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The Use of Reduced-moderation Light Water Reactors for Transuranic Isotope Burning in 

Thorium Fuel 

B. A. Lindley 

 

Light water reactors (LWRs) are the world‟s dominant nuclear reactor system. Uranium (U)-fuelled 

LWRs produce long-lived transuranic (TRU) isotopes. TRUs can be recycled in LWRs or fast 

reactors. The thermal neutron spectrum in LWRs is less suitable for burning TRUs as this causes a 

build-up of TRU isotopes with low fission probability. This increases the fissile feed requirements, 

which tends to result in a positive void coefficient (VC) and hence the reactor is unsafe to operate. 

Use of reduced-moderation LWRs can improve TRU transmutation performance, but the VC is still 

severely limiting for these designs. Reduced-moderation pressurized water reactors (RMPWRs) and 

boiling water reactors (RBWRs) are considered in this study.  

Using thorium (Th) instead of U as the fertile fuel component can greatly improve the VC. 

However, Th-based transmutation is a much less developed technology than U-based transmutation. 

In this thesis, the feasibility and fuel cycle performance of full TRU recycle in Th-fuelled RMPWRs 

and RBWRs are evaluated. Neutronic performance is greatly improved by spatial separation of 

TRU and 
233-6

U, primarily implemented here using heterogeneous RMPWR and RBWR assembly 

designs. 

In a RMPWR, the water to fuel ratio must be reduced to around 50% of the normal value to allow 

full actinide recycle. If implemented by retrofitting an existing PWR, steady-state thermal-hydraulic 

constraints can still be satisfied. However, in a large break loss-of-coolant accident, the emergency 

core cooling system may not be able to provide water to the core quickly enough to prevent fuel 

cladding failure. A discharge burn-up of ~40 GWd/t is possible in RMPWRs. Reactivity control is a 

challenge due to the reduced worth of neutron absorbers in the hard neutron spectrum, and their 

detrimental effect on the VC, especially when diluted, as for soluble boron. Control rods are instead 

used to control the core. It appears possible to achieve adequate power peaking, shutdown margin 

and rod-ejection accident response. 

In RBWRs, it appears neutronically feasible to achieve very high burn-ups (~120 GWd/t) but the 

maximum achievable incineration rate is less than in RMPWRs. The reprocessing and fuel 

fabrication requirements of RBWRs are less than RMPWRs but more than fast reactors. A two-

stage TRU burning cycle, where the first stage is Th-Pu MOX in a conventional PWR feeding a 

second stage continuous burn in a RBWR, is technically reasonable. It is possible to limit the core 

area to that of an ABWR with acceptable thermal-hydraulic performance. In this case, it appears 

that RBWRs are of similar cost to inert matrix incineration in LWRs, and lower cost than RMPWRs 

and Th- and U-based fast reactor recycle schemes. 



       

 

Acknowledgements 

I am particularly grateful to my PhD supervisor Dr Geoff Parks for his constant support and 

encouragement, detailed feedback and enthusiasm for this project. I have also received much advice 

from Prof. William Nuttall, Tony Roulstone and Dr Eugene Shwageraus at Cambridge, and am also 

grateful for all the help and discussion from my colleagues, notably: Dr Ali Ahmad, Dr Stephen 

Ashley, Dr David Coates, Andrew Flintham and, in particular, Zara Zainuddin for her help with 

full-core modelling of PWRs. 

My particular thanks must also go to Dr Fausto Franceschini of Westinghouse Electric Company, 

LLC. He has been a great source of advice, direction and information across a range of topics. Dr 

Paolo Ferroni and Prof. Edward Lahoda of Westinghouse have also provided invaluable advice on 

thermal-hydraulics and fuel fabrication respectively.  

I am very grateful to Dr Julian Kelly and his colleagues at Thor Energy for supporting collaborative 

work with Westinghouse and many other helpful discussions and useful ideas. I would also like to 

thank Prof. Thomas J. Downar and his group at the University of Michigan (in particular, Andrew 

Hall) for hosting me as a visiting student and helping me model the RBWR. Without them, this 

would not have been possible. 

I am extremely grateful to Prof. Paul Smith and the rest of the ANSWERS team at AMEC for 

providing access to and extensive guidance on the use of WIMS, MONK and FISPIN. WIMS in 

particular has proved absolutely integral to performing the analyses in this thesis. I am also grateful 

to Dr Paul Bryce of EDF Energy for providing advice on using PANTHER and guidance on PWR 

core analysis.  I would also like to thank EDF Energy for providing access to PANTHER.  

I would like to thank: the EPSRC for funding this research; the Institution of Mechanical Engineers 

for awarding me with a postgraduate scholarship; and the Roy G Post foundation for their award of 

a scholarship related to the Waste Management Conference in Phoenix.  

I have had numerous helpful discussions and collaborations with many others over the past 3 years, 

in many cases indicated in the text. These include: Dr Matthew Eaton and his colleagues at Imperial 

College London; Robert Gregg and his colleagues at NNL; and Dr Carlo Fiorina, now of PSI. 

On a personal note, I would like to thank my awesome Mum & Dad for always being there for me. 

I‟d also like to thank my lovely wife Ting-Ray for putting up with my constant ramblings about 

void coefficients and always brightening my day, and our amazing baby daughter Amy who always 

provides a welcome distraction from working (eating, sleeping…). I am extremely grateful to my 

Mum & Dad in-law for their incredible support of our young family. Since I‟ve acknowledged just 

about every person I can think of, I should probably also acknowledge May (the dog).



    1 

 

Contents 

List of Abbreviations 3 

Chapter 1 – Introduction 6 

1.1. The Nuclear Fuel Cycle 6 

1.2. Plutonium and TRU Recycling Options 9 

1.3. Thorium 16 

1.4. Reprocessing  21 

1.5. Thesis Motivation and Objectives 22 

1.6. Thesis Organisation 24 

Chapter 2 – Assembly Analysis 25 

2.1. Rationale 25 

2.2. Fuel Cycle Schemes 27 

2.3. Lattice Calculations 29 

2.4. Results 44 

2.5. Concluding Remarks 57 

Chapter 3 – Void Reactivity Feedback Analysis 58 

3.1. Introduction 58 

3.2. Method 58 

3.3. Results 61 

3.4. Discussion 67 

3.5. Heterogeneous Recycle 71 

3.6. Concluding Remarks 78 

Chapter 4 – Thermal-hydraulic Study of RMPWRs 79 

4.1. Introduction 79 

4.2. Analysis 80 

4.3. Concluding Remarks 101 

Chapter 5 – RMPWR Full-core Analysis 102 

5.1. In-core Fuel Management 102 

5.2. Core Analysis 117 

5.3. Rod Ejection Accident Analysis 133 

5.4. Concluding Remarks 142 

Chapter 6 – RBWR Full-core Analysis 144 

6.1. Full-core Analysis of RBWR with Homogeneous Fuel 144 

6.2. Radially Heterogeneous Fuel in RBWRs 152 



    2 

 

6.3. Implementation of a Multi-tier Fuel Cycle in RBWRs 156 

6.4. Variable Pin Diameter Fuel 158 

6.5. Cold Shutdown Margin 161 

6.6. Preliminary Assessment of Axially Heterogeneous Fuel 162 

6.7. Concluding Remarks 169 

Chapter 7 – Fuel Cycle Performance 171 

7.1. Description of Fuel Cycle Cases 171 

7.2. Fuel Cycle Performance 179 

7.3. Comparison with Other Incineration Schemes 186 

7.4. Economics 189 

7.5. Repository Radiotoxicity and Decay Heat 191 

7.6. Decay Heat and Radiation Field Affecting Fuel Fabrication 194 

7.7. Concluding Remarks 198 

Chapter 8 – Conclusions 200 

8.1. Recommendations for Future Work 203 

References 206 

 

 

  



    3 

 

List of Abbreviations 

Elements are commonly abbreviated to their symbols (e.g. Th = thorium) 

ABWR Advanced boiling water reactor 

ADSR  Accelerator-driven subcritical reactor 

AFF  Axial form factor 

AGR  Advanced gas-cooled reactor 

AHWR Advanced heavy water reactor 

APA  Advanced plutonium assembly 

BP  Burnable poison 

BWR  Boiling water reactor 

CHF   Critical heat flux 

CR  Conversion ratio 

CRP  Control rod program 

CSDM  Cold shutdown margin 

DC  Doppler coefficient 

DDH  Dalle Donne-Hame  

DNB  Departure from nucleate boiling 

DNF  Delayed neutron fraction 

EOC  End of cycle 

EPR  European Pressurized Reactor 

Eta  Ratio of neutron productions to absorptions (see also 



 ) 

FdH  Normalized hot pin rise in enthalpy (see also   



FH ) 

FLWR  Flexible light water reactor 

FP  Fission product 

FR  Fast reactor 

FVR  Fully voided reactivity – reactivity when core is filled with saturated steam 

GFR  Gas-cooled fast reactor 

H/HM  Hydrogen to heavy metal [ratio] 

HC  High conversion 

HFP  Hot full power 

HWR  Heavy water reactor 

HZP  Hot zero power 

JAEA  Japanese Atomic Energy Agency 

LBLOCA Large-break loss-of-coolant accident 

LEU  Low enriched uranium 



    4 

 

LOCA  Loss-of-coolant accident 

LP  Loading pattern 

LWR  Light water reactor 

MA  Minor actinides (Pa, Np, Am, Cm, Cf – sometimes a relevant subset is specified) 

MCPR  Minimum critical power ratio 

MDC  Moderator density coefficient 

MDNBR  Minimum departure from nuclear boiling ratio 

MOX  Mixed oxide fuel 

MSR  Molten salt reactor 

MT  Multi-tier 

MTC  Moderator temperature coefficient 

NNL  The UK National Nuclear Laboratory 

OD  Outer diameter 

O&M  Operations & Maintenance 

PWR  Pressurised water reactor 

RBWR  Reduced-moderation boiling water reactor 

RCCA  Rod cluster control assembly 

RCP  Reactor coolant pump 

REA  Rod ejection accident 

RFF  Radial form factor 

RIA  Reactivity initiated accident 

RM  Reduced-moderation 

RMPWR Reduced-moderation pressurised water reactor 

RMWR Reduced-moderation water reactor 

SCWR  Supercritical water reactor 

SDM  Shutdown margin 

SFR  Sodium-cooled fast reactor 

SN  Spontaneous neutron 

SOC  Start of cycle 

ST  Single-tier 

TCUP  Heterogeneous assembly design with Th-TRU at Centre and Th-U3 at Periphery 

TD  Theoretical density; e.g. 85% TD means „fuel with a density of 85% of theoretical‟ 

tiHM  Tonnes initial heavy metal 

TPUC  Heterogeneous assembly design with Th-TRU at Periphery and Th-U3 at Centre 

TRU  Transuranic 



    5 

 

UNF  Used nuclear fuel 

U3  U bred from Th, i.e. 
233-236

U 

VC  Void coefficient 

VF  Void fraction 

VHTR  Very high temperature reactor 

WABA  Wet annular burnable absorber 

WATU LWR loading scheme with Whole Assembly heterogeneity of Th-TRU and Th-U3 

ZCR  Zero coolant reactivity – reactivity when coolant density is set to zero 

List of Symbols 

Where not defined, symbols adhere to standard mathematical notation. Symbols used exclusively in 

derivations are defined in the text and are not reproduced here. 

A  Absorptions  

D  Pin diameter 

  



FH   Normalized hot pin rise in enthalpy (see also FdH) 

H  Wire-wrap pitch 

k  Neutron multiplication factor 

    



keff   Effective neutron multiplication factor (including leakage)  

k   Infinite neutron multiplication factor 

P  Productions  

    



Tin  Core inlet temperature 

outT   Core outlet temperature 

  



eff   Effective delayed neutron fraction 



   Ratio of neutron productions to absorptions (see also eta) 

  Reactivity (except Chapter 4: where it is coolant density) 

d  Coolant density (Chapter 3) 



    6 

 

Chapter 1 – Introduction 

Extensive research has been performed on transuranic (TRU) transmutation and full actinide recycle 

across a range of candidate fuel cycles and reactor platforms. In this thesis, conventional light water 

reactors (LWRs) are preferred as they are cheaper, lower risk and the technology already exists. 

TRU recycle in LWRs is limited by the moderator temperature coefficient (MTC) and/or void 

coefficient (VC), although feasibility is improved by using reduced-moderation LWRs. The thorium 

(Th) fuel cycle is chosen as it has superior MTC/VC performance. This introduces additional fuel 

fabrication and reprocessing challenges, but full recycle of TRU is, in any case, expensive and 

requires the development of new technology. While some studies of closed Th-TRU cycles in 

LWRs have been performed, these are mostly limited to single assembly analyses and/or do not 

consider full TRU recycle. This thesis presents a more comprehensive analysis of the design, 

operation and fuel cycle of Th-TRU-fuelled LWRs operating with full actinide recycle. 

1.1. The Nuclear Fuel Cycle 

The overwhelming majority of operating nuclear power plants use uranium (U) fuel. In most 

reactors, this is enriched to increase the proportion of fissile 
235

U in the fuel to produce low enriched 

uranium (LEU). Thermal reactors are used, which employ a moderator to slow down the neutrons 

from „fast‟ to „thermal‟ energies, at which the fission cross-section of 
235

U is larger. Most reactors 

use water as a moderator – these are LWRs and comprise Pressurized Water Reactors (PWRs) and 

Boiling Water Reactors (BWRs). Graphite and heavy water are also used as moderators, notably in 

Advanced Gas-cooled Reactors (AGRs) and CANDU reactors respectively. 

At the end of the fuel cycle, the spent fuel may be disposed directly, or it can be reprocessed to 

separate depleted U, TRU waste and fission products (FPs). FPs are highly radioactive, but only 

take around 1000 years to decay to safe levels. TRU waste takes around 100 000 years to decay to 

safe levels, and therefore requires a geological storage repository. Depleted U is much less 

radioactive. The TRU waste is mostly plutonium (Pu) and also contains americium (Am), curium 

(Cm), neptunium (Np) and a tiny quantity of californium (Cf), which are collectively referred to as 

minor actinides (MAs). The Pu is by far the most significant contributor to radiotoxicity in the 

actinide waste (e.g. see (Salvatores, 2005)).  

The Pu can be reused in mixed oxide fuel (MOX), but only part of the waste is incinerated. Even if 

this is done, only a small proportion of the available energy in the U is converted into power. The 

importance of using fuel efficiently is debatable as U is currently relatively cheap, and while the 

sustainability of U resources is contested, reserves are judged to be sufficient in the medium term 

(Bunn et al., 2003; Kazimi et al., 2010; WNA, 2011). 
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Approaching 100% of the energy can be extracted from U by retaining all actinides within the fuel 

cycle in a „breeder‟ reactor. All actinides have a finite fission probability, and will fission or absorb 

a neutron or decay into a daughter isotope. Therefore by continued presence in the reactor, virtually 

all actinide nuclei will ultimately fission and provide energy. The relative probability of fission to 

capture of most isotopes is greater at higher neutron energies and therefore fast reactors (FRs) are 

usually favoured for this strategy (e.g. see (Rubbia et al., 1995)). FRs are therefore seen as being the 

best long-term option due to their vastly improved fuel utilization (OECD, 2003; ANS, 2005). This 

fuel cycle can be described as „self-sustaining‟ as it can be fuelled using natural or depleted U, or 

Th (Fig. 1.1).  

A breeder reactor operating a closed fuel cycle produces very little actinide waste. Some breeder 

concepts recycle Pu and not MAs, and therefore still produce some actinide waste despite greatly 

improving the nuclear fuel efficiency. For example, France currently recycles Pu in MOX (IAEA, 

2005a) and envisages full recycle in FRs (Behar, 2013), with the potential for MA recycle 

dependent on feasibility and economics (Rouault et al., 2009). 

Alternatively, it is possible to pursue a strategy of full actinide recycle, without full utilization of U. 

This strategy is motivated by a cheap source of U, and an environmental, political and/or economic 

incentive to limit high level nuclear waste storage time and repository size (OECD, 2002). The 

TRU from a conventional fleet of LEU-fuelled LWRs is burned in a fleet of incinerators. It is 

typically desired to limit the number of incinerator reactors required, as they are assumed to be 

more expensive than the LWRs (OECD, 2002). It is also desirable to limit the amount of fuel 

reprocessing required. FRs are typically also preferred for this strategy, again because the TRU is 

more fissile at fast neutron energies.  

While greatly increasing the size and required life-time of a high level waste/used nuclear fuel 

disposal facility, a once-through nuclear fuel cycle is cheaper than full actinide recycle strategies, 

due to the high cost of reprocessing (OECD, 1994) and the need to fabricate recycled fuel, which is 

highly radioactive, remotely (Franceschini et al., 2012), which increases the fuel fabrication cost 

(Sease et al., 1966). This has led many countries to pursue direct disposal of nuclear fuel assemblies 

in preference to recycle strategies. In particular, this strategy is often favoured in countries with 

large areas of disused land – e.g. Finland and Sweden (Rempe, 2007). 

In the UK, nuclear fuel was reprocessed as the precursor to a FR programme, which was ultimately 

not implemented. This has led to the production of a large stockpile of separated Pu (DECC, 2011). 

Disposal of this stockpile is complicated by proliferation concerns, as the Pu is fissile and is 

therefore a potential weapons risk (DECC, 2011). The currently favoured strategy is to implement 

one or more passes of the Pu through an LWR as MOX fuel, such that the fissile quality of the Pu is 
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reduced and it is mixed with U and fission products, which form proliferation barriers (King, 2011). 

Similarly, Pu from decommissioned nuclear warheads can be disposed of using MOX fuel (NNSA, 

2011). 

Some different fuel cycle concepts are summarized in Fig. 1.1. 

 

Fig. 1.1 Fuel cycle concepts: (a) Once-through LWR; (b) LWR then single Pu pass in LWR; (c) 

LWR then Pu recycle in FR; (d) LWR then full recycle in FR; (e) Full recycle in self-sustaining FR; 

(f) Pu recycle in self-sustaining FR 

U 
Pu 
MA 
LWR 
FR 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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The motivation for this thesis is the TRU waste incineration problem, with the aim of reducing 

high level waste volume and storage time. An increase in U utilization efficiency is not considered 

as an objective. The approach to managing the separated Pu stockpile in the UK is of particular 

interest. 

1.2. Plutonium and TRU Recycling Options 

1.2.1. Overview 

Recycling of Pu and TRU has been extensively researched in a range of reactor systems. These 

include FRs (typically liquid-metal cooled), molten salt reactors (MSRs), LWRs, heavy-water-

cooled reactors, accelerator-driven subcritical reactors and graphite-moderated reactors. The 

characteristics and objectives of different schemes vary between full and partial recycle (e.g. a 

single pass through the reactor), and between maximising TRU destruction rates to achieving a self-

sustaining fuel cycle. TRU recycle schemes typically envisage decades to centuries of operation and 

require extensive research and development, so a significant long-term commitment is required to 

implement a meaningful strategy. 

1.2.2. FRs and MSRs 

OECD (2002) contained a detailed comparison of thermal and fast transmutation strategies using 

the same analysis framework. Low reprocessing losses were identified as crucial to reducing 

radiotoxicity and it was acknowledged that significant R&D work is required.  

Full TRU recycle is generally considered to require an FR. Sodium-cooled FRs (SFRs) are most 

commonly considered. Other liquid metal coolants, notably Pb, Pb-Bi and Na-K have been 

considered or proposed. Gas-cooled fast reactors (GFRs) are also being studied (e.g. Hejzlar et al., 

2009). Fast-spectrum designs of the MSR (i.e. without a graphite moderator) are also gaining 

increased interest because of their favourable closed fuel cycle performance. MSR designs have 

been proposed with no fertile isotope, leading to rapid TRU destruction (e.g. Ignatiev et al., 2007). 

This is possible because heating of the fuel salt leads to voiding of the fuel and therefore increased 

leakage, so a fertile isotope is not necessary to ensure negative reactivity feedback. 

From a reactor physics perspective, it is feasible to recycle all actinides in a fast-spectrum reactor. 

This has been confirmed in multiple studies (e.g. Kim et al., 2009). Most actinides have higher 



  

(ratio of neutron productions to absorptions) in the fast spectrum, which directly improves neutron 

economy and reduces build-up of MAs. 

In LWRs, it is necessary for the MTC and/or VC to be negative at nominal power to ensure safe 

operation (Westinghouse Electric Company LLC, 2009). In sodium-cooled FRs, the VC can be 

positive due to the other reactivity effects ensuring overall passive feedback (Hill, 2007), although 
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this is not desirable. With a complicated core design, it is possible to keep the VC negative 

(Devictor et al., 2012). In GFRs, it is desirable to keep the VC negative, which can be accomplished 

by reducing the coolant volume fraction and adding BeO (a moderator) to the fuel (Pope et al., 

2009). 

There are practical challenges in the implementation of all of the FR concepts which could delay 

their deployment even in the case of sizable investment. For example, the chemical reactivity of Na 

with air and water is a significant safety challenge for SFRs (Denman et al., 2012), while Pb, Pb-Bi 

(e.g. Zhang, 2009) and molten salt (Abram and Ion, 2008) coolants present corrosion problems. 

GFRs experience high temperatures and have lower thermal inertia than graphite-moderated gas-

cooled reactors, making it difficult to cool the core in the event of a loss-of-coolant accident 

(LOCA) (Pope et al., 2009; Abram and Ion, 2008). Conversely, it is also claimed that FR concepts 

can result in various safety advantages over LWRs (Wade et al., 1997). 

The SFR is the most advanced FR concept with prototype and demonstration reactors currently or 

previously operated in many countries (IAEA, 2006). GE Hitachi advocate a SFR (PRISM) to 

perform a single Pu recycle in the UK to address the proliferation concerns associated with the 

separated Pu stockpile, but this also provides the capability for complete actinide recycle (GE, 

2011).  

1.2.3. Accelerator-driven Systems 

Accelerator-driven subcritical reactors (ADSRs), where the reaction is sustained by an external 

neutron source, are sometimes claimed to improve FR safety and neutron economy (Nifenecker et 

al., 2001). ADSRs have been proposed as part of Pu + MA (Rubbia et al., 1995) and dedicated MA 

(OECD, 2002) recycle schemes. In the latter case, subcritical operation may allow the use of fuels 

with poor neutron economy and otherwise unacceptable kinetic behaviour and fuel and coolant 

reactivity feedback coefficients. The principal disadvantage of an ADSR is the high cost of building 

and operating an accelerator (Cardin et al., 2011), especially given the necessity of high accelerator 

reliability to limit clad fatigue (Ahmad et al., 2012). The technology also requires significant further 

research and is unsuitable for implementation in the medium term. ADSRs have also been proposed 

as a means of improving the neutron economy in thermal reactor systems which may be otherwise 

unsuitable for TRU incineration (Coates and Parks, 2011). 

1.2.4. LWRs  

A comprehensive report on Pu recycling options was performed by (OECD, 2003). Multiple recycle 

of LWR MOX was considered to lead to impractically high Pu enrichments after multiple recycles 

and the build-up of MAs with high radiotoxicity was also highlighted as a problem. This report was 



    11 

 

generally favourable to the long-term deployment of FRs: the report covers the period “up to the 

point at which a fully sustainable fuel cycle is eventually established, which the WPPR [Working 

Party on the Physics of Innovative Power Reactors] takes as a FR fuel cycle with multiple recycle.” 

It was considered preferable to manage the Pu in a way that does not foreclose future options – i.e. 

if direct disposal is pursued, then it is desirable to able to recover the Pu later, or if thermal recycle 

strategies are pursued, then the Pu isotope vector should not be degraded to the point where it 

cannot be used in FRs. Within this framework, it is possible to pursue strategies of Pu preservation 

or Pu destruction, similar to the overall fuel strategy strategies of breeding and incineration. A 

recent analysis by Worrall (2013) indicates that Pu from future LWR used nuclear fuel (UNF) is 

sufficient to start a FR program in the USA, such that existing UNF can be disposed of. The timing 

of the FR program influences when Pu must be stockpiled in advance of fuelling future FRs. 

Many LWRs in Europe are currently part-loaded with U-MOX fuel, leading to significant operating 

experience in using this fuel (OECD, 2003). Fully MOX-fuelled cores require further research due 

to reductions in soluble boron worth, and delayed neutron fraction (DNF) compared to LEU fuel.  

Partly loaded cores typically use some MOX assemblies and some LEU assemblies. The Pu fraction 

in the MOX assembly is lower in the peripheral pins, due to variation in the thermal flux across the 

assembly. Pu is a strong thermal absorber, resulting in a much lower thermal flux in the Pu 

assemblies than the LEU assemblies. This means that the pins at the edge of the MOX assemblies 

experience a higher thermal flux than those at the centre, due to thermal neutron diffusion from the 

LEU assemblies. The thermal neutron diffusion length is of the order of one pin pitch. Variable 

enrichments in different pins increase the fabrication cost.  

An alternative to different fuels in different assemblies is to utilize heterogeneous „CORAIL‟ 

assemblies with different fuels in different pins (Kim, 2002; Ganda et al., 2007). The design 

contains some LEU pins and some MOX pins. More MOX pins neighbour LEU pins, such that the 

thermal flux is generally higher in the MOX pins – although variable Pu fractions in the MOX pins 

are still desirable. Multiple recycle of the Pu or TRU in the assembly at equilibrium (i.e. when cycle 

n+1 has the same Pu composition as cycle n) is possible with zero-net production of Pu/TRU at 

equilibrium. Seven years were allowed for reprocessing and fabrication between recycles. 45 GWd/t 

average discharge burn-up was possible with 4.8% enriched LEU. For Am and Cm recycling with a 

given burn-up, the required LEU enrichment is higher than if only LEU fuel were used. This can 

increase costs by ~$5.6M per 18 month reload (OECD, 2013). An additional cost penalty to the 

utility of at least ~$4M per reload (and potentially substantially higher) is anticipated due to 

additional licensing costs, transport and storage of highly reactive fuels, reprocessing costs and 
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potentially higher costs for discharge, storage, transport and spent fuel management of TRU fuels 

(OECD, 2013).  

The reactivity optimal moderation for Pu is somewhat higher than for LEU. Increasing the 

moderation in Pu-bearing pins increases the degradation of the Pu isotope vector. Annular pins can 

be used to increase the local moderation around Pu pins in a CORAIL-style assembly. This design 

was considered by (Puill and Bergeron, 1997) in the „Advanced Plutonium Assembly‟ (APA).  

Kloostermann (1998) modelled the multiple recycling of U-Pu MOX in PWRs with unmodified and 

increased moderation over 4 recycle stages. Increasing moderation reduced the required Pu 

enrichment. The increase in moderation also reduced the tendency of the MTC to go positive after 

multiple recycles. However, MAs are not recycled at each stage. In all cases, the Pu enrichment 

significantly increased with each recycle stage. Indeed, increased moderation increases the rate at 

which the fissile Pu fraction is reduced, which has previously been noted to reduce the practicality 

of multiple recycle (OECD, 2003). 

It is also possible to use U-MOX in CANDUs. An additional option is to directly utilize spent PWR 

fuel in CANDUs, such that the bred Pu and remaining 
235

U can be burned without reprocessing 

(OECD, 2003). 

Multi-tier strategies with thermal cycles followed by fast recycle are often considered. There is a 

strong economic incentive to minimise the number of transmuting reactors per LWR as LWRs are 

considered to be cheaper (OECD, 2002).  

If MAs are recycled multiple times in thermal reactors, 
252

Cf is ultimately produced. This is a strong 

spontaneous neutron (SN) source which takes several years to decay. Remote fuel fabrication or 

long cooling times are necessary (Shwageraus, 2003). In FRs, this source is essentially zero due to 

the much higher fission probability of TRU isotopes, and the long chain of captures required to 

produce 
252

Cf. 
244

Cm also contributes to the neutron source. OECD (2002) reported neutron sources 

at fabrication of around 10
10

 and 10
11

 n/s/tiHM for a fast breeder reactor and a fast TRU incinerator 

respectively. 

1.2.5. Reduced-moderation Water Reactors 

In LWRs, water is necessary to cool the reactor, and is also deliberately introduced to moderate the 

reactor at an optimal level for use of LEU in the open cycle. For TRU recycle, it is desirable to have 

a low moderation reactor. It is possible to design LWRs which contain less water while still 

providing adequate cooling. The reduced moderation results in a much harder neutron spectrum in 

the reactor, allowing the LWR to behave somewhat like a fast reactor. The reactor can function as a 

breeder and/or pursue a strategy of full actinide recycle, due to the increased fission to capture 
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probability of most TRU isotopes in the hard spectrum, which allows a superior neutron economy 

to be achieved. 

Extensive studies have been conducted by the Japan Atomic Energy Agency (JAEA) to develop a 

flexible light water reactor (FLWR) concept. This is a reduced-moderation BWR. They propose 

reactors designed to recycle Pu, and potentially MAs, and to breed fissile Pu from 
238

U (Uchikawa 

et al., 2007). Designs are designated the high conversion (HC) FLWR and the reduced-moderation 

water reactor (RMWR). In these designs, the gap between fuel pins was reduced and the void 

fraction (VF) was increased (Fukaya et al., 2008), resulting in a faster neutron spectrum. PWR 

configurations have also been considered. Hitachi are also developing reduced-moderation BWR 

designs (RBWRs) to achieve a high conversion ratio (CR) and/or burn TRU waste (Takeda et al., 

2007; IAEA, 2004). The assemblies are typically hexagonal with triangular pin pitch. The JAEA 

and Hitachi designs contain 2 seed regions, with an internal axial blanket between them, and usually 

external axial blankets above and below the seed. The core height is much lower than conventional 

LWRs, which results in reduced pressure drop despite the tight lattice pitch (Ishikawa and Okubo, 

2009) and increases neutron leakage. The fast spectrum can also lead to higher power excursions 

during overcooling transients. The reduced core height (~1.25m) limits the coolant volume and 

speeds up the transient response, which along with the low magnitude VC decreases the reactivity 

excursion due to overcooling (Hu, 2010). 

Around zero net 
237

Np and 
241

Am production was found to be possible in the HC-FLWR when MAs 

were loaded into the core (Fukaya et al., 2009a). Doping the internal blanket of the RMWR with 

237
Np or 

241
Am can also greatly increase the achievable cycle length (Hamase et al., 2013). 

However, Pu and MA loading tends to increase the VC, and Fukaya et al. (2009b) found that 

reducing the core height was necessary to increase neutron leakage to mitigate this. Even so, the 

need to keep the VC negative is extremely limiting, and it is difficult to evaluate the VC accurately 

due to the feedback between void and power distributions in the core and the importance of neutron 

leakage. The complicated seed-blanket structure of the RMWR/ RBWR core improves the VC but 

adds to the difficulty of modelling the core accurately. Downar et al. (2012) calculated a 

significantly positive VC for the RBWR, whereas the JAEA and Hitachi generally calculate it to be 

slightly negative. In addition, the high TRU content and low moderation tends to make the core 

reactivity increase as the VF approaches 100% (Fukaya et al., 2009b). 

Thermal-hydraulic analysis indicates that the RBWR has generally satisfactory transient 

performance provided that the VC is negative. However, the relatively low minimum critical power 

ratio (MCPR) compared to an ABWR can lead to dry-out following a pump trip  (Shirvan et al., 

2014).  
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The VC can be made more negative by including „axial streaming channels‟ – voids in the centre of 

the fuel assemblies, to increase neutron leakage (e.g. Feng and Ganda, 2013). 

As of 2004, a commercial plant was targeted by the 2020s (IAEA, 2004).  

To further reduce moderation, heavy water variants of the RMWR have been considered (Hibi et 

al., 2001). In BWRs, this has the severe disadvantage of the potential for tritium leakage in the 

stream generators of the primary circuit. A hard spectrum, heavy water-cooled PWR breeder was 

considered by (Hiruta and Youinou, 2013). 

In this thesis, the reduced-moderation BWR is referred to as an „RBWR‟, while a reduced-

moderation PWR is referred to as an „RMPWR‟. Reduced-moderation BWRs have variously been 

abbreviated to RMWR and RBWR in previous studies. RMBWR is also a logical choice. Here, 

RBWR is selected for consistency with other recent published research, and to differentiate from a 

PWR. 

1.2.6. Super-critical Water Reactors (SCWRs) 

Heavy and light super-critical water have been proposed as an advanced reactor coolant. This 

increases the plant thermal efficiency, but also results in corrosion problems (Abram and Ion, 

2008). Similar to the RBWR, a hard spectrum can be achieved in an SCWR using a tight pitch 

lattice (Cao et al., 2008). Thermal designs can utilize solid moderator or water rods and operate an 

open LEU cycle (e.g. Bae et al., 2007). Hybrid designs have been proposed which combine both 

concepts in different regions of the same core (e.g. Kim et al., 2004). U-MOX-fuelled SCWRs may 

require intricate blanket designs to achieve a negative VC (Mukohara et al., 1999). 

1.2.7. Heterogeneous Recycle  

Currently, Pu and MAs are extracted separately, which allows thermal recycle of Pu and subsequent 

incineration of MAs in a dedicated FR. This approach is flexible but leads to proliferation concerns 

from holding separated Pu. Fuel containing MAs needs to be fabricated using remote handling, 

which is expensive. It is possible to fabricate U-MOX fuel using glove-boxed lines (e.g. Uematsu et 

al., 2002), which is an incentive for either direct disposal of MAs (i.e. recycle of Pu only) or 

recycling MAs in dedicated „target‟ pins or assemblies. In this manner, the remote fuel fabrication 

requirements can be minimised. In FRs, heterogeneous recycle of MAs has been considered using 

U-MOX fuel in the seed assemblies and (Am,U)O2 fuel in the blanket assemblies or MA targets in a 

fertile-free matrix (Bonnerot et al., 2010; Varaine et al., 2010). This requires further research on 

fabrication of MA-bearing pins,
1
 including irradiation experiments, to demonstrate that remote 

                                                 
1
 Irradiation testing may be required in any case for pins containing a small amount of MA, but the extensive data 

available for MOX fuels is more likely to be applicable (OECD, 2013).  
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fabrication of a fuel that can meet licensing criteria (e.g. fission product retention) (IAEA, 2009). 

Development of MA-bearing fuel fabrication technology is estimated to require 10-15 years (OECD 

2013). While heterogeneous fuel design can lead to increased scope for optimising fuel loading 

schemes, it also complicates the nuclear and thermal-hydraulic design (OECD, 2013). 

(Hyland et al., 2011) considered using MA pins in a CANDU fuel element. The MA pins also 

contained the lanthanides from the waste as these may be difficult to separate from the MAs (see 

Section 1.4).  

With large quantities of MAs in a fuel cycle, and/or dedicated MA targets, uncertainty in the MA 

cross-section data (OECD, 1999a) may become an issue, with more accurate nuclear data being 

required. 

1.2.8. Fertile-free Fuels 

It is usually considered necessary to mix the TRU with a fertile isotope. This reduces the 

incineration rate (as more TRU is bred from the fertile isotope), but improves the fuel and coolant 

reactivity feedback coefficients and kinetic parameters. Mixing the TRU with 
238

U is the most 

studied case, but mixing with 
232

Th is also often considered. As well as resulting in unacceptable 

reactivity feedback coefficients, use of pure TRU typically would result in a large reactivity swing 

over the cycle. Making the reactor very small severely limits the reactor power. The TRU can also 

be mixed with a „fertile-free‟ material, such as ceramic or metal matrix (Porta and Pulil, 1998). For 

an LWR, Baldi and Porta (2001) found that it was necessary to use fertile-free fuels in conjunction 

with UO2 fuel.  

This strategy is pursued in the CEA-designed APA and APA-DUPLEX assemblies, which contain 

(Pu,Ce)O2 and LEU pins. The absence of 
238

U in the Pu pins helps increase the net Pu destruction 

rate (OECD, 2003). 

Shwageraus (2003) considered combining fertile-free fuels with conventional enriched U pins in a 

single heterogeneous LWR assembly. This was found to allow zero net TRU production with 

multiple recycling of the TRU. Increasing the U enrichment was necessary to compensate for the 

decreased fissile content of the TRU after multiple reprocessing stages. A build-up of 
252

Cf, which 

can decay by spontaneous fission, was found to present problems when reprocessing and fabricating 

the fuel. Long cooling times were recommended to circumvent this problem. Zhang (2003) 

considered using ThO2 fuel in conjunction with fertile-free fuel.  

In this thesis, LWRs are selected as the platform for full TRU recycle as they are a well 

understood, commercially mature technology with reduced cost and time to deployment 

compared to FRs. 
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1.3 Thorium 

1.3.1. Overview 

Th occurs naturally as 
232

Th, a fertile isotope. When 
232

Th absorbs a neutron, fissile 
233

U is 

produced through two beta decays via 
233

Pa – which has a 27 day half-life. Higher isotopes of U are 

produced through subsequent captures. In this thesis, U bred from Th is designated U3 to 

distinguish it from LEU and U-Pu-based fuel cycles.  

Th is more abundant than U. Thus far, it has never been used as a nuclear fuel on a commercial 

scale. The relative merits of using Th with regard to proliferation resistance and waste toxicity are 

the subject of much debate and a summary of potential advantages and disadvantages can be found 

in (IAEA, 2005b).  

Proliferation resistance, in particular, is a contentious issue. The Th fuel cycle is often cited as 

having superior proliferation resistance due to the presence of 
232

U (which has strong gamma 

emitters, notably 
212

Bi and 
208

Tl, in its decay chain) in the bred 
233

U, which makes the 
233

U difficult 

to handle or conceal (IAEA, 2005b). However, closed fuel cycles involving the separation of fissile 

materials are unlikely to be more proliferation resistant than open cycles (Kang and von Hippel, 

2001) and there are concerns about separation of the intermediate isotope, 
233

Pa, to allow production 

of pure 
233

U (Kang and von Hippel, 2001; Ashley et al., 2012). The UK National Nuclear 

Laboratory (NNL)‟s view is that “thorium systems are no more proliferation resistant than U-Pu 

systems, though may offer limited benefits in some circumstances” (NNL, 2010). (IAEA, 2012) 

reached similar conclusions. 

Th has been advocated, in particular, as a fuel for MSRs (e.g. by the Weinberg Foundation in the 

UK) and ADSRs (e.g. (Rubbia et al., 1995)). 

One of the main issues with reprocessing Th fuel is the high energy gamma source. This 

necessitates remote fuel fabrication, which is expensive. The 
232

U gamma source of a Th-fuelled FR 

is 40 times greater than the SN source (Wenner et al., 2012) and therefore is the most significant 

factor for remote fuel fabrication. In U-fuelled systems it can be argued that it is not worthwhile to 

reprocess MAs, i.e. Pu recycle only should be performed. In Th-fuelled systems, this argument is 

less relevant because the MA source is less significant by comparison. 

1.3.2. Fuel Cycle 

In fast breeder reactors, the U-Pu cycle can generally achieve a higher breeding ratio due to the high 

value of 



  for Pu in the fast spectrum (Fiorina et al., 2013a) and the relatively high fast fission 

cross-section of 
238

U relative to 
232

Th. Th is therefore not generally preferred for fast breeders. In 

incinerators, the intrinsically lower conversion ratio of Th-based FR cycles can lead to slightly 



    17 

 

higher incineration rates than with U-based cycles. 
232

Th intrinsically generates very little TRU in 

an open or closed fuel cycle as it is a lighter isotope than 
238

U. This is often claimed to greatly 

improve the TRU burning potential of Th-based fuel cycles. While this is true for a single pass 

(Ghrayeb et al., 2009), U3 is bred instead of TRU. U3 is itself a potential proliferation risk, and, if 

disposed of directly, would require long-term storage, similar to TRU. In the closed cycle, where 

U3 is retained in the fuel cycle, the TRU incineration rate is comparable to the U-Pu cycle, as U3 

behaves similarly to the TRU bred in-situ in the U-Pu cycle. The principal fuel cycle advantages of 

the closed Th cycle in FRs are therefore lower waste radiotoxicity and lower actinide decay heat in 

incineration cycles (Franceschini et al., 2011) and breeder cycles (Fiorina et al., 2013a). 

In thermal reactors, the large TRU destruction rate in a single pass is often used to advocate use of 

Th-Pu MOX fuel for reactor-grade and weapons-grade Pu destruction in PWRs (e.g. Galperin, 

1995; Weaver and Herring, 2003; Shwageraus et al., 2004; Tsige-Tamirat, 2011), BWRs (e.g. Bjork 

et al., 2011) and also in SCWRs (Weaver and MacDonald, 2002). These studies are predominantly 

at the assembly level, but include analyses of partly Th-Pu-fuelled cores (Mittag and Kliem, 2011) 

and fully Th-Pu-fuelled cores (Fridman and Kliem, 2011; Downar et al., 2008). Similar constraints 

apply to Th-Pu-fuelled cores as U-MOX cores. In PWRs the main problems for the full Th-Pu 

MOX cores are reduced shutdown margin (SDM) caused by lower control rod worth, reduced 

soluble boron worth and reduced DNF (Fridman and Kliem, 2011). The reduced SDM can be 

addressed by using different control materials (Dziadosz et al., 2004), while the reduced control rod 

worth mitigates the reduced DNF in a rod ejection accident (REA) (Dziadosz et al., 2004). The 

SDM and response to a REA cannot be improved simultaneously by changing the control rod 

worth. There may therefore be deterioration in reactivity initiated accident (RIA) performance 

which should be investigated (Fridman and Kliem, 2011). Despite this, (Long et al., 2004) found 

that maximum fuel and cladding temperature increases for Th-Pu oxide fuel were similar to those 

for UO2 fuel in transient events, although use of weapons-grade Pu reduced the required Pu content 

in the fuel relative to reactor-grade Pu.  

Ratises and Todosow (2010) and Sorensen et al. (2006) performed assembly-level studies of Th-

TRU multi-recycle in PWRs, analysing cases containing reprocessed U3 in the fresh fuel, but 

without full recycle of TRU.  

Th has favourable material properties compared to U which make it well suited for MOX fuel, 

including higher thermal conductivity, higher melting point and higher chemical stability 

(summarized in (Kelly and Franceschini, 2013)). However, much superior operational experience is 

available for U-MOX fuel, which means further materials tests are needed before Th-Pu MOX 

could be deployed (Kelly and Franceschini, 2013). The materials behaviour of ThO2-based fuels 
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was considered by (Long et al., 2004) and Th-U and Th-Pu fuels were generally found to have the 

same or improved safety performance over UO2 fuels. Experimental programs on Th-based fuels 

are also described in (Thor Energy, 2010; Schram and Klaassen, 2007; IAEA, 2012). 

IAEA (2012) performed a detailed study of closed Th-based fuel cycles with thermal reactors. Full 

recycle of U3 and Pu was simulated using a mixture of LWRs and heavy water reactors (HWRs), 

with full reprocessing allowing the volume of discharged waste to be substantially reduced. MAs 

remained with the FPs and were not recycled. Full Pu recycle was also considered for U-based fuel 

cycles. Th-based cycles can reduce the MA discharge relative to U-based cycles, depending on how 

the Pu is recycled (i.e. which reactors it is located in). 

Pu-Th-fuelled HWRs were projected to become economically competitive by around 2030, with 

closed Th cycles in HWRs and LWRs becoming competitive around 2070-2080, due to exhaustion 

of U resources under $130/kg. With deployment of FRs, use of the Th and U3 was not 

economically competitive, i.e. a pure U-Pu cycle was favoured.  

Gas-cooled, graphite-moderated Very High Temperature Reactors (VHTRs) may have the 

capability to achieve very high burn-up due to their use of TRISO fuel with carbide cladding 

(Brossard et al., 2009). This makes it a candidate reactor for achieving high Pu burn-ups, and, as a 

result, Th fuels have been proposed to achieve this in a once-through cycle (e.g. Chang et al., 2006). 

1.3.3. Neutronic Considerations in Thermal Reactors 

Th is often proposed as a fuel for thermal and epithermal reactor systems due to its superior 

breeding characteristics in the thermal spectrum (e.g. (Yun et al., 2010)) and notably the high 



  of 

233
U over a wide range of energies, including resonance energies (IAEA, 2005b). Breeding of 

233
U 

from 
232

Th, and subsequent burning of 
233

U, was successfully performed at the Shippingport Light 

Water Breeder Reactor (Hecker, 1979).  

The neutronic properties of Th fuel allow it to maintain relatively flat reactivity with burn-up once 

sufficient 
233

U has been bred, in a relatively thermal neutron spectrum. This makes it well suited to 

high burn-up open-cycle schemes, where it is useful in limiting the reactivity swing over the cycle 

and increasing the proliferation resistance of the spent fuel. However, a high burn-up has to be 

achieved before use of Th becomes worthwhile, as a „seed‟ fuel is necessary to start and sustain the 

reactor. In open-cycle schemes, this is typically LEU. LEU seed and Th blanket fuels can be loaded 

separately and refuelled on different batch schemes. Significant reductions in U consumption 

cannot be realised due to the need for much higher (up to 20%) U enrichment to sustain reactivity, 

and high burn-up is necessary for the cycle to be worthwhile, which results in materials challenges. 

There are also thermal-hydraulic challenges resulting from spatial separation of U and Th. 
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Homogeneous mixing of U and Th was found to decrease burn-up relative to enriched U, but some 

denaturing of Th with U was necessary to improve proliferation resistance, and in some cases to 

produce sufficient power in the blanket at start-of-cycle (SOC) to reduce power peaking (NERI, 

2002; Todosow and Kazimi, 2004; Todosow et al., 2005). IAEA (2012) found that open-cycle use 

of Th can lead to an increase in U consumption, and the higher LEU enrichment required negates 

proliferation resistance advantages, such that the only advantage is the reduced Pu and MA 

production. 

Heavy-water-moderated reactors (notably CANDUs) can achieve economic advantages from Th in 

the open cycle at much lower burn-ups (Zhongsheng and Boczar, 1999; IAEA, 2012). The burn-ups 

are still significantly lower than in LWRs as the uranium is only slightly enriched, such that the 

proliferation resistance is worse. 

For closed-cycle applications, CANDUs can operate at a higher CR than LWRs (Nuttin et al., 

2012). CANDUs may have the potential to achieve a self-sufficient Th cycle, or breed fissile fuel to 

start a FR programme (Zhongsheng and Boczar, 1999). Closed Th cycles in CANDUs and 

advanced-CANDUs (ACRs) require some external Pu feed (IAEA, 2012). A Th-fuelled heavy-

water-moderated SCWR has been proposed by Canada (NSERC, 2011). 

The option of breeding U3 in FRs and burning it in thermal reactors has been studied (IAEA, 2012). 

Here, Pu is bred in LEU-fuelled LWRs and burned in a FR to breed U3. 

The Indian nuclear power programme envisages a 3-stage strategy, with: (1) Pu breeding in U-

fuelled CANDUs; (2) mixing this Pu with Th to breed U3 in FRs; (3) use of Th-U3 in the light-

water-cooled, heavy-water-moderated Advanced Heavy Water Reactors (AHWRs) (WNA, 2013). 

The objective is to utilize India‟s significant Th resources in a closed nuclear fuel cycle, and take 

advantage of the high thermal 



  of U3 (Sinha and Kakodkar, 2006). The AHWR is not quite self-

sustaining in U3, but does have a negative VC (unlike a U-fuelled CANDU) (IAEA, 2012). 

Nuttin et al. (2012) performed a detailed study of the trade-off between CR and burn-up of Th-

based fuels in PWRs of different moderations and CANDU reactors. Using D2O in PWR 

geometries as a reduced moderation coolant was considered. This contrasts with the very 

thermalized neutron spectrum of a CANDU. D2O provides two advantages in this case: reduced 

neutron absorption in the coolant and reduced moderation without reduced cooling. A Th PWR, 

D2O-cooled breeder concept was also considered by (Takaki and Mardiansah, 2012). 

Graphite-moderated MSRs are often considered as they reduce the core fissile inventory (Forsberg, 

2007). For self-sustaining MSRs, Th is frequently considered as a MSR fuel (Forsberg, 2007; Nagy, 

2012; Krepel et al., 2013). The Th fuel cycle can improve the CR of MSRs (IAEA, 2012) as the 
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spectrum is often softer than FRs due to the moderation of the salt, and graphite, if it is present. It is 

often proposed to allow the 
233

Pa in the salt to decay into 
233

U outside of the reactor to improve the 

neutron economy (e.g. Nagy, 2012), although this can cause proliferation concerns due to extraction 

of an almost pure stream of 
233

U (Kang and von Hippel, 2001). Removing the graphite moderator 

can improve breeding performance (e.g. (Krepel et al., 2013)). 

1.3.4. Moderator Temperature Feedback 

The main obstacle to TRU multi-recycle burning schemes in thermal reactors is that the degradation 

of the fissile proportion of the recycled fuel leads to increasing Pu feed requirements to sustain 

criticality and, accordingly, to a growth of the TRU inventory in the recycled fuel, ultimately 

resulting in a positive MTC and/or VC for typical LWR designs. The harder spectrum of reduced-

moderation (RM) water reactors, i.e. RMPWRs and RBWRs, can improve TRU transmutation 

performance by mitigating their increase in the recycled fuel, but, as discussed, the VC is still 

severely limiting for these designs (IAEA, 2004).  

Using Th instead of U as the fertile fuel component can greatly improve the VC. This is due to the 

relatively high probability of fission for neutrons of resonance energies and relatively low fast 

fission probability of the U3 and increased resonance capture in Th with increased voiding and high 

fast fission threshold (Xu et al., 2002). In RBWRs using Th can improve the VC and therefore 

allow the core height to be increased (therefore reducing the neutron leakage). A single recycle 

stage of weapons-grade Pu was considered by (Downar and Xu, 2001). Higher Pu loading is 

required for Th-Pu fuel than U-Pu fuel to achieve the same burn-up (Kim and Downar, 2002).  

The improved VC is also one of the motivations for considering Th in fast reactors (Fiorina et al., 

2013a). 

Ganda et al. (2011) demonstrated that multi-recycle of Th in RBWRs can allow a self-sustaining 

cycle to be achieved, with a very negative VC. Indeed the VC is too negative, and adding some Pu 

may be necessary to make it less negative (Ganda et al., 2012), in particular to allow a sufficient 

SDM. The core height was around 2m in this study, compared to ~1.25m for U-Pu RBWRs. In 

conjunction with the more negative VC than the U-Pu RBWR, this could lead to a less stable 

response to overcooling transients. 

Similarly, self-sustaining Th fuel cycles appear possible in fast SCWRs (Csom et al., 2012). 

Rahman et al. (2012) investigated Th-TRU incineration in conventional and RMPWRs, finding that 

the VC could be improved with RM operation (including use of nitride fuel, which increases the 

heavy metal density) and that spatial separation of U3 and TRU was neutronically advantageous. 



    21 

 

Zakova and Wallenius (2013) investigated TRU multi-recycling in Th- and U-fuelled BWRs using 

single assembly and full-core models. They found that multi-recycling of TRU was possible, with 5 

year cooling between recycles. Th gave superior VC performance due to a reduction in Pu inventory 

after multiple recycles relative to U. However, maintaining criticality was found to be difficult 

without enrichment of Th with an external supply of U3. Np was not recycled due to its detrimental 

effect on the neutron economy, which resulted in higher fissile enrichment in the feed fuel and 

therefore a more positive VC.  

In this thesis, Th is considered as a fertile isotope for full TRU recycle. The argument for using 

Th in multi-recycle LWRs is essentially an MTC/VC based feasibility argument.  

