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Doubling the Power of DP4 for Computational Structure 
Elucidation  

K. Ermanis,a K. E. B. Parkesb, T. Agbackb and J. M. Goodmanc 

A large-scale optimisation of density functional theory (DFT) conditions for computational NMR structure elucidation has 

been conducted by systematically screening the DFT functionals and statistical models. The extended PyDP4 workflow was 

tested on a diverse and challenging set of 42 biologically-active and stereochemically rich compounds, including highly 

flexible molecules. MMFF/mPW1PW91/M06-2X in combination with 2 Gaussian, 1 region statistical model was capable of 

identifying the correct diastereomer among up to 32 potential diastereomer upper limit. Overall a 2-fold reduction in 

structural uncertainty and 7-fold reduction in model overconfidence has been achieved. Tools for rapid set-up and analysis 

of computational and experimental results, as well as for the statistical model generation have been developed and are 

provided. All of this should facilitate rapid and reliable computational NMR structure elucidation, which has become a 

valuable tool to natural product chemists and synthetic chemists alike.

Introduction 

Ever since their development, the methods for the 

computational prediction of NMR spectra have been an 

invaluable tool in the structure elucidation.1 A particular area 

where simpler increment based methods cannot provide an 

answer and where density functional theory (DFT) methods 

excel is the determination of the relative stereochemistry of 

natural and synthetic compounds.1-3 A key part of this process 

is the final decision of which candidate structure matches the 

experimental data the best. Several measures have been 

developed for this purpose, including mean absolute error, 

corrected mean absolute error and correlation coefficient. In 

addition to these, CP3 and DP4 statistical parameters have been 

developed to help choosing the correct structure when several 

sets or just one set of experimental NMR data are available, 

respectively.2,3 Both CP3 and DP4 tend to give higher confidence 

in the correct structure than other parameters. This has led to 

DP4 being widely used in structure elucidation of many complex 

natural products4 and also synthetic compounds.5 Modified DP4 

models have also been reported by other groups.6 In addition 

to our contributions, several other groups have reported 

advancements in the field. These include tailored statistical 

models and basis sets for NMR coupling constant calculation7, 

and application of neural networks to the interpretation of 1D8 

and 2D NMR data.9 Computer Assisted Structural Elucidation 

(CASE) methods10 have also been shown to be useful in 

resolution of structural ambiguities. 

The typical computational process for NMR shift prediction has 

three stages. Process starts with a conformational search at 

molecular mechanics level and generates a number of 

conformers. DFT geometry optimisation is sometimes 

conducted at this stage on important conformers. Gauge-

Independent Atomic Orbital (GIAO) NMR shift calculation is 

done at the DFT level on the low-lying conformers within a 

chosen energy window. The NMR data from all conformers is 

combined using Boltzmann weighting and DP4 analysis is then 

used to decide which is the most likely structure from the 

candidates. 

DP4 achieves this by first applying empirical linear correction to 

the calculated shifts. Next, assuming that the errors between 

calculated and experimental data follow normal or Student’s t 

distribution, probabilities are assigned to every NMR shift error. 

All probabilities for a particular candidate are multiplied which 

gives the absolute probability that this structure is the correct 

one. Finally, relative probabilities are derived by dividing each 

candidate probability by the sum of all absolute probabilities. 

DP4 was originally developed for the elucidation of the relative 

stereochemistry of natural products. Despite that we recently 

tested this method on a set of drug compounds with 

encouraging results, which shows the generality of both the 

overall approach and of the particular statistical model.11 In our 

studies several particularly challenging compounds were also 

identified. We set out to determine whether the performance 

of DP4 could be improved even further by optimizing the DFT 

conditions and statistical model used. 
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Results and discussion 

Molecules studied 

In our recent investigations in the computational elucidation of 

NMR structure we have paid particular attention to medicinal 

compounds, including peptidomimetics and nucleoside 

analogues (32-42, Figure 1). Prediction error distribution plays a 

central part in the DP4 process. We noticed these particular 

compound classes tended to produce larger prediction errors 

when compared to the original DP4 database (Figure 2). This 

could be explained by several factors. Some of these 

compounds are significantly more flexible and can have larger 

Figure 1 Molecules studied. All diastereomers were considered, by varying the configuration of the stereocentres marked with an asterisk 
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errors because of more challenging conformational searches, as 

well as the energetic ordering of the conformers. Others have 

increased potential for tautomerism which also makes accurate 

shift prediction more difficult. 

