
Transforming Mice: 
Technique and communication in the 

making of transgenic animals, 1974–1988

Dmitriy Myelnikov
Department of History and Philosophy of Science

Emmanuel College
University of Cambridge

September 2014

Corrected version, May 2015

This dissertation is submitted for the degree of Doctor of Philosophy

i



This dissertation is the result of my own work and includes nothing 

which is the outcome of work done in collaboration except where spe-

cifically indicated in the text. No parts of this dissertation have been 

submitted for other qualifications. It does not exceed 80,000 words.

Dmitriy Myelnikov

ii



Table of Contents

Acknowledgements iii

Abbreviations v

Introduction 1

Note on sources 14

Chapter 1. The rise of the mouse embryo, 1941–1970 17

§1. The genetic mammal 19

§2. Standards and embryos 24

§3. Manipulating development 32

§4. Molecular promises 41

Conclusion 50

Chapter 2. Recombinant networks: The moral economy of genetic engineering in the 1970s 52

§1. Gene transfer and somatic cell genetics 54

§2. Viruses and embryos: The Jaenisch-Mintz collaboration 61

§3. Recombinant exchanges 67

§4. “DNA-mediated gene transfer”: Expanding the networks 75

Conclusion 81

Chapter 3. Putting genes into mice: Promises, experimental trajectories and expertise 83

§1. “Possibilities and realities” 85

§2. Research agendas 95

§3. Mastering microinjection 105

§4. Recruiting molecular expertise 110

Conclusion 116

Chapter 4. Negotiating new mice: News, journals and priority 118

§1. Breaking the news 122

§2. “A one-way trip to the Brave New World”? 125

§3. Journals and the politics of priority 133

§4. Criteria of success 144

i



§5. “These mice, that we call transgenic” 151

Conclusion 156

Chapter 5. Bespoke animals: Adoption of transgenic technology, 1982–1988 158

§1. Supermice 160

§2. Adopting transgenesis 169

§3. Making knowledge with transgenic mice 181

§4. “A boutique operation”: Standards and scales 192

Conclusion 200

Conclusion: Transforming mice, transforming biology 202

Sources 211

Oral history interviews 211

Archives 212

Audio-Visual Materials 214

Patents 214

Bibliography 215

ii



Acknowledgements

First and foremost, enormous thanks go to my supervisor, Nick Hopwood, whose insight, rigour 

and dedication to his students are unparalleled. I am very grateful to Martin Johnson for advising 

on the thesis, directing me through the scientific issues and sharing his own memories of the 

mammalian development community. Jim Secord has given me invaluable guidance and delivered 

insightful suggestions with life-affirming encouragement. I tried to take in as much advice as I 

could, but of course, all faults of this work are my responsibility. I am extremely grateful to the 

Wellcome Trust who made this work possible through a generous doctoral studentship; the Ray-

mond and Edith Williamson Fund at the University of Cambridge for contributing to the cost of 

overseas fees; and Emmanuel College, for being a second home for such a long time and for help-

ing out with travel funds. 

I would like to thank all those who spared their time to participate in the oral history interviews 

and email surveys for their generosity. I was deeply saddened when Frank Ruddle passed away in 

2013. He was the first scientist I interviewed, and I could see why his students and colleagues 

spoke of him with such admiration. Archivists and librarians have been tremendously helpful – I 

would particularly like to thank Ashley Augustyniak, Clare Button, Clare Clark, Lee Hiltzik, Bill 

Kimok, Douglas Macbeth and Nancy Miller. Rob Perks and Graham Smith offered excellent train-

ing at the 2011 Wellcome Trust Oral History of Medicine course at Royal Holloway. I would also 

like to thank B. M. for a fascinating extended tour around modern-day transgenic facilities and 

showing me how to make a transgenic mouse.  

Many ideas were born and made in exciting conversations with other scholars. I am especially 

grateful to Jenny Bangham, Christina Brandt, Nathan Crowe, Helen Curry, Sarah Franklin, Rob 

Kirk, Susan Lindee, Mikey McGovern, Jesse Olszynko-Gryn, Joanna Radin, Robin Scheffler and 

Kathryn Schoefert for inspiring conversations and comments on my work. I appreciate how lucky 

I am to have spent my PhD years in the History and Philosophy of Science department at the Uni-

versity of Cambridge. It has been an incredible work environment with a superb sense of com-

munity, and I have benefitted tremendously from the mad number of events it holds. Tamara Hug, 

iii



Anna Jones, Aga Lanucha, Dawn Moutrey, Louisa Russell, and David Thompson run a tight ship, 

which has been much appreciated.

I would like to thank Maggie Jack, Viktoria Korman and Rob Mullalay, Patrick Orson, Joanna 

Radin and Matthew Grant, as well as Etienne Stockland for their hospitality during my research 

trips. Similar gratitude extends to the History and Sociology of Science department, University of 

Pennsylvania, for cordially allowing me to loiter in their space and attend events on my extended 

visit to the East Coast. I am very happy to have been able to see my wonderful cousin Yulia Geor-

gieva, her husband Goran and little Sasha in San Diego, although the time we spent together was 

nowhere near long enough.

To those I have not yet named, but who made these years bearable, exciting and worthwhile – I am 

so grateful, Leah Astbury, Shahar Avin, Beatrice Balfour, Katy Barrett, Riana Betzler, Toby Bryant, 

Andrew Buskell, Maria Campbell, Riley Doyle, Rachel Epstein, Hannah Fair, Annabelle and Abby 

Guillermo, James Hall, Joseph Keslar, Evgeniya Petrova, Ruth Rand, Sophie Waring, Michelle Wal-

lis and Caitlin Wylie. Infinite thanks go to my parents, who have been supportive in more ways 

than they can imagine. I wish to dedicate this thesis to the memory of my aunt and uncle, Marga-

rita Myelnikova and Vasiliy Deryabin, who nurtured my fascination with biology and scholarship 

from an early age.  

iv



Abbreviations

ARC  Agriculture Research Council (UK)

DHEW  US Department of Health, Education and Welfare

EMBL  European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany

GEIS  General Embryological Information Service (newsletter)

HAT  Hypoxanthine-aminopterin-thymidine culture medium

HRPT  Hypoxanthine-guanine phosphoribosyltransferase

HSV tk  Herpes simplex virus thymidine kinase

LMB MRC Laboratory of Molecular Biology, Cambridge, UK

MMTV  Mouse mammary tumour virus

M-MuLV Moloney murine leukaemia virus

MRC  Medical Research Council (UK)

NAS  National Academy of Sciences (USA)

NIH  National Institutes of Health (USA)

NIMR  National Institute for Medical Research, Mill Hill, London

NSF  National Science Foundation (USA)

OTA  Office of Technology Assessment, United States Congress

PNAS  Proceedings of the National Academy of Sciences of the United States of America

pMT1  metallothionein promoter 1

RAC  Recombinant DNA Advisory Committee (USA)

SDS  Sodium dodecyl sulfate

SV40  Simian virus 40

TIBS  Trends in Biochemical Sciences

UCL  University College, London

UCLA  University of California, Los Angeles

UCSF  University of California, San Francisco

USPTO United States Patent and Trademarks Office

v





Introduction

Today, genetically modified animals are a routine biomedical technology, used as research models 

and test subjects in drug development. The vast majority of such experiments relies on transgenic 

mice that carry experimentally introduced foreign genes. Overwhelmingly, they are produced by 

direct injection of isolated DNA into a one-cell embryo through a minute glass needle. In 1980–81, 

six laboratories reported the successful use of the procedure, called pronuclear injection, al-

though researchers had tried to insert new genes into mice in various ways since the 1960s. De-

spite the gradual decrease in animal research in American and European laboratories since the 

passage of updated laboratory animal legislation between the mid-60s and the mid-80s, these 

modified rodents have shown consistent growth (Fig. i). Today, the production of transgenic mice 

has been outsourced to quasi-commercial academic ‘core facilities’ and for-profit providers, with 

a sizeable industry around them. Throughout the 1980s, however, these mice were made in a few 

hundred laboratories that combined the necessary funding, equipment and expertise. 

Transgenic mice were invented during dramatic shifts in the organisation, funding and commu-

nication of biomedical research. This thesis is the first extended history of their invention and 

early adoption, leading up to the 1988 US patent on the ‘Harvard mouse’ or OncoMouse, a trans-

genic animal modified to carry cancer-causing oncogenes and the first animal – though not the 

first organism – to be patented.1  I place these animals within the changes in biology, transforma-

tions in science funding and the altered vectors of scientific communication. I consider the di-

verse audiences to which transgenic mice were communicated, the modes of production and ex-

change of molecules, modified embryos and mice, as well as how this invention has been remem-

bered. Rather than follow one theme or approach, I bring multiple perspectives and literatures to 

bear on the history of these animals. This introduction will consider existing histories of trans-

genic animals and their place in the biotechnology story; histories of animals in science and be-

yond; perspectives on innovation and invention; the role of media in science and changes in sci-

1

1 I allude to, but do not cover subsequent developments, most notably knockout mice, available since 1989, in 
which specific genes could be removed through stem cell manipulation. These were the subject of the 2007 Nobel 
Prize.



ence journalism in the period covered; studies of knowledge and materials and transit; and finally, 

moral economies of science. 

With multiple actors involved in the early events, the scientists’ reviews and memories, while 

emphasising different research trajectories as key, all graciously acknowledge the multiple inven-

tion of transgenesis and highlight the diversity of agendas at stake.2 Science and technology stud-

ies (STS) scholars, lawyers and historians, by contrast, have concentrated on the OncoMouse. 

These studies have tended to focus on the embodiment of novel forms of biocapitalism, on 

changes in intellectual property law within ‘knowledge economy’ discourses and on how trans-

genic mice undermine boundaries between the natural and the artificial.3 Yet in many ways, On-

2

2 Gordon 1983, Palmiter & Brinster 1985, Wagner 1990, Papaioannou 1998, Brinster & Arechaga 1998, Graham 
2000, Hanahan, et al. 2007.

3 Moga 1994, Haraway 1997, Knorr Cetina 1999, Fuller 2008, Robins 2008, Murray 2010.

Fig. i. Use of animals in scientific experiments in the UK, 1960–2012. The vast majority of genetic 
modification experiments was carried out with mice, and the species represents 75% of all procedures 
carried out in recent years. ‘Harmful genetic mutations’ refers to breeding animals with serious pa-
thologies through conventional means. The Home Office statistics includes only vertebrates.

Source: Understanding Animal research, 
www.understandinganimalresearch.org.uk/resources/image-library/1674/times-series-data-of-procedures-1960-2013, accessed 
on 28 August 2014. Latest official statistics from the Home Office can be found at 
www.gov.uk/government/collections/statistics-of-scientific-procedures-on-living-animals. 

http://www.understandinganimalresearch.org.uk/resources/image-library/1674/times-series-data-of-procedures-1960-2013
http://www.understandinganimalresearch.org.uk/resources/image-library/1674/times-series-data-of-procedures-1960-2013
http://www.gov.uk/government/collections/statistics-of-scientific-procedures-on-living-animals
http://www.gov.uk/government/collections/statistics-of-scientific-procedures-on-living-animals


coMouse was a commercial failure, though its multiple versions and strains are still in use.4  As 

Fiona Murray has shown, the restrictive licensing policy that conflicted with the common modes 

of exchanging experimental animals was partly to blame.5 While her account conflates the di-

verse and emergent disciplinary communities around these animals into ‘mouse geneticists’, she 

usefully highlights the resistances to patenting among scientists and its effects on adoption and 

use. Despite the initial excitement, Harvard and DuPont misjudged the potential market for can-

cer models; in the late 1980s and early 90s, inbred mouse strains were seen as good enough and 

more reliable. The history of the invention of transgenic mice and their resulting production, still 

concentrated in academic labs, goes some way towards explaining how these animals came to be 

seen as a commercially promising path for the biotech industry and how their production and 

established uses of transgenic mice impeded commercialisation.

As an important yet not straightforwardly profitable innovation, transgenic mice are a peculiar 

case in the history of biotechnology. Invented in academic institutions when universities were 

actively encouraged to secure intellectual property, they highlight the changing purposes of uni-

versity science and the increasing permeability between academic and industrial biomedicine. 

Beyond extended work on regulation, scholars have surveyed the longue durée history of bio-

technology and established the importance of industrial interests in biology throughout the twen-

tieth century.6 But the 1970s transformed molecular biology in dramatic ways and on a large scale. 

As I show, these changes were not limited to what came to be defined as recombinant DNA tech-

niques, but built on multiple research programmes and institutional changes. In the USA, the role 

of state and federal government in supposedly “private science” went beyond regulation and de-

regulation in response to the dramatic controversies over recombinant DNA. The Carter and espe-

cially the Reagan administrations sought to create a favourable climate for biotechnology by 

3

4 Löwy 2000.

5 Murray 2010.

6 On regulating biotechnology, see Krimsky 1984, Wright 1994, Gottweis 1998. On placing biotechnology within 
longer history of industrialising biology, see Bud 1993, 2010. For a historiographical review of continuities and 
changes in biotechnology, see Gaudillière 2009. On the historical importance of industry to biomedical research, 
see the essays in Löwy & Gaudillière 1998b.



changing patent law and practice, brokering international agreements and offering generous seed 

funding – strategies that were to some extent emulated in Britain.7 

Beyond patenting, the increased entanglement between academic laboratories, emergent biotech 

and its big pharmaceutical and chemical backers also affected practices of sharing and communi-

cating research. The dramatic controversy over the first uses of what came to be know as “recom-

binant DNA” was key to this environment. Safety issues culminated in the Asilomar conference of 

1975 and subsequent NIH guidelines that required containment and extensive regulation of ex-

periments with genetically modified bacteria.8 In response, scientists and industry representa-

tives became much more engaged in communicating their work and trying to direct the 

response.“Cloning by press conference” – a phrase coined to criticise the aggressive PR of new 

biotech ventures – became increasingly common in respectable academic institutions, expanding 

the scope of acceptable media through which scientists could successfully promote their work, as 

well as the general interest in scientific news.9 As I will show, these strategies created an envi-

ronment where transgenic mice could be seen as safe animals that could be used to discuss the 

future of genetic engineering and its application to humans. 

Histories of human-animal relationships have emphasised the importance of other animals in 

analysing human culture.10 More recently, some scholars under the loose rubric of animal studies 

have sought to restore the agency of animals in the stories we tell about them. The projects to re-

construct animal agency, while fascinating, are troubled by their reliance on human sources that 

survive, or have to build on too many assumptions about animal psychology.11  So like much his-

torical work that deals with animals, this thesis is primarily a story about people who worked 

with mice. Laboratory organisms are now a standard topic in history of biology, thanks especially 

4

7 Sell 2003, Parry 2004, Cooper 2008. On the British story, see de Chadarevian 2011.

8 Krimsky 1984, Wright 1994.

9 Andreopoulos 1980, Anon. 1980b, Nelkin 1995, Yi 2011, Hughes 2011.

10 See e.g. Ritvo 1989, Robbins 2002. On the mouse, see Rader 2007. 

11 Fudge 2002, Daston & Mitman 2005. For attempts to theorise animal agency, see Haraway 2007, essays in 
Freeman, et al. 2011: Part III.



to Robert Kohler’s Lords of the Fly, a study of early Drosophila genetics.12 Kohler showed how a 

common fruit fly colonised genetics laboratories in the 1910s and became a tool, a “breeder reac-

tor” generating multiple mutants for T. H. Morgan’s genetic work, and how the laboratory in turn 

became its ecological niche. Focusing on the material world of fly genetics, Kohler argues that the 

practical and mundane problems of record-keeping and the need to update neo-Mendelian no-

menclature and formulas shaped Morgan’s celebrated chromosomal mapping project.13

Histories of other key genetic species have also tended to focus on their contingent domestication 

and genetic standardisation as a way to make reliable knowledge that could generate new prac-

tices and infrastructures.14 These animals are now routinely referred to as ‘model organisms’ – 

although this term was rarely used before the genome projects that started in the late 1980s – and 

there is a lively scientific debate as to the advantages and disadvantages of limiting research to a 

handful of well-studied organisms, especially with the rise of evo-devo.15  More recent historical 

work has highlighted alternative ways to standardise laboratory animals, and how debates about 

standardisation strategies could help generate new communities and fields.16 Similarly, and by 

contrast with histories of domestication, this thesis considers how a well-established laboratory 

animal was modified to move into new fields of inquiry and modes of production. 

Geneticists first domesticated mice at Harvard’s Bussey Institution for Applied Biology at the turn 

of the twentieth century as they relied on the supply of exotic strains of mice as ‘fancy animals’.17 

Finding a new home at the Jackson Laboratory in Bar Harbor, Maine, inbred strains of mice were 

shipped globally though quasi-commercial networks of exchange. In the atomic age after World 

War II, mice became central to the study of mutation and the biological effects of radiation, with 

large-scale colonies built in new sites of atomic science next to experimental nuclear reactors, 

5

12 Kohler 1994.

13 Ibid.: 53–90.

14 On ‘model organisms’, see Ankeny 2001 Ankeny & Leonelli 2011. On other species, see Clause 1993, Rader 
2004, Gurdon & Hopwood 2000, de Chadarevian 1998, Ankeny 2000, Leonelli 2007.

15 See e.g. Gilbert 2009, Hopwood 2011.

16 Leonelli, et al. Forthcoming, 2014, Kirk 2008, 2010, 2012.

17 Rader 1998, 2004.



such as at Oak Ridge, Tennessee and Harwell in the UK.18  In other areas, however, the mouse re-

mained marginal, notably in embryology. It was not until the 1950s that embryologists did serious 

mouse work – a transition aided by their interest in appropriating genetic knowledge and tools. 

This adoption was made possible by the newly available culture media that allowed in vitro ma-

nipulation of embryos, but as I show, the development of these techniques was driven by the low 

cost of mice, widespread breeding infrastructure and a growing interest in the role of develop-

mental factors to explain significant physiological variation within genetically standardised 

mouse lines. The importance of molecular explanations in the 1960s and 1970s extended to work 

with embryos. The mouse became the key mammal, and one of the handful of species, both novel 

and familiar – Drosophila, the frog Xenopus, the nematode Caenorhabditis elegans – featured in pro-

ductive discussions about using molecular approaches. 

In the 1970s, mouse embryologists and molecular biologists connected at the bench, too. These 

new alliances overwhelmingly relied on interdisciplinary collaboration and various strategies of 

combining embryological and molecular expertise. Disciplinary identities played out in diverse 

ways depending on the audiences: thus, scientists routinely referred to themselves as ‘embryolo-

gists’ at the bench, while the more cumbersome yet modern-sounding ‘developmental biology’ 

drove the agenda for meetings, textbooks and funding bodies.19  The first project to introduce 

genes into mouse embryos came from a variety of disciplinary agendas. Following the adoption of 

transgenic technology, a new generation of researchers had been trained in both embryological 

and molecular techniques through a lively set of courses, personal contact and independent tink-

ering, and technical expertise was much more defining in career path and the kind of experimen-

tal labour a scientist could do.

Like many histories of biomedical technologies, this thesis is about innovation and its early adop-

tion. David Edgerton has forcefully argued that our view of technology relies too heavily on inven-

tion and that following use is more illuminating when it comes to explaining technological 

6

18 de Chadarevian 2006, Rader 2004, Gaudillière 2004. On the influence of the atomic age on biology, see also 
Lindee 1994, Creager 2013.

19 On developmental biology, see Oppenheimer 1966, Gilbert 1996, Keller 1995, 2000, Crowe, et al. Under review.  



change.20 Yet Edgerton’s call is not to abandon studies of innovation, but to rethink approaches 

alongside accounts of use.21  My take on the invention of transgenic mice stresses the ambiguity of 

assigning priority, investigates how communication around distributing credit contributed to 

making transgenic mice a new experimental tool, and shows that priority has been fluid and open 

for re-interpretation. In the community of scientists involved in transgenic research, the multiple 

invention narrative remains recognised by all parties, but different contributions are highlighted 

and others omitted, depending on whom one asks. The very identity of the technology was made 

and remade, as a novel experimental procedure was recast into a powerful instrument to raise 

and answer pertinent biological questions.

In examining the invention of transgenic mice, I revisit Robert Merton’s call to study multiple dis-

coveries and his argument that ‘singleton’ inventions are the exception to the rule in modern 

science.22 The question has been largely ignored in history of science with the decline of Merton’s 

normative approach.23 I approach multiple invention with a practice-oriented set of tools, show-

ing how context-specific experimental work, communication and distribution of credit resulted 

in transgenic mice being made in different places within a year and subsequently accepted as a 

multiple invention. I argue that the diverse interests, technological backgrounds and organisation 

of the pioneer groups contributed to the rapid enthusiasm about transgenic mice and their adop-

tion by a considerable range of institutions. This mix of stakeholders created an environment 

where a new technology could succeed. 

This thesis is about the circulation of materials, the knowledge that travels with them, and the 

claims about new animals and methods used to produce them. After the ‘turn to practice’ in late 

1980s history of science and the explosion of laboratory ethnographies, we have multiple ac-

counts of local knowledge production and adoption. However, communication and circulation 

need further attention if we are to combine accounts of local practices that move beyond specific 

7

20 Edgerton 2007, 2010. On the role of users in technology, see also Oudshoorn & Pinch 2003.

21 Edgerton 2010: 685.

22 Merton 1973.

23 But see Cozzens 1989.



sites and may scale up and down again through their histories. Rather than selecting specific labo-

ratories to follow, my analysis considers the multiple actors involved in the making of transgenic 

technology. This account focuses on the USA and Britain – the key locations where transgenic 

mice were invented and produced. I take seriously the call to look at knowledge-in-transit, how 

and where it travels, and crucially, how it changes in the process, and to pay careful attention to 

communication as an inherent attribute of making knowledge.24

The work of Ludwik Fleck, a bacteriologist and philosopher of medicine is a helpful starting 

point, especially his emphasis on how knowledge acquires credibility and gravitas as it moves be-

tween ‘esoteric’ and ‘exoteric’ circles.25  Without embracing the division as a dichotomy – it was 

not clear-cut for Fleck, in any case – the audiences considered in this thesis ranged from fellow 

bench-workers, experts in different disciplines and interested biologists to university administra-

tors, patent lawyers, congresspeople, activists, readers of glossy magazines and tabloids and 

watchers of the evening news. I do not view this list of the actors as the gradient between “sci-

ence” and “society”, that is still occasionally implicit in discussions of “popularisation” despite the 

now-commonplace critiques of diffusion models in the field.26 While a distinction between scien-

tific and popular communication existed as an actors’ category, it blurred for some scientists in 

the 1980s and they actively recognised the utility of broad communication. Bruce Lewenstein’s 

metaphor of the “sphere of communication”, proposed in his influential study of cold fusion, in-

terrupts this implicit gradient of popularisation and shows how knowledge claims travel through 

unexpected routes and in many directions, generating competing narratives that may succeed or 

fail.27  In an age of strongly organised science, driven by the commercial promises of biotechnol-

ogy, appealing to diverse audiences was not dangerous or disreputable but advantageous. A num-

ber of sociologists labelled this trend the ‘medialisation’ of science.28  Even between 1945 and 1970, 

a period of unprecedented authority for university science and rapidly expanding funding, re-

8

24 Secord 2004.

25 Fleck 1935/1981, esp. 93–106.

26 On critiques of the ‘diffusion model’, see Hilgartner 1990, Bucchi 1998, Secord 2004.

27 Lewenstein 1995.

28 Franzen, et al. 2012, Hilgartner 2012.



cruiting new audiences remained useful, and while there are stories of reputations destroyed by 

publicity-seeking, thorough studies tend to find different explanations.29 What changed in the age 

of genetic engineering was the willingness of scientists to announce innovations to the media in 

parallel with communicating them to their peers, as well as the growing interest of journalists in 

covering basic science. The attention to genetic engineering in the late 1970s coincided with the 

expansion of science journalism. 

While science writing had been expanding and professionalising since World War II, publishers 

were increasingly willing to venture into popular science.30 Debates around recombinant DNA 

generated dramatic interest in biological research, and growing ambivalence about science 

helped create a new market. With dwindling profits for print media as audiences drifted to televi-

sion and radio,31  science and technology became a promising direction, especially in the United 

States where, as one editor put it, “the Sputnik generation [was] now of the magazine buying 

age.”32 In 1978, a dedicated science section appeared in the New York Times, in parallel with a flurry 

of new upmarket popular science magazines.33  Newspaper and magazine editors and science 

writers publicly criticised slow journal publication cycles and defended their right to report new 

discoveries in advance of peer-reviewed publication.   

Traditional modes of publishing science, with added loopholes and shortcuts, were thus supple-

mented with unexpected connections, contingent and seldom well-orchestrated – a press confer-

ence given by two bemused postdocs, a mid-western university president who knew the president 

of the National Academy of Science, a celebrated television comedian responding to a fresh sci-

ence story.34 As a result, multiple communication efforts came together to affect the responses to a 

9

29 For recent studies of science-media relations in twentieth-century biology and medicine, see Nelkin 1995, Tur-
ney 1998, Nathoo 2009, Hansen 2009, Kirby 2011, Wilson 2011.

30 Lewenstein 1989.

31 Emery, et al. 2000.

32 Edward Edelson, quoted in Anon. 1980b: 48.

33 Asimov 1980, Nisbet & Lewenstein 2002, Bauer 2012.

34 To borrow Steven Hilgartner’s metaphor of public science as a theatre of credibility, improvisation was an im-
portant part of communicating even before university PR departments were firmly institutionalised. See Hilgart-
ner 2012.



new kind of mouse, whose properties and promises were made in the process, in journal articles 

and television interviews alike. 

In reconstructing how an invention was made almost simultaneously in different places that were 

not directly in contact, circulation of knowledge is key. Knowledge about progress, experiments 

and techniques travelled between multiple laboratories. Some ended up making transgenic mice 

and some did not. The circulation metaphor invokes location and brings up questions of proxim-

ity and distance. For some scientists, being in the right place at the right time was crucial. Thus, 

Rudolph Jaenisch, a molecular virologist interested in expanding his work to mammals, benefited 

from commuting between Princeton, where he held a postdoctoral fellowship, and Fox Chase In-

stitute for Cancer Research outside Philadelphia, where Beatrice Mintz taught him to manipulate 

mouse embryos. His subsequent position at the Salk institute in San Diego brought him in touch 

with the leading genetic engineers and allowed him to learn unpublished techniques. 

On the other hand, distance – geographic or conceptual – was not always an obstacle to be over-

come, but a key and sometimes productive property of circulation. Mario Biagioli’s study of the 

discovery of the Medicean stars shows how partial ignorance, lack of familiarity and need to 

make conclusions based on speculative reputation contributed to Galileo’s success despite prob-

lems that appeared insurmountable closer to home.35 The distance and very limited communica-

tion between the laboratories involved in trying to transfer genes into mouse embryos suggested 

the pursuit was an attractive goal for which credit had yet to be taken, even if it came hand-in-

hand with skepticism about the possibility of success. Distance could also play a role in sustaining 

efficient divisions of labour between molecular biological and embryological work, with animals, 

their organs and data about them travelling between sites. One of the most successful and prolific 

collaborations in early transgenic research, between Ralph Brinster at the University of Pennsyl-

vania and Richard Palmiter at the University of Washington in Seattle, happened through courier 

services and weekly phone calls for over a decade. Keeping molecular and embryological expertise 

separate allowed the two labs to play to their strengths and avoid internal tensions. 

10

35 Biagioli 2006. See also Howlett & Morgan 2011, and essays on ‘agnotology’ in Proctor & Schiebinger 2008 – 
although these mostly focus on the construction of ignorance among lay audiences.



Material objects moved hand-in-hand with knowledge. Animals, cells, DNA molecules and culture 

media moved via the postal system, cars and scientists’ suitcases, despite alarm about the biohaz-

ards of genetically modified molecules and organisms. Sharing materials and techniques had a 

long tradition in biological research, particularly within emerging fields such as experimental 

organism communities or phage genetics.36 Through liberal exchange, plasmids – bacterial mole-

cules into which genes could be inserted and the resulting products then transferred into cells – 

travelled widely, often following the contingent relocations of highly mobile postdocs, and 

reached far and wide beyond the key sites of recombinant DNA research. Knowledge, techniques 

and expertise required to deal with these molecules had to be cultivated or recruited for success-

ful experiments.37

Kohler’s Lords of the Fly is again pertinent here, for the way it turned the attention of historians of 

science to a ‘moral economy’, describing the unspoken rules that governed the behaviours of dro-

sophilists and helped forge a powerful community.38  The major success of Drosophila, Kohler ar-

gues, lay both in the ability to generate a great number of new mutants and in Morgan’s Fly Room 

at Columbia as a centre for circulating strains. Kohler suggests that these exchanges were gov-

erned by three rules: reciprocity, disclosure and the communal sharing of tools and techniques. At 

the same time, recognition and proper ways of attribution were developed. Trying to account for 

the way these rules work, Lorraine Daston links moral economy with individual values that stand 

in a defined relationship to one another, and draws on theories of affect to link the social order of 

science with its routine practices that are “more about self-discipline than coercion”.39 By contrast 

with Mertonian norms, moral economies place scientists’ conduct historically and recognise its 

mutability. 

11

36 Kohler 1994, Rader 2004, Kelty 2012b, Kay 1993.

37 On knowledge and expertise traveling with material objects, see Latour 1999, Hopwood 2000, Santesmases 
2009, Creager 2013.

38 Kohler 1994. See especially Chapter 5. ‘Moral economy’ is borrowed from E. P. Thomspon’s classic study of 
eighteenth-century bread riots, Thompson 1971.

39 Daston 1995. For a case study contemporary to my account that explores the moral economies of cataloguing 
gene and protein sequences, see Strasser 2011.



Recombinant DNA molecules were exchanged between molecular biologists in the context of 

heavy regulation and anxiety about containment, but reached unexpected addressees, including 

developmental biologists and geneticists, usually within collaborations. The NIH regulations, 

while falling short of federal legislation that most scientists were eager to avoid, ended up limit-

ing the exchanges to facilities with sufficient funding and commitment to adhering to the con-

tainment requirements. Yet unlike the earlier case studies, no single centre existed for exchange 

of plasmids. Despite attempts to limit sharing and create central repositories and supply centres, 

the enormous interest they generated and the sheer scale of molecular biological work in the 

1970s made these molecules remarkably mobile. 

Once transgenic mice were produced, they came to be a resource-intensive and limited venture. 

The main interest in making them revolved around studying specific genes, so most were pro-

duced from scratch for a particular experiment. Courses, conferences and personal contacts were 

established to meet the demand for new techniques, continuous with the older traditions of mo-

lecular biology – it is no coincidence that Cold Spring Harbor became the key site of such training, 

as it had been for phage genetics and the recombinant DNA methods. However, while owing their 

birth to the great mobility of molecules, the mice themselves were rarely exchanged outside 

committed collaborations. The difficulties of production and the limited utility of already-

published strains kept the circulation low and it was not until the 1990s that established mouse 

providers supplied transgenic strains.