1.4. Reprocessing  

Several countries currently reprocess nuclear fuel using the PUREX process, separating it into U, 

Pu and everything else, i.e. FPs + MAs. This is performed by aqueous reprocessing, i.e. a solvent 

extraction method. Spent fuel is typically cooled for several years before it is reprocessed. This 

reduces the radioactivity and therefore the degradation of the organic solvent. A 5-year cooling time 

was selected for the British reprocessing plant THORP and the French reprocessing plants UP3 and 

UP2-800; the Japanese Rokkasho-Mura reprocessing plant was based on French technology.
2
 

Reprocessing times of under 1 year (highly desirable for some envisaged breeder programs to speed 

up Pu production for additional FRs) have been accomplished on a tonne scale for ~100 GWd/t 

burn-up fuels
3
 (270 days at Dounreay – (Pugh, 1978)) using mixer-settlers to speed up solvent 

mixing and therefore limit its exposure to radiation. The throughput at Dounreay is much lower than 

the LWR and AFR reprocessing plant THORP, making it easier to design the plant for short cooling 

times. THORP used pulse columns rather than centrifugal contractors (which would speed up 

mixing and therefore reduce solvent degradation) for solvent mixing as the centrifugal contractors 

were not sufficiently developed when the plant was designed. In addition, some short-lived FPs 

could be problematic (e.g. Ru-106 which has a half-life of 1 yr and extracts to some extent, and 

gaseous isotopes of iodine), and in general the technical challenges of short cooling times would 

need to be addressed.
4
 

There was also little incentive to reprocess the fuel quickly at THORP, as there was no pressing 

demand for additional MOX fuel. Also, if there is no intention of recycling the MAs, it is better to 

reprocess immediately before fuel fabrication and use, to limit 
241

Am content in the MOX fuel.
5
 

Therefore, it may be difficult to perform PUREX reprocessing on a larger scale than Dounreay with 

                                                 
2
 Private communication with Dr Chris Phillips, Energy Solutions, May 2013  

3
 Private communication with Tony Roulstone, University of Cambridge, April 2013 

4
 Private communication with Dr Chris Phillips, Energy Solutions, May 2013 

5
 Private communication with Prof. Bruce Hanson, University of Leeds, April 2013 
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a short cooling time while meeting modern environmental and regulatory requirements,
6
 although it 

is feasible.  

Separation of MAs from FPs requires modification of the PUREX process. In particular, it is 

difficult to separate Am and Cm from the lanthanides. Several processes have been proposed to 

accomplish this (OECD, 1999b). In general, the processes under consideration for MA extraction 

are not yet feasible on an industrial scale (Forschungszentrum Juelich, 2008). Low reprocessing 

losses are necessary to limit the actinides being disposed of with the FPs, else the multi-recycling is 

of limited benefit. 

An alternative to aqueous reprocessing is pyroreprocessing, which is suitable for coextraction of all 

TRU isotopes. Long cooling times are not required (IAEA, 2008). The process has not been 

performed on an industrial scale and therefore requires significant development.  

Th is difficult to reprocess as it cannot be dissolved with pure nitric acid (HNO3), which is typically 

performed for U fuels. Some hydrofluoric acid (HF) is necessary, which is highly corrosive. The 

THOREX process is proposed for the reprocessing of Th-based fuel. This has so far only been 

performed on a small scale. Extraction of Pa from FPs is problematic, and this is a concern because 

the long half-life of 
231

Pa makes it highly desirable to recycle it.
7
 Non-aqueous reprocessing 

methods are significantly less advanced for Th-based fuel compared to U-Pu-based fuel (IAEA, 

2005b). 

If U-Pu reprocessing can be performed more quickly than Th reprocessing then this may impact the 

relative neutronic performance of the Th fuel cycle. 

One problem with fast reprocessing is that the high level waste that is produced contains more 

short-lived FPs and therefore has a higher decay power. It is highly desirable to vitrify this waste 

immediately, as there are safety concerns from storing liquid high level waste (it may leak).
8
 As the 

heat load limits the packing density of vitrified waste, this leads to increased waste volumes. 

1.5. Thesis Motivation and Objectives 

Extensive research has been performed on TRU transmutation and full actinide recycle across a 

range of candidate fuel cycles and reactor platforms. In this thesis, conventional LWRs are 

preferred as they are cheaper, lower risk and the technology currently exists. TRU recycle in LWRs 

is limited by the MTC/VC, although feasibility is improved by using RM LWRs. The Th fuel cycle 

is chosen as it has superior MTC/VC performance. This introduces additional fabrication and 

                                                 
6
 Private communications with Dr Robin Taylor, National Nuclear Laboratory, February 2013 

7
 It must be noted that Pa recycling increases the quantity of 

232
U in the recycled fuel, which results in an increased high 

energy gamma source from the 
232

U decay chain which further complicates fuel fabrication. 
8
 Although liquid high level waste is currently stored in the UK, it is highly desirable to limit this. See for example 

(Office for Nuclear Regulation, 2011) 
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reprocessing challenges, but full recycle of TRU is in any case expensive and requires the 

development of new technology.  

While some studies of closed Th-TRU cycles in LWRs have been performed, these are mostly 

limited to single assembly analyses and/or do not consider full TRU recycle. While the potential of 

Th fuel for addressing the potentially positive VC in RM LWRs has previously been identified, 

there is little or no previous work on the use of Th fuel for the full recycle of TRU in RM LWRs, in 

particular in RBWRs. Given strong interest in fuel cycles that consider full recycle of TRU, and the 

potential for RM LWRs to provide a relatively near-term platform for performing this role, the 

feasibility and performance of this design therefore requires assessment, to widen the scope of fuel 

cycles that LWRs can perform and gain an understanding of their performance in this context. This 

thesis contains a comprehensive analysis of the design, operation and fuel cycle of Th-TRU-fuelled 

LWRs operating with full actinide recycle. 

The objectives of this thesis are to: 

- Consider the neutronic feasibility of this fuel cycle in retrofit and non-retrofit designs of 

RMPWR using lattice calculations and full-core analysis. 

- Consider the neutronic feasibility of this fuel cycle in RBWRs using lattice calculations and 

full-core analysis. 

- Perform a quantitative comparison of using 
232

Th instead of 
238

U as a fertile fuel. 

- Determine whether it is possible to retrofit an existing PWR with tight-lattice assemblies 

without violating thermal-hydraulic constraints. 

- Determine whether it is possible to employ a multi-tier fuel cycle, where full recycle in RM 

LWRs is preceded by a single pass of Th-Pu MOX in an unmodified PWR. 

- Compare the fuel cycle performance of the RMPWR and RBWR and discuss their performance 

relative to other TRU incineration options. 

An alternative to a tight-lattice LWR is to utilize a regular lattice but replace the light water coolant 

with heavy water, again with Th-TRU fuel. A PWR design should be considered instead of a BWR 

to limit tritium leakage from the primary circuit. (Harris, 2013) performed a feasibility study on this 

concept, parallel to the work in this thesis, and found that the neutron spectrum from use of mixes 

of H2O and D2O coolant in a PWR was unfavourable for TRU burning. This was due to increased 

resonance flux relative to fast and thermal flux, increasing the detrimental resonance capture effects 

on neutron economy and void reactivity. 
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1.6. Thesis Organisation 

Chapter 2 outlines the proposed fuel cycle scheme and investigates the feasibility of full TRU 

recycle in RMPWRs and RBWRs using single assembly models; it is based on (Lindley et al., 

2014a). Chapter 3 contains an analysis of the void reactivity feedback effects in Th-fuelled and U-

fuelled TRU incineration cycles in conventional PWRs, RMPWRs and RBWRs; it is based on 

(Lindley et al., 2013a). Chapter 4 contains a thermal-hydraulic feasibility analysis of RMPWRs; it 

is based on the first section of (Lindley et al., 2014b). Chapters 5 contains a detailed RMPWR 

neutronic analysis based on (Lindley et al., 2013b) and (Lindley et al., 2014c). Chapter 6 contains a 

detailed RBWR neutronic analysis with coupled thermal-hydraulic feedback, partly based on the 

third section of (Lindley et al., 2014b) and on (Lindley et al., 2014d; 2014e). Chapter 7 assesses the 

fuel cycle performance, based on (Lindley et al., 2014f) and some content from (Lindley et al., 

2014g). Chapter 8 concludes. 

This thesis considers fuel cycles operating at equilibrium. This is a common but major assumption. 

Analysis of time-dependent scenarios is ongoing. 
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Chapter 2 – Assembly Analysis 

In this chapter, a single assembly analysis is used to assess the feasibility of RMPWRs and RBWRs 

to sustain an equilibrium cycle, where the feed to the reactor is a mixture of Th and TRU, and all 

actinides are returned to the reactor after reprocessing. The focus of this chapter is a single-tier fuel 

cycle, where the TRU feed to the RMPWR or RBWR is the discharged TRU from conventional 

LWRs. However, it is also worth considering a multi-tier fuel cycle, where the first stage is a Th-Pu 

fuelled „reference‟ PWR. Spatial separation of TRU from bred uranium is found to greatly improve 

neutronic performance. This will pose thermal-hydraulic challenges, which are discussed in Chapter 

4. In addition, the harder neutron spectrum resulting from the reduced moderation also reduces the 

control rod worth, while there is a neutronic incentive to use increased mechanical shim to maintain 

a negative MTC. It may therefore be desirable to increase the number of rod cluster control 

assemblies. Superior burn-up is achievable in a reduced-moderation BWR as a larger reduction in 

moderation is feasible, although the incineration rate is reduced relative to a PWR due to a higher 

conversion ratio. The fuel design for RMPWRs and RBWRs is further refined in Chapters 5 and 6, 

based on the conclusions of this chapter. 

2.1. Rationale 

A TRU incinerator uses an external feed of TRU isotopes to sustain criticality and continue 

incineration. When fuel is discharged from the core, it contains a mixture of actinides and FPs. The 

FPs are removed, and are replaced by Th and TRU, which are used to „make up‟ the fuel. At 

equilibrium, the resultant fresh fuel has identical composition for successive cycles. The TRU 

incineration rate can be altered by altering the TRU reload or „make up‟ fraction in the feed. At 

equilibrium, the TRU used to make up the fuel is equal to the TRU incinerated, and therefore the 

TRU reload fraction directly influences the TRU incineration rate – here it is considered to be a key 

parameter as it is a „design‟ parameter, rather than a measured output. A higher TRU reload fraction 

generally leads to a higher TRU inventory in the core, increasing the incineration rate by reducing 

232Th capture relative to TR and U3 fission. This process is shown diagrammatically in Fig. 2.1.  

It is desirable to increase the TRU reload fraction to maximize burn-up and incineration 

performance, within the fuel and cladding material limits, and thus minimize reprocessing and 

manufacturing requirements. Particularly for thermal reactors, the TRU reload fraction is limited by 

the degradation in the MTC, or VC, which becomes less negative as the proportion of TRU in the 

recycled fuel inventory increases (OECD, 2003, reconfirmed in this chapter). The MTC is roughly 

proportional to the TRU content of the fuel, but the isotopic composition also influences the MTC, 

and a less fissile TRU vector means that a higher TRU loading is necessary to sustain criticality. 
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Reducing moderation changes the trade-off between the various figures of merit, as will be 

discussed.  

 

Fig. 2.1. Illustration of TRU reload fraction. At equilibrium, the discharged fuel contains 5 kg 

fission products (FPs). The fresh and burned fuel contains the same amount of U3 as this is at 

equilibrium, however 2 kg of TRU and 3 kg of Th has been burned relative to the fresh fuel. 

Therefore, for cycle n+1 to have the same fuel as cycle n, the FPs must be replaced with 3 kg Th 

and 2 kg TRU, giving 72 + 3 = 75 kg Th and 18 + 2 = 20 kg TRU for the next cycle. The TRU 

reload (or „make up‟) fraction is therefore 2/(2+3) = 2/5 = 40%. 

In principle, the MTC and VC can also be improved by increasing the reactivity worth of neutron 

leakage and, consequently, the negative reactivity insertion in case of voiding. This can be achieved 

by shortening the core and/or using internal blankets. However, for a given power rating and reactor 

vessel diameter, the core size is limited by thermal-hydraulic constraints, while the adoption of 

internal axial blankets acts to decouple the fluxes in the seed regions. This can make the power 

peaking very sensitive to local changes in reactivity, such as during transients (Hibi et al., 2001). 

For example, it is possible that a negative reactivity insertion into one region of the core could 

increase reactivity in a different region (Kawashima et al., 1992). In addition, axial heterogeneities 

are especially undesirable for fuel with remote fuel manufacturing requirements, as is the case in 

this study. Therefore an axially homogeneous reactor is the preferred choice adopted for this study.  

For the RMPWR, a core design that can be retrofitted into a current PWR design is highly desirable 

to minimize the time to and cost of deployment. However, retrofitting often results in a deviation 

from the plant‟s original operating conditions, and the impact of such a deviation must be 

thoroughly assessed before claiming viability. Also, practical constraints imposed by the existing 

plant structures should be considered and accounted for, since these determine whether retrofitting 

is economically more attractive than designing a new plant. These considerations and, specifically, 

avoiding replacement of the reactor vessel top head and internals, lead to the choice of a 1717 

square lattice assembly, with the same footprint as a typical PWR assembly but with larger pin 

75 kg Th             5 kg U3              20 kg TRU 

72 kg Th       5 kg U3         18 kg TRU   5 kg FP 

3 kg Th; 2 kg TRU 

Fresh 

Burned 
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diameter, as the logical starting point for this investigation. Changes in plant operating conditions, 

such as core inlet/outlet temperature and coolant flow rate, have been considered, and their impact 

on thermal-hydraulic constraints, such as minimum departure from nucleate boiling ratio (MDNBR) 

and pressure drop, have been assessed. 

The RBWR design is not fixed at this point, but a reference design with hexagonal assemblies, 120 

or 200 cm core height and 53% average VF was selected for comparison with the RMPWR. The 

120 cm core is similar to current U-Pu RBWR designs (Downar et al., 2012), while a taller core has 

been considered for Th designs where axial leakage is a less important mechanism for ensuring a 

negative VC than in U designs (Ganda et al., 2011). The reduction in moderation fostered by the 

tight pitch and relatively high VF of the RBWR leads to a significantly harder neutron spectrum 

than in retrofit RMPWR designs. The RBWR designs considered have a large reduction in 

moderation compared to conventional BWRs. This may result in a design that cannot be retrofitted 

into an existing core, but the plant is the same as the ABWR plant (IAEA, 2004). 

2.2. Fuel Cycles Schemes  

The TRU feed is assumed to be UO2 4.4 wt% enriched PWR discharge, burned to 52 GWd/t and 

cooled for 10 years. This is the „single-tier‟ fuel cycle. It is also worth considering a „multi-tier‟ fuel 

cycle, where the first stage is a Th-Pu-fuelled „reference‟ PWR. The feed to the RMPWR or RBWR 

is the discharge from the previous stage, reprocessed with 5 years cooling between stages, with the 

MAs from the initial UO2 LWR stage added back to the actinide feed, so that the overall actinide 

balance across stages is preserved with only reprocessing losses and fission products being disposed 

of. This multi-tier implementation may allow more rapid implementation than straight full TRU 

recycle: the first stage homogeneous Th-Pu fuel could be implemented with existing Pu stockpiles 

and glove-box fuel fabrication (Fig. 2.2). However, it also introduces specific challenges, including 

increased higher actinide content in the RMPWR fuel inventory and separate management 

requirements for the Pu and MAs from the UO2 LWR stage. The equilibrium cycle inventory 

contains more U3 than with a single-tier fuel cycle as the feed contains U3 from the discharge of the 

intermediate Th-Pu PWR stage.  
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Fig. 2.2. Multi-tier fuel cycle scheme. 

The Th-Pu first stage of the multi-tier scheme is burned to 50 GWd/t in most cases, corresponding 

to an initial loading of 10 at% Pu in the fuel. This level of Pu content has been considered in a 

previous full-core analysis (Fridman and Kliem, 2011). Th-Pu fuel is often advocated for a single 

irradiation pass through the core, e.g. (Galperin, 1995; Shwageraus et al., 2004), to reduce the Pu 

fissile quality and place the TRU waste in a proliferation-resistant form. It is therefore possible that 

a higher discharge burn-up may be desirable in the first stage, e.g. to minimize spent fuel volume or 

increase proliferation resistance, particularly if a final decision on full recycle has not been taken, or 

a single-pass strategy is enacted and a later decision is taken on full recycle. An additional multi-

tier, high burn-up case with 15 at% Pu and an assembly average discharge burn-up of 84 GWd/t is 

also considered. This is thought to be the upper neutronic limit of what is reasonably achievable 

(Zainuddin et al., 2013) and the peak burn-up is likely beyond the maximum achievable with 

Zircaloy-based clad (~70–80 GWd/t) (OECD, 2006a). The isotope vectors for single- and multi-tier 

fuel cycles were calculated using lattice calculations in WIMS 10 (see Section 2.3), and are given in 

Table 2.1. The percentage reduction in Pu during the first stage is 46.3% and 51.8% for 50 GWd/t 

and 84 GWd/t respectively, i.e. the proportion incinerated is relatively insensitive to discharge burn-

up. Including the bred U3 and recovered MAs as part of the legacy, the proportion of waste 

incinerated during the first pass is 22.6% and 28.5% for 50 GWd/t and 84 GWd/t respectively. 
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Table 2.1. Feed isotope vectors (at%). 

Isotope Single Tier Multi-Tier Multi-Tier, high burn-up 

241
Am 5.77 10.22 11.02 

242m
Am 7.15E-03 3.70E-02 5.04E-02 

243
Am 1.60 4.39 4.88 

242
Cm 2.99E-07 3.30E-04 3.43E-04 

243
Cm 5.73E-03 1.79E-02 2.16E-02 

244
Cm 0.50 1.53 1.98 

245
Cm 0.06 0.24 0.40 

246
Cm 6.46E-03 2.06E-02 3.89E-02 

247
Cm 9.34E-05 3.45E-04 9.36E-04 

248
Cm 7.04E-06 2.09E-05 6.56E-05 

237
Np 4.94 6.38 6.91 

238
Pu 2.74 3.42 3.91 

239
Pu 48.45 14.64 12.68 

240
Pu 21.03 21.41 21.41 

241
Pu 8.45 9.59 9.12 

242
Pu 6.46 9.21 9.68 

233
U 0.00 16.83 15.40 

234
U 0.00 1.76 2.04 

235
U 0.00 0.27 0.40 

236
U 0.00 2.21E-02 4.30E-02 

The remainder of this chapter focuses on the single-tier fuel cycle. 

2.3. Lattice Calculations 

2.3.1. Implementation of Assembly Calculations in WIMS 

Lattice calculations were performed using WIMS 9 and a development version of the UK 

deterministic reactor physics code WIMS 10 (Newton et al., 2008). A 172-group calculation with 

geometric approximations was first performed using the collision probability method to generate 

11- and 12-group cross-sections for the RMPWR and RBWR respectively. A few-group solution in 

detailed geometry was then performed using the method of characteristics. Table 2.2 gives the 

geometric characteristics of the assembly designs under consideration, including the reference PWR 

assembly used to generate the TRU feed isotope vector. 
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Table 2.2. Reference fuel assembly parameters. 

Parameter PWR RMPWR BWR* RBWR 

Pellet radius (cm) 0.4095 0.4845, 

0.5095 

0.424 0.5865 

Gap (cm) 0.0085 Same 0.0075 0.0125 

Clad thickness (cm) 0.057 Same 0.0605 0.086 

Pin radius (cm) 0.475 0.55, 0.575 0.492 0.685 

Lattice type  Square Square Square Triangular 

Pitch (cm) 1.26 Same 1.295 1.5 

Fuel height (cm) 366 366 399 120, 200 

Power density in fuel (W/cm
3
) 400 285, 258 232 194, 116 

Fuel temperature (K) 900 900 800** 900 

Moderator density (g/cc) 0.707 0.707 0.456** 0.3655 

* Westinghouse Sweden SVEA-96 Optima 2 (Nuclear Engineering International, 2004) 

** Taken from (Bjork et al., 2011) 

For the RMPWR the pin diameter was increased from the reference value of 9.5 mm to 11.5 mm, 

with the gap and clad thickness, as well as the pin pitch, unchanged with respect to the reference 

assembly values. A thicker clad may be necessary to limit the clad stress of the larger pin. A larger 

gap size or plenum may also be necessary, depending on the fission gas release relative to the 

reference case. This will slightly affect the minimum required pin diameter. The RMPWR model is 

run with rods out, as although some use of mechanical shim is considered later, this is not usual for 

a PWR, and, in any case, rods-out is thought an acceptable approximation.  

Historically, various RBWR assembly designs have been investigated, which differ in geometry 

(and therefore fuel volume fraction) and power to flow ratio (and therefore core-average VF) 

(IAEA, 2004). For the purposes of this study, a relatively low hydrogen to heavy metal (H/HM) 

ratio design was selected so that conclusions could be drawn about a relatively bounding case 

(Table 2.3). The RBWR model consisted of 1/6
th

 of a hexagonal 217 pin assembly based on the 

JAEA design from (IAEA, 2004). The pin pitch was 15 mm, the pin outside diameter (OD) 13.7 

mm and the pellet radius 5.865 mm. The core-average VF was 53%. This is one of the best 

documented designs, and has a relatively low H/HM ratio. 

Typically, RBWR designs have Y-shaped control blades which are asymmetrically positioned 

between assemblies (Fig. 2.3). As a consequence of this, the unit cell for the problem is large. 

However, it was deemed acceptable as a first approximation to smear the control material around 

the assembly such that a 1/6
th

 hexagonal model could be used as pin powers are not calculated. The 

impact on the shim rod worth (calculated in Chapter 6) is not thought to be significant. The lattice 
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calculations were run with rods out, which is an acceptable approximation, as the rods will not 

significantly affect the achievable discharge burn-up and a minority of the fuel assemblies are 

rodded at power. A graphite follower was added to the control rod, such that the graphite rod is 

present when the rod is out. This reduces the moderation from bypass flow. This is typical for 

RBWRs (Nakano et al., 2007). 

Table 2.3. H/HM ratio of considered cases. 

Reactor type Lattice type Pin outer 

diameter (OD) 

(mm) 

Pin pitch 

(mm) 

H/HM* 

PWR Square 9.5 12.6 1.98 

RMPWR Square 11.0 12.6 1.09 

RMPWR Square 11.5 12.6 0.87 

RBWR Triangular 13.7 15.0 0.26 

* The H/HM for the PWR and RMPWR is calculated as the coolant/fuel area ratio. The H/HM ratio 

for the RBWR is relative to the PWR coolant density, i.e. it is calculated as the RBWR coolant/fuel 

area ratio multiplied by the ratio of the PWR coolant density, 0.707 g/cc, and BWR coolant density, 

0.3655 g/cc at 53% VF. 

 

Fig. 2.3. Fuel assembly design considered for the RBWR case. 

Y-shaped 
control rod 
 

228 mm 
assembly pitch 
 
 
 
 
 
 
 
 

217 fuel rods 
per assembly 
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The H/HM ratio is considerably reduced for the RMPWR relative to an unmodified LEU-fuelled 

PWR. The RBWR has a large further decrease in moderation relative to the RMPWR (Table 2.3). 

Fig. 2.4 shows the neutron flux per unit lethargy for the PWR, 11 mm pin RMPWR, RBWR and a 

representative SFR, normalized to unit total flux. The LWR spectra are plotted in the WIMS 172-

group energy structure, while the SFR spectrum is plotted in the 33-group structure used in the cell 

code ECCO within the fast reactor physics code ERANOS-2.2N (Rimpault et al., 2002).
9
 

There is a large reduction in thermal flux for both RMPWR and RBWR concepts relative to the 

unmodified PWR, although the spectrum is still significantly softer than the SFR, with a 

significantly higher resonance and thermal flux. 
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Fig. 2.4. Neutron spectra normalized per unit flux. For radially heterogeneous fuel assembly 

designs, i.e. assemblies having different fuel types in different lattice locations, the subgroup 

method was used to generate 172-group cross-sections for 
232

Th, 
233

U, 
239

Pu and 
240

Pu to properly 

treat resonance interaction. This method is computationally expensive with factorial complexity so 

only the most important isotopes are considered. Other isotopes are treated using equivalence theory 

(Powney and Newton, 2004). 

In all the cases analysed, the equilibrium cycle composition was determined by running the models 

for a sufficient number of recycles at an assumed equilibrium cycle burn-up, with full actinide 

recycle assuming no losses and 5-year cooling time between irradiation cycles. This procedure was 

chosen as it is easy to automate. This means that the burn-up during the transient may be incorrect, 

                                                 
9
 The SFR spectrum was calculated by Dr C. Fiorina, PSI, Zurich, Switzerland. 
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but this is irrelevant as the transient is not being analysed. It was found that after about 20 recycles 

the isotope vector was practically converged.
10

 The equilibrium isotope vectors for representative 

single-tier cases are given in Table 2.4.  

Table 2.4. Start-of-Cycle (SOC) equilibrium isotope vector (at/barn cm) for selected cases. 

 RBWR 

homogeneous  

26% TRU 

reload 

RMPWR  

11.5 mm pin OD 

homogeneous  

45% TRU reload 

RMPWR  

11 mm pin OD 

heterogeneous  

50% TRU reload 

132 Th-TRU pins 

RMPWR  

11 mm pin OD 

heterogeneous  

52.5% TRU 

reload 152 Th-

TRU pins 

RMPWR  

11.5 mm pin OD 

heterogeneous  

40% TRU reload 

132 Th-TRU pins 

241
Am 1.391E-04 1.957E-04 3.158E-04 3.226E-04 2.643E-04 

242m
Am 5.374E-06 5.079E-06 8.525E-06 8.573E-06 7.780E-06 

243
Am 7.251E-05 1.359E-04 1.708E-04 1.838E-04 1.488E-04 

242
Cm 3.548E-09 1.285E-08 1.467E-08 1.468E-08 1.190E-08 

243
Cm 4.353E-07 1.077E-06 1.108E-06 1.194E-06 9.815E-07 

244
Cm 4.029E-05 1.005E-04 1.143E-04 1.317E-04 1.012E-04 

245
Cm 2.237E-05 5.154E-05 4.847E-05 5.630E-05 4.482E-05 

246
Cm 1.667E-05 4.322E-05 4.586E-05 5.031E-05 4.171E-05 

247
Cm 3.824E-06 8.047E-06 1.068E-05 1.137E-05 1.014E-05 

248
Cm 1.492E-06 3.947E-06 5.010E-06 5.327E-06 4.633E-06 

237
Np 7.273E-05 9.483E-05 1.293E-04 1.290E-04 1.081E-04 

238
Pu 2.210E-04 3.867E-04 5.345E-04 5.567E-04 4.569E-04 

239
Pu 3.567E-04 5.097E-04 7.810E-04 8.412E-04 6.180E-04 

240
Pu 4.588E-04 6.281E-04 1.204E-03 1.247E-03 1.039E-03 

241
Pu 1.018E-04 1.958E-04 2.380E-04 2.707E-04 2.011E-04 

242
Pu 1.918E-04 3.745E-04 6.370E-04 6.713E-04 5.460E-04 

232
Th 1.639E-02 1.788E-02 1.660E-02 1.627E-02 1.712E-02 

233
U 1.109E-03 8.439E-04 5.667E-04 6.331E-04 6.697E-04 

234
U 3.935E-04 4.293E-04 4.906E-04 5.099E-04 5.094E-04 

235
U 1.433E-04 1.843E-04 1.421E-04 1.467E-04 1.514E-04 

236
U 1.067E-04 1.133E-04 1.460E-04 1.426E-04 1.453E-04 

O 3.970E-02 4.437E-02 4.437E-02 4.437E-02 4.437E-02 

The 
232

Th content varies between 73% and 83%, and is lower when the TRU reload fraction is 

larger. The U3 content is in the range 6–9% and the TRU content is in the range 9–20%. The 

                                                 
10

 
246

Cm and above isotopes are not fully converged to equilibrium due to the impractically long time required for 

convergence. The impact on reactor physics is negligible. 
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RBWR has the highest U3 content as the hard neutron spectrum due to reduced moderation 

encourages breeding. It also has the lowest TRU content due to the low TRU reload fraction. The 

softer neutron spectrum also has an effect as this increases the build-up of heavier isotopes through 

successive captures, e.g. higher isotopes of Cm.  

The TRU is ~78% Pu, although this varies slightly between cases. The RMPWR fuel contains ~2% 

Am and ~1% Cm, while the RBWR Am and Cm content is about half this, again due to the lower 

TRU reload fraction. In all cases the fuel contains ~0.5% Np. Some 
237

Np is produced from 
236

U 

neutron capture. The Pu fissile fraction (
239

Pu and 
241

Pu) is 30–35% in each case, while the U3 

fissile fraction ranges from ~54% for the 11 mm RMPWR to 71% for the RBWR.  

The heterogeneous RMPWR fuels have higher TRU content and lower U3 content than 

homogeneous designs due to the harder spectrum in the Th-TRU region and the thermal spectrum in 

the Th-U3 region (see Section 2.4.4). The fuel isotope vectors are discussed in more detail in 

Chapter 7 and are further compared to FR incineration cycles in (Franceschini et al., 2013).  

2.3.2. Data Library Uncertainty and Treatment of Reduced Moderation 

WIMS was applied to the benchmark problem for Th-Pu MOX fuel in a standard PWR lattice 

(IAEA, 2003). The results from WIMS with JEF-2.2 and ENDF/B7.0 agreed very well with the 

results of the benchmark, with results either within the range of submitted solutions or exhibiting 

very minor deviations.  

WIMS is capable of modelling thermal and fast systems, the latter through using ECCO within 

WIMS (Newton et al., 2008). RMPWRs and RBWRs have a significant thermal neutron flux, and 

hence a thermal reactor flux was assumed when deriving 172-group cross-sections. This capability 

uses a limited number of fast energy groups (31 groups above 183.2 keV) compared to fast reactor 

lattice physics analysis methods (Newton et al., 2008). Therefore some errors are incurred when it is 

applied to RM designs. Future work could consider whether assuming an epithermal or fast 

spectrum is more appropriate. To quantify some of these errors, a single 1.26 cm square pincell was 

modelled. The pin diameter was 9.5 mm and the pellet radius was 4.095 mm. The water density was 

varied between 0.707 g/cc, the nominal PWR operating conditions, and 0.0365 g/cc, full void in a 

BWR.   



k was calculated in WIMS and the Monte Carlo code MONK (Answers, 2001). MONK is 

used in UK licensing criticality applications. The WIMS 172-group data library was used in MONK 

to isolate errors from WIMS equivalence theory rather than the data library group structure. For 

data library availability reasons (in MONK), the JEFF-3.1 library was used in both cases. This data 
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library is not thought appropriate for Th applications,
11

 but this is not a problem when testing the 

WIMS methodology, as opposed to the data library.  

WIMS uses a two-stage procedure to solve the transport equation. First, a 172-group calculation is 

carried out in approximate geometry. This solution is used to condense to few (usually 6 or 11) 

energy groups (although a higher number of groups – e.g. 22 – is often used for MOX fuel), and 

then the problem is solved in detailed geometry. In this study, for the RBWR a 12-group scheme 

derived by Hitachi is used, which contains relatively high fidelity in the fast and epithermal neutron 

energy range (Downar et al., 2012). This group scheme was selected as it was specifically derived 

for the RBWR and hence is highly likely to provide a reasonable trade-off between accuracy and 

computational cost. For the RMPWR, an 11-group scheme from (Answers, 2004) is used, as this 

was found to give lower group condensation errors for the RMPWR than the 12-group scheme used 

for the RBWR and the 6-group scheme usually employed for LEU-fuelled PWR calculations in 

WIMS. The 11-group scheme gives more fidelity in the thermal energy range than the 12-group 

scheme used for the RBWR. For the RMPWR, it must be noted that the 22 group scheme typically 

used for MOX fuel is likely to give reduced condensation error, but for this study 11 groups was 

deemed to be a reasonable trade-off between accuracy and computational cost. Deriving an optimal 

group scheme is beyond the scope of this study. 

For the single pincell, a detailed geometry solution in 172 groups is also evaluated. This is relatively 

computationally expensive, but allows isolation of errors from equivalence theory and the group 

condensation procedure. Ultimately, an epithermal reactor must either be analysed by Monte Carlo 

methods (computationally prohibitive for broad scoping studies such as this), or a careful study of 

the lattice code (and group structure) is required to minimize errors.  

Four fuel isotope vectors were investigated: Th-Pu MOX, Th-U3-TRU typical of the composition in 

this study, U-Pu MOX and U-TRU derived in a similar manner to the Th-U3-TRU composition (see 

Section 2.4.1) (Table 2.5). 
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 Private communication with ANSWERS team, AMEC, Winfrith, United Kingdom, 2011. 
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Table 2.5. Fuel isotope vectors investigated (at/barn cm). 

Isotope Th-Pu Th-U3-TRU U-Pu U-TRU 

241
Am  1.989E-04  3.507E-04 

242m
Am  5.218E-06  1.134E-05 

243
Am  1.364E-04  1.509E-04 

242
Cm  1.300E-08  1.905E-08 

243
Cm  1.087E-06  1.488E-06 

244
Cm  1.007E-04  1.165E-04 

245
Cm  5.162E-05  5.462E-05 

246
Cm  4.294E-05  4.110E-05 

247
Cm  8.072E-06  8.951E-06 

248
Cm  3.940E-06  4.103E-06 

237
Np  8.997E-05  7.145E-05 

238
Pu 2.290E-05 4.521E-04 2.290E-05 5.646E-04 

239
Pu 7.478E-04 5.269E-04 7.478E-04 1.752E-03 

240
Pu 2.903E-04 6.440E-04 2.903E-04 1.527E-03 

241
Pu 1.534E-04 1.981E-04 1.534E-04 3.105E-04 

242
Pu 5.010E-05 3.777E-04 5.010E-05 4.636E-04 

232
Th 2.059E-02 1.792E-02  0.000E+00 

233
U  8.457E-04  2.309E-09 

234
U  3.339E-04  4.631E-05 

235
U  1.582E-04  3.552E-05 

236
U  9.407E-05  2.079E-05 

237
U  1.216E-07  5.407E-08 

238
U  1.340E-07 2.059E-02 1.665E-02 

O 4.371E-02 4.437E-02 4.371E-02 4.437E-02 

The statistical error in MONK was 10 pcm. The discrepancy in   



k between WIMS and MONK for 

different group condensation schemes, and the direct errors from the condensation schemes are 

given in Tables 2.6(a)–(c). 
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Table 2.6. (a) Discrepancies (in pcm) in   



k between WIMS (172 group) and MONK. 

Water density 

(g/cc) 

Th-Pu Th-U3-TRU U-Pu U-TRU 

0.707 89 83 19 85 

0.3535 529 347 566 371 

0.17675 1244 643 1321 590 

0.0365 2374 640 2139 511 

(b) Errors (in pcm) in RMPWR and RBWR group condensation schemes in WIMS relative to no 

condensation. 

Water density 

(g/cc) 

Th-Pu Th-U3-TRU U-Pu U-TRU 

RMPWR RBWR RMPWR RBWR RMPWR RBWR RMPWR RBWR 

0.707 –170 –345 –252 –435 –292 –470 –429 –609 

0.3535 –233 –488 –181 –314 –359 –593 –217 –355 

0.17675 –216 –409 –88 –130 –265 –421 –56 –107 

0.0365
12

 –45 –37 –9 –5 –22 –26 –1 –2 

(c) Discrepancies (in pcm) in   



k between WIMS with RMPWR and RBWR group condensation 

schemes and MONK. 

Water density 

(g/cc) 

Th-Pu Th-U3-TRU U-Pu U-TRU 

RMPWR RBWR RMPWR RBWR RMPWR RBWR RMPWR RBWR 

0.707 –80 –256 –169 –352 –273 –451 –344 –525 

0.3535 295 41 167 34 208 –26 154 16 

0.17675 1028 835 555 514 1056 901 534 484 

0.0365 2329 2337 631 634 2117 2113 510 509 

Errors up to 634 pcm are observed for Th-U3-TRU in the fully voided case with 11- or 12-group 

condensation schemes. These errors are relatively good, given a thermal spectrum was assumed, but 

there is some error cancellation at higher moderation between group condensation and equivalence 

treatment. The 11-group scheme generally performs better than the 12-group scheme, in particular 

for a water density of 0.3535g/cc and above, which suggests it is suitable for the RMPWR. 

As expected, the error incurred in the 172-group calculations increases as the water density 

decreases. This is particularly true for the fully voided and 0.17675 g/cc cases. WIMS tends to 

                                                 
12

 The condensation error at low water density is extremely low. This is likely to be the result of low errors in the 

approximations in the collision probability method used for group condensation, itself likely the result of the hard 

neutron spectrum acting to limit the impact of fuel assembly heterogeneity. 
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overestimate   



k and this effect increases at lower moderation. In particular, this has the effect of 

increasing the difference in reactivity between fully voided and operating conditions by ~900 pcm. 

This is a „conservative‟ error but should be considered when drawing conclusions about the 

viability of a given design based on a negative MTC/VC criterion. Errors in the cross-section 

preparation for burn-up obviously propagate into the evaluated isotope vector over multiple 

recycles, so their effect is difficult to estimate. 

The code performs worse for the relatively „pure‟ MOX fuels at low VFs. This is thought to be due 

to the relatively high significance of errors in the treatment of 
232

Th and 
238

U due to the higher 

fertile proportion relative to the Th-U3-TRU and U-TRU fuels. To gain some understanding behind 

these errors, the discrepancies in microscopic cross-sections of the actinides for the Th-U3-TRU 

and U-TRU cases were investigated. The discrepancies in   



  f a  are tabulated for the actinides 

in Table 2.7. 

As the H/HM ratio is reduced, the discrepancy in 



  becomes more positive for the fertile isotope 

(
232

Th and 
238

U for Th-U3-TRU and U-TRU respectively – highlighted in bold). This correlates 

with the larger discrepancy of the Th-MOX and U-MOX cases, where 
232

Th and 
238

U captures and 

fissions at high VFs are more significant. The ~2% error in 
232

Th and 
238

U 



  is a combination of 

~1% errors in capture and fission cross-sections in both cases.   

It should also be noted that as the spectrum becomes harder, the importance of the 
232

Th and 
238

U 

fast fission increases. This results in errors due to the group structure. Many groups are required in 

the vicinity of the fission thresholds to accurately capture the flux gradients in this region.
13

 The fast 

reactor cell code  ECCO (Rimpault et al., 2002), which is available in WIMS 10, (Newton et al., 

2008), could be used to model these geometries, at it utilizes a much higher number of energy 

groups in the fast energy region. However, this is thought to be unsuitable to model the significant 

thermal neutron flux and hydrogen scatter still present in an RMPWR or RBWR. 

The same cases (Table 2.5) were run with a 172-group calculation in WIMS with the JEF-2.2, 

JEFF-3.1 (for completeness) and ENDF/B7.0 data libraries to investigate the effect of data library 

differences. The differences between the data libraries are plotted in Fig. 2.5, with the differences 

plotted relative to JEF-2.2, which is the library used for the RBWR/RMPWR reactor physics 

calculations in the remainder of this chapter. 

 

 

 

                                                 
13

 Private communication with ANSWERS team, AMEC, Winfrith, United Kingdom, 2013. 
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Table 2.7. Discrepancies (%) in 



  for actinides for WIMS 11-group condensation relative to 

MONK. 

 Th-U3-TRU U-TRU 

Water density (g/cc) 0.707 0.3535 0.17675 0.0365 0.707 0.3535 0.17675 0.0365 

H/HM (area ratio for 

0.707 g/cc, relative 

to this for other 

cases) 

1.67 0.83 0.42 0.09 1.67 0.83 0.42 0.09 

241
Am 0.51 1.28 1.69 0.80 1.09 1.45 1.68 0.99 

242m
Am 0.01 0.02 0.02 0.00 0.00 0.01 0.02 0.02 

243
Am –1.10 –0.55 –0.20 0.44 0.14 0.09 0.09 0.70 

242
Cm –0.51 –0.39 –0.37 –0.04 0.07 0.10 0.09 0.19 

243
Cm 0.01 0.00 –0.02 –0.03 0.00 0.00 –0.01 –0.01 

244
Cm –1.27 –1.10 –1.31 –0.14 –1.21 –1.80 –2.10 –0.37 

245
Cm –0.02 –0.02 –0.02 –0.03 0.05 0.07 0.06 –0.01 

246
Cm –0.30 –0.05 0.02 0.21 –0.25 –0.14 0.02 0.34 

247
Cm –0.14 –0.10 –0.03 0.04 0.03 –0.02 0.00 0.07 

248
Cm –0.53 –0.64 –0.87 –0.23 –0.25 –0.78 –1.29 –0.59 

237
Np –0.16 –0.13 –0.03 0.27 1.19 1.44 1.49 0.96 

238
Pu –0.01 –0.15 –0.33 –0.17 –0.25 –0.28 –0.27 –0.03 

239
Pu 0.09 0.13 0.13 0.02 0.21 0.25 0.14 0.02 

240
Pu –0.17 0.07 0.47 0.69 0.94 1.12 1.11 0.18 

241
Pu –0.03 –0.09 –0.11 –0.04 0.13 0.14 0.10 0.03 

242
Pu –1.33 –0.77 –0.13 0.56 0.67 0.44 0.49 0.51 

232
Th –0.49 1.11 2.17 2.30     

233
U –0.01 0.00 –0.01 –0.01 –0.01 –0.04   

234
U 1.03 1.78 2.35 1.29 0.46 1.07 1.20 0.96 

235
U 0.07 0.08 0.06 –0.01 0.08 0.05 –0.03 –0.01 

236
U 1.68 1.24 1.69 0.99 4.37 3.32 3.33 1.56 

238
 U

 
    –0.47 1.26 2.51 2.59 
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Fig. 2.5. Data library discrepancies. 

While all libraries tend to agree relatively well at high density, larger discrepancies are observed at 

low water densities. At low water density, there is a large (up to 1500 pcm) difference between the 

ENDF/B7.0 and JEF-2.2 data libraries, and for the Th-U3-TRU case the difference between 

nominal and fully voided reactivity (FVR) is even greater. This will have a relatively small impact 

on equilibrium cycle calculations, but will lead to a much more pessimistic calculation of FVR in 

JEF-2.2. In Th-Pu, this effect is due to a higher resonance capture rate in 
232

Th in ENDF/B7.0 

(Table 2.8). This is itself due to a higher resonance capture cross-section in the region 4–48 keV, so 

the most appropriate data library for these conditions is likely to depend on the accuracy of the 

232
Th capture cross-section in this region. The JEFF-3.1 library with Th fuel is generally offset from 

JEF-2.2, but will give a similar FVR.  

Table 2.8. Capture rates in 
232

Th for Th-Pu fuel, 0.0365 g/cc, normalized per 1000 productions in 

pincell. 

 Fast 

(20 MeV to 9119 eV) 

Resonance 

(9119 eV to 0.625 eV) 

Thermal 

(0.625 eV to 0 eV) 

JEF-2.2 401.68 448.38 0.82 

ENDF/B7.0 402.12 430.92 0.85 
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In the Th-U3-TRU case, also at 0.0365 g/cc, it is also worth noting the slightly higher 



  for 
233

U in 

JEF-2.2 compared to ENDF/B7.0, but the slightly lower 



  for 
239

Pu (Table 2.9). Differences in 



  

between isotopes will lead to slight differences in the fuel cycle performance calculated using 

different data libraries. 

Table 2.9. 



  for selected fissile isotopes, Th-U3-TRU fuel, 0.0365 g/cc. 

 
233

U 
239

Pu 

 ENDF/B7.0 JEF-2.2 ENDF/B7.0 JEF-2.2 

Fast 2.33 2.35 2.62 2.59 

Resonance 2.14 2.22 1.63 1.61 

Thermal 2.28 2.29 1.80 1.80 

As already mentioned, any data library uncertainties will propagate through multiple recycles in a 

manner that is difficult to predict. The selected approach is therefore to derive and analyse an 

equilibrium cycle in JEF-2.2 and ENDF/B7.0. The “RMPWR 11.5 mm pin OD homogeneous 45% 

TRU reload” case from Table 2.4 was selected for this comparison. The equilibrium isotope vectors 

are compared in Table 2.10. 
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Table 2.10. Equilibrium isotope vectors for the RMPWR 11.5 mm pin OD homogeneous 45% TRU 

reload case. 

Isotope JEF-2.2 ENDF/B7.0 % difference 

241
Am 1.957E-04 2.001E-04 2.2 

242m
Am 5.079E-06 5.456E-06 7.4 

243
Am 1.359E-04 1.402E-04 3.2 

242
Cm 1.285E-08 1.297E-08 0.9 

243
Cm 1.077E-06 1.116E-06 3.6 

244
Cm 1.005E-04 9.933E-05 –1.2 

245
Cm 5.154E-05 5.397E-05 4.7 

246
Cm 4.322E-05 3.718E-05 –14.0 

247
Cm 8.047E-06 5.324E-06 –33.8 

248
Cm 3.947E-06 4.018E-06 1.8 

237
Np 9.483E-05 9.483E-05 0.0 

238
Pu 3.867E-04 3.739E-04 –3.3 

239
Pu 5.097E-04 5.112E-04 0.3 

240
Pu 6.281E-04 6.360E-04 1.3 

241
Pu 1.958E-04 1.958E-04 0.0 

242
Pu 3.745E-04 3.879E-04 3.6 

232
Th 1.788E-02 1.779E-02 –0.5 

233
U 8.439E-04 8.262E-04 –2.1 

234
U 4.293E-04 5.144E-04 19.8 

235
U 1.843E-04 1.811E-04 –1.7 

236
U 1.133E-04 1.316E-04 16.2 

The most significant differences are the much larger 
234

U and 
236

U equilibrium populations for the 

ENDF/B7.0 case. The other differences are relatively minor. 

The equilibrium cycle burn-up dependent   



k, MTC and FVR are compared in Fig. 2.6(a)–(c). 
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Fig. 2.6. (a)   



k, (b) MTC, (c) FVR variation without leakage for equilibrium cycles derived and 

analysed with ENDF/B7.0 and JEF-2.2. 

JEF-2.2 predicts a higher   



k by ~0.01 over the equilibrium cycle, which results in a longer 

equilibrium cycle (in this case ~5 GWd/t difference in the one-batch burn-up), potentially due to 

lower equilibrium 
234

U and 
236

U populations. The MTC is very similar for both equilibrium cycles, 
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but is ~1 pcm/K more negative for ENDF/B7.0. As expected, ENDF/B7.0 predicts lower FVR by 

~1000 pcm. 

The choice of the JEF-2.2 data library therefore appears to result in a longer equilibrium cycle but a 

significantly higher FVR. This is preferable because it is likely to lead to the most conservative 

results for the FVR, for which there is a great degree of uncertainty. 

2.4. Results  

2.4.1. RMPWR Homogeneous Assembly  

A sensitivity study with perturbed pin diameter and various TRU reload fractions was undertaken to 

assess the impact on hot-full-power MTC and   



k. For simplicity, a homogeneous assembly 

configuration was assumed. More specifically, the pin diameter within a standard 1717 PWR 

assembly was varied between 9.5 mm (current PWR fuel) and 12 mm. The TRU reload fraction in 

the feed was also varied. In addition, fuel smeared densities between 85% and 95% have been 

investigated, assuming that the lower range may be applicable for fuel with remote manufacturing 

requirements. The MTC was calculated without leakage, i.e. with 2D unit assembly geometry and 

reflective axial conditions. Leakage was estimated to improve the MTC by ~3 pcm/K using a 

critical mode calculation. Reactivity control (e.g. burnable poisons (BPs)) generally makes the 

MTC substantially worse. The impact of control rods on MTC is beneficial (this is discussed in 

Section 2.4.2.1). The relative magnitude of these effects will be discussed later on. 

The burn-up was calculated assuming a 3-batch fuel management scheme using the linear reactivity 

model (Driscoll et al., 1991) and 03.1k  to determine the end-of-cycle (EOC) length. A higher 

TRU reload fraction improves the burn-up capability but makes the MTC worse. A larger pin 

diameter improves the burn-up-MTC trade-off due to increased U3 breeding and improved fission 

to capture probability of TRU isotopes, but makes the incineration rate worse due to the increased 

conversion ratio. 

The upper bound fuel density of 95% theoretical (95% TD) was used to try to identify a 

neutronically acceptable design (negative MTC and 3-batch burn-up > ~35 GWd/t) as a fast enough 

neutron spectrum does not appear achievable with 85% TD fuel. Reducing the density of the fuel 

has the undesirable effect of increasing the H/HM ratio and therefore requiring a larger pin diameter 

for a given H/HM ratio. 95% TD may be difficult to achieve with a remote fuel manufacturing 

technique suitable for production of industrial amounts. With this optimistic assumption, a pin 

diameter of ~11.5 mm was found to be the minimum. The corresponding 3-batch discharge burn-up 

was found to be ~35 GWd/t for 45% TRU reload fraction, with the most positive MTC over the 

cycle being ~–2 pcm/K. Since the multi-recycle equilibrium vector was determined with an 
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estimated burn-up of 40 GWd/t, the start-of-cycle (SOC) equilibrium isotope vector used for the 

reactor physics calculation is optimistic, as reduced burn-up results in more 
241

Pu decay to 
241

Am, 

making the actual reactor performance worse. Further increase of the pin diameter improves the 

feasible cycle length (Fig. 2.7).  
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Fig. 2.7. (a)   



k, (b) MTC variation with burn-up for selected RMPWR cases.  

As the burn-up is relatively low and increasing it results in a more positive MTC, it is desirable to 

take the maximum MTC as close to zero as possible. Fig. 2.7 shows the   



k-MTC trade-off for 

different pin diameters, TRU reload fractions („reload‟) and fuel densities. With 11.5 mm pin 
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diameter, a change in TRU reload fraction from 45% to 47.5% (red to yellow) changes the MTC by 

~3.5 pcm/K but increases the one-batch burn-up by ~6 GWd/t, showing that increased TRU reload 

fraction improves discharge burn-up but makes the MTC worse. The burn-up for 11.5 mm, 85% TD 

fuel is clearly unacceptable, especially in consideration of the very high fuel handling, 

manufacturing and reprocessing requirements and associated costs (blue compared to red). 

Increasing the pin diameter to 12 mm yields a large increase in burn-up at approximately the same 

MTC, hence delivering improved feasibility, although this is at the expense of lower TRU 

incineration rate. This is observed by comparing 11.5 mm 95% TD 45% TRU reload fraction (red) 

with 12 mm 95% TD 40% TRU reload fraction (green). 

In all cases, the Doppler coefficient (DC) was around –3.5 pcm/K for a uniform perturbation of fuel 

temperature from 900 K to 1000 K, which is slightly more negative than that of existing U cores, 

which typically exhibit a DC of between –2.6 pcm/K and –3.4 pcm/K with typical design limits of –

2.0 pcm/K and –3.5 pcm/K (AREVA/EDF, 2011). The high resonance flux and use of Th in the 

reactor improves the DC, although this can be somewhat offset by higher fissile loading. 

2.4.2. Reactivity Control 

It has been shown that meeting the MTC constraint in a RMPWR while maintaining acceptable 

performance is a key challenge in core design. Typical neutron absorbers used for reactivity hold-

down are predominantly thermal absorbers and thus make the MTC worse. It is therefore essential 

to control the reactor while minimizing the increase in MTC. Reactivity control is now investigated 

for the 11.5 mm pin diameter homogeneous assembly design. 

Soluble boron is one of the main ways reactivity is controlled in PWRs. It does, however, make the 

MTC significantly more positive. As the coolant expands, the boron absorption cross-section 

decreases and the boron content of the core reduces. It is therefore essential to minimize the soluble 

boron concentration. In addition, the soluble boron worth is significantly reduced, from ~–6.0 

pcm/ppm (unmodified 4.4 wt% LEU PWR SOC calculated for 1000 ppm) to ~–0.6 pcm/ppm, due 

to reduced coolant volume and the harder neutron spectrum. The MTC gets worse by ~0.007 pcm/K 

/(pcm controlled). So, for every 1000 pcm of excess reactivity to be suppressed, ~1780 ppm of 

unenriched boron is required, and this makes the MTC worse by 7 pcm/K. For comparison, the 

MTC gets worse by ~0.004 pcm/K /(pcm controlled) in the unmodified LEU PWR. There are also 

operational and safety issues associated with high boron content and enrichment. 