While the original DP4 still performs much better than 

competing measures in these more challenging compound 

classes, the high prevalence of larger errors mean that the 

original DP4 is not an optimal model for these classes. To ensure 

that our investigations are applicable to as many molecules as 

possible, we sought to make the compound database more 

diverse and also challenging. Therefore a new database was 

composed (Figure 1) containing examples of both natural 

products and medicinal compounds.12 Some of the compounds 

were carried over from the previous DP4 database and also 

from our previous study on medicinal compounds.11 From 

natural products there are examples of polyketides, macrolides, 

alkaloids, terpenes and peptides. From medicinal compounds 

there is just as large structural variety, including hormones, 

cholesterol lowering drugs, antiviral, antimalarial, anti-

asthmatic, antidiabetic and chemotherapeutic agents. Unless 

otherwise stated, we considered all diastereoisomers 

generated by varying the stereocenters marked with an asterisk 

in Figure 1. Initially, the calculation of the NMR spectra was 

done in the same manner as in previous studies and the data 

was used as a starting point for further investigations. 

 

Statistical models for NMR structure elucidation 

In our original report about DP4 we noted that normal 

distribution is not the true distribution of the prediction errors. 

In particular, the tail regions of the error distribution were 

significantly more pronounced than in the normal distribution. 

This discrepancy can lead to the overconfidence displayed by 

DP4 in some cases. Ideally, the average confidence of DP4 

would match its average performance. By average confidence 

we mean the average of relative DP4 probabilities assigned to 

the most likely (not necessarily correct) structures in a set of 

compounds.  By performance here and in the rest of the paper 

we mean percentage of correct structures assigned the highest 

probability among the diastereomers considered by the DP4. 

Close agreement of these two parameters would mean that the 

method not only indicates the statistically most likely structure, 

but also accurately notes how much confidence should be 

assigned to the result. 

To model the distribution of errors in real compounds better, 

we decided to test more flexible empirical distributions. A quite 

popular method for the construction of empirical distributions 

is kernel density estimation (KDE).13 This approach can in 

principle model distributions of any shape. KDE works by placing 

a Gaussian at each experimental point and the empirical 

distribution then is the sum of all the constituent normal 

distributions. This model was added to PyDP4 and tested on the 

new database. A few selected results are shown in Figure 3. As 

can be seen, KDE only slightly changes the rate of correct 

identification, however, the average confidence in the top 

result is now closer to the actual performance, thus providing 

better indication of the quality of a particular decision.  

It has long been recognized that the accuracy of NMR pre-

diction by DFT depends on the environment of the particular 

nucleus.14,15 The systematic errors are different for sp2 and sp3 

carbon atoms, and the same is true for protons attached to 

these carbon atoms. Several approaches have been previously 

used to deal with this, including using multiple computational 

references14 or internal scaling.16 The latter approach was 

chosen for DP4. These systematic errors were also later 

leveraged for the development of DP4+ method.6 In the hopes 

of using this systematic error information for the development 

of better statistical models, we investigated the chemical shift 

dependence of the errors (Figure 6a). When using B3LYP for 

carbon NMR shift calculation, the errors are clearly clustered 

around 2 ppm in the sp3 region and around -3 ppm in the sp2 

region. A more extreme example of the variation in the 

systematic error can be seen when M06-2X functional is used 

instead. Here the sp3 region systematic error is still around 2 

ppm, however the sp2 region systematic error is of opposite sign 

and much larger – around 10 ppm. Another important feature 

in both cases is the variable dispersion of the errors around the 

mean, depending on the region of the spectrum. This suggests 

that if regional models would be developed, more than two 

separate distributions should be used to model the errors over 

all of the NMR spectrum accurately. Based on this we modified 

our KDE distribution statistical model into a regional model. A 

separate error distribution was constructed for each of 4 

regions of both carbon and proton spectra. Region endpoints 

were chosen so that the error distributions would capture the 

variable mean and distribution of the errors as well as possible. 