By that point, these mice were subject to a series of patent restrictions and unusual limitations on 

breeding and further commercial exploration, in a hybrid economy that encouraged spin-offs 

from publicly funded research. As Angela Creager’s work on radioisotopes shows, from a model of 

generous exchange from a cyclotron at Berkeley, these chemicals came to be produced in 

government-run nuclear facilities and were subjects of diplomatic negotiations, poster children 

for the Atoms for Peace policies and drivers for privatising nuclear industries.40 Similarly, 

through extensive media exposure and the debates surrounding the patenting of OncoMouse, 

transgenic mice became icons of genetic engineering and biotechnology in the 1980s, even if their 
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role and production remained expensive and modest by comparison to other tools, and their 

commercial success proved limited. 

This thesis is organised chronologically. Chapter 1 considers the emergence of the mouse embryo 

as a subject of experimental manipulation after World War II and focuses on the species politics of 

embryology and the scientific and communicative work that enabled the mouse to become an im-

portant embryo for developmental biology. Chapter 2 revisits the rise of recombinant DNA in the 

1970s and shows how genetic engineering was pursued and adopted by communities working 

with multicellular organisms. By focusing on the collaboration between Beatrice Mintz and Ru-

dolf Jaenisch, who inserted viral DNA into a mouse embryo before the ‘cut-and-paste’ recombi-

nant techniques were available, it offers alternative genealogies to genetic engineering and ex-

plores the moral economy of molecular biology in the 1970s.  

Chapter 3 then discusses the simultaneous inventions of transgenic mice in 1979–81 that relied on 

using isolated genes. I argue that the diverse goals and partial knowledge about competitors were 

productive for developing a new biological entity, and highlight the diversity of approaches and 

imagined uses for putting genes into mice. Chapter 4 then examines the initial communication of 

transgenic mice to a variety of audiences, largely lauded as a medical breakthrough. Journals may 

have been the key medium to claim priority, but other avenues of communication were impor-

tant: newspapers, television programmes and patent applications all carried new claims about an 

as-yet uncertain set of experiments.

Finally, in Chapter 5 I focus on the adoption of transgenesis in the 1980s. Publicity that sur-

rounded these animals, most prominently the giant ‘supermice’ made in 1982, played a significant 

role in attracting scientists and funders to the new technology. Commercial promises created new 

spaces and alternative networks, often geared to agricultural applications, even though most work 

still took place in academic labs, some with industrial money. Despite the lively interest in these 

mice, however, they remained at odds with the logic of large-scale genetics, and their production, 

concentrated in molecular and developmental laboratories, became a boutique operation.
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Note on sources

Historians of the late twentieth century are faced with a maddening range of materials, but also 

gaps on the record that are hard to map. I undertook a series of oral history interviews with the 

key actors, mostly scientists, but also journalists and biotechnology entrepreneurs. Their stories 

have been extremely helpful alongside textual traces in directing my work and helping me recon-

struct practice and laboratory life. Two of the key primary investigators in this story – Beatrice 

Mintz and Ralph Brinster – declined to participate in the oral history project. Dr Brinster referred 

me to an extensive published interview and his reviews,41  while Dr Mintz explained her doubts 

about this project over a fascinating two-hour phone call. I have been able to interview their col-

leagues and postdocs, however.

I was offered a variety of perspectives on the events, and the oral history side of my project made 

me reflect more on the partiality of communication and the instability of innovation narratives 

that Chapters 3 and 4 elaborate on. In addition, I have recruited memories from subscribers of 

transgenic-list, an email newsletter for transgenic mouse practitioners where they have been 

sharing tips, news and job ads since 1996. My brief questionnaire was met with a very enthusias-

tic response. I have already acknowledged those who were willing to spare their time and talk to 

me, but would like to reiterate my gratitude here. I tried to remain critical and treat oral history 

as yet another source, heavily based on memories, and my interviewees were aware that their 

memories of specific events were not always reliable. 

I am extremely glad to have had the privilege to collect memories from living actors that could be 

otherwise lost. With this in mind, published materials proved most useful, and I tried to read 

them in multiple ways to reconstruct networks and think of them as artefacts of material com-

munication as well as texts. Handbooks, textbooks, conference proceedings, newspaper and 

magazine articles, newsletters and directories, institutional reports and promotional magazines 

came together to inform this account. While no central archives or laboratory notebooks are 

available for the key part of this story, I have benefited from the scattered archival evidence listed 
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in the reference section. While triangulating my sources, I tried to keep remaining uncertainties 

on the surface. I am of course fully aware that as further documents may come to light and con-

siderably alter some of the details. However, as much communication happened in person and 

over the telephone, and as scientists routinely throw away their papers, it is not clear to me that 

such evidence might become available.
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Chapter 1. The rise of the mouse embryo, 1941–1970

Despite their molecular and genetic connotations and uses, transgenic animals were made possi-

ble by the experimental tradition of embryo manipulation. Yet, while routinely used by geneti-

cists and cancer researchers since the 1920s, the mouse was marginal among embryologists until 

the 1960s, when its importance in developmental research surged .1 Even among other mammals, 

the mouse had been seen as a difficult embryological subject, and rabbit, pig and human embryos 

were much more popular before the war. Existing histories of mammalian embryology focus on 

the mammalian embryo as a monolithic experimental subject, justifiably as cross-species com-

parisons were readily made.2 However, explaining the rise of the mouse embryo as the dominant 

experimental subject is essential to understanding the origins of genetically modified animals.    

As historians of laboratory animals have argued, such organisms are domesticated and adapted to 

new environments in multiple ways. Their bodies and heredity are changed dramatically to fit 

experimental purposes.3  They become subjects of extensive standardisation and of negotiations 

to make them mobile and comparable across widely distributed sites.4  In tracing the domestica-

tion of the laboratory mouse and the early history of the Jackson Lab, Karen Rader suggested that 

the mouse came to embody the genetic approach to medical research, rising to dominance as the 

gene became increasingly valued in American science and culture. Her work explores standardi-

sation as a resource for community building. Referring to an older meaning of “standard” – a mili-

tary banner marking a rallying point – Rader argued that the new community of “mousers” and 

their mascot animal marched across disciplines, with the gene as their weapon. The mouse of-

fered a way of asking genetic questions through an established and expanding set of practices. 

Moreover, as a mammal it offered evolutionary kinship with humans.5    
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Standardisation, while a key resource enabling communication and exchange, could also be chal-

lenged, and in the process new research questions and experimental subjects promoted. In the 

1950s, several scientists interested in mouse development, husbandry and physiology questioned 

the claim that inbred mouse lines were the best tool for any experiment.6  A number of agencies 

and researchers also recruited the reinterpretation of genetic purity to advocate for laboratory 

animal science as an autonomous field.7 As I will show here, a similar strategy enabled 

genetically-oriented physiologists to elaborate programmes for the study of the effects of the ma-

ternal environment on developing mice and through this process, to turn the mouse embryo into 

a viable experimental object. 

Finally, addressing the quality of versatility, I will examine the expansion of molecular thinking 

about development into the mouse. I will argue that the rise and institutionalisation of ‘develop-

mental biology’ as a new way of working with embryos in the 1950s provided a communicative 

space that allowed molecular biologists to enter the conversation, and embryologists to embrace 

molecular instruments and discourse. Transition to the agendas of developmental biology, and the 

growing importance of combining embryology with molecular biolow gy and genetics, went 

hand-in-hand with changing uses of laboratory organisms. Jamie Davies’s survey of papers pub-

lished in developmental biology journals since 1965 (Fig. 1-1) shows the dramatic surge of work 

done with the mouse and Drosophila, both paragon genetic animals, and a steady decline of the 

chick favoured by classical embryology.8  The mouse could become a viable choice for some of 

these scientists because several mammalian embryologists – at the time emerging as a new iden-

tity – had actively promoted it, and because new experimental systems applied the petri-dish 

practices of molecular biology to the complexities of eukaryotic life.   
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§1. The genetic mammal

In 1941, the Jackson Laboratory in Bar Harbor, Maine, published a sizeable book, Biology of the 

Laboratory Mouse.9  Founded in 1929 by C. C. Little, the Jackson Lab had become the centre of 

mouse genetics in the United States and a key supplier of inbred strains. The handbook, edited by 

George Snell, was its first major publication. It reviewed the achievements of mouse genetics, 

catalogued known genes and traits and featured practical advice on husbandry, breeding and 

record-keeping. Unusually, it was organised “vertically” around the central organism, rather than 

offering a multi-species discipline-centred textbook account. Indeed, the introduction stated that 

the intention was to help researchers cross disciplinary boundaries, carrying mice with them as 

they did so: 
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At the present time there are, for example, increasingly well beaten paths between 

genetics and embryology, between endocrinology and cancer research, between cancer 

research and bacteriology, between bacteriology and genetics. It is a major purpose of 

this book, by gathering together the fundamental knowledge about the mouse from sev-

eral fields of study, to make it easier for the research worker using mice as his experi-

mental material to traverse these interconnected paths of science.10 

The handbook established the authority of the Jackson Lab over the mouse, and defended mouse 

genetics as the prime subject for future investigations. Offering a comprehensive overview of the 

animal, its focus was overwhelmingly on genetics, but it was also to serve as a guide for setting up 

mouse colonies elsewhere. It was also designed to synthesise the papers that appeared in a stag-

gering variety of journals (and languages), not straightforwardly found in smaller libraries. 

The volume started at conception, with the first chapter dedicated to the early embryology. Snell, 

who authored the chapter, claimed to have undertaken “a complete reinvestigation of the whole 

field.”11 While the claim dramatised the novelty of Jackson’s contribution, it was not far off. Among 

embryologists, mice had long been marginal animals. The most consistent account of its early de-

velopment approaching a normal table was a series of turn-of-the-century articles by the German 

anatomist Johannes Sobotta, scattered through the Archiv für mikroskopische Anatomie.12 A trun-

cated description of early mouse development was also available from the Carnegie Institution of 

Washington Department of Embryology, a centre for human embryo collection and standardisa-

tion, where Warren Lewis and Elsie Wright had published multiple images of normal and abnor-

mal mouse development in 1935, using the latest techniques of tissue culture and microcinema-

tography that they had successfully employed to describe early rabbit development in 1929.13  Still, 

by comparison with the lower vertebrates, the mammalian embryo was inaccessible and opaque 

as it developed inside the body, concealed further by the zona pellucida, a thick membrane sur-

rounding the early embryo before implantation, and later the placenta. Experimental embryolo-
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gists strategically focused on lower vertebrates, while medical schools favoured the pig and the 

increasingly available human embryos for morphological work. 

After the First World War, mammalian eggs and early embryos attracted the attention of a differ-

ent group of scientists drawn to questions of reproductive physiology in farm animals and 

humans.14 In these studies, however, the mammal in general was of interest, and species were 

interchangeable. A major early account synthesising this research and setting further questions 

was The Eggs of Mammals (1936) by Gregory Pincus, the future co-inventor of the pill then based at 

Harvard.15 Following other scientists interested in reproduction, he promoted the rabbit as a ro-

bust species best suited for embryological investigation:

Among the laboratory mammals the rabbit is by far superior, and for one very simple 

reason, namely, rabbit ova seem to withstand the process of handling better than other 

ova. Mouse, rat and guinea pig ova, for example, begin to fragment very soon after re-

moval from the tubes...16

The structure of the book and the liberal use of citations brought together experiments per-

formed on a variety of mammals – mice, rats, guinea pigs, dogs, cats, even ferrets. Moreover, the 

serial plates that showed egg maturation featured several species to establish a continuous 

‘mammalian’ development.

Snell’s chapter on the early embryology thus offered a convenient reevaluation. Yet its potential 

utility went beyond offering a complete biological view of the organism or showcasing the work 

that he carried out with his embryologically-adept technicians. It spoke directly to the burgeoning 

interest in using mouse embryos to extend genetic knowledge, when the study of developmental 

mutations was drawing interest among American and British geneticists. Developmental or 

physiological genetics had been pursued in Germany throughout the early twentieth century 

alongside ‘transmission genetics’ with its focus on mapping, which was favoured in the USA and 

most closely associated with T. H. Morgan, an embryologist-turned-geneticist who built and ran 
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the Columbia Fly Room.17  With the elaboration of Morgan’s mapping, the emphasis on develop-

ment – a prominent feature of early genetics, asking how phenotypes arise from genotypes – was 

receiving new attention. 

Alongside Drosophila, the mouse was useful for developmental genetics.18 In the 1930s, mutants 

that could be studied before birth were travelling across the Atlantic via a series of biologists. The 

most prominent and mystifying series of tailless and lethal mutations, subsequently mapped to 

the ‘T complex’, were first described by Nadezhda Dobrovolskaya-Zavadskaya, a Russian emigré 

geneticist at the Institut Pasteur. In 1930, while lecturing in New York, she met Lesley Dunn at 

Columbia University and told him about the odd mutations, sending mice soon afterwards.19  Dunn 

had been Little’s peer at Harvard’s Bussey Institution, where the mouse was first used for genetic 

studies, and while his peers subsequently embraced a wide variety of organisms, he remained a 

“mouser”. In 1928, he inherited Morgan’s position at Columbia, making mouse genetics a new sta-

ple of the institution renowned for its fly work. With another emigré, Salome Gluecksohn,20 Dunn 

undertook a series of studies that tried to tie the lethality of T genes at embryonic stages. Glueck-

sohn, a German Jewish woman, had trained with the eminent embryologist Hans Spemann at the 

University of Freiburg and fled Nazi Germany in 1933. With Dunn, she proposed to answer the 

pertinent embryological question – that of induction – with the very genetic tools that Spemann 

had dismissed. In 1938, she published her first paper on the T mutations in Genetics. Even though 

it was not the first publication to deal with the genetics of the T locus, nor the first to show their 

embryonic effect, it explicitly addressed disciplinary concerns and heralded an integrated ap-

proach to mouse development. 

Mouse developmental work attracted a few more geneticists in the 1940s, among them another 

German Jew fleeing National Socialism, Hans Grüneberg, who had found refuge at University Col-

lege, London (UCL). His choice of the organism was also accidental – Grüneberg had trained as a 
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Drosophila geneticist but switched organisms on his move to London, on J. B. S. Haldane’s sugges-

tion. In the war years, despite paper shortages, Grüneberg published a major monograph, The 

Genetics of the Mouse, devoting space to developmental genetic and the T mutations in particular.21  

The book, negotiated with Snell to avoid extensive overlaps with the Jackson handbook, was an 

important contribution to the field, but even before it was published Grüneberg was already in 

the middle of the transatlantic mouse genetics network, having been elected to the international 

mouse Nomenclature Committee alongside Dunn and Snell.22   

Grüneberg, Snell and Dunn all had reservations about mouse research becoming exclusively 

about cancer, and stressed that the revived Mouse Newsletter should to incorporate broader genetic 

projects.23 Dunn and Gluecksohn were also heavily involved in remodelling this publication. 

Founded by Little at Cold Spring Harbor in the 1920s, it was revived by Snell as Mouse Genetic 

News, a way to summarise available strains and mutations, but only two issues appeared in 1941 

and 1945. Based heavily on the Drosophila Information Service, and responding to the demand ex-

pressed by mouse geneticists, Dunn and Gluecksohn turned it into a regular circular that encour-

aged the exchange of strains and techniques, and reified the dominance of Jackson as the place 

where all strains were held.24  As Christopher Kelty argues, organism newsletters did more than 

encourage circulation – they also defined the new collective knowledge and lines of inquiry. These 

periodicals, aimed widely at the newly defined community, helped build disciplinary identities 

and open up informal exchanges beyond letter-writing. At the same time, they established new 

boundaries by excluding outsiders – both lay and scientific – from the network, and defined the 

notions of “property and propriety” when it came to speedy circulation of facts and advice, giving 

credit for the information submitted but also claiming communal property over the knowledge, 

unlike conventional publications.25 
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By 1950, interest in studying mutations in mouse embryos as well as adult animals had been 

firmly established among geneticists, and some of the key proponents of this research occupied 

strategic locations in transatlantic mouse networks. Moreover, with the expansive use of mice in 

studying the effects of radiation after World War II, they became widely available and attracted 

significant research funding. Major mouse colonies were established in biological institutions 

attached to experimental nuclear reactors, at Oak Ridge Laboratory in Tennessee and at the Uni-

versity of Edinburgh in collaboration with the MRC Radiobiology Unit in Harwell, Oxfordshire, 

where the project eventually moved.26With this expansion of mouse work, and the growing im-

portance of genetics across the biological sciences, mouse embryology received broader attention. 

In the 1950s and early 1960s, this interest crystallised new questions about mouse development 

and encouraged work on new techniques of embryo culture and manipulation.     

§2. Standards and embryos

Inbred mice produced in Jackson are a paragon of mid-twentieth-century biological standardisa-

tion, and were promoted and marketed as such. The language and practices of standardisation 

were convincing enough to enabled productive communication, while the uncertainty and local 

differences were exploited to adapt mice to new institutions and questions.27 However, the stan-

dards of genetic purity in mouse research were never completely settled. They were renegotiated 

and challenged throughout the twentieth century, often by new collectives seeking to adapt exist-

ing experimental systems to new uses.28 As this section will show, in the 1950s, opening up ac-

cepted standards of genetic purity allowed for productive exchanges among a new group of biolo-

gists whose work centred around the mouse embryo. 

Despite the practices of genetic purity for which the Jackson Lab had become famous, Snell’s stud-

ies of the mouse embryo relied on outbred animals – he claimed their ‘hybrid vigour’ made these 
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embryos more robust to the sectioning and preparation techniques. The idea of hybrid vigour – 

that organisms bred from distant strains were healthier and better adapted – has a long history in 

breeding and the study of heredity, but as the focus on standardising animals for disease research 

overtook hybridisation agendas, pure lines became the dominant instrument of mammalian 

genetics.29 However, further explorations of this phenomenon, also known as heterosis, contin-

ued, notably by Snell, who published a review of human heterosis in 1951, using the mixed ances-

try of American luminaries to make his case.30

The hybrid vigour of the recalcitrant mouse embryos challenged the standardisation practices of 

mouse genetics. However, in the 1950s a loose group of researchers, most of them British, empha-

sised the importance of maternal effects on the phenotype to raise the profile of developmental 

genetics and propose alternative means of controlling variation.31  In the 1950s, Hans Grüneberg 

conducted an extended series of genetic experiments on skeletal development. His results sug-

gested that the supposedly ‘pure’ inbred mice showed striking variation in number of vertebrae 

and when these formed during development. Grüneberg’s vocal argument and his position in ge-

netic networks – British and global – was recruited by the MRC Laboratory Animal Bureau to 

make a case for establishing laboratory animal science as an international discipline. If the mice 

supplied to researchers in great numbers were not uniform, and the problems did not reside en-

tirely with husbandry and disease management, a new kind of expertise was required.32  

The issue was followed up by several younger biologists: Anne McLaren, her husband Donald 

Michie (Fig. 1-2), and John Biggers. In 1954, Nature published a number of their letters and brief 

papers that questioned the physiological homogeneity of inbred lines.33  Backed by Grüneberg’s 

more extensive article in the journal, these pieces claimed an extensive variation within inbred 
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strains in a number of physiological traits beyond skeletal development, for instance in their re-

action to anaesthetics. Hybrid mice produced by crossing two inbred strains were offered as a 

possible solution and a better experimental tool for physiological work. This was not equivalent to 

using outbred animals – the first generation or F1 hybrids were valued in particular, while subse-

quent generations of hybrids showed more variation.34 This solution did not challenge the possi-

bility of genetic standardisation per se, but rather sought to improve the existing practices for 

different kinds of experiments, providing ways to control variation for different experimental 

designs.   

McLaren had trained in Zoology at Oxford and went on to complete her PhD with Peter Medawar 

at UCL, working on rabbit genetics and murine viruses. Michie had had a fascinating career as a 

coder at Bletchley Park during the war, and afterwards moved on to study mammalian genetics at 

Oxford, before returning to artificial intelligence research in Edinburgh later in his career. Big-

gers, a British-born physiologist, had worked on sex hormones in Sydney, and was introduced to 
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McLaren and Michie by Grüneberg at his UCL office shortly after the articles appeared. By that 

point, the couple had moved from UCL to the Royal Veterinary College in Camden Town, London, 

where more space was available for their mouse colonies in the ‘canine block’. On his visit, Biggers 

was invited to take up a position there, which he accepted. They would work next to each other, to 

open up the early mouse embryo for culture.35  

The problem with embryo culture largely lay with the use of media that had been borrowed from 

tissue culture studies. Rabbit embryos, surrounded by a mucous membrane unlike most mam-

mals, had been cultured successfully starting with Walter Heape’s 1890–91 experiments in 

Cambridge.36 In mice, several attempts were performed at Jackson, embedded in genetic studies. 

Elizabeth Fekete, who had helped Snell with the embryology chapter of the Jackson handbook, 

worked with C. C. Little on transplanting mouse embryos in the 1940s. Using Locke’s solution, a 

physiological medium containing salts and glucose, Fekete moved early mouse embryos between 

the more and less cancer-prone strains to study maternal effects on tumour incidence.37 

Subsequently, as her career blossomed, McLaren often fashioned herself as a geneticist who be-

came fascinated by the environmental effects that the mammalian embryo faced in the uterus, 

and she worked extensively with Biggers on embryo culture and observing the variation within 

genetically bred mice. While the experiments were largely on the early embryos, the importance 

of genetic questions allowed her to defend the mouse, an organism in which she had consistently 

invested as the right tool for the job. McLaren, Michie and Biggers relied on a new medium pub-

lished in 1956 by Wesley Whitten at the Australian National University in Canberra, who had at-

tempted to culture mouse embryos in vitro. Replacing the egg elements with bovine serum albu-

min, a protein readily available from the meatpacking industry, Whitten cultured an 8-cell em-

bryo to blastocyst, and a year later, by replacing calcium chloride with lactate, reported that an 

even earlier 2-cell embryo could be cultured to the blastocyst stage.38 McLaren and Biggers used 
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this medium to culture 8-cell embryos to blastocyst and implant them into a surrogate mother of 

a different strain, resulting in the birth of live mice. 

These claims to embryo transfer were not entirely new. Beyond Walter Heape’s 1891 paper, multi-

ple attempts had been publicised, most notably Pincus’s work with the rabbit, claiming in vitro 

fertilisation, embryo transfer and artificial parthenogenesis – initiation of development without 

fertilisation. As multiple claims co-existed and were met with publicity, doubt and failures to rep-

licate the experiments, a set of criteria was being articulated in response.39  Moreover, claims for 

the mouse embryo transfer had been made by Fekete, and the geneticist Alan Beatty in Edinburgh 

even produced a film demonstrating eggs could be transplanted through the cervix and mice born 

as a result of the procedure.40 Culturing embryos was a key claim for McLaren and Biggers, as was 

showing that the medium did not interfere with development so live mice could be born. To rule 

out the pups coming from the surrogate mother, McLaren and Biggers used a genetic marker as 

they relied on the coat colour of newborn mice. 

The new experiments attracted some media attention. On 6 October 1958, just over a week after a 

brief letter in Nature announced the results, a column in The Daily Telegraph described the new 

animals as ‘Brave New Mice’.41As Biggers recalled, the publicity raised some academic eyebrows, 

but also enabled the scientists to promote their work and delineate its implications though more 

legitimate means. However, it was by no means the first time they had appealed to broader audi-

ences. With McLaren, Biggers contributed a chapter to a volume in Penguin’s New Biology series, 

highlighting the work on hybridisation for physiological research.42  Michie was also a contributor 

to a fancy animal publication and penned articles for boys on how to keep fancy mice.43
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McLaren and Biggers were approached by the editor of Discovery, a London popular science peri-

odical, to write about their work.44  Their piece described the development of the early mammal-

ian embryos and the experiments, and discussed the implications. Biggers and McLaren engaged 

with the newspaper coverage by finishing their article with a provocative subheading, ‘Brave New 

World’, where they distanced their work from any human extensions reminiscent of Aldous Hux-

ley’s novel – a long-standing cultural reference that had also followed Pincus.45  Instead, they em-

phasised the utility of culturing mouse embryos to foster exchange of laboratory animals and 

possible agricultural uses. McLaren was funded by the Agricultural Research Council, so she was 

eager to argue for the relevance of her mouse work and showcase the utility of Whitten’s medium. 

The scientists suggested embryos could be stored and exchanged in lightly-refrigerated culture 

media, and cited their successful posting of embryos to the Cambridge School of Agriculture.46 

The mobility of embryos, fragile and recalcitrant to culture, was a desired feature that could build 

on the extensive exchanges of mouse strains among geneticists.   

The interest in circulating embryos reflected a commitment to reinforcing the new network of 

researchers exploring mammalian embryos, and McLaren, Biggers and to a lesser extent Grüne-

berg participated in interdisciplinary conversations in Britain and the USA. Other biologists in 

Britain, most of them with a strong genetic background, were moving to work with mouse em-

bryos. Thus, the human IVF pioneer Robert Edwards started his career as a mouse geneticist at the 

Institute for Animal Genetics at the University of Edinburgh, working on inducing ovulation with 

hormones – as he later claimed, to adapt the animals to his own social timetable and not have to 

wait for them to breed at night.47 

Moreover, discussions on the role of maternal effects in development were happening in the USA, 

with the Jackson Lab playing a central role and expanding collaborations with embryologists, 

even though funders who wanted to push the Lab into providing mice for large-scale cancer re-
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search dismissed this line of investigation.48 One of the converts to the mouse, attracted by the 

genetic knowledge it could offer, was Beatrice Mintz. Like Gluecksohn, Mintz was a classically 

trained embryologist who shifted her focus to mice in the 1950s. She trained at the University of 

Iowa with Emil Witschi, a German emigre amphibian embryologist with an interest in germ cell 

differentiation. In 1946, Mintz accepted an assistant professorship at the University of Chicago, 

where she worked with frogs, salamanders, leghorn fowl and chicks. In the early 1950s, her move 

to mice was cemented when she started a collaboration with Elizabeth ‘Tibby’ Russell at the Jack-

son, aiming to trace the origin of germ cells by genetic tools. Their work, first presented in 1955 

and published in full in 1957, showed a new kind of union between embryological and genetic ap-

proaches in the mouse. If the tradition of developmental genetics tended to use mouse embryos to 

answer questions about genes and their effects, the Russell-Mintz paper also used the alleles in 

the W (white-spotted) locus to trace the fate of germ cells.49

This work relied on painstaking serial sections and staining of the embryos, with the assistance of 

two technicians. However, with the availability of culture media, Mintz moved her focus onto the 

living mouse embryo. In 1960, she was offered a position at the Institute for Cancer Research in 

Fox Chase, a suburb of Philadelphia, where she gladly moved to avoid undergraduate teaching.50 

The institution was a prime place where investigations into embryology were believed to com-

plement cancer research.51 In charge of a small laboratory, Mintz worked on culturing the early 

embryo and removing the zona pellucida, a thick membrane surrounding the embryo and keeping 

cells together until blastulation. 

The considerable number of high-profile women in twentieth-century embryology has been 

noted, and the mouse tended to be the organism most of them studied.52 Gluecksohn, McLaren 
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and Mintz, and to a lesser extent Fekete, represented an early generation of eminent scholars and 

leaders in the field they were creating. It is possible, though debated, that these pioneering 

women attracted more female scholars in the 1960s and 70s.53 Mammalian embryology, associated 

with a woman’s body but without the controversial aspects of men-dominated reproductive sci-

ences, may have been viewed as an appropriate trajectory for a middle-class woman.54  The labori-

ous, protracted and unpredictable practice of embryology made it a less attractive subject un-

likely to bring immediate reputational gains. The disciplinary marginality of mouse work is thus 

a more plausible explanation, as many women found work in new and obscure fields earlier in the 

twentieth century, for instance plant and fly genetics.55

By 1960, the mouse embryo had moved from a marginal curiosity to one of the promising objects 

of investigation. The development of culture techniques and the new promise of manipulation 

that they offered played a significant part in this transition. However, similar high-profile ex-

periments were made with other mammalian species, notably the rabbit. In 1959, Min Chueh 

Chang, a former colleague of Pincus, published an account of in vitro fertilisation in rabbit egg, his 

account gaining more traction than Pincus’ original 1935 claim that had not been replicated. What 

placed the mouse in an advantageous position was its status as a genetic animal and mammal, and 

an ability to bring researchers across disciplinary boundaries. If the rabbit was firmly a reproduc-

tive animal, the mouse had an established place in genetics, teratology and cancer research. De-

spite the investment into rabbits, their embryos proved much more resilient to the kind of ma-

nipulations that new culture media allowed in the 1960s, pushing the mouse further towards be-

ing the mammal of choice for experimental embryology. Finally, with the expansion of large-scale 

work on the effects of radiation, these rodents were widely available and cheap, with most major 

biomedical research institutions eager to invest into a mouse facility.

Through engagement with environmental effects on the organism and exploration of culture me-

dia, a group of embryologists and reproductive physiologists emphasised the interest mouse em-
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bryo could pose to geneticists and reproductive physiologists. Challenges to standardisation nar-

ratives of the large-scale screening genetics enabled this group to develop a strong published 

voice that also spread beyond the professional periodicals into the press. Similarly, using genetics 

to approach development by moving beyond treating the mouse embryos as phenotypes of spe-

cific mutations and promising manipulation techniques enabled this group to raise the status of 

their animal among embryologists. Furthermore, in the 1960s new dynamic networks of re-

searchers working with mouse embryos were established. These incorporated reproductive 

physiologists, embryologists and some curious geneticists, and as I will argue below, they were 

successful at incorporating the mouse as a key mammal under the ultra-disciplinary banner of 

developmental biology.     