Stationary BPs (used here to describe also solid fixed poisons in the core including Gd mixed in the 

fuel, integral fuel burnable absorbers (IFBAs) and fixed burnable absorbers) are also very 

commonly used for power shaping and reactivity control. Black absorbers (which absorb a large 

proportion of incident neutrons and cause a large flux depression) or grey absorbers (which absorb 
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some incident neutrons) can be placed in some or all of the pins. The RMPWR has a harder neutron 

spectrum than a PWR which makes BPs less effective. They absorb fewer neutrons initially and 

also burn out more slowly, making it difficult to design them such that they burn out by the end of 

the first cycle.  

Evenly distributing the BPs in the fuel increases the rate at which they burn out, but also makes 

their overall effect on the MTC worse. However, a localized heavy-worth BP (e.g. within a fuel pin 

or guide tube) will create a local flux dip, which mitigates the MTC by making the number of 

neutrons absorbed less sensitive to changes in the BP absorption cross-section following spectral 

changes. 

The use of 
167

Er to improve the MTC by acting as a resonance absorber was proposed for similar 

configurations in (Rahman et al., 2012). This was found not to be effective as the 0.4 eV 
167

Er 

resonance was at too low an energy. The normalized flux at 0.4 eV increases with coolant 

temperature for a conventional LWR, but decreases for an RMPWR. In addition, due to the 

relatively low cross-section of 
167

Er and the presence of other mild absorbers in its depletion chain, 

it does not burn out sufficiently fast to make it an effective BP (Fig. 2.8). 

Dispersed BPs can be implemented by mixing Gd2O3 or Er2O3 with the fuel or by applying a thin 

coating of ZrB2 (IFBA) respectively. IFBA coatings are typically 1.5 mg/inch, and 3–4.5 mg/inch 

may be possible. Distributed Er and Gd loadings can be selected based on the initial required 

reactivity worth of the poison, but must be configured such that they burn out within the first cycle. 

For the poison to burn out sufficiently quickly, only Gd appears to have a sufficiently high 

absorption cross-section. This absorber would need to be added to a large number of pins in the RM 

designs to ensure burn-out within one cycle (Fig. 2.8). This is in contrast to UO2 fuel where Gd is 

only placed in a minority of pins to prevent burn-out over too short a time. Putting Gd in a small 

number of pins or concentrating 
10

B in burnable absorbers (i.e. fixed absorbers in the guide tubes) is 

not effective. 

Gd2O3 is most effective in this spectrum as the capture cross-sections of 
155

Gd and 
157

Gd (~37 and 

98 barns in this spectrum) are higher than the capture cross-section of 
10

B (~28 barns) and 
167

Er 

(~26 barns) leading to sufficiently rapid burn-out. It is potentially easier to mix Gd or Er into a 

radioactive pellet than to apply an IFBA coating to a radioactive rod. One issue is that Gd and Er 

are lanthanides, which makes them tend to stay with minor actinides (MAs) during reprocessing. 

However, in Section 2.4.4, a heterogeneous assembly is shown to be neutronically favourable, 

which does not require mixing of Gd or Er with MAs. 

Gd distributed over a large number of pins deteriorates the MTC by ~0.004 pcm/K /(pcm 

controlled) which is just over half the figure for soluble boron.  
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2.4.2.1. Control Rods 

One advantage of the Th-TRU fuelled RMPWR (or indeed a U-TRU fuelled RMPWR) is the 

relatively low reactivity swing over the cycle at equilibrium. Due to the high MA content of the 

feed, this low reactivity swing may also be true of transition cycles, but to determine this requires 

further analysis. From the linear reactivity model, it is estimated that without control rods or BPs, 

this could be as little as 2500 pcm for the homogeneous case and less than 5000 pcm for 

heterogeneous fuel assembly designs (see Section 4.4). Provided there is sufficient rod worth, this is 

sufficiently low to make mechanical shim an option for short- and long-term reactivity control in 

place of some or all of the soluble boron.  

Highly enriched (95 at% 
10

B in the B considered here) B4C rods are necessary for the RMPWR. The 

hard neutron spectrum necessitates 
10

B enriched B4C rods to provide a sufficient shutdown margin. 

The same rod poison is also assumed for the RBWR, which is consistent with previous studies 

(Downar et al., 2012).
 
He production and depletion of 

10
B will limit the rod life and result in a 

reduced control worth.  

In contrast to other reactivity control mechanisms, the control rods improve the MTC. This is 

because the reduction in 
10

B absorption cross-section ensuing from the reduction in moderator 

density is outweighed by the increase in neutron flux on the control rod, so the overall number of 

captures increases. Essentially, if the control element is large enough, then it behaves more like a 

black absorber and the increase in flux (due to the decrease in absorption cross-section in the rest of 

the fuel assembly) becomes more significant than the decrease in the rod poison absorption cross-

section.  

A rod is a sufficiently high worth control element to improve the MTC. When the rod worth is 

reduced (by artificially reducing the B4C density without changing the volume of displaced water in 

this case), the beneficial effect reduces. In this manner, it is possible to quantify how big a control 

element needs to be to improve the MTC (Fig. 2.9), and it is apparent that while a control rod has 

sufficient worth to make the MTC more negative, integral burnable absorbers do not.  

While wet annular burnable absorbers (WABAs) have already been ruled out as they do not deplete 

sufficiently rapidly, the WABA worth is expected to be substantially less than –0.2, which from 

Fig. 2.9 is insufficient to improve the MTC. It is worth noting that replacing the coolant in the guide 

tubes by void (i.e. the act of displacing the coolant) makes the MTC worse by 2–3 pcm. There is 

therefore a significant MTC advantage in using mechanical shim to control reactivity. 
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Fig. 2.9. Rod worth vs MTC (for a case with 0.0 pcm/K MTC when unrodded).  

2.4.3. RBWR Homogeneous Assembly  

125 cm and 200 cm core heights were considered, as reference „small‟ and „large‟ cores. 200 cm is 

similar to the height considered in (Ganda et al., 2011) for a Th breeder RBWR, and 125 cm is 

comparable to the U-Pu RBWR (Downar et al., 2012). Axially homogeneous RBWR fuel will be 

easier to manufacture remotely while enabling better thermal-hydraulic performance (from the 

reduced axial form factor) compared to the U-Pu RBWR fuel with an internal axial blanket. The 

assumed equilibrium cycle burn-up for generating the equilibrium isotope vector was 64 GWd/t 

with ratings of 15 MW/t (large core) and 24 MW/t (small core) and 5-year cooling times between 

cycles. Unlike for the RMPWR, the performance is relatively insensitive to these assumptions as the 

conversion ratio (and therefore the TRU reload fraction) is much closer to unity (as a result of the 

harder spectrum) and the 
241

Pu population is significantly smaller. 

The RBWR equilibrium cycle is largely feasible from a reactivity feedback standpoint with 

homogeneous 85% TD fuel, although the TRU reload fraction is significantly lower resulting in a 

lower incineration rate but also a reduced build-up of higher actinides. As the neutron diffusion 

length is significantly larger in an RBWR than an RMPWR, and the core is shorter, leakage is a 

significant and useful mechanism to ensure a negative VC. Fig. 2.10 gives the performance of the 

equilibrium cycle for 26% and 30% reload fraction cases. These approximately correspond to the 

large and small cores. Leakage is estimated for each case using geometric bucklings of 0.0004 cm
–2

 

and 0.0006 cm
–2

, corresponding to 4.3% and 6.3% neutron leakage. The 2% increase in leakage 

approximately balances the 4% absolute increase in reload fraction, i.e. their influences on     



keff  and 
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the VC approximately cancel at all fuel burn-ups. Both cases appear to have excellent discharge 

burn-up potential (with these leakage estimates the one-batch discharge burn-up, i.e. the burn-up at 

which     



keff  is estimated to be 1, exceeds 40 GWd/t: see Fig. 2.10). The large low-leakage core does, 

however, have a slightly better   



k and VC at a given burn-up than the small high-leakage core, i.e. 

leakage is a less effective mechanism than reduced TRU reload fraction when optimizing the burn-

up-VC trade-off.  

The reactivity at 100% VF was also considered, i.e. the reactivity from operating conditions to a 

core filled with 100% steam at the operating pressure. The constraint on VC is that the global VC 

must be kept negative when the power and/or flow rate are perturbed. Here it is termed the „fully 

voided reactivity‟ or FVR.
14

 The FVR is useful for RBWRs because the VC is sensitive to how it is 

calculated. VCs based on 100% VF are often found to be a more limiting case (e.g. (Fukaya et al., 

2009b)) and are the extreme (although non-physical) case of increased power or reduced flow. In 

particular, it is possible for the fully voided core to have positive reactivity if it contains a large 

amount of TRU. Therefore considering this condition as well as a VC based on flow rate 

perturbation is more conservative. The case of a single voided assembly is not considered physical 

or particularly relevant for a RBWR, although as axial leakage is the principal leakage mechanism, 

if these constraints are satisfied then it is probable that a single voided assembly also results in a 

negative VC.  

The reactivity with zero water in the core, termed the zero coolant reactivity (ZCR), is also 

calculated. The ZCR and the FVR may be relevant in severe accidents, such as a large-break loss-

of-coolant accident (LBLOCA) without scram. In this instance, the core depressurizes, and is 

partially or fully uncovered before reflood.  

A full-core analysis is necessary to determine the FVR and ZCR accurately, but a 2D calculation 

with these buckling assumptions indicates that these parameters are negative for both cores when 

axially homogeneous Th-TRU fuel is used (Fig. 2.10c). For the RBWR, the FVR and the ZCR are 

essentially equal, with leakage. Hence in the RBWR core analysis (Chapter 6) it is deemed 

sufficient to consider the FVR.  

The FVR and ZCR of the RMPWR are discussed in Chapter 5. 

 

                                                 
14

 This term is selected for consistency with published papers based on this work. Depending on the relevant core 

condition, FVR could reasonably be used to mean reactivity at zero coolant density or 100% VF. 
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Fig. 2.10. (a)   



k, (b) VC variation, (c) FVR and ZCR with burn-up for selected RBWR cases. 
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2.4.4. RMPWR Heterogeneous Assembly 

Spatial separation of U3 and TRU has been shown to improve neutronic performance (Rahman et 

al., 2012) but would require a suitable elemental partition at the reprocessing stage. Both discharge 

burn-up and MTC are improved using this fuel configuration, and this can be attributed to an 

increase in thermal neutron flux in the U3-bearing pins and a decrease in thermal neutron flux in the 

TRU-bearing pins relative to the homogeneous fuel assembly configuration. These effects are 

caused by the high thermal absorption cross-section of TRU. The heterogeneous loading 

implemented here consists of placing Th-TRU pins in the Centre of the assembly and Th-U3 pins in 

the Periphery (TCUP) (Fig. 2.11). 

 

Fig. 2.11. 144 Th-TRU pin (blue) 120 Th-U3 pin (green) TCUP assembly design (WIMS model), 

one octant.  

By concentrating the TRU in about half the pins, the TRU content for the Th-TRU pins is doubled. 

This leads to a significantly harder spectrum in this region (Fig. 2.12) and therefore larger fast 

fission contribution and improved neutron economy. By removing the TRU from the pins 

containing U3, the spectrum is made more thermal, increasing the thermal fission of U3. Overall, 

this leads to a decrease in resonance capture and an increase in 



 . The advantages of this design are 

quantified and analysed in detail in Chapter 3. A heterogeneous RBWR assembly is considered in 

Chapter 6. 
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Fig. 2.12. Relative flux in Th-TRU pins compared Th-U3 pins in a TCUP assembly. 

It must be noted that inverting this design (i.e. placing the Th-U3 in the centre and the Th-TRU pins 

at the periphery) to place the „thermal‟ region near the guide tube holes leads to a slightly improved 

burn-up-MTC trade-off. However, the TCUP design is preferable if MAs are partitioned and placed 

as targets in the guide tubes positions (see Chapter 7) as they are then burned in a harder spectrum.  

As a result of the more favourable neutronic properties, an 11 mm pin diameter was sufficient to 

obtain an equilibrium cycle with burn-up > 35 GWd/t and negative MTC, compared to 11.5 mm for 

the homogeneous assembly.  

The reactivity is plotted against the burn-up for an uncontrolled heterogeneous assembly with the 

equilibrium fuel composition in Fig. 2.13. The relatively low reactivity swing is due to the harder 

spectrum and larger content of TRU isotopes with even mass-number, which effectively behave as 

fertile neutron absorbers. By suppressing reactivity and enhancing the conversion to fissile isotopes, 

they promote a flatter reactivity profile with irradiation. The thermal flux in the Th-U3 pins was 

found to be sufficiently high for Gd to be an effective BP (Fig. 2.13). Placing Gd in the Th-TRU 

pins was much less effective. While the number of Gd-bearing pins would be significantly 

increased with respect to the current configurations, the dominant factor increasing manufacturing 

costs is the requirement to remotely fabricate pins due to the presence of 
232

U in the fuel. Lighter 

absorbers such as 
167

Er do not burn out quickly enough and therefore appear to be unsuitable for 

RM designs.  
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Fig. 2.13. Gd and Er BP burn-out for a typical TCUP equilibrium cycle. 

Approximately 144 Th-TRU pins per assembly appears sensible to allow as even a power 

distribution as possible (Fig. 2.11; this is discussed in more detail in Chapter 5), and the 

performance of this design at different reload fractions is presented in Table 2.11. 3-batch burn-ups 

were estimated by multiplying the one-batch burn-up by 1.5 in accordance with the linear reactivity 

model. 

Table 2.11. Performance of 144 Th-TRU pin TCUP assembly. 

Reload 

fraction TRU 

(at%) 

Equilibrium 

TRU  

at% in TRU pins 

Discharge 

burn-up 

(GWd/t) 

Maximum HFP 

MTC over 

cycle (pcm/K) 

Assumed BU 

in convergence 

calculation 

(GWd/t) 

45 28.3 27.1 –18.4 40 

50 34.0 40.7 –10.8 40 

52.5 36.8 51 –7.5 40 

55 37.8 53.2 –5.9 40 

52.5 37.2 56.2 –7.5 50 

55 40.5 65.1 –3.8 50 

As previously discussed, the assumed burn-up used when converging the equilibrium isotope vector 

affects results, and therefore a good estimate of this burn-up is required. From Table 2.11, it can be 

seen that an increase in the assumed burn-up for the isotopic convergence significantly affects the 

estimated discharge burn-up, TRU fraction and MTC. The overall effect of this is that 

underestimating the burn-up leads to pessimistic results. 

The introduction of Gd BP in the fresh fuel results in a severe penalty to the MTC (Fig. 2.14). The 

full-core MTC can still be negative due to the negative MTC of the burned fuel assemblies but a 



    55 

 

full-core evaluation is required to ascertain this (see Chapter 5). As previously discussed, high 

worth control rods have a beneficial effect on the MTC. With a marginally negative MTC, it is 

necessary to use control rods to suppress at least some of the remaining excess reactivity given that 

soluble boron has low worth and is highly disadvantageous to MTC. The reactivity swing over the 

cycle can be reduced to ~2000 pcm using Gd BP, so it is conceivable to eliminate soluble boron for 

reactivity control (but it may not be possible to eliminate it altogether, e.g. it may be required to 

achieve cold shutdown). 
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Fig. 2.14. TCUP assembly MTC over the core residence time. 

2.4.4.1. Non-uniform Temperature Perturbations over the Assembly 

The heterogeneous design has an additional secondary effect on the MTC. It was found that when 

the coolant density was reduced, the reaction rate in the Th-TRU pins increased. Therefore it is not 

valid to calculate the MTC by uniformly perturbing the coolant density. The coolant density 

distribution should be obtained coupling the lattice calculation with a subchannel analysis. 

However, it is a sufficiently good approximation to calculate the density variation with an assumed 

power shape. Using WIMS, a uniform change in coolant density from 0.707 g/cc to 0.655 g/cc was 

found to perturb the power distribution between Th-TRU and Th-U3 by ~1%. This change in power 

shape was used in a COBRA model (Basile et al., 1987, updated 1999). The relative change in 

coolant density between Th-TRU and Th-U3 channels was ~0.1%. The MTC was then recalculated 

using coolant densities calculated from the power distributions in the subchannel model. This made 

the MTC worse by ~1 pcm/K by reducing the negative feedback effect of Th-U3 and increasing the 

positive feedback effect of Th-TRU.  

The variable moderator density within the assembly itself affects the power distribution in the 

assembly (i.e. the power distribution and moderator density are coupled). The power distribution 
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was recalculated using variable moderator density and was essentially unchanged (a 0.04% negative 

feedback effect was observed, where the reduced moderator density around the Th-TRU pins very 

marginally reduced their power under perturbed conditions), so the above calculation can be 

regarded as being „converged.‟  

The DC is ~–3.5 pcm/K for perturbations to the fuel temperature in both the Th-TRU and Th-U pins 

so differential heating during rapid transients should not be an issue.  

2.4.4.2. Power Distribution within Assembly  

Careful enrichment balancing is required to maintain adequate power peaking over the core 

residence time. This is due to the large spectral difference across the assembly and the different 

variations of   



k with burn-up in the Th-TRU and Th-U3 regions of the assembly. 

As a result of the higher thermal flux and fission cross-section, the U3 burns out much faster than 

the TRU, leading to large power redistributions and high power peaking over the core residence 

time. This can be limited during the first irradiation cycle by using BPs and fissile zoning. Power 

peaking may become problematic for subsequent cycles, although the hot assembly is likely to be in 

either the first or second batch, which acts to mitigate this.  

BPs can help balance the power peaking over the first cycle by keeping an even power sharing 

between the Th-U3 and Th-TRU regions (Fig. 2.15). In subsequent cycles, the assembly power 

peaking becomes significantly worse, but by ensuring the „hot‟ assembly has an adequate form 

factor, the overall core form factor should be acceptable. 

To minimize the power peaking of the hot pin, fissile zoning is required. In particular, since the flux 

on the Th-TRU pins close to the Th-U3 pins is relatively thermalized, a reduction of their fissile 

content can be adopted to avoid power spikes. For the 152 Th-TRU pin assembly of Fig. 2.15. with 

no fissile zoning, the power peaking at SOC is 1.16 (Fig. 2.16) increasing to 1.21 at 20 GWd/t. 

Fissile zoning is considered in Chapter 5. 
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Fig. 2.15. Power share of Th-TRU region for 52.5% reload TCUP assembly (1) without BPs, (2) 

with Gd BPs, which reduces power redistribution over first cycle, (3) appropriate adjustment of the 

number of Th-TRU pins from 144 to 152 to minimize initial power imbalance. 

IT          
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Fig. 2.16. Power peaking for 152 Th-TRU pin TCUP assembly with no fissile content variation. 

2.5. Concluding Remarks 

With sufficiently reduced moderation, a Th-fuelled LWR can operate on full TRU recycle while 

burning an external supply of TRU, e.g. recovered from reprocessing used fuel discharged from 

once-through LWR operation. A Westinghouse 17x17 PWR assembly with 12.6 mm pin pitch can 

achieve sufficiently low moderation to perform full TRU recycle if the pin diameter is increased 

from 9.5 mm to 11–11.5 mm. This requires fuel of 95% theoretical density to sufficiently reduce the 

H/HM ratio, and spatial separation of TRU from U3 is also necessary to improve neutronic 

performance. However, an RBWR has a sufficiently fast neutron spectrum to comfortably maintain 

a high burn-up equilibrium fuel cycle even with homogeneous 85% TD fuel. This is not possible if 

238
U is used as a fertile isotope. This reactor and fuel designs introduced in this chapter will be used 

as a basis for further design and analysis in the subsequent chapters.  
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Chapter 3 – Void Reactivity Feedback Analysis 

In Chapter 2, it was established that the TRU incineration performance of RM LWRs is limited by 

coolant reactivity feedback. Generalizing for RMPWRs and RBWRs, the moderator density 

coefficient (MDC) must be kept negative. The MDC is worse when more TRU is loaded, but TRU 

feed is also needed to maintain criticality. 
232

Th has been selected as a fertile isotope to improve the 

MDC. To establish its performance advantage over 
238

U in LWRs, TRU incineration in three 

systems is compared: „reference‟ PWRs, RMPWRs and RBWRs. The MDC of the equilibrium 

cycle is analysed by reactivity decomposition with perturbed coolant density by isotope and neutron 

energy. The results show that using 
232

Th as a fertile isotope yields superior performance to 
238

U. 

This is due essentially to the high resonance 



  (neutrons produced/neutrons absorbed) of U3, which 

increases the fissibility of the U3-TRU isotope vector in the Th-fuelled system relative to the U-

fuelled system, and also improves the MDC in a sufficiently hard spectrum. The advantage of 

spatial separation of TRU and U3 in the Th-fuelled system renders further improvement by 

hardening the neutron spectrum in the TRU and softening it in the U3. This improves the TRU 



  

and increases the negative MDC contribution from reduced thermal fission in U3. 

3.1. Introduction 

As discussed in Chapter 1, the favourable 
232

Th void reactivity effect compared to 
238

U has resulted 

in recent interest in use of Th fuel across a range of reactor platforms. The beneficial effect of Th on 

the MDC is well known, and the mechanisms for this have previously been studied for single-pass 

Th-Pu designs (Xu et al., 2002) and fast reactors (Fiorina et al., 2013b). Notably, 
232

Th has a much 

lower fast fission cross-section than 
238

U, and 
233

U has a higher resonance 



  and lower fast 



  than 

239
Pu with the fission cross-section decreasing steeply with neutron energy at high energies (Fiorina 

et al., 2013b). 

In this chapter, the contributions to the reactivity change with moderator density are decomposed by 

energy and isotope for U- and Th-fuelled PWRs, RMPWRs and RBWRs. 

3.2. Method 

3.2.1. Reactivity Decomposition 

Reactivity (  ) can be expressed in terms of the sum of absorptions ( iiA  using suffix notation) and 

productions ( iiP ) within the reactor, where (n, 2n) reactions are treated as negative absorption: 

ii

ii

P

A

k

k



 1

1
           (3.1) 
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where k  is the neutron multiplication factor. The reactivity change with respect to coolant density 

can therefore be expressed as: 
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where d  is the coolant density. 

For a small perturbation in coolant density, with reaction rates normalized relative to the production 

rate, Eq. 3.2 can be expressed as: 

    



  Aii 
1

k
Pii









          (3.3) 

For a given subset of isotopes and energy groups, j, the contribution to the reactivity change is: 

    



 j  Aj 
1

k
Pj









          (3.4) 

For consistency between PWRs and BWRs, the reactivity change is evaluated as an MDC (instead 

of a temperature or void coefficient), calculated at beginning-of-equilibrium-cycle. The MDC is 

calculated for a 20 K change in temperature, corresponding to a 0.052g/cm
3
 expansion of the 

coolant for PWRs, and for a change in VF from 45% to 65% for BWRs, corresponding to a 0.140 

g/cm
3
 change in coolant density. Leakage effects are not included to simplify the comparison. 

3.2.2. Fuel Cycle Modeling 

The feed to incinerate consists of TRU with either 
238

U or 
232

Th as the fertile component. The 

single-tier TRU feed from Chapter 2 is utilized, with the equilibrium cycle composition determined 

by iterating the neutronic simulations for a sufficient number of recycles with a fixed TRU reload 

fraction in the feed at an assumed equilibrium cycle burn-up (40 GWd/t in the PWR and RMPWR; 

60 GWd/t in the RBWR), with full actinide recycle assuming no losses. The exception was the first 

cycle (i.e. „fresh‟ Th-TRU) where the fuel was Th-20 at% TRU, to ensure that the interim cycles 

were representative, although not completely accurate. 

To assess the performance of this fuel cycle in different neutron spectra, three fuel assembly 

configurations are considered: (1) a „reference‟ PWR; (2) a reduced-moderation PWR (RMPWR); 

(3) a reduced-moderation BWR (RBWR). The cooling time between irradiation cycles is 5 years, 

except for the PWR where it is reduced to 1 year, which is necessary to generate a neutronically 

feasible equilibrium cycle. A long cooling time greatly increases 
241

Pu decay into 
241

Am which 

increases the TRU feed necessary to sustain criticality. Remote fabrication of high density fuel is 

likely to be difficult. Therefore a fuel density of 85% of theoretical was specified, except for the 

RMPWR where it is increased to 95% of theoretical, as this is necessary to generate a feasible 
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equilibrium cycle. This means that the performances of the reactors relative to each other are not 

directly comparable, but the effect of Th relative to U for different spectra can be observed. 

Equilibrium isotope vectors are given in Table 3.1. 

Table 3.1. Equilibrium isotope vectors at loading (at%). 

 PWR RMPWR 

11.5mm pin 

RBWR 

 Th U Th U Th U 

241
Am 0.96 1.12 0.88 1.58 0.67 1.15 

242m
Am 0.02 0.03 0.02 0.05 0.03 0.05 

243
Am 1.22 1.16 0.61 0.68 0.36 0.40 

244
Cm 1.55 1.60 0.45 0.53 0.20 0.25 

245
Cm 0.45 0.47 0.23 0.25 0.11 0.11 

246
Cm 0.40 0.39 0.19 0.19 0.08 0.08 

247
Cm 0.06 0.06 0.04 0.04 0.02 0.02 

248
Cm 0.03 0.03 0.02 0.02 0.01 0.01 

237
Np 0.64 0.51 0.43 0.32 0.36 0.21 

238
Pu 3.06 3.10 1.74 2.55 0.99 1.14 

239
Pu 3.96 6.97 2.30 7.90 1.66 7.74 

240
Pu 4.77 6.45 2.83 6.88 2.19 6.50 

241
Pu 2.13 2.66 0.88 1.40 0.49 0.86 

243
Pu 4.22 4.12 1.69 2.09 0.92 1.17 

232
Th 71.5  80.6  82.9  

233
U 2.88  3.80  5.59  

234
U 1.15 0.17 1.94 0.21 2.14 0.36 

235
U 0.65 0.14 0.83 0.16 0.76 0.17 

236
U 0.32 0.07 0.51 0.09 0.57 0.14 

238
U  70.9  75.1  79.6 

The neutron energy spectra are given in Fig. 2.4. The spectra are normalized to one, and then the 

RMPWR and RBWR fluxes are plotted relative to the PWR fluxes for each energy group in Fig. 3.1 

to illustrate the substantial reduction in moderation, between the RMPWR and PWR, and the further 

reduction for the RBWR. 
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Fig. 3.1. Relative neutron flux for RMPWR and RBWR compared to PWR. 

3.3. Results 

3.3.1. Reactor Performance 

The performance of the fuel cycle is essentially a trade-off between maximizing the TRU 

incineration rate and discharge burn-up while respecting the MDC constraint. The TRU incineration 

rate and discharge burn-up can be increased by increasing the TRU reload fraction in the feed, but 

this makes the MDC worse. The FVR is also given for completeness. The performance of each fuel 

type is given in Table 3.2. 

Table 3.2. Equilibrium cycle performance. 

 TRU reload 

fraction 

1-batch 

burn-up 

(GWd/t) 

MDC 

(Δρ/(g/cm
3
)) 

FVR Eq. TRU + U3 (at 

%) 

PWR 
232

Th 75% 36 –0.070 +0.067 28.5 

PWR 
238

U 65% 22 –0.063 +0.123 29.1 

RMPWR 
232

Th 45% 20 –0.024 +0.020 19.4 

RMPWR 
238

U 40% 27 +0.087 +0.149 24.9 

RBWR 
232

Th 25% 42 –0.037 –0.011 17.1 

RBWR 
238

U 15% 36 +0.177 +0.091 20.4 

For each reactor, the TRU reload fraction is greater for the Th-fuelled cycle, meaning that the 

conversion ratio is lower and the TRU incineration rate is higher. The 
232

Th population in the 

reactor is higher than the 
238

U population for the same reactor with the U-fuelled cycle (e.g. from 
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Table 3.1: 71.5% 
232

Th in the compared to 70.9% 
238

U in the PWR). For a given TRU reload 

fraction, the U cycle has a higher burn-up due to the smaller thermal capture cross-section and 

larger fast fission threshold of 
238

U compared to 
232

Th.15 

In the more thermal spectrum, a higher TRU reload fraction is necessary to sustain the chain 

reaction. However, for a given TRU population, the MDC becomes more positive as moderation is 

reduced. The overall effect is to improve the feasibility of the cycle as moderation is reduced 

(although this is not obvious from Table 3.2 due to the short cooling time used for the PWR). 

In each case, the U-fuelled cycle either has a lower 1-batch burn-up at a less negative MDC than the 

Th cycle and/or a positive MDC (the RMPWR U cycle has superior burn-up but a substantially 

positive MDC). The FVR of the U-fuelled cycle is also substantially more positive than for the Th-

fuelled cycle in each case. 

The TRU incineration rate is roughly (TRU reload fraction x 384 kg/GWthyr), i.e. a TRU reload 

fraction of 50% gives an incineration rate of 192 kg/GWthyr. The incineration rate reduces with 

reduced moderation, with a maximum of around 290 kg/GWthyr for the Th-fuelled PWR and a 

minimum of around 58 kg/GWthyr for the U-fuelled RBWR, which is very low for a burner reactor. 

3.3.2. Reactivity Decomposition 

The reactivity decomposition following a change in coolant density has been calculated for every 

reactor and fuel type using the methodology discussed in Section 3.2. The results as a function of 

neutron energy are given in Figs. 3.2a-c for the PWR, RMPWR and RBWR respectively. The 

cumulative reactivity changes are plotted in Fig. 3.3. This is found by integrating Fig. 3.2 from high 

to low energies and hence shows the total effect over a given energy range. In general, there is a 

negative reactivity contribution at thermal energies due to decreased thermal fission. Low resonance 

energies (< ~5 eV) feature a positive reactivity contribution due to the decreased resonance capture 

from the decreasing flux. At higher resonance energies voiding causes a flux increase and therefore 

resonance capture also increases, with a net decrement in reactivity. At fast energies there is an 

increase in fast fission with a positive reactivity contribution. There is a noticeably larger increase 

in fast fission for the U fuel vs Th fuel.  

Table 3.3 gives the reactivity decomposition by element. The 
232

Th effect is negative and becomes 

increasingly more negative in the harder spectrum of the RMPWR and RBWR. The 
238

U effect is 

also negative, but smaller in magnitude compared to 
232

Th and relatively constant at higher neutron 

energies where the detrimental effect of fast fission in case of voiding is greater. 

                                                 
15

 Note that the results for the PWR indicate that with short cooling times, the MDC is negative in both cases. However, 

the FVR and ZCR are very positive, in particular for the U-fuelled PWR. This is not considered further here. 
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Fig. 3.2. Reactivity decomposition by neutron energy for (a) PWR, (b) RMPWR, (c) RBWR. 
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Fig. 3.3. Cumulative reactivity decomposition by neutron energy. 

Table 3.3. Reactivity decomposition by element (pcm/(g/cm
3
)). 

 
232

Th/
238

U Pu MA 
233-236

U* 

PWR Th –8031 725 –2334 1847 

U –5859 1184 –2175 –164 

RMPWR Th –11605 5376 1748 2079 

U –3410 9172 2658 225 

RBWR Th –19779 10214 4297 3021 

U –3980 16264 5254 1220 

*For U cycles there is essentially no 
233

U. 

Pu has a positive effect on MDC due to increased fast fission and reduced resonance capture at 

higher energies. The effect gets greater with reduced moderation and is also higher for the U fuel 

where the Pu content is higher. 

MAs (Am, Cm and Np) have a negative effect in the PWR and a positive effect in the harder 

RMPWR and RBWR spectra. 
241

Am, 
243

Am and 
237

Np behave similarly to 
238

U, but have lower 

fission thresholds. Again, the fast fission effect is worse for U fuel, where their populations are 

higher. 

U3 in Th has a positive effect on MDC, similarly to Pu. However, in contrast to Pu, the effect of U3 

is relatively constant with neutron energy. This results in much lower positive reactivity insertion 

from U3+Pu in RM Th reactors than from Pu in RM U reactors.  

The reactivity contributions from 
232

Th, 
238

U, U3 and TRU are decomposed into 172 groups in Figs. 

3.4a-f. 
232

Th is not fissile except at very high energies, so contributes negatively to reactivity at 

energies where flux increases and positively at energies where the flux decreases. U3 is fissile at 

virtually all energies, so the contribution is of the opposite sign to the 
232

Th contribution at virtually 
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all energies. For Pu, resonance capture is more important at low resonances energies, and the fast 

fission contribution is greater. 
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Fig. 3.4. Reactivity decomposition by fuel component and neutron energy for (a) PWR Th, (b) 

PWR U, (c) RMPWR Th, (d) RMPWR U, (e) RBWR Th, (f) RBWR U. 
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3.4. Discussion 

3.4.1. Impact of 
232

Th vs 
238

U 

From Table 3.3, both 
238

U and 
232

Th have an overall negative reactivity contribution with voiding. 

From Figs. 3.4a-f, this is due to increased resonance captures from the spectral shift ensuing 

voiding, which is partially offset by increased fast fission. The 
232

Th fast fission threshold is higher 

(Fig. 3.5) and therefore the detrimental fast fission effect on MDC is lower relative to 
238

U.  

232
Th also has a higher capture cross-section than 

238
U. This has been suggested as a cause of 

improved MDC for 
232

Th relative to 
238

U, by increased resonance capture with flux (Xu et al., 

2002). However, while the thermal 
232

Th cross-section is significantly higher (Fig. 3.5), the 

resonance and fast absorption cross-sections are similar, hence a higher 
232

Th resonance capture 

cross-section cannot explain the improved MDC. Three-group cross-sections for 
238

U and 
232

Th 

condensed using the RBWR spectrum are given in Table 3.4. 
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Fig. 3.5. 
232

Th and 
238

U cross-sections in 172 groups (calculated for RBWR). 

Table 3.4. 3-group absorption cross-sections for 
232

Th and 
238

U (calculated for RBWR) (barns). 

 
232

Th 
238

U 

Fast (> 9119 ev) 0.22 0.17 

Resonance 1.36 1.42 

Thermal (< 0.625 eV) 1.59 0.45 

The much larger 
232

Th negative reactivity effect is therefore due to the smaller fast fission positive 

reactivity ensuing voiding. The larger negative contribution observed at resonance energies is due to 

a larger change in flux with voiding than for 
238

U, when flux change is normalized to 1000 

productions. This larger change in flux comes about as there are fewer additional fast fissions with 

voiding in Th relative to U, so the flux at high energies needs to increase by more to maintain 1000 
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productions. This is verified in Fig. 3.6, where the change in flux for the Th and U fuels in Table 

3.1 is plotted (normalized to 1000 productions). Also plotted is the change in flux for the Th isotope 

vector with 
232

Th replaced by 
238

U, (i.e. the 5
th

 column of numbers in Table 3.1 except with 82.9 

at% 
238

U and 0% 
232

Th) which gives the direct effect of switching the two isotopes.  
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Fig. 3.6. Change in flux with coolant density (per 1000 productions in normal and perturbed state) 

for RBWR. 

The higher thermal capture cross-section and lower fast fission cross-section of 
232

Th also act to 

reduce k, such that a higher TRU reload fraction is needed to sustain criticality. The resulting 

increased TRU+U3 content acts to make the MDC worse, so to directly compare the effect of 
232

Th 

with 
238

U, it is necessary to consider the trade-off between MDC and burn-up. To simplify the 

comparison, the k-MDC trade-off for 
232

Th and 
238

U is plotted in Fig. 3.7, for a mixture of the fertile 

isotope with TRU. The TRU isotope vector is PWR U from Table 3.1. The performance of the Th-

TRU in Fig. 3.7 is not representative of the performance of the closed Th-TRU cycle, but it is 

illustrative in isolating the „direct‟ effect of 
232

Th from the „indirect‟ effect of its impact on the 

equilibrium isotope vector.  
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Fig. 3.7. Trade-off between k and MDC for 
232

Th-TRU and 
238

U-TRU fuels. 
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In a PWR spectrum, there is no direct benefit to using 
232

Th. In an RBWR spectrum, thermal 

capture is less significant and fast fission is more significant, so there appears to be a slight direct 

benefit from 
232

Th.  

3.4.2. Impact of U3 vs TRU 

From Table 3.3, the combined positive reactivity contribution of U3 and TRU in the Th fuel is 

lower than the TRU contribution in the U fuel for the RMPWR and RBWR, but higher for the 

PWR. This behaviour is due to the high resonance 



  of U3 relative to TRU, especially Pu (Table 

3.5, Figs. 3.8a-c, Fig. 3.9). 

Table 3.5. 3-group 



  for TRU and U3 (calculated for RBWR). 

 
232

Th 

TRU 

232
Th 

U3 

232
Th 

U3+TRU 

238
U TRU 

Fast (> 9119 eV) 2.47 2.27 2.39 2.53 

Resonance 0.78 1.70 1.14 0.95 

Thermal (< 0.625 eV) 1.33 2.10 1.47 1.41 

Fig. 3.8 shows that for the PWR equilibrium fuel, 



  of U3-TRU mix in Th fuel is similar to 



  of 

TRU in U fuel (Fig. 3.8a). On the other hand, 



  of U3-TRU in Th fuel is slightly larger than 



  of 

TRU in U fuel for the RMPWR (Fig. 3.8b) and significantly larger for the RBWR (Fig. 3.8c). 

Fig. 3.9 shows that: U3 has higher thermal and resonance 



  and lower fast 



  than Pu; Am and Np 

are not fissile except above a threshold energy, and for Am at very thermal energies; Cm is fissile. 

As the coolant voids, there is a decrease in fission at low energies and an increase at high energies. 

In U3, 



  is relatively constant with neutron energy, whereas in TRU the resonance 



  is low but the 

fast 



  is high (Table 3.5). This means that, when the coolant voids, there is a greater increase in 

productions in TRU, and this becomes more significant as the spectrum shifts to fast energies.  

In the PWR, coolant voiding leads to a flux increase in the lower resonance energies, which results 

in a positive reactivity contribution from U3 fission. In the RMPWR and RBWR, the spectrum 

increases at higher energies in case of voiding and the increased resonance 



  and lower fast 



  of 

U3 compared to TRU become increasingly beneficial. While increased fast fission increases the 

MDC for both U3 and TRU, the contribution to MDC from the ~1–100 eV spectral range is 

negative for U3 (reduced fission, 



  > 1) but positive for TRU (reduced capture, 



  < 1). 

The high resonance 



  of U3 (Fig. 3.9) also leads to high overall 



 , and thus to an increase in the 

overall value of 



  for the U3-TRU mix, relative to TRU in the U-fuelled design (Table 3.6, Figs. 

3.8a-c). The TRU in the U fuel has a higher 



  than the TRU in the Th fuel (Fig. 3.9). This is the 
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result of the different Pu isotopic composition for the respective TRU vectors (e.g. higher 
239

Pu 

content in U due to the breeding from 
238

U). 
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Fig. 3.8. 



  variation with neutron energy by fuel component for (a) PWR, (b) RMPWR, (c) RBWR.  



    71 

 

0

1

2

3

4

5

6

7

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Neutron energy (eV)

e
ta

U3

Am

Cm

Pu

Np

 

Fig. 3.9. 



  variation by element.  

Table 3.6. 



  for TRU, U3 and U3+TRU mix. 

 
232

Th 

TRU 

232
Th 

U3 

232
Th 

U3+TRU 

238
U 

TRU 

PWR 1.15 1.81 1.27 1.23 

RMPWR 1.10 1.82 1.35 1.27 

RBWR 1.16 1.94 1.58 1.28 

For a given fertile fuel, a higher 



  reduces the amount of fissile fuel that is required to sustain 

criticality. In the Th-fuelled system, this is offset by the higher capture cross-section and reduced 

fast fission cross-section of 
232

Th, which reduce reactivity but benefit the MDC (Fig. 3.7). In 

addition, the „fuel‟ (i.e. everything but 
232

Th or 
238

U) population is lower in the Th-fuelled systems 

for each reactor type. This confirms that the higher 



  of U3+TRU in Th than TRU in U allows a 

reasonable cycle length to be sustained despite the high capture cross-section and low fast fission 

cross-section of 
232

Th.  

In the Th-fuelled system, the U3 population increases with reduced moderation due to increased 

breeding. This increases the beneficial effects of U3 on 



  (Figs. 3.8a-c) and the MDC. 

3.5. Heterogeneous Recycle 

3.5.1. Assembly Design 

The benefits of the TCUP assembly design are now investigated. Homogeneous and TCUP 

assemblies are compared. For the RMPWR, a pin diameter of 11 mm is used for both the 

homogeneous and TCUP assemblies, as this is the minimum feasible pin diameter for the TCUP 

assembly (Chapter 2). The equilibrium isotope vectors are given in Table 3.7. The TCUP 
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assemblies are given in Fig. 3.10. For the RBWR assembly, the positioning of the Th-U3 pins next 

to the bypass channel is sensible, as the thermal flux is significantly greater near the bypass channel. 

Table 3.7. Equilibrium isotope vectors of homogeneous (hom.) and TCUP assemblies (at%). 

 RMPWR 

11 mm pin 

RBWR 

 Hom

. 

TCU

P 

Hom. TCUP 

241
Am 0.95 1.42 0.67 1.24 

242m
Am 0.02 0.04 0.03 0.05 

243
Am 0.69 0.77 0.36 0.54 

244
Cm 0.52 0.51 0.20 0.25 

245
Cm 0.25 0.22 0.11 0.11 

246
Cm 0.22 0.21 0.08 0.12 

247
Cm 0.04 0.05 0.02 0.03 

248
Cm 0.02 0.02 0.01 0.01 

237
Np 0.46 0.58 0.36 0.56 

238
Pu 1.95 2.41 0.99 1.44 

239
Pu 2.47 3.52 1.66 3.17 

240
Pu 3.01 5.43 2.19 5.17 

241
Pu 0.98 1.07 0.49 0.65 

242
Pu 1.95 2.87 0.92 1.95 

232
Th 79.7 74.8 82.9 77.6 

233
U 3.52 2.55 5.59 4.77 

234
U 1.94 2.21 2.14 2.31 

235
U 0.85 0.64 0.76 0.71 

236
U 0.51 0.66 0.57 0.59 
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Fig. 3.10. TCUP RMPWR (left) and RBWR (right) assembly designs with Th-TRU (blue) and Th-

U3 (green) pins. 

3.5.2. Results 

Table 3.8 summarizes the performance of the homogeneous and TCUP fuel cycles. Both the 

discharge burn-up and the MDC are substantially improved by the TCUP fuel configuration. 

However, the FVR is slightly worse. For the RBWR this is partly a result of the much larger TRU 

reload fraction. Despite this, the much larger discharge burn-up leads to a design which is 

advantageous overall. 

Table 3.8. Performance of homogeneous and TCUP fuel assemblies 

 TRU reload 

fraction 

1-batch burn-up 

(GWd/t) 

MDC (Δρ 

/(g/cm
3
)) 

FVR 

RMPWR 

Hom. 

50% 11 –0.036 +0.035 

RMPWR 

TCUP 

50% 27 –0.064 +0.039 

RBWR Hom. 25% 42 –0.037 –0.011 

RBWR 

TCUP 

35% 80 –0.059 –0.003 

This is due to the thermal flux in the Th-TRU pins being much lower than in the Th-U3 pins (Fig. 

3.11). Concentrating the TRU further increases the resonance absorption effect from TRU isotopes 

and the large thermal absorption resonances in Pu. Conversely, there is an increased thermal flux in 

the Th-U3 pins. The thermal diffusion length is of the order of the pin pitch, so while there is some 

thermal neutron transport between regions, it is relatively limited. When the assembly is fully 

voided, fast fission effects become more significant, such that the TCUP assembly does not perform 

as well. 
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Fig. 3.11. Relative flux in Th-TRU compared to Th-U3 pins in TCUP assembly. 

Note that the RMPWR fuel assembly design in Fig. 3.10 can also be inverted such that the 

thermalized Th-U3 pins are near the guide tube positions. This results in a slight improvement by 

enhancing the spectral variation. 

3.5.2.1. Effect on 



  

The TCUP fuel design results in an improved 



  for the resultant TRU-U3 vector in the fuel (Table 

3.9). This allows criticality to be sustained to higher burn-ups. The 



  of the TRU increases as a 

direct result of the harder neutron spectrum, i.e. the fast flux is higher, and 



  is greater at fast 

energies. The U3 



  varies less with neutron energy, and therefore U3 



  for the homogeneous and 

TCUP assemblies is similar (Fig. 3.12, Table 3.5). 

Table 3.9. 



  and Productions (P) for TRU and U3 for homogeneous and TCUP assemblies. 

 Hom. 



  
TCUP 



  Hom. 

P 

TCUP P 

RMPWR U3 1.79 1.81 430 454 

RMPWR TRU 1.08 1.12 552 530 

RMPWR U3 + TRU 1.31 1.36 982 984 

RBWR U3 1.94 1.93 654 588 

RBWR TRU 1.16 1.32 321 390 

RBWR U3 + TRU 1.58 1.63 975 978 

The equilibrium isotope vector also changes slightly. The TRU is burned in a slightly harder 

spectrum so a more fissile equilibrium TRU vector could be expected. However, from Fig. 3.12, the 

homogeneous and TCUP equilibrium TRU vectors have similar 



  variation with energy. 
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Fig. 3.12.TRU 



  vs neutron energy for homogeneous and TCUP fuel assemblies.  

Fig. 3.12 shows that there is little difference in 



  for homogeneous and TCUP fuel, but overall 



  

for homogeneous fuel is generally slightly higher due to higher equilibrium U3 composition. 

The relatively thermal spectrum in the U3 region, and relatively fast spectrum in the TRU region 

results in a lower equilibrium U3 population and a higher equilibrium TRU population than the 

homogeneous recycle case (Table 3.7). However, the higher thermal fission cross-sections can 

result in a higher overall reaction rate in U3 (for the RMPWR in Table 3.9).  

Increasing the number of TRU pins in the assembly tends to increase the TRU reaction rate but 

improve the TRU 



  (due to a more fissile isotope vector), leading to a very similar overall 

performance. 

3.5.2.2. Effect on Void Reactivity Feedback 

The improvement in MDC from the homogeneous to the TCUP configuration is investigated by 

decomposing reactivity into Th, U3 and TRU components as before (Figs. 3.13a-c, Table 3.10). 

This is performed for the RMPWR only as the mechanisms in the RBWR are very similar. 



    76 

 

a 

 

-600

-400

-200

0

200

-2.8 -1.3 -0.8 -0.4 -0.1 0.0 0.1 0.3 0.6 1.2 1.7 2.5 3.3 4.3 5.2 5.9 6.5 7.2

log10 (Neutron energy (eV))

R
e

a
c
ti

v
it

y
 c

h
a

n
g

e
/ 

c
o

o
la

n
t 

d
e

n
s

it
y

 

c
h

a
n

g
e

 (
p

c
m

/ 
(g

/c
m

3
))

 

Th Hom

Th Het

 
232

Th 

b 

-600

-400

-200

0

200

400

-2
.8

-1
.4

-0
.9

-0
.5

-0
.2

0
.0

0
.0

0
.2

0
.4

0
.7

1
.2

1
.6

2
.2

3
.1

3
.9

4
.7

5
.6

6
.1

6
.7

7
.3

log10 (Neutron energy (eV))

R
e
a
c
ti

v
it

y
 c

h
a
n

g
e
/ 
c
o

o
la

n
t 

d
e
n

s
it

y
 

c
h

a
n

g
e
 (

p
c
m

/ 
(g

/c
m

3
))

 

U3 Hom

U3 Het

 

U3 

(Figure continues on next page) 



    77 

 

c 

 

-800

-600

-400

-200

0

200

400

600

800

1000

-2.8 -1.3 -0.8 -0.4 -0.1 0.0 0.1 0.3 0.6 1.2 1.7 2.5 3.3 4.3 5.2 5.9 6.5 7.2

log10 (Neutron energy (eV))

R
e

a
c
ti

v
it

y
 c

h
a

n
g

e
/ 
c

o
o

la
n

t 
d

e
n

s
it

y
 

c
h

a
n

g
e
 (

p
c
m

/ 
(g

/c
m

3
))

 

TRU Hom

TRU Het

 

TRU 

Fig. 3.13. Reactivity decomposition by neutron energy for homogeneous and TCUP RMPWR: (a) 

Th component, (b) U3 component, (c) TRU component. 

Table 3.10. 3-group reactivity decomposition for fuel components of homogeneous and TCUP 

RMPWR. 

Group TRU U3 Th 

Hom. TCUP Hom. TCUP Hom. TCUP 

Fast 6570 8516 3708 2438 –4401 –3993 

Resonance 5591 2041 3260 1752 –7834 –7275 

Thermal –6931 –2936 –4750 –9299 1012 1911 

Total 5230 7621 2218 –5109 –11223 –9358 

The beneficial Th effect is reduced in the TCUP cases as the Th relative content at equilibrium is 

lower. This is due to slower TRU burning in the faster spectrum of the TCUP pins. Also, the Th 

content of the Th-U3 pins is greater than the Th content of the Th-TRU pins. This means that on 

average, the Th experiences a more thermal spectrum in the TCUP assembly compared to the 

homogeneous assembly.  

The detrimental TRU effect is also worsened when moving to TCUP pins, because the thermal flux 

in the TRU is reduced, and the fast and resonance fluxes are higher. 

However, the highly beneficial U3 thermal capture effect is increased, and to a lesser extent the 

detrimental U3 fast and resonance effects are lower, due to the higher thermal flux in the Th-U3 

pins. This is the dominant effect, leading to a net improvement in the MDC. While a fast spectrum 
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is desirable for TRU burning, thermal neutrons play an important role in keeping the MDC 

negative, and these effects are increased by the TCUP fuel. 

3.6. Concluding Remarks 

In reduced-moderation or hard-spectrum LWRs, full recycle of TRU is limited by coolant reactivity 

feedback. Use of 
232

Th instead of 
238

U as a fertile isotope improves the MDC, and therefore yields 

superior performance. This is essentially due to the high resonance 



  of U3, which increases the 

fissibility of the U3-TRU isotope vector in the Th-fuelled system relative to the U-fuelled system, 

and also improves the MDC when the spectrum is sufficiently hard (e.g. RMPWR and, even more 

so, RBWR). While direct substitution of 
238

U with 
232

Th improves the MDC, it also increases the 

required fissile loading, such that the benefits of using 
232

Th are essentially “indirect”, e.g. by 

breeding U3. The reduced fast fission threshold of 
232

Th compared to 
238

U improves the MDC, but 

also makes the neutron economy worse, as does the higher thermal capture cross-section. The 

resonance capture cross-sections of 
232

Th and 
238

U are similar. The performance difference between 

Th- and U-fuelled systems increases with reduced moderation due to higher U3 breeding, and an 

increasingly beneficial effect from U3 on the MDC. 