The carbon spectra were divided in regions <50 ppm, 50 – 106 

ppm, 106 – 148 ppm and >148 ppm. The proton spectra were 

divided in regions <3.0 ppm, 3.0 – 5.0 ppm, 5.0 – 7.0 ppm and 

Figure 2 Comparison of fitted Gaussian distribution (black) and estimated true 

distribution (red) of NMR prediction errors for carbon and proton NMR 

Figure 3  Initially tested statistical model actual performance (blue) and average 

confidence (red). NMR shifts calculated using B3LYP functional and 6-31G** basis set. 
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>7.0 ppm. Workflows both with and without internal scaling 

were tested and the corresponding statistical models – called 

regional kernel density estimation (RKDE) and unscaled regional 

kernel density estimation (URKDE). The results of the initial 

tests are shown in Figure 3. These statistical models show 

improved performance with reduced overconfidence in the 

result. 

In these two approaches we changed two meta-parameters – 

number of regions used to cover whole NMR spectrum for a 

particular nucleus, and the number of Gaussian functions used 

to describe the error distribution. By combining these two 

meta-parameters, one can plot a space of the possible statistical 

models (Figure 4). Models discussed so far have explored the 

extremes of the y axis, which is the number of Gaussian 

functions used in a model. The standard DP4 is a single 

distribution and uses a single region for the whole spectrum. 

KDE models use 800 Gaussians to describe the same distribution 

and could likely be simplified. Regional KDE models in the first 

instance contained 4 regions and on average 200 Gaussians per 

distribution. At this point we were eager to find answers to 

several questions: 1) Is there any redundancy in the KDE models 

and could they be simplified while retaining their superior 

performance? 2) What is the optimal number of regions used to 

describe errors across the chemical shift range? 

To find out if there is any redundancy or even over-fitting in the 

rather large KDE models, a leave-one-out (LOO) cross-validation 

was performed. The LOO process is as follows: a compound is 

removed from the training set, statistical models are created 

from the remaining set and then DP4 probability is calculated 

for the removed compound. This is repeated for every 

compound in the database and the result is the overall success 

rate that was achieved without using the test compounds in the 

training set. The percentage of correctly identified compounds 

is then considered the overall out-of-sample performance. 

Figure 4  Statistical model space explored Figure 5  Statistical model in-sample (blue) and cross-validated performance (red) 

Figure 6  a) Comparison of C NMR prediction systematic errors when using B3LYP, M06-2X and mPW1PW91; b) Results from statistical model space exploration using predicted 

NMR shifts from B3LYP, M06-2X and mPW1PW91 functionals. 
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Comparison of in-sample and out-of-sample performance for 

the various statistical models is shown in Figure 5. DP4 and 

refitted Gaussian models appear to be robust as their 

performance is the same in the cross-validation. Scaled and 

unscaled regional KDE models performed significantly better in-

sample, but in cross-validation the results are lower, while still 

at least as good as the simpler models. This indicates that there 

is some over-fitting taking place and a reduction of the number 

of parameters should be attempted. Global KDE also showed 

signs of over-fitting and performed worse than refitted single-

Gaussian model both in-sample and in cross-validation. 

The robust models contain one Gaussian function, the higher 

performing, but less robust models contain hundreds. To find 

the best combination of robust performance and more accurate 

probabilities, we tested distributions that were a sum of 

increasing number of Gaussian functions. These were created 

by taking the KDE distributions and then fitting the chosen 

number of Gaussian functions so as to minimize the differences 

between the two – and example of this is shown in Figure 7. It 

was found that improvements in fit in most cases diminished 

beyond 3 Gaussian functions. Also, these multi-Gaussian 

models proved to be robust in cross-validation, when 3 or less 

Gaussian functions were used. 