§3. Manipulating development

As Mintz was beginning her collaboration with Elizabeth Russell, she edited a short volume dedi-

cated to the Environmental Influences on Prenatal Development, a summary of papers and conversa-

tions at a Jackson Lab conference.56 This was one of numerous meetings on ‘developmental biol-

ogy’ in the summer of 1956. The more extensive and generalist first International Congress on 

Developmental Biology was held at Brown University, and the Jackson Lab hosted another meet-

ing, ‘Immunology and Development’. These were sponsored by the US National Science Founda-

tion (NSF) and represented a new disciplinary alignment in the funding of biomedical sciences in 

the USA, and the study of embryos in particular. As some projects of embryology – in particular, 

the organiser as a source of induction – were seen to be in decline or replaced by biochemical in-

vestigations, ‘developmental biology’ came to represent a new direction of research, and a disci-

plinary identity that researchers chose to adopt depending on context and audience.57

Jane Oppenheimer’s lecture at the 1966 meeting of the Society for Developmental Biology (which 

had only just changed its name from Society for the Study of Growth and Development) placed the 

origins of this field in the Society’s symposia that began in 1939. These became an important space 
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for interdisciplinary communication where embryological agendas were expanded to include 

methods and questions from genetics, evolution, biochemistry, endocrinology and general 

physiology.58  However, while there was considerable talk of development and differentiation in 

these meetings, the category of ‘developmental biology’ was not in wide use until the 1960s; no 

textbooks and handbooks treated the subject, and among the few relevant journals, Growth 

changed its name to Developmental Biology in 1959. Wider recognition came even later: the first 

graduate course to use the label was offered in 1972.59 

At the level of practice, the story is more complex. Thus, for Donald Brown, one of the key players 

of molecular studies of development, the field “came of age” only in 1990s with the molecular 

techniques and interpretations, of which transgenic mice were a significant example.60  While 

“coming of age” narratives are a common trope in negotiating disciplinary histories, Brown’s lec-

ture offers an interesting counterpoint to more self-congratulatory accounts. Stating that 

“[d]evelopmental biology is above all a set of questions. It is not a discipline”, Brown argued that 

“from the 1930s into the 1960s developmental biology was isolated, with its own theories, meth-

ods, and even experimental animals... a third-world scientific community, blissfully doing our 

thing in isolation.”61 

However, long before textbooks on the subject were published and societies updated their names, 

developmental biology became a category that defined science funding in the USA. The NSF, es-

tablished in 1950 as the American federal government decided to invest heavily into the life sci-

ences after the war, listed ‘Developmental Biology’ as one of its major funding categories. It incor-

porated “growth and differentiation, reproduction, fertilization, growth and reproduction of sub-

cellular units and of cells, morphogenesis, regeneration, senescence”, and was to correspond with 

the traditional disciplines of “embryology, experimental morphology, gerontology, oncology”.62 

This vision of ‘developmental biology‘ came from Paul Weiss, a co-founder of the Society for De-
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velopment and Growth and editor of Growth, who proposed revising funding areas so as to em-

phasise the unity of biology, arguing that the old categories entrenched irrelevant boundaries be-

tween plants, animals and microorganisms and were no longer helpful.63  As Toby Appel shows, 

this bold ‘one biology‘ agenda impressed the NSF management and allowed them to separate their 

scope from the overlapping domains of the NIH.64    

Beyond US funding arrangements and a new label, globally, the research under the rubric of de-

velopmental biology expanded and diversified in the late 1950s.65 By bringing together a diverse 

group of biologists working with a variety of experimental systems, from mathematical model-

ling and viruses to humans, these changes in the networks of research represented new opportu-

nities in the species politics of embryology. Even at the first Symposium on Development and 

Growth, the fly geneticist Curt Stern juxtaposed his animal of choice to the amphibian embryo:

There have been many who complained, “If only the amphibians, ideal for developmen-

tal studies, were more easily accessible from the genetic angle!” and who added, “if only 

Drosophila, revealer of genetic secrets, could be treated in the embryologists’ fashion”.66

Ambitiously, Stern argued that those voices had finally been silenced, showing how his work on 

mosaicism in the fly could combine embryological and genetic tools. The emphasis on integrating 

the different approaches in one species persisted as developmental biology created a space where 

disciplinary crossings were becoming more straightforward. The mouse had an established ge-

netic status, which set it aside from other mammals. With the more straightforward culture me-

dia and a growing interest from embryologists, manipulation took centre stage in the 1960s. 

In Britain, funding models were not at stake for these changes, but similar discussions were tak-

ing place, driven in part by significant transatlantic communication as well as stronger links with 

continental institutions. The informal London Embryologists’ Club founded in 1948 had explored 
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the possibility of experimental embryology in organisms beyond the amphibians.67 From its early 

days, it built links with the private Hubrecht Laboratory in the Netherlands associated with Insti-

tut Internationale d’Embryologie, publisher of GEIS. With theoretically-inclined embryologists 

such as Joseph Needham and C. H. Waddington, the Club was engaging with diverse topics, in-

cluding a meeting on “Development and DNA” in 1960. In 1964, the body went national, becoming 

the Society for Developmental Biology, adding British to the title after the U.S. based Society for 

the Study of Growth and Development took the same name in 1965.68

McLaren was an active member of the London Club. In 1959, after failing to secure funding for an 

ARC research unit on reproduction at the Royal Veterinary College, McLaren moved to C. H. Wad-

dington’s Institute for Animal Genetics in Edinburgh, while Biggers secured a position at the Wis-

tar Institute and a parallel professorship in reproductive sciences at the University of Pennsylva-

nia. There, he focused on making robust standard media that could be easily made in any labora-

tory. One of his first graduate students was Ralph Brinster who had trained as a veterinary physi-

cian at Penn. His project involved defining a medium chemically, following Whitten, by avoiding 

biologically-derived reagents such as blood serum or egg yolk. Brinster’s choice of mice was not 

self-evident, but his experiments required large quantities, and mice by that point were cheaper 

and widely available, and Biggers had expertise in using them. In discussing the properties of the 

early rabbit embryo, Brinster highlighted how the thick mucinous coat that surrounds the egg, 

while probably responsible for the robustness of the rabbit embryos in culture, made it less 

analogous to humans and domestic animals, whose embryos had a thin clear coat like mice.69

The group published the new medium in 1962 and 1963, with the chemical definition as its key 

selling point. A standard medium would enable embryo culture to become predictable and attract 

new researchers to work on mice. Brinster argued that although mammalian embryos had been 

cultured for decades, the new standard could remove the uncertainties and local variation in-

volved in embryo work. As a testament to the efficiency of his technique, Brinster could demon-
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strate an embryo developing from the two-cell stage to the blastocyst, achieving the notoriously 

difficult early divisions in vitro. Moreover, the chemically defined medium allowed an in-depth 

biochemical study of the needs of developing embryos, which Brinster pursued in the years fol-

lowing his PhD.   

Yet even before the wide spread of Brinster’s medium, as it was called, the approaches to culture 

resulted in a new kind of manipulation to make genetically mosaic mice. In 1961, a Polish embry-

ologist, Andrzej Krzysztof Tarkowski,70  reported that early mouse embryos could be combined 

once the zona pellucida – the membrane that holds the early embryo together – had been re-

moved. Relying on a scientific exchange grant from the Rockefeller Foundation that sought to 

strengthen scientific connections across the Iron Curtain, Tarkowski did most of this work at the 

University College of North Wales (now Bangor University). Despite his permanent position in 

Warsaw, Tarkowski came to Britain often and was well placed in the country’s community of em-

bryologists and reproductive physiologists.71

Tarkowski relied on squeezing the embryo though a carefully sized pipette to remove the zona 

pellucida. Unbeknownst to Tarkowski, Mintz was also working on culturing the early mouse em-

bryo and removing the zona at Fox Chase. Her method, however, relied on the enzyme mixture  

pronase rather than mechanical manipulation, and where Tarkowski could report only foetuses 

with clear mosaicism, Mintz had adult mice with the characteristic blotchy coat-colour pattern to 

show (Fig. 1-3). Both announced the results at the 1962 meeting of the American Society of Zoolo-

gists. Like McLaren and Biggers, Mintz and Tarkowski both recruited the rhetoric of manipula-

tion as something that had been lacking but could then open mammals up to proper embryology. 

Their parallel discovery is well recorded and accepted, yet Mintz’s more adaptable pronase 

method was more widely used as the production of fused embryos continued. The naming pat-

terns, however, reflect some of the tendencies in credit allocation. For Mintz, these embryos were 

genetic mosaics and she used the term allophenic to stress the different cellular phenotypes that 

could be linked to genotypes. Tarkowski, by contrast, called the mice chimaeric, building on a rec-
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Fig. 1-3. Above, Beatrice Mintz at a dissection microscope at the Institute for Cancer Research, Fox 
Chase. The poster at the back reads, in French, “All our eggs are guaranteed to have been candled [i.e. 
inspected for embryonic viability]”. Below, an allophenic or chimaeric mouse with patches of black 
and white fur from different genetic lineages, next to a control animal. No date, likely c. 1965.

Image made available online under a CC license by the Smithsonian Institution. Acc. 90-105 – Science Service, 
Records, 1920s–1970s, Smithsonian Institution Archives.



ognised use in hybrid studies that referred to the Greek monster – a term Mintz detested. In fact, 

in a 1974 review of the field, she argued ‘chimaera’ was a “metaphor inapt for harmoniously inte-

grated, nonfictional, genotypic mosaics. According to the ancient Greeks, Bellerophon overcame 

and slew the chimera; may it rest in peace.”72 However, chimaera stuck despite Mintz’s insistence 

on using allophenic – for convenience, as well as because of Tarkowski’s stronger links with mouse 

embryologists, still concentrated in Britain.  

The new kinds of experiment performed on mouse embryos in the early 1960s were localised in a 

few laboratories in Britain and the USA, but the disciplinary identities of the players were fluid. 

McLaren referred to herself as a geneticist who became a reproductive physiologist through an 

interest in the effects of maternal environment on the developing embryo. Mintz was an experi-

mental embryologist with a keen interest in using genes as instruments for understanding the 

mechanics of developmental events. On his move to Philadelphia, Biggers was appointed Profes-

sor of Reproduction, and Brinster was a reproductive physiologist who maintained his veterinary 

roots. Between 1955 and 1965, most papers appeared in journals with general scope: the British 

Nature, as well as occasional papers in Science; the Journal of Reproduction and Fertility carried a 

number of articles from Biggers and McLaren, but the Journal of Experimental Zoology was by far 

the dominant specialist publication. 

Conferences at which these scientists presented can give a better idea of the work that went into 

building productive communication, drawing from the dramatic interest in the problems of over-

population and fertility. The first meeting to attract an illustrious set of speakers working explic-

itly on early mammalian development took place in London in 1963. Titled ‘Preimplantation 

Stages of Pregnancy’, it was envisioned and seen through by Biggers and McLaren on her visit to 

Philadelphia. By aligning mammalian embryology with problems of human fertility, and couching 

the meeting in terms of pregnancy, McLaren secured funding from the Ciba Foundation, the char-

ity arm of the Swiss pharmaceutical company that had an office in London and funded small con-

ferences. While some physicians who reviewed the published proceedings commented on the lack 

of immediate clinical relevance, they and the more laboratory-minded reviewers deemed the 
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event and its published proceedings a success. The meeting has also been lauded as a landmark in 

actors’ histories.73 C. H. Waddington chaired, and as he observed, McLaren and Biggers had 

“brought together quite an army of gladiators.”74 Gregory Pincus and Colin “Bunny” Austin from 

Cambridge were also present, alongside Brinster, Tarkowski and Mintz.75  

The Ciba conference brought together diverse perspectives on the mammalian embryo. Already, 

most of the work presented was on mice. Of 16 talks, nine were on the mouse; two on the rabbit; 

one on the rat; one talk juxtaposed mice and rats, while three more were comparative studies of 

several mammalian species. Mintz and Tarkowski announced their early results with chimeras. 

Brinster, as well as Mintz in her second paper, also reported the progress in defining the bio-

chemical requirements for the early embryo and stages of nucleic acid production after fertilisa-

tion. While the general discussion touched on the need to improve culture methods for other spe-

cies, including admissions of failure to make hamster and rat embryos develop in culture, the 

mouse took centre stage. The major issue was the challenge of culturing embryos at the earliest 

stages through the first division of a fertilised egg. In existing media, it would undergo the first 

cleavage, but then slowly deteriorate, even if a two-cell embryo could develop to blastocyst. The 

process, eventually labelled ‘two-cell block’, represented a gap in the desired ability to culture the 

early embryo from fertilisation to implantation.    

As Sarah Franklin has argued, the ethos of experimental embryology lies with manipulation and 

control over living objects through tools, and an embryologist explores and expands the frontier 

as a toolmaker.76  New methods were consistently developed and updated, but were often difficult 

to replicate. Local instruments were improvised at the bench, new media prepared and tested. Yet 

with increased communication around the mouse embryo, existing techniques and instrument 

designs were being exchanged as new ones were constantly designed. Thus, Mintz’s pronase 

method was adopted by several researchers, notably in Bigger’s laboratory at the University of 
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Pennsylvania, and there were several fraught attempts to extend its use to other organisms. Both 

Mintz and Tarkowski relied on local versions of the Whitten medium with ovalbumin, and Mintz 

also used a biological medium with foetal calf serum for some of her work. While ‘chemical defini-

tion’ made preparation more straightforward, it did not do away with local difficulties of embryo 

culture. Not every batch seemed to work, or work in the same way, and various explanations were 

employed to deal with the recalcitrance of the embryo. Thus, the source of water was commonly 

invoked, and Bar Harbor and Oxford water seemed particularly favourable.77 Through his career, 

Tarkowski would request portions of BMOC (one of Brinster’s media), alongside a great number 

of biochemicals, from Oxford colleagues for his underfunded Warsaw laboratory.78  

With a growing range of questions, new methods to make chimeric mice were being attempted. 

Thus, in 1968, Richard Gardner’s group in Oxford published a method to make chimeras at the 

later blastocyst stage (see Fig. i, p. vii), by replacing the inner cell mass through a micropipette. 

Other forms of micromanipulation were devised. Teh Ping Lin used micropipettes to inject inert 

substances into the mouse egg in the anatomy department of the University of California, San 

Francisco. Reporting this work in 1966, Lin suggested that the ability to inject fertilised mouse 

eggs brought the animal closer to the investigations possible in amphibia, with the added advan-

tage of having standard genetic lines.79

As techniques were accumulated and adopted by scientists working on mammalian development, 

they began to be codified in handbooks. The first manual of experimental technique under the 

explicit developmental biology label was the 1967 Methods in Developmental Biology.80  The book was 

in two parts, the first outlining the practicalities of maintaining specific experimental animals, 

and the second describing techniques. The mouse was listed first and was the only mammal. A 

technique chapter dedicated to manipulation of mammalian eggs was written by Mintz, and she 

made clear that for her ‘mammalian’ meant ‘murine’:
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And, while interesting mutations are increasingly coming to light in a number of verte-

brate species, the mouse at present far outranks all other vertebrates in the total potenti-

alities which it offers for genetic analysis... 

Among laboratory mammals, the mouse combines the largest number of advantages for 

the study of development. It is, as already indicated, excellent material from a genetic 

point of view; it is easily maintained and bred; and its embryos can now be grown in vitro 

from two-cell stage to blastocyst, and during part of the postimplantation period.81

The chapter covered culture techniques, biochemical requirements of the embryo, ways of mak-

ing mosaic mice and the recent experiments by Lin. Overall, the emphasis on the mouse embed-

ded its status as the most promising mammal with which to ask developmental questions. While 

much reproductive work continued on the rabbit, manipulation proved difficult. The early rabbit 

embryo was easier to culture and grew much larger than the mouse, reaching 3mm at the blasto-

cyst stage, but chimeric embryos failed to develop, which was subsequently explained by the 

rapid expansion of the blastocyst and inability for the rabbit embryo to implant without the 

zona.82 With mice increasingly available for large-scale genetic tests, complete with extensive 

husbandry know-how, their use was also more economical. 

In the early 1960s, the scope and focus of embryology were in transition and as new scientists 

were entering the field, the choice of organism was open for renegotiation. While other verte-

brate species still dominated the field, the genetic status of mice, their availability and the new 

techniques for culture and manipulation made them an attractive option for new work, especially 

among mammals. In the late 1960s, with the growing engagement of molecular biologists in dis-

cussions about development, mice received a further boost. 

§4. Molecular promises

As embryology was increasingly labelled developmental biology, more and more molecular biolo-

gists participated in debates concerning higher organisms. While the field diversified and ex-
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panded before significant molecularisation had taken place, the growing dominance of molecular 

approaches helped give developmental biology a coherent identity.83  In the process, the range of 

species used to study development shifted. New organisms such as the nematode worm Caenor-

habditis elegans entered laboratories, while others like the chick or the rabbit were becoming less 

relevant. The sustained interest of mouse embryologists and the new availability of cell lines gave 

the mouse the potential to combine not only genetic, but also molecular analysis with answering 

questions about mammalian – and therefore human – development. While several laboratories 

adopted mice – most famously François Jacob at the Institut Pasteur – in the late 1960s, molecular 

thinking about mouse embryos mostly happened at cross-disciplinary conferences and in specu-

lative publications: lectures, reviews and introductions to new journals. However, it was by no 

means limited to them. Discussions about cloning, the future of human genetics and engineering 

the germline spread widely beyond scientific audiences.84 

As several historians have argued, the discovery of the DNA structure in 1953 was less significant 

to 1950s biology than retrospective accounts would have it, notably James Watson’s The Double 

Helix.85 It was the expansive research on the genetic code – how the DNA sequence corresponds to 

proteins – that pushed DNA centre-stage in the 1960s. The focus on the regulation of genes was a 

dominant feature of high-profile research, with the ‘lac operon’ elaborated by Jacob and Jacques 

Monod showing how bacterial genes respond to changes in the level of the protein for which they 

code.86 Having ‘solved’ the regulation of phage genes and the lac operon of E. coli, some molecular 

biologists argued that the time was ripe for expanding their focus to higher organisms.87  A crucial 

difference was multicellularity and the mechanisms that regulate the growth of an embryo from a 

cell to an organism – the question of development. 
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Long before actively pursuing higher organism research at the bench, molecular biologists en-

tered the conversation about the role of genes and gene expression in regulating differentiation. 

The Symposia on Development and Growth had offered some space for biochemical interpreta-

tions of differentiation, and debates about the roles of enzymes in the cytoplasm and genes in the 

nucleus reprised older discussions in embryology and genetics. Both biochemists working with 

microorganisms such as Sol Spiegelman and theoretically minded embryologists such as C. H. 

Waddington readily embraced the new ways of discussing problems in terms of enzymes.88 Fur-

thermore, with the experimentally-supported consensus that genes do not change between cells 

and therefore their activity must be regulated during development, the language of genetic pro-

grammes, building on the earlier ideas of ‘gene action’ replaced the search for the chemical nature 

of the organiser as a key priority. With the elaboration of the mechanisms and principles of gene 

regulation in bacteria and viruses, and theoretical constructs inspired by information science – if 

not straightforwardly derived from it, – similar frameworks were often fitted onto the higher 

animals. 

Thus, as Lily Kay shows, Marshall Nirenberg had in mind grand questions of fertilisation, differ-

entiation and the role of genes in development as he was working on unravelling the genetic code 

in E. coli.89  Similar questions drove the new stars of molecular biology at the Institut Pasteur, 

where the iconic lac operon model was elaborated in the late 1950s. The lac operon referred to a 

series of genes controlled by a repressor, a DNA-binding protein that blocked transcription of en-

zyme genes when the substrate (lactose) was unavailable.90 At the 1961 Cold Spring Harbor Sym-

posium on gene expression, Francois Jacob, Monod and André Lwoff delivered a series of  influen-

tial papers on messenger RNA, gene expression and possible models of control of differentiation 

in higher organisms, interpolating from bacterial work. These speculative ventures into multicel-

lular organisms were welcomed by some conference organisers who often invited a token molecu-

lar biologist to illuminate discussion on development. Thus, Jacob and Monod attended the meet-

ing of the Society for Differentiation and Growth in 1963. In 1964, a conference on The Role of 
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Genes in Development in New York featured wide-ranging discussions that incorporated the new 

knowledge of DNA, RNA and proteins, as well as the informatic metaphor. The meeting was spon-

sored by the New York Heart Foundation – a surprising patron – but as its president noted in the 

proceedings published in the Journal of Experimental Zoology, the topic’s tenuous relevance to heart 

disease “has been of little concern to the New York Heart Association. It is our conviction that the 

most important advances in biological and medical science will come from investigations which 

are not too narrowly conceived in terms of current notions as to the nature of disease.”91

Mintz was present at the meeting alongside two other developmental biologists, Clement Markert 

and Donald Brown. Advocating wider use of the mammalian embryo, she drew on recent work to 

make her case:

The mammalian embryo, though it is an object of considerable potential interest, has 

remained largely at the periphery of experimental investigation into problems of early 

development. Many practical difficulties concerning availability of material and its han-

dling outside the maternal organism have continued to deter inquiry. Recent attempts to 

surmount these obstacles have begun to yield information and to disclose possibilities 

for further exploration.92 

Citing accumulating evidence on DNA, RNA and protein synthesis in the early mouse embryos, 

Mintz placed her work on allophenic mice within the theoretical concepts of gradients and de-

termination of cell fate.

Mintz was one of the few voices to promote the mouse from within the embryological community 

in the USA. However, other biologists were being convinced. When Current Topics in Developmental 

Biology was launched in 1966, to aid interdisciplinary communication among biologists,93 the edi-

tors invited Joshua Lederberg to open the first issue. The eminent E.coli geneticist and recipient of 

the 1958 Nobel Prize claimed that:

Right now is a particularly awkward time to frame any useful commentary on develop-

mental biology. The field has had enough fancy; more recently its methodology has been 
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under enormous pressure to accommodate the inspirations of molecular biology and the 

models of development that can be read into microbial genetic systems.94

Lederberg may have underplayed his expertise in the field by claiming his invitation stemmed 

from an unguarded remark that “embryology should be studied with embryos” – as opposed to 

elaborate quasi-developing bacterial systems. Yet he presented a bold vision for a new way of ap-

proaching the embryo, emphasising the theoretical ambiguities in classical approaches and sug-

gesting that molecular frameworks could bring clarity:

Despite the mechanistic flavor of the now classic work on tissue induction, embryology 

has historically had more than its share of mysticism, with some mysterious property of 

"organization" always in the background to inhibit bold experiments... For the most part, 

organization seems to be turning out to be quite comprehensible, even to the unaided 

human mind, as one more level of macromolecular chemistry.95

This phrase echoed another molecular biologist, Sol Spiegelman, and his frustration with the 

mystique of development voiced in 1958 when he had an imaginary collective embryologist ex-

claim, “My God, this [problem of morphogenesis] is wonderful, it is so complicated that we will 

never understand it.”96 For him, the solution lay not only in changing the metaphors, but also in 

the choice of organism.  Spiegelman’s proposal was thus to direct the collective effort at one or-

ganism, be it a yeast or a sea urchin.97 Lederberg was keener to emphasise the mammals:

If any single experimental system in developmental biology had a fraction of the conver-

gent attention that was given the T phages, we might be more optimistic about the pace 

of further work, but embryology suffers from being a traditional field, and seems to need 

the impulse of more novelty than frog gastrulae would now offer... I have little doubt in 

my own mind that the mouse should be that central material, but this is a prejudice pos-

sibly based on expectations of utility from and for genetics, biochemistry, cytology, im-

munology, psychology, oncology, and medicine rather than on any significant personal 

experience. At the other pole, some very simple system like a rotifer or a nematode 

needs to be conventionalized...98
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The possible contribution of the mouse to understanding development in molecular terms was 

being increasingly tied to the possibility of molecular intervention. The promise of inserting 

genes into animals, including humans, flourished in speculative reviews, essays and speeches – a 

genre into which prominent scientists with established reputations could afford to venture.99 One 

prominent example is Edward Tatum’s 1958 Nobel lecture – he shared the prize with Lederberg – 

which went as far as suggesting the possible means of introducing the molecules into the genome:

Perhaps within the lifetime of some of us here, the code of life processes tied up in the 

molecular structure of proteins and nucleic acids will be broken. This may permit the 

improvement of all living organisms by processes which we might call biological engi-

neering.

This might proceed in stages from the in vitro biosynthesis of better and more efficient 

enzymes, to the biosynthesis of the corresponding nucleic acid molecules, and to the 

introduction of these molecules into the genome of organisms, whether via injection, 

viral introduction into germ cells, or via a process analogous to transformation.100

Through the 1960s, the idea was promoted by Tatum and other prominent biologists, including 

Lederberg. Others were not as enthusiastic, however. Around 1968, a strong sense of a new “bio-

logical revolution” was gaining ground, and the future uses of envisioned technologies ques-

tioned, in the context of the strong opposition to the Vietnam War and student protest in Europe. 

Salvador Luria, one of the founding figures of molecular biology and an outspoken anti-war activ-

ist, published an article expressing concern about the new biology in the left-wing The Nation in 

1969, the same year he was awarded the Nobel Prize. In the article, he called modern biology a 

“terrifying power”, and argued for a social policy that would direct the potential application of the 

growing control over human heredity. As an epitome of these technologies, Luria envisioned ge-

netic engineering of humans and other animals.

Concerns about the potential of biology – especially on the molecular and reproductive frontiers – 

were also expressed by science writers addressing much broader audiences. In 1968, Gordon Rat-

46

99 For a good account of these debates, see Bud 1993.

100Tatum 1958. Here, transformation, a bacterial genetic term, refers to a change of a cell’s phenotype by absorp-
tion of extraneous genetic material.



tray Taylor’s The Biological Time Bomb was published in London.101  As the title implies, the book 

offered an uneasy mix of hopes and fears about the biological future – from medical applications 

and genetic improvements to more putative discussions of mind control. Taylor was no sensa-

tionalist hack. He was educated in natural sciences and the editor of BBC science documentaries, 

and the book was reviewed by the likes of Robert Edwards and Waddington.102 Published in the US 

next year, it was widely read on both sides of the Atlantic.103   

In the Biological Time Bomb, Taylor picked up on some obscure work including experiments by 

Sergey Gershenzon in Soviet Ukraine, who induced mutations in Drosophila by bathing them in 

calf DNA as early as 1939. Another example was Teh Pin Lin’s 1966 Science article on using micro-

scopic needles to inject inert substances into mouse oocytes.104 Lin’s elaborate work received little 

attention and was barely cited until well into the 1970s, but Taylor saw a potential there: 

Dr Teh [sic] chose globulin as being a harmless substance... But obviously the technique, 

once established, will be used to introduce many other agents, in order to explore their 

influence on development and thus help unravel the problems of embryology. Such 

agents will no doubt include hormones, and substances known to have a specific effect 

on development, such as thalidomide, and they will undoubtedly include DNA.105 

As molecular biologists were contemplating mouse work, the idea of inserting DNA into mam-

mals was thus in circulation, as were visions of gene therapy or a new eugenics. They implied a 

connection between the new embryology and the new molecular biology, with practitioners from 

both fields increasingly interacting in the spaces created under the aegis of developmental biol-

ogy. Yet despite the growing influence of molecular ideas on embryologists, and the ventures of 

molecular biologists into higher organisms, by 1970 few connections had been made at the level of 

practice. John Gurdon and Donald Brown’s work on nucleic acids in Xenopus ococytes, Eric David-
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son’s interest in sea urchin DNA and Sydney Brenner’s C. elegans project are the few examples of 

practical work that emerged in the late ’60s. 

Many of these experiments responded to doubts as to the applicability of Jacob and Monod’s bac-

terial models of gene expression to higher organisms.106  By the 1970s, the assumption that 

eukaryotic genes were regulated by repressor mechanisms similar to the lac operon model – 

summarised by that often-quoted assertion of Monod’s, “anything found to be true of E. coli must 

also be true of Elephants”107 – had come under pressure. Growing attention to eukaryotic cells and 

especially their RNA produced new models of gene actions in development, most famously those 

elaborated by Davidson and the molecular biologist Roy Britten, first published in Davidson’s 1968 

Gene Activity in Early Development.108  Responding to observation of large-scale RNA production in 

embryos, it suggested a much higher level of genomic organisation in eukaryotes, with “batteries” 

of non-contiguous genes, on a much greater scale than an operon, activated by a signal event or 

external signal, with whole families of regulatory genes controlling these cascades. Such new mo-

lecular explanations, embedded in the peculiarities of eukaryotic cells and genomes, were more 

palatable to developmental biologists. Thus, in response to Britten and Davidson, Waddington 

wrote that theirs was “the first speculation about the molecular mechanisms that control epigene-

sis of higher forms that begins to make sense to an embryologist who has been thinking along 

those lines for 30 years or more.”109 Jacob and Monod themselves lost faith in the universality of 

their bacterial models by 1970s. In pursuit of new regulatory explanations, Jacob converted to a 

higher organisms, picking the mouse as his animal of choice.     

Jacob recalls deciding to settle on a new multicellular organism around 1967. According to his 

memoirs, unable to choose between the usual animals of embryology, he wrote down the list of 

features for his perfect animal, only to find it did not exist.After flirtations with the flatworm Pla-

naria, Drosophila and Brenner’s nematode, Jacob settled on mice. He reconstructs two reasons for 
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this. First, the mouse had close scientific and rhetorical connections with humans and was used 

across a range of disciplines, and it was the smallest mammal with a short reproductive cycle. 

Second, Jacob claimed to have been adamant about staying at the Institute Pasteur, and adapting 

his laboratory to work on the mouse made the most sense, both because there was other work on 

the organism carried out there, and because it was relevant to the Institute Pasteur’s ultimate fo-

cus on human pathology. With the institution’s expansion of the animal facilities in the early 

1970s, Jacob had to fight to make the mouse a species of choice, using the promise of genetic 

analysis and his position to convince local immunologists to shift their attention from rabbits. 

However, a key factor in Jacob’s mouse project was a new technician who could help him through 

the species transition.110 This was Hedwig Jakob, who had built expertise in mouse cell culture in 

Gif-sur-Yvette, working with Boris Ephrussi, most famous as a Drosophila developmental 

geneticist.111  

The cells that Jacob settled on were teratocarcinoma cells, derived by Leroy Stevens at the Jackson 

Lab from a bizarre mouse tumour that seemed to resemble embryonic cells. A geneticist working 

on carcinogenesis, Stevens bred the “129 strain” that developed a specific cancer, teratoma, with 

high frequency. Teratomas manifested as highly unusual encapsulated tumours, containing a va-

riety of anatomically normal cells of tissue types that were not expected in the testes, such as hair 

follicles, teeth, and even eye or limb cells. These tumours also contained undifferentiated cells 

that gave rise to those tissues, which closely resembled the inner cell mass of the blastocyst. The 

parallels between the tumour and embryonic cells led Stevens to speculate that these were de-

rived from embryonic tissues that failed to differentiate. For Jacob, these cells offered an interme-

diate system that could combine a study of differentiating mammalian cells with culture tech-

niques familiar to a molecular biologist working with bacteria.112  
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In the 1970s, Jacob’s lab pursued the study of the T complex, that central enigma of mouse devel-

opmental genetics, building alliances with the Cornell mouse geneticist Dorothea Bennet, whose 

student Karen Artzt was hired by Jacob in 1972.113 With the expansion of molecular discussion 

around the mouse, present in speculative commentary and embedded in concerns about the fu-

ture of biology, Jacob’s transition is informative at the level of practice. While the mouse was in-

creasingly seen as a useful system for asking developmental questions with a molecular twist, 

much more mundane challenges had to be met. Infrastructure and technical expertise continued 

to be crucial factors in changing species, as was being able to afford the time and costs such a 

change of direction would incur. As the next chapter will show, it took the circulation of postdocs 

with diverse scientific backgrounds and increasingly mobile careers, as well as the emergence and 

institutionalisation of easily mobile tools to make molecular intervention in mouse embryos vi-

able in the 1970s. 