Spatial separation of TRU and U3 is possible in the Th-fuelled system, which renders further 

improvement by hardening the neutron spectrum in the TRU-bearing pins and softening it in the 

U3-bearing pins. This improves the neutron economy by increasing the TRU 



 , as well as the MDC 

performance by enhancing the thermal fission reduction upon voiding in U3. 
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Chapter 4 – Thermal-hydraulic Study of RMPWRs 

In Chapter 2, the minimum pin diameter for RMPWR neutronic feasibility was found to be ~11 mm 

for the TCUP fuel design and ~11.5 mm for homogeneous fuel. In this chapter, a thermal-hydraulic 

feasibility assessment is performed for retrofit RMPWR designs with 11–11.5 mm pin diameter. At 

steady state, the increased pin diameter leads to reduced core flow rate due to the increased pressure 

drop. This leads to a higher temperature increase across the core, which affects temperature limits 

and the minimum departure from nucleate boiling ratio (MDNBR). An 11 mm pin diameter appears 

possible, but 11.5 mm is a stretch case. The most severe transient condition is reflood following a 

large-break loss-of-coolant accident (LBLOCA). This is difficult to model accurately, and the 

treatment here is simplified. The increased core pressure drop reduces the reflood speed, which 

appears likely to lead to the violation of clad limits. A reduced-height core may therefore be 

required, which would prevent retrofit of an existing PWR core. 

This chapter received a major contribution from Dr Paolo Ferroni of Westinghouse Electric 

Company LLC, who provided extensive guidance on performing the analysis and on a draft version 

of this chapter. 

4.1. Introduction 

A simplified thermal-hydraulic study has been performed to investigate the feasibility of the 

RMPWR concept and to identify the main thermal-hydraulic challenges characterizing this design. 

The trade-off between burn-up and MTC, and therefore the neutronic performance, tends to 

improve as the assembly lattice becomes tighter. Therefore interest is focused on the tightest 

geometry likely to be achievable when accounting for constraints on rod-to-rod spacing and on the 

design implementation strategy adopted in this study, i.e. use of 17×17 assemblies with the same 

size as the reference design.  

The rod-to-rod spacing is a „hard‟ constraint imposing a lower limit on the minimum distance 

between adjacent fuel rods. The numerical value of this constraint depends on how the rods are 

supported: if grid spacers are used, it is reasonable to require the space needed for the grid strap and 

dimples to be at least 2 mm which, for a 12.6 mm fuel rod pitch, would limit the maximum fuel rod 

diameter to ~10.6 mm. However, if tighter lattices are required, wire-wraps can be used instead of 

spacer grids, since they allow a reduction in the minimum rod-to-rod spacing to ~1.1 mm. The 

choice of this limit is based on past experience with wire-wraps in fast reactors (rather than on 

calculations or manufacturing tests). From data found in (IAEA, 2006; NUREG, 1985; Waltar et al., 

2012), wire-wrap diameters for experimental fast reactors ranged between 0.7 mm (BOR-60) and 
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2.1 mm (JOYO), and were usually in the 1.1–1.5 mm range. This corresponds to a maximum pin 

diameter of 11.5 mm in an unmodified pitch lattice.
16

 

If retrofitting an RM core into an existing reactor is pursued, it is preferable to preserve the location 

of the control guide thimbles. To allow this, the assembly lattice (square) and the fuel rod pitch 

(12.6 mm) are unchanged with respect to the reference plant. An actual optimization of the 

RMPWR lattice geometry would require relaxation of this „soft‟ constraint on the lattice type and 

fuel rod pitch, and may result in a very different lattice compared to that of typical PWRs. This 

would likely result in improved reactor performance, but with the disadvantage of not being able to 

retrofit the core into an existing plant. 

4.2. Analysis 

4.2.1. Thermal-Hydraulic Constraints 

In this study, reduced moderation is obtained by maintaining the fuel rod pitch at the reference 

value while increasing the fuel rod diameter. This has several interdependent consequences on the 

reactor thermal-hydraulics, which require assessment to guarantee that reactor operation is possible, 

while satisfying safety limits. For example, the transition to the new lattice geometry results in a 

larger heat transfer area and therefore, if the core power is kept constant, a lower heat flux to the 

coolant, which has a beneficial effect on MDNBR. However, a tighter lattice also results in a 

smaller flow area and hydraulic diameter which, mainly because of pressure drop considerations, 

requires the coolant flow rate to be reduced. Depending on core power and core inlet temperature 

(    



Tin), this reduced flow may result in a higher coolant enthalpy throughout the core, which is 

detrimental to the MDNBR. Therefore, whether the RMPWR performs better than the reference 

PWR, from the MDNBR standpoint, depends on how heat flux, coolant velocity and enthalpy 

compare to those in the reference PWR. It also depends on the direct effect that the tighter lattice 

has on departure from nucleate boiling (DNB), as discussed in Section 4.2.1.1.  

Sections 4.2.1.1 to 4.2.1.5 discuss the thermal-hydraulic constraints that have been considered to 

allow operability and safety of the proposed RMPWR designs with a reasonable degree of 

confidence. Table 4.1 summarizes the limit values selected for each constraint. 

                                                 
16

 While there is more experience with wire-wraps for triangular lattices, wire-wraps have been used for square lattices 

in the FERMI reactor. The wire-wraps are welded to the rods to hold the assembly together. Fast reactor fuels generally 

use stainless steel cladding instead of zircaloy. It is not known if there are any specific issues from using wire-wraps 

with zircaloy cladding.  
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Table 4.1. Thermal-hydraulic constraints. 

Design constraint Value Rationale 

MDNBR 1.31 

MDNBR for the reference core, evaluated 

with the DDH correlation. See Section 

4.2.1.1 

RCP performance 

Constrained by the 

RCP characteristic 

curve 

See Section 4.2.1.2 

Core outlet temperature 

    



Tout 
600 K (feasible case) 

603 K (stretch case) 

Two values of which the lower is that of the 

reference plant. See Section 4.2.1.3 

Core inlet temperature 

    



Tin 
560.3 K 

5 K less than the reference case. See Section 

4.2.1.4 

Assembly lift-off force N.A. 
Calculated, but not used to constrain the 

design. See Section 4.2.1.5 

4.2.1.1. Minimum Departure from Nucleate Boiling Ratio  

The design of an RMPWR that can satisfy safety requirements was performed by imposing a 

minimum allowed DNBR when the reactor is assumed to operate at 112% of its nominal power, 

95% of nominal flow and with a     



Tin 2 K higher than the nominal. This minimum value is selected to 

be equal to the MDNBR of the reference PWR when analyzed in the same conditions, and with the 

same critical heat flux (CHF) correlation. This approach is not rigorous, but is often used in 

simplified analyses since it affords reasonable protection against DNB without the need to analyze 

both nominal conditions and transient-specific power levels. The rationale behind the method is 

that, when considering DNB, Condition I and II transients are bounded by the operating conditions 

mentioned above. 

The CHF correlation used to evaluate the MDNBR is that developed by Dalle Donne and Hame
 

(1985) which, unlike the most well-known correlations typically used for open lattices, e.g. the W-3 

correlation, was developed specifically for tight lattices and demonstrated to be accurate for both 

open and tight lattices. It must be noted that this correlation was originally formulated for triangular 

lattices, rather than the square lattices considered here. No systematic study has been found on the 

effect of the lattice type on the CHF. It is reasonable to assume that the correlation will give good 

results despite this approximation, but further analysis may be required to support this. To show the 

non-conservative results that would be obtained if a CHF correlation developed for open lattices 

was used for tight lattices, results obtained with the W-3 correlation are presented as well (Tong, 

1967). The W-3 result is taken directly from a single assembly analysis performed with the COBRA 

code (see Section 4.2.2), assuming 8 grid spacers in all cases, while a separate calculation, for a 

single hot channel, was used to evaluate the Dalle Donne-Hame (DDH) MDNBR. An important 
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parameter in the DDH correlation is the wire-wrap pitch (H). The correlation is valid for the range 

    



13.6 H D  50 and values of 14 and 50 are used as „bounding‟ cases on the design, where D is the 

pin diameter.  

4.2.1.2. RCP Performance  

The flow rate through the reactor cooling system (RCS) is constrained by the performance of the 

reactor cooling pumps (RCPs) and, specifically, by their head versus flow characteristic curve. In 

existing PWRs, the RCPs operate at constant speed, which means that the relationship between 

RCS pressure drop and delivered flow is a fixed curve. Therefore, if one of these plants is retrofitted 

with an RM core, the flow resistance increase resulting from this change will prevent the RCPs 

from delivering the same flow as in the original design, and a flow reduction will occur. The new 

operating point, and therefore the new flow, can be established by finding the intersection of the 

RCP characteristic curve, which is known, with the RCS curve, which, for the RMPWR, needs to 

be determined. The pump characteristic curve selected in this study is that of the RCPs of the 4-loop 

Watts Bar plant, available from (Watts Bar, 2010b) and shown in Fig. 4.1. The RCS curve of the 

RMPWR can be estimated as a function of the fuel rod diameter is estimated by assuming the 

following:  

1) in the highly turbulent regime (  



Re 10
5), the form loss coefficient for spacer grids is assumed 

to be proportional to (mass flow rate)
–0.2

. This has been inferred from trends found in (Chun and 

Oh, 1998) referring to grids provided with non-split mixing vanes;  

2) the form loss coefficient associated with the total pressure drop loss at the entrance (lower core 

plate and assembly bottom nozzle) and exit (assembly upper nozzle and core upper plate) of the RM 

core is assumed to be the same as that of the reference core; 

3) the fraction of RCS flow that it is not effective for removing core heat, i.e. the bypass flow 

fraction, is the same in the RMPWR and in the reference plant; 

4) in an unmodified PWR, the core contributes about 30% of the overall RCS pressure drop. 

The friction pressure drop for a bare-rod bundle core, i.e. without either grids or wire-wraps, can be 

expressed as: 
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where: L is the fuel rod length, D is the fuel rod outer diameter; corem  is the coolant flow rate 

through the core; N is the number of subchannels in the core; f is the McAdams friction factor ( 

(Chun and Oh, 1986);  is the coolant density; G is the coolant mass velocity;  is the dynamic 

viscosity; Pwetted is the wetted perimeter; and     



Aflow  is the subchannel flow area. Using assumption 1 

above, the form pressure drop, due to grid spacers as well as losses at the assembly entrance and 

exit, can be expressed as: 
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where     



Kcore  is the sum of all the core form loss coefficients (core inlet, grids and core outlet), which 

is flow rate-dependent, while 
    



Kcore,nom is the value of     



Kcore  at the nominal flow rate conditions.  

Hence, for the reference, grid-spacer-provided core, the friction and form pressure drops can be 

expressed by combining Eq. 4.1 with Eq. 4.2: 
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For a RM core provided with wire-wraps, form losses are located at the assembly entrance and exit 

only, whereas throughout the heated length the pressure drop can be evaluated using a Darcy 

friction factor specifically formulated for wire-wrap-provided rods using the correlation developed 

by (Cheng and Todreas, 1986) for the turbulent regime (although this correlation is for hexagonal 

bundles), i.e.: 
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where H is the wire pitch, while P and D are the rod pitch and outer diameter, respectively. 

The pressure drop through the core for the wire-wrap design is therefore equal to: 
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where     



Kinout  is a form loss coefficient associated with the total pressure drop loss experienced by 

the coolant at the core inlet (lower core plate and assembly bottom nozzle) and outlet (assembly 

upper nozzle and core upper plate). 

Eq. 4.6 can be rewritten as: 
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Thus, given an existing PWR retrofitted with a RM core, the core pressure drop ratio can be 

expressed as: 
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The only „unknowns‟ in the ratio above are  RMcorem  and     



(D)RM  since the reference core parameters 

are known, the values for L, μ and fuel rod pitch (the latter needed to evaluate     



Aflow ) are the same 

for the two cores, and the loss coefficient representing the pressure drop losses at the entrance and 

exit of the RM core is assumed to be the same as that of the reference core, following from 

assumption 2 above.
17

 

The overall pressure drop through the RCS,     



pRCS , is the sum of the pressure drop through the core 

and through the remaining RCS components. The latter, referred to as     



prest, depends on the coolant 

flow rate and on the geometry of the RCS components upstream and downstream of the core which, 

because of the retrofit approach, is the same for the RMPWR and the reference plant. Therefore: 
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Assuming that the bypass flow is the same as the reference plant (assumption 3), it follows that: 

                                                 
17

 For the reference core, the coefficient 
    



Kinout,nom  is calculated as 
    



Kcore,nom 8Kgrid , where the loss coefficient for the 

eight grids is assumed to be ~1 and 
    



Kcore,nom  is obtained from Eq. 4.3, in which 
    



pcore,ref  is obtained from 
    



pRCS, ref  

(known from (Watts Bar, 2010b)) as 
    



pRCS, ref 0.3 , from assumption 4 above. This gives 
    



Kcore,nom 14.5 and 

    



Kinout,nom  6.5. 
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For the reference plant, the pressure drop through the non-core RCS components is proportional to 

the core pressure drop (assumption 4), i.e.:  
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By introducing Eq. 4.11 into Eq. 4.10, the RCS pressure drop for the RMPWR can be expressed as: 
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Eq. 4.12, with X calculated using Eq. 4.8, can be used to obtain the RCS pressure drop versus flow 

curve for an existing PWR retrofitted with a RM core, for a given rod diameter and wire-wrap pitch. 

Four of these curves, for rod diameters of 11 and 11.5 mm and wire-wrap   



H D  values of 14 and 50, 

are shown in Fig. 4.1 with the RCS curve of the reference plant and the RCP characteristic curve. 

The intersection between these curves identifies the operating points for each case. The resulting 

RCS flow rates are summarized in Table 4.2.  
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Fig. 4.1. 4-loop PWR RCS operating point for different pin diameters. RCP curve based on data 

from (Watts Bar, 2010b). 
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Table 4.2. RCS flow rates (%) for RM designs relative to reference case.  

 Pin Diameter (mm) 

  



H D  11 11.5 

14 91.6 86.5 

50 95.7 89.8 

It must be emphasized that if the design implementation strategy adopted for this study allowed 

replacement of the RCPs, then the achievable flow rates would not be constrained to a single value, 

but would be wider and dependent on the performance of the RCPs available on the market. It must 

also be noted that a non-retrofit plant would likely have completely different geometry, such as a 

shorter core, which would make the constraint on flow rate less limiting. 

4.2.1.3. Core Exit Temperature 

The flow rate reduction imposed by the constraint on RCS pressure drop has implications on the 

coolant enthalpy at the core exit. Specifically, since     



Tin cannot be significantly reduced with respect 

to the reference value (see Section 4.2.1.4), keeping the core power the same as the reference plant 

results in a higher temperature for the coolant at the exit of the core and, therefore, for the steam 

generator (SG) tubes. In existing plants, these tubes are made of Inconel 600, which experiences a 

degradation of mechanical properties above 600 K (Fyfitch, 2003). The SG tube material used in 

new plants, Inconel 690, has been operated in the range 600–603 K (Cummins et al., 2003; 

Vanhoenacker, 2009) and can theoretically go higher, but this has not yet been experimentally 

tested. Therefore, in this analysis, 600 K and 603 K are used as core exit temperature limits for a 

„feasible design‟ and a „stretch design‟, respectively. 

4.2.1.4. Core Inlet Temperature 

Reducing     



Tin has a beneficial effect on both DNB (by lowering the coolant enthalpy) and pressure 

drop (by allowing a reduced flow to remove the same power without increasing     



Tout). However, the 

reduction in     



Tin must be constrained in order to limit the negative effect on the plant thermodynamic 

efficiency (due to the lower average temperature of the plant) and, if a retrofit core is specified, to 

avoid violating the plant limits during overcooling events. This is because the reactor will reach 

lower temperatures during overcooling accidents, e.g. a steam line break. Components such as the 

reactor pressure vessel are licensed to operate within pre-established pressure-temperature ranges. If 

the temperature is lower, then the maximum allowed pressure is also lower. Therefore, reduction of 

the minimum temperature expected during the vessel operating life would restrict the pressure 

operation range for the component. As a result, if the reduction in     



Tin is not constrained, this may 

require the plant, for example, to operate at a lower nominal pressure or to be provided with more 
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efficient depressurization systems, both of which are clearly incompatible with a retrofit approach. 

The maximum allowed reduction in     



Tin given in Table 4.1, i.e. 5 K, was arbitrarily chosen to limit 

the deviation from the reference plant operating conditions, while allowing for some flexibility. 

Some plants have been permitted to operate with a reduced     



Tin to limit     



Tout, with temperatures as 

low as 550 F (560.9 K) being permitted at operating power in some cases (Office of Nuclear 

Regulation, 1994, 1996).  

4.2.1.5. Fuel Assembly Lift-off  

Fuel assemblies are subject to a lift-off force due to their interaction with coolant flow. The net 

force resulting from the balance between this force, buoyancy and gravity is used to design the fuel 

assembly hold-down springs so that the fuel assemblies are guaranteed to remain in contact with the 

lower core plate during normal operation, as well as during most of the Condition I and II events. 

The changes in assembly geometry and core flow investigated in this study cause the lift-off force 

to change, so that the adequacy of the reference hold-down spring design must be verified for the 

new conditions. It must be stressed, however, that in contrast to replacing other plant components 

such as the RCPs, redesigning the hold-down springs would not disallow a retrofit core as it would 

be possible to modify the springs in an existing core. For this reason, assembly lift-off is not used as 

a hard constraint for the RMPWR design, and the analysis performed here only assesses whether the 

implementation of a RM core requires the hold-down springs to be redesigned.  

There are three forces acting on the assembly: 

1) Drag force (
    



Fdrag): the friction force between the coolant and the fuel assembly. By Newton‟s 

third law, this is equal to the force acting on the coolant, which can be calculated from the friction + 

form pressure drop
18

 experienced by the coolant while flowing through the core, as: 

2
FAcoredrag PpF     (4.13) 

where FAP  is the assembly pitch.
19

  

2) Buoyancy force (
    



Fbuoy): equal to the weight of the water displaced by the assembly. 

3) Weight force (
    



Fweight): the force due to gravity acting on the fuel assembly, which acts against 

the other two forces. This includes nozzle weight (16 kg, taken from (Yucca Mountain Project, 

2007)), and grid spacer weight (0.9 kg, taken from (Watts Bar, 2010a)) and treatment of the fuel, 

cladding and guide tubes using appropriate volumes and densities. 

                                                 
18

 In the calculation performed in this study, acceleration pressure drop is neglected. This is reasonable since in typical 

PWR operating conditions the acceleration term is very small.  
19

 The area of the assembly envelope is used, in place of the assembly flow area, since     



pcore is measured from just 

below the lower core plate to just above the core upper plate. 
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The effect of the design changes on the net axial force acting on the assembly can be estimated by 

calculating the ratio between the net force on the RM assembly and that on the reference assembly, 

i.e.:  

    



Fratio 
Fdrag 

RM
 Fbuoy 

RM
 Fweight 

RM
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ref
 Fbuoy 

ref
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ref
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ref
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ref
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ref
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ref
 Fweight 

ref

  (4.14) 

where X is the core pressure drop ratio defined by Eq. 4.8, Y is the ratio of the total volumes 

displaced by the two assemblies (including grid spacer and nozzle volumes, which are 

approximately constant) and Z is the ratio of the total weights of the two assemblies, assuming that 

the grid and nozzle weights are constant.  

Therefore, given a RM core with a certain geometry and coolant flow, Eq. 4.14 combined with Eqs. 

4.8 and 4.13 can be used to estimate the lift-off force ratio. If this ratio is larger than 1, then the 

assembly hold-down mechanism for a retrofit core would need to be redesigned. 

4.2.2 Single-assembly Thermal-Hydraulic Analysis 

4.2.2.1. Model Characteristics 

Single-assembly analyses were performed with the subchannel code COBRA-EN (Basile et al., 

1987, revised 1999) to evaluate the thermal-hydraulic performance of the 11 and 11.5 mm rod 

diameter cases, as well as the 9.5 mm case used as reference. Because the code is not capable of 

modelling the wire-wrap assumed for the large rod cases, for these designs the pressure drop and 

the MDNBR were calculated separately, since these parameters are significantly affected by the 

presence of the wires. Other parameters such as the coolant enthalpy axial profile are instead 

calculated with COBRA.
20

 As the RCPs cannot be replaced in a retrofit core, the coolant flow rate 

was derived using the RCP performance constraint discussed in Section 4.2.1.2 and given in Fig. 

4.1.  

Assembly operating conditions, shown in Table 4.3, were selected to be representative of the hot 

assembly of a RMPWR core and, since no full-core coupled neutronic-thermal-hydraulic analysis 

has been performed, power peaking factors were assumed. The values used for these parameters are 

typical design values used for UO2-fuelled PWRs, and are therefore assumed to be reasonably 

conservative for RMPWRs as well. It was also assumed that a RM assembly could be designed with 

a pin peaking factor as low as that in the UO2 reference case (1.06) by careful distribution of pins 

with varying fissile contents. 

 

                                                 
20

 These basic parameters are easy to calculate by hand. However, as COBRA was also used to calculate parameters 

such as the MDNBR using the W-3 correlation, values were taken from COBRA where possible for expediency. 
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Table 4.3. Parameters used for thermal-hydraulic analysis. 

Fixed parameters  

Assembly lattice type 17×17, square 

Assembly length 4.063 m 

Assembly heated length 3.66 m 

Number of fuel rods per assembly 264 

Assembly pitch 0.215 m 

Fuel rod pitch 12.6 mm 

Control rod guide tube and instrumentation tube 

OD 
12.24 mm 

Assembly power and % with respect to nominal  31.4 MWt, 112% 

Axial power profile Chopped cosine, 1.55 peak 

Assembly radial power peaking factor 1.587 

Hot pin power peaking factor 1.06 

Enthalpy rise hot channel factor 1.682 (= 1.587×1.06) 

Power fraction in coolant 2.6% 

Lower and upper plate and nozzle total loss 

coefficient (
    



K inout,nom) 
6.5 

Variable parameters 

Fuel rod OD 9.5 (reference), 11 and 11.5 mm 

    



Tin 
Variable (565.3 K is the nominal value for the reference 

design, increased by 2 K for MDNBR calculation) 

Coolant inlet mass flux 

Constant with nominal value 3728 kg/m
2
/s, then reduced 

by 5% for MDNBR calculations (413200 gpm (26073 

m
3
/s) flow rate, 9.6% bypass flow = nominal value for the 

reference design, from (Watts Bar, 2010b)) 

Wall friction factor 
Smooth tube friction factor for grid-supported rods; Eq. 4.4 

for wire-wrap designs  

Rod support type Grids (reference); otherwise wire-wrap 

Number of grid spacers per assembly 8 (reference assembly design only) 

Grid spacer loss coefficient 1.0 

4.2.2.2. Results 

The performance of 11 mm and 11.5 mm pin diameters relative to the reference case (Case 0) is 

presented in Table 4.4. Firstly,     



Tin is held constant and equal to the „nominal‟ value (Case 1), and 

then it is dropped by 5 K (Case 2). The RCS flow rate is determined from Table IV. Finally, the 

mass flow rate is reduced by 10% to examine the sensitivity of the calculations to the pressure drop 

calculations (Case 3). Wire-wrap   



H D  of 14 and 50 were considered. For Cases 1–3, the results in 
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Table 4.4 are highlighted as follows: bold indicates an acceptable value, bold-italics indicates a 

value exceeding the „feasible case‟ limit but still below the „stretch case‟ limit, whereas italics 

indicates an unacceptable value.
21

 

Table 4.4. Results of thermal-hydraulic analysis (infeasible/ stretch/ feasible). 

Case 
Pin OD 

(mm) 

Wire 

  



H D  

Core 

flow rate 

relative 

to 

reference 

(%) 

Hot 

assembly 

mass 

flux 

(kg/m
2
/s) 

    



Tin 

(K) 

    



Tout 

(K) 

MDNBR 

DDH W-3
*
 

0 9.5 

N/A 

(grid 

spacers) 

100.0 3728 565.3 598.4 1.31 1.72 

1a 11 14 91.6 4612 565.3 601.1 1.33 2.25 

1b 11.5 14 86.5 4995 565.3 603.0 1.27 2.17 

1c 11 50 95.7 4818 565.3 599.7 1.27 2.52 

1d 11.5 50 89.8 5186 565.3 601.8 1.20 2.46 

2a 11 14 91.6 4612 560.3 597.0 1.39 2.69 

2b 11.5 14 86.5 4995 560.3 599.0 1.32 2.69 

2c 11 50 95.7 4818 560.3 595.6 1.33 2.98 

2d 11.5 50 89.8 5186 560.3 597.7 1.25 3.01 

3a 11 14 82.4 4150 560.3 600.6 1.29 2.01 

3b 11.5 14 77.9 4496 560.3 602.8 1.23 1.85 

*Although not used for determining design acceptability, the MDNBR calculated with the W-3 

correlation is also shown to highlight the non-conservative results that would be obtained if this 

correlation was used for tight lattices. This value was calculated without mixing due to wire-wraps 

for the RM cases. 

From Table 4.4 it can be seen that: 

- For the 11 mm pin diameter design, the thermal-hydraulic design constraints are met in Case 1a 

(„nominal‟     



Tin and     



H D 14) and Cases 2a and 2c (reduced     



Tin with     



H D 14  and 50, 

respectively). Therefore with this pin size the MDNBR constraint can be satisfied without 

lowering     



Tin (Case 1a). However,     



Tout is slightly too high for the „feasible‟ case, but still within 

the stretch case limit. This can be readily rectified by dropping     



Tin very slightly, as can be 

inferred from the increase in MDNBR achieved when     



Tin is reduced to the lowest acceptable 

value (Case 2a). As for the transition to the     



H D  50 wire design, unless     



Tin is reduced (Case 

                                                 
21

 As shown in Table 4.1, while a single limit is used for the MDNBR, for the coolant exit temperature a „feasible case‟ 

limit and a „stretch case‟ limit is used. 
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2c), the transition to this „looser‟ wire configuration results in an unacceptable MDNBR (Case 

1c). This is because the beneficial effect on MDNBR of the increase in mass flux (4612 to 4818 

kg/m
2
 s) allowed by the lower pressure drop is offset by the less efficient coolant mixing 

resulting from the higher   



H D , which yields an overall reduction in MDNBR.  

- For the 11.5 mm pin diameter design, the thermal-hydraulic constraints are met in Case 2b only 

(reduced     



Tin and     



H D 14). Hence, for this rod size design a drop in     



Tin is required to satisfy 

the MDNBR constraint.  

- If the actual core mass flow is 10% lower than that predicted using the methodology of Section 

4.2.1.2, the RM cases are not feasible, even if     



Tin is dropped by 5 K.  

The W-3 correlation gives an inaccurate prediction of the relative performance of (1) the tight-

lattice geometries with respect to the reference, open-lattice, geometry, and (2) the     



H D 14  design 

with respect to the     



H D  50 design. Firstly, the W-3 correlation predicts that all the RM cases 

(Cases 1a–3b) have much better DNB performance than the reference case (Case 0). This is clearly 

a consequence of neglecting the inherent differences between large and narrow channel behaviour 

with respect to DNB, which results in the difference between tight and regular lattices being mainly 

due to mass flux differences. The W-3 correlation is also incapable of capturing the wire pitch 

effect on MDNBR. Unlike the DDH correlation, which predicts a higher MDNBR for the     



H D 14  

cases compared to the     



H D  50 cases (see, for example, Cases 1a and 1c), the W-3 correlation 

shows the opposite trend (  



MDNBR1a  MDNBR1c). This is because it does not capture any wire-

induced mixing effects, so the difference in DNB performance is due to the difference in mass flux 

only.  

Assembly lift-off results are presented in Table 4.5. As discussed in Section 4.2.1.5, assembly lift-

off is not a „hard‟ constraint and design „retrofittability‟ should not be based on whether the lift-off 

forces are higher or lower than the reference design. For the „preferred‟     



H D 14 , the lift-off force 

is 1.9 and 2.7 times higher than for the reference assembly, for 11 and 11.5 mm pin diameters 

respectively. This increase is mainly driven by the higher drag, which, in turn, is due to the higher 

pressure drop experienced by the coolant while flowing through a tight lattice. It can also be seen 

that the effect of the higher drag on the net lift-off force is partly reduced by the larger weight of the 

tight-lattice assemblies, which have larger, and therefore heavier, fuel rods.  
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Table 4.5. Estimated lift-off force per fuel assembly 

Pin diameter 

(mm)   



H D      



Fdrag 

(kN) 
    



Fbuoy 

(kN) 
    



Fweight 

(kN) 

Net force 

(kN) 

9.5  8.7 0.5 6.2 3.0 

11 14 13.4 0.7 8.4 5.8 

11.5 14 16.5 0.8 9.1 8.1 

11 50 11.1 0.7 8.4 3.5 

11.5 50 14.5 0.8 9.1 6.1 

Based on the thermal-hydraulic performance summarized in Tables 4.4 and 4.5, the use of a 

„tightly-coiled‟ wire-wrap, i.e. with small   



H D , is recommended since it clearly helps to satisfy the 

DNB safety requirement, especially when     



Tin cannot be reduced below the reference value. 

Adoption of this wire design would also benefit rod performance from a vibration standpoint, since 

a lower   



H D  implies more rod support points per unit of length. The higher pressure drop resulting 

from the use of a tightly-coiled wire is not considered to be a showstopper, since the reduction in 

core flow due to the constrained RCP performance is accounted for in the DNB analysis and the 

higher lift-off forces can be accommodated by eventually redesigning the assembly hold-down 

mechanism.  

Because of the beneficial effect that a reduction in     



Tin has on DNB, combining a small   



H D  with a 

slight reduction in     



Tin would also yield acceptable performance. Reducing     



Tin below the reference 

value is particularly beneficial for the 11.5 mm rod size design, which satisfies DNB constraint only 

if     



Tin is reduced. 

4.2.3. RMPWR Post-LOCA Reflood 

The effect of tightening the fuel rod lattice on the reflood phase of a large-break loss-of-coolant 

accident (LBLOCA) needs to be investigated to assess whether safety criteria on peak clad 

temperature (PCT) and clad oxidation are satisfied. Previous studies on the reflooding of tight 

lattices, e.g. Courtaud et al. (1988), Veteau et al. (1994) and Dreier et al. (1988) provided 

experimental evidence that, as expected, tight lattices are more difficult to reflood than open 

lattices. In particular, from (Courtaud et al., 1988), the quench time and PCT will both be worse for 

a tight lattice design due to the increased pressure drop across the core and lower coolant inventory.  

In this study, the reflood of the RM designs has not been investigated either experimentally or 

computationally. Only some simplified analytical considerations are presented, with the purpose of 

estimating the difference in coolant upflow velocity between tight and open lattices under the 

assumptions of the same gravity head and single-phase coolant, i.e. no vaporization. The first 
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assumption is appropriate as, in a post-LOCA scenario, reflooding is driven by the gravity head of 

the liquid downcomer, which has to overcome the pressure drop through the core. A tight lattice 

will have a lower reflood velocity as it has a higher friction pressure drop than an open lattice, and 

the downcomer gravity head is independent of the lattice. Experimental data (e.g. in the studies 

mentioned above) compared open and tight lattices reflooding capabilities by imposing the same 

reflooding velocity at the bundle inlet. However, for gravity-driven reflood, the inlet velocity 

depends on a momentum balance between the downcomer gravity head and the core pressure drop. 

The importance of an experimental comparison between tight and open lattices in conditions 

representative of a gravity-driven reflooding was recognized in (Erbacher and Wiehr, 1988) but no 

data of this type have been found in the literature. The second assumption, i.e. no vaporization, is 

not representative of post-LOCA scenarios. However, it simplifies the calculation and allows an 

upper bound for the tight-to-open lattice reflooding velocity ratio to be obtained. In reality, for the 

same linear power profile, steam generation will occur earlier in the reflood of the tight lattice due 

to the lower coolant flow rate, which increases the pressure drop and thus reduces the tight-to-open 

lattice reflooding velocity ratio below that obtained by neglecting vaporization. This was 

experimentally verified in (Erbacher and Wiehr, 1988). 

The analysis is performed for both the simplified case in which the effect of rod-supporting devices, 

i.e. grid spacers and wire-wraps, is neglected (bare rods, see Section 4.2.3.1) and for the more 

realistic case in which it is accounted for (Section 4.2.3.2). Also, for completeness both laminar and 

turbulent regimes are considered. The operating conditions are arbitrarily assumed to be 0.2 MPa 

and 100 °C. 

4.2.3.1. Reflooding Velocity Comparison for Bare-rod Bundles 

From (Rehme, 1987), the laminar friction factor for interior subchannels of square-lattice bundles 

can be calculated as:  

    



f 
40.70

Re

P

D
1











0.435

  (4.15) 

where P is the fuel rod pitch and D is the rod outer diameter. Therefore, the friction pressure drop 

is: 

    



pfric  f
L

Deq

v2

2


40.70

vDeq

P

D
1











0.435
L

Deq

v2

2
  (4.16) 

where   



v  is the reflood velocity, 
    



Deq  is the equivalent diameter. Therefore, for the simplified case of 

bare rods, the pressure drop due to friction is: 
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

pfric 
P

D
1











0.435
v

Deq
2

   (4.17) 

in the laminar regime, and: 

    



pfric 
v

1.8

Deq
1.2

   (4.18) 

in the turbulent regime (as shown in Eq. 4.1). 

Therefore, for the same downcomer gravity head, the relation between the inlet velocity of a tight 

and an open lattice can be estimated by equating the friction pressure drop for the two bare-rod 

lattices, giving: 

    



vtight

vopen

~

P

D
1











open

P

D
1


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
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


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













0.435

Deq 
tight

Deq 
open
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







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

2



P

D
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




open

P

D
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


tight
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



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
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

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0.435

Dtight

Dopen
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






P

D




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
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

tight

2




4

P

D
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




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2




4
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
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
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
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2

  (4.19) 

in the laminar regime, and: 

    



vtight

vopen

~
Deq 

tight

Deq 
open















1.2

1.8


Dtight

Dopen


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




P

D




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
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tight

2




4

P

D




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open

2




4






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















0.667

 (4.20) 

in the turbulent regime. 

Using Eqs. 4.19 and 4.20, it can be seen that: 

- for the 11.5 mm pin diameter case: 

    



vtight

vopen



0.45 in the laminar regime

0.64 in the turbulent regime









 

- for the 11 mm pin diameter case: 

    



vtight

vopen



0.56 in the laminar regime

0.73 in the turbulent regime









 

4.2.3.2. Reflooding Velocity Comparison for Grid/Wire-supported Rod Bundles 

For grid-supported rod bundles, the friction pressure drop in the laminar regime can be expressed 

as: 
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

pref 
40.70

vDeq

P

D
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

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

C1

v
 Kcore
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
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
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
v2

2
 (4.21) 

For wire-supported rods, the friction factor in the laminar regime can be expressed as (Cheng and 

Todreas, 1986): 

    



f 
CfL

Re
 where 

    



CfL  974.61612
P

D
 598.5

P

D











2













H

D











0.060.085(P / D)

 (4.22) 

Therefore, the following relation can be obtained for the pressure drop for the RM design: 

    



pRM 
CfL

Re

L

Deq

K inout













v2

2


CfL

vDeq

L

Deq

K inout













v2

2


C2

v
K inout










v2

2
 (4.23) 

Equating the pressure drops for the two assembly designs, i.e. Eqs. 4.21 and, 4.23, gives: 

    



C1v Kcorev
2 

open
 C2v K inoutv

2 
tight

  (4.24) 

where 
    



K inout,nom 6.5 and 
    



Kcore,nom 14.5 (from Table 3.3).     



C1 is about 0.3 and     



C2 ranges between 

2.2 and 3 depending on the tight lattice considered. It must be noted that Eq. 4.24 is only valid for 

Reynolds numbers below     



ReL 10
0.781.7P D 

, which represents the validity range for Eq. 4.22 

(Cheng and Todreas, 1986). This value is approximately 500 for both tight lattice geometries 

considered in this study, which corresponds to a coolant velocity 
    



vtight of ~2 cm/s for the operating 

conditions previously described. Using a typical laminar regime boundary of   



Re  2100  for the 

reference bundle, the maximum 
    



vopen for which Eq. 4.21 is valid is ~5 cm/s.  

When the flow is turbulent, rearranging Eq. 4.8 with the pressure drop ratio across the core set equal 

to unity gives: 
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 (4.25) 

Using the same values for the water properties and loss coefficients as those adopted for the laminar 

regime case, Eq. 4.25 can be rewritten as:  
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 (4.26) 

By entering the geometric parameters of the reference open lattice, Eq. 4.26 becomes:  

    


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
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  (4.27) 

Eq. 4.27 simplifies to: 

    



30.1vopen
1.8

74.3vopen
2

Cvtight
1.82

 44.6vtight
2   (4.28) 

where the coefficient 
    



C  0.800CfT Dtight Aflow,tight 
1.18

, is equal to ~80 and ~51 for the 11 mm rod 

OD case (for     



H D 14  and 50, respectively) and equal to ~85 and ~62 for the 11.5 mm rod OD 

case (for     



H D 14  and 50, respectively). Eq. 4.28 can readily be solved by the Newton-Raphson 

method for given 
    



vopen. Also, by taking the exponents 1.8, 1.82 and 2 to be 1.9, which gives 

indicative results for reflood velocities around ~1 m/s, this simplifies to: 

    



vtight

vopen


104.4

44.6C











1 1.9

  (4.29) 

i.e. 
    



vtight vopen  is approximately constant, and  

- for the 11.5 mm pin diameter case: 

    



vtight

vopen



0.89 for H D  14

0.99 for H D  50









 

- for the 11 mm pin diameter case: 

    



vtight

vopen



0.91 for H D  14

1.05 for H D  50









 

It must be stressed that Eq. 4.28 is only applicable to the turbulent regime which, for tight lattices, 

was identified by (Cheng and Todreas, 1986) as     



Re ReT 10
3.30.7P D 

 (see Eq. 4.22). This value 

is approximately 12000 for both tight lattice geometries considered in this study, which corresponds 

to a coolant velocity 
    



vtight of ~50 cm/s. Using a turbulent regime boundary of Re >10000 for the 
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reference bundle, the minimum 
    



vopen for which the numerator of Eq. 4.25, and therefore Eq. 4.28, is 

valid is ~25 cm/s.  

From Eqs. 4.24 and 4.28 it can be seen that 
    



vtight vopen  is dependent on the reflood velocity when 

accounting for the rod supports (unlike for the bare rod case in Section 4.2.3.1). This is shown in 

Fig. 4.2 (laminar regime) and Fig. 4.3 (turbulent regime). In both figures, it can be seen that: 

- the maximum and minimum ratios correspond to the 11 mm rod OD with     



H D  50 and the 

11.5 mm rod OD with     



H D 14 , respectively. This is expected since these RM geometries are 

those that provide the minimum and maximum resistance to flow, respectively. 

- the velocity ratio increases as 
    



vopen increases. This is because, as the velocity increases, the 

increased friction drag in the RM case becomes less significant relative to the form drag of the grid 

spacers. This is particularly true in the laminar case, where at very low velocities the friction drag 

dominates (constant terms in Eq. 4.24). In the turbulent case, the reflood velocities are similar as the 

form drag is much larger, including     



Kinout which is the same for both open and tight lattices.  

- For the laminar case, accounting for the velocity validity range for Eq. 4.24, velocity ratios are 

between about 0.1 and 0.5. For a hypothetical reflooding velocity of 2 cm/s, the ratio is ~0.2–0.3 

depending on the tight lattice geometry considered. In comparison, the calculation assuming bare 

rods (Section 4.2.3.1) provided velocity ratios of 0.45 and 0.56 for the 11.5 and 11 mm rod OD 

cases, respectively. The wire-wraps cause a pressure drop due to friction, which is larger at low 

reflood velocities than a grid spacer form loss, which makes the situation worse.  

- In the turbulent case, the higher velocity makes the grid spacer loss coefficient of the reference 

case much larger than the wire-wrap friction. This offsets the higher rod friction of the RM lattice, 

leading to similar reflood velocities. In comparison, the calculation assuming bare rods (Section 

4.2.3.1) provided velocity ratios in turbulent regime of 0.64 and 0.73 for the 11.5 and 11 mm rod 

OD cases, respectively, which, in contrast to the laminar case, is lower than when accounting for 

form losses and wire-wraps.  
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Fig. 4.2. Estimated coolant velocity ratio for different tight lattice geometries, in the laminar regime 

(constant gravity head, no vaporization). 
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Fig. 4.3. Estimated coolant velocity ratio for different tight lattice geometries, in the turbulent 

regime (constant gravity head, no vaporization). 

It must be emphasized that, because of the simplifying assumptions made (mainly the no-

vaporization assumption), Figs. 4.2 and 4.3 are not intended to show the actual tight-to-open lattice 

reflooding velocity ratio but an upflow velocity ratio under the assumptions of gravity-driven 

flooding and no vaporization. As discussed at the beginning of Section 4.2.3.2, these ratios are 

expected to represent the upper bound of the actual reflooding velocity ratio.  

4.2.3.3. Impact of Slower Reflooding on PCT and Cladding Oxidation 

As discussed, experimental results on the reflooding characteristics of tight versus open lattices 

under gravity-driven conditions have not been found in the open literature, and only data collected 

imposing the same reflooding velocity for both lattice types are available. Courtaud et al. (1988), 

Veteau et al. (1994) and Dreier et al. (1988) performed experimental analyses of reflood for tight 
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lattices compared with open lattices. In all cases, experiments were performed by fixing the inlet 

velocity. Experimental results for quenching times are available for reductions in hydraulic 

diameter from the reference (11.8 mm) to values ranging from 4 to 7.9 mm. This compares to 7.4 

and 6.1 mm for 11 and 11.5 mm pin diameters respectively. The quenching time generally increased 

by a factor of 1.5–3 which corresponds to a tight-to-open reflooding velocity ratio of 0.3–0.7. This 

is shown in Table 4.6.  

Table 4.6. Comparison between quenching time and PCT of an open and a tight lattice for different 

initial wall temperature (    



Twi) and linear power (    



q ave) (inlet flooding velocity ~3.7 cm/s, 

    



Tflood,in  73.5 °C,     



p0.3MPa, axial peaking = 1.6) from (Veteau et al., 1994). 

 Triangular lattice 

(tight) 

(    



Drod  9.5 mm , 

    



Prod 12.23 mm, 

    



Dhyd  7.86 mm ) 

Square lattice (open) 

(    



Drod  9.5 mm , 

    



Prod 12.6 mm , 

    



Dhyd  11.8 mm ) 

Tight vs open lattice 

comparison 

Quenching 

time (s) 

PCT 

(°C) 

Quenching 

time (s) 

PCT 

(°C) 

Quenching 

time ratio 

PCT 

difference 

(°C) 

Case 1 (    



Twi  600  °C, 

    



q ave 1kW/m ) 
550 930 350 810 1.6 120 

Case 2 (    



Twi  600  °C, 

    



q ave  0.87 kW/m ) 
525 875 280 710 1.9 165 

Case 3 (    



Twi  385 °C, 

    



q ave  0.68 kW/m ) 
330 650 120 530 2.8 120 

Since the higher PCT resulting from the delay in quenching may violate the cladding temperature 

limit in LOCA scenarios, a detailed LOCA analysis is required which accounts for the effect of the 

tight lattice on the reflooding characteristics. Courtaud et al. (1988) and Veteau et al. (1994) 

reported increases in the PCT of up to 190 K relative to the reference case, although Dreier et al. 

(1988) measured a much lower (~20 K) increase in PCT. According to NRC (2013) regulations the 

limit on PCT is 1478 K. Frepoli et al. (2004) modeled a LBLOCA in an AP1000, and found a 95
th

 

percentile PCT of 1290 K (with at least 95% confidence). The increase in PCT for the tight lattice 

may violate this limit, necessitating a core de-rating or a reduction in the core height (i.e. a non-

retrofit core).  

A longer quenching time and a higher PCT also result in more significant cladding oxidation, which 

could exceed the 17% oxide thickness limit imposed by the NRC (2013). The oxidation progression 

can be predicted using the reaction constant   



KR  found by means of the Baker-Just correlation 

(Baker and Just, 1962). The time variation of the oxide thickness (m) can be expressed as:  
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

 t   tt
2

 t
KR

c
2
  tt

2
 t

3330exp(22896 /T )

c
2

 (4.30) 

where T is the cladding temperature in K, and   



c  is the non-oxidized cladding density in kg/m
3
. A 

higher quenching time and PCT can therefore significantly increase cladding oxidation. 

Eq. 4.30 allows a very rough estimate of the relative increase in oxidation resulting from a longer 

quenching time and/or a higher cladding temperature. Fig. 4.4 shows the percentage of cladding 

thickness converted to oxide as a function of time and cladding temperature, for the reference 

lattice, obtained using Eq. 4.30 and assuming constant temperature with time. It can be seen that, 

with respect to an assumed temperature of 1100 K, an increase in temperature that can be 

reasonably expected for a tight-lattice design, i.e. 200 K, would result in an oxidation percentage: 

- 4–5 times higher if the quenching time is assumed to be the same for the two lattices; 

- more than 5 times higher if, in addition to the higher temperature, a longer quenching time is 

also assumed. 
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Fig. 4.4. Effect of quench time and cladding temperature on clad oxidation.  

Clearly, this increase would not be acceptable if the margin from the 17% limit of the reference case 

was not large. Frepoli et al. (2004) reported that with Westinghouse‟s 1996 best estimate 

methodology, the maximum local clad oxidation was < 12.9% with 95% confidence (compared to a 

maximum of 17%), and the maximum core-wide clad oxidation was 0.73% (compared to a 

maximum of 1%). Although improved best estimate methodology will likely reduce these values, it 

still seems likely that a 200 K increase in clad temperature would result in unacceptable clad 

oxidation. 
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4.3. Concluding Remarks 

For the 11 mm pin diameter design, the MDNBR and     



Tout constraints can be satisfied. This may 

require dropping     



Tin slightly, but this is thought to be acceptable. For the 11.5 mm pin diameter 

design, a 5 K drop in     



Tin and a „tight‟ wire-wrap (    



H D 14) are required to satisfy the thermal-

hydraulic constraints.  

However, experimental evidence and analytical calculations seem to indicate that a retrofit 

RMPWR core will have reduced margin, or even no margin, from LOCA licensing limits if 

compared to the reference core design. This needs to be confirmed through computational analysis 

and, ultimately, experimental tests. If proven to be the case, retrofitting a typical PWR core with a 

RM core would be feasible only after either de-rating the plant or switching to a cladding material 

with better LOCA performance than Zr-based alloys. Another option would be to design a shorter 

but wider core, so that the total core power could be preserved with lower linear power and a 

shorter quenching time. This is preferable for optimizing the overall reactor performance, but 

incompatible with the retrofit approach investigated in this study. A LBLOCA computational 

analysis needs to be performed to reach a more definitive conclusion. This requires a code which 

can adequately simulate the performance of tight pitch lattices. Existing codes may not be able to 

simulate this design, so a modified code may be required (e.g. (Wu et al., 2012)). 
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Chapter 5 – RMPWR Full-core Analysis 

In Chapter 2, single assembly analyses were used to derive equilibrium fuel designs and isotope 

vectors for the RMPWR. The fuel pin diameter of a standard 17×17 Westinghouse assembly was 

increased from 9.5 mm to 11–11.5 mm in order to permit full TRU recycle with adequate discharge 

burn-up (~40 GWd/t) with a negative MTC. To achieve this, spatial separation of Th-TRU and Th-

U3 was necessary. In this chapter, the analysis is extended to multi-tier fuel concepts, and use of in-

core fuel management techniques to improve neutronic feasibility is considered. Using different 

batch management strategies for Th-TRU and Th-U3 is found to be neutronically advantageous, 

such that the FVR and ZCR can be significantly reduced. An in-depth analysis of the developed in-

core fuel management concepts is then presented, including treatment of use of mechanical shim to 

control excess reactivity with acceptable core power peaking. Core designs with ~40 GWd/t 

discharge burn-up and negative FVR are identified, although the ZCR is substantially positive. 

~2000 pcm of excess reactivity must be controlled with mechanical shim, which increases the 

power peaking. The maximum fuel enthalpy deposition in a rod-ejection accident (REA) analysis is 

higher than in conventional PWRs, in part due to the very low effective delayed neutron fraction 

(  



eff ). It appears likely that licensing limits can still be satisfied. 

The initial PANTHER models used in this section, and optimal loading patterns produced using the 

genetic algorithm in PANTHER, were produced by N. Zara Zainuddin. 

5.1. In-core Fuel Management 

While it is possible to maintain a negative MTC around the zero void point utilizing TCUP fuel (see 

Chapter 2), it is also desirable to ensure the core has negative reactivity when fully voided in order 

to ensure acceptable response to LOCAs. At low coolant density, the reactivity can increase rapidly 

with reduced coolant density. Two voiding conditions are considered: zero coolant density and 

coolant density for a core filled with saturated steam at the operating pressure (95.5 kg/m
3
). These 

are termed the zero coolant reactivity (ZCR) and fully voided reactivity (FVR) respectively.
22

 When 

the core is depressurized, the steam density is essentially zero. 

The FVR is relevant because in many design basis accidents the maximum core void fraction (VF) 

is ~90% (AREVA/EDF, 2012). Hence, if the FVR is negative, this provides protection against all 

but the most severe LOCAs. Consideration of the ZCR and FVR in conjunction allows the 

minimum allowable water density in the core to be interpolated. While it is obviously very desirable 

to have a negative ZCR, it is found that this is almost certainly unachievable for the RMPWR. It 

                                                 
22

 i.e. 100% void fraction. This term is selected for consistency with the RBWR analyses, and published papers this 

thesis is based on. Depending on the relevant core condition, FVR could reasonably be used to mean reactivity at zero 

coolant density or 100% void fraction. 
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must be stressed that this is an undesirable condition that may make it difficult to license the core, 

but it is not necessarily unacceptable. 

Based on the analysis of Chapter 4, an 11 mm pin diameter is preferred. The effect of different fuel 

management strategies on the ZCR and FVR is investigated here. 

An alternative to the heterogeneous TCUP assembly concept is whole assembly heterogeneity, here 

referred to as Whole Assembly TRU U3 (WATU). WATU‟s principal advantage is the potential to 

manage the Th-TRU and Th-U3 on different fuel management schemes. It also simplifies the 

assembly design and quality assurance process in assembly fabrication. 

The increased size of the heterogeneous regions in WATU vs TCUP may or may not prove 

advantageous. The objective of TCUP or WATU is to limit thermal neutron flux in the Th-TRU fuel. 

By concentrating the TRU, high resonance capture and fast fission in the Th-TRU fuel limits local 

neutron thermalization and yields the transmutation advantages of a hard spectrum. Increasing the 

size of the Th-TRU regions reduces thermal neutron transport from the Th-U3 region. The thermal 

neutron diffusion length is similar to the pin pitch, which implies that TCUP is sufficiently 

heterogeneous, but there might still be a slight advantage from increasing the size of the 

heterogeneous regions. For WATU, a checkerboard array of the fuel assembly types appears 

sensible, and this renders the scheme amenable to placing the Th-U3 assemblies in the rodded 

positions. As burnable absorbers are not thought appropriate for this design (see Chapter 2), the 

guide tubes in the Th-TRU assemblies are replaced with additional fuel pins. This has the obvious 

drawback of constraining the fuel management scheme but hardens the neutron spectrum in the Th-

TRU pins. The supercell model for this fuel design is shown in Fig. 5.1. This corresponds to an 

infinite checkerboard of assemblies. It must be noted that the guide tubes are an important part of 

the fuel assembly structure, so replacing the guide tubes in this manner will require structural 

changes to the fuel assembly, or it may be necessary to retain at least some of the guide tubes. 

At the relative inventory and composition of U3 and TRU typical of multi-recycled fuel, the Th-U3 

regions are supercritical and the Th-TRU regions are subcritical. This leads to neutron transport 

between regions. At equilibrium, sufficient U3 is bred in the Th-TRU pins to compensate for 

burning of the Th-U3 pins. If the Th-U3 regions are larger, then there is less neutron transport 

between regions. To sustain reactivity in the Th-TRU regions, and therefore TRU burning and U3 

breeding, it follows that the equilibrium TRU content of the Th-TRU regions must increase with 

region size.  
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Fig. 5.1. Supercell model for WATU fuel design with Th-TRU (blue) and Th-U3 (green) assemblies. 