With the simplification of the KDE models we had explored 

another part of the model space and found that there is an 

upper limit in the desirable model complexity. Extending the 

multi-Gaussian approach to regional models would complete 

the sampling of the model space and provide answer as to what 

is the best model for NMR structure elucidation. The highest 

number of regions tested previously has been two – both in the 

case of DP4+ and, effectively, in the multi-reference scaling of 

the NMR shifts. We varied the number of regions between 2 and 

8 and the number of Gaussian functions to model each region 

between 1 and 5. The results are shown in Figure 6b. It was 

found that even in-sample the question about the best 

statistical model is not straightforward and very much depends 

on the computational method used for the calculation of the 

NMR shifts. So for a well behaved functional like mPW1PW91 

the regional statistical models gave no additional benefit in 

performance and 1-region, 2-Gaussian statistical model appears 

to be optimal. In contrast, the versatile M06-2X functional 

exhibits a very non-linear systematic error and therefore 

benefits from more sophisticated statistical models. 4-region, 3-

Gaussian and 8-region, 5-Gaussian models both looked 

promising and warranted repeated testing (see below). 

Another important factor in the statistical model generation is 

the training set. In this study we strove to compile a diverse 

training set and thus achieve highly general statistical models. 

However, chemical shift calculations produce results of varying 

precision for different classes of compounds and different 

molecular features. Therefore it can be beneficial to develop 

tailored models when analyzing a focused library of similar 

compounds. While this can provide better rate of correct of 

identification, the largest impact of custom statistical models 

would be on the relative probabilities produced by DP4. This 

means that custom models would be able to better estimate 

their confidence in a particular guess. 

 

Optimization of computational conditions 

While the B3LYP functional and the double zeta basis set 

typically used in our DFT calculations generally performs quite 

well, it was hoped that a careful optimization of the chosen DFT 

conditions might improve the performance of DFT even further. 

Four different functionals were chosen for this study, including 

B3LYP,17 mPW1PW91,18 WP0419 and M06-2X.20 B3LYP has 

proved to be a very versatile general-purpose functional and 

has also been extensively used for chemical shift calculation.2,3 

mPW1PW91 is another general purpose functional and has 

been previously shown to give very good results for both proton 

and carbon chemical shifts.21 WP04 is a functional designed to 

reproduce proton chemical shifts and also gives improved 

results for carbon. Finally, M06-2X is a general-purpose 

functional with improved handling of non-covalent interactions 

among other advantages. 

Three different basis sets of comparable size were also chosen. 

Double-zeta 6-31G**, triple-zeta 6-311G*22 and pcS-1,23 which 

is a polarization-consistent basis set optimized for chemical shift 

calculation. The four functionals and 3 basis sets gave 12 

possible DFT conditions. Calculations were repeated for every 

compound in the database for every DFT condition, using the 

same MMFF level geometries as a starting point.  Each of the 

computational conditions was tested with 5 different statistical 

models – DP4, refitted Gaussian, 1-region KDE and 4-region 

scaled and unscaled KDE models (RKDE and URKDE). 

 

 

 

 

 

 

 

Figure 7  Use of a sum of multiple Gaussian functions (red) to capture essential features 

of a complex empirical distribution (black). The dashed lines represent the constituent 

Gaussian functions, sum of which forms the overall multiple-Gaussian distribution (red) 
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Table 1  Mean absolute errors in ppm for carbon and proton NMR prediction for 

various functional and basis set combinations. 

 B3LYP mPW1PW91 

 6-31G** 6-311G* pcS-1 6-31G** 6-311G* pcS-1 

C MAE 1.80 1.77 1.62 1.59 1.60 1.57 

H MAE 0.14 0.14 0.15 0.14 0.14 0.15 

 WP04 M06-2X 

 6-31G** 6-311G* pcS-1 6-31G** 6-311G* pcS-1 

C MAE 2.21 2.00 1.80 2.16 2.35 2.49 

H MAE 0.14 0.13 0.14 0.16 0.16 0.18 

The resulting mean absolute errors for carbon and proton NMR 

prediction are shown in Table 1. There is very little variation in 

accuracy for proton shift predictions for various computational 

conditions. Part of the reason might be in the way experimental 

data is described in the literature. Experimental proton spectra 

often contains several overlapping signals which are then 

reported as a broad range, rather than accurate chemical shift. 

