. Notably, changing the abundance of Porifera
had a stronger influence on the abundance of other taxa than
changing the substrate type (Supplementary Tables 7-9), showing
that the contribution of Porifera to the network is likely over and
above them just being a colonisation substrate.

The only group that showed an increase in abundance with a
decrease in sponges were the arthropods. However, only certain
large and conspicuous arthropod taxa (decapods and large pyc-
nogonids—Brasier et al.!%) were detectable using the photo-
graphic analysis. The majority of images with high arthropod
numbers were in areas of open, muddy habitat, leaving the
individuals exposed and easier to count. Many smaller arthro-
pods, such as isopods and amphipods (generally not detected
using this scale of photography), are known to have strong
positive ecological associations with Antarctic sponges, where the
highest mean density of amphipods on a single sponge was 1295
individuals?!. The predicted increase in arthropod numbers
probably only applies to the observed large species that have a
preference for open habitats, e.g., Nematocarcinus lanceopes and
Notocrangon antarcticus.

Antarctic sponge-dominated communities are structured by
biological interactions, supporting diverse microbial and macro-
faunal communities?!-22. Predation upon sponges is important in
structuring Antarctic benthic communities?>>%. They act as set-
tling surfaces, contributing considerable structural heterogeneity
to numerous colonising epibionts including benthic diatoms and
bacteria?4-2%, Larger invertebrates such as polychaete worms,
bivalves, gastropods, amphipods and isopods live on, and in
sponges?430. Sponges also directly affect the physical character-
istics, structural and oceanographic, of the benthic habitat. Large
demosponges and hexactinellids change the small-scale topo-
graphy of the seafloor, providing new microhabitats and biogenic
hard substrates. They also have the ability to transform the local
oceanography by physically obstructing currents and, as active
filter feeders, pumping thousands of litres of seawater through
their systems and removing or concentrating nutrients3!.

Porifera can dominate some Antarctic seafloor communities.
While forming a significant component of the community in our
data, they are not the most numerous taxon, however, they do

4 COMMUNICATIONS BIOLOGY | (2020)3:582 | https://doi.org/10.1038/s42003-020-01310-8 | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01310-8

ARTICLE

dominate the biomass in most regions!?. This study highlights the
importance of sponges to the South Orkney ecosystem, as the
organisms that have the most connections within our network and
their significant influence on taxon abundance probabilities (Figs. 3,
4). Our result provided quantitative support for their importance as
community structuring organisms, as highlighted by Bell?°.

Potential threats to the South Orkney ecosystem, in particular
the sponges, include climate change, longline fishing and ocean
acidification. Ocean warming is thought to cause increased
thermal stress on sponge assemblages. This stress could cause
disease and mortality owing to a decrease in the efficacy of
defence mechanisms, and via the development of pathogens32.
There are currently no commercial bottom fisheries within the
South Orkney area, however, demersal fishing is occurring in
other areas with similar habitats and ecology. Longline fishing for
Patagonian toothfish occurs around South Georgia and other sub-
Antarctic islands!433. Research fishing for toothfish has also
recently expanded to include a wider area, reaching to the north
of the South Orkney Islands'4, putting the whole area at risk. At
present the SOISS MPA covers <50% of the shelf and slope of the
region meaning that the majority of the archipelago could be
vulnerable to future fishing.

Our Bayesian network inference shows that disruption to the
benthic community will cause cascade effects on many areas of
the ecosystem, potentially leading to a regime shift from a rich
and diverse epibenthic community supported by sponges, to an
infaunal dominated system. The removal of sponges could result
in a replacement by other habitat forming groups. However, our
network analyses found that large branching or erect cnidarians
did not mediate sponge loss and, given their physical structure,
would be under similar threat from benthic fishing as the spon-
ges%. Organisms with calcified skeletons, bryozoans and some
cnidarians, are at an even greater risk from ocean acidification
than sponges3®; making the simple replacement of sponges with
other similar groups unlikely, resulting in a marked change to
both the habitat and community structure with the loss of the
major three-dimensional structures.