WATU allows management of the different fuel assembly types on different batch strategies. For 

this fuel type, there is motivation for leaving the Th-TRU pins in the reactor for longer than the Th-

U3 pins. The neutron multiplication factor of the Th-TRU fuel is essentially constant over a high 

burn-up range due to the conversion of fertile isotopes over the cycle. In contrast, Th-U3 initially 

has a very high neutron multiplication factor, but this reduces very rapidly as the 
233

U depletes in 

the relatively thermal spectrum. This is shown in Fig. 5.2, which is derived for a TCUP assembly 

with 20.8 at% TRU in the Th-TRU pins and 6.9 at% U3 in the Th-U3 pins (the TCUP-MT-2 case in 

the subsequent analysis).   



k in Fig. 5.2 refers to the neutron multiplication in the oxide fuel, i.e. it 

does not include clad, grid spacer or coolant absorptions. 
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Fig. 5.2. Neutron economy in Th-TRU and Th-U3 over the cycle. 

In addition, maximizing the burn-up of the Th-TRU improves the ratio of 
241

Pu fissions to decays, 

which improves the neutron economy and reduces the FVR and ZCR. 

This Th-TRU multi-pass methodology is also applicable to the TCUP assembly. The Th-U3 „driver‟ 

can be replaced with fresh Th-U3 (held in reserve) after one pass (i.e. after 3 cycles) through the 

core, and the Th-TRU can remain for an additional pass. Separable assembly designs have been 

considered for U-Th open cycle seed-blanket concepts (Todosow et al., 2004), and no practical 
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manufacturing obstacles are anticipated. Westinghouse successfully fabricated a demonstration 

assembly for Lightbridge‟s VVERT design (Todosow and Galperin, 2009). Holding Th-U3 pins in 

reserve in this manner is not anticipated to increase proliferation concerns as any realistic multi-

recycle scheme leads to significant out-of-reactor fissile inventories and potentially management of 

fuel supply of multiple reactors on different outage schedules. 

The disadvantage of increasing the number of Th-TRU passes is a decrease in net 
233

U breeding and 

reduced opportunities to load TRU into the core. In this chapter, 2 Th-TRU passes per Th-U3 passes 

are considered. This allows sensible batch management of the TCUP case. For the WATU case, a 

pass ratio intermediate between 1:1 and 2:1 may be feasible or preferable. However, it will be 

demonstrated that a 2:1 pass ratio gives a 1-year equilibrium cycle length. While this is thought 

reasonable, cycle lengths lower than 1 year are likely to be economically penalizing. The number of 

Th-TRU pins can easily be varied in TCUP. In WATU, the analogue is to vary the relative number 

of assemblies, but a 1:1 ratio is used here for simplicity and consistency between the supercell 

transport calculation and the full-core calculation (see below). 

The excess reactivity is partially controlled over the cycle by mixing Gd2O3 with some or all of the 

Th-U3 pins. The harder spectrum in the Th-TRU pins would prevent the Gd2O3 burnable poison 

(BP) from depleting sufficiently rapidly if placed there. The remaining excess reactivity is 

controlled using control rods, as will be discussed. 

5.1.1. Assembly and Supercell Analysis  

The „reference‟ TCUP single-tier case (TCUP-ST-1) has heterogeneous fuel, but the entire assembly 

is discharged at the same time. This is compared to TCUP and WATU cases with 2 Th-TRU passes 

per Th-U3 pass (designated TCUP-ST-2 and WATU-ST-2). In addition, multi-tier cases for TCUP 

are considered, i.e. TCUP-MT-1 and TCUP-MT-2. These cases are summarized in Table 5.1. 

Table 5.1. Assembly configurations. 

Case Th-TRU pins Th-U3 pins Gd2O3 in Th-U3 pins 

TCUP-ST-1 132 132 0.2 wt% 

TCUP-MT-1 108 156 0.2 wt% 

TCUP-ST-2 144 120 0.1 wt% 

TCUP-MT-2 108 156 0.1 wt% 

WATU-ST-2 288 (unrodded 

assembly) 

264 (rodded 

assembly) 

0.2 wt% in central 144 

pins 

For TCUP-ST-1 and TCUP-MT-1, the equilibrium cycle burn-up was estimated as 40 GWd/t when 

converging the equilibrium isotope vector. For the other cases, a burn-up of 30.5 GWd/t per Th-
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TRU pass is specified for the isotopic convergence, single assembly analysis and full-core analysis. 

This corresponds to 347 days of full power operation (i.e. a ~1 year cycle with downtime). 

For the 2 Th-TRU pass cases, a proportion of the U3 was held back at the start of the first pass. The 

fuel was burned to 30.5 GWd/t, and then the fission products were removed from the Th-U3 pins. 

The retained U3 was then loaded, and the Th fraction set to give the correct fuel proportion. The 

small quantity of TRU produced during the first pass in the Th-U3 pins was stored for subsequent 

recycle in the Th-TRU pins. At the end of the second pass, all the fission products were removed 

and, after 5 years decay, the reactor was refuelled with a mix of 
232

Th and the reload isotope vector 

in Table 2.1, while holding a proportion of the total U3 inventory in reserve. The overall waste 

reload fraction (fraction of feed which is not 
232

Th) is calculated based on the average waste reload 

fraction over both passes through the core. In practice, the residual U3 in the Th-U3 pins is 

obviously not instantly reprocessed at the end of Pass 1 and instead the Pass 2 U3 comes from an 

earlier pass after cooling and reprocessing. However, the equilibrium fuel cycle methodology is 

exactly equivalent in this respect. The methodology is shown diagrammatically in Fig. 5.3. 

 

Fig. 5.3. Multi-pass fuel loading scheme. 

Only a single depletion history was performed, as is typical for PWR calculations. However, it must 

be noted that the reactivity is somewhat sensitive to the power history of the fuel assembly, due to 

241
Pu decay into 

241
Am, and 

233
Pa decay into 

233
U (these effects act somewhat in opposition). The 

equilibrium isotope vector is somewhat sensitive to the average assembly power, such that it is 

possible that the power history over the equilibrium cycle is also significant. It is worth considering 

this effect in future calculations. 

The number of Th-TRU and Th-U3 pins in each configuration is selected to give approximately 

equal powers in both fuel types while satisfying mass balance constraints. The exception is WATU, 

where the assembly ratio is fixed at 1:1 to simplify the analysis, but this is a fairly appropriate ratio. 
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The pin powers are not calculated as a delicate balance of fissile proportions is needed across the 

assembly. This is discussed in Section 5.1.4. 

5.1.2. Results 

The equilibrium isotope vectors and fuel cycle performance are given in Table 5.2. The vectors are 

given at the start of Pass 1, so in addition to the U3 in the start-of-cycle (SOC) compositions, there 

is some U3 held in reserve. The overall waste reload fraction and the incineration rate are calculated 

for the resultant of both passes. The results of TCUP-ST-1 are repeated for reference. For the ST 

cases, the multi-batch average burn-up is taken from the full-core analysis of the following section. 

For the MT cases, a full-core analysis was not performed, so the linear reactivity model is used to 

estimate the burn-up (Driscoll et al., 1991).  

The variation in   



k from the lattice (TCUP) and super cell (WATU) calculations up to 30 GWd/t is 

plotted in Fig. 5.4. Only the first of the two Th-TRU pass schemes is plotted as the reactivity for the 

two passes is almost identical. It is clear that the Gd2O3 BP for WATU-ST-2 burns out too fast, so 

the BP design requires optimization. 

The MTC is initially positive or nearly zero but becomes negative as the BP burns out (Fig. 5.5). As 

a uniform coolant density perturbation was assumed, the calculated MTC is not physical and it 

requires a full-core analysis to evaluate it properly. It will be shown in Section 5.2 that the core 

MTC is negative at all times due to the presence of multiple batches.  

The FVR and ZCR are highly leakage dependent and a full-core analysis is required to accurately 

evaluate them. However, the FVR and ZCR without leakage are strongly indicative of the relative 

performance of the cases (Figs. 5.6 and 5.7). Again, the high value at low burn-up is due to the BP.  
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Table 5.2. Results of single assembly/ supercell analysis. 

SOC at% TCUP-

ST-1 

TCUP-

MT-1 

TCUP-

ST-2 

TCUP-

MT-2 

WATU- 

ST-2 

TPUC-

ST-

2** 
241

Am 1.42 1.99 1.14 1.91 1.31 1.29 
242m

Am 0.04 0.05 0.03 0.05 0.04 0.03 
243

Am 0.77 1.14 0.71 1.24 0.73 0.74 
243

Cm 0.00 0.01 0.00 0.01 0.00 0.00 
244

Cm 0.51 0.70 0.56 0.83 0.52 0.54 
245

Cm 0.22 0.27 0.23 0.30 0.22 0.22 
246

Cm 0.21 0.15 0.20 0.26 0.19 0.20 
247

Cm 0.05 0.03 0.04 0.06 0.05 0.04 
248

Cm 0.02 0.01 0.02 0.03 0.02 0.02 
237

Np 0.58 0.85 0.56 0.99 0.59 0.59 
238

Pu 2.41 3.04 2.13 3.18 2.17 2.24 
239

Pu 3.52 1.83 3.35 1.86 3.59 3.65 
240

Pu 5.43 5.80 4.45 5.99 5.25 5.12 
241

Pu 1.07 1.09 1.13 1.19 1.07 1.14 
242

Pu 2.87 3.84 2.54 4.35 2.66 2.68 
232

Th 74.81 72.32 77.85 71.27 77.56 77.32 
233

U 2.55 3.15 2.36 2.80 1.95 2.03 
234

U 2.21 2.52 1.71 2.34 1.31 1.54 
235

U 0.64 0.71 0.52 0.66 0.37 0.46 
236

U 0.66 0.50 0.48 0.69 0.40 0.46 

U3 retained at SOC Pass 1 for top up in Pass 2 (% of 

total inventory) 

0 0 22 16 20 22 

SOC pass 1 waste reload fraction (at %) 50 60 65 75 60 65 

Overall waste reload fraction averaged over both 

passes (at %) 

50 60 51 54 45 50 

SOC TRU in fuel (%) 19.13 20.80 17.09 22.24 18.41 18.51 

SOC U3 in fuel (%) 6.06 6.89 5.06 6.49 4.03 4.49 

Fissile fraction* of TRU and U3 (i.e. excl. 
232

Th (%) 30.91 24.50 33.18 22.66 31.13 31.67 

Fissile fraction* of fuel (%) 7.79 6.78 7.35 6.51 6.98 7.28 

Fissile fraction* of TRU (%) 24.01 14.06 26.18 13.72 25.32 25.86 

Fissile fraction* of U3 (%) 52.69 56.02 56.79 53.31 57.66 55.59 

3-batch average discharge burn-up (GWd/t) 40.1 39.9 41.6 38.1 41.0 41.2 

Multi-batch Th-TRU average discharge burn-up 

(GWd/t) 

45.2 41.3 62.3 65.3 57.8 60.8 

Multi-batch Th-U3 average discharge burn-up (GWd/t) 39.2 38.9 29.1 28.6 31.8 30.1 

TRU fraction in Th-TRU pins (%)  38.3 50.8 31.3 54.4 35.3 34.9 

U3 fraction in Th-U3 pins (%) 12.1 7.1 11.1 11.0 8.4 8.9 

* 
233

U, 
235

U, 
239

Pu, 
241

Pu are considered fissile 

** TPUC-ST-2 is introduced in Section 5.2.4 but included in Table 5.2 for ease of comparison 
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Fig. 5.4. Reactivity variation over cycle. 
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Fig. 5.5. Single assembly MTC variation over cycle. 
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Fig. 5.6. Single assembly FVR without leakage. 
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Fig. 5.7. Single assembly ZCR without leakage. 

5.1.3. Analysis 

The FVR and ZCR are strongly correlated and positive in almost all cases. The FVR appears 

sufficiently low that it may be possible to achieve a negative FVR when accounting for leakage. 

However, the ZCR is very positive, and it is unlikely to be negative even with leakage. 

The performances of TCUP and WATU designs appear very similar. Therefore, it appears that 

TCUP is sufficiently heterogeneous to fully exploit the advantages of fuel heterogeneity, but if there 

is a maximum sensible region size, it is at least as large as a whole assembly. 

The MT cases have a slightly reduced burn-up relative to the ST cases. For the 1-pass cases, this is a 

result of the trade-off between reduced fissile proportion of the feed and the presence of 
233

U in the 

feed, which allows the MT cases to feature higher reload proportions (and overall TRU destruction 

rates) at very similar MTC, FVR and ZCR values as the ST cases (Figs. 5.5–5.7). This difference is 

reflected in the 2-pass TCUP cases. 

TCUP-ST-1 and TCUP-MT-1 have very similar FVR and ZCR. Therefore, while there is a slight 

burn-up penalty in the MT case, either could be favoured depending on the overall fuel cycle 

strategy.  

Although the cycle length for the 2-pass cases is lower (Fig. 5.4), the additional Th-TRU pass 

results in similar average burn-up (Table 5.2). In addition, the ST cases have much reduced FVR 

and ZCR (Figs. 5.6 and 5.7). There is therefore a strong and clear advantage to using this refueling 

scheme. However, TCUP-MT-2 has a positive MTC and high FVR and ZCR. Therefore, in the 

„multi-tier‟ implementation the 1-pass approach is appropriate, and the best „multi-tier‟ case is 

worse than the best „single-tier‟ case. 

TCUP-ST-2 has a ~10% lower TRU inventory than TCUP-ST-1, and in particular it is worth noting 

the ~25% reduction in 
241

Am population. This helps to reduce the FVR. Crucially, the fissile 
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proportion of both TRU and U3 is higher, which allows the average burn-up to be improved despite 

this lower TRU inventory. This indicates more efficient TRU burning, in particular as a result of 

decreasing 
241

Pu decays.  

Comparing the TCUP-MT cases, the TRU isotope vector does not improve with 2 Th-TRU passes. 

In this case, a greater proportion of the feed is MA, so the advantage of reduced 
241

Pu decays is 

lower.  

The fissile proportion of U3 also changes. For TCUP-ST, the 2-pass case has a U3 vector with 

better fissile properties than the 1-pass case. For TCUP-MT, this effect is reversed.  

To investigate how this comes about, the U3 mass balance is investigated. Table 5.3 gives the SOC 

and end-of-cycle (EOC) U3. For 2-pass cases, the inputs and outputs from both Th-U3 passes are 

considered together in the mass balance. 
233

Pa and 
238

Pu decay to respectively 
233

U and 
234

U is 

included. 

Table 5.3. U3 mass balance for TCUP cases (total U3 normalized to 100). 

 Th-

TRU 

passes 

SOC U3 EOC U3 in Th-

U3 

EOC U3 in Th-

TRU 

U3 from 

feed 

ST MT ST MT ST MT MT 

Total U3 1 100 100 85 83 15 10 7 

2 100 100 81 80 19 11 8 

Fissile % 

(
233

U, 
235

U) 

1 53 56 49 52 76 67 91 

2 57 53 51 48 81 66 91 

The U3 fissile fraction in the Th-U3 pins reduces over the cycle as 
233

U is burned. This is 

replenished from 
233

U bred in the Th-TRU pins, and, in the MT cases, from highly fissile U3 in the 

feed. In the ST case with 2 Th-TRU passes, there is a large increase in 
233

U breeding in the Th-TRU 

pins. This is not observed for the MT case. 

This difference comes about due to the decrease in TRU fraction in the Th-TRU pins from TCUP-

ST-1 to TCUP-ST-2 (resulting in more Th in the pin and less resonance captures in the TRU), 

compared to the increase in the already high TRU fraction from TCUP-MT-1 to TCUP-MT-2 (Table 

5.2). 

5.2.3.1. Effect of Changing Relative Number of Th-TRU and Th-U3 Pins 

Varying the number of Th-TRU pins in the assembly affects the power distribution between regions, 

the neutron spectrum and the relative discharge burn-ups of Th-TRU and Th-U3. However, there is 

little overall effect on the performance. 
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For a given fuel composition, reducing the number of Th-TRU pins, while keeping the same total 

core inventory of TRU and U3, increases the reaction rate in the U3, which increases   



k  and makes 

the MTC more negative. However, a higher proportion of the U3 is burned, and after multiple 

cycles the new equilibrium composition has a lower U3 inventory, a higher Th-TRU inventory, and 

comparable performance to the original case. 

The TRU and U3 isotope vectors can be improved (i.e. increased fissile proportion) by increasing 

the number of Th-TRU pins, but this does not improve the overall performance for a given waste 

reload fraction. The larger volume of TRU in the core increases the MA incineration rate and 
233

U 

breeding rate. In addition, the reduced number of Th-U3 pins reduces the U3 burn rate. However, 

the improvement in the isotope vector is offset by the increased reaction rate in the Th-TRU as it is 

dispersed over a larger number of pins. This acts to make the MTC more positive and reduce   



k.  

Therefore, the most important consideration in choosing the number of Th-TRU pins is to limit pin 

power peaking as much as possible. 

WATU-ST-2 has slightly lower average discharge burn-up (due to fewer Th-TRU 2-pass pins and 

the same cycle length) and FVR than TCUP-ST-2, so the exact trade-off is potentially very similar 

between the two cases. Both appear feasible implementations. The WATU scheme has a slightly 

higher TRU population and a lower fissile fraction in the TRU, but has a higher power share from 

the Th-U3 region. As discussed, this is mostly a consequence of the ratio between the two pin types. 

This effect is further increased as the Th-TRU assembly is subcritical and the Th-TRU region size 

for WATU is larger than for TCUP. This reduces the neutron transport from Th-U3 to Th-TRU, 

which increases the tendency for the U3 to burn out relatively rapidly. This reduces the equilibrium 

U3 proportion but keeps the power share between regions approximately constant. 

5.1.4. TPUC and WATU Lattice Design 

The TCUP fuel assembly design is now inverted to place the Th-TRU pins at the periphery and the 

Th-U3 pins at the centre (TPUC). This places the more thermal spectrum Th-U3 pins next to the 

guide tubes. This slightly increases the spectral variation across the assembly, resulting in a minor 

improvement in performance. However, the main advantage is an increase in the SDM of around –

300 pcm, by increasing the thermal neutron flux in the guide tubes. The main disadvantage is 

making the design less suitable for placing MA „target‟ pins in the guide tube positions – this is 

discussed in Chapter 7. The TPUC assembly is shown in Fig. 5.8. A new equilibrium isotope vector 

is derived for this design – shown in Table 5.2. 
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Fig. 5.8. TPUC fuel design with 144 Th-TRU pins (blue) and 120 Th-U3 pins (green) per assembly. 

As discussed in Chapter 2, power swings between regions over the core life make it difficult to limit 

pin-level power peaking. The TPUC design utilizes four fissile loading zones for both the Th-TRU 

and Th-U3 pins, summarized in Fig. 5.9. The assembly design and power peaking up to 20.5 GWd/t 

are shown in Fig. 5.9. This covers the first 2 cycles of operation within the core. Twice-burned 

assemblies are assumed not to be the „hot‟ assembly, such that when the assembly is burned beyond 

~20.5 GWd/t higher pin-level power peaking is allowable. The power peaking is limited to 1.09 

over the cycle, which is slightly higher than UO2 assemblies (~1.06) but may still be acceptable in 

conjunction with low power-peaking core design. The use of enrichment zoning increases the 

complexity of fuel fabrication: here 8 different pin types will need to be accurately loaded into the 

assembly with remote fuel fabrication. 

Use of mechanical shim can lead to local assembly hot spots when the rods are withdrawn, as the 

adjacent fuel pins experience depressed flux and are therefore under-burned. However, rod 

shadowing was found not to adversely affect pin-level power peaking, leading to ~1% increases or 

decreases in pin-level power peaking. 

The WATU supercell enrichment zoning (also utilizing four compositions for both Th-U3 and Th-

TRU) is shown in Fig. 5.10, with the power peaking over the cycle also given. In this case, the 

power peaking is normalized relative to the assembly, rather than the supercell, i.e. Th-U3 pin 

power is normalized relative to average Th-U3 pin power and Th-TRU pin power is normalized 

relative to average Th-TRU pin power. Assembly-level power variations will be considered at core 

level in this case. The Th-TRU pin-level power peaking can be limited to ~1.07. In addition, the 

assembly contains 288 pins, compared to the usual 264, reducing the power in the average pin. This 

is discussed further in Section 5.2. The Th-U3 design is further complicated by the use of Gd in 

only some of the pins. This leads to large power swings across this assembly, and a maximum 

power peaking of 1.12. 
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Th-TRU Th-U3 

Pins/ assembly TRU loading (at%) Pins/ assembly U3 loading (wt%) Gd2O3 (wt%) 

48 41.0 24 10.8 0.1 

44 36.7 32 9.8 0.1 

36 28.7 56 8.0 0.1 

12 22.6 12 7.3 0.1 

 

0.99 0.99 1.00 1.02 1.06 1.01 1.03 1.04 1.05 

 0.99 1.02 0.99 1.08 1.03 1.03 1.04 0.94 

  0.88 1.03 1.00  0.99 1.01  

    1.04 1.00 1.00 1.02 1.05 

    1.02 0.92 0.91 0.92 0.95 

      0.98 0.99  

      0.97 0.99 0.95 

       0.93 0.96 

0 GWd/t  

 

0.95 0.94 0.95 0.98 1.02 0.98 1.00 1.01 1.02 

 0.94 0.98 0.96 1.05 1.02 1.03 1.05 0.96 

  0.86 1.02 1.02  0.98 1.00  

    1.03 1.01 1.01 1.03 1.06 

    1.03 0.95 0.95 0.96 0.99 

      1.03 1.04  

      1.03 1.05 1.01 

       1.00 1.03 

10.5 GWd/t  

 

0.97 0.96 0.97 1.00 1.04 1.00 1.03 1.04 1.05 

 0.97 1.00 0.98 1.08 1.06 1.07 1.09 1.00 

  0.89 1.06 1.07  0.95 0.97  

    0.99 0.98 0.98 0.99 1.02 

    0.99 0.93 0.93 0.94 0.96 

      0.99 1.00  

      0.99 1.01 0.98 

       0.97 1.00 

20.5 GWd/t  

Fig. 5.9. Th-TRU and Th-U3 fissile loadings; assembly design and pin power peaking for TPUC. 
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Th-TRU Th-U3 

Pins/ assembly TRU loading (at%) Pins/ assembly U3 loading (wt%) Gd2O3 (wt%) 

116 39.5 140 12.2 0.2 

104 36.2 56 11.0 0 

56 27.0 56 8.8 0 

12 25.0 12 7.1 0 

 

0 GWd/t  

       0.95 0.98 

      0.95 0.95 0.98 

      0.97 0.98  

    0.96 0.97 0.94 0.94 0.97 

    0.97 0.96 0.93 0.93 0.96 

  1.03 0.91 0.94  0.93 0.93  

 1.09 0.96 0.99 1.03 1.08 1.04 1.05 1.09 

1.06 1.09 1.03 1.06 1.08 1.09 1.09 1.09 1.10 

1.02 0.96 1.00 1.01 1.01 1.02 1.02 1.03 1.03 

 0.89 1.05 1.03 1.03 1.03 1.03 1.03 1.03 

  1.00 0.97 0.97 0.96 0.96 0.96 0.97 

   1.01 1.00 1.00 1.00 1.00 1.00 

    0.99 0.99 0.99 0.99 0.99 

     0.98 0.98 0.99 0.99 

      0.99 1.00 1.00 

       1.04 1.03 

         

 

(Figure continues on next page) 
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10.5 GWd/t  

       1.09 1.12 

      1.07 1.08 1.11 

      1.10 1.10  

    1.05 1.08 1.05 1.05 1.09 

    1.05 1.05 1.02 1.02 1.05 

  0.95 0.95 0.99  1.00 1.00  

 0.96 0.86 0.90 0.94 0.98 0.96 0.96 0.99 

0.92 0.95 0.91 0.93 0.95 0.97 0.97 0.97 0.98 

1.05 0.99 1.03 1.04 1.05 1.05 1.06 1.06 1.07 

 0.90 1.05 1.03 1.03 1.03 1.03 1.04 1.04 

  0.99 0.97 0.96 0.96 0.96 0.96 0.96 

   1.00 0.99 0.99 0.98 0.99 0.99 

    0.98 0.97 0.97 0.97 0.97 

     0.97 0.97 0.97 0.97 

      0.97 0.98 0.98 

       1.02 1.01 

         

20.5 GWd/t  

       1.08 1.11 

      1.07 1.07 1.10 

      1.09 1.09  

    1.05 1.07 1.05 1.05 1.08 

    1.05 1.05 1.02 1.03 1.05 

  0.95 0.97 1.00  1.00 1.01  

 0.96 0.87 0.91 0.94 0.98 0.96 0.96 0.99 

0.92 0.95 0.91 0.94 0.95 0.97 0.97 0.97 0.98 

1.06 1.00 1.04 1.05 1.05 1.06 1.07 1.07 1.07 

 0.91 1.05 1.03 1.03 1.03 1.03 1.03 1.03 

  0.99 0.97 0.96 0.96 0.95 0.96 0.96 

   1.00 0.99 0.98 0.98 0.98 0.98 

    0.97 0.97 0.97 0.97 0.97 

     0.96 0.96 0.97 0.97 

      0.97 0.98 0.98 

       1.02 1.02 

          

Fig. 5.10. Th-TRU and Th-U3 fissile loadings; assembly design and pin power peaking for WATU. 
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The above lattice design assumes a perfect checkerboard of Th-TRU and Th-U3 assemblies in the 

core. However, symmetry conditions necessitate a slight deviation from this pattern, leading to 

neighbouring assemblies of the same type in some areas of the core. The accurate calculation of 

local pin-level power peaking requires pin power reconstruction with a core analysis, and the use of 

several supercell calculations to derive varying discontinuity factors for different core positions, but 

the effects of identical neighbouring assemblies can be readily approximated by assuming an 

infinite lattice of one assembly type. An infinite lattice of Th-U3 assemblies with the fissile zoning 

defined in Fig. 5.10 would have an SOC power peaking of 1.27 (Fig. 5.11). The power peaking 

reduces to 1.11 (comparable to the supercell design) by the end of the first cycle – when the Gd at 

the centre of the assembly has burned out. 

                  

              0.83 0.86 

            0.84 0.83 0.86 

            0.87 0.86   

        0.87 0.88 0.84 0.84 0.87 

        0.90 0.88 0.85 0.84 0.87 

    1.03 0.88 0.90   0.88 0.88   

  1.18 1.00 1.02 1.05 1.10 1.06 1.06 1.10 

1.27 1.27 1.19 1.21 1.24 1.25 1.25 1.25 1.25 

Fig. 5.11. Pin-level power peaking for infinite lattice of Th-U3 assemblies with fissile loadings 

defined as in Fig. 5.10. 

The power peaking in Fig. 5.11 is obviously unacceptable. Changing the fissile zoning for specific 

assemblies is possible, but leads to problems when shuffling the fuel at EOC. As the problem 

appears limited to the first pass of fuel, while the Gd burns out, it appears more sensible to change 

the Gd loading design for the fresh assembly, i.e. utilize different Gd loadings for assemblies in 

different positions in the core. After the first pass, the Gd has burned out. A rigorous analysis of all 

fuel loading histories, e.g. where the Th-U3 assembly is initially next to a Th-TRU assembly, then 

shuffled to be next to a Th-U3 assembly, is needed to confirm this. 

5.2. Core Analysis  

A detailed full-core analysis of the 2-pass TPUC and WATU fuel designs is now performed using 

PANTHER. A full-core model based on a 193 assembly 4-loop Westinghouse PWR (Watt‟s Bar, 

2009) was used to evaluate the main indicators of the core performance. The analysis was 

performed using PANTHER (Hutt et al., 1991; Morrison, 2003). 2-group cross-sections for 

PANTHER were generated by condensing the multi-group cross-sections from the WIMS flux 
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solution with the same equilibrium isotope vector used in the assembly analysis. This is valid as the 

discharge burn-up is very similar to the estimated burn-up used in the isotopic convergence in all 

cases. Given the hard neutron spectrum and heterogeneous fuel, use of a larger number of energy 

groups may be preferable. 

The fuel conductivity for Th-TRU is estimated using the model for Th-Pu in (Cozzo et al., 2011), 

with the TRU proportion taken as the Pu proportion. This significant assumption is made due to 

limited data availability. The conductivity for Th-U3 is taken from (Yang et al., 2004). 

PANTHER‟s simple thermal feedback model represents only a single pincell type per node, so the 

average thermal conductivity was derived to represent the net effect of the two separate pin types. 

This approach is sufficient to treat neutronic-thermal-hydraulic feedback effects to a reasonable 

degree of accuracy, as the Doppler coefficients (DCs) of the two fuel types are very similar (~ –3.5 

pcm/K for a single-assembly analysis with 100 K perturbation in fuel temperature). For WATU, 

different conductivities were implemented in different assemblies. 

Achieving a high rod worth is difficult in a hard neutron spectrum. The control rods adopted 

contained solid pellets of B4C with 95% 
10

B enriched boron and a radius of 0.433 cm. Even so, it is 

difficult to achieve an adequate SDM, partly due to the use of a portion of the rods to provide 

mechanical shim. Highly enriched B4C rods are also under consideration for RBWRs (Downar et 

al., 2012). As with MOX cores, use of additional rod bank positions (which requires additional 

modification for retrofit cores due to need to place additional rod-cluster-control-assemblies 

(RCCAs) with additional holes penetrating the pressure vessel – this is not thought to be a major 

problem) can be used to reduce the enrichment of 
10

B required, or to increase the overall control rod 

worth. 

The 
10

B in the control rods exposed at the high core neutron flux will deplete. This will require 

dedicated management of the control rods, including shuffling or replacement when the worth has 

decreased to unacceptable levels or the rod mechanical performance has degraded. The control rods 

lose ~5% of their worth when burned to 20 GWd/t. For cycle-average control using 12% of the 

available worth (typical), this roughly equates to a 5% loss of rod worth over 16 years of operation. 

The rods will need to be shuffled and replaced regularly and the reduction in worth needs to be 

taken into account. 

The SDM was calculated for a reactor trip from hot full power (HFP) to hot zero power (HZP), with 

no change in Xe population,
23

 with the highest worth rod remaining out of the core. A 10% 

reduction is made for modeling uncertainties, and a 10% reduction is also made to account for 

                                                 
23

 The Xe level increases following trip, but typically no credit is taken for this. Removal of the Xe entirely would make 

the SDM worse by 600 pcm in this case. 
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control rod depletion (i.e., an overall reduction of 20%). In each case, the rods in position F10 and 

symmetry positions are the highest worth rods, and one of these is considered stuck. The Doppler 

defect is increased by 20% to account for uncertainty. The value of the Doppler defect is ~2000 

pcm, leading to a reduction in SDM of ~400 pcm. 

Data was taken from the supercell model of Fig. 5.1 for the WATU fuel. The reflective boundary 

conditions through the assembly midpoints in the supercell model are a good approximation to the 

conditions in the core and 2-group cross-sections are derived using an appropriate spectrum. Each 

assembly contained 4 radial nodes in this case. 

In PANTHER, it is possible to employ assembly discontinuity factors such that the PANTHER 

fluxes are forced to match the lattice solution, resulting in an exact match in   



k  for an identical 

problem (Knight et al., 2013). It is possible to generate approximate discontinuity factors in 

PANTHER „on the fly‟ using an „embedded method‟ described in (Knight et al., 2013). While 

practical, this method is currently difficult and time-consuming to set up, so the discontinuity 

factors were not implemented for the WATU model. It is also possible to derive the discontinuity 

factors using a supercell calculation in WIMS, and pass the calculated assembly average and 

assembly edge fluxes to PANTHER – again this is difficult and time-consuming to set up and is not 

performed here. This results in errors of ~0.5% in the fast neutron flux, and ~8% in the thermal 

neutron flux in PANTHER relative to the WIMS solution, which can lead to errors of ~5% in 

interface pin powers. This is deemed acceptable for the purposes of this feasibility analysis but any 

future analysis should use discontinuity factors.  

The TPUC core accounts for flux variation across the assembly by normalising to the cell edge flux 

rather than the cell average flux. This is the usual procedure employed in PANTHER, and is 

acceptable because, as is usual, the reflective boundary condition at the assembly edge is an 

accurate approximation to core conditions. WIMS contains a specific calculation route to account 

for reflector effects, by setting fast and thermal cross sections to accurately reproduce the neutron 

currents at the core/assembly interface. 

Pin power reconstruction is not employed for the full-core model, due to the unsuitability of the 

method (no discontinuity factors) for deriving them. A complex fuel design is needed to achieve 

adequate pin power peaking (discussed in Section 5.1.4), and evaluation of an accurate maximum 

pin power peaking also needs to consider control rod history effects on pin-level power peaking due 

to the use of mechanical shim. These in-depth calculations are beyond the scope of this feasibility 

study, and a simpler approach is adopted with pin-level and assembly-level power peaking 

considered separately, and multiplied together to estimate total power peaking. 
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The MTC in PANTHER is calculated by perturbing the flow rate. Additional uncertainty in the 

MTC, FVR and ZCR will be introduced in PANTHER, as the averaging of the mesh-by-mesh 

MTCs in the core may introduce inaccuracies and for the FVR and ZCR the treatment of leakage 

becomes extremely important. Convergence of the FVR and ZCR in PANTHER is problematic. 

This is thought to be a result of the almost zero thermal neutron flux. Calculation of the FVR and 

ZCR in PANTHER using 2-group diffusion theory is of questionable validity, in particular because 

of the importance of accurate treatment of the reflector. While the reflector model was derived for 

fully voided conditions using the calculation methodology described above, this methodology may 

not be accurate under fully voided conditions. Hence the FVR and ZCR calculated here can only be 

regarded as an estimate.  

Given the hard neutron spectrum and heterogeneous fuel, use of 2 energy groups may not be 

sufficient, and use of more groups should be considered in future. Furthermore, additional 

uncertainty in the MTC, FVR and ZCR will be introduced in PANTHER, as the averaging of the 

mesh-by-mesh MTCs in the core may introduce inaccuracies, and for the FVR and ZCR the 

treatment of leakage becomes extremely important. 

5.2.1. Core Design and Mechanical Shim 

Some LWRs, such as AP1000s (Onoue et al., 2003), utilize mechanical shim for load following and 

to reduce the number of changes in boron concentration. However, rod insertion typically results in 

a depressed local power distribution, with a subsequent power spike when the rods are extracted due 

to the rod shadowing the fuel. This tends to increase the core form factors (Franceschini and 

Petrovic, 2009). Partial axial insertion of the rods skews the power towards the bottom of the core, 

which increases power peaks and triggers Xe transients (Franceschini and Petrovic, 2008). This is 

mitigated by the low reactivity swing to be controlled by rods of less than 2000 pcm, due to: the 

high content of MA and even-numbered isotopes of Pu in the fuel; the hard neutron spectrum; and 

the use of burnable absorbers. The hard neutron spectrum also acts to reduce power variations 

across the core by increasing the mean neutron path. The RMPWR core considered in this chapter 

does not use soluble boron. 

Dedicated lighter worth (“gray”) banks are often used for reactivity control to minimize the above 

effects, but this increases the number required, and reduces the SDM. Extensive reactivity control 

with control rods is also taxing for the fuel, especially during transients, and proper investigation of 

the fuel rod performance under these conditions must be undertaken.  

Achieving adequate core power peaking requires derivation of a suitable loading pattern (LP). Here, 

this is combined with use of mechanical shim, which also necessitates finding a suitable control rod 

program (CRP). PANTHER contains optimization algorithms that can be used to derive suitable 
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LPs, but the process is complicated by the need for a complementary CRP. For the TPUC core, an 

approximate LP (shown in Fig. 5.12) is used to repeatedly shuffle and deplete the core, to generate 

fuel with a characteristic range of burn-ups for an equilibrium cycle. The fuel loading is then 

optimized for the final „equilibrium‟ cycle using the genetic algorithm in PANTHER (Parks, 1996) 

(Fig. 5.13). This does not represent true equilibrium, but, in reality, a true equilibrium cycle is 

almost never reached, and cycle-by-cycle LP design is pursued in any case. This process is 

therefore highly appropriate for determining the feasibility of finding a suitable LP plus CRP which 

results in acceptable core form factors.  

 H G F E D C        

8 4          TRU Pass 1 

9 3 2           Batch 1 

10 3 2 2          Batch 2 

11 2 2 2 1         Batch 3 

12 2 3 2 2 1         

13 1 1 1 1 2 3     TRU Pass 2 

14 1 1 1 1 3 3       Batch 1 

15 3 3 3 3        Batch 2 

           Batch 3 

           Batch 4 

Fig. 5.12. LP used to bring the TPUC core to equilibrium.  

 H G F E D C       

8 4         TRU Pass 1 

9 2 2          Batch 1 

10 3 3 2         Batch 2 

11 1 3 3 1        Batch 3 

12 3 1 2 3 1        

13 1 3 1 1 2 3    TRU Pass 2 

14 2 1 1 2 2 3      Batch 1 

15 3 1 2 2       Batch 2 

           Batch 3 

           Batch 4 

Fig. 5.13. LP used for the TPUC equilibrium cycle. 



    122 

 

Rod banks are defined as in Fig. 5.14, and a basic CRP is defined both for the initial cycles and the 

final equilibrium cycle (i.e. this CRP is fixed during the genetic algorithm search). The full CRP for 

the final cycle is then derived by hand, and is shown in Fig. 5.15. The basic CRP utilizes banks CV 

and CD only, with insertions as in Fig. 5.14, with the additional banks utilized only in the final 

cycle. A criticality search throughout the cycle is defined using bank OD, such that     



keff  is 

maintained at 1.0015 for most of the cycle. The maximum dip in criticality of 70 pcm occurs in the 

middle of the cycle where bank OD is fully withdrawn; this would, in practice, be compensated for 

by adjustment of bank MV, but this is cumbersome to perform in PANTHER. The cycle length is 

346 days, corresponding to a cycle length of ~1 year and the discharge burn-up matching that used 

in deriving the equilibrium fuel composition. 

                 

                 

    SD  SD  OV  SD  SD     

     SD  SD  SD  SD      

  SD  OD  S2  MV  S2  OD  SD   

   SD  S2*  S2  S2  S2*  SD    

  SD  S2  CD  CV  CD  S2  SD   

   SD  S2  S2  S2  S2  SD    

  OV  MV  CV  SD  CV  MV  OV   

   SD  S2  S2  S2  S2  SD    

  SD  S2  CD  CV  CD  S2  SD   

   SD  S2*  S2  S2  S2*  SD    

  SD  OD  S2  MV  S2  OD  SD   

     SD  SD  SD  SD      

    SD  SD  OV  SD  SD     

                 

                 

Fig. 5.14. Rod bank definition for the TPUC and WATU cores. „S2‟ denotes an independent set of 

shutdown rods which is not present in Westinghouse 4-loop PWRs but is added in Section 5.2.4 for 

LBLOCA mitigation. * Not present in WATU core as incompatible with LP. 
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Fig. 5.15. CRP used for the TPUC equilibrium cycle. 

The WATU LP is more difficult to define, as a checkerboard loading scheme for the Th-TRU and 

Th-U3 assemblies is desired. It was therefore defined by hand, and was identical for the initial 

cycles and the equilibrium cycle (Fig. 5.16). A CRP was only defined for the equilibrium cycle and 

is shown in Fig. 5.17. The checkerboard condition is violated in positions E12, D12, D13 and C13 

due to symmetry constraints, but is satisfied elsewhere. There are 96 Th-TRU assemblies and 97 

Th-U3 assemblies, which is close to the 1:1 ratio used in the supercell analysis (which did not 

consider the 4
th

 batch assembly at the reactor centre). Therefore, the supercell analysis described in 

Section 5.1 is deemed valid for deriving equilibrium fuel compositions and 2-group cross-sections. 

All rod bank positions contain a Th-U3 assembly with guide tubes. The core performance is almost 

identical with a Th-TRU assembly at the core centre, but a Th-U3 assembly is needed to utilize the 

central shutdown RCCA. 

 H G F E D C        

8 U4       Th-U3 batches Th-TRU batches 

9 T2 U3        U1  T1 

10 U3 T5 U1       U2   T2 

11 T1 U2 T5 T1     U3   T3 

12 U2 T4 U2 T2 U2    U4   T4 

13 T3 U1 T4 U1 U2 T2      T5 

14 U1 T3 U1 T1 U3 T6       T6 

15 T3 U3 T6 U3          

            

Fig. 5.16. LP used to bring the WATU core to equilibrium, and for the WATU equilibrium cycle. 
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Fig. 5.17. CRP for the WATU equilibrium cycle. 

The cycle length is 346 days, and     



keff  is maintained at 1.0000 by a criticality search on bank OD, 

except for the final ~5 days, where the reactor becomes slightly subcritical. EOC     



keff  is 23 pcm 

subcritical. A slight increase in TRU loading is therefore necessary to maintain criticality over the 

cycle. 

5.2.2. Reactivity Coefficients 

The reactivity coefficients for both designs are given in Table 5.4. There is substantial margin of 

subcriticality for the MTC and FVR. This gives reasonable confidence that the FVR is negative 

despite uncertainties in the calculation. However, the ZCR is substantially positive, to such an 

extent that it appears unlikely that the design can be modified to make it negative. Increasing the pin 

diameter will allow the TRU reload fraction to be reduced and hence the ZCR to be made less 

positive, but this may violate thermal-hydraulic limits (see Chapter 4). 

Table 5.4. Core reactivity coefficients. 

  MTC (pcm/K) DC (pcm/K) FVR ZCR 

TPUC SOC (rods out) –12.1 –3.6 –0.020 0.040 

SOC –10.1 –3.8 –0.025 0.039 

SOC (all rods in) –68.0 –2.7 –0.066 –0.018 

EOC –19.6 –3.8 –0.035 0.030 

WATU SOC (rods out) –8.8 –3.8 –0.013 0.040 

SOC  –9.5 –3.8 –0.021 0.031 

SOC (all rods in) –58.4 –2.7 –0.126 –0.008 

EOC –17.4 –3.9 –0.026 0.035 

In general, insertion of control rods improves the MTC, FVR and ZCR, so calculation of reactivity 

coefficients with rods out leads to a conservative evaluation. The DC is comparable to or slightly 
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more negative than that of UO2-fuelled reactors (AREVA/EDF, 2011; Westinghouse Electric 

Company LLC, 2010a) due to the use of Th and the high resonance flux in the reactor. The 

neutronic response to a LBLOCA is discussed in Section 5.2.4. 

5.2.2. Core Form Factors 

The maximum radial form factor (RFF) calculated for normalized hot channel rise in enthalpy for 

the TPUC design is 1.41 (Fig. 5.18). The axial form factor (AFF) is calculated as the maximum 

power in an XY plane of the reactor divided by the average power of an XY plane of the reactor. 

An AFF based on the maximum ratio of peak to average power in an individual channel would be 

misleading as this ratio is very high in channels with partially inserted rods, due to very low power 

at the top of the rod. The AFF is 1.42 and the maximum total power peaking is 1.97. The AFF is 

slightly higher than without the use of rod shim, but still less than the chopped cosinusoidal 

distribution typically used in MDNBR calculations. Multiplying the maximum RFF by the pin 

power peaking of 1.09 gives an estimate of the maximum pin-level normalized hot channel rise in 

enthalpy (FH) of 1.54. Applying an uncertainty factor of 1.05 and an engineering tolerance factor 

of 1.03 (as in (Westinghouse Electric Company LLC, 2010a)) gives a total power peaking of 2.32. 
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Fig. 5.18. RFF and AFF for the TPUC equilibrium cycle. 

For comparison, (Watts Bar, 2009) allows a total heat flux hot channel factor of 2.40 and a 

maximum FH of 1.55, so the TPUC design just satisfies these criteria. The AP1000 allows 

somewhat higher values of 2.60 for total heat flux hot channel factor and 1.65 for maximum FH 

(Westinghouse Electric Company LLC, 2010a).  

The core power distribution over life is given in Fig. 5.19. The rod bank switching leads to large 

changes in the flux profile over the reactor life, with large flux depressions around the inserted 
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banks. However, the bank switching prevents high power peaking due to rod shadowing effects at 

EOC.  

 

Fig. 5.19. Core power distribution for the TPUC equilibrium cycle at (left to right) 0, 26, 33 (top 

row), 199, 255 and 346 days (bottom row). Spectral colour scale represents channel power: red = 

hot, blue = cold, normalized to extreme values (highest power shown in Fig. 5.18, lowest power 

~0.3–0.35). 

The RFF and AFF for the WATU design are given in Fig. 5.20. The maximum RFF is 1.47 

(occurring at SOC) but in the Th-U3 the RFF is at most 1.41. A higher RFF is allowable in the Th-

TRU assemblies due to the larger number of pins. The AFF is at most 1.55, which is less than that 

used for chopped cosine MDNBR calculations but higher than desirable. This is due to partial 

insertion of a high worth rod bank. Allowing for pin power peaking, the maximum FH in the Th-

U3 is estimated as 1.58, which exceeds the allowable value of 1.55 for Watt‟s Bar but is within the 

AP1000 design value. Due to the restricted core design, it appears advisable to seek improved 

lattice designs with power peaking of at most 1.10 (compared to 1.12) as this will allow the Watt‟s 

Bar design limit to be satisfied. The maximum FH in Th-TRU is ~1.44 (including pin power 

peaking but adjusting for the larger number of pins in the assembly, i.e. normalizing power for a 

264-pin assembly) which is substantially lower than the design value.  
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Fig. 5.20. RFF and AFF for the TPUC equilibrium cycle. 

The total power peaking in the Th-U3 is approximately 2.59 (allowing for uncertainties and 

engineering tolerances), which exceeds the Watt‟s Bar design value but is just within the AP1000 

criterion of 2.60. Significant reduction of the AFF over the early part of the cycle is advisable to 

achieve an acceptable value, which requires use of a lower worth rod bank for partial insertion to 

bring the reactor to criticality, although this is difficult to achieve with the selected LP without 

increasing the RFF. The total power peaking in the Th-TRU is 2.42, which is slightly greater than 

the Watt‟s Bar design value. Computational optimization seems advisable. The WATU rod banks 

are higher worth than the TPUC rod banks. However, as both satisfy the SDM criterion (Section 

5.2.3), it may be acceptable to reduce the worth of some of the WATU rod banks, which may 

improve the AFF. 

The RFF over life for the WATU design is given in Fig. 5.21. At EOC, there is a suppressed power 

distribution in the centre of the core, due to the placement of low reactivity twice-burned Th-U3 

assemblies close to the core centre and limited use of inner rod banks (CD and CV) over the cycle. 

The axial offset of the power peak from the centre of the core is given in Fig. 5.22. This is generally 

larger for the WATU design than the TPUC design, consistent with the AFF. As expected, the 

offset position becomes positive towards EOC as the rod banks are withdrawn, due to rod 

shadowing effects. 
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Fig. 5.21. Core power distribution for the WATU equilibrium cycle at (left to right) 0, 47, 227 (top 

row), 269 and 346 days (bottom row). Spectral colour scale represents channel power: red = hot, 

blue = cold, normalized to extreme values (highest power shown in Fig. 5.20, lowest power ~0.3–

0.35). 
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Fig. 5.22. Axial offset of position of maximum axial power for the TPUC and WATU equilibrium 

cycles. 
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5.2.3. Shutdown Margin 

For both the TPUC and WATU designs, the highest worth rod throughout life is F10 and its 

symmetry positions, i.e. the rods of bank CD. In the TPUC design, rod bank CD is inserted for most 

of life, including at the time of minimum SDM, but no credit is given for this when assuming a 

stuck rod during a trip, as subcriticality must also be ensured if the highest worth rod is accidentally 

removed from a shut-down reactor. The variation in the SDM over the equilibrium cycle for both 

designs is given in Fig. 5.23. 
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Fig. 5.23. SDM over the equilibrium cycle for the TPUC and WATU designs. 

The SDM is always better than the minimum allowable –1300 pcm (Watt‟s Bar, 2009). The 

minimum SDM for the TPUC and WATU designs is –1311 pcm and –2576 pcm respectively, so 

the SDM requirement for the TPUC design is only just met. The highest worth rod is ~1330–1400 

pcm for TPUC and ~1600–2500 pcm for WATU.  

The WATU design gives a much higher SDM than the TPUC design, partly due to a higher thermal 

neutron flux in the guide tube positions (Fig. 5.24). This is especially pronounced without Gd in the 

Th-U3 pins (i.e. when the Gd has burned out). Most rod captures are for neutron energies of around 

1000 eV, so the increase in rod worth for the WATU design may be partly explained by reduced 

thermal neutron availability for 
233

U fissions. The SDM for the WATU design is comparable to 

conventional PWRs (Fridman and Kliem, 2011) and is high enough that the enrichment of 
10

B in B 

in the control rods can be reduced somewhat.  

As the WATU control rod worth is ~35% higher than the TPUC total control rod worth, and the 

TPUC design meets the SDM criteria, this implies that the 
10

B enrichment in the WATU rods can 

be reduced from 95% to roughly 70% (a higher reduction might be possible due to saturation 

effects). This will reduce control rod cost. A slight further reduction is possible in both cases, as the 
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SDM is slightly greater than the minimum. Alternatively, highly enriched rods can be replaced less 

often. 
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Fig. 5.24. Ratio of the flux in control rod guide tubes in WATU core relative to TPUC core. 

It may be possible to increase the shutdown worth and reduce rod shadowing effects by utilising 

control rods which are longer than the fuel assemblies. This would allow different sections of the 

bank to be utilised for mechanical shim and for shutdown. As a result, it may be possible to employ 

a lower worth section for shim (towards the bottom of the bank) and a higher worth section for 

shutdown (towards the top of the bank, which is only inserted during shutdown). Use of longer 

control rods may not be compatible with the pressure vessel, and the feasibility of this needs to be 

established. 

5.2.3. Neutronic Response to LOCA 

During an LBLOCA, the primary circuit depressurizes over a period of ~50 s and the coolant drains 

out of the reactor core in a period of around 20 s. The core is then reflooded by the emergency core 

cooling system such that the collapsed liquid level rises substantially above zero after around 50 s 

(AREVA/EDF, 2012; Westinghouse Electric Company LLC, 2010b). 

For the design basis accidents considered in (AREVA/EDF, 2012), the mid-core VF is limited to at 

most ~90% for 9 of the 10 considered break sizes, the exception being a surge line break. The top of 

core is uncovered for smaller breaks. The negative FVR protects against these LOCAs – hence it is 

considered advantageous to design for a negative FVR even when a negative ZCR is not possible. 

Even in a surge line break, the VF in the lower core is still substantially less than 1 at all times. A 

more detailed thermal-hydraulic analysis is necessary to take into account the increased pin size, in 

conjunction with coupled neutronics to accurately determine whether a criticality accident is 

possible in this case. 
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In the postulated design basis accident, reactor trip is assumed so the reactor shuts down rapidly. In 

any case, for LEU-fuelled cores the FVR and ZCR are substantially negative such that a trip is not 

necessary to shut down the core. For the RMPWR LBLOCA design basis accident, the reactor is 

shut down provided the reactor trips and the control rod worth is sufficient to shut down the reactor 

under fully voided conditions. For beyond design basis accidents, where the reactor does not trip, 

the RMPWR may experience a criticality accident during a LBLOCA if the water level in the core 

drops to a sufficiently low level following depressurization. This could lead to reactor containment 

being breached.  