In DP4 these broad ranges are converted to the appropriate 

number of signals at the mid-point of the range. This 

fundamentally limits the accuracy to which these shifts can be 

computationally predicted, since for most of the overlapping 

proton signals the mid-point of the range will not correspond to 

the actual experimental chemical shift. For carbon NMR shifts 

mPW1PW91 functional appears to give the best accuracy. For 

all but one functional, pcS-1 basis set gives the best carbon 

accuracy. There is no clear preference between 6-31G** and 6-

311G* basis sets. 

There is also marked difference in the systematic errors 

exhibited by different basis sets and functionals (Figure 6a). All 

of the DFT conditions exhibited a systematic error in carbon 

chemical shifts, and this error was larger in the sp2 region of the 

spectra. The severity of this systematic error appears to be 

mostly dependent on the functional used, with mPW1PW91 

having the smallest and M06-2X having the largest. The sign of 

this systematic error, however, appears to be mostly dependent 

on the basis set used. When using 6-31g**, the sp2 region 

featured significant negative systematic errors, while with 

6-311g* and pcS-1, the same errors were positive. 

The resulting performance in diastereomer elucidation is shown 

in Figure 8. mPW1PW91 appears to perform the best overall, in 

combination with either DP4, refitted Gaussian or KDE model. 

The choice of basis set seems to be less important, but generally 

6-311G* performs better than the other two tested here. It is 

worth noting that the best computational conditions for 

diastereomer identification are not always the ones giving the 

most accurate absolute prediction of chemical shifts. For 

example, with both B3LYP and mPW1PW91 the pcS-1 basis set 

gives the most accurate shift prediction, but for diastereomer 

identification 6-311G* works better with these functionals 

(Table 1 and Figure 8). The likely reason for this is that for 

diastereomer identification absolute chemical shift accuracy is 

less important than the ability to effectively predict differences 

between the diastereomeric candidate structure NMR spectra. 

 

Optimization of computational conditions for energy calculation 

Most DFT functionals are developed with a certain goal in mind. 

B3LYP and M06-2X are general purpose functionals and are 

optimized to provide accurate geometries and energies. WP04, 

on the other hand, was developed for reproduction of proton 

chemical shifts in GIAO calculations. The current DP4 process 

calculates both the energy and the NMR shifts of the molecule 

at the same level of theory. However, there is no reason to 

Figure 8 In-sample performance of various functional, basis set and statistical model 

combinations

Figure 9 Performance of various functional combinations for NMR shift and energy calculations using DP4 (left) and refitted Gaussian (right) statistical model. 
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believe that the methods ideal for NMR shift calculation and the 

energy calculation would be the same. It is obvious how a poor 

method for NMR shift calculation would adversely impact DP4 

performance. The effect of incorrect energies is more subtle. 

Energies are only important for the combination of NMR shifts 

of different conformers by Boltzmann weighting. Therefore 

incorrect DFT energies will only introduce significant errors in 

the calculated NMR shifts of flexible molecules. 

To test the effect of different DFT conditions used for energy 

calculation, we used the data from the previous section and 

combined the NMR shifts calculated in one DFT conditions with 

energies calculated in different conditions. All possible 

combinations of the 12 DFT conditions were tested for the 

calculation of NMR shifts and energy, giving 144 combinations. 

In addition, 5 statistical models were tested with each of the 

combined DFT conditions, giving 720 workflows and 30 240 

probability evaluations overall. Optimization results when using 

standard DP4 statistical model and refitted 1 Gaussian, 1 region 

model is shown in Figure 9.  