As with all benthic image based analyses, many groups will be
underrepresented. This underrepresentation is particularly true for
the dominant infauna in soft sediment areas!? (e.g., polychaetes and
molluscs), and for organisms that are too small to capture in the
image. This network method for understanding ecological change
included a variety of data types, such as different physical variables,
as well as biotic abundances. In order to delve deeper into eco-
systems dynamics, the inclusion of more physical variables, such as
temperature or pH, would enable further inference of how these
communities are likely to change in the near future.

There are notable differences between the processes that regulate
the fine and large-scale networks in our results. The fine spatial-
scale networks were dominated by environmental variables,
whereas the larger scale networks were dominated by taxa inter-
actions. In the fine spatial-scale networks, substrate was the most
connected node, and therefore changes in the substrate would have
the greatest effect on the community. This reflects the findings of
other studies around Antarctical%3637, Hard surfaces are linked to
an abundance of Bryozoa, Porifera, Cnidaria and Echinodermata,
owing to the potential for colonisation by a diversity of benthic
organisms. There is only one taxonomic dependency at this fine
scale—between Cnidaria and Echinodermata. Environmental fac-
tors, such as currents and hard surfaces, particularly on a small and
medium scale, are conducive to the growth and diversity of sus-
pension feeding assemblages. For dense aggregations of suspension
feeders to occur, abundant suspended material, and water move-
ment are needed!; hard surfaces are also required for colonisation.
Areas where there are large accumulations of structural organisms,
such as sponges, tend to be in more hydrodynamically active

regions!, with surfaces suitable for colonisation. These requirements
may be reflected by the influence of Substrate in our large-scale
results. Antarctic benthic communities show a large amount of
patchiness in species composition at small or intermediate spatial
scales!”. Our fine-scale analyses likely reflect the local environ-
mental patchiness, at a between photograph scale, that result in
these changes. The differences between the fine and large-scale
networks demonstrate the importance of taking into account dif-
ferent spatial scales—without the large-scale network the between
taxon interactions would not have been revealed.

To our knowledge, this study provides the first statistical evi-
dence that changes to sponge-dominated communities will have
cascading effects on most other aspects of Antarctic benthic
community structure. This method provides a methodology to
identify these habitat structuring taxa, in order to prioritise them
for further protection, and for them to be considered in man-
agement plans for potentially harmful anthropogenic activities
such as longline fishing. The dominance of sponges in driving our
networks show that some VME taxa are more vital in maintaining
the overall health of an ecosystem than others. Given these
results, sponges should be considered as a priority, even above
other VME taxa, when designing new conservation measures in
Antarctica and the Southern Ocean.

Methods

The data for this study were collected in the austral summer of 2016, on board the
BAS research ship RRS James Clark Ross?8. Biological abundance data was taken
from photographic images from Brasier et al.!? (see methodology within). The
images were taken with a Shallow Underwater Camera System (SUCS), in transects
of 10 photographs, 10 m apart. Replicant transects were separated by 100 m, at
water depths of 500 m, 750 m and 1000 m!0. Each photograph in the analysis was
0.51 m? in area. In the analyses, ‘VME unknown’ was biological material uni-
dentifiable to phylum, but distinguishable as VME taxa, e.g., branched or budding
fragments which could be bryozoan or cnidarian species. The percentage cover of
encrusting species was recorded by Brasier et al.l?, as the number of individual
colonies was not always possible to distinguish between colonising taxal?. Physical
variables, such as substrate texture, were also observed from the SUCS images!C.

Taxonomic resolution of the data originally collected was dependent upon the
ability to distinguish the organism in the images!?. For our analysis, the taxonomic
hierarchy analysed related to the abundance level of that group, as lower abun-
dance, finer scale taxonomic groupings would be zero-inflated so not able to be
used within our methodology (cf. Milns et al.3°). Taxonomic groupings included
were Annelida, Arthropoda, Cnidaria, Echinodermata, Mollusca, Bryozoa, Acti-
nopteri, Porifera and Echinodermata. The echinoderm taxa Ophiuroides and
Euryalids also occurred in large enough numbers to be analysed as separate groups.
The taxa in each of these groupings can be seen in the Brasier et al.!0

The raw data (taxon ID from photographs) was highly zero-inflated (84.9% of
entries), so data grouping was performed to capture the fine-scale (individual
photographs at ~cm scale) and large-scale (replicate transects at ~km scale)
ecology of the ecosystems. For the fine-scale network there were 527 samples
(abundances from individual photographs) and twelve nodes. Four were physical
nodes (Depth, Region, Substrate and Substrate Texture, Table 1), two were func-
tions of the specimens present (percent encrusting), five were taxa classified to
Phylum level (Arthopoda, Bryozoa, Porifera, Cnidaria and Echinodermata) and
there was one bin-group (VME Unknown) Supplementary Table 2.