Conclusion

In 1970, Keen Rafferty’s Methods in Experimental Mouse Embryology was published. It was the first 

handbook to deal exclusively with mouse embryology.114 Extensively illustrated with line draw-

ings, it targeted biology and medical students and was based on a course for first-year medical 

students Rafferty had organised at Johns Hopkins. While some reviewers found the volume too 

challenging and impractical for undergraduate students, it was well received and recommended 

for graduate courses and even experienced researchers.115 With considerable coverage of mouse 

husbandry, equipment and culture media, as well as very recent embryological techniques, Raf-

ferty’s volume announced that the mouse embryo had become so prominent that it could be in-

cluded in routine university teaching. The preface presented the case: “Among mammals, the 

mouse has been singled out for exclusive attention for the related reasons that the animal is easily 
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the most economical and has been the object of far more attention than any other mammal.”116 

Only a decade earlier, such a statement would have lacked any credibility. During the 1960s, the 

mouse took centre stage in the study of mammalian development. In 1972, a detailed atlas of 

mouse development appeared in print, accompanied by black-and-white photographs. Authored 

by Karl Theiler, an embryologist at the University of Zurich, and it standardised the events in 

mouse developments as specific normal stages.117

The extensive standardisation of the mouse, both genetic and physiological, was a resource that 

made the species widely appealing, but also offered an opportunity in that it was open for chal-

lenge. A few biologists, McLaren, Biggers and to a lesser extent Grüneberg, made their careers by 

investigating the alternatives to the pure lines espoused by Jackson Lab. In the process, the mouse 

embryo became a viable and promising object for laboratory culture and intervention, bringing 

together expertise in genetics, reproductive physiology, embryology and biochemistry. With the 

rise of developmental biology, the species landscape had become unstable and open for renegotia-

tion. With the new manipulation techniques and rhetoric, the mouse was taking a place alongside 

the other key embryos, and the wide range of the networks that the mouse held together made it a 

promising choice for the jobs that were often yet to be articulated. 

While other species had had more sway in reproductive and embryological research, the mouse 

became attractive because of its position at the boundaries of multiple research agendas. The 

mouse embryo was made into a particularly successful boundary object, better than its more ‘ro-

bust’ analogues. The wide-ranging availability of techniques, husbandry know-how, genetic 

knowledge and pre-existing fora for exchanging facts and materials also made it into an exem-

plary laboratory species. Yet the boundary crossing that is significant to this story – that between 

embryologists and molecular biologists – was not yet realised as practical collaborations or 

straightforward exchanges of techniques. These transitions took place in the 1970s, and coincided 

with the rise of recombinant DNA techniques.
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Chapter 2. Recombinant networks: The moral economy of genetic engineer-

ing in the 1970s

Many accounts treat transgenic mice as one application of new molecular methods under the la-

bel of ‘recombinant DNA’.1 These techniques, invented in 1973, allowed researchers to isolate, 

splice and insert genetic material from any species into a circular bacterial DNA molecule known 

as a plasmid that could then be taken up by cultured cells – usually bacteria. On surface, the state-

ment is not inaccurate – all the groups that reported gene transfer into mice animals in 1980–81 

relied on these methods. Yet treating transgenic mice as a case of such straightforward molecu-

larisation is misleading for two reasons. First, the earliest experiments to introduce genetic mate-

rial into mouse cells and embryos predated these methods, and stemmed from alternative ex-

perimental programmes. Second, the genealogy and coherence of recombinant DNA is anything 

but straightforward, and more recent histories of biotechnology explored continuities with older 

research programmes and alternative genealogies for the methods. As I will argue here and in the 

following chapter, means of inserting genes into mice predated recombinant DNA. These new 

methods did, however, make an essential contribution as they streamlined existing experimental 

practices, scaled up the work on gene transfer and generated new scientific networks through 

which techniques and molecules circulated. 

Existing histories of recombinant DNA and the biotechnology industry focus on E. coli, the pow-

erhouse bacterium of molecular biology that became at the centre both the dramatic safety de-

bates and the spectacular early industrial applications.2 The possibility that modified E. coli might 

escape into the environment drove extremely public controversy, with scientists on both sides, 
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that culminated at the 1975 Asilomar conference, with subsequent guidelines published by the 

NIH that required stringent containment from any grant receiver, with requirements gradually 

relaxed by 1980. First success stories of the biotech start-ups – synthesis of somatostatin, human 

growth hormone and insulin – were also performed in bacteria. Yet despite the focus on applica-

tion in bacteria, the study of eukaryotic cells and genes were important for the adoption of re-

combinant techniques.3 New experimental systems were explored with cultured cells of humans, 

mice, hamsters and monkeys were the key mammalian species (see Fig. 2-1).

This chapter revises the history of recombinant DNA research in two ways. First, I examine alter-

native genealogies of moving genes between species, in particular gene transfer work with cul-

tured cells, somatic cell genetics and animal virus research. One of these experiments, a collabo-

ration between a molecular virologist Rudolf Jaenisch with Beatrice Mintz that was reported in 

1974, revolved around inserting viral DNA into mouse embryos. Second, I focus on the circulation 
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of techniques and plasmids between institutions that attracted unexpected users beyond the core 

molecular biology community. Unusually, these networks were highly decentralised and had to 

function in a difficult regulatory environment. One inadvertent outcome of the post-Asilomar 

NIH guidelines was the exclusion of certain institutions from the networks of exchange due to 

financial constrains that prevented them from building proper containment facilities and were 

influenced by the local regulation context. Still, through contingent moves of individuals, recom-

binant molecules could often make it to unexpected sites. The exchange patterns thus concen-

trated the transitions of recombinant DNA across disciplines to elite institutions, but also allowed 

and set the stage for unexpected collaborations.

I will first discuss the state of gene transfer in higher organisms circa 1970, and move on to focus 

on the Jaenisch-Mintz collaboration in section 2. Section 3 examines the circulation patterns in 

the light of recombinant DNA guidelines, and the role of sharing and credit in the moral economy 

of this expanding enterprise. Finally, section 4 will discuss the articulation of gene transfer into 

mammalian cells as a coherent programme with its own set of conferences, tools and expecta-

tions.  

§1. Gene transfer and somatic cell genetics

The success of research on the molecular biology of viruses and bacteria in the 1960s seeded sev-

eral research programmes that focused on investigating the effects of DNA on multicellular or-

ganisms. In the late 1940s and early 50s, the use of bacteriophages (viruses infecting bacteria), 

labelled with the newly available radioisotopes, was key in several experiments that established 

the nucleic acid component as the carrier of genetic information.4 The phrase “gene transfer” 

originated from bacterial genetics around the same time, to describe the exchange of genes be-

tween bacterial cells, often from diverse strains. This phenomenon was cited widely in the de-

bates about recombinant DNA in the 1970s to normalise the experimental insertion of foreign 

genes into E. coli as an extension of a natural process. However, before the controversy broke, 

54

4 Creager 2013: 239–53.



gene transfer was discussed in relation to mammalian cells and experimental interventions took 

place in the 1960s and the early 1970s. 

As early as 1962, a paper by the microbiologist Wacław Szybalski and his wife Elizabeth Hunter 

Szybalska in the Proceedings of the National Academy of Sciences of the USA (PNAS) claimed a suc-

cessful incorporation of whole genomic DNA from one human cell line into another characterised 

by its lack of a specific enzyme, HPRT. Crucial to the work, done at the McArdle Laboratory at the 

University of Wisconsin, Madison, was the ability to select the cells that had taken up foreign 

DNA. To achieve this, the Szybalskis developed a tissue culture medium they named HAT after its 

components (hypoxanthine, aminopterin and thymidine). Only the cells that had taken up the 

normal HPRT gene could grow in HAT. This was one of several similar studies published around 

the time. At Allen Fox’s laboratory, also at Madison, scientists treated Drosophila embryos with 

DNA extracts from different strains seeking to observe phenotypic effects.5  Again, while there 

was some evidence that DNA could change phenotype, it appeared to be merely associated with 

the fly genome without integration – reversal of the effect was frequent.6  Such work was t was not 

received with much enthusiasm. The majority of molecular biology was done in bacteria and the 

λ phage, with the genetic code being a major publicised problem at the time. The Szybalskis fol-

lowed the trend and returned to E. coli.7 

This return to bacterial cells was understandable given the availability of instruments, techniques 

and communication networks to support such work, but a small community of biologists working 

on transfer of DNA into eukaryotes did persist on the margins. Thus, Lucien Ledoux, based in 

Mol, Belgium, claimed transformation of plants with bacterial DNA as early as 1966.8  In his ex-

periments with tomatoes, barley and Arabidopsis, Ledoux treated seeds from the strains deficient 

for the synthesis of thymidine (one of the four DNA components) with radioactively-labelled bac-

terial DNA. By separating the plant DNA on caesium chloride gradient – a laborious process in-
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vented by Meshelsohn and Stahl for their experiments that demonstrated the semi-conservative 

replication of DNA9 – Ledoux detected peaks that indicated that the modified plants not only took 

up the bacterial DNA and broke it up it to make their own, but could also eventually produce un-

labelled nucleotides, suggesting gene transfer from bacteria. Yet this work could not be straight-

forwardly replicated and remained a citation oddity.10 

Some of the efforts were collated at a 1970 NATO-sponsored conference on Informative [sic] Mole-

cules in Biological Systems in Mol, organised by Ledoux.11 The conference brought together bacte-

rial, plant and mammalian workers, and presented many claims for transformation of mammals. 

The introduction acknowledged the lack of solid knowledge about the behaviour of DNA in 

mammalian cells, while expressing cautious enthusiasm. The concluding remarks were also am-

bivalent. Written by Hubert Chantrenne, a Belgian molecular biology pioneer based in Brussels, 

they divided the experimental work into two categories: classical and emergent. The latter in-

cluded experiments with higher organisms, which were rather backhandedly likened to “black 

magic”: “controls were inadequate... It took a lot of courage and faith to continue to work along 

such disreputable lines”.12 By contrast, the work on animal viruses and on the genetics of somatic 

cells were elevated as worthwhile pursuits due to their practicality. 

The reviews of the published proceedings were also mixed, often treating the results in eukary-

otic cells as suspect. As one reviewer noted, the interesting questions – whether the foreign genes 

were expressed and integrated into the host genome – were rarely answered in these studies.13 

Moreover, as some of the convenors agreed, the results were not certain and artefact could not be 

ruled out, for instance contamination. The black magic metaphor persisted around gene transfer 

into mammalian cells even as it became acceptable. While viral and somatic cell genetic work 

drew on older traditions and had some eminent names attached to it, the injection of naked DNA 
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remained disreputable, and results uncertain. Its status is a reminder that while multiple claims 

about scientific works were routinely made their survival relied on instruments of credibility, 

best conferred by nurturing further work that could then also function as evidence of replication. 

Unlike the work on using isolated genomic DNA to modify tissues in vitro, cell hybridisation and 

viral experiments were part of established and well-funded research programmes. Since the late 

1950s, several geneticists looked to mammalian – and especially human – cell culture to map genes 

onto specific parts of chromosomes. The field, labelled ‘somatic cell genetics’, sought to override 

the limitations of tracing human genes through family trees and the goal of these experiments 

was to make animal cells more like bacteria, by focusing on cells that could be easily cultured, 

controlled and manipulated. Envisioned and developed in the early 1960s in the laboratories of 

Boris Ephrussi (Gif-sur-Yvette), Guido Pontecorvo (University of Glasgow) and Henry Harris (Ox-

ford University), among others, techniques to make cell hybrids between different strains and 

species allowed gene mapping based on the few markers, mostly associated with the ability to 

grow in different media. As these hybrids were genetically unstable and lost chromosomes in the 

process of cell division, the correlation between the remaining chromosomes and their parts and 

the cells’ new phenotype could suggest the position of specific genes.14

The early experiments on somatic cell fusion were received with much controversy. When Henry 

Harris first reported his human-mouse cell hybrids in 1965, dramatic reactions followed from the 

British and American press. The press seized upon the experiments as another manifestation of 

the biological revolution and a new frontier that could one day lead to human-animal chimeras. 

Harris’s reaction courted controversy, even as he attempted to distance himself from the press. 

The choice of human and mouse cells in the experiment was deliberate to make a more dramatic 

impression on his colleagues, and when confronted by interviewers, Harris would not dismiss 

future applications to humans and even went as far as entertaining the possibility of a human-ape 

hybrid (a ‘mape’) on television. The late 1960s were a time of dramatic concern over the new bio-

logical research, with bold statements from scientists that would become extremely rare post-

Asilomar. Harris’s insistence on framing his work in terms of species did much to shape the re-
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sponse, even as he subsequently tried to minimise the fallout by pointing out that cells were not 

whole organisms. His work featured in The Biological Time Bomb alongside many others, as part of 

the “new eugenics” narrative in Rattray Taylor’s pessimistic account.15 

Work on gene transfer into mammalian cells was becoming visible in scientific publications, and 

several reviews appeared in the news section of journals and science magazines. In 1971, a Science 

article reviewed Harris’ latest cell-fusion research, alongside work on using a virus to modify 

mouse cells. Noting that the ability to insert foreign DNA, either through viruses or in cell hy-

brids, was going to help with mapping efforts and understanding gene expression, it concluded by 

addressing concerns about genetic engineering and argued that the tools were coming together to 

deliver gene therapy before society was ready. A 1972 piece in New Scientist, the British popular 

science journal with a balanced approach to the new biology, offered another opinion.16 It was 

authored by Benjamin Lewin, a former editor of Nature New Biology 17  and NIH cancer researcher. 

The opening sentence claimed, “‘Genetic engineering’ is already a cliché whose very existence 

obscures reality. Claims to have cured genetic defects in cells by the addition of foreign genetic 

information are as controversial as the arguments about the morality of applying genetic therapy 

to man.”18 Framed as a critical survey, the article covered cell hybridisation, using viruses as vec-

tors, “which ha[d] been in the minds of molecular biologists for some time”, and “just adding 

DNA”. Lewin concluded that genetic engineering was too premature to warrant ethical guidelines 

that would inevitably become outdated, a rhetorical strategy that became common as dramatic 

new experiments were being published. But he also articulated criteria for successful genetic 

modification: stable integration of the gene, use of clear selectable markers and genetic analyses 

to confirm gene transfer, and the presence of the new genetic material in the germ line and there-

fore subsequent generations, where whole organisms were concerned.
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Published over a year before the start of the recombinant DNA controversy, these pieces highlight 

continuities in the debates over genetic engineering. They also indicate a divided biological opin-

ion that the controversy would expose. However, by the early 1970s, media interest in cell fusion 

faded as embryo culture and artificial fertilisation became icons of the new biology, while somatic 

genetic research was in full swing.19 In pursuit of a higher resolution of mapping, specific chro-

mosomes were being isolated. In 1973, a paper by Wesley McBride and Harvey Ozer at the National 

Cancer Institute in Bethesda detailed a new means of allocating genes by what they called 

“chromosome-mediated gene transfer”.20The technique was a means of making cross-species hy-

brids by incubating cells with chromosomes purified by centrifugation, and observing the 

changes that took place in the cells. 

In order for these experiments to be meaningful, a series of cell lines, markers and mutations had 

to be developed. The few known mutants relied on metabolic characteristics, such as the ability of 

cells to grow in specific media such as Szybalskis’ HAT. This remained the simplest system, and 

lack of enzymes such as thymidine kinase (tk) and HRPT could be detected. In the 1960s and 

1970s, the standard biochemical technique of gel electrophoresis was adapted to expand the rep-

ertoire of phenotypes, as different forms of enzymes would migrate differently on a two-

dimensional gel.21 Moreover, by the 1960s animal cells were widely standardised and accessible 

though centralised facilities. In 1964, the American Type Culture Collection, established for stor-

age of microbial samples, began accepting animal cells that could be frozen in liquid nitrogen and 

samples then sent to researchers.22 In the 1970s, these activities expanded and new cell banks 

emerged. One at the MIT was sponsored by the National Science Foundation, while a human cell 

culture bank was established in Camden, New Jersey in 1972.

One geneticist was heavily involved with the expansion of somatic cell genetics in the USA was 

Frank Ruddle, a former postdoc of Pontecorvo. Chairman of the Department of Biology at Yale, 
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Ruddle managed to secure an uncharacteristically long-term grant for his laboratory from the 

newly established National Institute for the General Medical Sciences (NIGMS) for his research 

into the “genetics of somatic cells”.23 At Yale, Ruddle established multiple networks of collabora-

tions within and outside the institution, overseeing and working on several projects associated 

with murine cell genetics, as well as human population genetics. He was also involved in building 

genetic networks. Thus, Ruddle helped the Camden tissue bank secure NIGMS contracts and ac-

tively encouraged his colleagues to contribute cells to the bank, offering them to put a “hold” on 

the material for up to a year so that it could be exploited further before sharing.24 With Victor 

McKusick, he initiated the series of Human Gene Mapping Workshops in 1973, which became the 

major vehicle for communication within the human genetics community. Subsequent meetings 

standardised the nomenclature of human genes and established communication and logistical 

networks that were important in initiating the Human Genome Project.

Ruddle actively promoted somatic cell genetics, for instance by introducing the approach as a way 

to study development. In 1972, he chaired the annual Symposium of the Society for Developmental 

Biology dedicated to the Genetic Mechanisms of Development at the Wesleyan University, Con-

necticut. The meeting brought together topics seemingly distant from embryology. Its first third 

was devoted to bacteria and viruses, envisioned as “as paradigms for the genetic analysis of dif-

ferentiation and morphogenesis in the complex eukaryotes.”25 Another panel was devoted to us-

ing Mendelian analysis for interpreting development, with the usual animal suspects – Drosophila, 

Xenopus and the mouse – and the third part discussing how somatic cells could be “a new tool for 

the developmental biologist”. According to Ruddle, 

In these experimental systems, parasexuality in somatic cell populations is used to ex-

tract genetic information pertinent to developmental control mechanisms. In a sense, 

this approach permits the concepts and methodologies inherent in microbial genetics to 
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be applied directly to the study of differentiated soma of higher eukaryotes explanted in 

vitro. 26

Another unusual aspect of the symposium was a public launch of a film about the impact of scien-

tific research on social problems. Responding to the recent debates, its topic was genetic engineer-

ing. Some argued for oversight from the scientific community, including new committees on eth-

ics and safety. These approaches echoed the sentiment of the 1973 Gordon research conference 

that is usually taken as the starting point of the recombinant DNA controversies, where the con-

cerned scientists voiced public health concerns through open letters to the scientific community.27 

While these debates ultimately focused on the containment of E. coli, a potential human pathogen, 

it was the inserted DNA that caused most concern. In the original experiments from the Berg 

laboratory at Stanford, these genes came from the tumour virus SV40. Virus research had played 

a key role in developing techniques to insert foreign DNA into cells – an approach developed in 

mammalian cells.

§2. Viruses and embryos: The Jaenisch-Mintz collaboration

As Chapter 1 showed, in the 1960s molecular biologists were eager to expand into higher organ-

isms, and embryologists were increasingly attracted to molecular tools and questions. Several 

candidate species attracted big names, the mouse among them. For Sydney Brenner and Francois 

Jacob, working with C. elegans and mouse teratocarcinoma cells, there was no sharp transition 

between molecular and developmental practices – the techniques and instruments were a part of 

locally-elaborated sets of questions.28  Yet such synthesis was not the rule. Success stories in mo-

lecularising the mouse embryo typically relied on collaboration between molecular biologists and 

embryologists, often carried out through the extensive circulation of young postdoctoral fellows 

between institutions. Divisions between expertise were significant and parts of the projects were 

often performed in different locations best suited for specific techniques. Here, I discuss one of 
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the earliest collaborations that resulted in the first announcement of inserting foreign genetic 

material – a virus – into the mouse embryo. 

In 1971, the Princeton molecular virologist Rudolf Jaenisch approached Beatrice Mintz with an 

ambitious project – to insert a virus into the mouse embryo. Jaenisch had just moved to Arnold 

Levine’s Princeton laboratory from the University of Munich, where he had completed a medical 

degree combined with a PhD in the molecular biology of bacteriophages. Levine had secured his 

assistant professorship at Princeton in 1968, having studied the replication and control of host 

metabolism by bacteriophage ΦX174 and SV40. The latter virus was to become a major project for 

his laboratory in the early 1970s, and Jaenisch was one of his first postdocs who helped establish 

the system.29

Study of tumour viruses had flourished since the 1960s, when they were successfully promoted as 

a major experimental system to study cancer causation. In the USA, funding for tumour virus 

studies ranked second in National Cancer Institute expenses, topped only by chemotherapy.30 The 

role of viruses as causative agents of all cancers remained controversial, but arguments had been 

made for their use as an experimental system. Before the war, work in fowl and mice showed 

some tumours could be induced by viral particles, even though these kinds of infectious heredi-

tary causes went in and out of fashion.31 In postwar America, the complex “policy-making com-

munity” encompassing politicians, cancer charities, pharmaceutical companies and healthcare 

bureaucracies was compelled to invest major funds into the study of tumour viruses.32 This was in 

response to the political agendas of the war on cancer, the widespread use of molecular biological 

approaches and instruments such as ultracentrifuges to purify viruses, and the major success of 

polio research that led to the unveiling of the Salk vaccine in 1955.  

Leukemia viruses received much initial funding, but other tumour viruses soon became key re-

search objects. Building on the success of mapping bacteriophages, prominent molecular biolo-
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gists and virologists turned to new systems such as the polyoma virus and SV40.33 Jaenisch was 

one of many participants in this migration. In 1971, Levine took sabbatical leave to Europe, and 

Jaenisch was effectively in charge of the lab. As a recent convert to animal viruses, Jaenisch was 

eager to explore the more ambitious questions of tumour causation that went beyond the monkey 

cell system in which SV40 was cultured. He was attracted to the problem of tissue specificity, or 

viral tropism. Why did SV40 give rise to skin cancer but did not affect the liver? Was it unable to 

infect the liver cells, or unable to make them grow uncontrollably, that is, to transform them?34  He 

had come across Mintz’ work on allophenic mice and was attracted by her use of genetics to an-

swer developmental questions. If a virus could infect the early embryo, the expectation was that 

its DNA would infect the majority of cells and tissues. Jaenisch called Mintz to tell her about his 

ideas, and she invited him to visit her lab – a short drive from Princeton. Jaenisch recalls her as 

polite, but skeptical, to the extent that he began reaching out to other mouse labs. However, after 

some time Mintz called him back and suggested they work together. 

The collaboration was negotiated with the absent Levine, and relied on Jaenisch driving between 

Princeton and Fox Chase. In Mintz’s lab, he would learn to deal with mouse embryos – a prime 

location for the task. At Levine’s lab, he would purify SV40 DNA after growing it in monkey cells 

by isolation in alkaline sucrose gradient and further purification. Jaenisch would then take the 

isolated viral DNA to Fox Chase, where he would attempt to inject the isolated viral DNA into the 

blastocyst, following Mintz’s guidance. This technique was based on Teh-Ping Lin’s microinjection 

method and Richard Gardner’s work on microinjecting inner cell mass into the blastocyst, with 

which Mintz was familiar.

Mintz may have thought Jaenisch’s project risky, but several other laboratories were pursuing 

similar research. Lin’s was one: as Jaenisch recalls, he went for a brief visit to UCSF that he did not 

find particularly helpful, and he was perplexed by Lin’s attempts to inject ribosomal RNA into 

mouse eggs that remained unpublished. At the Rockefeller University in New York, Elaine Diacu-

makos, a student of Edward Tatum and an expert in microinjection of somatic cells, was trying to 
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work with mouse eggs slightly later, in 1973–1974, again with little success.35 In the UK, Anne 

McLaren was experimenting with the effects of nucleotides on the developing mouse embryo, by 

culturing them in a solution of DNA.36 McLaren’s interest in rodent DNA can be traced to her late 

1960s experiments on repetitive sequences in mice and rats, studies that generated some interest 

among the molecular biologist experts on the issue.37 In 1973, McLaren co-authored a paper on the 

effect of DNA on the growth on the mouse embryo with her student Michael Snow. Snow and 

McLaren’s report showed little effect of external DNA on the embryo – it suggested that freshly-

prepared DNA enhanced growth, while if it had been stored for a while, the effect was deleterious. 

There was, however, no evidence of genetic modification. 

The early experiments on gene transfer mostly relied on phenotypic markers to detect genetic 

modification. While Snow and McLaren used radioactively-labelled nucleotides to follow them 

into the embryo, their conclusions also relied on the lack of phenotypic change. Jaenisch hoped to 

see phenotypic effects – tumours in adult mice, but he was also interested in the fate of the virus 

in tissues where it was suppressed. For this, he was seeking a tool to detect the viral DNA regard-

less of its function, a nontrivial task. Specific DNA could be detected by measuring rates of hy-

bridisation of radioactively-labelled molecules. A DNA solution was heated to just below boiling 

point, and the double strands would unzip and separate. As the temperature was lowered, the sin-

gle strands hybridised again into double-stranded molecules, and the rate of the process could be 

measured through radiation detectors. The hybridisation rate was assumed to be proportional to 

the sequence similarity between the molecules – if it was rapid, it could be assumed many identi-

cal sequences were present in solution. The measurements were inscribed as C0t curves (or “cot 

curves”), and were a means of confirming presence of specific DNA as well as being useful in early 

studies of genome complexity and repetitive DNA (Fig. 2-2). 
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For Jaenisch’s experiment to work, the SV40 probe had to be identifiable in the mix of mouse DNA 

that had been sheared with a non-specific restriction enzyme. He achieved this by preparing a 

highly radioactive (“hot”) probe from the purified SV40 DNA, a solution that presented itself in 

1973, when, having completed his postdoc at Princeton, Jaenisch moved to the Salk Institute. Lo-

cated in La Jolla, San Diego, the Salk had been pioneering small laboratories for new faculty.38 It 

was also attracting prominent molecular biologists as non-resident fellows. Among them was Paul 

Berg, who joined the institute just as the recombinant controversy began to unfold. With a British 

postdoc Peter Rigby, Berg was developing “nick translation”, a method to make specific DNA mole-

cules highly radioactive.39 

At the Salk, Berg passed the protocol for the technique to Jaenisch as early as 1973, though it re-

mained unpublished until 1977. Such circulation of methods was not uncommon among molecu-

lar biologists, given long delays in publication, but Jaenisch certainly benefited from access to 

Berg that his position at Salk allowed. Another crucial technique for DNA detection that super-

seded cot curves, Southern blotting, was developed in 1973 at the University of Edinburgh by Ed-

win Southern, but was only published in 1975. In Southern’s case, the Journal of Molecular Biology 
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Fig. 2-2: A C0t curve from Jaenisch and Mintz’s 
1974 paper, showing extracts from the brain tissue 
in several mice (numbered). The relative rate of 
reannealment between single stranded DNA mole-
cules [c0/(c0– ca)] is plotted against incubation 
time. The high rate for mice #1 and #15 indicates 
presence of SV40 sequences. C.T. stands for calf 
thymus DNA, used as a control on its own and 
with a sample of SV40 DNA (“C.T. + SV40”) to rule 
out contamination.   
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rejected his “methods” manuscript until a significant biological application could be included, in 

line with its policy. However, Southern liberally shared his protocols with fellow biologists, and 

they soon spread to the USA via his transatlantic visits.40  Berg went even further, allowing Jaen-

isch to announce and briefly describe nick translation in the paper with Mintz. This generosity 

was not restricted to Jaenisch – Berg’s 1977 method paper on nick translation lists nine further 

publications that had relied on the technique in 1973–77, most of them from Stanford. Berg was 

duly acknowledged as a donor of the technique, and its emerging use enabled him to garner evi-

dence for future publications and demonstrate a clear biological significance of his method. 

Jaenisch and Mintz published their results in the Proceedings of the National Academy of Sciences 

(PNAS) in 1974. Mintz had been elected to the Academy in 1973, which made it easy for her to sub-

mit papers without looking for another fellow to “communicate” the manuscript, and the publica-

tion was fast. Their data strongly suggested that SV40 DNA was present in the tissues of the em-

bryo, in various concentrations, and they speculated that the virus had probably integrated into 

the mouse genome, even though alternative possibilities could not be entirely dismissed. Other-

wise, the framing of the paper was in terms of tumour virus biology – tissue specificity, the effect 

of the embryo on viral activity and tumour formation. Remarkably, the experiment was not posi-

tioned as an attempt at genetic intervention, nor was the possibility suggested in the rather fo-

cused language of the paper. It is unlikely that it had not been entertained, but perhaps the 

authors felt it was too fanciful – and potentially controversial – to express in print. While the ex-

periment did not use recombinant DNA, SV40 was a source of anxiety that fuelled the recombi-

nant controversy in the first place. While the 1974 paper suggested that viral DNA might integrate 

into an embryo, this was not entirely unexpected, since this is what viral DNA is supposed to do. 

Whatever the reason for refraining from genetic speculation, the Jaenisch-Mintz SV40 work went 

unnoticed beyond the expert community, although it was well-received within. In the following 

years, Mintz shifted her agenda to work on teratocarcinoma cells, but Jaenisch continued viral 

work with mouse embryos. 
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§3. Recombinant exchanges 

Methods to isolate DNA and analyse it predated 1970s and, while laborious and sometimes yield-

ing ambiguous data, as in the case of Ledoux, they could be used successfully and to much ac-

claim. However, with the ability to cut and paste DNA using restriction enzymes and DNA ligase, 

insert it into a circular bacterial molecule called a plasmid that could then be taken up by other 

cells, and then detect and map fragments through radiolabelling methods. These techniques, com-

ing together in 1974, rapidly expanded the scope and scale of research with DNA. In a complex 

political climax in the USA, with severe concern over the safety of such experiments, new net-

works formed through which plasmids travelled. This section will examine the circulation of re-

combinant DNA in the second half of the 1970s, stressing the concerns about access, sharing and 

communication that were part of the moral economy of recombinant DNA research. This context 

is crucial to place the subsequent invention and communication of transgenic animals, as the 

laboratories that made these mice partially adopted the new style of doing molecular biology with 

the plasmids and tools that they received from these networks. 

For Jaenisch, SV40 was convenient because he had much expertise in handling it, and it was avail-

able in Levine’s Princeton lab. It was also a major instrument of molecular virology, and the tim-

ing of the PNAS publication was opportune. In 1973, John Tooze authored the first textbook on the 

subject.41 Moreover, shortly after the paper appeared in the April 1974 issue of PNAS, the Cold 

Spring Harbor Symposium on Quantitative Biology, an eminent annual meeting at the core of mo-

lecular biology in the USA and globally, was dedicated to tumour viruses (Fig. 2-3). The topic was 

chosen by James Watson, still combining his position at Harvard with directorship of Cold Spring 

Harbor, and it brought together leading researchers. Jaenisch’s paper was received as further evi-

dence for the transforming activity of SV40 and its ability to integrate into embryonic cells and it 

was mentioned in David Baltimore’s symposium summary.42 

Back at the Salk, Jaenisch’s attempts to detect tumours in injected mice, or at least SV40 proteins 

in the embryo (which would indicate gene expression) were not successful. Nor would the mouse 
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lines established from the manipulated embryos germline transmission. The embryos appeared 

extremely mosaic and the germ tissues did not appear to have taken up SV40. While Jaenisch kept 

breeding the SV40 mice, he was also looking for other systems that might have at least some of the 

molecular knowledge offered by SV40. Luckily, in the dynamic environment of the Salk Institute, 

such a system came with new postdocs in 1975. Arriving from David Balimore’s MIT laboratory, 

they brought Moloney murine leukemia virus (M-MuLV) with them, another virus that had been 

used extensively in mouse cancer research.43

Postdoctoral fellowships were established in the interwar USA, as research was becoming an in-

creasingly important part of academic work but universities remained reluctant to hire full-time 

research staff. The funding came from philanthropic foundations such as the Rockefeller and was 

intended to encourage transatlantic exchange as European research institutions were 

blossoming.44 With the major expansion of American biomedical funding after World War II, the 
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Fig. 2-3: Rudolf Jaenisch at the June 1974 
Cold Spring Harbor Symposium on 
Quantitative Biology.
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trajectory frequently turned the other way as many European scientists, especially molecular bi-

ologists, went to the USA for brief periods.45  As funding for biomedical research grew steadily 

through the 1950s and 1960s, postdoctoral positions became increasingly common, with the ex-

pectation that young scientists who had just completed their graduate studies would spend be-

tween 9 months and 3 years in several laboratories before getting a permanent position and, if 

successful, starting their own group. Perhaps the most famous postdoc, James Watson, spent sev-

eral years in Copenhagen and Cambridge, before returning to the USA and taking up a position at 

Harvard.  