The best results were obtained when mPW1PW91 functional 

was used for the NMR shift calculation and the M06-2X 

functional was used for the energy calculation. This is not 

surprising, as M06-2X is one of the best current general purpose 

functionals, especially for non-covalent interactions, which are 

important for accurate energetic ordering of conformers for the 

molecules in our test set.  Similarly, as we and others have 

shown,1c mPW1PW91 gives superior accuracy in NMR shift 

calculations. 

The results from this and previous section also highlights the 

complex relationship between the DFT method used and the 

corresponding optimal statistical model. For functionals that 

feature large systematic errors that vary non-linearly with 

regards to the chemical shift, regional models give superior 

results, as they are better able to deal with these complex 

conditions. On the other hand, mPW1PW91 performs best with 

a simple single region, single Gaussian statistical model, 

because it is very well behaved with mild and linear systematic 

error dependence on chemical shift. 

 

Final testing and cross-validation 

The few best performing combinations of functionals and 

statistical models were then retested and cross-validated using 

the same 42 compound dataset as previously (Table 2, Figure 

10).  

The most desirable features of a method is out-of-sample 

performance in combination with realistic estimation of 

confidence in the result. Promising candidates included both 

single functional and mixed functional workflows. mPW1PW91 

functional was among the top performers. It was found that this 

could be further improved if the energies were calculated with  

M06-2X functional rather than mPW1PW91. B3LYP functional 

also seemed promising for conformer energy calculation, with 

mPW1PW91/B3LYP workflow having similar performance to 

mPW1PW91/M06-2X workflow. In cross-validation this 

performance was slightly reduced, while mPW1PW91/M06-2X 

performance proved to be robust both in-sample and out-of-

sample. 
Table 2 Summary of the best performing combinations of computational conditions 

and statistical models. The performance of original DP4 conditions is also included for 

comparison 

  1 2 3 4 

Shifts Functional B3LYP mPW1PW91 mPW1PW91 mPW1PW91 

Basis set 6-31G** 6-311G* 6-311G* 6-311G* 

Energy Functional B3LYP mPW1PW91 B3LYP M06-2X 

Basis set 6-31G** 6-311G* 6-31G** 6-31G** 

Stat. 

model 

N. of regions 1 1 1 1 

N. of Gaussians 1 2 1 2 

Cross-validated perf. (%) 57 76 74 79 

Average confidence (%) 90 89 89 84 

Uncertainty (%) 43 24 26 21 

Overconfidence (%) 33 13 15 5 

     

 

The outcome of this final round of testing is shown in Figure 10 

and Table 2. It was found that overall best results were obtained 

when functional mPW1PW91 was used for shift calculation, and 

M06-2X functional was used for energy calculation, in 

combination with 1 region, 2 Gaussian model. We define 

structural uncertainty as the gap between certainty and the DP4 

performance, so a 90 % performance in a set means the method 

has 10 % structural uncertainty. This workflow (DP4.2) reduces 

the average structural uncertainty in our new dataset from 43%, 

with the original DP4, to 21%.This final workflow also represents 

a significant improvement in accurate estimation of confidence 

in the result, reducing the overconfidence by almost seven-fold. 

We calculate the overconfidence as the difference between the 

average confidence in the most likely structure and the 

percentage of correctly identified compounds in the set. As 

mentioned previously, we count a compound correctly 

identified if it is assigned the highest probability among the 

diastereomers. 

Significant number of structures that were intractable with the 

original DP4 workflow, could now be computationally 

elucidated. Examples of these are shown in Figure 11. In all of 

these cases, the new DP4.2 workflow (column 4, Table 2) was 

able to identify the correct structure with high, but realistic 

confidence level. Importantly, DP4.2 is still excellent in all of the 

cases where DP4 was successful, indicating that we have 

achieved a more general method, rather than a specialized 

Figure 10 Performance of the original DP4 workflow and the best performing workflows 

from this study. Cross-validated performance is shown in blue, average confidence in the 

most likely structure in red.
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workflow with a different focus. It is also interesting to note that 

most of the improved molecules are of medicinal origin, and we 

hope that this will encourage even wider application in the drug 

discovery field. 