For the large-scale network, the data from all the photographs in each event (up
to three replicate transects) was combined to form 21 samples with 16 nodes. For
factor nodes (Region, Texture and Substrate) the modal variable was taken, taxa
nodes were summed, and the mean was used for Percent Encrusting and Depth.
Texture was excluded from analyses due to the high zero-count. Two nodes were
functions of the specimens present (percent encrusting), ten taxa were analysed
(Annelid, Arthropod, Cnidarian, Echinoderm, Mollusc, Bryozoan, Actinopteri,
Ophiuroidea, Euryalida, Porifera) and one bin-group (VME Unknown) was used.
The combination of the two networks enabled the investigation of both physical
and biotic interactions across multiple spatial scales.

We chose these relatively coarse taxonomic groupings in order to maximise the
statistical power of our analyses. This statistical power enabled us to reconstruct a
complex network of dependencies, thus revealing the subtle relationships between
different taxa. The coarse grouping is a limitation of this method, because the
homogenisation of some diverse groups, such as echinoderms, groups together
organisms with variable life modes and traits (and therefore differing relationships
with other taxa). However, the coarse level of identification was necessary with this
volume of data (over 500 photographs), and the patchiness and rarity of many taxa.
Future studies involving a higher density of photographs will allow for genus or
species level separation, and/or an analysis based upon functional traits classification.
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nodes*(nhumber of nodes-1).

Table 1 Table of network properties for the two networks found. Chains are defined as series of dependencies containing more
than two nodes. Link density is mean number of connections per node, connectance is the number of connections/number of

Network mean IS Nodes Positive Negative Mutual Connectance Link Maximum Number Mean
dependencies  dependencies density  chain length of chains  chain length

Fine-scale 03225 8 9 1 0 0.179 1.25 3 5 2.2

Large-Scale 0.2272 1 14 1 2 0.154 1.55 5 10 2.7

Analysis. One approach to understanding how ecosystems function is to consider
the ecosystem as a network (cf. Miln et al.3®). Different taxa or groups of taxa are
considered ‘nodes’ and their interactions are described as ‘connections’ (more
usually known as ‘edges’ in Baysian networks), which link interacting taxa together.
A node that the connections feed into are called ‘parents’. Work has centred on
gene regulatory networks!”, neural information flow networks, and with more
recent applications to ecological and palaeoecological networks!8:39-41, Tt is
important to note that the structure produced by the BNIA reflects the associations
caused by co-localisations (two taxa which both have a high abundance), not by a
specific interaction, for example predation. By using BNIA, direct dependencies
between taxa can be detected, minimising auto-correlation between two nodes. For
example, if A depends on B which depends on C, there could be a correlation
between A and C. However, this correlation would not represent an interaction or
association between A and C, merely the two correlations between A and B and B
and C. BNIA enables only the realised dependencies to be found, ensuring only
actual interactions and associations are found.

Bayesian network inference was performed in Banjo!¢, The BNIA software used
was Banjo v2.0.0, a publicly available Java based algorithm3®#1. Banjo uses uniform
priors, so boundaries for the different discretized groups were chosen to ensure
even splitting between the groups. Discretized data were input into Banjo, which
then generated a random network based on the input variables. A greedy search
was then performed to find a more likely network than the random one generated.
This search was repeated 10 million times for each set of input data and the most
probable network was then output. The maximum number of parents was set to 3
to limit artefacts!®.

The BNIA used require discrete data, which ensures data noise is masked, and
only the relative densities of each taxon are important®. We split the data into
three intervals; zero counts, low counts and high counts. Low counts consisted of
counts below the median for the taxa group and high counts were counts over the
median. Medians were used over means because for some groups the high counts
were very high, and would result in a very small number of samples grouped in the
highest interval (cf. Milns et al.3). A large amount of bins maintains the amount of
information present in the dataset, while fewer bins provide more statistical power,
and greater noise masking. Yu!'® has shown that for ecological data sets three
different bins is a good balance. Zero was treated as a separate entity because the
presence of one individual is very different to a zero presence, in contrast to zero
gene expression, for example. Data preparation for Banjo (grouping and
discretization) was carried out in R*2, as was the statistical analysis of the data.
Further analysis of banjo outputs, when required, used the functional language
Haskell*3. The scripts are available on Github (github.com/egmitchell/bootstrap).