The senior scientists running the labs – the principal investigators, or PIs – performed increas-

ingly managerial duties. In universities, they were hiring, teaching and sitting on university 

boards as well as running their laboratories. However, even in research institutions like the Salk, 

PIs had to submit multiple grant applications to attract funds and prestige to their laboratory; 

they would travel the conference circuit, presenting their results and help articulate the ‘state of 

the art’ in their field. Some continued to do bench work – this was often important to their reputa-

tion as good scientists uninterested in institutional ‘politics’ – but running a successful laboratory 

was usually very time-consuming. Thus, while the circulation of postdocs was supposed to expose 

young scientists to diverse techniques and let them publish as many experiments as possible to be 

in position to start their own group, postdocs and graduate students also performed the vast ma-

jority of experimental labour.

Moreover, they served as immediate vehicles of disciplinary exchanges and cross-fertilisations of 

techniques, ideas and experimental systems. While Jaenisch was not a formal postdoc in Mintz’s 

laboratory, the combination of expertise and access to resources between Princeton and Fox 

Chase were crucial to their experiments. Many stories of resource circulation feature DNA sam-

ples, enzymes and cells that postdocs brought with them. Thus, the celebrated Cohen-Boyer-Berg 

collaboration used Xenopus DNA that Berg’s postdoc John Morrow brought from Don Brown’s lab at 

the Carnegie Institution, and plasmids were then ferried between UCSF and Stanford by a re-
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search assistant in a Volkswagen Beetle.46 Similarly, restriction enzymes required for these ex-

periments arrived in a thermos flask from Holland with Boyer’s postdoc. As Sally Smith Hughes 

points out, “these enzymes were not then available commercially and had to be begged for or bor-

rowed through a network of material exchange or tediously synthesized and purified from 

scratch.”47

The free exchange of materials was the basic premise in the moral economy of molecular biology, 

and it thrived through the 1970s. However, it was perceived to be under attack by the attempts to 

regulate and to commercialise recombinant DNA. Even the earliest attempts to control the use of 

the plasmids that Cohen, Boyer and Berg shared met resistance. The requests as innocuous as not 

inserting tumour virus DNA onto plasmids for safety reasons could be resisted, and the insistence 

on not sharing the DNA further was met with suspicion. In 1971, Andrew Lewis, a young virologist 

at the National Institute of Allergy and Infectious Diseases developed a hybrid between SV40 and 

a common cold adenovirus, he drew up a memorandum of understanding that asked recipients of 

the new construct to take safety precautions and not to share it further unless they could receive 

similar assurance. Heads of major molecular labs, including Paul Berg, James Watson and Daniel 

Nathans (Johns Hopkins), refused to sign. Lewis was breaking the code of sharing and his implicit 

doubts about the competence of senior molecular biologists were a major faux pas.48   

Later in the 1970s, when limitations on recombinant research were grudgingly accepted by some 

biologists (and eagerly promoted by others), the problem of sharing did not diminish. Despite the 

culture of sharing resources, credit had to be allocated properly and it was expected that the in-

ventor would ‘capitalise’ on his or her technique. The field was highly competitive, between indi-

viduals and institutions. The moratorium on this research, as well as the further NIH guidelines 

and public hearings had real effects on some careers, and several scientists concerned about their 

future went as far as moving institutions. Thus, after public debates in Cambridge, MA led to a 

brief local moratorium on recombinant research, Tom Maniatis moved to Cold Spring Harbor. 
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Maniatis had just received an assistant professorship at Harvard and was working on techniques 

for cloning DNA using mRNA molecules as templates (complementary DNA or ‘cDNA’). The lab 

that was being built for recombinant work at Harvard, which would include the Maniatis group, 

was one of the focal points of the criticism. Through an encounter with James Watson, he was 

offered to move to the more peaceful environment at Cold Spring Harbor, and subsequently set-

tled at the California Institute of Technology (CalTech) in Pasadena, where he moved on to work 

on inserting cDNA fragments into mammalian cells.49   

Maniatis was recruited to CalTech by Robert Sinsheimer, one of the most vocal opponents of re-

combinant DNA research in scientific circles. Despite his political commitments, he believed that 

it was his responsibility as chair of the biology division to attract the best talent at the cutting 

edge of research. Less prominent and endowed departments, by contrast, were less likely to invest 

in required facilities. Thus, Richard Palmiter, a biochemist at the University of Washington in 

Seattle who was then working on chicken ovalbumin gene spent much time in Pierre Chambon’s 

laboratory in Paris after his home institution was reluctant to build containment facilities.50  

My goal here is not to criticise the NIH guidelines, which were a result of complex negotiations 

with great scientific input and in many ways a success story of the scientific lobby that avoided 

federal regulation. It is rather to note the effect they had on the dynamics of circulation and ex-

perimental work and access to novel techniques before their standardisation. Despite the con-

straints that the guidelines imposed on research, recombinant molecules could circulate with 

relative ease. Even though it was recognised that molecular biologists had limited awareness of 

how to work with potential pathogens, the exchange of reagents was defended. At Asilomar, a 

group of delegates voiced concerns about the effects regulation could have on sharing, and argued 

that the dangers were limited to the primary stage of inventing new recombinants and were best 
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left to ‘quality’ labs.51 Isolated DNA could be posted through courier services within a secondary 

container in case of spillage.52  The space in the large dry ice boxes used to ship samples could even 

be optimised by packing in some ice-cream and occasionally lobsters.53 It was the escape of modi-

fied organisms that was most strongly policed, even though these could also be shipped with 

proper requirements. 

Circulation of molecules and information were also important concerns in the patenting debates 

surrounding the basic “cut and paste” methods. As Boyer and Cohen published their work on in-

serting a Xenopus gene into E.coli in 1974, Stanford’s patenting officer learned about it from the 

front page of the New York Times and set off to file a patent application within the remits of the 

university’s institutional patent agreement with the US Department of Health, Education and 

Welfare (DHEW). The move caused severe debates both within Stanford and in the scientific 

community at large.54 In these early discussions, Cohen and Boyer agreed that their experiments 

were made possible by multiple existing tools and innovations. The challenge to the distribution 

of credit within the moral economy of recombinant research was negotiated through the late 

1970s, partly by making the case for patents being in public interest, and by the great interest of 

the US government in biotechnology as the industry to reinvigorate flailing US economy.55   

In 1976, under the leadership of NIH director Donald Fredrickson, DHEW consulted scientists, 

scientific associations, industry representatives, patent lawyers and a few consumer organisa-

tions on patenting recombinant methods.56 University scientists’ responses were diverse, ranging 
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from reluctance to comment to outright opposition. Some, like Szybalski, assumed commerciali-

sation was inevitable and resigned to it. Others were more positive about industrial applications, 

but felt recombinant DNA was too controversial a field, both in public arena and in terms of dis-

tributing credit among the inventors. However, while scientists were uncomfortable with secrecy, 

administrators and patent lawyers believed that patents would not delay communication. Even 

though both academic and industrial correspondents were worried about trade secrets (compa-

nies wanted to be able to keep them, scientists were concerned they would arrest the progress in 

the field), the feeling was that publications were too important for academic researchers, espe-

cially in such a dominant and novel area, to be significantly delayed by patent concerns, and peer 

review and journal back-logs would likely be a much more significant obstacle to speedy circula-

tion of data.57

The exchange of information was thus another key concern. It occurred through specialised pub-

lications, conferences and the scientific grapevine. New journals appeared continuously in the 

1970s, despite the steady growth in price and the declining resources of scientific libraries. Some 

of them were responding to the growing publication lags between submission and appearing in 

print – something that could take between 6 and nine months, according to a Nature comment in 

1972. Cell, a new journal of “exciting biology” as claimed in its first editorial, was founded in 1974 

by Benjamin Lewin and promised a rapid publication of comprehensively research and argued 

papers using an international board of editors who could deal with manuscripts on a more local 

basis. In the same year, Nucleic Acid Research was founded, also promising rapid publication. Jour-

nals more specific to recombinant research appeared in the late 1970s. Gene, dedicated largely to 

gene mapping with restriction enzyme but in practice publishing an array of recombinant re-

search, was founded in 1977, and was flooded with manuscripts. It was edited by Szybalski who 

used his journal’s editorials as a platform to comment on the current state of knowledge and regu-

lation.
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Despite the emphasis on speeding up publication, they were never fast enough for the key sites of 

molecular research, and much personal exchange of information occurred before publication. 

Preprints of papers and conference talks circulated between collaborators without the pressure of 

formal publication. Conversations and personal correspondence often involved data and images 

sent as courtesy. Again, expectations on sharing existed, even though they had to be counterbal-

anced by interest in securing priority and developing one’s own work. James Watson’s essay in the 

1973 Cold Spring Harbor annual report summarised this paradoxical situation. It emphasised the 

importance of priority as not a mere matter of pride, but a career requirement for securing posi-

tions and research funds (“There is little enthusiasm for those who always come in second”).58 

How one learned about a competitor’s results was an important consideration in adopting some-

one else’s method or experimental system: if there had been a publication, the problem was “up 

for grabs”, but if one learned about it informally, an expectation existed that one should let the 

author publish. Publications lags were thus not only frustrating to the author, but to those waiting 

to reap the benefits of the paper. However, most manuscripts circulated as preprints, given to 

students, collaborators and selected colleagues – the writing up moment, Watson argued, was the 

more useful timing of discovery. While the author may have requested that a colleague refrain 

from sharing the data, news and secrets were impossible to keep once they began circulating be-

yond the author. Watson concluded with a call to persevere with science, to the best of one’s abil-

ity, despite the inevitable “the rat-race aspects of much of the high-power science” that was not 

going to disappear.59   

With the rapid pace of recombinant DNA research and political uncertainties around it, its scale 

expanded dramatically. Unlike earlier stories of animals or isotopes, there were many hubs of 

sharing DNA. While they were attempt to centralise plasmid supply and catalogue isolated genes – 

most notably by GenBank, but it collected sequence data60  – plasmids moved contingently before 
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the courses and handbooks on recombinant DNA techniques were available. In these years, jump-

ing on the “molecular bandwagon” relied on alliances that were likelier to succeed at prestigious 

and well-funded institutions. With the growing interest in eukaryotic genes that were now mo-

bile and subject to analysis, scientists working with animal cells and even embryos were increas-

ingly securing access to these networks. 

§4. “DNA-mediated gene transfer”: Expanding the networks

While Jaenisch benefited greatly from his position at the Salk, his work remained within the 

bounds of animal virus research. With M-MuLV, Jaenisch was able to trace the virus through the 

cell and subsequent generations of mice, establishing Mendelian transmission of the virus. He 

had developed a more straightforward method to detect specific DNA, using viral cDNA after the 

methods pioneered by Tom Maniatis spread through the elite networks of molecular research. 

Moreover, he found that embryos could be infected with M-MuLV at 4–8 cell stages, avoiding the 

need for microinjection that made the procedure much easier to perform.61 There were no sugges-

tions in the papers that viruses could be used to introduce new genes via recombinant experi-

ments. Given the central role of tumour viruses in inspiring such work, it is hardly the case that 

the idea hadn’t occurred to him or his readers. However, such an emphasis allowed Jaenisch to 

avoid participating in unsavoury debates and to focus on the important questions of cancer ori-

gins and the regulation of viral DNA. However, other labs were increasingly looking to use plas-

mids to answer questions about mammalian gene expression. The success of this programme 

drew on aligning research from somatic cell genetics, tumour virus work and recombinant ex-

periments to articulate a new agenda for genetic modification of mammalian cells.

In 1976, gene splicing delivered on the promise of isolating eukaryotic genes; the first plasmids 

carrying interesting genes were reported and shared. Genes for various globins and immuno-

globulins were isolated among others. Combined with the array of other techniques mentioned 

above, but not yet in wide use, the researchers working on eukaryotic DNA were in optimistic 
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mood. The new work was brought together in the 1977 Cold Spring Harbor symposium on ‘Chro-

matin’, the structural element of eukaryotic chromosomes that combines DNA and proteins. The 

symposium on ‘Chromosome Structure and Function’ had been held as recently as 1973, so the re-

turn to the topic – and the subsequent 1978 symposium on DNA replication – signalled enthusiasm 

about eukaryotic genomes. In his forward to the published proceedings of the Chromatin sympo-

sium, James Watson noted that “at the end we were both overwhelmed and dazzled, and many 

participants left feeling they had been part of an historic occasion”.62  Pierre Chambon’s summary 

reviewed recent research on eukaryotic cells to claim that the previously ‘dirty’ field that had 

looked up to bacterial genetics for its clarity and elegance was now more than capable of being 

understood in similar terms. It also brought together the molecular techniques of gene splicing 

and nascent DNA sequencing with the more nuanced appreciation of eukaryotic genes in cellular 

context. All the advances, Chambon suggested, “marked the beginning of a new phase where we 

can foresee the day when eukaryotic developmental problems will be elucidated at the molecular 

level.”63

While gene transfer in mammalian cells was still seen as ‘black magic’,64  experiments that aimed 

to adapt bacterial transformation protocols to tissue culture were gaining traction. In 1973, the 

Canadian microbiologist Frank Graham had published a paper with Alex van der Eb, whose lab in 

Leiden he was visiting, in which they developed a method of transferring purified herpes simplex 

virus (HSV) DNA using calcium phosphate and salmon sperm DNA. In April 1977, Graham pub-

lished further work on inserting isolated fragments of the herpes virus with the thymidine kinase 

(tk) gene into human cells in PNAS.65 A month later, a similar paper from Richard Axel’s group at 

Columbia University appeared in Cell, refining the method somewhat.66  As a brief review in Na-
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ture suggested in 1977, “it may eventually become feasible to use the HSV model for DNA-mediated 

gene transfer.”67 In the late 1970s plasmid carrying the tk gene became a vector of choice.

The use of HSV tk relied on the older work on gene transfer from the early 1970s, as it was one of 

the first genes whose phenotype could be easily detected in cell culture by the ability to grow on 

specific media such as HAT. The transition of HSV tk from a sign of viral infection was represen-

tative of a broader instrumental shift towards using plasmids made with restriction enzymes to 

ask questions previously addressed by infection research. Similarly, SV40 DNA was being rou-

tinely isolated and inserted into plasmids, as one of the first materials of interest to recombinant 

researchers. New means of detecting and assaying for the tk gene were being developed,68 and it 

was shared widely. Moreover, as purified DNA was increasingly accessible, a new network of dis-

cussions was constructed around its use in higher organisms.

Designed to foster communication between different fields, conferences on gene transfer helped 

elaborate new questions, and their proceedings, increasingly published through rapid photo-

printing, document the attempts to give some coherence to the ‘cutting edge’. A major meeting 

dedicated to ‘Genetic interaction and gene transfer’ took place in 1977 at the Brookhaven National 

Laboratory. Its convenors claimed the objective was to “collect information, scattered in different 

disciplines in biology, pertaining to how functional genetic material could be efficiently trans-

ferred to a eukaryotic cell, maintained in a stable state and expressed in a regular manner.”69 The 

audience was diverse: Beatrice Mintz talked about using teratocarcinoma cells as vehicles for for-

eign genes; Frank Ruddle about chromosome-mediated gene transfer; John Gurdon about nuclear 

transfer as a way of introducing new genes into frogs. Plasmids, viruses, gene expression of 

eukaryotic genes in bacteria and bacterial genes in cultured mammalian cells were all discussed. 

The diversity of agendas was not easy to organise. The final talk by the respondent, Charles Tho-

mas from Harvard, was instead devoted to the public discussion of genetic engineering.70  Titled 

77

67 Portugal 1977.

68Summers & Summers 1977.

69 Anderson 1978, Introduction.

70 Thomas 1978.



‘The fanciful future of gene transfer experiments’, it attacked the confused discussion of ‘genetic 

engineering’ in the press, claiming its perceived hazards were “totally conjectural”. In practice, 

however, Thomas’ piece engaged heavily with the scientist-critics of genetic engineering such as 

Salvador Luria or Robert Sinsheimer, as well as some science journalists. The message was to 

avoid exciting public distrust through conjectures and science fiction and focus on pressing con-

cerns. Thomas believed gene therapy, a major theme in these earlier debates, was not feasible for 

the majority of hereditary disease. Instead, he emphasised the practical concerns of economic 

advance and the growth of knowledge: producing useful proteins in cells and understanding the 

developing organism, and by extension cancer that he argued was a developmental programme 

gone awry.  

Even though the scientists involved had expressed diverse views about regulating recombinant 

molecules, the pressures of compliance and a sense of urgency contributed to constructing a 

community that was often made up from diverse research programmes. The emphasis on com-

munication was repeatedly used to create new spaces for exchange. In 1977, a Gordon research 

conference on ‘Introducing macromolecules into eukaryotic cells’ was proposed, with the first 

meeting held in 1980.71 The Gordon Research Conferences were a series of elite scientific meetings 

in New Hampshire started in 1932 by the chemist Neil Gordon under the aegis of the American 

Association for the Advancement of Science. By 1970, they had turned into a wide web of special-

ised events spanning the academic summer. These meetings became prestigious, a networking 

space where the trends in biology could be discussed and created.72 Each conference was limited 

to about 100 delegates, no records were published and note-taking was discouraged.73  Prominent 

scientists, including Berg and Ruddle, backed the proposal to have a dedicated meeting on intro-

ducing macromolecules into eukaryotic cells. Its author, Martin Rechsteiner, associate professor 

of biology at the University of Utah, stressed the need for wider communication and argued that 

“the conference [would] draw individuals from the diverse disciplines of lipid biochemistry, 
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genetics, cell biology, and nucleic acid chemistry. At present, there is simply no forum in which 

these individuals can meet and exchange ideas.”74 

In May 1979, a major Wistar Institute workshop on ‘Introducing Macromolecules into Viable 

Mammalian Cells’ took place in Philadelphia, a few months after the NIH significantly relaxed its 

recombinant DNA guidelines. Representing the state of the art, the focus was on the new ap-

proaches to gene transfer in mammals, especially recombinant techniques. The papers encom-

passed several approaches. The established calcium phosphate method was presented by its in-

ventor Frank Graham. Microinjection of molecules was discussed by several scientists whose 

laboratories were experimenting with the technique. Attempts to use membrane components to 

deliver DNA were also communicated.  

Despite the concerns expressed in the Gordon conference application, the extent of existing col-

laboration between researchers at the cutting edge was evident in the Wistar papers. Cell lines, 

virus fragments and increasingly plasmids were being shared and acknowledged in publications. 

Richard Axel, Saul Silverstein and Michael Wigler were especially generous with their material, 

sharing the herpes virus fragments with the tk gene and the cells widely among the Wistar pre-

senters. Moreover, with Tom Maniatis, Axel’s group was advertising a new means of introducing 

any gene into mammalian cells, based on the tk selection. If a plasmid could be made that carried 

the gene of interest and HSV tk, the transformed cells could be selected straightforwardly on HAT 

medium or with drugs that specifically targeted the viral protein.75  

Alongside this wide sharing, Columbia was also filing a patent on the co-transformation tech-

nique developed by Axel’s group. The Columbia patent proved to be extremely lucrative, bringing 

around $790 million in over through its lifetime.76 The first of what came to be known as the ‘Axel 

patents’ were filed on the cusp of a major transformation in the debates on patenting federally-

funded research, just after the Bayh-Dole Act was passed in 1980 but before it came into force in 
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1981. The Bayh-Dole Act, initiated during Jimmy Carter's administration but seen to effect by Rea-

gan's, was a product of the US government's anxieties about the future of US economy and the 

decline in traditional manufacturing. It was hoped that it would encourage the rise of a 

knowledge-intensive economy and so reinforce the US position in the global marketplace – a hope 

for which the nascent biotech industry was a poster-child.77

The wide sharing and promotion of the cotransformation technique in the academic community 

was not in immediate conflict with the patenting attempts and indeed was generating a market 

for them. Even if the application was controversial in some circles, it was much less so than the 

Cohen-Boyer application, and the commercial viability was uncertain, at least according to the 

scientists' recollections. In fact, by the time the patent was granted in 1983, the technique was 

widely used both in industry and university research, which enabled Columbia to charge royalties 

retroactively. This ability to use mammalian cells brought recombinant methods further in line 

with the growing interest in eukaryotic genes and their products, including potential drugs like 

insulin and interferon, as well as molecules implicated in genetic disease, most notably haemo-

globin. 

With the expansion of recombinant DNA techniques to mammalian cells, the amount of research-

ers who could benefit from the rapid techniques and circulating genes moved beyond the ex-

panded laboratories. New experiments could be envisioned, and several high-profile reports of 

modifying mouse and human somatic cells were made in 1980. As the next section will demon-

strate, this expanded circulation and communication also included scientists who were consider-

ing transferring genes into mouse embryos. While Jaenisch and Mintz’s work had shown that mo-

lecular intervention into the mouse embryo was feasible, it was the growing circulation of plas-

mids, easier methods for detecting foreign DNA and assaying expression, success with somatic 

cells and new communication arenas that encouraged several groups to attempt genetic engineer-

ing in the mouse. 
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Conclusion  

The story of “genetic engineering” in the 1970s – both as a controversy and as a loose set of scien-

tific research programmes – goes far beyond the now ‘classic’ experiments in bacteria or debates 

over public safety and regulation. Activities at the margins drew many high-profile followers, and 

integrated older research traditions with new techniques. Thus, the work of Beatrice Mintz and 

Rudolf Jaenisch that would become a common reference point for the actors’ histories and citation 

pattern on transgenic mice, predated recombinant technology. However, such research projects 

benefited greatly from the emergence of simpler, adaptable and dramatically mobile techniques 

that allowed the experiments to become more efficient. 

One of the crucial effects of recombinant research was the making of exchange networks and the 

expanded communication between institutions. Access to these networks was not necessarily ex-

clusive – the likes of Berg or Axel shared with colleagues from unestablished laboratories. Yet it 

was limited by both the proximity to the key sites where recombinant work was done, and by the 

economic and political costs of proceeding with such experiments in a safe manner. As Rudolf 

Jaenisch’s 1970s career shows, a location at the crossroads of people, techniques and information 

could be extremely productive for someone eager to engage with cutting-edge methods and per-

form experiments that aimed to answer ambitious questions. 

In the emergent field of recombinant research, sharing was a paramount impetus that allowed 

specific methods to disseminate widely, and their inventor to receive credit. However, these ex-

changes happened in a competitive field and an extremely unstable climate for experimentation. 

The possibility of federal regulation was successfully avoided by the scientific lobby, and was in 

many ways transitory. Other longer-term changes were more pertinent to the practices of circula-

tion. First, the standards of what counted as a legitimate means of circulating knowledge were 

relaxed somewhat, as experimental results were discussed widely before formal publication (see 

alsoChapter 4), and journalists became heavily engaged with recombinant debates and received 

easy access to most regulatory and scientific meetings. Second, the rise of the commercial prom-

ise of genetic engineering introduced a new form of distributing credit: the patent application. 
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While patenting university research had not been unheard of before the 1970s, it was largely ab-

sent from molecular biology. With the slow growth of federal funding in the 1970s, coupled with 

institutional and government impetus to secure private patronage for biomedicine, intellectual 

property was being firmly introduced on campus. 

As I have shown, intellectual property concerns did not necessarily affect the circulation of mate-

rials between academic sites in the early days, but they did introduce a whole other series of con-

siderations when conducting research, as well as opening up new opportunities for molecular 

biologists. In this context, ideas and methods for gene transfer into eukaryotic cells were becom-

ing articulated more readily, and new alliances were being made across disciplines and subdisci-

plines, increasingly defined in terms of experimental methods and held together by distinct shar-

ing networks. Such alliances enabled ambitious the experiments that ultimately yielded trans-

genic mice.  
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Chapter 3. Putting genes into mice: Promises, experimental trajectories and expertise

Between 1980 and 1981, six groups published articles claiming that foreign DNA could be injected 

into a mouse embryo and persist through development. The papers relied on similar methods: 

direct microinjection of DNA solution into a fertilised mouse egg at the one-cell stage. However, as 

all participants have agreed, the results were achieved independently, with one exception in 

which techniques were learned directly from another group. These mice were thus a multiple in-

vention – something Robert Merton believed to be routine in scientific research and a prime site 

for investigating the functioning of scientific norms.1 With the decline of the Mertonian norm-

centred programme of sociology and the constructionist and practical “turns” in history of sci-

ence, multiple discoveries have mostly slipped out of focus. The social mechanisms behind set-

tling priority received some attention in the 1980s,2 and I will address the assignment of credit in 

Chapter 4. Here, I am interested in the practical worlds of the multiple laboratories that worked 

on introducing DNA into mouse embryos, their traditions and diverse experimental expertise. 

While multiple inventions are assigned as such retrospectively, the question remains: how did 

very similar scientific programmes come to be pursued at multiple locations? What explains the 

scientific Zeitgeist?

As late as 1979 it was not at all clear that introducing DNA into a mouse would work in the near 

future, or indeed that it was necessarily a productive avenue to pursue. While the idea of a geneti-

cally modified mammal – or rather, various ideas – were floated in keynote lectures and discus-

sions, other ways of combining mammalian development with the techniques of molecular biol-

ogy received more attention. Despite the apparent homogeneity of methods and goals in the dry 

published accounts, the successful laboratories represented a diverse set of research traditions 

and experimental programmes. 

To some extent, the locations and timings of these experimental results were historical accidents. 

Yet there were certain ways of organising research and DNA exchange that were essential for 
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gene transfer into mice to work. Others pursued similar lines of research but did not generate 

comparable results – a useful point of comparison for conditions that made collaborations suc-

cessful. For the work to succeed, considerable expertise in working with mice and their embryos 

was essential. Some groups fulfilled these criteria by complementing their laboratory expertise by 

hiring postdocs; others managed to establish productive collaborations through well-managed 

divisions of labour. Moreover, plasmid exchanges and growing access to molecular tools made 

risky experiments with mouse embryos a possibility for those laboratories that could afford 

speculative research. 

In addition, I will argue that a system of partial communication of unpublished results and specu-

lation about what was happening in other laboratories promised high rewards due to a sense of 

competition and the lack of a clear leader. Distance between sites played a doubly productive role. 

Rumours that others were attempting this kind of experiment pulled the cutting-edge project into 

the realm of the possible and made it an attractive avenue. At the same time, limited and uncon-

firmed knowledge about whether competitor laboratories had been successful meant that credit 

for modifying a mouse was up for grabs.

I begin by examining the discussions about making a genetically modified animal in the late 

1970s, which shared little consensus as to the right experiments to pursue. I will then examine the 

research programmes in laboratories that ended up reporting gene transfer into mouse eggs. In 

the second half of the chapter, I will focus on the experimental work that was done in these labo-

ratories, especially microinjection and the interaction between embryological and molecular 

work at the bench.
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§1. “Possibilities and realities”

The interest in... monsters is that they show how 

a culture handles the possible and marks its limits.3

François Jacob

A discussion of monsters and their role in delineating the future opened François Jacob’s lecture 

at the University of California, Berkeley in 1977. In a sweeping overview of recent biological  sci-

ences Jacob touched on the different modes of inquiry and explanation, from magic to science; the 

hierarchy of scientific objects and therefore disciplines, from ‘hard’ physics to ‘complex’ social 

sciences; and the metaphors of evolution, at the heart of his argument that one best think about 

natural change as “tinkering” rather than design. At no point was genetic engineering mentioned, 

but the omission was rhetorical: the subject was constantly alluded to and flirted with, from the 

introduction devoted to monsters to a section on ‘molecular tinkering’. This lecture fit well within 

Jacob’s writing, known for its elegance and philosophical ambition, but it also resonated with the 

wider contemporary narratives of naturalising gene splicing, giving these experiments a long 

genealogy rooted not only in established human activities such as breeding, but also in the way 

nature itself worked. For Jacob, naturalising genetic tinkering meant that the scientific approach 

– which he couched as a mode of human understanding – was the best way of delineating the pos-

sible. 

The idea of introducing genetic changes into animals (including humans) had been at the fore-

front of ‘new biology’ discussions in the 1960s. Despite the focus on bacteria in the recombinant 

DNA controversy of the 1970s, the interest in using the new methods to manipulate animals and 

plants was strong. As I have shown in Chapter 2, in the 1970s the ability to manipulate eukaryotic 

genes in bacteria and eukaryotic cells attracted many scientists to recombinant DNA. The molecu-

lar promise also captivated a number of laboratories that sought to apply the power of genetics to 

differentiating embryos. These latter programmes often predated the expansion of recombinant 

DNA and relied on the burgeoning research into animal viruses, somatic cell genetics and the bio-

chemistry of proteins and nucleic acid.
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Given the political difficulties around genetic engineering, suggestions for potentially controver-

sial future research tended to no longer be aired in public. Scientific papers were rarely a place for 

speculation. However, writing that addressed expert audiences without a firm commitment to 

presenting experimental results – review articles, “trends” pieces, lectures and talks – did and 

discuss future experiments. These sources hint at multiple plans to harness recombinant DNA to 

modify animals in the late 1970s, even though the most promising routes were by no means set-

tled. By adopting the rhetoric of future directions, senior scientists shared their awareness of ex-

perimental work that was being pursued before publication, highlighted what they saw as 

worthwhile projects and made links between the possible and the real.

With the new techniques of somatic cell genetics and recombinant DNA, genes themselves be-

came instruments as well as subjects of molecular analysis. Early attempts to introduce nucleic 

acids into embryos, such as the Jaenisch-Mintz experiment, focused on viruses as a subject of in-

vestigation. Concurrently, John Gurdon was turning another kind of germ cell, the frog oocyte, 

into a powerhouse of molecular analysis. Celebrated for cloning Xenopus by transferring a nucleus 

from a tadpole cell into an enucleated egg in 1958, Gurdon articulated the need to understand gene 

regulation to decipher the mechanics of development.4  In the early 1970s, his Oxford group col-

laborated with Donald Brown at the Carnegie Department of Embryology to inject RNA molecules 

into oocytes – large egg cell precursors, around 1 mm in diameter, that could be easily cultured. In 

1971, Gurdon moved to the Laboratory of Molecular Biology (LMB) in Cambridge, where he ex-

tended his system to analyse DNA. 