While it should still be possible to license a plant with a positive ZCR, this is likely to concern a 

regulator. If it is possible to achieve a negative ZCR with a modified design, then it may be difficult 

to justify a positive ZCR. If not, then the likelihood of beyond-design-basis accidents, where the 

positive VC of the RMPWR becomes a concern, must be assessed, together with a severe accident 

analysis. This may lead to the requirement of additional safety measures, and a demonstration that 

the risks are as low as reasonably practical.
24

  

In the UK, the licensing regime allows for a positive VC provided it is controllable and does not 

lead to unacceptable consequences – hence a limit needs to be placed on the maximum allowable 

ZCR if the condition is plausible in a LBLOCA. It is also required that “unintended criticality 

cannot occur unless at least two unlikely, independent concurrent changes” in conditions occur. In 

an LWR, this can correspond to a LBLOCA without trip, i.e. failure of both the coolant and trip 

systems. Common-mode failures can be problematic, notably due to earthquakes (where lateral 

movement of the core relative to the reactor roof could jam any control rod actuator).
25

 Two 

independent means of shutting down the reactor are also required (UK Office of Nuclear 

Regulation, 2008). 

In the extremely unlikely case of a LBLOCA combined with ejection of all the control rods, the 

core will undergo a severe accident even if the VC at 100% VF is kept negative by using rods. Any 

reactor which relies on mechanical shim (e.g., any BWR) will experience a more severe accident if 

a LBLOCA is combined with simultaneous full rod withdrawal from the core. A LBLOCA without 

trip is presumably a more likely event (in particular, common-mode failures must be rigorously 

investigated) but a full understanding of the licensing requirement is necessary to properly assess 

the design.  

Here, the requirement for two independent means of shutting down the reactor is interpreted as 

necessitating a redundant set of shutdown rods with separate actuators, such that either set can shut 

                                                 
24

 Private communication with Dr Peter Dolan, August 2013; Prof. Mike Weightman, October 2013. 
25

 Private communication with Dr Tony Judd, October 2013. 
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down the reactor in a LBLOCA. This is similar to the use of two independent sets of shutdown rods 

in SFRs, although in these the void reactivity is often limited to ~6$ (<2000 pcm) (Tobita, 2013), 

about half the value of the ZCR for the RMPWR (up to ~4000 pcm or ~12$). Some designs of 

sodium-cooled fast reactor have a higher sodium void reactivity, especially burner designs 

(Hoffman et al., 2006).  

An alternative is to use a completely separate shutdown system, e.g. a shutdown assembly at the 

centre of the core – although this would require a substantially modified reactor design. Use of 

separate redundant shutdown systems is also used in CANDUs, which have a positive ZCR of 

~500-1500 pcm (much lower than that considered here). This takes the form of a set of shutdown 

rods and gadolinium salt injection into the calandria (CANDU, 2012). In CANDUs, the shutdown 

rods have the advantage of operating in a relatively low pressure core, although in a LBLOCA core 

depressurization has also occurred which may help ensure the reliability of any redundant shutdown 

system, including a set of redundant shutdown rods as described in this section. 

The additional shutdown rods are shown in Fig. 5.14 labeled „S2‟. It must be noted that higher 

prediction of FVR (and ZCR) values in JEF-2.2 than ENDF/B7 and the discrepancy relative to a 

multi-group Monte Carlo calculation could lead to an overestimate of as much as ~2000 pcm in the 

FVR and ZCR values. This would not make the ZCR negative, but would make it substantially less 

positive. 

The SDM with zero coolant density for the usual and added set of rods is given in Table 5.5 (note 

the total reactivity in Table 5.5 includes the ZCR and the control rod worth). A 10% uncertainty 

factor in the rod worth is assumed in both cases. 10% rod depletion is considered for the usual rods, 

but, as the added rods are not used for shim, no depletion is assumed for these. The highest worth 

rod is assumed to be stuck for both rod banks. There is no Doppler defect as the rods are not 

required to achieve HZP, there is essentially no heat transfer when the core has zero coolant density 

and the DC is in any case very low with zero coolant density (~ –0.2pcm/K). The very small DC 

also prevents Doppler effects from terminating overpower transients before containment is breached 

in a criticality accident, for this high a ZCR. The SDM is calculated for 52 and 73 days into the 

cycle for TPUC and WATU respectively as these are the points of lowest SDM under operating 

conditions. Results are strongly indicative that a satisfactory SDM can be maintained throughout the 

cycle and that a reactor trip will still shut down the reactor at zero coolant density. 
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Table 5.5. SDM with zero coolant density (pcm). 

 Usual rods Added emergency shutdown rods 

TPUC –4313 –2261 

WATU –7242 –2650 

5.3. Rod Ejection Accident Analysis 

The most severe reactivity accident in a typical PWR is typically a REA. The RMPWR operates 

with operates with effective delayed neutron fraction
26

 (  



eff ) of ~0.00318, significantly lower than 

that of a typical PWR (Diamond et al., 2002), so the enthalpy deposition in the fuel can be expected 

to be much higher than with conventional fuel. The enthalpy deposition from a prompt supercritical 

rod ejection can be predicted by the zero-dimensional adiabatic Nordheim-Fuchs model to be 

proportional to (reactivity insertion –   



eff ) (Hetric, 1993). For the WATU fuel, this can be as high 

as ~2200 pcm. Fortunately, the enthalpy deposition is typically much less than the maximum 

permissible, such that a substantial increase in this value is allowable. 

The Nordheim-Fuchs model generally gives the correct relationship, but not the constant of 

proportionality determined by the power peaking (Diamond et al., 2002). PANTHER is used here 

with rod ejection at the point of maximum rod worth. No reactor trip was modelled. Results were 

checked by comparing with a point kinetics model, with the RFF in the ejected assembly taken from 

PANTHER. The point kinetics code PTS-ADS (Ahmad et al., 2012) was used, and gave good 

agreement with PANTHER for maximum fuel temperature rise. 

Using MOX fuel typically results in a lower  



eff . For MOX cores, this is somewhat mitigated by the 

lower control rod worth due to the hard neutron spectrum (Fridman and Kliem, 2011). However, in 

this case the rod worth is similar to or greater than that for typical PWRs due to the use of enriched 

B4C rods. Higher rod worth is required to achieve the same SDM due to the use of mechanical 

shim. Increasing the number of control rods would reduce the required individual rod worth.  

The enthalpy deposition must be limited due to pellet cladding mechanical interaction and fuel 

melting criteria. The limit depends on burn-up due to effects of hydrogen pick-up and oxide wall 

                                                 
26

 The effective delayed neutron fraction (  



eff ) was calculated using the Monte Carlo code SERPENT (Leppänen, 

2007) (for a 2D lattice calculation) due to limitations with WIMS when calculating the kinetic parameters of Th-U3 

fuels. For this fuel, there were problems when calculating an accurate value of   



eff  with JEF-2.2 in SERPENT. 

Therefore the ENDF/B7 data library was used instead. Use of different data libraries for different parameters in this 

manner is not ideal, but the JEFF-3.1 and ENDF/B7 data libraries were found to give virtually identical values of   



eff  

giving confidence that this is acceptable. 
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thickness in the clad. In the UK EPR, the enthalpy deposition limit (cal/g) on clad failure
27

 up to 69 

GWd/t is (AREVA/EDF, 2012): 

    



Min 162.26;141.4 29tanh
BU  49

8.5
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       (5.1) 

for linear heat rate = 0 W/cm, and  

    



Min 123.68;108.66 35.6tanh
BU  54.6

11.1



















      (5.2) 

for linear heat rate = 200–300 W/cm, where   



BU  is the burn-up in GWd/t. 

Applying these formulae at HFP and HZP for the Th-TRU fuel in the TPUC assembly, with a 

maximum average discharge burn-up of 61 GWd/t, gives enthalpy deposition limits of 115.7 and 

90.1 cal/g respectively. In the WATU case, the hot assembly contains only Th-U3, with a maximum 

discharge burn-up of ~32 GWd/t, giving enthalpy deposition limits of 162.3 and 123.7 cal/g 

respectively. However, the neighbouring assembly to the ejected rod can have a power up to ~90% 

as high as in the ejected assembly, such that the 61 GWd/t limits are adopted throughout. These 

limits may not be appropriate to the different fuel type considered here, but are indicative of an 

acceptable fuel enthalpy deposition rate. 

The reactor was assumed to be held at HZP with all the control rods in. This renders the reactor 

slightly subcritical but provides a reasonable approximation to the power peaking and rod worth of 

the worst REA conditions. As rods are withdrawn to bring the reactor to criticality, it is assumed the 

highest worth rods are withdrawn first, such that the conditions for the postulated REA do not get 

worse for other HZP states. A   



eff  value of 318 pcm was used in this analysis, but it is possible that 

it could be even lower at some point in the cycle, and   



eff  is often reduced in REA analysis to 

account for uncertainties – this is not performed here. 

REA simulations are typically performed for a 100 ms ejection time and a HZP level of 10
–4

% of 

full power (Diamond et al., 2002). This results in complete ejection of the rod before the fuel 

temperature spike acts to insert negative reactivity. However, the RMPWR has a much reduced 

neutron lifetime of ~3 μs compared to ~30 μs in a conventional PWR. This means that Doppler 

feedback can act to limit the maximum reactivity insertion before the rod is fully ejected, depending 

on the speed of the ejection and the zero power level. Therefore, simulations are performed for 10 

ms and 100 ms ejection times and 10
–6

 and 10
–9

 power levels.  

                                                 
27

 Non-SI units of cal/g are used throughout this section in accordance with standard practice. 
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The reactivity insertion and maximum fuel temperature rise for 100 ms ejections for the TPUC case 

are given in Fig. 5.28. The rod worth is 1422 pcm, but the maximum reactivity increase is much 

less. The reactivity oscillations are a consequence of the temperature rise occurring before the rod 

has fully ejected. This behaviour has also been predicted using PTS-ADS and is further discussed in 

Section 5.3.1. 
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Fig. 5.28. (a) Reactivity and (b) Maximum fuel temperature for TPUC 100 ms rod ejection at 10
–6

 

and 10
–9

 power levels.  
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If the rod ejection time is reduced to 10 ms, the rod fully ejects for both zero power levels, leading 

to a higher reactivity insertion and fuel temperature increase (Fig. 5.29). 

(a)

-600

-400

-200

0

200

400

600

800

1000

1200

1400

0 0.01 0.02 0.03 0.04 0.05

Time (s)

R
e

a
c

ti
v

it
y

 (
p

c
m

)
1E-6

1E-9

 

(b) 

0

200

400

600

800

1000

1200

1400

0 0.01 0.02 0.03 0.04 0.05

Time (s)

M
a

x
 T

f 
(C

) 1E-6

1E-9

 

Fig. 5.29. (a) Reactivity and (b) Maximum fuel temperature for TPUC 10 ms rod ejection at 10
–6

 

and 10
–9

 power levels. 

For the WATU fuel, the rod worth is 2480 pcm, but again for a 100 ms ejection time the maximum 

reactivity is limited by the fuel temperature rise (Fig. 5.30). The maximum fuel temperature rise is 

~400 K higher than for the TPUC case. For a 10 ms ejection time, the rod almost fully ejects, 

leading to an even larger maximum fuel temperature rise (Fig. 5.31). 
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Fig. 5.30. (a) Reactivity and (b) Maximum fuel temperature for WATU 100 ms rod ejection at 10
–6

 

and 10
–9

 power levels. 
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(b)  

Fig. 5.31. (a) Reactivity and (b) Maximum fuel temperature for WATU 10 ms rod ejection at 10
–6

 

and 10
–9

 power levels. 

The maximum enthalpy rises, peak reactivity insertions and power pulse width (defined as the time 

during which the power is >50% of the maximum; noting that the reactivity oscillates in some cases 

leading to secondary power pulses as shown in Fig. 5.32 are given in Table 5.8). These only include 

assembly-level effects, so the hot pin may have a ~10% higher enthalpy rise. For the WATU case, 

the maximum enthalpy rise may exceed the limit for a 10 ms ejection. When allowing for 

uncertainties, or potentially a lower maximum enthalpy rise, this may necessitate a reduced control 
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rod worth, or being able to demonstrate that the rod ejection will not be this rapid. The enthalpy 

deposition is not particularly sensitive to the zero power level. 

Table 5.8. REA analysis results  

Ejection time 

(ms) 

Zero power 

level 

Maximum fuel 

enthalpy rise 

(cal/g) 

Power pulse 

width (ms) 

Peak reactivity 

(pcm) 

TPUC WATU TPUC WATU TPUC WATU 

100 10
–6

 42.7 69.5 2.6 1.8 746 973 

100 10
–9

 44.7 70.4 2.3 1.6 816 1068 

10 10
–6

 69.6 111.6 1.2 0.8 1317 1726 

10 10
–9

 69.6 123.5 1.2 0.7 1322 1940 

Approx. HZP enthalpy deposition 

limit: 

115.7     
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Fig. 5.32. Power for 100 ms REA at 10
–6 

and 10
–9 

power levels with WATU fuel. Reactivity and 

power both oscillate leading to secondary power pulses 

The rod ejection speed is determined by power level, reactor height, system pressure and the RCCA 

material. However, as it can be difficult to justify the assumptions used for ejection time and zero 

power level, it is thought that conservative values should be used. HFP was also considered, both 
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for switch-on and due to the use of mechanical shim. However, the enthalpy deposition in this case 

was much lower due to rapid fuel and coolant feedback.  

The effect of the neutron lifetime on limiting the fuel temperature increase can be effectively 

demonstrated by artificially reducing the neutron velocity by an order of magnitude – resulting in a 

similar neutron lifetime to a conventional PWR. This is obviously non-physical. In the test case 

shown in Fig. 5.33 the reactivity insertion when the rod is fully ejected is ~700 pcm. A 10 ms 

ejection, or 100 ms ejection with artificially increased neutron lifetime, result in a fully ejected rod 

before temperature feedback effects compensate. This leads to a maximum fuel temperature rise of 

~500 K in both cases. With a 100 ms ejection time with the correct neutron lifetime, the reactivity 

increase is limited to ~500 pcm, leading to a proportionally lower fuel temperature rise. 
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Fig. 5.33. Reactivity and fuel temperature rise variation for REA test cases of 10 ms ejection, 100 

ms ejection and 100 ms ejection with artificially increased neutron lifetime.  

5.3.1. Cause of Reactivity Oscillations 

The power pulse shown in Fig. 5.32 occurs at ~0.04s compared to ~0.3s for an REA in a 

conventional PWR (Diamond et al., 2002). This is due to the shorter neutron lifetime. The fuel 

enthalpy deposition is effectively the integral of the power spike, and hence they occur 

simultaneously, resulting in the enthalpy deposition also taking place more rapidly than usual. This 

is demonstrated using a point kinetics model with zero delayed neutron fraction, i.e.: 




P

dt

dP 
           (5.1) 

Where  is the prompt neutron lifetime and  is the reactivity. 
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Assuming reactivity insertion at a linear rate of 1000 pcm per 100 ms, with all heat deposited in the 

fuel: 

Tt   1.0            (5.2) 

Where T  is the difference in fuel temperature from the steady-state fuel temperature and  is the 

DC. 

By assuming a constant heat removal rate in the fuel equal to the steady state power: 

)( 0PPk
dt

dT
           (5.3) 

Where k is the constant of proportionality between power and change in fuel temperature (i.e. 

inverse of the product of mass and specific heat capacity) and P0 is the initial power. 

By expressing power in units such that k = 1, it follows that P0 = 1, Eq. 5.3 can be simplified to: 

1 P
dt

dT
           (5.4) 

Eq. 5.1, 5.2 and 5.4 reduce to: 

 PdtPPt
dt

dP
 )1.0(         (5.5) 

From numerical solution, constant amplitude reactivity oscillations are observed, which are at 

higher frequency for shorter prompt neutron lifetime, with corresponding power pulses and fuel 

temperature increases (Fig 5.34).  
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Fig. 5.34. Reactivity oscillation behaviour for model with short (1 s) neutron lifetime.   
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5.4. Concluding Remarks 

It has been established that a heterogeneous fuel configuration is neutronically advantageous, 

specifically by spatial separation of U3 and TRU. This fuel layout provides the option for 

innovative fuel management where Th-U3 and Th-TRU regions are run on different batch 

management schemes. Specifically, it can be advantageous for the Th-TRU to reside twice as long 

in the core as the Th-U3. This can be implemented using a heterogeneous assembly design (TCUP 

or TPUC) or whole assembly heterogeneity (WATU). For a standard 4-loop 193 assembly core with 

a 17×17 assembly, 12.6 mm pin pitch and pin diameter increased from 9.5 mm to 11 mm, this 

scheme allows discharge burn-up to be maintained, while simultaneously ensuring that the FVR is 

negative, which improves the response to LOCAs. However, the ZCR is substantially positive, 

which could lead to positive reactivity in some LOCA scenarios, for example a surge line break, if 

the reactor does not trip. To protect against this beyond-design-basis accident, a second redundant 

set of shutdown rods is added to the reactor, so that either the usual or secondary rods can trip the 

reactor when there is zero coolant in the core. Even so, this condition is likely to be concerning 

from a regulatory standpoint. The additional control rods introduce some additional complication if 

retro-fitting an existing core, due to the need to place additional RCCAs which penetrate the 

pressure vessel. 

A cycle length of 1 year is possible with an average fuel discharge burn-up in of ~40 GWd/t. This 

scheme is only beneficial for a „single-tier‟ fuel cycle with the TRU feed coming directly from 

existing UO2-fuelled PWRs. The „multi-tier‟ fuel cycle, consisting of an intermediate Th-Pu pass in 

a conventional PWR, which gives similar or favourable performance in the RMPWR for simpler 

loading schemes, is not amenable to this loading scheme. The „single tier‟ scheme therefore appears 

preferable. 

Refueling schemes which do not utilize variable batch management strategies have a lower peak 

discharge burn-up, but require an increased pin diameter (~11.5 mm) for the FVR to be negative. 

This is detrimental to thermal-hydraulic feasibility (see Chapter 4), and reduces the achievable TRU 

incineration rate. 

The ability of the TPUC and WATU fuel designs to satisfy power peaking, SDM and REA accident 

conditions has been investigated. Despite use of mechanical shim, designs with relatively low RFF 

values of ~1.41 have been identified for both designs (for WATU it is slightly higher in the Th-

TRU assemblies, but the larger number of pins mean that this is allowable). However, the relatively 

high pin-level power peaking makes it difficult to satisfy likely RFF constraints, meaning that a 

large number of fissile zones is necessary to limit assembly-level power peaking. For the WATU 

design, this is further complicated by slight deviation from a checkerboard assembly design. The 
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TPUC design satisfies power peaking limits, but the WATU design has a high AFF leading to an 

unacceptable total hot channel factor. This requires use of a lower reactivity worth partially inserted 

rod bank in the CRP. 

The TPUC design can just satisfy the SDM requirement and likely limits on enthalpy deposition in 

the fuel following a REA. The actual enthalpy deposition is sensitive to the rod ejection speed, 

although a conservative value can be used for this. The WATU design allows a higher SDM to be 

achieved, but the increased rod worth leads to a worse REA response. This is readily mitigated by 

reducing the 
10

B enrichment in the control rods, such that the SDM requirement is still satisfied but 

the REA performance is improved. This may also improve the AFF by reducing the worth of the 

partially inserted control bank. Overall, the TPUC design appears preferable for ease of designing a 

core with acceptable power peaking, meaning that safety criteria can be more readily satisfied, but 

the WATU design allows a reduction in 
10

B enrichment in the control rods. 

The low   



eff  and low neutron lifetime associated with these fuels may also adversely affect the 

response to other transients and accidents, in particular accidents involving reactivity insertion due 

to inadvertent rod withdrawal etc. In any case, the core control system will require „re-tuning‟. 

Detailed analysis of LOCAs, and analysis of other transients are the next steps to be pursued in 

analysing this design. 
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Chapter 6 – RBWR Full-core Analysis 

In Chapter 2, a single-assembly analysis was performed of a 217 pin RBWR assembly based on the 

JAEA design from (IAEA, 2004). A homogeneous fuel composition was found to give acceptable 

neutronic performance. A coupled neutronic-thermal-hydraulic model is required to accurately 

analyse a RBWR core, due to strong feedback between neutronics and thermal-hydraulics. This is 

performed in this chapter. Axial leakage is often an important mechanism in ensuring a negative 

VC, and this is sensitive to treatment of the axial reflectors and blankets. The analysis is extended to 

treat heterogeneous TCUP assemblies and a multi-tier fuel cycle implementation. 

The RBWR is capable of achieving a high average discharge burn-up with a negative VC. The VC 

and DC values are sensitive to how they are calculated, so there is some uncertainty as to their exact 

magnitude. A higher discharge burn-up is possible with a tall core, but a higher waste reload 

fraction is possible in a shorter, higher leakage core. In particular, a waste reload fraction of 35% 

appears possible when utilizing a TCUP assembly, with good performance achievable with single- 

or multi-tier fuel cycles. Due to the use of axially homogeneous fuel, it is possible to achieve a 

sufficient maximum critical power ratio (MCPR) with a higher power density than the JAEA 

RMWR design (with the same fuel assembly configuration). The MCPR is particularly good for tall 

cores, and it may be possible to use a core of the same area and rating as an ABWR, rather than 

requiring a larger core area. However, radial power peaking within the assembly may be higher if 

TCUP fuel is used.  

While axially homogeneous fuel is preferable to limit fuel fabrication costs, it is worth evaluating if 

a substantial performance improvement is possible with axially heterogeneous fuel. A preliminary 

assessment is made of different axially heterogeneous fuel types using Monte Carlo 3D pincell 

calculations. The axially heterogeneous designs do not outperform the TCUP design. The axially 

homogeneous TCUP design is therefore preferred. 

The neutronic-thermal-hydraulic models used in this chapter are heavily based on models developed 

at the University of Michigan, and the author would like to acknowledge the help of Andrew Hall, 

and the rest of Prof. Thomas J. Downar‟s group at the University of Michigan. 

6.1. Full-core Analysis of RBWR with Homogeneous Fuel 

The Th-fuelled RBWR was modelled by coupling the nodal code PARCS (Kozlowski et al., 2004) 

with the thermal-hydraulic code RELAP5 (Fletcher and Schultz, 1995). The PARCS model was 

based on a RBWR model developed at the University of Michigan, rated at 3926 MWth with 720 

assemblies with one-third rotational symmetry (Downar et al., 2012). The LP consists of 4 complete 

batches and one partial batch (Fig. 6.1). The RELAP5 model was also based on the University of 
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Michigan model, with 121 parallel pipe components, each modelling the flow through 1 or 2 

assemblies (Fig. 6.2). As described in (Downar et al., 2012), PARCS and RELAP5 are coupled 

using a Generic Interface. PARCS, RELAP5 and the Generic Interface are separate processes that 

communicate using message passing protocols in the Parallel Virtual Machine. As discussed in 

Chapter 2, 125 cm and 200 cm cores were modelled to investigate the relative merits of high and 

low leakage. The core power is the same in both cases, and the 200 cm core contains more fuel and 

so has a lower fuel rating. 

 

Fig. 6.1. RBWR core fuel LP in one-third rotational symmetry. 

Many RBWR designs proposed are highly heterogeneous in the axial direction, necessitating 3D 

neutronic models with accurate coolant density distributions, which are themselves dependent on 

the power and therefore flux solutions. However, for the axially homogeneous fuel proposed in the 

Th-based RBWR design investigated, 2D lattice calculations are appropriate for lattice data 

generation for the core simulator. Therefore 12-group cross-sections were generated using WIMS 

and converted to the PMAXS format required in PARCS (Xu and Downar, 2006). 
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Fig. 6.2. RELAP5 model. 

The shim rods contain 95% enriched 
10

B4C in 20 vertical solid pellets of 0.471 cm diameter in each 

blade. Lower and upper water reflector regions of 7 cm and 30 cm respectively were modelled in 

PARCS. It is possible to borate either or both reflectors to increase neutron leakage (Downar et al., 

2012), but this was not considered here. There are 43 shim rods in the core, distributed 

approximately evenly within the central region (batches 3 and 4) of the core. 

RELAP5 was first run in stand-alone mode to generate an initial guess at the thermal-hydraulic 

solution, which was used in the coupled analysis. The equilibrium cycle was determined by 

depleting over a cycle, shuffling and refuelling until the equilibrium cycle had converged. The 

equilibrium cycle is influenced by the CRP, but determination of an appropriate CRP is beyond the 

scope of an initial analysis, so the depletion was performed with rods out. This will change how the 

core depletes, but should not greatly affect the equilibrium cycle burn-up.  

The VC and DC of the equilibrium cycle were evaluated at SOC and EOC by alternately perturbing 

the core power and flow rate and solving Eq. 6.1 (Downar et al., 2012). Due to the coupled code 

system, perturbing the power and flow rate affects both the void and temperature distributions so a 

linear system is required in order to solve for the reactivity coefficients. The perturbed conditions 

were 110% overpower and 90% flow rate. A 75% flow rate condition was also considered in some 

cases. 
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A few depletion cycles are necessary for RELAP5 to converge on the correct flow distribution, so 

the RELAP5 restart file used for the 90% flow calculation was produced by depleting the reactor for 

a few cycles at 90% flow rate, to give RELAP5 a better starting guess from which to converge on 

the 90% flow rate thermal-hydraulic solution. Evaluating with the perturbed conditions at a single 

state-point generally did not significantly change the flow conditions from their converged values.  

It is problematic to accurately converge RELAP5 for the perturbation cases. This makes the VC and 

DC sensitive to how they are evaluated and therefore leads to uncertainty in the calculated values. 

More consistent values for the DC and VC were achieved by performing the 110% power 

calculation with the same flow solution as the 100% power case – i.e. without depleting the reactor 

with the reduced flow case (Table 6.1). In the test case shown in Table 6.1, three perturbations were 

performed: overpower, flow reduction, and overpower without updating the flow solution. 

Combining the reactivity results from any two of these perturbations enables the DC and VC to be 

found using Eq. 6.1. The selected combination of perturbations gives a VC in agreement with one 

of the other cases and a DC in agreement with the third case. 

Table 6.1. Calculation of VC and DC for RBWR. 

Perturbations 
SOC DC 

(pcm/K) 

SOC VC 

(pcm/%Void) 

EOC DC 

(pcm/K) 

EOC VC 

(pcm/%Void) 

Fuel temperature only from 

110% overpower; 75% flow 
–4.6 pcm –30.7 –4.3 –12.0 

110% overpower; 75% flow –5.9 pcm –30.7 –5.2 –12.0 

110% overpower; fuel temperature 

only from 110% overpower 
–4.2 pcm –57.1 –4.3 –26.8 

There was some variation in the VC calculation. The VC is sensitive to the radial power 

distribution, which requires good convergence of RELAP5 to accurately calculate. This is often 

difficult to achieve. The calculation methodology therefore needs improving, or a large margin 

needs to be placed on the design to account for uncertainty. In particular, an improved thermal-

hydraulic solution (perhaps using a steady-state solution rather than a time-marching approach) 

would be preferable to reduce uncertainty. 

The branch and history cases were again based on the University of Michigan‟s models. 6 histories 

(3 coolant densities with rods in and out) were modelled, and 22 branches were evaluated per burn-

up step, including the reference case. This encompassed 5 coolant densities, 3 fuel temperatures and 

the control rods.  

Two short burn-up steps of 60 MWd/t and 440 MWd/t were used to model Xe and Sm build-up, 

followed by ten 2500 MWd/t steps and subsequently 5000 MWd/t steps. In comparison, 2000 
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MWd/t steps were used in the assembly analysis. Larger steps were used for the full-core analysis to 

limit the number of state-points required and therefore the computational cost. 

A TRU reload fraction of 26% was selected for the 200 cm high core based on the analysis. The 

leakage fraction from the fuel region was calculated at ~4.5%, ~1% and 3.5% radially and axially, 

respectively. To find the achievable discharge burn-up, the cycle length in the full-core analysis was 

increased until the EOC     



keff  was less than 1. The equilibrium cycle burn-up was ~94 GWd/t, so it is 

apparent that a large burn-up is neutronically achievable in the RBWR core design considered 

(Table 6.2). The cycle length is very long resulting in an assembly core residence time of 18.5 years 

(for the 5-batch assemblies), which may exceed cladding limits. The VC was negative but there was 

a large uncertainty in its value depending on how it was calculated, so it may be appropriate to 

introduce a substantial „uncertainty margin‟ on the maximum allowable VC, and/ or improve the 

calculation methodology. 

Table 6.2. 200 cm RBWR core performance. 

Discharge burn-

up 

(GWd/t) 

EOC 

    



keff  

SOC 

DC 

(pcm/K) 

SOC VC 

(pcm/%Void) 

EOC DC 

(pcm/K) 

EOC VC 

(pcm/%Void) 

Cycle 

length 

(years) 

~47 1.032 –2.6 –50.4 –4.3 –30.8 1.9 

75.5 1.010 –4.6 –30.7 –4.3 –12.0 3.2 

90.5 1.009 –3.4 –19.7 –4.8 –10.6 3.5 

94.3 1.005 –3.5 –10.3 –3.9 –9.8 3.7 

94.3 (different RELAP 

restart file) 
–3.8 

–18.0 

(–39.4 with all 

shim rods in) 

–4.4 –8.2 3.7 

104.9 < 1     4.1 

As the burn-up was increased, the radial power profile (Fig. 6.3) flattened, with a peak towards the 

core peripheral assemblies appearing at high burn-ups. This is a consequence of the RBWR LP, 

where fuel is moved inwards over the first four batches (Fig. 6.1), with an incomplete fifth batch at 

the core periphery. The axial power distribution was approximately cosinusoidal as the fuel of the 

Th-fuelled RBWR is axially homogeneous. There is a slight axial positive skew at the all-rods-out 

condition due to the slightly negative VC and a significant reflector effect (Fig. 6.4). 

The VC shown in Table 6.2 deteriorates at higher burn-up, which may impose a lower TRU reload 

fraction to comply with the VC requirement. This is consistent with the results of the assembly 

calculations in Chapter 2. In particular, the assembly-level VC in the high VF history increases 
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rapidly over the cycle. Better quantification of the uncertainties in the VC calculation is required 

and could be performed in future work. 
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Fig. 6.3. Radial power distribution in the 200 cm RBWR core for different discharge burn-ups. 

 

Fig. 6.4. Axial power distributions in 125 cm and 200 cm RBWR cores over active fuel length. 

The spectrum is too hard to use BPs so mechanical shim is necessary to control the reactor. The 

shim rod configuration is the same as used by Downar et al. (2012). With all the shim rods in,     



keff  

was reduced from 1.021 to 0.997. The shim rods therefore just provide sufficient worth to control 

the reactor over the cycle, although this may result in unacceptable form factors due to the need for 

nearly full shim rod insertion at SOC. The CRP used in (Downar et al., 2012) has partial insertion 

of all the shim rods at SOC, so the number of shim rods being operated simultaneously is the same. 

The cold shutdown margin (CSDM) may be worse than the U-Pu RBWR due to the more negative 
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VC. This is investigated in Section 6.5. It may be necessary to increase the number of control rods 

in the reactor, which can be accomplished by placing rods on all sides of the assembly. This 

increases moderation slightly, but, as the achievable burn-up is high, this should not greatly affect 

performance. Similarly to the RMPWR, insertion of the rods improves the VC, but this cannot be 

credited as a VC mitigating action at EOC since all the rods are extracted.  

The decay and refuelling of the EOC discharge isotope vector was modelled, and refuelling was 

simulated with the appropriate TRU reload fraction. The „next‟ cycle isotope composition was in 

very good agreement with the isotope composition in the previous cycle. This indicates that 

converging the equilibrium isotope vector using a 2D lattice calculation at the core-average VF was 

a good approximation. 

A 30% TRU reload fraction was used with the 125 cm core. The leakage was ~7.4%. The 

equilibrium cycle burn-up dropped to ~60 GWd/t. The VC was slightly positive at EOC and 

therefore the design is not feasible with this TRU reload fraction (Table 6.3). 

Table 6.3. 125 cm RBWR core performance. 

Discharge burn-

up 

(GWd/t) 

EOC 

    



keff  

SOC DC 

(pcm/K) 

SOC VC 

(pcm/%Void) 

EOC DC 

(pcm/K) 

EOC VC 

(pcm/%Void) 

Cycle 

length 

(years) 

59.5 1.003 –3.5 –18.7 –3.9 +0.1 1.5 

The lower burn-up results in a nearly flat radial power profile across the core (Fig. 6.5). 

 

Fig. 6.5. Radial power distribution in the 125 cm RBWR core.
28

 

The short core has a more bottom-skewed power distribution with rods out compared to the tall core 

(Fig. 6.4). 

                                                 
28

 Note that in this case, the almost identical power distribution at SOC and EOC is coincidental. 
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The 125 cm core has lower discharge burn-up than the 200 cm core. The effect of increased leakage 

outweighs the higher TRU reload fraction. The reactivity swing is low as the fissile inventory ratio 

is quite close to unity and, as with the RMPWR, due to the significant content of TRU isotopes with 

even mass-number, which effectively behave as fertile neutron absorbers. This means that the burn-

up is sensitive to core leakage. However, while leakage improves the VC, the axial reflector acts to 

limit this advantage, so the VC of the short core is more positive than predicted by the lattice 

calculation. 

The short core burn-up is consistent with that expected from a 53% VF 2D calculation with 7.4% 

leakage. From Fig. 2.10, the one-batch burn-up is ~38 GWd/t.  

For the 200 cm core with 26% TRU reload fraction, 4.5% leakage, the one-batch burn-up is about 

46 GWd/t, so a 4–5-batch burn-up of ~75 GWd/t is expected. The burn-up calculated in the full-

core analysis is significantly higher than this. This could be due to the relative influences of the high 

and low VF regions of the core. The highly voided region has nearly constant   



k  over the cycle, 

while the lower voided region burns out relatively fast. The variation in spectrum over the core 

affects the evolution in power distribution and     



keff  over the cycle, improving the neutron economy 

such that the cycle is longer than expected. These effects seem to be more significant for the tall, 

high discharge burn-up core than the short, lower discharge burn-up core. This requires further 

analysis. 

In the high leakage core, the relatively high reactivity top region of the core experiences higher 

leakage, so might be expected to contribute less to the overall reactivity. This is consistent with the 

bottom-skewed power distribution of the short core. In the relatively low leakage core, the higher 

reactivity of the highly voided region may have a more significant beneficial influence on the 

overall neutron balance.  

In conclusion, a tall core appears more appropriate for the homogeneous RBWR design, although 

the high full-core burn-up requires further scrutiny.  

The MCPR of this design was evaluated using Liu‟s correlation for RBWRs (Liu et al., 2007), 

assuming careful enrichment balancing limits the local peaking factor in the assembly to 1.05 (as in 

current RBWR designs). Based on the results in Fig. 6.5, a radial power peaking factor of ~1.2 is 

used, which is similar to existing RBWR designs. The core mass flow of the reference design is 

7222 kg/s, which corresponds to an average mass flux of 842 kg/m
2
/s. It may be possible and 

desirable to reduce this for the tall RBWR to reduce the pressure drop, but in general the pressure 

drop is low for the RBWR core as it is short (Ishikawa and Okubo, 2009). Using the calculated axial 

power distributions, the MCPR for the short and tall cores is 1.48 and 1.76 respectively. These large 
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thermal-hydraulic margins are expected from the homogeneous core configuration, and compare 

favourably with the U-Pu RBWR MCPR and are higher than the minimum acceptable 1.32 (Liu et 

al., 2008). It is worth noting that the core considered here has 720 assemblies (as with the Hitachi 

RBWR), compared to 900 for the JAEA RMWR in (Liu et al., 2008). However, the JAEA assembly 

design is utilized. Therefore the core power per unit area is higher than in the JAEA design. The 

core area of the 720 assembly design considered here is ~50% larger than the ABWR. 

If the number of fuel assemblies in the 200 cm core is reduced to 480, then the core area is 

approximately the same as the ABWR. If the average mass flux is at least 998 kg/m
2
/s, 

corresponding to a core mass flow of 5613 kg/s, then the MCPR is at least 1.32 for the assembly 

design considered.
29

 The core-average VF is slightly increased due to the lower core mass flow 

(hence allowing an acceptably hard spectrum to be maintained), and although the core pressure drop 

is expected to be higher than for a shorter core, as discussed, the relatively low pressure drop of 

RBWRs means this is unlikely to be a problem. Therefore, for a „tall‟ core, the MCPR can be 

satisfied without requiring an increase in core area relative to an unmodified ABWR. This also 

reduces the core residence time by 1/3. Retrofit of an existing ABWR still appears unlikely as the 

assembly design, and in particular the control rod positions, are very different to an existing 

ABWR. 

If necessary, the core height can potentially be increased above 200 cm in order to satisfy the 

MCPR constraint. Gorman et al. (2014) considered a Th-RBWR breeder design with a 380 cm core 

height.  

6.2. Radially Heterogeneous Fuel in RBWRs 

The TCUP fuel assembly is also an effective design for RBWRs. It is sensible to place the Th-TRU 

pins at the centre of the assembly, with the Th-U3 pins at the periphery near the bypass channels. 

Placing Th-TRU and Th-U3 in different assemblies is also possible, but results in Th-TRU pins 

next to the bypass channel, which thermalizes them and reduces the control rod worth, so this 

design is not pursued. Utilizing variable residence time for the Th-TRU and Th-U3 pins is not 

appropriate because the burn-up is clad limited, so it makes sense to achieve as uniform a burn-up 

as possible. The design is shown in Fig. 6.6. The proportion of Th-U3 pins is larger than for the 

RMPWR TCUP assembly due to the lower TRU and higher U3 populations in the RBWR. 

                                                 
29

 This conclusion is consistent with the work of Shaposhnik et al. (2013; 2014), which considered a RBWR breeder 

core of the same area as an ABWR. With a 200 cm seed region height, a core de-rating was necessary if a core exit VF 

above 90% was required (leading to a much higher core exit quality than that considered here). However, it was 

possible to ensure that the core did not need to be de-rated if the flow rate was increased above the reference value. 
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Fig. 6.6. RBWR TCUP assembly with 91 Th-TRU pins (blue) and 126 Th-U3 pins (green) per 

assembly. 

This design improves the neutron economy and the MTC, such that a single-assembly analysis 

indicates that a TRU reload fraction of more than 35% is possible, compared to 26% for the 200 cm 

homogeneous fuel core. With 35% TRU reload fraction, the VC at 53% VF is negative without 

leakage (Fig. 6.7). The equilibrium fuel isotope vector is presented and discussed in Chapter 7.  
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Fig. 6.7. Void coefficient for single assembly average VF model of RBWR TCUP assembly. 

However, at higher VFs, the VC gets worse as the thermal flux is reduced, such that fast fission 

effects dominate. For the TCUP assembly, this worsening is greater than for a homogeneous 

assembly, as the beneficial flux differences between Th-TRU and Th-U3 regions become less. This 

makes the full-core VC worse than would be expected from a 2D average VF analysis. Still, a 

significant improvement appears possible over homogeneous fuel. 
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This effect is shown in Fig. 6.8, where the VC from 95% to 100% voiding is shown for the 26% 

TRU reload homogeneous fuel and for the 35% TRU reload TCUP fuel. At average VF, the 35% 

TRU reload TCUP fuel has a significantly lower VF than the homogeneous fuel (Fig. 2.10, Fig. 

6.7), but the reverse is true at 95% VF. 
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Fig. 6.8. VC for 95% to 100% voiding for homogeneous (Hom.) and TCUP assemblies at typical 

TRU reload fractions. 

The TCUP assembly with 35% TRU reload fraction allows a critical cycle to be maintained for a 

very high cycle length. This is shown in Fig. 6.9 – at a single assembly burn-up of 75 GWd/t,   



k is 

~1.05, c.f. leakage of ~4.5% for a 200 cm core. From the linear reactivity model, an average 

discharge burn-up of >120 GWd/t appears possible. 
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Fig. 6.9. Variation of   



k with burn-up for TCUP assembly with 35% TRU reload fraction. 

A full-core analysis with PARCS-RELAP5 indicates that core criticality can indeed be maintained 

up to ~154 GWd/t. The VC is negative for a discharge burn-up of up to ~118 GWd/t (Table 6.4), 

with the VC becoming positive at higher average discharge burn-ups. For average discharge burn-



    155 

 

ups less than 154 GWd/t, there is excess reactivity at EOC. The obvious means to reduce this is to 

reduce the core height, hence increasing the neutron leakage. This also makes the VC more 

negative, hence, for the 118 GWd/t case, the margin by which the VC is negative will be increased. 

However, reducing the core height makes the MCPR worse, which probably results in a larger core 

area being required. An alternative is to slightly increase the moderation in the fuel assembly. 

Table 6.4. Core performance with TCUP fuel assembly with 35% TRU reload fraction, 200 cm 

core height. 

Core-average discharge burn-up (GWd/t) 118 154 

Cycle length (yr) 4.6 6.1 

Reactivity swing (pcm) 3171 3621 

SOC VC (pcm/%Void) -4.5 21.7 

EOC VC (pcm/%Void) -1.9 99.9 

SOC DC (pcm/K) -4.5 -3.9 

EOC DC (pcm/K) -3.0 -5.4 

Again, it must also be emphasized that this high discharge burn-up is not achievable with current 

cladding technology and will also exceed fuel performance limits. The core residence time is also a 

concern. This can be limited by increasing the power density – either by reducing the core height or 

the number of assemblies. Limiting the discharge burn-up to 80 GWd/t and reducing the number of 

assemblies to 480 would reduce the cycle length to ~2 years. 

The high burn-up of these cycles results in larger reactivity swing over the cycle, which in turn 

results in unacceptably high power peaking in the fresh fuel assemblies. Modifying the LP may 

improve this. The axial and radial power peaking are also shown in Fig. 6.10. The negatively 

skewed power distribution of the 154 GWd/t case is due to the strongly positive VC. These factors 

also resulted in difficulties in converging on the equilibrium cycle with PARCS-RELAP5. 
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Fig. 6.10. Radial (left) and axial (right) power peaking with TCUP fuel, 200 cm core height. 
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6.3. Implementation of a Multi-tier Fuel Cycle in RBWRs 

With a suitably optimized fuel LP, the neutronic performance of the 200 cm TCUP RBWR appears 

likely to be excellent. However, the high burn-up is not achievable with current clad technology. To 

reduce the burn-up without overly compromising the fuel cycle performance, a multi-tier fuel cycle 

is implemented. Here, a „short‟ core height of 115 cm with 720 assemblies is considered. The waste 

reload fraction (TRU + U3 in the multi-tier feed) is kept constant at 35%. The TCUP assembly for 

this fuel has 85 Th-TRU pins and 126 Th-U3 pins. 

Th-Pu discharge burn-ups of 50 GWd/t and 84 GWd/t are considered for the first tier, leading to 

different fuel isotope vectors and different performances. The performance is summarized in Table 

6.5. The cycle length in both cases is reduced to an attractive value; the reactivity swing and the 

core-average discharge burn-up are also reduced, although the latter still pushes the limits 

achievable with Zircaloy cladding technology (noting that the peak discharge burn-up may be 

higher as a result of the non-integer batch strategy). 

Table 6.5. Core performance with multi-tier TCUP fuel, 115 cm core height. 

 Case 1 Case 2 

Th-Pu discharge burn-up in PWR (first tier) (GWd/t) 50  84  

Cycle length (yr) 1.86 1.57 

Reactivity swing (pcm) 2241 1785 

Average discharge burn-up (GWd/t) 82.4 69.6 

Waste incineration rate (kg/GWthyr) 135 135 

The assembly power peaking is reduced to around 1.24, similar to the Hitachi design (Downar et al., 

2012), and the axial power peaking is around 1.2 (Fig. 6.11). 
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Fig. 6.11. Radial (left) and axial (right) power peaking with multi-tier TCUP fuel, 115 cm core 

height. 

With assembly power peaking of 1.2 and pin-level power peaking of 1.05 (as in current RBWR 

designs), the MCPR is 1.43. However, power swings between Th-U3 and Th-TRU are likely to 
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increase the radial form factor of the assembly and thereby reduce the MCPR. Therefore, it will be 

difficult or impossible to achieve such a low value for power peaking with radial heterogeneity. 

Careful fissile proportion selection is likely to be necessary across the assembly. An MCPR of 1.32, 

the minimum acceptable with active core cooling (Liu et al., 2008), can be achieved for a maximum 

assembly-level power peaking of 1.14. Further analysis is required to determine if this is feasible, 

but it appears a reasonable design goal. Designing for a 480 assembly core would require an 

increased core height (which would make the VC worse), and, as discussed, the core flow rate 

would also need to be increased. 

An unexpectedly low magnitude value was found for the DC in some cases. This appears 

concerning, but it is not thought to be physical as single-assembly analysis verifies that the DC is 

substantially negative across a range of VFs for this fuel type. It is possible that the core reactivity 

is sensitive to the convergence of RELAP5 such that consistent values for the VC and DC cannot be 

obtained. The value of the VC was found to vary significantly depending on initial conditions for 

the convergence of RELAP5 but in all cases was substantially negative. The DC is also sensitive to 

the overpower condition used in the perturbation calculations.  

The VC and DC are given in Table 6.6. The isothermal FVR is also given: this is calculated for a 

core filled with steam with a fuel at a uniform temperature equal to the average temperature of the 

fuel at power conditions. This is just negative over the cycle.  

For Case 1, lattice calculations for the SOC fuel composition with VFs of 0%, 45% and 80% give 

DCs of –3.3, –3.3 and –2.7 pcm/K respectively. 

Table 6.6. VC and DC for multi-tier TCUP fuel, 115 cm core height. 

 Case 1 Case 2 

 SOC EOC SOC EOC 

VC (pcm/%Void) –93.5 –17.8 –131.1** –73.6 

DC (pcm/K) –3.1 –1.4*  –4.0** –3.6 

Isothermal FVR –0.0111 –0.0013 –0.0106 –0.0008 

* –2.7 pcm/K with 104.5% overpower condition 

** Values of (–98.7 pcm/%Void, –1.7 pcm/K) and (–91.2 pcm/%Void, –4.7 pcm/K) calculated with 

slightly different RELAP5 initial conditions used for converging solution for perturbation 

calculations 

6.3.1. Sensitivity to TRU Feed 

A 2D equilibrium VF analysis indicates that   



k with a 20-year TRU cooling time following UO2 

discharge is 1000–2000 pcm lower than for a 10-year cooling time (Fig. 6.12). The RBWR 
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equilibrium cycle average discharge burn-up is estimated to drop by 9% from 82.4 GWd/t to 75.0 

GWd/t based on single-assembly calculations using the linear reactivity model. This affects the fuel 

cycle performance but not the fuel cycle feasibility. The single-assembly VC is very slightly higher 

(Fig. 6.12). However, the core-average discharge burn-up will be lower, which will act to reduce the 

VC, such that overall feasibility will be maintained. 
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Fig. 6.12. Single assembly   



k (left) and VC (right) for RBWR with TRU vector generated using 

different cooling times. 

6.4. Variable Pin Diameter Fuel 

An alternative method of increasing the incineration rate of the RBWR is to soften the neutron 

spectrum by increasing the H/HM ratio. The simplest way is to reduce the pin diameter while 

keeping the lattice pitch constant. This results in a lower discharge burn-up being achievable while 

satisfying the constraint that the VC must be negative. However, as the performance is most 

sensitive to achieving a hard neutron spectrum in the Th-TRU, one option is to preferentially harden 

the neutron spectrum in the Th-TRU using a variable pin diameter. The pin diameter of the Th-U3 

pins is reduced to 9.5 mm (Fig. 6.13). This results in approximately double the H/HM ratio relative 

to the reference assembly design (but still only ~27% that of a conventional PWR). A multi-tier fuel 

cycle with 50 GWd/t burn-up in the first pass was implemented. 
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Fig. 6.13. Variable pin diameter assembly design with 127 Th-TRU (blue) pins and 90 Th-U3 

(green) pins. 

By selecting the number of Th-U3 pins appropriately, it is possible to limit the power peaking in the 

assembly. As the Th-U3 pins are smaller, this leads to a higher burn-up rate in these pins. As the 

burn-up is clad-limited, it is sensible to utilize a seed-blanket-unit approach and pass the Th-TRU 

pins through the core twice as many times as the Th-U3 pins to achieve a roughly uniform burn-up. 

The Th-TRU reactivity is approximately constant with burn-up, as U3 is bred and 
241

Am and even 

isotopes of Pu are burned over the cycle, which compensate for the depletion of fissile Pu and 

accumulation of fission products. Assemblies with fresh Th-U3 and Th-TRU are shuffled according 

to the batch strategy in Fig. 6.1. The burned Th-U3 pins are replaced, and a further 4–5 passes are 

performed, with fresh Th-U3 assemblies being batch 1 (from Fig. 6.1), but having 4 or 5 times 

burned Th-TRU, and so on. The Th-TRU therefore resides in the core for 8–10 batches. As 

discussed in Chapter 5, separating the assembly in this manner is expected to be feasible. 

Use of variable nozzle sizes and/or grid spacer design for variable loss coefficient within the 

assembly can compensate for linear heat rating and pin diameter variations across the assembly 

(Lindley et al., 2013c), although a more detailed thermal-hydraulic analysis is necessary to 

determine feasibility. 

The reactor core was modelled as before. The core flow rate was increased from 7222 kg/s to 8000 

kg/s to maintain a similar core-average VF to before. A core height of 120 cm was appropriate for 

the selected TRU reload fraction and equilibrium cycle burn-up. The performance is summarised in 

Table 6.7. 
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Table 6.7. Performance of variable fuel pin diameter design. 

Waste loading fraction in feed 52.7% 

Waste incineration rate 202 kg/GWthyr 

Assembly-average burn-up/pass 40.0 GWd/t 

Average Th-U3 discharge burn-up 75.3 GWd/t 

Average Th-TRU discharge burn-up 54.8 GWd/t 

Average discharge burn-up 63.1 GWd/t 

Cycle length 259 days 

Reactivity swing over cycle 1805 pcm 

By comparison with the RMPWR analysis (see Chapters 2, 5 & 7), the waste loading fraction, and 

therefore the waste incineration rate, is significantly larger than could be expected by a uniform 

reduction in pin diameter. However, the average discharge burn-up is somewhat lower than in 

Section 6.3, and given the complexity of the design, implementation may not be worthwhile. 

The selected core configuration only achieves a cycle length of 9 months. This is likely to be 

unacceptably low, implying that a taller core with lower power density is necessary to achieve a 

minimum 12 month cycle. A single-tier fuel cycle is also likely to allow a longer cycle length. The 

radial and axial power peaking were both ~1.2. 

Reliable values for the VC and DC were not found: using Eq. 6.1 a substantially negative VC was 

calculated but low (and in some cases positive) values for the DC were calculated, with variation 

depending on how RELAP5 was converged. Lattice calculations with fresh fuel and 0%, 53% and 

95% VF give a DC of –2.5, –2.9 and –2.1 pcm/K respectively. The inconsistent values for the DC 

and VC are a cause for concern and reduce confidence in the analysis. This implies that there are 

problems with the methodology described in Section 6.1 for solving for the VC and DC based on 

perturbing the power and the flow, for example due to different values of the VC for different flow 

perturbations. It is also clear that convergence of RELAP5 is a problem – lack of convergence to an 

accurate solution to the flow under perturbed conditions leads to inaccurate values for the VC and 

DC. This is in part due to the time-marching solution in RELAP5, In future it is therefore 

recommended that statepoint or quasi-static calculations are carried out using a steady state thermal-

hydraulic code instead of a time-marching code.  