To minimise outliers bias, 100 samples were bootstrapped at 95% level by
randomly selecting 95% of the total number of samples for each analysis?*3, and
then finding the subsample network using Banjo. For each connection calculated, the
probability of occurrence was calculated, and the resultant distributions analysed to
find the number of Gaussian sub-distributions using normal mixture models*%. This
probability distribution was bimodal for each data set, which suggests that there were
two distributions of connections, those with low probability of occurrence, and those
with highly probable connections. The final network for each area was taken to be
those connections which were highly probable. The threshold for being labelled
‘highly probable’ depended on the network (as determined by the normal mixture
modelling analyses): 53% for fine-scale network and 51% for the large-scale network.
The magnitude of the occurrence rate is indicated in the network by the width of the
line depicting the connection.

The direction of the connection between nodes indicates which node (taxon)
has a dependency on the other node (taxon). For each connection, the
directionality was taken to be the direction that occurred in the majority of
bootstrapped networks. Where there was no majority (directional connections have
a probability between 0.4 and 0.6), the connection was said to have bi-
directionality, or indicated a mutual dependency.

The IS can be used to gauge the type and strength of the interaction between
two nodes. If the IS = 1, this corresponds with a positive correlation. When node
1 is high, node 2 will be high. An IS of —1 corresponds to a negative correlation:
High node 1 corresponds to a low node 2. An IS =0 does not mean there is no
correlation between the two nodes. IS = 0 means that the interaction is non-
monotonic. Sometimes node 1 will be positively correlated with node 2,
sometimes negatively. The mean IS for each connection was calculated for each
sample area.

Contingency test filtering. In order to avoid Type I errors introduced by high
zero counts, which is common in ecological data sets, we excluded rare taxa, which
were found in under 33% of the grid cells. Note, that this method of exclusion
could potentially mean that a taxon with high abundance in a very limited area is
excluded from analyses. To further guard against Type I errors, we also used a
method of contingency test filtering that removed from consideration a connection
between two variables whose joint distribution showed no evidence of deviation
from the distribution expected from their combined marginal distributions (chi-
squared tests, p >0.25)3%. This threshold was used to ensure no chance of removing
truly dependent dependencies, so that only artefacts such as those found between
high zero counts were removed from consideration. These links were provided to
the BNIA to exclude from consideration.

Inference. Inferring how one node (taxa or physical variable) is likely to change

given another node being in a given state is done by calculating the probability of
node A being in a given state given node B is in a given state. All nodes that have
dependencies between A and B and so are included in the calculation:

n=N-1 =S
P(AlB) _ Z 1;[5:1 P(Bn IAn+1)
i 2mm1 P(BIA,)P(A,)

The N are the total number of nodes in the chain and n and m are the indices
for the chain of nodes of length N connecting the first and end nodes. S are the
number of discrete states for each node, which are indexed s. In order to infer the
likely change of one taxon’s (A) abundance on another’s abundance (B), the
probabilities of all taxa that occur in the network between A and B have to be taken
into account. For example, for the probability that B is in a Zero abundance state
given A is in a high abundance state, and given that B are connected through a
dependency of B on C and C on A, the probability is calculated as follows: the
probabilities of C existing in all states is calculated given a High abundance state for
A, and then the probabilities for B existing in a Zero state is calculated for each
state of C and then summed together to give the probability of B in Zero given A in
high. To work out the inferred change in B given a change in A from High to Zero
would involve taking the difference between the probabilities for each state of B
given A is high with each state of B given A is low. For the code used to generate
these inferred probabilities, please see ref. 4°.

m=1

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data generated within the study was modified from Braiser et al.!? and is available in the
public repository Figshare®®: https://doi.org/10.6084/m9.figshare.12214568.v1.

Code availability
Code is available on github.com/egmitchell/bootstrap and ref. 43: https://doi.org/10.5281/
2en0d0.3969969.
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