With a strong emphasis on molecular thinking as a way to understand eukaryotic biology, Gurdon 

and his followers were representing the Xenopus oocyte as a simple system that resembled E.coli 

and could become attractive to molecular workers. Moving away from the discussions of embry-

onic complexity and determination common in developmental discourses, Gurdon repeatedly 

employed the metaphor of a test-tube to describe the oocyte (Fig. 3-1). In reviews and forward-

looking pieces, such as a 1977 “Future Trends” article in Trends in Biochemical Sciences, Gurdon and 

colleagues argued for the advantages that oocytes offered over cell-free systems and bacteria, 
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claiming that the “crudest” system such as the living eukaryotic cell might also be best for detailed 

biochemical analyses.5 With the spread of DNA cloning, Xenopus oocytes were envisioned as a 

promising system to track the elusive promoters – DNA sequences upstream of a gene that control 

its expression: “One way of overcoming these problems [lack of promoter mutations and ade-

quate transcription assays] would be to combine methods of DNA cloning with the injection of 

DNA into oocyte nuclei.... The injection of these DNAs into oocytes should make it possible to 

identify which segment contains the promoter.”6 

Frog oocytes offered a well-established system with large cells. By contrast, mammalian embryos 

had been notorious for their relative scarcity and small size that made detection of minute con-

centrations of molecules a challenge. Several mammalian embryologists with an interest in mo-

lecular questions, such as Mintz, Brinster and Gardner, experimented with teratocarcinoma cells, 

an alternative system that combined elements of cell culture and embryo-like behaviour.7 They 

were incorporated into existing practices of manipulating mouse embryos. In 1974, Ralph Brinster 

announced successful microinjection and subsequent incorporation of such cells into a mouse 

embryo, which he recently called the hardest experiment he had ever done.8 In 1975, Mintz’s and 

Gardner’s groups also reported incorporation of teratocarcinomas into a developing blastocyst 

and showed their contribution to adult tissues and reversal from a cancer-inducing phenotype.9 

The younger scientists who were involved with these experiments went on to become key names 

in mammalian development: Mintz’s postdoc Karl Illmensee, Gardner’s student Virginia Papaio-

annou as well as Martin Evans and Gail Martin, then at UCL, who went on to culture embryonic 

stem cells in 1981. Between 1975 and 1981, teratocarcinomas were promoted as a means of inte-

grating cellular approaches (such as somatic cell genetics) with embryology, by nobody as 

strongly as Mintz. 
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Mintz was receiving wider recognition in American biology, having been elected to the National 

Academy of Sciences in 1973. Her work on mosaic mouse embryos had been occasionally reported 

in the New York Times since the mid-1960s, and in 1976 it was included in a magnificently-

illustrated three-part feature on the ‘New Biology’ by the National Geographic.10  Like the other 

prominent scientists, however, Mintz balanced speculation with reality checks in her public ap-

pearances. She delivered a series of high-profile lectures in the late 1970s, many of them devoted 

to the problems of cancer, development and genetics. Thus, in 1976 she was among the Harvey 

lecturers at the New York Academy of Science and argued for the need to “seek ways of analyzing 

some of the most complex, and least understood, aspects of [cancer and differentiation] where 
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Trends in Biochemistry.
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they actually occur: in vivo.”11 She suggested two wide ranging experimental programmes. One 

was to focus on the problem of malignancy, which she approached in decidedly developmental 

terms – whether tumours arose from one cell or many, which factors affect their growth and dif-

ferentiation, and whether the key changes were genetic. The other approach sought to interrogate 

differentiation more generally by looking for new informative mutations:

Through mutagenesis and selection in vitro, followed by differentiation in vivo, experi-

mentally useful genes could be introduced into mice. There, the full developmental con-

sequences of specific gene mutations coding for biochemically identified changes could 

be brought to light.12

A year later, when addressing a specialist audience at the 1977 Brookhaven meeting on gene trans-

fer, Mintz made the point even more strongly: she referred to teratocarcinomas as “surrogate 

eggs”, cells that could integrate the whole-organism approach of classical genetics with the selec-

tion advantages offered by somatic cell genetics. She specifically discouraged the use of mouse 

eggs as they were too few in number and impossible to select in culture, while other kinds of so-

matic cells could not contribute to the embryo since they were already differentiated and their 

genetic status was “usually uncertain”.13  By contrast, teratocarcinoma cells had the potential to 

fulfil these criteria, even though their genetic status, as cancerous cells that accumulated muta-

tions, was not exactly certain. Mintz’s talk at the Brookhaven meeting provoked many questions, 

including from Ruddle, and in the following years her lab focused on developing a teratocarci-

noma line that would be seen as genetically stable and could contribute to the germline in allo-

phenic mice.

Beyond these important meetings, Mintz’s growing clout exposed her to new audiences. In 1978, 

she was a go-to source for scientific comment in the affair that unravelled around David Rorvik’s 

book In His Image that claimed a Californian millionaire had himself cloned in a remote jungle 

clinic on a South American island. Rorvik’s established medical publisher, J. B. Lippincott, mar-

keted the book as non-fiction based on Rorvik’s word and his supposed role as negotiator in the 
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murky process. The book was dismissed as a hoax by the scientific community, but it stirred a 

heated media debate about the possibility and ethics of human cloning.14  Mintz, alongside Clem-

ent Markert, Peter Hoppe and Derek Bromhall, was quoted in multiple sources commenting on 

inconsistencies in book and the state of the art in mammalian development, delivering some 

choice quotations to journalists, for instance when she described Rorvik as “a fraud and a 

jackass”.15 In May 1978 congressional hearings before the Subcommittee for Health and Environ-

ment of the US House of Representatives ensued. Designed to interrogate Rorvik, who failed to 

show up, they ended up focusing on the state of research and funding in cell biology. Testifying 

alongside such scientists as Markert, cloning pioneers and Fox Chase colleagues Thomas King and 

Robert Briggs, NIH officials and the omnipresent lobbyist and genetic engineering opponent Jer-

emy Rifkin, Mintz used the hearings as an opportunity to outline her work and to express anxiety 

about effects of unsavoury public exposure on future funding.16  

Several conferences with ambitious titles encouraged their speakers to go beyond presenting the 

latest experiments. The 1978 Ciba Foundation London symposium on “Genetics and Human Biol-

ogy: Possibilities and Realities” was one such event. Sydney Brenner’s introductory remarks 

picked up Jacob’s 1977 lecture on monsters and tinkering. Referring to contemporary debates, 

Brenner argued that genetic engineering in the sense of designing an organism had not been de-

veloped. “All we can do is a little ‘tinkering’, but that, as François Jacob... has pointed out is na-

ture’s way and not ours.”17 Jacob was in the audience, alongside other luminaries of molecular bi-

ology, developmental biology and genetics, including Walter Bodmer, Francis Crick, Richard 

Gardner, John Gurdon, Henry Harris, Hilary Koprowski, James Neel, Guido Pontecorvo and Rud-

dle (Fig. 3-2). In the speculative atmosphere of the symposium, participants discussed papers on 

recent advances and possible futures in genetics, from cultural evolution to cancer. The sympo-

sium was dedicated to the retirement of Sir Gordon Wolstenholme, the Ciba Foundation’s director 

and chairman of the Genetic Manipulation Advisory Group (the British equivalent of RAC), which 
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explains its ambitious scope. Given the Ciba Foundation’s policy of publishing edited discussions 

as well as presented papers, the proceedings offer a rare glimpse into the informal process of de-

lineating future possibilities by some of the biggest names in the field.18 

Charles Weissmann, a molecular biologist at the University of Zurich, presented a programme of 

what he called “reversed genetics”, a new way of asking questions by manipulating the DNA mole-

cules to introduce mutations and assess their effects. The phrase was novel, even though discus-

sions about doing ‘genetics in reverse’ had been already aired.19 With the expanding availability of 

eukaryotic genes, ways to induce specific DNA mutations, DNA synthesis and new sequencing 

techniques, “reversed genetics” offered an alternative to the workflow of classical genetics, which 

started from a mutation phenotype and then mapped the relevant genes. A lively discussion arose 

as to which experimental systems would be best suited for such an approach, as the attendees 

worked on a diverse group of laboratory species and cell-free systems. It is helpful to quote at 

length:

Gurdon: Professor Pontecorvo, do you prefer the use of a true in vitro system (test tubes) 

to the alternative in vivo cells (injected living cells)?  

Pontecorvo: Yes. It is a lot simpler. 

Crick: He is a reductionist! The thing is surely clear: one tries the simplest system first; it 

may be slightly artifactual so one checks it against different stages of in vivo or in vitro 

systems. There is no real conflict here. 

Brenner: This is simple molecular biology, but there is also the problem of assessing the 

value of genes that may have to work in entire organisms to produce their effects. Could 

you comment on the very long-term idea of putting genes back into organisms? 

Weissmann: I think that John Gurdon’s [oocyte and egg injection] system will eventually 

lend itself to this approach. It should be possible to do the injections in such a way that 

one ultimately gets development of the embryo and takes the inserted DNA through the 

complete cycle.20 
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Brenner described the idea of putting a gene into an organism as ‘long-term’, but Weissmann sug-

gested he was attempting just this kind of work with Hilary Koprowski at the Wistar institute, 

following the lines of the Jaenisch-Mintz experiment:

The other approach we are discussing with Dr. Koprowski is the injection of cloned DNA 

into mouse blastocysts... By introducing appropriate mutations at predetermined sites 

the functions of control and other regions of the DNA can be explored. It may be possi-

ble to get mice which are thymidine kinase-minus, add some selective pressure by 

dampening the in vivo synthesis of thymidine, and give the cells which carry the vector 

certain advantages. Thus, one might get most of the embryo populated with the DNA 

hybrid. Those are dreams at present. 

Henry Harris: I don’t really think they are dreams. People have got quite a long way with 

this kind of thing. David Martin has used mutant teratocarcinomas that are deficient in 

the gene for [HPRT]. The animal can be populated with the mutant HRPT— cells. It is not 
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Fig. 3-2. Frank Ruddle (centre) with Guido Pontecorvo (left) and Francis Crick (right) at the 1978 Ciba 
symposium on Genetics and Human Biology.

Guido Pontecorvo Archives, Glasgow University. Available through the Wellcome Library Codebreakers website. 



at all difficult to put a chromosome fragment bearing a good HRPT gene into such cells 

by cell fusion technique.21

The language of dreams and possibilities highlighted the interest in introducing genes into an 

animal, but stressed the difficulty of this scenario as an experimental programme. The tension 

between the possible and the existing reflected the perceived pace of change in biology, with 

hopes placed on new techniques, but also left open the exact way this might be pursued. It was 

revisited by Frank Ruddle after John Gurdon’s talk:

Ruddle: Your experimental system might be well-suited to studying the integration of for-

eign DNA into chromosomes and the propagation of integrated sequences through the 

developing organism. There is also the possibility of recovering integrated sequences in 

the germ plasm. Are you looking into this?

Gurdon: We are starting experiments on that but most of these things have technical 

difficulties.22 

The experiments with teratocarcinoma cells that Henry Harris referred to were a collaboration 

between Gail Martin and David Martin at UCSF, and Beatrice Mintz’s laboratory.23 Mintz hoped 

that once a mouse could be produced from the teratocarcinoma line in the mosaic “the animal 

would literally be the model of the human disease”, but her lab was still having problems making 

teratocarcinomas contribute to the germline. 24 Mintz was not at the Ciba symposium, and her 

work came from a different research trajectory. If the questions among the geneticists at Ciba fo-

cused on the way to trace a gene through the developing embryo, Mintz was concerned much 

more with development and cancer, using genes as markers to track differentiation rather than a 

primary subject of investigation. 

While Mintz’s lab was a key site of teratocarcinoma research, others pursued this experimental 

system. Teratocarcinomas as a vehicle for genetic modification were being explored by Karl Ill-

mensee, who moved out of Mintz’s lab to work with Carlo Croce at the Wistar and subsequently 
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secured a permanent position at the University of Geneva in 1977. Today, Illmensee is most fa-

mous, or notorious, for the allegations of fraud surrounding his claims to have cloned three mice 

in 1981, but this controversy did not break until 1983.25  In the late 1970s, he was a rising star in 

developmental biology, garnering a reputation as a virtuoso experimentalist and a charismatic 

public speaker.26 With Croce, Illmensee hybridised teratocarcinoma cells with different somatic 

lines, hoping to make a hybrid that would contribute to the developing embryo and perhaps in-

troduce novel mutations from somatic cell lines into the whole mouse. Moreover, Illmensee estab-

lished a collaboration with Peter Hoppe, a mouse embryologist at the Jackson lab, with whom he 

attempted making parthenogenetic eggs (eggs induced to begin development without fertilisa-

tion) and nuclear transfer – a programme of cloning in mammals. After a series of high-profile 

publications, mostly in PNAS, Illmensee was writing programmatic review papers and gave sev-

eral keynote lectures in 1980.27  These were devoted to genetic modification of the embryo – yet 

the methods he proposed were diverse, covering his cell hybrid work, parthenogenesis and nu-

clear transfer, and differed significantly from those that proved successful.

In these discussions, recombinant DNA was not the primary tool for the job, nor had it always 

been entertained as relevant, even though it was being used in several locations. The extent of 

these attempts is hard to assess as few led to publication, but some can be traced. Howard Good-

man – famous for a conflict with Genentech over work on the insulin gene – applied to RAC in 

early 1980 to insert rat insulin DNA into a two-cell mouse embryo, even though no results came 

out of this project.28  Illmensee attempted to inject a plasmid containing the mouse beta globin 

gene into a mouse egg, in an experiment designed to distinguish between the native and foreign 

versions of the protein. However, such work was seen as a long shot, the protein from the plasmid 

could not be detected and the work was therefore never published, surviving only as a “personal 

communication” in a PhD thesis.29 
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Recombinant techniques were still novel and inaccessible to most developmental biologists but 

were met with interest as a promising new tool. A review in Developmental Biology published in 

1979 gives a good idea of the more obvious applications. The focus was decidedly on the new in-

formation about eukaryotic genomes and on isolating specific genes known to be involved in de-

velopmental phenomena. It also thematised gene regulation and its possible role in differentiation 

– a well-established molecular take on development by then – as well as the two families that were 

receiving much attention for their roles in disease and immune response: globins and immuno-

globulins. Even in its more speculative parts, however, the review did not raise the prospect of 

using isolated genes to modify an embryo. 

The overall focus was on understanding eukaryotic gene regulation in simpler systems: cultured 

cells or even as isolated molecules in vitro – practices much more consistent with the triumphant 

model of microbial molecular biology. As Tim Stewart, Mintz’s postdoc who ended up succeeding 

at injecting DNA into mouse eggs and then tracing those sequences in an adult mouse, pointed 

out,

Most of the DNA... transfectional work going on... was primarily focused on understand-

ing the relationship between gene structure and expression, as opposed to: what is the 

gene product doing in the context of the whole animal? And so when you think about, if 

that’s your motivation, trying to understand gene expression, it seemed like a hell of a lot 

of work for pretty modest pay-offs.

Despite conflicting ideas as to what genetic manipulation of the the mammalian embryo might 

look like, several laboratories simultaneously pursued experiments that involved microinjecting 

DNA into mouse egg. Discussions of possible uses crystallised around existing laboratory prac-

tices and agendas of individual researchers to become biological reality and a new entity. In the 

following section, I discuss the research programmes of the successful laboratories.    

§2. Research agendas

Genetic modification of a whole mouse, while entertained in increasing detail, was not a clearly 

articulated agenda in 1980, and prominent biologists relegated it into the realm of distant possi-
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bilities. However, in 1979–80, at least eight groups worked on introducing various forms of DNA 

into cultured mouse embryos at the one or two-cell stage, with six of them eventually reporting 

successful results. As I will show, these were mostly speculative projects pursued by postdocs or 

graduate students in well-funded laboratories that were integrating new molecular tools into 

their everyday practice. Most of these had secure funding, a certain level of prestige and access to 

the exchange networks of plasmids discussed in Chapter 2. These laboratories, mapped on Fig. 3-

3, pursued experimental programmes over a considerable disciplinary range. Here, I will review 

their agendas and focus on what made these local and collaborative enterprises the places where 

mice would be genetically modified. 

The NIH recombinant DNA regulations were relaxed in late 1978 and allowed wide-ranging work 

with eukaryotic DNA and cells, with even further scope permitted in 1980. Yet while the promise 

of genetic modification of mammals was being discussed, converting this into a research agenda 

was not straightforward. Various audiences had to be convinced that these experiments were 

worthwhile and fundable pursuits – a challenge given their speculative status. These projects 

therefore tended to be spin-offs from already established grants on the more fundable strands of 

research– a practice known as ‘bootlegging’.30 Thus, Ralph Brinster at the University of Pennsyl-

vania felt that DNA injections into mouse embryos was ‘unfundable’, and instead built his success-

ful grant applications to both the NIH and the NSF around replicating John Gurdon’s experiments 

with mRNA in Xenopus. These RNA grants then bankrolled the DNA injection work.31 In Beatrice 

Mintz’s lab, the DNA injection was a sideline in the teratocarcinoma project. At Yale, Frank Ruddle 

relied on his generous somatic cell genetics grant from the National Institute of General Medical 

Sciences, and his large laboratory to assign first a graduate student and then a postdoc to the 

project.32 

While perfectly aware of the recombinant turn, Rudolf Jaenisch continued to work with viruses. 

After spending five years at the Salk Institute, he was recruited to head the Tumour Virology de-
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partment at the Heinrich Pette Institute, University of Hamburg, in 1977. There, he spent several 

years setting up a mouse facility and continued working on introducing viral DNA into the em-

bryo. Using the Moloney virus, Jaenisch and his students injected it into embryos at various 

stages: blastocyst, four-cell embryo and eventually a fertilised one-cell egg. Their questions cen-

tred on preferential viral gene expression in specific tissues and the effect of an embryonic envi-

ronment on viral replication and activity. Despite reports from Hilary Koprowski at the Wistar 

that SV40 and the Moloney virus could be active in the embryo, Jaenisch could not replicate these 

results. Experimenting with infection at various stages in mouse development, Jaenisch adapted 

microinjection techniques to work on the newly-fertilised egg.33 Yet, despite powerful pro-

grammes focusing on animal viruses, with the expansion of DNA cloning viruses were becoming 

less attractive as a means of delivering genetic information into cells.

Not all experiments took place in established mouse labs. John Gurdon’s injection work on Xenopus 

continued in Cambridge, and one of his PhD students, Keith Willison, decided to pursue mouse 

embryos. Willison attempted to inject SV40 DNA into two-cell embryos and into blastocysts, with 

some results suggesting he could detect injected DNA in adult mice.34 Expertise in manipulating 

mouse embryos – not an animal used at the LMB – came from elsewhere: the Cambridge Anatomy 

and Genetics departments (notably from Martin Johnson and Martin Evans), as well as Willison’s 

relationship with Oxford embryologists. The overall inspiration and guidance came from Gurdon, 

but Willison obtained SV40 DNA and learned the latest methods of detecting and analysing it 

from Janet Mertz, who had moved to the LMB from Stanford. Mertz had been a graduate student 

of Paul Berg – her proposed experiments with SV40 genes had started the recombinant DNA con-

troversy in 1973. When she moved to Cambridge, she brought expertise from the cradle of recom-

binant research as well as the SV40 molecules that Gurdon’s group would use.35 

Towards the end of his PhD, an institutional contingency severely damaged Willison’s research – 

with no mouse facility at the LMB, he kept his animals at Addenbrooke’s Hospital, where the 
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whole colony was culled without any warning after a viral infection. Salvaging some results that 

he had collected and collating them into a thesis, Willison submitted in late 1978, with final cor-

rections approved in December 1979. By then, he had moved on to a postdoc at Cold Spring Harbor 

to learn the recombinant techniques and had set his mouse work aside.36  Rudolf Jaenisch cited his 

thesis in a 1981 paper (misattributing both the submission year and the institution where it was 

undertaken) but overall it was not easily available and any hints of results would only spread 

through word of mouth.37  While the culling of Willison’s mice was unpredictable and unfortu-

nate, it highlights the importance of solid infrastructure for speculative work. An institutional 

commitment to using the mouse as a laboratory organism, combined with local expertise from 

animal technicians and scientists was common to those laboratories that ended up publishing 

such experiments. 

Gurdon’s experiments on nucleic acid injections in Xenopus were an inspiration for mouse embry-

ologists beyond his laboratory. Since 1979, Ralph Brinster’s laboratory in the University of Penn-

sylvania Veterinary School in West Philadelphia was abuzz with work on manipulating mouse 

eggs, including injecting RNA and DNA. In a 1998 interview, Brinster recalled that the ultimate 

goal was to use purified DNA, readily available with the new gene cloning techniques, but that he 

started with RNAs as a more fundable project with precedent in other species.38  Like Mintz, Brin-

ster had adopted microinjection in the early 1970s to inject cells into blastocysts – another side-

project that he funded by using his embryo culture grants to purchase microinjection 

equipment.39  With postdocs Mary Avarbock, Howard Chen and Myrna Trumbauer, he developed 

the technique to work with the even smaller mouse eggs. 

While Brinster was an experienced embryologist with the capacity for honing micromanipulation 

techniques in his own laboratory, the purified nucleic acids came mostly from Gurdon’s collabora-

tors. Thus, the rabbit beta globin RNA came from Jerry Lingrel, a molecular biologist at the Uni-
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versity of Cincinnati.40 The second RNA was for a Xenopus 5S gene from another Gurdon collabo-

rator, Donald Brown.41  The HSV tk gene was a gift from Carlo Croce of the Wistar institute down 

the road. In 1979, after reading Paul Berg’s published a paper in Nature that described a viral con-

struct with the rabbit beta globin gene, Brinster requested a sample, which was provided in Sep-

tember 1979.42 

Finally, in autumn 1979, Brinster contacted Richard Palmiter, a biochemist at the University of 

Washington in Seattle, to secure ovalbumin RNA. This connection resulted in a long-term collabo-

ration, in which Palmiter supplied plasmids for the future gene transfer work.43 Brinster’s con-

nections and institutional position at a major university enabled him to benefit from the networks 

of exchange with molecular biologists, who had provided samples of nucleic acids that could be 

expanded into new systems. In January 1980, Brinster published a brief communication in Nature 

showing the successful translation of rabbit beta globin RNA in mouse eggs, while his group was 

working on injecting DNA and trying to trace its presence in adult mice at the same time.44

Only a short train ride from the University of Pennsylvania, in the suburb of Fox Chase, Mintz’s 

group carried on working with teratocarcinoma cells, although not in communication with Brin-

ster. In 1979, Mintz started a collaboration with Richard Axel’s laboratory at Columbia.45 Their 

work brought together expertise in culturing teratocarcinomas and gene transfer into mammal-

ian cells. Using a teratocarcinoma mutant line that lacked functional thymidine kinase, the re-

searchers inserted a plasmid containing the HSV tk gene combined with the human beta globin 

gene that had been purified by Maniatis, Axel’s collaborator and friend. The plasmid remained in 

Mintz’s laboratory and was used in new experiments.
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Quite how much anyone knew about what was going on in Mintz’s lab is an open question. Her 

teratocarcinoma research certainly put Mintz’s lab on the radar as a place where a genetically 

modified animal could soon be born. Her postdocs’ recollections refer to multiple conversations 

about possibilities and research plans.46 Apart from the sense of expectation from scientists in 

other labs that they recalled in interviews, this is evidenced by a letter from Paul Berg to the RAC 

that inquired about whole animals as hosts for recombinant experiments – something that had 

seemed like a fantastic possibility only a few years earlier. In the letter, Berg stressed the “tre-

mendous scientific and medical importance of such experiments”, and wrote: 

As you know the experimental ground work for [introducing recombinant DNA into 

whole animals] has already been provided by Dr. Beatrice Mintz's experiments. She has 

shown that teratocarcinoma cells grown in culture can be incorporated into mouse blas-

tocysts which ultimately can yield mice containing a variety of cell types derived from the 

teratocarcinoma cells. Using appropriate selections it is feasible to introduce exogenous 

DNAs (be they derived by recombinant techniques or otherwise) into such teratocarci-

noma cells and hence into animals.47

It was not just developmental biologists who pursued genetic modification of the mouse embryo. 

Two final research programmes I will discuss came from less expected trjectories. One was Frank 

Ruddle’s lab at Yale with a catholic focus on somatic cell genetics. The other was the result of a 

partnership between Peter Hoppe – a mouse embryologist at the Jackson Lab and Illmensee’s col-

laborator – and Thomas Wagner, a biochemist at Ohio University. 

Ruddle’s approach to somatic cell genetics went beyond traditional disciplinary divides that were 

increasingly irrelevant in the world of biomedicine. He ran a large laboratory of about 30 people 

and made efforts to connect to diverse communities of practicing biologists. Ruddle’s extensive 

participation in academic networks combined with his secure institutional position allowed him 

to start multiple collaborations, and his eclectic approach brought many techniques to his lab. 

Ruddle’s laboratory was exploring chromosome-mediated gene transfer, and in pursuit of higher 

efficiency, he sought new means of incorporating genes into somatic cells. Learning of microin-
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jection from Elaine Diacumakos at Rockefeller University, who had worked extensively on honing 

the technique, Ruddle eagerly adopted the apparatus and introduced a microinjection room in his 

laboratory, with a NSF instrumentation grant and help from Clement Markert. The first publica-

tion from Ruddle’s laboratory that relied on the technique appeared in 1979.48

Despite multiple scientific commitments and co-authored papers, Ruddle’s main focus was on 

mapping human genes in somatic cells. Experiments with recombinant plasmids that he labelled 

DNA-mediated gene transfer offered an even higher degree of resolution, as transferred genes 

could be radioactively detected on specific parts of the chromosomes. The injection of DNA into 

embryos, on the other hand, was a speculative experiment that Ruddle hoped could be useful for 

developmental studies. He applied to inject recombinant DNA into mouse embryos to the univer-

sity’s Biohazard Committee and received approval in March 1978.49 Initially, Ruddle assigned a 

graduate student to the project, with little success, and then decided to recruit a postdoc.50 This 

was Jon Gordon,51 a medical student in the MD-PhD programme at Yale who had just completed a 

thesis with Markert that relied on making chimeric mice. With much experience in microma-

nipulation and dealing with mice, Gordon was assigned to the embryo project and given much 

autonomy. 

The final group that worked with mouse eggs was the collaboration between Thomas Wagner at 

Ohio University (Fig. 3–4) and Peter Hoppe, a Jackson Lab-based developmental biologist. Wagner 

was a molecular biologist with a background in the physical chemistry of DNA who had set up 

Ohio’s Department of Molecular and Cell Biology in 1970. Wagner struggled to secure large-scale 

federal funding for his department, and despite the administration’s interest in building up its 

research programme, the university was at the periphery of molecular research. Wagner’s ex-

perimental focus was largely structural, but through friendship with Azim Surani, a developmen-
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tal biologist at the Animal Research Station in Cambridge, Wagner became interested in how DNA 

was regulated during development. In the late 1970s, he worked on mouse sperm DNA, and pub-

lished a series of papers on its structure. The sperm nucleus is extremely small and it had been 

recognised that sperm DNA was packaged much more tightly compared to other cells, and that it 

had a different kind of protein in its chromatin. Through structural calculations and experimen-

tal analysis of sperm DNA, Wagner hypothesised that it had to contain breaks to fit the sperm nu-

cleus.

The notion of broken-up sperm DNA was unorthodox, and Wagner published his results in Ar-

chives of Andrology, an obscure journal unlikely to be read by molecular biologists.52  However, for 

Wagner, these results implied that sperm DNA had to undergo a series of repairs after fertilisa-

tion. At this point, he suggested it might be possible to introduce foreign DNA into the host ge-

nome. Wagner shared his thoughts with Hoppe on a taxi ride to the airport at a conference in 

Washington, D. C. By then, Hoppe had already been collaborating with Illmensee, and said he 

could carry out an injection into the male pronucleus. On his return, Wagner sent a rabbit beta 

globin plasmid that he had obtained from Richard Flavell in London via a postdoc and sent it to 

Jackson Lab for injection.53 

Most of the key participants above agree that their work was independent. A few expressed their 

suspicions about premature familiarity with unpublished data in interviews, but quickly pointed 

out they had no certain knowledge either way. The exact chronology of these projects thus poses a 

challenge. While the record of publications is clear, it is by no means a straightforward way to 

establish the timing of the work (see also Chapter 4). Without access to laboratory notebooks, it 

can only be extrapolated from ephemeral and circumstantial evidence. Ruddle initiated the ex-

periment after the NIH guidelines were relaxed in December 1978, and commented on the pre-

liminary results to Yale Daily News in April 1979, and had his research programme clearly adver-
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tised in the 1980 issue of GEIS.54 However, not all groups were as open about their research in 

progress. Recruitment of postdocs who performed the experimental work at Yale and Fox Chase 

offers another bookend – most of them joined in 1978–79. The sequence of Fox Chase scientific 

reports shows that Mintz had not listed the egg project as of September 1980, and whether it had 

been attempted before is unclear. Brinster reported some preliminary success with DNA injection 

in a note added in proof to one of his RNA papers that appeared in print in January 1981, a few 

months after Ruddle announced his group’s success.55

However, it is worth remembering that uncertainty about the exact experiments in progress was 

a condition that other scientists faced. The idea that such work was happening elsewhere, while 

the credit was yet to be allocated, was a motivation to go forward and it created a sense of compe-

tition. Rumours circulated about what other labs were doing. As Tim Stewart, then Mintz’s post-
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Fig. 3-4. Thomas Wagner at Ohio University, circa 1985. 
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doc, noted, “it’s always been very hard to keep secrets, people talk about what they’re doing, peo-

ple are excited about what they’re doing and they don’t want to keep it a secret”.56 On the other 

hand, no officially published claims had been made and the experiments remained a prize worth 

pursuing, even if the risk was high for junior scientists. The experimental procedures were time-

consuming and uncertain to yield results and therefore publications. The next two sections will 

focus on the laboratory practices of microinjection and molecular analysis, and how they were 

brought together and synchronised in these diverse laboratories. 

§3. Mastering microinjection

The expansion of developmental biology as a coherent supra-disciplinary identity has been asso-

ciated with the expansion of communication between embryology and molecular biology in con-

ferences, textbooks and courses. But synthesis of experimental practices was less straightfor-

ward. In a few labs, a hybrid way of practicing developmental biology emerged in the 1960s and 

1970s. The most famous hybrid practices were devised by molecular biologists moving to work 

with embryos, such as Sydney Brenner with C. elegans or François Jacob and mouse teratocarci-

noma cells.57 John Gurdon, a molecularly inclined zoologist, was another notable example whose 

move to the LMB further embedded his work in a molecular context. However, such synthetic ap-

proaches to what Gurdon called “molecular embryology” were not the rule. In all laboratories that 

worked on gene transfer into mouse embryos, there was a division of labour between molecular 

biologists and embryologists, and the latter disciplinary identity was consistently used in inter-

views rather than the cumbersome “developmental biologist”. In this section, I will focus on the 

key embryological technique that made mouse transformation possible, microinjection of DNA 

into a fertilised egg, and then in the next section compare it with the techniques of molecular 

analysis. 