Due to the inaccurate values of VC and DC in this case, the change in reactivity with overpower 

and reduced-flow is instead presented in Table 6.8 for two different evaluations with different 

RELAP5 solutions. The different evaluations results in differences of around 3 pcm/% overpower 

and 3 pcm/% flow rate. The matrix solution method for calculating the VC and DC given in 

Equation 6.1 can exacerbate these uncertainties and lead to calculation of a positive DC, which is 
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unphysical. The overpower coefficient is around zero and may indeed be slightly positive, which 

indicates that the TRU loading may need to be reduced slightly. In general, if the fuel and coolant 

reactivity coefficients cannot be evaluated accurately, a significant margin for error is required. 

Table 6.8. Overpower and reduced flow coefficients for variable pin diameter design.  

 Evaluation 1 Evaluation 2 

SOC EOC SOC EOC 

Overpower (pcm/% overpower) –15.5 +1.2 –13.3 –2.0 

Flow rate (pcm/ % flow rate) –19.2 –13.1 –21.8 –10.2 

6.5. Cold Shutdown Margin 

For a Th-RBWR breeder, it can be difficult to achieve an adequate CSDM due to the high VF at 

operating conditions (Ganda et al., 2011; Shaposhnik et al., 2013; 2014). A Th-RBWR burner (i.e. a 

Th-fuelled RBWR which is loaded with and incinerates TRU) has substantially less negative VC, 

which makes it easier to meet this constraint. However, if the CSDM is insufficient, it is possible to 

increase the size and number of the control rods. This results in a softer neutron spectrum due to 

larger bypass channels, which will reduce the achievable discharge burn-up.  

A hot zero power PARCS calculation was performed for Case 1 in Section 6.3. One control rod was 

assumed per 3 assemblies, i.e. control blades in all available positions with asymmetric control rods. 

The cold zero power reactivity was then calculated by finding the reactivity from hot zero power to 

cold zero power for a single rodded assembly. The results are given in Table 6.9. In future, the 

effect of 
233

Pa decay into 
233

U also needs to be taken into account. 

Table 6.9. CSDM analysis. 

Hot zero power reactivity (PARCS), all rods in except central stuck rod  –5450 

Single assembly rodded reactivity from hot zero power to cold zero power  1904 

135
Xe worth from single assembly calculation  64 

Total control rod worth, calculated for single assembly at cold zero power  16519 

Reduction in control rod worth for uncertainties and control rod depletion  3303 

CDSM (pcm) –178 

The CSDM is substantially negative before allowing for uncertainties and depletion of the 
10

B in the 

control rods. Approximately 10% of the rods are inserted on average throughout the cycle and the 

rods lose ~5% of their worth when burned to 20 GWd/t which is similar to the cycle burn-up. 

Therefore if the rods are replaced every ~10 years then a ~5% reduction in rod worth needs to be 

accounted for. Allowing a 10% reduction for control rod depletion, and ~10% for uncertainties, the 

rod worth is reduced such than the CSDM is insufficient, relative to a design criterion of –1000 pcm 
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(Fennern, 2007) and also substantially lower than the value of ~–2000 pcm in ABWRs (Ito et al., 

1998). However, as only a small increase in control rod worth is necessary, making the control rods 

slightly wider or placing control blades to completely surround assemblies will allow a satisfactory 

CSDM, or comparable worth to that in conventional ABWRs to be achieved. Alternatively, the 

control rods can be replaced more frequently. 

The reprocessing requirements for full recycle can be evaluated as the product of waste incineration 

rate and discharge burn-up (see Chapter 7 for a full discussion). This is comparable for designs with 

uniform pin diameter and reduced pin diameter in the Th-U3 pins. Increasing the size of the bypass 

channel has a similar effect on the spectrum as reducing the Th-U3 pin diameter. A larger bypass 

channel allows larger control rods to be used, introducing additional control rod worth. Therefore, it 

appears that larger control blades will not significantly affect reprocessing requirements. This leads 

to confidence that the CSDM constraint can be met without adverse consequences. 

6.6. Preliminary Assessment of Axially Heterogeneous Fuel 

While axially homogeneous fuel is highly desirable to reduce fuel fabrication costs, it is worthwhile 

to evaluate the performance of axially heterogeneous fuel for comparison purposes. For example, if 

a superior waste incineration rate can be achieved with axially heterogeneous fuel, this could reduce 

reprocessing and fuel fabrication throughput and may offset the unit cost increase. Some 

performance increase is expected from axially heterogeneous fuel as this is employed in U-Pu 

RBWR burner designs. It is also worth noting that remote fabrication of fuel with external axial 

blankets is much less difficult than remote fabrication of fuel with internal axial blankets. Axially 

heterogeneous fuel design requires 3D lattice calculations.  

The Monte Carlo code Serpent (Leppänen, 2007) with the ENDF/B7 data library was used to 

perform axially heterogeneous calculations. A single pincell was modelled to reduce computational 

requirements. The best estimate model in (Shirvan et al., 2013), based on the model developed by 

Liao et al., was used to calculate the void distribution, with a representative power distribution in 

the pincell. 7 cm and 30 cm upper and lower reflectors were modelled. These differences in lattice 

calculation methodology and thermal-hydraulics mean that a consistent basis of comparison is not 

possible with the axially homogeneous lattice and core studies. Therefore, homogeneous fuel is also 

analysed in the same way to provide a consistent reference case.  

To speed up the calculations, convergence to equilibrium was performed with a coarse axial 

structure of 5–7 regions, and statistical error of 25 pcm. 30% and 35% TRU reload fractions were 

used, 30% being similar to that feasible with homogeneous fuel for a short core, and 35% being the 

best case with radially heterogeneous fuel. Detailed analysis of equilibrium cycles was performed 

with 25 axial regions and statistical error of 14 pcm. Due to large changes in the axial power profile 
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over the cycle, the equilibrium isotope vector is highly burn-up dependent, and the refined 

nodalization of the equilibrium cycle also affects the results. Therefore, while the isotope vectors 

were close to equilibrium, the TRU incineration rates differ slightly between cases of the same TRU 

reload fraction. The incineration rate of the equilibrium cycle is used in the ensuing analysis. The 

TRU incineration rate is used rather than the TRU+U3 incineration rate as TRU is generally 

limiting to the FVR and the net U3 incineration is close to zero. Based on the conclusions of 

Section 6.3, a multi-tier fuel cycle scheme was selected. 

A negative FVR was used as the measure of moderator feedback coefficient. This is generally a 

stronger constraint than a VC based on partial voiding, overpower or reduced flow rate, and it is 

quicker to calculate accurately with a stochastic code. Accurate determination of the VC generally 

requires a full-core analysis. 

This analysis is not a thorough treatment of all possible axially heterogeneous fuel forms. The 

objective is to quantify the potential performance advantage from axially heterogeneous fuel 

designs only. Should axially heterogeneous fuel designs be pursued, full-core analysis with cross-

sections produced from 3D lattice calculation is necessary, the methodology for which is under 

development (Hall et al., 2013; 2014). 

6.6.1. Fuel Forms Considered 

The axially heterogeneous fuel designs for burners are shown in Fig. 6.14. The typically considered 

heterogeneous RBWR design has external and internal blankets of fertile fuel (Fig. 6.14b). These 

promote breeding, while the internal blanket should also encourage neutron leakage and therefore 

allow the waste reload fraction to be increased. In the U-Pu RBWR, these may help maintain the 

balance between feasible cycle length and incineration rate. In the Th-fuelled RBWR, the 
232

Th 

blankets will increase the reactor‟s 
233

U inventory, which does not make the VC much worse, but 

may still impact waste incineration rate. Improving the reactor‟s neutron economy may not seem 

worthwhile given the high achievable burn-ups with homogeneous fuel, but improved neutron 

economy allows a high leakage design with reasonable cycle lengths, which is advantageous. It is 

also worth noting that the impact of the reflector in the RBWR is large and difficult to model 

accurately. Axial blankets may help reduce these uncertainties. 

It is also worth considering designs with spatial separation of U3 and TRU. This has been shown to 

be advantageous at the assembly level. A variant on the radially heterogeneous assembly is axially 

heterogeneous fuel with similar region size (Fig. 6.14e).  

Macro-heterogeneous fuel design is also worth considering here. Fig. 6.14c shows a design with 

Th-TRU at the top of the core and Th-U3 at the bottom. There are two possible motivations here: 
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(1) movement of the active core over life between the fast-burning Th-U3 region and the slow-

burning Th-TRU region to improve discharge burn-up; (2) placement of the Th-TRU in the highly 

voided, hard spectrum region at the top of the core.  

An alternative design with high axial leakage is shown in Fig. 6.14d. This places the TRU at the top 

and bottom of the core in thin, highly concentrated zones with a large central Th-U3 zone. The 

objectives of this design are to harden the neutron spectrum in the TRU-bearing regions and 

promote axial leakage from TRU in case of voiding. For Case (d) only, borated upper and lower 

reflectors were used, to increase leakage, as in some U-Pu RBWR designs (Downar et al., 2012). 

A core height of 105 cm was selected, as a short core is appropriate for designs which seek to 

maximize the incineration rate and it was assumed that a good neutron economy and low assembly 

power peaking would be possible with axially heterogeneous designs. 

 

Fig. 6.14. Fuel designs considered in Serpent (black = Th-U3-TRU, red = Th, green = Th-U3, blue 

= Th-TRU): (a) axially homogeneous; (b) internal and external blankets with Th-U3-TRU seed 

regions; (c) axially macro-heterogeneous with Th-U3 at bottom and Th-TRU at top; (d) Th-TRU at 

top and bottom with Th-U3 in centre; (e) alternating layers of Th-U3 and Th-TRU. 

6.6.2. Results and Discussion 

The main parameter of interest is the TRU incineration rate (the burn-up is likely limited by clad 

and fuel constraints), so the actual length of the equilibrium cycle is a secondary concern. The 

selected core height is low, such that the thermal-hydraulic constraints may be active or violated. 

This corresponds to a core design which seeks to maximize TRU incineration rate over discharge 

burn-up.  
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The near-equilibrium fuel compositions averaged over the whole pin are given in Table 6.10. For 

the near equilibrium cycle, there is a slight increase of 0–3% in U3 population, except for Design 

(c) where there is a decrease of 0–3%. 

Table 6.10. Near-equilibrium fuel compositions used for equilibrium cycle analysis. 

 Design (a) Design (b) Design (c) Design (d) Design (e) 

Waste reload fraction 30% 35% 30% 35% 30% 35% 30% 35% 30% 35% 

241
Am 0.97 1.18 0.79 1.00 1.70 1.76 2.60 2.85 1.23 1.46 

242m
Am 0.04 0.04 0.03 0.04 0.07 0.07 0.09 0.10 0.06 0.07 

243
Am 0.67 0.81 0.58 0.71 1.00 1.08 1.28 1.44 0.77 0.88 

243
Cm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

244
Cm 0.37 0.45 0.37 0.45 0.37 0.45 0.34 0.41 0.39 0.42 

245
Cm 0.15 0.17 0.13 0.16 0.11 0.13 0.11 0.12 0.13 0.14 

246
Cm 0.08 0.10 0.07 0.08 0.06 0.07 0.06 0.06 0.09 0.08 

247
Cm 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 

248
Cm 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

237
Np 0.52 0.62 0.46 0.56 0.99 0.97 1.65 1.68 0.64 0.75 

238
Pu 1.26 1.45 0.96 1.11 1.80 1.84 2.52 2.70 1.51 1.70 

239
Pu 0.91 1.16 0.87 1.12 1.48 1.63 2.10 2.38 1.19 1.40 

240
Pu 2.81 3.49 2.55 3.24 5.74 5.98 8.09 8.90 4.51 5.23 

241
Pu 0.59 0.74 0.57 0.74 0.62 0.76 0.66 0.82 0.60 0.68 

242
Pu 1.70 2.08 1.49 1.84 2.84 3.02 3.87 4.28 2.33 2.63 

232
Th 78.01 75.51 81.17 78.88 73.40 71.82 66.47 63.85 76.27 74.01 

233
U 6.90 7.03 5.86 5.97 5.18 5.58 5.09 5.20 5.62 5.63 

234
U 3.37 3.46 2.74 2.76 3.09 3.24 3.38 3.47 3.14 3.32 

235
U 0.85 0.87 0.66 0.66 0.71 0.74 0.79 0.80 0.72 0.75 

236
U 0.78 0.81 0.66 0.66 0.81 0.84 0.88 0.91 0.78 0.84 

The cycles are analysed using the non-linear reactivity model, assuming 4 batches. The EOC     



keff  

generally needs to be at least 1.01 for a feasible cycle (to account for ~1% radial leakage), but the 

same cycle length is assumed in each case for a consistent comparison. Table 6.11 gives the 

performance of each design. First, a discharge burn-up is assumed. Then the non-linear reactivity 

model is applied to calculate the EOC     



keff  (including axial leakage but not radial leakage) and FVR 

for the two different TRU incineration rates. As the FVR becomes more positive with TRU 
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incineration rate, the maximum TRU incineration rate is that at which the FVR is zero. This is 

estimated by interpolating the results at the two different TRU incineration rates.  

Table 6.11. Performance of axially heterogeneous fuel designs. 

 Max TRU incineration  

rate (kg/Gwthyr) 

EOC     



keff  at this 

incineration rate 

Discharge burn-up 60 GWd/t 80 GWd/t 60 GWd/t 80 GWd/t 

Design (a) 117 111 1.017 0.998 

Design (b) 119 117 1.051 1.038 

Design (c) 115 109 1.061 0.998 

Design (d) 126 120 0.998 0.977 

Design (e) 143 133 1.020 1.004 

For a discharge burn-up of 60 GWd/t, Design (a) has an incineration rate of 117 kg/GWthyr, which 

is almost identical to the result in Section 6.1 obtained by a full-core WIMS/PARCS-RELAP5 

analysis. The radial leakage is generally slightly less than 1.7%, so Serpent predicts a slightly longer 

cycle length, and the core height is shorter (so we would expect a slightly higher incineration rate 

and lower     



keff ), but the results are broadly in agreement. 

Similarly, Design (e) has a maximum incineration rate of ~133 kg/GWthyr for a discharge burn-up 

of 80 GWd/t which is almost identical to the TCUP fuel assembly design in Section 6.3. In this 

case, the EOC     



keff  is slightly too low, when accounting for radial leakage, although the core is 

shorter than in Section 6.3. While the geometry, and therefore inter-region collision probabilities are 

different for the axial and TCUP heterogeneous designs, both involve spatial separation of TRU and 

U3 on the scale of a few thermal neutron diffusion lengths, so it is unsurprising that their behaviours 

are similar. Therefore, as expected, there is no advantage to implementing Design (e), as the TCUP 

design provides simpler fuel manufacturing. 

A conventional seed/blanket structure without spatial separation of U3 and TRU (Design (b)) yields 

a similar maximum TRU incineration rate to the homogeneous core but with a much superior 

neutron economy. Neutronically, this leads to the option of an even shorter core and further 

increased leakage, but the high power peaking of Design (b) means this is unlikely to be feasible 

(see Section 6.6.3). The high axial power peaking and possibility of decoupling between seed 

regions (Kawashima et al., 1992) are also disadvantageous. The high power peaking also leads to 

high variation in discharge burn-up along the fuel rod, which could reduce the achievable discharge 

burn-up from fuel and cladding performance perspective. Further improvement may be possible by 

combining seed/blanket and TRU/U3 design features, but this is not investigated here. In Design 
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(b), the FVR is worse at SOC, as the central blanket is quite transparent to neutrons, so there is only 

a small leakage effect into the central blanket. As U3 breeds in the internal blanket, a larger 

proportion of the power comes from the Th-U3 region, which acts to make the FVR negative. The 

FVR is minimized at around ~35 GWd/t, before increasing again. As such, the maximum TRU 

incineration rate is relatively insensitive to discharge burn-up. The maximum discharge burn-up for 

EOC     



keff  of 1% is ~120 GWd/t, so this design is attractive if a high discharge burn-up is pursued.  

Placement of TRU at the top of the core (Design (c)) allows it to be burned in a harder neutron 

spectrum, leading to a superior neutron economy. There is a large axial power shift over the cycle 

from the Th-U3 to the Th-TRU, such that the FVR, which is dominated by the Th-TRU, rises 

rapidly over the cycle as the Th-U3 burns out. This leads to a net balance of U3 only being achieved 

for a discharge burn-up of >90 GWd/t for the isotope vector analysed. This leads to a very good 

neutron economy for the 60 GWd/t burn-up case as the U3 burns out: indicating that a „true‟ 

equilibrium cycle has not been found. There is a much higher TRU incineration rate for the same 

TRU loading at higher burn-ups, so at 80 GWd/t the allowable TRU loading is substantially less 

than at 60 GWd/t, leading to much lower     



keff , but the TRU incineration rate is not much lower. The 

TRU incineration rate is not improved over the homogeneous core, and indications are (from the 80 

GWd/t case with a lower net U3 burn) that the neutron economy is not superior to homogeneous 

fuel.  

Concentrating the TRU in thin axial regions and borating the lower reflector (Design (d)) allows a 

slight increase in TRU incineration rate, although the high leakage design leads to an inferior 

neutron economy. Hence the core height would need to be increased, leading to a decrease in the 

maximum TRU incineration rate. The bimodal power distribution can also make the design 

sensitive to high power peaking in one of the thin Th-TRU regions. 

In summary, Design (e) is the best performing design for achieving a high TRU incineration rate. 

However, this design is roughly equivalent to the axially homogeneous TCUP assembly design, 

hence the axially homogeneous design is preferred. 

6.6.3. Thermal-hydraulics 

The axial power profiles and void distributions for the five cases are shown in Figs. 6.15 and 6.16. 

The void distributions were kept constant over the cycle as it was deemed superfluous to model 

axial void distribution shifting effects without a full-core, multi-batch analysis. The void 

distributions were calculated using fuel compositions at ~40 GWd/t from the convergence to 

equilibrium calculations, using an iterative procedure, and were the same for both TRU reload 

fractions. The plateau at ~30% void fraction (VF) is a direct result of the modified Liao correlation.  
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Fig. 6.15. Axial power distribution for different fuel designs (30% waste reload fraction). 

0

10

20

30

40

50

60

70

80

90

100

0 15 30 45 60 75 90 105

Axial distance from lower reflector (cm)

V
o

id
 f

ra
c

ti
o

n
 (

%
)

a

b

c

d

e

 

Fig. 6.16. Axial VF distributions for axially heterogeneous designs. 
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A pin power of 25 kW/pin was used, with a coolant mass flux of 850 kg/m
2
/s. The average VF is 

55–58% for Designs (a), (c) and (e), which is comparable to the 57% average VF from the core 

analysis in the preceding PARCS-RELAP analysis (which used the drift-flux model in RELAP to 

calculate VF). Design (b) has an average VF of 51% as boiling is delayed by the lower blanket, and 

Design (d) has an average VF of 61% due to the high power in the lower Th-TRU region. The 

MCPR (calculated for a single channel assuming radial power peaking of 1.2 and assembly power 

peaking of 1.05) exceeds the minimum value of 1.32, except for Designs (b) and (c) (Table 6.12). In 

Design (b), the power in the seed assemblies is nearly zero at SOC, leading to very high power 

peaking. However, the MCPR rises rapidly due to breeding in the internal blanket. In Design (c), 

the positively skewed power distribution at SOC leads to a low MCPR. In both cases, multi-batch 

effects will act to increase the MCPR. 

Table 6.12. MCPR for axially heterogeneous designs. 

Design a b c d e 

0 GWd/t 1.35 0.99 1.19 1.36 1.38 

50 GWd/t 1.36 1.29 1.37 1.36 1.37 

100 GWd/t 1.36 1.32 1.34 1.33 1.36 

The MCPR can be increased by increasing the core height. Increasing the core height by 10 cm 

improves the MCPR by ~0.09 for Design (b). However, a taller core reduces neutron leakage, 

which makes the FVR worse. For Design (c), it was found that raising the core height to 125 cm 

increased the FVR by 0.02. The TRU loading and therefore the TRU incineration rate must be 

reduced to compensate. A reduction in TRU incineration rate of ~10 kg/GWthyr was found to 

reduce the FVR by ~0.01. A 10 kg/GWthyr drop in incineration rate would almost eliminate the 

advantage of Design (b) relative to Design (a).  

Increasing the coolant mass flux is preferable. This thermalizes the spectrum slightly, and increases 

the pumping power, although the pumping power is compensated for by the short core height. 

Increasing the mass flux by 100 kg/m
2
/s increases the MCPR by ~0.07 for Design (b). 

6.7. Concluding Remarks 

Th-fuelled RBWRs can achieve high discharge burn-ups with a negative VC and FVR. This gives 

them some flexibility to incinerate TRU with different isotope vectors, allowing for longer cooling 

times and the implementation of multi-tier fuel cycles. The VC and DC values are sensitive to how 

they are calculated, so there is some uncertainty as to their exact magnitude. Spatial separation of 

Th-TRU and Th-U3 into regions of the order of a few thermal neutron diffusion lengths greatly 

improves neutronic performance. This can be accomplished radially or axially, but radial separation 
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results in significantly easier fuel fabrication. A waste reload fraction of 35% appears possible when 

utilizing a TCUP assembly. 

Axial seed-blanket heterogeneity improves neutron economy at the expense of high power peaking. 

Separation of Th-TRU and Th-U3 into larger regions is not effective, due to increased power 

density in the Th-TRU region with voiding and with burn-up, leading to a more positive VC. High 

leakage fuel designs (with highly fissile Th-TRU regions at the edge of the core) do not appear 

desirable as the power in these regions increases as the core voids, increasing the VC. Leakage is an 

insufficient mechanism to counter this effect, due to substantial reflector effects from water and the 

core structure.  

Due to the use of axially homogeneous fuel (without internal blankets), it is possible to achieve a 

sufficient MCPR with a higher average power density than the JAEA RMWR design (with the same 

fuel assembly configuration). The MCPR is particularly good for tall cores. However, power 

peaking within the assembly may be higher if TCUP fuel is used. This can be mitigated by 

increasing the coolant mass flow rate, or increasing the core height. While a higher TRU 

incineration rate can generally be achieved with a shorter core, the capability to reduce the core area 

to that of an unmodified ABWR by utilizing a taller core with improved MCPR leads to a trade-off. 

With a discharge burn-up of ~80 GWd/t, the cycle length is ~2 years for ~200 cm cores with 480 

assemblies, or ~115 cm cores with 720 assemblies. 



    171 

 

Chapter 7 – Fuel Cycle Performance 

In Chapters 2, 5 and 6, the feasibility of a range of reactor and fuel configurations has been 

examined, and the methodology has been developed to investigate a range of designs. In this 

chapter, a comparative analysis is performed, focussing on the relative performance of the different 

designs. Comparison is made with alternative LWR candidate designs utilizing U and inert matrix 

fuel and with Th-fuelled SFRs.  

Th-based transmutation is a much less developed technology than U-based transmutation. While 

further developments are required in either case for full recycle of TRUs, notably for MA 

reprocessing and fuel fabrication, additional technology developments are required for the Th fuel 

cycle. Reprocessing of Th fuel is not currently an industrial-scale process, and the Th-TRU fuel 

cycle introduces a greater range of isotopes that need to be recovered compared to U-TRU and Th-

U3 cycles in isolation. Remote fuel fabrication is required in any case due to SN emission from Cm 

isotopes (and Cf for thermal recycle schemes), but the presence of U3 further complicates this due 

to the high-energy gamma emitters present in its decay chain. Use of Th-Pu pins (i.e. which do not 

contain MAs or U3) allow reduced remote fuel fabrication requirements, but impact neutronic 

performance. Comparisons of Th- and U-based transmutation strategies from a point of view of fuel 

fabrication and reprocessing requirements were made by Franceschini et al. (2013; 2014), utilizing 

some results from this chapter.  

The harder neutron spectrum of a RBWR leads to superior fuel cycle performance to a RMPWR. 

Homogeneous, micro-heterogeneous and macro-heterogeneous fuel configurations all have their 

merits. A multi-tier fuel cycle is technically reasonable and is better suited to the RBWR than to the 

RMPWR. This strategy would reduce the number of reactors operating in reduced-moderation 

mode, and delay and reduce the amount of fuel to be made remotely.  

An economic analysis suggests that Th-RBWRs are the lowest cost TRU incineration option, with 

inert-matrix schemes in LWRs of comparable cost. The economics analysis was performed in 

collaboration with Dr Carlo Fiorina (who also performed SFR calculations), Dr Fausto Franceschini 

and Prof. Edward J. Lahoda, with results also reported in (Franceschini et al., 2014). 

7.1. Description of Fuel Cycle Cases 

Twelve fuel cycle cases are considered. Cases are designated P1–6 (RMPWR) and B1–6 (RBWR).  

From Chapters 2 and 5, the RMPWR MTC, FVR and ZCR are evaluated with BP loadings 

appropriate to limit the reactivity swing over the cycle to around 2000 pcm. The remaining excess 

reactivity is assumed to be controlled using control rods, as soluble boron would make the MTC, 

FVR and ZCR worse. The control rods improve the MTC, FVR and ZCR, but in calculating these 
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quantities no credit is given for the effect of control rods. Therefore, the MTC and FVR are 

calculated in a conservative and consistent manner.  

The methodology, and in many cases the results, of the full-core analyses for the RMPWR and 

RBWR are given in Chapters 5 and 6 respectively. The discharge burn-up is taken from full-core 

models except where otherwise indicated. In all cases, the equilibrium isotope vector is determined 

using single assembly neutronic simulations. For the RMPWR, the linear reactivity model (Driscoll 

et al., 1991) gives a very good approximation to the average discharge burn-up. This has been 

confirmed using PANTHER (Morrison, 2003). In addition, the FVR and ZCR are highly leakage-

dependent and these are calculated using a full-core model. 

The reactivity swing in the RBWR is generally around 2000 pcm, which is similar to the shim rod 

worth. For high burn-up cases, it can increase to ~3500 pcm. However, current designs of RBWR 

(Downar et al., 2012; Fukaya et al., 2009a) only have space for shim rods in some of the bypass 

channels. By enlarging these bypass channels (which softens the spectrum slightly, but not enough 

to significantly impact design performance), additional shim rods can be placed. It is therefore 

possible to achieve sufficient worth to control the core. Similarly, placement of additional shutdown 

rods, if necessary, should allow a sufficient SDM to be achieved. 

The MTC, VC and FVR are calculated from full-core analyses where appropriate. In some cases, a 

core analysis is unnecessary because the assembly neutronic properties change only slightly from 

other cases. The core analyses establish the trend between assembly and core reactivity coefficients, 

such that feasibility can be inferred with sufficient reliability for cases where only an assembly 

analysis is performed. The RBWR is expected to have a negative ZCR (and if the ZCR is positive 

and the FVR is negative, it would only take a very minor reduction in TRU feed or core height to 

render it negative), while it is positive for the RMPWR. This is a major advantage for the RBWR 

over the RMPWR as it makes it easier to justify the safety performance of the reactor in beyond-

design-basis accidents. 

The additional constraints of finding a suitable CRP to limit power peaking, SDM and accident 

response could introduce performance differences between the RMPWR and RBWR once 

accounted for. For instance, if the RMPWR violates thermal-hydraulic constraints, a redesign of the 

core to meet these constraints may render it non-retrofittable, e.g. a shorter core may be required, 

which would reduce the attractiveness of this implementation.  

The achievable discharge burn-up and core residence time will be limited by cladding and fuel 

performance. These constraints are not applied to the neutronic analysis, as it is instructive to 

determine the neutronic limitations on the design, e.g. the viability of the design may be dependent 

on future advances in cladding technology. However, designs are selected with a view to mitigate or 



    173 

 

satisfy likely limits on material performance.  

WIMS models the isotopes which are relevant to the reactor physics. These include isotopes of Cm 

up to 
248

Cm, 
232

Th and 
233

Pa, but not other isotopes of Th, Pa or 
232

U. There is therefore no implicit 

assumption of the treatment of Pa in the WIMS analysis. For selected cases (see Section 7.5), 

WIMS 9 was interfaced with the inventory code FISPIN (Answers, 2007) to evaluate full 

inventories, activities and decay heat for a larger set of nuclides, assuming all actinides are recycled 

in the fuel.  

7.1.1. RMPWR Cases 

7.1.1.1. Homogeneous Recycle  

P1: RMPWR with 11.5 mm 95% TD fuel, homogeneous assembly design. An 11.5 mm pin 

diameter is approximately the minimum required for acceptable neutronic performance (negative 

MTC and adequate cycle length) in an RMPWR with homogeneous Th oxide fuel. The MTC for 

this case is approximately zero without considering the impact of reactivity control and the core has 

slightly positive reactivity when fully voided. See Chapter 2 for further details.  

7.1.1.2. Heterogeneous Recycle Schemes 

P2: RMPWR with 11 mm, 95% TD fuel, heterogeneous TCUP assembly design with 132 Th-U3 

pins. A negative MTC is achievable throughout the cycle, but the core has positive FVR. To 

achieve negative FVR with this assembly design, the pin diameter needs to be increased to 11.5 mm 

and the TRU reload fraction needs to be reduced, making the fuel cycle performance worse
30

 and 

potentially violating the thermal-hydraulic constraints (Chapter 4).  

P3: Multi-tier implementation of P2 (see Chapter 5). The cycle incineration rate and burn-up are 

evaluated as a weighted average of the Th-Pu stage and the RMPWR, based on the relative 

proportions incinerated at each stage, with the U3 in the feed to the RMPWR counted as a liability 

to be incinerated.  

The feed to the equilibrium cycle has lower fissile quality than the single-tier cases, and therefore a 

higher TRU reload fraction than in the geometrically identical single-tier counterpart is required, 

leading to a higher overall incineration rate. (Note that the reload proportion is counted here as the 

total incineration liability, i.e. everything except 
232

Th.) However, the presence of in-bred U3 

offsets the negative effects of the deterioration in the Pu fissile quality and the increased MA 

(Np/Am/Cm) content of the multi-tier vs single-tier case, leading to a comparable MTC and 

discharge burn-up to P2. However, the FVR is still positive. The MTC and FVR are calculated 

                                                 
30

 This has been confirmed by core analysis (Lindley et al., 2014b). 
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using a single assembly in lieu of a full-core calculation as their values are similar to the single-tier 

case, and accordingly are expected to be similar to the single-tier case full-core values. 

P4: As P2, but the fuel density of Th-U3 pins is reduced to 85% TD. In addition, MAs are placed in 

separate pins, modelled as low density MAO2. In practice, an inert matrix (e.g. ZrO2) may be used 

(e.g. Hyland et al., 2011). In the unrodded assemblies, these low density pins can replace the guide 

tube positions, as standard burnable absorber inserts are not foreseen in the RMPWR (they are 

ineffective as the spectrum is too hard). As the pins are low power, the radius is increased to almost 

the lattice pitch. These extra rod positions should allow the thermal-hydraulic conditions to be 

satisfied with some of the conventional fuel rods also displaced. This is necessary to satisfy mass 

flow considerations while minimizing the required MA density. The density of MAs assumed in 

this study for the target pins is ~3.4 gHM/cm
3
. This is required to satisfy the mass balance 

constraints of this fuel assembly. Previous studies have considered a wide range of densities: 

(Hyland et al., 2011) with Am/Cm/lanthanide mixture occupying 5–60% of the total pin volume. 

The pins are ~65 wt% Am, 21 wt% Cm and 14 wt% Np. The power of the MA target pins is ~70% 

that of normal rods.  

The lattice calculation model assumed rod cluster control assemblies (RCCAs) positioned in a 

checkerboard configuration. The MA-bearing pins should be distributed within the Th-Pu pins so as 

to favour a more even power distribution in the assembly by lowering the thermal flux impinging on 

the MA-bearing pins. However, if the design of the assembly containing MAs is not compatible 

with the MA absorber inserts being removed and redistributed between cycles, the fuel management 

scheme is constrained. This is a problem as the 1
st
 and 2

nd
 batches are often deployed in a 

checkerboard to minimize power peaks, so if one type of assembly is only compatible with alternate 

positions in the core, it cannot be shuffled from the usual batch 1 positions to the adjacent batch 2 

positions due to the incompatibility of MA inserts with the presence of control rods.  

It is desirable that the MA rods can be removed at the end of the cycle to follow their own loading 

scheme to allow movement of the assembly from the position with a RCCA to the position without 

a RCCA. However, pin-level shuffling of the MAs is likely to be impractical (movement of 

individual pins is slow and may result in high risk of breakage), resulting in further constraints on 

the fuel management scheme. It is also difficult to keep pin-level power peaking low, even with 

variable pin compositions, due to the spectral variation between pins of different types causing them 

to burn at different rates. This can be mitigated by allowing the pin-level power peaking to be 

higher in the twice-burned assemblies, as the hot pin will not be in the twice-burned fuel. 

These considerations, combined with the use of control rods for mechanical shim, may make it 

difficult to achieve a LP with acceptably low form factor. The core design will be challenging and a 
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full-core analysis is required to identify a feasible configuration and demonstrate concept viability.  

As the MA pins should be placed near the Th-Pu pins to maximize spectral hardening, this means 

the Th-Pu pins should be positioned at the centre of the assembly, i.e. next to the guide tubes where 

the MA pins will be inserted (Fig. 7.1). However, this does result in a harder neutron spectrum in 

the control rods, reducing their worth, as they are next to the hard spectrum Th-Pu pins rather than 

the soft spectrum Th-U3 pins. Similarly, in the assembly without MAs, the Th-Pu pins are 

thermalized by the vacant guide tube positions. 

 

Fig. 7.1. P4 TCUP model with Th-U3 pins (green), Th-TRU pins (blue) and MA pins (purple) 

centred on where 4 assemblies meet. In this case there were 132 Th-TRU pins and 120 Th-U3 pins 

per assembly, with 12 MA pins in rodded assemblies and 36 MA pins in unrodded assemblies. 

While it is possible to achieve a negative MTC throughout the equilibrium cycle, there is a penalty 

compared to P2. This is primarily attributable to the reduction in density of the Th-U3 pins and the 

flux dip in MA pins. An increase in actinide waste reload proportion is necessary to maintain a 

cycle length of ~40 GWd/t, which increases the incineration rate at equilibrium but makes the MTC 

less negative. A full-core analysis was not performed for this configuration, and is necessary to 

determine if an acceptable core configuration can be achieved with an 11 mm pin diameter, or if a 

larger pin is required. However, the effect of the design on the discharge burn-up, incineration rate, 

MTC, FVR and ZCR, i.e. the parameters of interest for this study, can be reliably inferred from the 

assembly analysis – as the MTC and FVR are more positive in the assembly calculation compared 

to P2, they can also be expected to be larger than P2 in the full-core calculation.  
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7.1.1.3. Variable Batch Management Schemes 

The variable batch management schemes from Chapter 5 are considered, where the Th-TRU resides 

twice as long in the core as the Th-U3, such that the Th-U3 is refuelled twice as often. This allows 

sensible batch management of the TCUP case. 

P5 is the single-tier implementation of this variable batch management strategy with 95% TD fuel, 

11 mm pin diameter and 144 Th-TRU pins per assembly; P6 is the multi-tier implementation with 

95% TD fuel, 11 mm pin diameter and 108 Th-TRU pins per assembly. P5 has negative FVR and 

P6 has positive FVR. However, the ZCR remains positive in both cases. 

As for P3, the MTC and FVR of P6 are calculated using a single-assembly calculation only. The 

FVR is more positive for P6 than for P5 (and also for the multi-tier single-pass strategy, P3), 

therefore the core FVR will also be positive. 

As negative FVR is highly desirable, and the fuel cycle performance of the 11 mm RMPWR cases 

(P2–6) is generally similar, the multi-pass scheme (P5) seems appropriate for the single-tier fuel 

cycle, and the single-tier fuel cycle is preferable to the multi-tier fuel cycle for the RMPWR. 

The fuel cycle performance of the WATU concept is similar to the TCUP concept, although with 

improved SDM, so this scheme is not discussed further here.  

7.1.2. RBWR Cases 

7.1.2.1. Homogeneous Recycle  

B1: RBWR with 85% TD homogeneous fuel. This has a relatively low incineration rate but 

excellent burn-up potential. However, MAs cannot be added until a first Th-Pu pass is completed 

and U3 is bred in to ensure a negative VC and negative reactivity when the core is fully voided. 

200 cm (tall) core height is specified to improve the discharge burn-up versus incineration rate 

trade-off (Chapter 6). 

B2: Multi-tier implementation of B1. This multi-tier approach again allows more rapid 

implementation than straight full TRU recycle, which is particularly relevant to a strategy in which 

the transmutation starts in current PWRs while a RBWR is licensed and the reprocessing and 

fabrication technologies for TRU fuel are developed. A similar reload proportion to B1 is 

appropriate to give the same VC, corresponding to a lower Pu enrichment. The cycle incineration 

rate and burn-up are evaluated as a weighted average of the Th-Pu stage and the RBWR, based on 

the relative proportions incinerated at each stage, with the U3 in the feed to the RBWR counted as a 

liability to be incinerated.  

There is a substantial burn-up penalty compared to B1, but a discharge burn-up of ~78 GWd/t 
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should be possible. In addition, the incineration rate in the first stage is very high so the overall 

incineration performance is good.  

Indeed, this trade-off appears highly favourable as the burn-up in the RBWR is likely to be 

constrained by materials considerations. Therefore trading burn-up in the equilibrium cycle for 

incineration rate in the first stage is not unreasonable. With the added bonus of postponing RBWR 

deployment, this result is encouraging.  

7.1.2.2. Heterogeneous Recycle Schemes  

B3: As B1 but with a heterogeneous TCUP assembly with 91 85% TD Th-TRU pins and 126 85% 

TD Th-U3 pins per assembly. This approach is neutronically extremely effective, improving the VC 

and therefore allowing substantially increased reload enrichment and discharge burn-ups 

competitive with a FR, with the caveat that a suitable cladding material for the high discharge burn-

up and long residence time of the RBWR fuel must be developed. Core analysis in Chapter 6 

indicates that a burn-up of ~118 GWd/t is neutronically feasible. Reducing the core height, radius or 

discharge burn-up is therefore advisable to make the VC more negative. 

In order to reduce the burn-up of B3 to an achievable level without overly compromising the fuel 

cycle performance, it is necessary to increase the incineration rate. To achieve this, a multi-tier fuel 

cycle was implemented. Stage 1 discharge burn-ups of 50 GWd/t (B4) and 84 GWd/t (B5) were 

considered. A higher burn-up in the first tier reduces the burn-up of the second tier, and therefore 

results in a slight decrease in the fuel cycle average discharge burn-up (despite the high burn-up of 

the first tier). However, a greater proportion of the waste is burned in the low conversion ratio PWR 

and therefore the overall incineration rate is higher in the B5 scenario. 

B6: Spatial separation of TRU and U3 is less critical to viability of the RBWR than the RMPWR, 

but still advantageous to performance. Positioning the MAs in the Th-Pu pins is neutronically 

preferable, but segregating MA from Pu in the U3 pins reduces remote fuel fabrication 

requirements. Therefore a micro-heterogeneous „checkerboard‟ of 78 95% TD Th-Pu pins and 139 

85% TD Th-U3-MA pins is considered (Fig. 7.2). Assembly calculations indicate a slightly reduced 

reload proportion is appropriate and a slightly higher burn-up is achievable relative to B1. An 

average VF assembly calculation is not sufficient to accurately calculate the full-core burn-up, so 

the same discharge burn-up as B1 was assumed, as the assembly variation in k  with discharge 

burn-up was very similar. 



    178 

 

 

Fig. 7.2. Micro-heterogeneous B6 RBWR fuel design with 78 Th-Pu pins (blue) and MAs in the 

139 Th-U3 pins (green). 

7.1.3. Summary of Fuel Cycle Cases 

The RMPWR cases stretch the limits of neutronic, thermal-hydraulic or fuel fabrication feasibility. 

However, the RMPWR conversion ratio is intrinsically lower than that for the RBWR, which is 

desirable from the incineration performance standpoint. 

In contrast, the RBWR cases have more favourable neutronic, thermal-hydraulic and fabrication 

feasibilities. However, an RBWR has a radically different core configuration to current BWRs 

which may increase the burden on technology development and licensing. In addition, the 

achievable incineration rate is low without heterogeneous fuel. This makes the multi-tier options of 

considerable interest as they delay the time before a RBWR is required. In particular, cores with 

TCUP fuel assemblies are found to have good fuel cycle performance without relying on currently 

unachievable (from a materials standpoint) burn-ups. Moreover, the overall fuel cycle performance 

is relatively insensitive to the burn-up of the first stage, leading to flexibility in the fuel cycle 

implementation. 

These cases were selected to cover a range of combinations of reactor, fuel design and fuel cycle 

options and therefore allow the key trade-offs and performance measures to be identified. The range 

essentially covers: homogeneous recycle; heterogeneous fuel for improved neutronic performance 

(TCUP); heterogeneous fuel for reduced remote fuel fabrication requirements (also discussed in 

(Franceschini et al., 2013)); two passes of Th-TRU through the reactor; and multi-tier fuel cycles 

for RMPWRs and RBWRs. Table 7.1 summarises the objectives and scope of each case. 
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Table 7.1. Summary of considered fuel designs. 

 Single-tier Multi-tier Multi-tier high burn-up 

Homogeneous P1, B1* B2  

Heterogeneous P2*, B3* P3, B4* B5* 

Heterogeneous with Th-Pu pins P4, B6   

2 Th-TRU pass P5* P6  

* full-core analysis performed 

The homogeneous RMPWR scheme has poor performance so is only considered for the single-tier 

fuel cycle. The heterogeneous schemes with Th-Pu pins are only considered for the single-tier case 

for simplicity. The multi-pass schemes are not appropriate for the RBWR as they increase the ratio 

of maximum to average discharge burn-up, and the RBWR performance is to an extent limited by 

the maximum achievable discharge burn-up. The multi-tier scheme is considered appropriate only 

for the RBWR due to performance limitations of the multi-tier scheme in the RMPWR. The RBWR 

multi-tier schemes are considered for the heterogeneous TCUP fuel configuration as this has 

superior performance to the homogeneous fuel. 

The full-core performances of B2 and B6 have been inferred from the performance of B1, which 

has the same core height and neutronically similar fuel design. This may result in slight errors in the 

discharge burn-up, but it will not affect the relative performance of the cases. 

7.2. Fuel Cycle Performance 

The equilibrium isotope vectors for all the cases are given in Tables 7.2 and 7.3. In both cases 

246
Cm and above isotopes are not fully converged to equilibrium due to the impractically long time 

required for convergence. However, the impact on reactor physics is negligible. The RMPWR 

generally has significantly higher content of TRU and lower U3 and 
232

Th contents. The higher 

conversion ratio of the RBWR leads to lower equilibrium Pu and higher equilibrium U3. The Am 

and Cm populations are dominated by the amount in the external feed, and are therefore lower in 

the RBWR, mostly as a result of the lower TRU fraction in the feed, although the increased 

fissibility of TRU isotopes does contribute slightly. Note that many of these vectors are repeated 

from previous chapters, but are included again here for ease of reference. 

Table 7.4 summarizes the fuel cycle performance of each case. Compared to multi-tier FR 

approaches, e.g. (Franceschini et al., 2013), the reactor support ratio is less of a concern from a 

standpoint of cost minimization. Once the sunk costs of licensing have been met, an RMPWR or 

RBWR is expected to have similar cost to conventional LWRs, except for the fuel cycle costs.  
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Table 7.2. Equilibrium isotope vectors of RMPWR cases (at%). 

 P1 P2 P3 P4 P5 P6 

241
Am 0.882 1.423 1.992 2.102 1.145 1.907 

242m
Am 0.023 0.038 0.053 0.058 0.027 0.049 

243
Am 0.613 0.770 1.137 1.043 0.711 1.238 

243
Cm 0.005 0.005 0.007 0.006 0.004 0.007 

244
Cm 0.453 0.515 0.701 0.627 0.558 0.832 

245
Cm 0.232 0.218 0.267 0.201 0.230 0.305 

246
Cm 0.195 0.207 0.152 0.131 0.198 0.258 

247
Cm 0.036 0.048 0.028 0.026 0.041 0.060 

248
Cm 0.018 0.023 0.008 0.014 0.019 0.025 

237
Np 0.427 0.583 0.846 0.699 0.558 0.991 

238
Pu 1.743 2.409 3.039 2.471 2.133 3.179 

239
Pu 2.297 3.520 1.834 3.587 3.349 1.859 

240
Pu 2.831 5.427 5.802 5.867 4.445 5.986 

241
Pu 0.883 1.073 1.090 1.170 1.126 1.192 

242
Pu 1.688 2.871 3.841 3.100 2.545 4.354 

232
Th 80.592 74.803 72.315 73.284 77.848 71.273 

233
U 3.804 2.555 3.151 2.571 2.358 2.796 

234
U 1.935 2.211 2.523 1.968 1.711 2.336 

235
U 0.831 0.641 0.706 0.570 0.517 0.662 

236
U 0.511 0.658 0.505 0.503 0.476 0.693 

U3 7.080 6.065 6.886 5.612 5.062 6.486 

Pu 9.442 15.300 15.607 16.196 13.598 16.569 

Am 1.518 2.232 3.182 3.203 1.882 3.193 

Cm 0.939 1.016 1.163 1.005 1.051 1.486 
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Table 7.3. Equilibrium isotope vectors of RBWR cases (at%). 

 B1 B2 B3 B4 B5 B6 

241
Am 0.701 0.776 1.225 1.316 1.356 0.656 

242m
Am 0.027 0.028 0.052 0.053 0.057 0.024 

243
Am 0.365 0.506 0.533 0.787 0.805 0.332 

243
Cm 0.002 0.003 0.003 0.005 0.005 0.002 

244
Cm 0.203 0.287 0.248 0.483 0.485 0.184 

245
Cm 0.113 0.152 0.105 0.181 0.188 0.101 

246
Cm 0.084 0.114 0.118 0.123 0.134 0.080 

247
Cm 0.019 0.026 0.032 0.028 0.031 0.017 

248
Cm 0.008 0.010 0.013 0.010 0.011 0.008 

237
Np 0.366 0.462 0.549 0.664 0.681 0.354 

238
Pu 1.113 1.154 1.424 1.677 1.751 0.982 

239
Pu 1.797 0.739 3.127 1.326 1.177 1.660 

240
Pu 2.312 1.880 5.106 4.442 4.452 2.373 

241
Pu 0.513 0.476 0.642 0.774 0.691 0.466 

242
Pu 0.966 1.177 1.928 2.492 2.538 1.042 

232
Th 82.580 82.182 76.616 76.068 76.044 82.457 

233
U 5.588 6.107 4.709 5.577 5.427 5.603 

234
U 1.983 2.446 2.287 2.549 2.675 2.298 

235
U 0.722 0.837 0.699 0.771 0.804 0.740 

236
U 0.538 0.637 0.586 0.672 0.686 0.619 

U3 8.830 10.027 8.280 9.569 9.591 9.259 

Pu 6.702 5.426 12.227 10.711 10.609 6.523 

Am 1.093 1.311 1.810 2.156 2.218 1.012 

Cm 0.429 0.591 0.518 0.831 0.855 0.393 
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Table 7.4. Fuel cycle performance of each case. 

Case 

Stage 2 

waste 

reload 

fraction 

in feed* 

(at%) 

Fuel 

pins 

types 

Incineration 

(I) 

(kg/GWthyr) 

Stage 1, 

Stage 2, 

Overall 

Burn-up 

(BU) 

(GWd/t) 

Stage 1, 

Stage 2, 

Overall 

kg burned/t 

reprocessed 

(X) 

kg burned/t 

fabricated 

remotely 

(    



X remote) 

FVR, 

ZCR 

Specific 

power 

(MW/t) 

Support 

ratio** 

Stage 1, 

Stage 2 

P1 45% Th-

U3-

TRU 

172.9 34.9 16.5 16.5 Positive 26.0 0.52 

P2 50% Th-

TRU 

Th-U3 

191.9 42.7 22.4 22.4 Positive 28.8 0.47 

P3 60% Th-

TRU 

Th-U3 

184.1, 

236.9, 

222.3 

50.0, 

39.9, 

41.8 

25.5 33.2 Positive 28.8 0.11, 

0.29 

P4 55% Th-Pu 

MA 

Th-U3 

217.6 40.5 24.1 50.9 Positive 28.0 0.41 

P5 51% Th-

TRU 

Th-U3 

195.3 41.6 22.2 22.2 FVR < 0 

ZCR > 0 

28.8 0.46 

P6 54% Th-

TRU 

Th-U3 

184.1, 

214.9, 

207.0 

50.0, 

38.1, 

40.3 

22.8 28.9 Positive 28.8 0.11, 

0.32 

B1 26% Th-

U3-

TRU 

101.3 94.3 26.2 26.2 Negative 15.1 0.89 

B2 26% Th-

U3-

TRU 

184.1, 

101.2, 

112.8 

50.0, 

78.2, 

69.2 

21.4 28.8 Negative 15.1 0.11, 

0.69 

B3 35% Th-

TRU 

Th-U3 

135.7 117.7 43.7 43.7 Negative 15.1 0.66 

B4 35% Th-

TRU 

Th-U3 

184.1, 

135.4, 

144.1 

50.0, 

82.4, 

71.8 

28.3 41.1 Negative 26.2 0.11, 

0.51 

B5 35% Th-

TRU 

Th-U3 

215.9, 

135.4, 

151.5 

84.0, 

69.6, 

73.2 

30.4 36.3 Negative 26.2 0.12, 

0.48 

B6 24% Th-Pu 

Th-

U3-

MA 

93.5 94.3 24.0 37.5 Negative 15.1 0.96 

* Feed to Stage 2. E.g. if feed to Stage 2 is 60 at% 
232

Th and 40 at% U3+TRU then waste reload 

fraction is 40% 

** GWthyr in Stage 1 and Stage 2 per GWthyr in LEU-fuelled LWR. 90 kg/GWthyr TRU 

production in LEU-fuelled LWR 

A Th-fuelled RBWR uses the same plant as an ABWR, but the 720 assembly design considered 

here has a core area of 33.5 m
2
, which is around 50% larger than an ABWR (GE Nuclear Energy, 

1997). This will increase construction costs. The capability to manufacture such large pressure 
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vessels does not currently exist. While this is technically feasible, the related infrastructure must be 

developed. Alternatively, the RBWR plant size and rating can be reduced, such that the core is the 

size as an ABWR and the plant is smaller. However, this results in a poor economy of scale (a 

disadvantage of small reactors) while still requiring a large forged pressure vessel. De-rating an 

ABWR plant by 33% is unlikely to be economically attractive. However, if a „tall‟ 200 cm core is 

utilized and the flow rate is increased above the reference value, then the number of assemblies can 

be reduced to 480, which results in a similar core area to the ABWR. This will reduce the maximum 

achievable incineration rate (Chapter 6) but a larger pressure vessel would not be required. 

Minimizing the fuel cycle costs, which essentially corresponds to limiting the rate of reprocessing 

and the number of pins which must be fabricated remotely, is a key objective: kg burned/t 

reprocessed is therefore considered as primary figure-of-merit. The reprocessing requirements vary 

from the remote fuel fabrication requirements for the various designs, so the optimal design will 

depend upon the relative costs of remote fabrication and reprocessing.  

The incineration rate is the rate at which TRU from a complementary fleet of UO2-fuelled LWRs is 

burned. In equilibrium, the rate at which TRU is incinerated in the Th-TRU-fuelled reactors equals 

the rate at which TRU is produced in the UO2-fuelled reactors. The support ratio is defined as the 

ratio of TRU-burning reactors to conventional UO2-fuelled LWRs at which the total fuel cycle TRU 

production rate is zero. Hence the support ratio of TRU-burning reactors to conventional LWRs 

reduces as the incineration rate of the TRU-burning reactors increases. A reactor fleet with the 

power capacity in the proportions shown in the last column of Table 7.4 will produce zero net TRU. 