The relative stereochemistry of even such challenging 

molecules as canagliflozin, artemisinin and epiartemisinin could 

be determined with high confidence (Figure 11). Overall, the 

mPW1PW91/M06-2X with 1-region, 2-Gaussian statistical 

model provides high accuracy in diastereomer identification, 

high generality as shown by robustness in cross-validation and 

performance in a diverse dataset, and accurate estimation of 

the confidence in the result. 

Computational methods 

All molecules were first submitted to conformational search 

using MacroModel24 and MMFF force field.25 The 

conformational searches were done in the gas phase. 

Compounds containing a saturated five-membered ring were 

submitted to the conformational search twice, once for each of 

the ring-flip conformers. To ensure a thorough search of the 

conformational space, step count for MacroModel was adjusted 

so that all low-energy conformers were found at least 5 times.  

Quantum mechanical calculations were carried out using 

Gaussian '09 software package26 and functionals and basis sets 

as indicated. NMR shielding constant calculations used the 

GIAO method27 and were done on the MMFF geometries from 

the conformational search without further optimization. Only 

conformers with energies within 10 kJ/mol from the global 

minimum were submitted to the GIAO calculation. In the rare 

cases where this energy-based pruning still gave more than 100 

conformers for a structure, additional RMSD pruning was 

performed.  PCM solvent models28 were used for both DFT 

energy and shielding constant calculations. Calculation setup, 

data extraction and DP4 analysis were done using the PyDP4 

script written in Python 2.7.7 The script along with further 

scripts for statistical model generation and testing are available 

on the group website (http://www-

jmg.ch.cam.ac.uk/tools/nmr), as well as on GitHub 

(https://github.com/KristapsE/PyDP4) and in the ESI under the 

MIT license. All of the structure files, MacroModel and Gaussian 

input and output files are available from the University of 

Cambridge repository (https://doi.org/10.17863/CAM.13222). 

Similarily, parameters for selected statistical models, the 

calculated NMR shifts and probabilities assigned to the correct 

structures and other information are all available in the SI. 

Conclusions 

We have conducted a large-scale systematic study on the best 
computational methods for the elucidation of relative 
stereochemistry using DFT. The statistical model space was 
thoroughly sampled and the complex relationship between the 
statistical models and DFT conditions was explored. Optimal 
DFT conditions and the corresponding best statistical models for 
each have been identified. A combination of the best 
computational conditions with an optimized statistical model 
gave almost 40% improvement in correct elucidation of the 
relative stereochemistry in a diverse and challenging test set of 
biologically-active molecules. It reduced the structural 
uncertainty two-fold, and provided accurate estimation of the 

Figure 11  Examples of successfully elucidated relative stereochemistry enabled by the new version of workflow. The probabilities are combined probabilities from carbon and proton 

NMR data given by DP4 and the new DP4.2, respectively. Probabilities in bold denote that this structure was assigned the highest probability among the diastereomers considered.

https://doi.org/10.17863/CAM.13222
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confidence in the result by reducing the overconfidence almost 
seven-fold. 

From a practical point of view, we consider the best DFT 
conditions for the elucidation of relative stereochemistry to be 
mPW1PW91 functional for the chemical shift calculation and 
the M06-2X functional for the energy calculation, in 
combination with a 1-region, 2-gaussian statistical model. We 
recommend the use of statistical models that have been trained 
on calculations using matching DFT conditions as this generally 
provides the best results. Various statistical models for several 
of the best DFT conditions in this study are provided in the SI 
and also from the group website. Also, scripts for tailored 
statistical model generation are provided on the group website. 

This study has conducted a thorough and very large scale 
investigation of the various parameters involved in the 
computational NMR structure elucidation and it would not have 
been possible without a highly automated workflow PyDP4.11 
The latest version of the PyDP4 and additional scripts for 
custom statistical model generation can be obtained from the 
group website (http://www-jmg.ch.cam.ac.uk/tools/nmr), as 
well as from GitHub. (https://github.com/ KristapsE/PyDP4). 
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