Microinjection is a form of microsurgery or ‘micrurgy’, an instrumental tradition established in 

biological research since the turn of the twentieth century. First widely employed in bacteriology 
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to isolate single cells, microsurgical procedures relied on micromanipulators – instruments that 

converted the manipulation of screws, knobs or joy-sticks into minute three-dimensional move-

ments of capillary needles or pipettes.58 The first commercially available micromanipulators were 

devised in the 1930s. By the 1960s Leitz models dominated the biological market.59  Embryologists 

had been using micromanipulators since their early days, as did cell biologists. If much early mi-

croscopic work in experimental embryology, notably in Spemann’s laboratory, was done by un-

aided hand, nuclear transfer experiments relied on careful micromanipulation, as did the new 

methods of producing mouse chimeras by blastocyst injection.60 Teh-Ping Lin’s work on microin-

jecting mouse eggs made it into key handbooks, but had little productive use in the 1970s. Scien-

tists at the key sites of making chimeric mice were adept at microinjecting blastocysts: Mintz’s, 

Brinster’s and Gardner’s laboratories had integrated the technique into their everyday practices. 

Beyond the embryological tradition, micromanipulation was used by cell biologists mostly to 

study the effects of removing specific organelles and even chromosomes. Thus, Elaine Diacu-

makos at Rockefeller University and Adolf Graessman’s group at the Free University in West Ber-

lin pursued the technique with limited communication beyond their immediate colleagues. How-

ever, through growing interest in cell manipulation – encouraged by the expansion of somatic cell 

genetics – these techniques attracted several geneticists. Thus, both Frank Ruddle and the gene 

therapy pioneer French Anderson approached Diacumakos to learn her methods, and microinjec-

tion became a potential tool for gene transfer into eukaryotic cells in the late 1970s.61 

Microinjection experts emphasised its attractiveness from two angles. On the one hand, they 

highlighted simplicity and utility for molecular biology, arguing that the procedure could turn a 

cell into a test-tube. The cell-as-test-tube metaphor was used in reviews from the Gurdon and 

Graessman groups.62 At the same time, the virtues of working with “natural” cells, free of arte-
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facts, were extolled, with implication that the method could conquer eukaryotic complexity.63  

Thus, when addressing a mixed scientific audience interested in gene transfer, Diacumakos 

moved away from the test-tube metaphor and suggested instead that:

Another disadvantage [of microinjection], which is only superficial, is that “quick and 

dirty experiments” are not doable. The design of experiments using this approach must 

therefore be defined and clear-cut... This is not the type of activity that someone with no 

knowledge of cell biology can perform and interpret accurately...

[T]his is an approach that should be considered seriously, for the cell is not merely a test 

tube, in the hands of a good cell biologist; the cell itself can become a laboratory.64

The craft-like nature of micromanipulation was stressed routinely in contemporary accounts and 

in recollections. Karl Illmensee’s remarkable experiments and his growing reputation in devel-

opmental circles relied on his perceived “golden hands”. In 1979, the eminent geneticist James 

Crow was quoted saying “Karl Illmensee has the embryological equivalent of a green thumb. He 

actually does the experiments everyone else talks about.”65 

In the labs that decided to microinject plasmid DNA into mouse eggs in-house, this practical ex-

pertise was carried by the postdocs who performed the experiments. The experimental design 

appeared straightforward enough: DNA was to be injected into a pronucleus, with the egg subse-

quently implanted into the oviduct of a surrogate mouse. Yet for both Gordon and Stewart, at-

tempting such a speculative project was a career risk. As postdocs without secure prospects, de-

spite being placed in highly-respected laboratories, they required publications of impressive re-

sults to secure a permanent position. As Gordon recalls, 

In Frank [Ruddle]’s lab, the atmosphere was that this was more or less a speculative ef-

fort. A lot of big-time labs were unable to do it, I mean, Beatrice Mintz, it’s a big time 

lab... so I don’t think a lot of people felt that it was very likely I would do it, and I told 
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Frank that, I said ‘Hey, look, I need a back-up project. I’m on a postdoc here, what if this 

isn’t possible? Can I map a gene?’66

Similarly, Stewart said: 

When I got there I knew that Bea [Mintz] had been writing grants, talking about this. 

There was a lot of scepticism and I remember talking to one of the postdocs at Fox 

Chase and I think there might have been scepticism outside the institution. Can you ac-

tually do it? – and even if you could, how much value are you really going to get out of 

this? [...] getting [DNA] into an embryo and then having that embryo survive the trauma 

of this manipulation and to get a whole animal out of it was considered a long shot.67

The decision to work with a one-cell fertilised egg was not obvious. The mouse egg had been seen 

as difficult. Much like the rabbit embryo was once elevated over other mammals as a ‘robust’ sub-

ject of manipulation, stages in egg development were not created equal. Thus, in John Gurdon’s 

Xenopus work, the oocyte – precursor of egg – was characterised as the robust cell, whereas the 

freshly fertilised egg was seen as extremely fragile until it approached its first division.68 Though 

Elaine Diacumakos stressed that her work showed the somatic nucleus to be much more robust 

than previously thought and able to withstand injection, it was a different matter to make the ex-

periments work in another lab and with a different type of cell.69 

Moreover, for mammalian development, the two-cell block was an important concern: whereas 

eggs at the two-cell stage could be forced to develop to blastocyst and then implanted into the 

uterus, eggs extracted just after fertilisation would only divide once in vitro and degrade. Methods 

had been developed to overcome the two-cell block, particularly by Biggers, Whitten and David 

Whittingham, either by adding oviduct extracts or by changing the culture medium.70  Still, the 

phenomenon itself remained somewhat mysterious, with suggestions that it was affected by the 

strain of mice used. Ways of avoiding the two-cell block had not been routinised, since most em-
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bryological experiments did not require complete culture. This concern about the two-cell block 

led Keith Willison to inject mouse eggs at the two-cell stage, as well as at the blastocyst. Gordon 

also attempted two-cell injections, with little success. 

Existing techniques were being reinvented from scratch, and many avenues led nowhere. Part of 

the problem was that the criteria of a successful experiment were by no means agreed, because 

nobody expected that most injected eggs would survive the process and indeed have detectable 

DNA in the end. Contamination could not be ruled out straightforwardly, even with control ex-

periments. Issues of efficiency were also at stake because selection was not an option, in contrast 

to cells culture experiments. Thus, multiple eggs had to be injected in one go, which required 

making the procedure routine and keeping the timeframe of embryo transfer as brief as possible 

to avoid the two-cell block – a technique Gordon and Stewart both settled on independently. They 

cultured multiple eggs and injected them in series, sucking each egg with a holding pipette. Willi-

son came up with a technical innovation, adapting a Nylon grid to keep the eggs in order – a 

method that never spread, probably because his thesis remained largely unread.   

Microinjection was thus a fraught procedure that relied on embodied skill. Adapting local instru-

ments, developing ways of focusing the optics and arranging the pipettes to achieve best results, 

as well as training the eye to tell when a pronucleus was pierced and successfully filled with the 

DNA solution all took time and effort, and the skill set was not easily portable (Fig. 3-5). It is un-

certain how many other labs attempted similar experiments, beyond Illmensee, Lin and Diacu-

makos. However, success in the enterprise did not rely solely on injection skills or the persever-

ance of dedicated postdocs working long hours. It was also crucial that experimenters had access 

to DNA to inject as well as means of tracing it once the embryos were transferred into surrogate 

mothers. This relied on a synthesis of molecular and developmental practices, for which there 

were many possible arrangements. In the next section, I will focus on these means of combining 

embryological and molecular skills.
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§4. Recruiting molecular expertise 

Many people were thinking about development in molecular terms and envisioning experiments 

that could help interpret gene expression, but combining molecular and developmental practices 

was difficult. While some molecular laboratories had embraced a synthesis of both approaches in 

the late 1960s, there was still a sharp division of labour and identities, even in spaces that encour-

aged interdisciplinary research. The laboratories that developed microinjection into mouse eggs 

combined these kinds of expertise in several distinct ways, which were crucial to their success. 

First, getting hold of genes that could be injected and detected in the mouse embryo was still not 

entirely straightforward in 1980. A lab either had to have a recombinant DNA research pro-

gramme in its vicinity, furnished with appropriate containment facilities, or it had to access the 

plasmids exchange networks discussed in Chapter 2 (Fig. 3-6). Second, once the DNA was injected, 

it had to be followed through in the adult embryo and tested for expression. The techniques for 

these procedures were established and increasingly routine in molecular laboratories, but not yet 

standardised or widely disseminated beyond the core molecular community. Finally, to be certain 

of the potential positive results, proper methods of visualising and publishing the data had to be 

followed.  

For Mintz and Ruddle, access to plasmids was straightforward. Both had collaborated with Rich-

ard Axel and Saul Silverstein at Columbia – Mintz working on teratocarcinomas and Ruddle on 

chromosome-mediated gene transfer.71  Mintz’s laboratory used the dual HSV-tk/beta globin con-

struct. In Ruddle’s laboratory, Diane Plotkin and Jim Barbosa were working on culturing and 

modifying the Columbia HSV-tk plasmid. Moreover, Ruddle’s Yale colleague Bill Summers had es-

tablished tests for the expression of HSV tk. The gene had been used widely in selection experi-

ments, while the globin genes were among the first to be cloned for their relevance to heritable 

blood diseases. These DNA constructs were chosen not for their value in answering developmen-

tal questions, but simply because they were available and readily detectable.
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Brinster had been securing DNAs and RNAs from a variety of high-profile American scientists for 

his experiments, from Donald Brown to Paul Berg. However, as his programme of microinjection 

was expanding, he first collaborated with Carlo Croce at the Wistar, and eventually settled on a 

long-term relationship with Richard Palmiter at the University of Washington in Seattle, who had 

been sending him ovalbumin, metallothionein and HSV tk DNA. Even though Palmiter had to go to 

Strasbourg to perform his first recombinant experiments with ovalbumin, by 1980 the University 

of Washington established proper containment facilities and Palmiter could produce enough DNA 

to ship. Thomas Wagner’s access to a plasmid was less straightforward. His laboratory was not at 

the time pursuing gene splicing and plasmids could not be easily obtained on the margins of the 

East and West Coast exchange networks. Luckily, one of Wagner’s students, Christine Schuma-

cher, was moving on to a postdoc with Richard A. Flavell at the National Institute for Medical Re-
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Fig. 3-5. Photomicrograph of an egg being microinjected. The egg is kept in place by a holding pipette 
on the left, with the smaller micropipette piercing a pronucleus on the right. 

T. Wagner et al 1981. 
© PNAS



search in the London suburb of Mill Hill. Flavell was one of the first biologists to clone the rabbit 

beta globin gene, which circulated alongside the Maniatis construct. On Wagner’s request, Chris-

tine Schumacher sent the DNA to Ohio in the post, and Wagner started a collaboration with Joseph 

Jollick, a biochemist at Ohio University with expertise in recombinant methods.  

Analysis of the experiments required a more committed interaction. Collaborations that com-

bined expertise of different laboratories were a common strategy, but both Ruddle and Mintz 

sought to expand on using molecular techniques that fitted their research agendas. As primary 

investigators in highly regarded laboratories, the most straightforward way to gain practical ex-

pertise was to recruit expert associates. In 1979, Ruddle hired George Scangos, a microbiologist 

trained in E. coli genetics at the University of Massachusetts. In Ruddle’s lab, Scangos worked on 

DNA-mediated gene transfer into somatic cells, as well as doing some work on analysing the mole-

cules in experiments. In June 1979, Erwin Wagner (no relation of Thomas Wagner) joined Mintz’s 

lab. A molecular biologist with some experience in researching development, Wagner had been 

trained in animal virus genetics in Munich. During his doctoral work, he visited Francois Jacob’s 

lab at the Institut Pasteur were he encountered teratocarcinomas. As Wagner recalls, a strict divi-
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sion of labour was imposed in Mintz’s laboratory, and his collaboration with Stewart’s oocyte in-

jections (and learning the associated embryological techniques) had to happen on the side.72  

By contrast, both Brinster and Thomas Wagner established long-distance collaborations. Wagner 

worked with Jollick on molecular analyses and immunological tests in attempts to detect rabbit 

beta globin, using the mice made by Peter Hoppe at the Jackson Lab. Brinster’s collaboration was 

more long-term: Palmiter was attracted by the new project and once the results turned promising, 

abandoned most of his earlier work on ovalbumin. In 1981, a two-way postal relationship emerged 

between Seattle and Philadelphia. Brinster would receive the DNA, inject it in his laboratory and 

send the samples back to Seattle for analysis – an arrangement that persisted throughout the 

1980s and was made routine. Coordinating the molecular and developmental aspects of the work 

was carried out in regular Saturday phone conversations. In fact, Brinster and Palmiter had not 

met in person until just before the publication of their first paper in November 1981 (Fig. 3-7). 

Once the relationship was stable, Brinster’s lab would conduct the injections, take liver, spleen or 

tail samples from the resulting mice and send them to Seattle in SDS, a chemical that denatured 

the tissues for analysis. Palmiter would then post the DNA analysis results back. FedEx thus be-

came an extension of the laboratory.73 

The first products of these analyses were usually Southern or dot-hybridisation blots (Fig. 3-8). 

The former allowed to determine the size of cut DNA fragments to further confirm identity, the 

latter gave a yes-or-no answer to the presence of the tested DNA. Since their early dissemination, 

Southern blots had become the standard in analysing specific DNA, replacing the cumbersome cot 

curves, and were becoming a publication standard in molecular biology. These images were also 

the first indication that microinjection worked and the foreign genes could be detected in the 

newborn mice. They did not provide any certainty as to whether the genes integrated into the 

mouse genome or persisted as extra-chromosomal elements. Unlike cot curves, these analyses 

could also be straightforwardly applied to a large number of samples, in line with overcoming the 

problems of efficiency in microinjection. Scangos and Gordon analysed 78 newborn mice, born 
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after several hundred embryos had been injected and transplanted into surrogate mothers. The 

newborn mice were killed and homogenised and the resulting blended mix analysed. Of these, 

only two (no. 48 and 73) showed the foreign HSV tk sequences on Southern blots – luckily, since 

after a beer to celebrate the first positive result, Ruddle sent the pair to look at more blots to see if 

they could confirm the result. Similarly, Stewart and Erwin Wagner analysed 33 surviving foe-

tuses, of which five responded positively to the test.

In the accounts of the technique and actors’ recollections about this work, microinjection re-

ceived the greatest focus as the difficult technique that had to be figured out. By contrast, molecu-

lar methods are often taken for granted and were seen as straightforward. They had been settled 

to some extent. Southern blotting, DNA cloning and purification were becoming common, but the 

techniques had not been codified yet. These molecular tools, however, became routine during the 

1980s, while microinjection remained a laborious process, and it is likely that these accounts re-

sponded to this configuration. Yet much local variation and personal knowledge were involved in 
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Fig. 3-7. Richard Palmiter (left) and Ralph Brinster, meeting in person for the first time in
November 1981.

From Hanahan, Wagner & Palmiter 2007.



making molecular methods work, too.74 But the emphasis on the difficulty of the embryo re-

mained an important story in the field, one that had to be actively challenged as transgenic mice 

propagated through courses (see chapter 5). In these experiments, molecules circulated between 

sites of injection, and molecular representations such as Southern blot photographs were key evi-

dence. With molecular techniques outsourced to either expert postdocs or outside institutions, 

molecular analysis received a stable image.
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Conclusion

A genetically modified mouse had been envisioned and discussed for a long time, drawing on both 

existing experiments such as the Jaenisch-Mintz work and applications of new techniques. Het-

erogeneous approaches were pursued to integrate foreign genes into an animal, in laboratories on 

a broad disciplinary spectrum. The early success with microinjection happened in the few labora-

tories that combined specific molecular and developmental expertise, had the infrastructure to 

support large-scale mouse work and sufficient financial means to pursue a highly speculative and 

potentially “unfundable” endeavour. Multiple divisions of labour – between molecular and em-

bryological skills, between PIs and postdocs, occasionally geographically separated – were a com-

mon criterion of success.  

In the social studies of science, much has been made of the importance of proximity in making 

experiments travel and be replicated and the need for direct contact to transfer tacit knowledge 

that comes with experimental practice.75  However, distance was not necessarily an obstacle to be 

overcome, but could in itself be a productive resource. As Mario Biagioli points out in his study of 

Galileo’s strategies of securing credit, knowledge at large is “constituted through a range of 

distance-based partial perceptions”.76  In this case, the limited communication between laborato-

ries, the “grapevine” and speculations about what was going on in competing laboratories sus-

tained an interest in pursuing gene transfer into embryos as a promising and cutting-edge line of 

research. However, the partiality of communication maintained a diversity of local practices and 

fostered the attempts to keep trying. The few “failed” experiments that can be gleaned from the 

records, and the many more that one can only speculate about, never achieved the status of secure 

knowledge and remained rumours, leaving the horizon of possibility open and not discouraging 

scientists who also had to worry about advancing their academic positions. Thinking about multi-

ple discoveries therefore needs to involve the productive power of partial perceptions as a means 

of keeping the field open. 
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Moreover, distance was recruited as a way of negotiating the distinct practices of molecular 

analysis and embryo manipulation. These laboratories avoided the synthetic programmes focus-

ing on compromise experimental objects, for instance the ultimately unproductive teratocarci-

noma system in Jacob’s lab.77  By maintaining the division of molecular and embryological labour 

in the early stages, either within the same laboratory or through postal contact, local problems 

and minute details involved in manipulation or DNA analysis could be resolved by the expert, 

whereas material objects were produced at the border with exchange in mind: plasmids, biopsies 

from resulting mice and molecular inscriptions, whether in the form of Southern blot images or 

otherwise. Though such arrangements had to be reconfigured to make transgenic mice a technol-

ogy that could be easily taught and disseminated, at the time of emergence of a new and as-yet 

untested set of methods the division of labour was a pragmatic way to legitimise these mice 

among distinct communities, as I will discuss in the next chapter.
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Chapter 4. Negotiating new mice: News, journals and priority

In 1980, several groups were pursuing similar strategies that relied on microinjection to intro-

duce new genes into mouse embryos, and they announced their successes within a short space of 

time (Table 4-1). There is still little consensus as to which experiment was first, with different 

participants and commentators variously emphasising the achievement of one or another team. 

While none of the participants have publicly contested the succession of events and publications, 

and the key players I interviewed unanimously confirmed the independence of their work to the 

best of their knowledge, there is still no clear answer to the apparently innocent question, who 

invented transgenic mice?

Rudolf Jaenisch had refined the techniques for inserting viral DNA into later-stage mouse em-

bryos at the Salk Institute as early as 1976 and claimed that Moloney Murine Leukemia Virus (M-

MuLV) integrated into the mouse germline. His major interest, however, was not in inserting new 

genes into mice but in studying the activity of animal viruses and the effects of embryonic devel-

opment on their function. The first announcement of inserting recombinant DNA into mouse em-

bryos came from Frank Ruddle’s lab at Yale in 1980, though the results were not immediately em-

braced by all of his colleagues. Many claims to dramatic biological experiments had been made 

and unmade before, so one lone announcement, even from a very prestigious group, was not 

enough to establish animal modification. 

Credit for multiple discoveries, or any discovery for that matter, is necessarily allocated after the 

event. In the historiography of science, the focus on social and retrospective allocation of credit 

was emphasised by the sociologist Augustine Brannigan in 1981, in line with the Strong Pro-

gramme in sociology of scientific knowledge.1  Many studies have followed in that key. Thus, des-

ignation of Gregor Mendel as the ‘unnoticed father’ of genetics has been analysed as a strategy to 

settle a potential priority dispute between the ‘rediscoverers’ of genetics in 1900.2  Similarly, the 

origin of molecular biology and the famous story of elucidating DNA structure all highlight the 
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post-factum negotiations and allocation of credit in defining disciplines and making their origin 

stories, and the variety of publications, images and perspectives that are recruited in the process.3 

Many discovery accounts that have drawn historical attention were at various points controver-

sial, since controversies can force scientists to articulate tacit assumptions. Two prominent ex-

amples around the time when transgenic mice were being made are the discovery of HIV and the 

controversy over the patenting of monoclonal antibodies in the US.4  In both cases, there were 

highly public tensions between two camps with stakes beyond academic credit – the former dealt 

with a terrible pandemic, the latter pushed painful issues over the changing ways of benefitting 

from scientific work. The discussion over transgenic mice never reached comparable levels of 

animosity. None of the dissenting opinions that interviewees expressed 30 years after the events 

had appeared in print at the time. This was, in fact, a successful resolution of priority that was no 

resolution at all, leaving fluid allocation between laboratories with different research agendas 

that were mostly secure in their funding and not in immediate competition in other areas.  

Still, work was done to register and communicate the experimental results. Some of this hap-

pened through the traditional medium of the peer-reviewed scientific paper, and a citation pat-

tern was established to reflect a consensus genealogy. Discussions of discovery narratives for 

monoclonal antibodies,5  citation analysis of the HIV debate or the controversy over lizard sex 

have focused almost exclusively on scientific papers. While informative, this focus conceals the 

variety of arenas where a discovery or invention may be negotiated. Case studies from Louis Pas-

teur’s public performances of vaccination to the media frenzy surrounding the first heart trans-

plants all highlight the utility of recruiting broad audiences in building successful careers and 

registering scientific or medical events as significant.6
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This chapter addresses the making of a new kind of laboratory animal in 1980–81, at a time when 

science-media relations in biomedical research were unstable and new avenues of communica-

tion became increasingly common and acceptable. The first section will focus on the announce-

ment of the Yale experiments and the media adaptations of the story. Rather than treating it as a 

narrative of genetic monsters, as would have been the case circa 1976, most reporters instead rep-

resented these mice as new wonders that carried medical promises. I then move to consider the 

interests and constraints that scientists had in promoting their work in the media alongside, and 

often before, journal publication, and what this meant for assigning priority. In the third section, I 

analyse the different categories that the groups who followed Ruddle elaborated and sought to 

elevate in journal publications. Finally, in the fourth section I discuss the labelling of these new 

mice as ‘transgenic’, and the establishment of a set citation pattern that contained a narrative of 

the invention, though this could be used flexibly to emphasise some agendas over others. This 

fluid resolution of priority united the efforts from diverse laboratories that had not been in im-

mediate competition into a new field, but it also excluded or downplayed other projects. The in-

clusions and exclusions were multi-sited, distributed across multiple locations and media, and 

frequently improvised by scientists, journalists and university administrators. 

 

120



121

Table 4-1. Major papers on gene transfer into mice, 1974–1981.

Authors Jour-
nal Published Submitted Revised Announced Major claims

Jaenisch & 
Mintz 
(Salk Inst. & 
Fox Chase)

PNAS April 1974 13 Dec 1973 — —

SV40 virus injected into 
mouse embryo at blastocyst 
stage can be found in several 
tissues of resulting mice. No 
expression or germline trans-
mission. 

Jaenisch
(Salk Inst.) PNAS April 1976 26 Jan 1976 — —

M-MuLV incubated with 
blastocysts integrates, germ-
line transmission. 

Gordon, 
Ruddle et al. 
(Yale)

PNAS Dec 1980 23 Sept 
1980

—
3 Sept 1980, 
New York 
Times

HSV tk gene detected in 2 
microinjected mice out of 79. 
Integration into the genome 
unclear.

Harbers, 
Jähner & 
Jaenisch 
(Hamburg)

Nature 15 Oct 
1981

13 Jul 1981 28 Aug 
1981

3 Sept 1980, 
New York 
Times

M-MuLV integrates and is 
expressed after 
microinjection

E. Wagner, 
Stewart & 
Mintz 
(Fox Chase)

PNAS Aug 1981 13 May 1981 — 28 Aug 1980, 
Science

Human β-globin injected as 
well as HSV tk. Integration 
indicated. tk expressed. 

T. Wagner, 
Hoppe et al.
(Ohio U and 
Jackson) 

PNAS Oct 1981
1. Feb 1981*
2. 9 Jul 1981 —

8 Sept 1980,
Washington 
Post
(patent filed 
12 Jun 1981)

Rabbit β-globin successfully 
injected and expressed. 
Germline transmission.

Costantini
& Lacy
(Oxford)

Nature
15 Nov 
1981 20 Jul 1981

11 Sept 
1981

15 Nov 1981, 
Nature com-
ment

Germline transmission of 
rabbit β-globin.

Brinster,
Palmiter et 
al. (U Penn 
& U Wash-
ington)

Cell 5 Nov 1981 4 Sept 1981
25 Sept 
1981 —

HSV tk strongly expressed 
under control of the 
metallothionein promoter, 
integration strongly 
supported. 

Gordon &
Ruddle
(Yale)

Sci-
ence

11 Dec 
1981

30 Sept 
1981

30 Oct 
1981

—

“Transgenic” coined; 
synthesis of existing papers. 
Germline transmission of HSV 
tk gene and human 
interferon. Integration 
strongly indicated. 

* Paper returned for extensive revisions after peer review – Marx 1981b, T. Wagner interview.



§1. Breaking the news

When Jon Gordon and George Scangos told Frank Ruddle about the results with mice, Ruddle was 

on his way to attend the Second International Congress on Cell Biology in West Berlin that ran 

through the first week of September 1980. He was scheduled to give a plenary lecture on the vari-

ous methods of gene transfer into cultured animal cells. The congress may have been described by 

the New Scientist as a ‘prosaic meeting on cell biology’, but was in fact a major event bringing to-

gether key scientists working in cytology, molecular biology and development.7 The sheer number 

of participants (almost 1800 abstracts were submitted) and the variety of topics covered by pres-

entations and workshops offered a large-scale opportunity to communicate new research and 

capture cutting-edge work. According to the president’s address, such a meeting was “desirable in 

order to broaden our outlook and make us aware of stimulating and exciting new developments in 

neighbouring fields.” He expressed the hope that “the younger generation will have had their ho-

rizons extended, and that the older generation will appreciate that we all benefit far more than we 

sometimes tend to admit from personal contacts.”8  

Despite the wide scope of the talks, which ranged from chromosome structure to cell membrane 

components, the plenary lectures were devoted exclusively to molecular genetics and gene ma-

nipulation, preempting the focus on ‘molecular cell biology’ that would become the dominant way 

of conceptualising the field in the 1980s.9 Illmensee’s presentation focused on genetic manipula-

tion of the embryo via nuclear transfer or artificial parthenogenesis, while others gave talks on 

expressing eukaryotic genes in bacteria or the organisation of immunoglobulin genes. On 3 Sep-

tember, Ruddle gave his lecture on gene mapping by gene transfer in mammalian cells that mostly 

addressed the utility of cross-species cell hybrids and gene transfer into cultured mammalian 

cells. At the end, Ruddle briefly mentioned the new results on gene transfer into fertilised eggs. 

Yet this was the highlight of the talk, received with both excitement and doubt, as he recalls.10  
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Fig. 4-1. Front page, New York Times, 3 September 1980, A1. 

© New York Times

Image removed from the digital copy for copyright reasons. 



Ruddle did not limit his audience to the congress attendees. Before making the announcement, he 

phoned Harold Schmeck at The New York Times, who had covered scientific news for the paper 

since the 1960s. Ruddle had met Schmeck at the Jackson Lab course on mouse genetics, where 

journalists had been regularly invited for extended press conference sessions. Schmeck, who had 

been covering genetic engineering and cloning in the previous years, was eager to pursue the 

story. On 3 September, the same day Ruddle delivered his lecture in West Berlin, readers of The 

New York Times learned about the experiment from the front page.11  

The prominent position may be explained by the somewhat slow news day, as it sat next to the 

settlement of a Polish coal miner strike, an update on the senatorial race and a piece on the new 

police academy recruits being sworn in (Fig 4-1). In the following week, the news about the Yale 

experiment was picked up by major newspapers, magazines and science periodicals in the United 

States. Footage of mice – ordinary lab mice, not the genetically modified ones – appeared on na-

tional television alongside interviews with Ruddle and footage of Gordon performing microinjec-

tion. While Ruddle was in Berlin, Yale organised a press conference, putting the bemused Gordon 

and Scangos in a room full of journalists.12 A report of he press conference, distributed globally by 

Associated Press, seeded further news stories. 

As Gordon recalls in his 2003 book on the ethics of genetic modification and testing, 

When we first introduced genes into the mouse germline in 1980, much of the scientific 

community, as well as the popular press, were thunderstruck. Major articles announcing 

this development as a gigantic leap forward appeared on the front pages of leading 

newspapers and nationally circulated news magazines. Suddenly, as if out of nowhere, 

we stood at the threshold of a new era in genetics.13 

By contrast, in her account of early IVF in the United states, the science writer Robin Marantz 

Henig offers an apparently contradictory view:
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Opponents of gene swapping at the 1975 Asilomar conference had said it might lead to 

exactly the kind of research that Gordon and Ruddle were doing five years later. Ironically, 

however, by the time the Yale investigators proved the critics right, nobody seemed to 

notice. Had their work received wider publicity, there might have been newspaper col-

umns in which career Cassandras warned that cross-species experimentation would lead 

to the creation of bizarre man-beasts reminiscent of H.G. Wells’ Island of Dr. Moreau.14 

In fact, both accounts shed some light on the events that took place. Gordon’s recollection is justi-

fied – their press conference did result in major coverage. Yet, even though Henig missed these 

stories, she does have a point in that the response to the Yale results was brief and largely framed 

as a breakthrough, even though they clearly subverted the often-aired claims that significant ap-

plications of recombinant DNA to animals (and therefore humans) were too fantastic and remote 

to entertain. The harsh debates about genetic engineering, so prominent in the mid-1970s when 

the tension between opposing viewpoints was often amplified by the press, were almost absent in 

this case, and certainly did not come anywhere near the contemporaneous discussions surround-

ing IVF, gene therapy or cloning. Nor did they recreate the earlier dramatic controversy about 

cross-species hybrids that followed Harris’s work on somatic cells. How, then, did media outlets 

report gene transfer into mice, and why was the reaction so mild? As the remainder of the chapter 

will argue, it was a combination of fortuitous timing, with a change in the way journalists were 

approaching genetic engineering stories, engagement with the press on the scientists’ part, and 

the apparent lack of other dubious elements such as commercial interests to fuel the story. 

§2. “A one-way trip to the Brave New World”?