For multi-tier schemes, the average discharge burn-up and incineration rate are calculated as 

follows: 

Let p = the proportion of TRU burned in Stage 1 and q = the proportion of thermal power capacity 

which is in Stage 1 reactors.  

The thermal power capacity in each stage is proportional to the proportion of TRU burned in each 

stage, such that: 

21

2

21

1

)1(/)1(/

/

pIIp

pI

IpIp

Ip
q





        (7.1) 

where     



I1 and     



I2  are the incineration rate in Stages 1 and 2 respectively in kg/GWthyr. 

The overall incineration rate is the total incineration per GWthyr, i.e.: 

    



Ioverall qI1 (1 q)I2         (7.2) 
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The average discharge burn-up is the ratio of total energy to total loaded mass. Let     



BU1 and     



BU2  be 

the discharge burn-ups of Stages 1 and 2 respectively. The fuel mass requirement for Stage 1 is 

    



1/BU1  in t/GWd of energy production in Stage 1, and similarly for Stage 2. 

Therefore the mass of fuel throughput per GWd is:  

21 /)1(/ BUqBUqm           (7.3) 

The average burn-up is the reciprocal of this: 

    



BUoverall
BU1BU2

(1 q)BU1  qBU2

         (7.4) 

and the proportion of fuel fabrication which is in Stage 1 reactors is: 

21

2

21

1

)1(/)1(/

/

qBUBUq

qBU

BUqBUq

BUq
r





        (7.5) 

Finally, the remote fuel fabrication requirement is: 

urXX /)1/(remote           (7.6) 

where X is the kg burned/t reprocessed, our primary figure-of-merit and u is the proportion of the 

fuel for Stage 2 which is fabricated remotely (this is 1 except where there are Th-Pu MOX pins in 

Stage 2). 

Implementation in an RMPWR is a delicate compromise between neutronic, thermal-hydraulic and 

fuel fabrication constraints. It may not be possible to satisfy all these constraints in a retrofit core 

design, and in any case the ZCR is likely to be positive. Implementation in a new LWR design 

gives flexibility to optimize the performance. As discussed in Chapter 5, a single-tier fuel cycle 

with TCUP fuel assembly and multi-pass fuel management strategy appears appropriate. 

Dedicated MA target pins and/or reduced density Th-U3 pins could improve fabrication feasibility 

(P4), but further analysis is necessary to determine if this is possible within the neutronic 

constraints, and if fabrication advantages are sufficient to compensate for any burn-up penalty. The 

large Pu inventory of the RMPWR leads to a more than 50% reduction in the remote fuel 

fabrication requirements if Th-Pu pins are implemented (P4), so there is a strong incentive to do this 

if possible. 

A homogeneous fuel single-tier RBWR (B1) requires almost as much RBWR thermal power 

generation as conventional LWR power generation to achieve zero net TRU production. This is also 

the case for B6. The RBWR fleet capacity required can be reduced to around half the conventional 

LWR capacity by implementing heterogeneous fuel and a multi-tier fuel cycle (B4 and B5). This is 
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comparable to the RMPWR single-tier case with negative FVR (P5). The minimum support ratio of 

RM reactors is achieved with a multi-tier cycle with a RMPWR (P3 and P6) but these cases have 

positive FVR.  

The RBWR has the neutronic potential to reach very high burn-ups. In particular, the performance 

of B3 (TCUP) far exceeds the performance of the other cases due to the neutronic capability of 

achieving a very high average discharge burn-up. However, a suitable cladding must be developed, 

e.g. SiC (Hallstadius et al., 2012), or it may be possible to utilize stainless steel cladding in the hard 

spectrum of a RBWR as considered by Nakano et al. (2007). Hydrogen uptake of Zircaloy cladding 

has been found to be worse in the hard spectrum of the RBWR (Mieloszyk and Kazimi, 2014), 

which worsens the performance in accident scenarios. This degradation in performance occurs at 

relatively low burn-ups, such that a new cladding material is likely to be necessary. While the 

spectrum of the RMPWR is substantially softer and the burn-up is much lower than that of the 

RBWR, this may also be a concern for the RMPWR, so this requires further investigation. 

A lower burn-up RBWR is less competitive relative to a RMPWR due to its lower incineration rate 

– leading to increased reprocessing costs. It is possible to increase the RBWR incineration rate by 

increasing the TRU reload fraction and decreasing the core height (to keep the VC negative by 

increasing leakage), although decreasing the core height generally results in a larger core area being 

required and the achievable kg burned/t reprocessed from a neutronic perspective is worse relative 

to a low-leakage RBWR. Use of multi-tier fuel cycle helps increase the incineration rate and 

therefore achieve a better overall fuel cycle performance. Increasing the burn-up of the Th-Pu fuel 

in the PWR (i.e. Stage 1) results in similar fuel cycle performance (B5), increasing the flexibility 

with which this fuel cycle scheme can be implemented.  

A core could be specified with an H/HM ratio between the RBWR and the 11.5 mm pin diameter 

RMPWR, by designing a RBWR with a less tight lattice or a RMPWR with a tighter lattice. A 

tighter lattice RMPWR would require a new design, probably with a lower core height and more 

control rods, to satisfy SDM and thermal-hydraulic constraints. 

The B6 assembly scheme can be used, potentially in conjunction with a multi-tier recycle strategy 

(B2), to decrease the number of pins that must be fabricated remotely. This is clearly advantageous 

compared to homogeneous recycling, but reduces the discharge burn-up and incineration rate 

relative to the TCUP scheme. Inferring from the similarity of B1 and B6, a multi-tier approach to 

the B6 assembly design probably has similar performance to B2. Less than 40% of the pins are Th-

Pu, and the decrease in pins requiring remote fabrication per assembly is offset by the reduced 

incineration rate. Alternatively, a scheme with MA target pins could partially reap the advantages of 

the TCUP scheme while also limiting the number of pins that must be fabricated remotely. 
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7.3. Comparison with Other Incineration Schemes 

In this section, the fuel cycle performance of the Th-fuelled RMPWR and RBWR is compared to 

other TRU incineration schemes. This discussion is limited to LWR and SFR incineration schemes. 

The various schemes are described in Sections 7.3.1 to 7.3.5 and fuel cycle performance is 

compared in Section 7.3.6. 

7.3.1. U-TRU-fuelled RBWR 

In this thesis, 
232

Th is considered as a fertile carrier for TRU incineration as an alternative to 
238

U. 

In RBWRs, incineration with 
238

U requires axially heterogeneous fuel (Fukaya et al., 2009a). The 

VC of burner designs is calculated in Japanese studies as being negative, while a recent US study 

calculates it as being substantially positive (Downar et al., 2012). It must also be noted that axially 

homogeneous Th-fuelled RBWRs achieve a much superior performance to axially homogeneous U-

fuelled RBWRs (Chapter 3). The performance of the U-fuelled RBWR design is considered here for 

completeness. 

7.3.2. LEU/U-TRU Mixed PWR Core 

Typically, 
238

U-based TRU multi-recycle schemes in LWRs consider mixed LEU-TRU cores to 

achieve around zero net incineration rate. Over-moderated designs are often considered to increase 

TRU destruction rates and limit the required Pu content in the fuel, e.g. (Puill and Bergeron, 1997). 

Here, PWR designs based on 17×17 fuel assemblies are considered. The presence of LEU allows a 

substantially negative MTC to be maintained. An increased moderation „CORAIL‟ design from 

(Kim et al., 2002) is selected here as a basis for comparison. This contains 88 U-TRU pins and 176 

LEU pins per assembly.  

7.3.3. LEU/TRU Inert Matrix Mixed PWR Core 

An alternative to fertile fuels is inert matrix fuels. This allows TRU destruction rates to be increased 

due to the lack of breeding from a fertile isotope. Loading of inert matrix fuels in isolation results in 

a reduced magnitude DC and MTC. Here, the CONFU design is considered, which contains a mix 

of 48 fertile-free TRU-bearing pins and 216 LEU pins (Case 4 from Table 6.4.I in (Shwageraus, 

2003)). 

Increased enrichment of LEU from ~4.2% to 5.00% (CONFU) and 5.07% (CORAIL) is necessary 

to maintain an 18 month cycle length and have net TRU incineration rates of around zero. To 

analyse these concepts within the same framework as the Th-TRU designs presented earlier, the 

„support ratio‟ of TRU to LEU pins is evaluated, with the incineration rate of the TRU pins 

considered in isolation. The increased LEU reprocessing requirement compared to an equivalent 

core fuelled entirely with 5% LEU is added to the reprocessing requirement of the TRU-bearing 
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pins, to achieve a consistent comparison. However, this penalty is not introduced to the remote 

fabrication requirements. 

7.3.4. U-TRU-fuelled SFR 

FRs have a more favourable neutron spectrum for fission of MAs, and for SFRs the use of stainless 

steel cladding enables fuel with higher discharge burn-up. Hence they can be expected to have a 

superior fuel cycle performance, although this may be offset by higher reactor costs and arguably 

reduced technological maturity. SFRs with conversion ratios from 0.0 to 1.0 have been proposed 

(Hoffman et al., 2006), so the incineration rate is to some extent flexible, although safety 

parameters generally get worse with higher TRU loading. A 1000 MWth oxide-fuelled SFR design 

based on the Toshiba-Westinghouse ARR (Dobson, 2008) is considered here. The fuel contains 

38.1% TRU loading, from (Franceschini et al., 2013), leading to a TRU incineration rate of 198 

kg/GWthyr. 

As fuel that does not contain MAs does not have to be fabricated remotely, it is assumed that MAs 

are loaded into heterogeneous blankets containing 20% MAs (Franceschini et al., 2014). The 

remaining fuel is U-Pu, which can be fabricated in glove boxes. This greatly reduces remote 

fabrication requirements. In this case, only 11% of the fuel needs to be fabricated remotely.  

7.3.5. Th-TRU-fuelled SFR 

In SFRs, use of Th fuel improves coolant expansion and void reactivity coefficients, which in a 

burner design can allow the maximum TRU incineration rate to be increased (Fiorina et al., 2013c). 

An oxide-fuel design is considered with 44.9% TRU loading, from (Franceschini et al., 2013), 

leading to a TRU incineration rate of 225 kg/GWthyr. As with Case B6, it is possible to use Th-U3-

MA and Th-Pu fuel to limit remote fuel fabrication requirements. Due to the relatively high TRU 

loading in the core, only ~25% of the fuel is Th-U3-MA. In SFRs, the neutron migration length is 

substantially greater than the pin pitch, such that a micro-heterogeneous pin layout will have 

virtually the same neutronic performance as homogeneous fuel. 

7.3.6. Fuel Cycle Performance 

Incineration performance is summarised in Table 7.5. The support ratio for CORAIL and CONFU 

is defined as the ratio of TRU-bearing pins to LEU pins. The mass of inert matrix fuel to be 

reprocessed and fabricated is calculated assuming the fuel has the same density as LEU. This is to 

prevent crediting lower density pins as being less demanding to reprocess or fabricate, as the 

volume of material and number of pins are the same. Both the CORAIL and CONFU designs 

consider 7 years between recycles, which penalises these designs slightly compared to the Th-

fuelled cases.  
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The U-fuelled RBWR burns ~5 kg/t reprocessed less than the best Th-fuelled cases due to its lower 

discharge burn-up. However, the incineration rate is higher than many of the Th-fuelled RBWR 

cases (~140 kg/GWthyr). 

The CORAIL design has high fuel reprocessing requirements due to the large LEU burn-up penalty. 

The remote fuel fabrication requirement is also slightly higher than most of the Th-fuelled RMPWR 

designs, as either the incineration rate in the U-TRU pins is lower than the RMPWR, or the rate at 

which TRU is produced in the LEU pins (in kg/GWthyr) is higher than in conventional LEU 

designs. This design has the advantage, of course, of not requiring fabrication and reprocessing of 

Th-U3 fuels. 

Table 7.5. 
238

U and inert matrix fuel performance in LWRs. 

Case 
Burn-up 

(GWd/t) 

kg burned/t 

reprocessed 

kg burned/t 

fabricated remotely 

Support ratio 

(GWth/GWth) 

U-fuelled 

RBWR 

65.0 25.2 25.2 0.64 

CORAIL 45.0 12.7
*
 19.0 0.50 

CONFU 52.6 31.7
*
 53.3 0.22 

U-fuelled SFR 110.0 59.6 542 0.45 

Th-fuelled SFR 118.0 72.7 661 0.41 

* 
Includes additional reprocessing from lower LEU discharge burn-up 

The CONFU design allows a large reduction in remote fuel fabrication requirements due to the 

concentration of TRU in a small number of pins. This is reflected in the low support ratio. Despite 

the reduction in LEU burn-up, the reprocessing requirements are also competitive with the best Th-

fuelled RBWR designs. This is due to the high incineration rate that is achieved in the TRU-bearing 

pins. Reprocessing of additional LEU fuels is also likely to be more straightforward than 

reprocessing multi-recycled fuels. Use of inert matrix pins in conventional PWRs therefore provides 

an attractive alternative to Th-fuelled RMPWRs or RBWRs, although any advantage depends on 

limiting the cost of reprocessing and remotely fabricating inert matrix pins. 

SFRs have a higher thermal efficiency than LWRs, can achieve a significantly higher discharge 

burn-up and can also achieve a relatively high incineration rate. Heterogeneous fuel utilization is 

possible, leading to relatively low remote fuel fabrication requirements. These factors lead to much 

superior fuel cycle performance and a relatively low support ratio.  
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7.4. Economics 

As discussed above, SFRs have a much superior fuel cycle performance than LWR-based 

incineration schemes. However, SFRs are generally considered to cost ~25% more per GWeyr than 

LWRs of the same rating (which is assumed here). Delene et al. (1999) and Crette (1998) consider 

10–20% but this is thought to be a relatively generous estimate.
31

 The least expensive option will 

depend on the relative reprocessing, fuel fabrication and plant capital costs. As plant capital costs 

typically dominate, relatively small differences in plant capital cost may offset or negate the much 

larger differences in reprocessing and fuel fabrication throughput. It must be noted that plant capital 

costs are difficult to predict (Maloney and Diaconu, 2003). 

RBWRs are anticipated to be more expensive than conventional LWRs and RMPWRs if a larger 

pressure vessel is needed. The 720 assembly core considered in Chapter 6 has an area ~50% greater 

than an ABWR, which would require a larger pressure vessel. An RBWR which can fit into an 

ABWR pressure vessel is found to be economically attractive (see also (Lindley et al., 2013g) and 

(Franceschini et al, 2014)). This leads to the selection of a 480 assembly, 200 cm core, using the 

fuel configuration from Case B6 to reduce the amount of remote fuel fabrication required as the 

least cost RBWR design. Use of TCUP fuel is also an option. This reduces the number of RBWRs 

required but necessitates more remote fuel fabrication. Provided the core can fit into an ABWR 

pressure vessel and the burn-up is limited by cladding to ~80 GWd/t, the B6 fuel design is slightly 

cheaper than the TCUP fuel design (e.g. Case B3). Use of stainless steel cladding is worth 

considering, as in the hard spectrum of the RBWR the reactivity penalty is limited to around 2000 

pcm. This would allow improved accident performance and discharge burn-up, provided that 

sufficient TRU can be safely loaded in the core to compensate for neutron capture in the stainless 

steel. 

The economics analysis assumptions and results are summarized in Table 7.6 and Table 7.7 

respectively, although these are subject to a large degree of uncertainty. The RMPWR has higher 

fuel cycle costs because its low discharge burn-up leads to high reprocessing and remote fuel 

fabrication requirements. The U-SFR and Th-SFR are both substantially more expensive than the 

RBWR due to lower assumed SFR capacity factor (85% compared to 95% for LWRs) and the 

higher capital costs. Single- and multi-tier fuel cycles have similar performance. All options are 

substantially more expensive than the reference once-through cycle in LWRs. 

The higher LEU enrichment required for the CONFU and CORAIL designs increases the LEU fuel 

cost. The only additional assumption is that reprocessing of CONFU fuel costs the same as 
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reprocessing of Th fuel as both require hydrofluoric acid for aqueous reprocessing. Th fuel 

reprocessing is considered to be 50% more expensive than U fuel reprocessing (IAEA, 2012). 

CORAIL is relatively expensive due to its high reprocessing throughput but slightly cheaper than 

the RMPWR primarily due to lower remote fuel fabrication costs from higher discharge burn-up. 

CONFU is of comparable cost to the RBWR due to the relatively low number of pins that require 

remote fuel fabrication, although this is slightly balanced out by low discharge burn-up and higher 

LEU enrichment cost. Hence the lowest cost options utilize LWRs with either inert matrix or Th 

fuel. 

Table 7.6. Economic analysis assumptions (see also (Franceschini et al., 2014)). 

Reference LWR base capital cost $5000/kW for 1150 MWe plant 

Reprocessing plant operating cost 

(includes capital pay off) 

$500/kg 

Operating + plant reprocessing cost 

(includes capital pay off) 

$1380/kg (50% surcharge for thorium) 

Remote fuel fabrication cost 

(includes capital pay off) 

$10000/kg 

Glove-box fuel fabrication cost $2000/kg 

LEU LWR finished UO2 fuel cost $2300/kg 

(assumes ~$50/lb U3O8, $100/kg-SWU, $12/kg conversion, 

$200/kg fabrication, no financial charges) 

Capital + Operations and 

Maintenance (O&M) (without fuel) 

cost  

(assumes 8% discount rate for 60 yr) 

$560M/GWeyr for LWR/RMLWR 

$700M/GWeyr for SFR (+25%)  

Capacity factor 95% LWR/RMLWR; 85% SFRs 

Disposal cost: once-through 

(assumes ~100 GWeyr fleet for 60 

yr) 

$100B; 2 mils/kWhr 

Disposal cost: full recycle 50% of once-through cycle 

Development costs  SFR: $10B; RMLWRs: $2B (Retrofit); Reprocessing $5B 

($10B for Th); Remote fabrication: $1B ($2B for Th); 

Transmutation fuel: $1B ($2B for Th); Th-MOX $200M 
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Table 7.7. Cost of different transmutation options ($M/GWeyr). 

 Once-

through 

LEU 

U-

SFR 

(ST) 

Th-

SFR 

(ST) 

RMPWR 
RBWR 

(ST) 
CORAIL CONFU 

U-

SFR 

(MT) 

Th-

SFR 

(MT) 

RBWR 

(MT) 

Reprocessing  0 23 24 37 28 33 31 27 28 29 

Hands-on fuel 

fabrication 

48 30 31 33 24 39 38 29 33 25 

Remote fuel 

fabrication 

0 6 7 82 44 77 37 8 7 45 

Glove-box 

fuel 

fabrication 

0 6 4 0 5 0 0 9 6 5 

Fleet capital, 

O&M  

490 558 554 490 488 490 490 541 533 488 

Development 0 13 15 9 9 5 7 13 15 9 

Geological 

disposal 

17 8 8 8 8 8 8 8 8 8 

Total 555 645 644 659 606 651 611 636 630 610 

Cost relative 

to once-

through LEU 

1.00 1.16 1.16 1.19 1.09 1.17 1.10 1.15 1.13 1.10 

7.5. Repository Radiotoxicity and Decay Heat 

In this section, repository loadings are calculated for the equilibrium fuel cycle. Single-tier fuel 

cycle cases are compared (P5 and B3 with a burn-up of 82.4 GWd/t). To assess the effect of 

utilizing a thermal spectrum reactor for TRU incineration, results are compared with the Th-fuelled 

SFR. Comparison with U-based incineration schemes is beyond the scope of this thesis and is the 

subject of numerous other studies – see for example (Fiorina, 2013). Radiotoxicity and decay heat 

calculations for the RMPWR and RBWR were performed using FISPIN with burn-up-dependent 1-

group cross-sections for the key actinides provided by WIMS. 

The radiotoxicity of actinides in the repository is calculated assuming 0.1% reprocessing losses, 

which is a typical assumption (OECD, 2006b),
32

 using dose conversion factors from (ICRP, 1996), 

and normalized by GWeyr. A reference level radiotoxicity is adopted (as, for example, in (OECD, 

2002)), which corresponds to the radiotoxicity of the natural U required to fuel a typical once-

through LWR of the same electrical energy output. Daughter products from the decay of natural U 

are assumed to be at their equilibrium values. Using a European Pressurized Reactor (EPR) as the 

                                                 
32

 However, typical modern reprocessing cycles operate at around 1% reprocessing losses with losses occurring in: the 

head end (where the fuel is chopped up); the dissolver; the aqueous or pyrochemical separation of elements; and 

fabrication. 
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reference once-through LWR to determine natural U requirements, this results in a time-constant 

reference radiotoxicity level equal to 5.910
6
 Sv/GWeyr (Fiorina, 2013).  

It must be emphasised that the relevance of equilibrium radiotoxicity calculations is questionable. 

Any real reactor fleet operates over a finite timeframe, resulting in a significant end-of-life 

inventory at the end of the nuclear programme. This inventory can dominate over radiotoxicity 

losses, such that actual repository radiotoxicity is much larger than the equilibrium radiotoxicity 

(Gregg and Hesketh, 2013). It is generally acknowledged that a repository is in any case required 

(OECD, 2006b). Also, while the heavy metal content in the repository dominates the radiotoxicity, 

this is by no means the only measure of repository loading or radiological hazard. The decay heat at 

time of loading and over the first few hundred years affects the repository size. Fission product 

isotopes (e.g. of I, Cs and Tc) are often the most mobile and hence form a large part of the 

radiological hazard (Lalieux et al., 2012; Nuclear Decommissioning Authority, 2010). However, the 

equilibrium radiotoxicity is nevertheless presented here for comparative analysis. 

The actinides discharged from the RMPWR have a higher radiotoxicity than the other 

implementations (Fig. 7.3). This is due to its high reprocessing requirements. The RBWR has 

comparable radiotoxicity to the SFR. In this case, the higher reprocessing requirements are 

mitigated by the lower TRU loading in the core.  
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Fig. 7.3. Radiotoxicity of actinides discharged from burner reactors. 

The RMPWR and RBWR have lower incineration rates than the SFR and this contributes to their 

lower TRU loadings. It is therefore instructive to normalize the repository loading by the waste 

incineration rate (Fig. 7.4). The SFR performs best by this measure. 
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Fig. 7.4. Radiotoxicity of actinides discharged from burner reactors normalized by incineration rate. 

To account for fuel utilization efficiency and incineration rate, it is best to normalize the 

radiotoxicity over the whole fuel cycle. An LEU-fuelled reactor produces ~90 kg/GWthyr of TRU 

waste. 1 GWthyr of RMPWR, RBWR or SFR burner capacity therefore balances the TRU produced 

by 2.2 GWthyr, 1.5 GWthyr and 2.8 GWthyr LEU-fuelled reactor capacity respectively. The 

radiotoxicity and energy output of these LEU-fuelled reactors are now included.
33

 This means 

summing the radiotoxicity of the losses from the LEU-fuelled reactor and the burner and 

normalizing by the total energy output from both. Fig. 7.5 gives the radiotoxicity averaged over the 

LEU and incineration stages of the fuel cycle. By this measure, the performances of the RBWR and 

SFR are very similar until ~30 000 years.  

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Decay time (yr)

R
a

d
io

to
x

ic
it

y
 (

S
v
/G

W
e

y
r)

RMPWR

RBWR

SFR

Reference

 
Fig. 7.5. Radiotoxicity of actinides discharged from burner reactors averaged over the fuel cycle. 
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 The radiotoxicity in Fig. 7.4 is therefore the average radiotoxicity for a full actinide recycle scenario based on LEU-

fuelled LWRs and RMPWR, RBWR or SFR burners. However, this analysis is still valid for comparison between the 

burner reactors if only a proportion of the reactor fleet operates in this manner. These fuel cycle schemes are further 

discussed in (Franceschini et al., 2013). 



    194 

 

The RBWR has a lower burn-up and higher conversion ratio than the SFR, increasing the RBWR 

reprocessing requirements. Reprocessed RBWR and SFR fuel has much higher radiotoxicity than 

LEU fuel. However, the SFR core has a higher TRU loading relative to its incineration rate, which 

acts to increase radiotoxicity and offsets the thermal efficiency and burn-up advantages of a SFR by 

this performance measure. 

Over the whole fuel cycle, the RBWR and SFR actinide waste decays to the reference level in a 

little over 100 years. The RMPWR waste takes ~300 years to decay to the reference level, which 

still appears reasonable, although the limited validity of an equilibrium radiotoxicity analysis must 

again be stressed. The RMPWR radiotoxicity is in part limited by using different batch strategies 

for Th-TRU and Th-U3. The Th-TRU remains in the core for twice as long as the Th-U3, limiting 

the Th-TRU reprocessing requirement, which is responsible for the large majority of the decay heat. 

The RMPWR results in much higher decay heat loading than the RBWR and SFR due to higher 

reprocessing throughput per unit electricity. This is ~1/3
rd

 lower than if the Th-TRU and Th-U3 fuel 

had the same discharge burn-up, because (as with radiotoxicity) the Th-TRU is responsible for a 

large majority of the decay heat. However, the RBWR has a lower decay heat than the SFR (Fig. 

7.6). This is a result of the much lower TRU loading in the RBWR.  
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Fig. 7.6. Decay heat of actinides loaded in repository for burner reactors. 

7.6. Decay Heat and Radiation Field Affecting Fuel Fabrication 

The closed Th fuel cycle results in major challenges for fabrication and reprocessing technology. 

The most significant problem for fuel fabrication is the high-energy gamma emitters 
208

Tl and 
212

Po 

in the decay chain of 
232

U. This necessitates remote fuel fabrication. Similarly, a major obstacle to 

MA transmutation is the need to fabricate fuel remotely, primarily due to a large SN source and, to 

a lesser extent, gamma source. Therefore multi-recycle and burn of Pu with Th is economically 
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disadvantageous compared to using 
238

U, unless MA transmutation is also pursued, in which case 

there is relatively little disadvantage relative to using 
238

U, especially if a homogeneous recycle 

scheme is pursued. As discussed, for heterogeneous configurations, MA incineration in 
238

U 

systems greatly reduces remote fabrication requirements compared to Th. However, for RMPWRs, 

and RBWRs, use of U may be precluded, or greatly complicated, by MTC and VC constraints. 

In this section, decay heat load, SN source and gamma field are all determined for the RMPWR and 

RBWR. As with the previous section, Cases P5 and B3 are considered. Comparison is again made 

with the Th-fuelled SFR to assess the difference between thermal and fast spectrum Th-fuelled 

reactors. Comparison with U-based incineration schemes is again beyond the scope of this thesis 

and is the subject of numerous other studies (e.g. (Fiorina, 2013)).  

The inventories for various RMPWR and RBWR cases were calculated using FISPIN to assess the 

respective sources. Cross-sections of less significant actinides (e.g. higher than 
245

Cm) were 

calculated assuming they were evenly distributed across the assembly. This is not accurate for the 

heterogeneous RMPWR and RBWR assemblies, where essentially all the TRU is in the Th-TRU 

pins. These isotopes are therefore within a significantly harder neutron spectrum than that assumed 

in the FISPIN calculation. Notably, this will lead to an overestimate in the SN source, which is 

acceptable as a conservative first approximation. 

7.6.1.  Decay Heat Load at Fabrication 

The decay heat in W/GWeyr is, as in Fig. 7.6, multiplied by 1000 (i.e. without reprocessing losses). 

To evaluate the difficulty of handling fuel assemblies, it appears more relevant to consider the 

decay heat per unit mass and per assembly (noting that the RMPWR contains 193 assemblies, the 

RBWR 720 and the SFR 324, plus 90 blanket assemblies for the breeder, so there are large 

differences in the number of assemblies that need to be handled between reactors).  

During fuel fabrication, the dominant decay heat contributions come from 
238

Pu and 
244

Cm. There is 

also a contribution from 
241

Am. The MA population in the reactor is dominated by the TRU loading 

rather than generation in situ – so the decay heat at fabrication is roughly proportional to the 

incineration rate (Table 7.8). The decay heat of a SFR assembly is substantially lower than the other 

assemblies due to the smaller mass.  

Table 7.8. Decay heat load at fabrication. 

 W/kg kW/assembly W/kg per (kg/GWthyr incinerated)  

RMPWR 25.7 15.8 0.13 

RBWR 19.6 4.1 0.14 

SFR 42.7 1.2 0.17 
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7.6.2.  Spontaneous Neutron Source 

Table 7.9 gives the SN source at discharge. The value is highly dependent on the number of 

recycles, and takes a long time (> 25 recycles) to reach equilibrium, due to the very slow build-up 

of 
252

Cf. 25 recycles were performed for the RMPWR and RBWR and 40 recycles for the SFR.
34

  

Table 7.9. SN source at discharge. 

 n/s/tiHM n/s/GWeyr n/s/fuel rod 

RMPWR 6.3  10
12

 1.1  10
14

 1.5  10
10

 

RBWR 1.1  10
12

 1.4  10
13

 1.0  10
9
 

SFR 1.9  10
11

 1.5  10
12

 2.1  10
7
 

The RMPWR and RBWR have much higher SN sources than the SFR due to the higher neutron 

capture cross-sections for TRU isotopes in a thermal neutron spectrum. 
252

Cf dominates over a 

cooling time of up to 10 years, but 
250

Cf and even-numbered isotopes of Cm also make a 

contribution. OECD (2002) reported neutron sources at fabrication of around 10
10

 and 10
11

 n/s/t for 

a fast breeder reactor and a fast TRU incinerator respectively – the latter being comparable with the 

Th-SFR figure reported in Table 7.9. 

The SN source per tonne is likely to be most relevant for determining the cost of the fuel fabrication 

facility, as this affects the amount of shielding required. The RBWR SN source per GWeyr is ~5 

times higher than the SFR due to the softer spectrum. Similarly, the RMPWR has a ~5 times higher 

source than the RBWR, again due to the softer spectrum. The shielding costs for the fuel loading 

area are roughly proportional to the n/s/fuel rod. In this case, the advantage for the SFR is increased 

by an order of magnitude as the fuel pins have a smaller radius.  

For a thick concrete shield, the dose from the gamma source of a Th-fuelled FR can be more than an 

order of magnitude greater than the dose from the SN source (Wenner et al., 2012), so a significant 

increase in SN source can be allowed before it becomes the limiting factor. The SN values at 

fabrication over a realistic number of recycles are substantially larger than for the FR, but still 

within the range where 
232

U is expected to be a comparable contributor to shielding requirements. 

Conversely, multiple thermal recycle with 
238

U fuel also results in a large SN source which must be 

shielded (for all the pins which contain MAs), so use of 
232

Th fuel with the additional gamma 

source may only result in a limited further increase to the fabrication difficulty. However, it must be 

                                                 
34

 25 recycles corresponds to 100 effective full power years (EFPYs) for the RMPWR and 180 EFPYs for the RBWR. 

After 120 EFPYs (i.e. the same as the SFR), the SN source is expected to be ~10% higher and ~20% lower for the 

RMPWR and RBWR, respectively. 
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noted that neutron shielding is implemented differently to gamma shielding, such that an optimized 

shield for both SN and gammas may contain multiple materials of different thicknesses, and as such 

may be more complicated than shielding for either in isolation. 

7.6.3.  Gamma Source 

Prompt fabrication after reprocessing reduces the 
208

Tl source as the intermediaries in the decay 

chain, notably 
228

Th with a half-life of 1.9 years, take time to re-accumulate via 
232

U decays. This is 

only true if Th is separated from U3, and the Th is left for several years before recycling while the 

228
Th component decays. The TRU content also makes a large contribution to the overall gamma 

source. While Th recycling is advisable to use fuel resources efficiently and limit spent fuel mass, it 

is appropriate to cool this for a longer period of time until 
228

Th and its daughters have decayed (e.g. 

(Franceschini et al., 2013)). The Th would then be suitable again for use in unshielded (yet glove-

box) fresh fuel. 

The data available for gamma source at fabrication for the SFR (see (Lindley et al., 2013g)) was 

calculated by cooling the fuel for 3 years, then reprocessing, removing all isotopes lighter than and 

including Th, and then analysing the gamma source for over the timeframe after the Th is removed. 

For consistency, the same scheme was adopted to evaluate the gamma source of the RMPWR and 

RBWR (despite the cooling time of 5 years generally assumed in this analysis).  

The gamma source per unit mass of fuel is shown in Fig. 7.7. As with the SN source, this is 

indicative of the amount of shielding required in the fuel fabrication facility. The SFR has a much 

higher gamma source than the RMPWR and RBWR. Immediately after reprocessing, this is due to 

the higher TRU content of the fuel, notably of 
241

Am and 
244

Cm. 
238

Pu is also a significant gamma 

source. The faster rise is then due to a higher 
232

U population, which is a result of higher flux at 

very high neutron energies, leading to higher (n, 2n) reaction rates for 
232

Th and 
233

U, and thus more 

rapid production of the high-energy photon sources 
208

Tl and 
212

Bi.  

In MeV/GWeyr terms, the RBWR source is still slightly lower than the SFR (despite the lower 

discharge burn-up and thermal efficiency), although the RMPWR source is substantially higher 

(Fig. 7.8). 
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Fig. 7.7. Gamma source per unit fuel mass after Th removal. 

0.E+00

1.E+15

2.E+15

3.E+15

4.E+15

5.E+15

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time after reprocessing (yr)

G
a

m
m

a
 s

o
u

rc
e

 (
M

e
V

/s
/G

W
e

y
r)

RMPWR 

RBWR 

SFR 

 

Fig. 7.8. Gamma source per unit energy production after Th removal. 

7.7. Concluding Remarks 

Neutronically, 
232

Th is a far superior carrier to 
238

U for this fuel cycle to the point of making it 

possibly the only practical option, at least for RMPWRs. However, the Th fuel cycle is much less 

technically mature than the U fuel cycle. Industrial reprocessing of Th irradiated fuel needs to be 

developed and appears more challenging than U-based fuel. Remote handling is required for 

multiple recycle of 
232

Th, which is required in any case for MA recycle, but relative amounts vary 

and are lower in U assuming heterogeneous recycle is acceptable and pursued. 

RMPWRs have the advantage of a potentially relatively rapid first-stage implementation and 

intrinsically low conversion ratios, especially if the reduction in moderation occurs through a larger 

pin diameter. However, it is challenging to simultaneously satisfy operational and fuel cycle 
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constraints. A homogeneous fuel RMPWR requires a large reduction in moderation, which is not 

achievable in a retrofit plant design, and would require a very different core design. In a retrofit 

plant, intra-assembly fuel zoning is necessary to achieve an acceptable trade-off, and sufficiently 

reduced moderation may not be possible without a new plant design. The ZCR is positive, which 

leads to a need for additional RCCAs, and the RMPWR may have worse performance than the 

RBWR in beyond-design-basis accidents. The LOCA thermal-hydraulic response may not be 

satisfactory (Chapter 4), which would similarly disallow a retrofit core and, in addition, potentially 

require a larger, more expensive pressure vessel. 

A RBWR may potentially take longer to implement than a RMPWR as a new plant is required, 

although much of the design is based on current technology. A RBWR has a lower incineration rate 

than a RMPWR. The harder neutron spectrum in a RBWR leads to more favourable fuel cycle 

performance. Homogeneous, micro-heterogeneous and macro-heterogeneous fuel configurations all 

have their merits.  

A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable 

implementation but is better suited to the RBWR than to the RMPWR. This strategy would reduce 

the number of reactors operating in RM mode, and delay and reduce the amount of fuel to be made 

remotely. Use of an unmodified PWR is reasonable, giving additional time for the RBWR to be 

designed and licensed. The first stage of the fuel cycle can therefore be implemented at relatively 

low cost as a Pu disposal option, maintaining flexibility for introducing a further policy option of 

full recycle in the medium term utilizing RBWRs, or potentially RMPWRs. This is a potential 

advantage of Th-Pu MOX over U-Pu MOX. 

An economic analysis suggests that Th-fuelled RBWRs are cheaper than SFR-based recycling 

options, provided they can utilize the same size pressure vessel as an ABWR. RMPWRs and 

LEU/U-TRU PWRs (CORAIL) perform worse due to high reprocessing and fuel fabrication 

requirements. A LEU/TRU inert matrix PWR (CONFU) is of comparable cost to the RBWR, with 

the relative merits of these schemes likely to depend on the relative costs of Th-U3 and inert matrix 

fuel fabrication and reprocessing. The much lower reprocessing and fuel fabrication requirements of 

SFRs are likely offset by a higher plant capital cost and lower availability factor 

A RBWR has higher reprocessing and fuel fabrication requirements than a Th-fuelled SFR, but has 

a comparable radiotoxicity, decay heat and radiation field, while the RMPWR is less competitive in 

these aspects.   



    200 

 

Chapter 8 – Conclusions 

With sufficiently reduced moderation, a Th-fuelled LWR can operate on full TRU recycle while 

burning an external supply of TRU, e.g. recovered from reprocessing used fuel discharged from 

once-through LWR operation. A Westinghouse 17x17 PWR assembly with 12.6 mm pin pitch can 

achieve sufficiently low moderation to perform full TRU recycle if the pin diameter is increased 

from 9.5 mm to 11–11.5 mm. This requires fuel of 95% TD to sufficiently reduce the H/HM ratio. 

However, a RBWR has a sufficiently fast neutron spectrum to comfortably maintain a high burn-up 

equilibrium fuel cycle even with homogeneous 85% TD fuel. This is not possible if 
238

U is used as a 

fertile isotope.  

In reduced-moderation or hard-spectrum LWRs, full recycle of TRU is limited by coolant reactivity 

feedback. Use of 
232

Th instead of 
238

U as a fertile isotope improves the MDC, and therefore yields 

superior performance. This is essentially due to the high resonance 



  of U3, which increases the 

fissibility of the U3-TRU isotope vector in the Th-fuelled system relative to the U-fuelled system, 

and also improves the MDC when the spectrum is sufficiently hard (e.g. RMPWR and, even more 

so, RBWR). While direct substitution of 
238

U with 
232

Th improves the MDC, it also increases the 

required fissile loading, such that the benefits of using 
232

Th are essentially “indirect”, e.g. by 

breeding U3. The reduced fast fission threshold of 
232

Th compared to 
238

U improves the MDC, but 

also makes the neutron economy worse, as does the higher thermal capture cross-section. The 

resonance capture cross-sections of 
232

Th and 
238

U are similar. The performance difference between 

Th- and U-fuelled systems increases with reduced moderation due to higher U3 breeding, and an 

increasingly beneficial effect from U3 on the MDC. 

Spatial separation of TRU and U3 is possible in the Th-fuelled system, which renders further 

improvement by hardening the neutron spectrum in the TRU-bearing pins and softening it in the 

U3-bearing pins. This improves the neutron economy by increasing the TRU 



 , as well as the MDC 

performance by enhancing the thermal fission reduction upon voiding in U3. In particular, this fuel 

design is necessary for the 11 mm pin diameter RMPWR design to be neutronically feasible. It is 

also possible to manage the Th-TRU and Th-U3 pins on different batch management schemes. 

For the RMPWR with 11 mm pin diameter design, the thermal-hydraulic MDNBR and     



Tout 

constraints can be satisfied. This may require dropping     



Tin slightly, but this is thought to be 

acceptable. For the 11.5 mm pin diameter design, a 5 K drop in     



Tin and a „tight‟ wire wrap 

(    



H D 14) are required to satisfy the thermal-hydraulic constraints.  

However, experimental evidence and analytical calculations seem to indicate that a retrofit 

RMPWR core will have reduced margin, or even no margin, from LOCA licensing limits if 
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compared to the reference core design. This needs to be confirmed through computational analysis 

and, ultimately, experimental tests. If proven to be the case, retrofitting a typical PWR core with a 

RM core would be feasible only after either de-rating the plant or switching to a cladding material 

with better LOCA performance than Zr-based alloys. Another solution, preferable for optimizing 

the overall reactor performance, but incompatible with the retrofit approach investigated in this 

study, would be to design a shorter but wider core, so that the total core power could be preserved 

while lowering the axial hot spot and, eventually, reducing the linear power. This would increase 

the reactor capital cost. 

For a RMPWR with a standard 4-loop 193 assembly core with a 17×17 assembly, 12.6 mm pin 

pitch and pin diameter increased from 9.5 mm to 11 mm, a core with negativity MTC and FVR has 

been designed. However, the ZCR is substantially positive, which could result in positive reactivity 

in a LBLOCA without trip. This may make the reactor more difficult to license, and necessitate a 

second, redundant set of shutdown rods, which may disallow a retrofit core. 

A cycle length of 1 year is possible with an average fuel discharge burn-up of ~40 GWd/t. A single-

tier fuel cycle is preferred for the RMPWR. An adequate SDM can be achieved with the TPUC or 

WATU fuel management schemes, but highly enriched B4C rods are required. Higher boron 

enrichment is required with the TPUC scheme. With integral BPs in the fuel, the reactivity swing 

over the cycle is under 2000 pcm. It appears possible to use mechanical shim while maintaining 

adequate core power peaking, particularly with the TPUC scheme. This is necessary as use of 

soluble boron for reactivity control should be avoided entirely due to its ineffectiveness at the 

RMPWR spectral conditions and its tendency to make the MTC and FVR positive. The fuel 

enthalpy deposition in a REA is higher than in conventional PWRs, but within typical licensing 

limits. 

The RBWR is capable of achieving a high average discharge burn-up with a negative VC. The VC 

and DC values are sensitive to how they are calculated, so there is some uncertainty as to their exact 

magnitudes. A higher discharge burn-up is possible with a taller core although a higher TRU 

incineration rate is generally possible with a shorter core. A waste reload fraction of 35% appears 

possible when utilizing a TCUP assembly, with good performance achievable with single- or multi-

tier fuel cycles. Due to the use of axially homogeneous fuel, it is possible to achieve a sufficient 

MCPR with a higher power density than the JAEA RMWR design (with the same fuel assembly 

configuration). The MCPR is particularly good for tall cores, and it appears possible to maintain the 

core area and rating of an existing ABWR which is a major economic advantage. However, power 

peaking within the assembly may be higher if TCUP or micro-heterogeneous Th-U3-MA/Th-Pu 

fuel is utilized. A 3D pincell analysis indicated little motivation to pursue further investigation of 
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axially heterogeneous fuel, especially given that this greatly increases the difficult of remote fuel 

fabrication. 

Neutronically, 
232

Th is a far superior carrier to 
238

U for this fuel cycle to the point of making it 

possibly the only practical option, at least for RMPWRs. However, the Th fuel cycle is much less 

technically mature than the U fuel cycle. Industrial reprocessing of Th irradiated fuel needs to be 

developed and appears more challenging than U-based fuel. Remote handling is required for 

multiple recycle of 
232

Th, which is required in any case for MA recycle, but relative amounts vary 

and are lower in U, assuming heterogeneous recycle is acceptable and pursued. 

RMPWRs have the advantage of a potentially relatively rapid first-stage implementation and 

intrinsically low conversion ratios, especially if the reduction in moderation occurs through a larger 

pin diameter. However, it is challenging to simultaneously satisfy operational and fuel cycle 

constraints. A homogeneous fuel RMPWR requires a large reduction in moderation, which is not 

achievable in a retrofit plant design, and would require a very different core design. In a retrofit 

plant, intra-assembly fuel zoning is necessary to achieve an acceptable trade-off, and sufficiently 

reduced moderation may not be possible without a new plant design. 

An RBWR may potentially take longer to implement than a RMPWR as the design is a more radical 

departure from existing plants. A new plant may be required, although much of the design is based 

on current technology. Provided the core area is limited to that of an ABWR, the plant capital cost 

should be comparable to LWRs and RMPWRs. 

The harder neutron spectrum of a RBWR leads to more favourable fuel cycle performance. Micro-

heterogeneous and macro-heterogeneous fuel configurations both have their merits. RMPWR and 

RBWR options have lower reprocessing and fuel fabrication requirements than the CORAIL 

assembly, but this advantage may be offset by the cost of reprocessing and fabricating Th-U3 fuel. 

The reprocessing throughput of the RBWR is generally similar to CONFU, but the remote fuel 

fabrication requirement is somewhat higher. The relative merits of these schemes will depend upon 

the relative costs of the Th-U3 and inert matrix fuel reprocessing and fabrication. 

An RBWR has higher reprocessing and fuel fabrication requirements than a SFR, but has a 

comparable radiotoxicity, decay heat and radiation field. The RMPWR is less competitive in all 

aspects. SFRs are likely to have higher plant capital cost, which offsets their fuel cycle performance 

advantage. 

A preliminary economic study suggests that Th-fuelled RBWRs are cheaper than SFR based 

recycling options. CONFU is of comparable cost to RBWRs. CORAIL and RMPWRs perform 

worse due to high reprocessing and fuel fabrication requirements.  
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A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable 

implementation but is better suited to the RBWR than to the RMPWR. This strategy would reduce 

the number of reactors operating in RM mode, and delay and reduce the amount of fuel to be made 

remotely. Use of an unmodified PWR is reasonable, giving additional time for the RBWR to be 

designed and licensed. The first stage of the fuel cycle can therefore be implemented at relatively 

low cost as a Pu disposal option, maintaining flexibility for introducing a further policy option of 

full recycle in the medium term utilizing RBWRs, or potentially RMPWRs. These are some of the 

potential advantages of Th-Pu MOX over U MOX. Single- and multi-tier options have similar 

economic performance. 

8.1. Recommendations for Future Work 

8.1.1. Fuel Cycle Modelling  

The scope of this thesis is limited by the almost universal consideration of a single TRU waste feed 

vector, notably with fixed cooling times before loading and between recycles. The effect of varying 

both of these cooling times should be investigated. It is noted from Chapter 3 that a short (1 yr) 

cooling time may allow full recycle in a conventional PWR at a significantly higher incineration 

rate (although it may not be possible to design for acceptable FVR/ZCR in this case), and from 

Chapter 6 that increasing the TRU cooling time after the UO2 fuel is discharged has a detrimental 

but acceptable impact on performance. However, the incineration of legacy stockpiles requires 

handling large cooling times, and the results of Chapters 2 and 5 suggest that the RMPWR will not 

be feasible if cooling times are more demanding. 

8.1.2. RMPWR Thermal-hydraulic Analysis  

Only a simple RMPWR LBLOCA analysis has been performed due to the lack of availability of a 

thermal-hydraulic code which can model RMPWRs. As this appears to be the limiting condition, a 

full LBLOCA analysis should be undertaken if possible. If thermal-hydraulic limits on clad 

temperature and oxidation are indeed exceeded for an LBLOCA scenario, this could motivate 

consideration of an alternative cladding material such as SiC (although stainless steel will almost 

certainly incur too high a reactivity penalty in this case). Coupled neutronic-thermal-hydraulic 

modelling is necessary to determine whether positive reactivity can occur during a LBLOCA. The 

results of this may guide further core analysis, e.g. of a non-retrofit core design. The transient 

response to other coolant-related accidents will also be affected by different kinetic properties (e.g. 

reduced neutron lifetime, reduced DNF) and lower coolant inventory and these should also be 

considered (e.g. main steam line break, anticipated transient without scram). 
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8.1.3. RMPWR Full-core Modelling  

The neutronic methodology used here could be improved in further analysis, in particular to use 

more energy groups, and for the WATU concept use of assembly discontinuity factors is necessary 

to achieve accurate results. As the fuel assembly geometry and fuel management scheme have now 

been derived, it is recommended that the equilibrium cycle is re-analysed with a hyperfine group 

Monte Carlo lattice calculation and a multi-group core calculation. This is computationally 

expensive, but may be acceptable as now only a single lattice design needs to be analysed in this 

manner. Combined CRP/LP optimization is recommended to see if it is generally possible to 

achieve acceptable power peaking factors with use of mechanical shim. This must include the 

consideration of pin-level power peaking, especially given the complications introduced by 

heterogeneous fuel design and rod shadowing effects. Further analysis is needed on re-tuning of the 

control and safety systems. In particular, transient analysis is necessary to evaluate the performance 

with bank switching maneuvers over core life. The response of the core to accident scenarios needs 

to be evaluated, in particular due to the positive ZCR, and much lower DNF and neutron lifetime 

than in conventional PWRs.  

8.1.4. RBWR Full-core Modelling  

As with the RMPWR, it may be advisable to re-analyse the „optimal‟ equilibrium core with a 

hyperfine energy group Monte Carlo lattice calculation. The thermal-hydraulic modeling could also 

be improved by using a steady state code rather than a „time marching‟ code to improve 

convergence and reduce computational cost. Also, response of the reactor to transients and 

accidents needs to be investigated. Consideration of core dynamics and stability is also necessary, 

particularly as the core properties are somewhat different to U-Pu RBWR designs. Notably, the core 

height is higher in some considered designs, and the VC is expected to be somewhat more negative. 

This is likely to result in a higher positive reactivity in overcooling transients, and make it more 

difficult to control during cold shutdown. The likely solution is inclusion of a larger number of 

control rods, which appears feasible. Also as with the RMPWR, pin-level power peaking also needs 

to be considered, to confirm that it can be kept within the limits identified by the MCPR constraint.  

8.1.5. Time-dependent Fuel Cycle Analysis  

The models considered here are mostly „steady state‟ scenarios, i.e. an assumption of equilibrium is 

made. While this is useful for a feasibility study, the fuel cycle takes a very long time to reach 

equilibrium. The evolution of neutronic and fuel cycle performance over time should be evaluated.  
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8.1.6. Fuel Performance Analysis  

The fuels proposed in this thesis are variably (Th,U3)O2, (Th,Pu)O2, (Th,Pu,MA)O2 and 

(Th,U3,MA)O2. All of these represent a significant departure from currently used fuels. Moreover, 

different pellet sizes and high burn-up designs are also advocated. The fuel and cladding 

performance need to be investigated using a fuel performance code. The availability of codes which 

can model these fuels is currently limited or non-existent
35

 but it should be considered for future 

work. Zircaloy cladding performance in a relatively hard neutron spectrum has been identified as a 

concern, and in the case of the RBWR this is exacerbated by the desire to extend the burn-up of the 

fuel to at least ~80 GWd/t. This may motivate future consideration of 310 stainless steel clad as an 

alternative. In the hard neutron spectrum of the RBWR, the reactivity penalty is ~2000 pcm. From 

the results of Chapter 6, a high discharge burn-up appears possible, even with the reactivity penalty. 

8.1.7. UK-specific Study  

This thesis has outlined a multi-tier fuel cycle where the first stage is a single Th-Pu MOX pass in a 

conventional PWR, followed by full recycle in a RBWR. This is of particular relevance to the UK, 

which possesses a stockpile of separated plutonium (Pu) in excess of 100 tonnes. This represents a 

storage liability and a proliferation risk. Pu management options include continued long-term 

storage, disposal in a long-term repository, and reuse as nuclear fuel (NDA, 2011). (King, 2011) 

concluded that using the Pu in mixed-oxide fuel (MOX) was economically favourable, and that 

further UK nuclear fuel reprocessing could also be economically viable given the right conditions, 

although this increased commercial risk.  

Much superior operational experience is available for U-MOX fuel, which means further materials 

tests are needed before Th-Pu MOX could be deployed (Kelly and Franceschini, 2013). 

Experimental programs on Th-based fuels are also described in (Thor Energy, 2010; Schram and 

Klaassen, 2007; IAEA, 2012). Th-Pu MOX is the most credible near-term use of Th fuel in the UK. 

NNL (2010) concluded that “The thorium fuel cycle does not currently have a role to play in the 

UK context, other than its potential application for plutonium management in the longer term.” 

As discussed, Th-Pu MOX is a credible single-pass strategy, which allows a decision on full TRU 

recycle to be delayed. In the case of the UK, no further reprocessing is necessary to perform the first 

stage of the multi-tier recycle strategy outlined in this thesis. 

 

                                                 
35

 Private communication with Dr Glyn Rossiter, National Nuclear Laboratory, Mar 2013 
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