In 1978, The New York Times established a pioneering dedicated Science Times section that coincided 

with the foundation of new glossy popular science magazines across the country.15 Partly driven 

by publishers’ increased interest in dramatic scientific stories as a potential source of revenue, 

and partly, as one editor put it, by “the Sputnik generation [being] now of magazine-buying age”.16  
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Schmeck had worked as the paper’s science writer since 1957, and wrote extensively on medical 

and biological research, including the recombinant DNA controversy.17 While he had mostly main-

tained the neutral tone characteristic of the paper’s editorial policy, there had been critical arti-

cles. Thus, in 1979, Schmeck voiced concern about the rushed and hyped-up clinical trials of inter-

feron, without solid clinical evidence for its efficiency, and then faced criticism from some scien-

tists and new biotech entrepreneurs who accused him of misleading the public and standing in 

the way of progress.18 

Despite this, Schmeck took a rather positive view of the Yale news. He described the work as “ex-

periments with profound implications for genetic research”, distinguished by their “success at 

altering an animal’s fundamental genetic composition”. The article hinted at the possible implica-

tions of the technique of transplanting genes: creating animals with new characteristics, and cur-

ing genetic disease. At the same time, while noting that genetic engineering was controversial and 

opposed by some groups, it firmly placed Ruddle group’s research within the realm of basic sci-

ence. Mapping mouse genes was stressed as the main purpose, and the article emphasised the 

uncertainty as to whether the foreign genes could have an effect on the mouse, and whether they 

could be transmitted to offspring. The balance between enthusiasm and caution was expressed in 

the two concluding quotations from Gordon and Ruddle. Ruddle said, “This is just the first step in 

a long-term project,” while Gordon emphasised, “The possibilities that this opens are so broad 

that it is hard to know where to begin”.

Other broadsheets and ‘quality’ news magazines largely followed Schmeck’s template. By the end 

of the following week, the Yale experiments had made it to the Medicine section of TIME maga-

zine, with the headline “Moving Towards Designer Genes.”19 The article also associated the devel-

opments with treating human genetic disease, and while voicing Ruddle’s reservations about the 

scientific potential of the technique, focused on potential extensions to humans, and the likely 

rekindling of the recombinant DNA controversy. Newsweek was the only news periodical to give 
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voice to dissenting comments, quoting Jeremy Rifkin, head of the Peoples [sic] Business Commis-

sion20  an activist on a long crusade against genetic engineering, “It’s a one-way trip to the Brave 

New World”.21 Despite this soundbite – not exactly an invitation to debate – the overall coverage 

was favourable. The Los Angeles Times placed the story in the context of a recent breach of NIH 

guidelines elsewhere and went so far as to suggest that “[t]he scientists’ caution about the impli-

cations of DNA work may be spurred in part by a desire to allay public concerns about danger 

from the research.”22

These very concerns likely encouraged Ruddle to engage with the press and attempt to set the 

tone for the news stories. The media frenzy that had accompanied discussions of recombinant 

DNA since Asilomar, and the risk of federal regulation beyond the NIH guidelines made scientists 

appreciate the risks to their day-to-day work more, and take public relations seriously. While 

Ruddle’s laboratory was not immediately involved with recombinant DNA research and only 

started using the methods routinely in 1978–79, as head of the Biology Department and its Biohaz-

ards Committee, he had overseen the local implementation of the guidelines and had been in-

volved in campus debates on genetic engineering at Yale.23

Similarly, the major periodicals that had been perceived to matter, as evidenced by being selected 

by the Yale news-clipping service, were convinced that inserting genes into mice would not make 

monsters.24 Indeed, while Ruddle, Gordon and Scangos were careful to stress the uncertainty of 

any medical applications, the references to gene therapy were prominent. Much like the other 

aspects of ‘new genetics’, gene therapy was moving from the domain of science fiction into tangi-

ble experiments and proposed trials.25 The language used in most publications about the Yale ex-

periments was strongly evocative of medical terms, perhaps echoing ‘microsurgery’ as a common 
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way to describe embryo manipulation. The genes were “transplanted” into mice, the process was 

“gene surgery” and an “operation” and Gordon was compared to a skilful surgeon and television 

footage spotlighted him at his microscope. Reporting medical news was a priority for newspapers, 

as it carried the human interest, and such use of language helped make the scientific narrative 

appealing to broad readership.26

It would be misleading , of course, to limit the analysis to elite periodicals like The New York Times. 

The New York Daily News, an established tabloid whose circulation at the time was only slightly 

below the Times,27 took a different view. On 7 September, it ran an opinion piece from its science 

editor, headlined “Gene-Splicing: Will it Create a Monster?”.28 The article echoed the concerns 

about genetic engineering that were prominent in the mid-1970s, discussing the regulation of 

genetic engineering by drawing analogies with nuclear energy. The concern had been expected by 

the Yale scientists, and Gordon and Scangos addressed it in their press conference. A local Con-

necticut paper, The Hour, quoted Gordon as saying “I feel that we will always operate at a level be-

low creating a genetic monster”.29   

However, television evening news reports, reaching much wider audiences, took their cue from 

The New York Times. On 4 September, the day after the announcement, the NBC correspondent, 

Robert Bazell, stressed that it was not clear whether these experiments would lead to new forms 

of life, but hailed them as a “big step” in genetics. The report featured a brief interview with Rud-

dle, who said, “My own feeling is that knowledge is neither good nor evil”, implying that how this 

invention would be used was not a relevant question when pursuing basic research.30  A week 

later, ABC News featured the Yale experiment in their final instalment of an investigative report 

on genetic engineering. Setting the meaning of this work against the concerns about creating new 
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life, the piece ends with the position of the scientists who claimed it would bring new knowledge 

about human genes in an animal – using the mouse as a test-tube, as Ruddle put it.31 

The news seemed to make little impact in Europe. In the UK, it was picked up only by the New Sci-

entist, where science writer Stephanie Yanchinski argued that the Yale mice were anything but 

mundane, in a piece provocatively titled ‘Opening the Pandora’s Box of Biology’ – another common 

metaphor in genetic engineering writing.32  The opening sentence did not disappoint: “Three Yale 

scientists have teased open the lid of the Pandora’s box of assembly-line human beings.” However, 

in what followed Yanchinski offered an eloquent account that described the experiment in a lot 

more detail than other publications had done, particularly emphasising Gordon’s virtuoso skills as 

a microsurgical manipulator. The rest of the article speculated about potential uses of microinjec-

tion in human gene therapy. Yanchinski placed it alongside the iconic IVF advance of Robert Ed-

wards and Patrick Steptoe, and the article was, in fact, illustrated with a photo of Louise Brown, 

the first ‘test-tube baby’ born in July 1978. In the conclusion, Yanchinski argued that combining 

the two techniques could “fundamentally alter human genetics”, and that both experiments might 

be “the start of something big”. 

In contrast to the journalism in science periodicals, editorial opinion often aimed to preserve the 

authority of scientific institutions. A Nature editorial by John Maddox took the opportunity to at-

tack outspoken critics of science: 

One of the hopes, perhaps unrealistic, of this new decade was that the arguments about 

the hazards of this or that new scientific development would be couched in more mod-

erate language than used to be the fashion in the 1970s... Messrs Jeremy Rifkin and Dan 

Smith, described as directors of the [Peoples Business] commission, say that the devel-

opment represents “the greatest potential technological threat to the sanctity of life 

since the beginning of human history”...33

Maddox went on to dismiss Rifkin as a “diligent reader of The New York Times” unfamiliar with the 

scientific literature, and suggested that everyone wait for a publication. Around 1980, the moder-
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ate language that Maddox urged was becoming commonplace for genetic engineering. Since the 

late 1970s, coverage of biotechnology was increasingly couched in the language of progress and 

promise at a time of political and economic uncertainty. This trend was recognised at the time and 

has been documented in retrospective analyses of the US press.34  In her award-winning 1980 arti-

cle, ‘The Gene Craze’, the science studies scholar Rae Goodell observed the shift from debates 

about the possible health risks of recombinant DNA and the moral implications of genetic engi-

neering to a celebration of a new form of enterprise.35 She argued that scientists and the emerg-

ing biotech industry were strongly behind this change, with eminent scientists and bodies includ-

ing the National Academy of Sciences lobbying Congress to prevent federal regulation. Moreover, 

the industry, convinced that there was a new market to explore after announcements about suc-

cessful synthesis of human somatostatin and insulin in bacteria, brought expertise in public rela-

tions into the mix.  

Echoing Maddox, Goodell also argued that science writers were exhausted with the polarised de-

bate framework: 

Tired of the fading, repetitive congressional battle, and plagued by the Three Mile Island, 

test tube babies, and a number of the other complex controversies, science writers were 

ready for a good, clean science story, and industrial announcement of new DNA discov-

eries provided it.36 

As the controversy over the regulation of recombinant DNA was reported as solved, and the vol-

untary moratorium praised as an unprecedented act of social responsibility, the dissenting opin-

ions were disappearing from news reports, with even left-wing American periodicals such as 

Mother Jones, The Progressive and New Times ignoring press releases from the Peoples Business 

Commission. That the change affected most general periodicals can be explained by Sharon Dun-

woody’s concept of an ‘inner club’ of science journalism. Dunwoody argued that most science 

writers routinely discussed topics among themselves and relied on mutual exchange of expertise, 
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leading to a rather uniform landscape of reporting. Scientists formed the vast majority of sources, 

and were rarely criticised or undermined.37

While Goodell’s account seems to pinpoint the key changes in the late 1970s, it is worth noting that 

the landscape was more diverse. First, many senior science journalists were increasingly uncom-

fortable with what they viewed as excessively sensational coverage of the recombinant DNA con-

troversy. This sentiment was expressed at a recorded roundtable organised and published by 

MIT’s Technology Review in March 1980.38  The framing of the conversation suggested that science 

writers had lost the ‘age of innocence’ that supposedly existed in the 1960s, and now had to seek 

balance in a world where science inspired both dramatic interest and strong opposition. ‘Break-

through’ was a dirty word, even if editors liked it, and writers knew that many promising reports 

had failed to deliver in the long run, especially when it came to pharmaceuticals. At the same 

time, most participants refused to see themselves as advocacy journalists and strongly contested 

Mother Jones’s Mark Dowie suggestion that more were needed in science writing. On recombinant 

DNA, the feeling was that the press had emphasised the “public’s right to know” and that the reso-

lution was satisfactory. The San Francisco Chronicle’s David Perlman suggested that the opposition 

between scientific viewpoints had developed to such a passionate degree where “the objective re-

alities that can be discerned in the laboratory have been forgotten,” but that at the end “partici-

pants and spectators finally reached a more rational level of compassion, so to speak.”39

Perhaps ironically, journalists writing for the news sections of scientific periodicals, particularly 

Science and Nature, were likelier to be critical of specific developments, as Yanchinski’s New Scien-

tist piece shows. For instance, Nicholas Wade, the news editor for Science, had maintained a criti-

cal balance over recombinant DNA. With William Broad, he co-authored Betrayers of the Truth, a 

book that unapologetically tackled the uncomfortable subject of scientific fraud when a series of 

high-profile whistle-blowing cases threw this into the limelight in the early 1980s.40  However, by 
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1980 other kinds of stories were drawing the critical attention: the seminal Supreme Court deci-

sion in Diamond v. Chakrabarty that allowed patenting of bacteria in June 1980; breaches of NIH 

guidelines; plans for direct involvement of universities such as Harvard in biotech business. A 

striking example was the backlash against Martin Cline’s attempts to extend his experiments with 

mouse somatic cells when he inserted recombinant globin genes into human blood marrow cells 

that were then transplanted to two patients suffering from beta-thalassaemia in Italy and Israel, 

only a month after Ruddle’s announcement.41 By contrast, the Yale experiments were framed as an 

academic advance with clear medical benefits, the mice predominantly described as genetic won-

ders rather than monsters. It is also worth remembering that the story, while receiving a remark-

able amount of coverage for a scientific experiment, lasted for only two weeks. 

Finally, the mice themselves were largely absent from view. Aside from the footage of laboratory 

mice in newsreels, only one image of a mouse featured in printed sources. Newsweek ran a story 

illustrated with a photograph featuring a cropped profile of Gordon at a microscope with micro-

manipulators, and in the centre, a white laboratory mouse (Fig. 4-2).42 This mouse, in the staged 
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Fig. 4-2. “Gordon with subject” 

Newsweek, 22 September 1980. 
Photograph by Maggie Steber. 

Image removed from the digital copy for copyright reasons. 



photograph that was a product of discussion between the photographer, Maggie Steber, and Gor-

don, who wanted to make the mouse a ‘hero’ of the image,43 is atypical. The first batch of trans-

genic mice was homogenised, their DNA extracted and represented as bands on agarose gels. And 

while Newsweek and NBC featured footage of mice in the laboratory, these were not the specific 

‘heroes’ of the experiment but ordinary lab animals in fleeting shots. Instead, the attention was 

focused on the elaborate technique and images of microinjection that appeared on the blurry 

screen attached to the dissecting microscope. This displayed the mysterious process of embryo 

manipulation while hiding the gruesome fate of the animal subjects from public view. 

In December 1981, a New York Times piece by Schmeck suggested that “Biotechnology no longer 

provide[d] intense concern.”44 This observation may have been a reasonable reflection on the cov-

erage in major US newspapers, but according to NSF statistics public support for regulating ge-

netic engineering research remained high. In the 1981 poll, 50% of the respondents ‘attentive’ to 

scientific issues suggested some limits should be imposed on research into “creating new life 

forms”, only a 1% drop from 1979 figures. The same indicator among “potential attentives” in 1981 

was as high as 67%.45  The changes in reporting new experiments, including gene transfer into 

mice, were not following ‘public opinion’. To a large extent, they were a product of the changing 

relationship between science journalists and their sources, and the internal trends in mediating a 

controversy. 

§3. Journals and the politics of priority

Ruddle’s engagement with the press allowed him to keep some control over the coverage. While I 

do not suggest that he controlled publicity religiously – after all, he trusted two inexperienced 

postdocs to handle the media – by being seen as open and ready to comment, his group became the 

sole expert voice in the story. Aware of the work going on in Mintz’s and Brinster’s laboratories, 

Ruddle understandably wanted to secure priority:
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Well those people who were doing mouse work... it was a very big deal for them and, you 

know, we were talking about... Mintz and Brinster, and others. They had put a lot of work 

into doing transformation studies on the mouse and I think it was hard on them, be-

cause they had made such a big investment and to have someone like myself come from 

out of the blue, not having the same kind of experiences that they’ve had in the kind of 

work they were doing, I think... it was really difficult for them, but that’s science. And I’ve 

been in situations where I’ve been scooped and it’s been hard for me.46   

The press conference at Yale not only addressed the possible implications of inserting genes into 

mice, it also stressed that the group was at the cutting edge – as Gordon put it, “We're quite a bit 

ahead of other labs working in this area.”47 Having considered the coverage of the Yale experi-

ment, let us return to the circumstances of the announcement. What did it mean for a scientist to 

talk to the press about an unpublished scientific result in 1980? 

It might appear that in the middle of the twentieth century it was increasingly problematic for 

researchers to engage with the press and address the public directly. However, the sentiment is 

rather mythological, as recent studies show.48  Some respectable activities were beneficial for a 

senior scientist. Thus, Ruddle wrote detailed articles for Scientific American reviewing new fields 

of research for an educated readership interested in science.49  Established researchers often acted 

as experts on controversial matters and advocates of the scientific community, but those roles 

almost required rhetorical distancing from the ‘sensational’ press. This happened with Rorvik’s In 

His Image, discussed in Chapter 3. Derek Bromhall, an Oxford embryologist whose nuclear trans-

fer work had been mentioned in the book’s introduction, went as far as suing for libel.50 At the 

same time, Bromhall was happy to consult for The Boys from Brazil, a 1978 Hollywood film based on 

Ira Levin’s 1976 novel – a story remarkably similar to Rorvik’s, except it was about Joseph Mengele 

cloning Hitler in a jungle laboratory. Finally, advocates of recombinant DNA research were a ma-
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jor influence, and that controversy alerted an increasing number of scientists to the importance 

of engaging with the media.

This, however, was different for new work. At the time, announcing scientific results to the press 

before publication could be questionable, and publicity-seeking was being associated with the 

new commercial context of biotechnology and the competition between companies to establish 

priority claims in a potential intellectual property dispute. It also appeared to challenge the estab-

lished system of peer review. Thus, an influential opinion piece in the New England Journal of 

Medicine titled “Gene Cloning by Press Conference”, was published only a few months before the 

Yale press conference. The author, Spyros Andreopoulos of the Stanford Medical Centre’s news 

bureau, highlighted the trend among the new biotech companies to announce the isolation of an 

important and commercially promising gene such as interferon before academic publishing, and 

lamented the circumvention of the traditional peer-review that “[did] not contribute to either 

good science, or good science reporting.”51

Scientific journals deemed themselves the only place where important new science should be an-

nounced, and were eager to discipline their authors and science journalists. Since the 1960s, the 

practice of ‘embargoes’ was established, whereby journals allowed writers early access to papers 

on condition that no coverage appeared before the journal article. Journal editors argued that this 

allowed journalists more time to write quality articles and at the same time enabled experts to 

consult the ‘proper’ publication as soon as the story broke in the news.52  Alternative communica-

tive trajectories were frowned upon. The 1976 guidelines for journal editors, compiled by some of 

the major figures in science publishing, left accepting papers based on experiments that had been 

previously announced elsewhere to the discretion of the editor, but advised against approval if 

“the circumstances suggest that the prior publication in a news medium was actively promoted by 

the author”. For the authors of the guidelines, “premature publications in the scientific or lay 
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news media of research findings that may not be scientifically valid... may therefore mislead and 

be harmful to society.”53 

The reluctance to allow double publication was commonly known as the ‘Ingelfinger rule’, after 

Franz J. Ingelfinger, the editor of the New England Journal of Medicine who had imposed it in 1969 

mainly to avoid double publication of the same findings in multiple journals.54 The rule was ex-

tended to press coverage in the late 1970s, but its application was never straightforward. As Vin-

cent Kiernan suggests, in the 1970s announcement at a conference was usually sufficient to con-

firm that the scientific community had learned about an experiment first.55 A February 1979 edi-

torial in OMNI, a lavishly printed new popular science and science fiction periodical co-founded 

by the publisher of Penthouse magazine, lambasted scientific journals’ presumed monopoly on 

disclosure.56  Referring to the allegations by the New York Post that the first IVF baby Louise Brown 

was a hoax, based on the fact that Patrick Steptoe announced the results to National Enquirer 

rather than a journal, OMNI’s Frank Kendig argued that journals were too slow and too specialised 

to announce new work, and while their caution with what they published was justified, they 

should not monopolise technical information.57 Similar opinions were voiced in a 1982 report on 

press coverage of science by the journal BioScience. It cited French Anderson, a public health 

authority and the head of communications for the American Association for the Advancement of 

Science, who all claimed that “the public’s right to know” trumped the danger of reporting shoddy 

or overblown research – a sentiment that made sense after Asilomar and with the growth in popu-

lar science publishing. 

Another dissenting view came from Eugene Garfield, the founder of the Institute of Scientific In-

formation and publisher of Current Contents, a lucrative abstracting and reprint-order service. In 

1973, he incorporated a Press Digest into Current Contents, which traced news stories in “popular 

magazines and newspapers that scientists should know about”. He viewed it as part of a “basic-
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science lobby” that would reverse the major funding cutbacks and sell academic science to the lay 

audience more efficiently. The editorial that launched the Digest was to the point: “Too many sci-

entists feel that ‘public relations’ is not only a waste of time, but also a kind of blasphemous mal-

practice alien to professionalism. Nothing could be further from the truth.”58 While Garfield may 

not have been the most popular figure in the scientific mainstream and his promotion of biblio-

metrics to assess scientific output disturbed many critics, his influence was considerable.59  His 

invitation to take the general press seriously in 1973 was vindicated by the recombinant DNA de-

bate that followed. In the light of critical interest directed at molecular biology in the mid-1970s, 

his suggestion at a 1976 conference on plasmids that newspapers were a legitimate way of enhanc-

ing science communication made more sense than even five years before: “While we would hope 

that journals like Science and Nature, and others of a weekly frequency, would make certain to re-

port [new scientific] information promptly, there can be no doubt that, at the present time, the 

only prompt outlet for such information of necessity is the New York Times and comparable publi-

cations elsewhere.”60 While the bold statement appeared at a relatively obscure meeting in 

Czechoslovakia where Garfield was advertising his products, he was backed by Esther Lederberg, 

Joshua Lederberg’s wife and collaborator who was promoting a plasmid repository she established 

at Stanford. 

Ruddle’s decision to communicate in advance of journal publication might have raised eyebrows, 

but it was not necessarily against the grain in an increasingly public world of biomedical re-

search. It could have been dangerous for a younger, less established scientist, but someone of 

Ruddle’s stature and reputation was unlikely to face problems, and a brief announcement at a ma-

jor conference sufficed. Moreover, ‘cloning by press conference’ was not limited to biotech firms, 

and work with promises for gene therapy was especially public at that time. Thus, before contro-

versy broke over Cline’s clandestine human trials, his results with mice were well-promoted by 

UCLA – something Nicholas Wade and Gina Kolata retrospectively critiqued in Science once the 
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trial story broke.61  Moreover, similar publicity surrounded French Anderson’s work with Diacu-

makos on inserting the HSV tk gene into somatic mouse cells. The news broke after an announce-

ment at a conference in October 1979, before the paper was published in PNAS in September 1980, 

despite Anderson’s professed reluctance to speak to journalists on a deadline after his earlier tha-

lassaemia research had been blown out of proportion in the early 1970s.62

Priority was another major part of the De Bakey journal guidelines. Concerns about priority and 

credit have a long history, and various practices had been used to resolve possible disputes. Scien-

tific societies were often responsible for distributing credit: thus, the French Académie des Sci-

ences had encouraged sending discovery accounts in sealed envelopes that could be opened in 

case of dispute. The invention of the telephone is perhaps the most dramatic example, as Alexan-

der Graham Bell and Elisha Gray filed a patent for very similar devices on the same day, 14 Febru-

ary 1876.63  By the twentieth century, the journals had taken over in that role for university re-

search. The complexities of priority assignment were elaborated in a chapter from the same 1976 

guidelines that considered what dates were appropriate markers to serve “as an index of 

priority”.64 The chapter listed 14 options, ranging from the date of the original idea to the day 

when the journal issue reached its subscribers, via dates of a preprint being sent out, on the letter 

of submission, on the postmark, of firm acceptance, and others. Dates that could be firmly estab-

lished – of receipt of the manuscript, acceptance, receipt of revised version, actual publication – 

were preferred as easy to confirm and safeguarding the editor from getting involved in a dispute.

To safeguard their claim, the Yale group decided to publish the paper as soon as possible in PNAS. 

This was a reputable journal that required a member of the Academy to submit or “communicate” 

a paper, and there are indications that this means of assessing credibility meant the review proc-

ess could be more lax, and publication quicker – not a trivial consideration as waiting times were 
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growing, to universal discontent. As an active member of the Academy, Ruddle could submit the 

paper himself and negotiate speedy publication, so that it appeared in December.65 This timing 

was especially important, since Ruddle’s group was eager for the paper to appear before the end of 

the calendar year, so that the reference in subsequent papers would be “Gordon et al. 1980”, not 

1981.66  The decision was still equivocal among the authors – Diane Plotkin, named as a co-author 

for providing the DNA, was not convinced the results were sufficiently solid to publish, and felt 

more work could be done. Gordon, on the other hand, was pressing to publish as soon as possible 

and establish priority.67 

An experienced network-builder, Ruddle was promoting the interests of his laboratory and took 

care to distribute the credit and recognition within his laboratory, allowing the postdocs who per-

formed the experiments to take centre stage. It might be tempting to dismiss Ruddle’s media work 

as an odd episode, and it was indeed the most high-profile in his distinguished career. However, 

with the next two papers on gene transfer into mouse embryos – from Mintz’ lab at the Fox Chase 

Institute for Cancer Research and Thomas Wagner’s at Ohio University – newspapers again acted 

as an alternative means of scientific communication.

The Mintz paper was the second published claim to support the possibility of gene transfer into 

mice through microinjection, and from another reputable – if very differently organised – labora-

tory. It also took the experiments further, showing that the foreign herpes virus tk gene was ex-

pressed and made viral protein, and indicating that the other injected gene – human beta globin – 

could have been making RNA. However, before it appeared in print, another manuscript that 

claimed expression of microinjected beta globin gene, this time from rabbit, had been submitted 

to PNAS. It came from the collaboration between Thomas Wagner’s lab at Ohio University and Pe-

ter Hoppe at the Jackson Lab. The manuscript had been sent to PNAS by the celebrated mouse ge-
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neticist and National Academy member Elizabeth Russell at the Jackson, a former collaborator of 

Mintz. 

The submission date printed on the Ohio/Jackson paper is 9 July 1981. However, at this point one 

might wish to remember the 14 kinds of dates that could be used for establishing priority that the 

informal guidelines for science journal editors mentioned. According to Wagner’s recollections, 

contemporary releases from Ohio University’s news service and a more recent book about its 

then-president, Charles Ping, the publication of Thomas Wagner’s paper was anything but 

straightforward. It was submitted to PNAS in February 1981, but delayed by a referee who, not un-

commonly, insisted further experiments be performed.68  The Ohio sources claim that the paper 

was scheduled to be published in September 1981, but once the editors learned that another 

“better-known lab”69 (i.e. Fox Chase) was about to publish, they decided to bump the Ohio paper to 

the October issue. However, the Mintz paper was published in August 1981, not September, and 

had been submitted to the journal in May.70

During the delay, Wagner learned that The New York Times was about to run an article that fea-

tured the Fox Chase results. This piece, again by Schmeck, appeared on 8 September and tried to 

integrate recent publications about gene transfer in embryos and somatic cells as a next step in 

the development of gene therapy, and involved a large image of microinjection acquired from 

Ruddle’s lab (Fig. 4-3).71 Thomas Wagner had been delaying communicating with the media until 

his paper was published, in line with the standard embargo practices. Crucially, however, Ohio 

University filed a patent application on 12 June that claimed priority over microinjection with 

predictable gene expression.72

The Ohio team was then partially funded by Genetic Engineering, Inc., a biotech start-up based in 

Denver, which would be the exclusive licensee. Patents on basic techniques such as pronuclear 
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microinjection were problematic, as epitomised by the much more controversial patent on mak-

ing recombinant DNA that was awarded to Stanley Cohen and Herbert Boyer in 1980, and caused 

much academic discontent.73 It also went to the core of what David Dickson, a Nature correspon-

dent, would call “the new politics of science”,74  as epitomised by the US Bayh-Dole Act passed in 

1980 to allow universities to patent the products of federally-funded research. While select uni-

versities had used multiple strategies to secure intellectual property since the early twentieth 

century, it normalised and disseminated these practices.75   
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On learning about the PNAS delay, Wagner appealed to Charles Ping, the president of Ohio Uni-

versity who had recruited him to set up the molecular biology department in 1969, in the hope of 

placing his institution on the international map of cutting-edge research. Ping contacted his old 

acquaintance (and former landlord) Philip Handler, then president of the National Academy of 

Science. As head of the academy, Handler had been a major administrative figure and advocate in 

the world of research.76 Handler did not affect the publication date, but he did get in touch with 

The Washington Post’s veteran science writer, Victor Cohn.77  Probably in a competitive race with 

Schmeck, the Post published the piece on Wagner’s work on the same day as the New York Times’ 

Mintz-Ruddle story, 8 September 1981, that was followed by a major press conference in Athens, 

Ohio and follow-up stories in the US dailies (Fig. 4-4).78 

Cohn’s article liberally quoted Wagner, who stressed the potential for agricultural applications of 

the technique to breed farm animals – cattle as well as “goats or sheep or buffalo” – that would 

require less feed and be productive on lower diets. The focus was more in line with Genetic Engi-

neering Inc.’s commercial aspirations than Wagner’s scientific ambition, but it defined his re-

search through the 1980s. He also suggested that medical applications might be “further away”, 

and reiterated the value for “knowledge”. As Cohn paraphrased, “Work like this will give biolo-

gists a tool to look into one of nature’s greatest mysteries: how genes act or ‘express themselves’ 

inside cells, and how and when they are ‘turned on’ during an embryo's wondrous development.” 

Beside the discussion of future applications, the article stressed the novelty of the work: “The first 

successful transfer of a gene from one animal species to another – from rabbits to mice and then 

to their offspring – has been achieved by biologists.”79 Cohn’s article mentioned the research done 

in Mintz’s lab, but stressed that their team only managed to insert the viral thymidine kinase gene 
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“at least into the fertilized egg of a female mouse.”80 Wagner’s results were presented as the “first” 

and “quite important”, according to Elizabeth Russell.

It can be seen that the politics of priority, brushed over in scientific journal publications, was be-

ing played out on the pages of important news sources, and that decisions about press releases 

and access to journalists were becoming an integral part of making discoveries public. This was 

especially important for the patent application. But for someone relatively unknown, it was also a 

risky strategy. Peter Hoppe would have nothing to do with his collaborator’s media outreach, and 

requested that the Jackson Lab public relations department ensure that his name was not men-

tioned before journal publication.81 
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This episode demonstrates the diversity of media that could be recruited to establish priority, and 

shows that scientists could rely on newspapers to advance their causes. Moreover, it highlights 

the interest of science writers in publishing stories and claiming greater authority in the dis-

semination of scientific news, tied to the growing interest and opportunities in popular science 

publishing. It also indicates the roles played by university administrative offices dealing with the 

press and intellectual property played that can only be glimpsed in the available sources. 

§4. Criteria of success

Despite the great interest and competitive spirit that surrounded the announcement of the Yale 

gene transfer, there were many uncertainties in the published paper. It was not clear whether the 

experiments could be replicated, or were even, simply, an artefact. Moreover, their utility to de-

velopmental research and gene mapping was not clear, and many alternative approaches were 

envisioned. This is exemplified by a news article in the December 1980 issue of Science, in which 

the journal’s reporter Jean Marx placed Ruddle’s work as a curious advance alongside many other 

manifestations of gene transfer, a field she had been following for several years. Similarly, French 

Anderson and Elaine Diacumakos placed much more emphasis on gene transfer into cultured so-

matic cells – their own pursuit – in their Scientific American article in the summer of 1981.82 

Yet with the competition and independent experimental work, the pressure to generate new re-

sults beyond what had been published was growing. When Mintz’ two postdocs – Tim Stewart and 

Erwin Wagner – arrived at their results, they pursued further experiments, partly to answer 

specific questions that were interesting to them, and partly to produce more evidence to justify a 

publication after Ruddle. By spring 1981, they had a stable means of injecting DNA into pronuclei, 

and managed to show that the HSV tk gene, which was on the same plasmid as the human beta 

globin, was expressed, and as both RNA and protein. Since Mintz was also a member of the Na-

tional Academy of Sciences, she submitted the paper to PNAS in May 1981. As in Ruddle’s case, ac-

cess to this publication enabled speedy review and the paper was published in August.83 It set up 
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the experiment as a successful part of a larger programme of inserting genes into mice, although 

the modification of teratocarcinoma cells remained her major ambition.

The authors acknowledged the Yale’s group recent success in transferring a foreign gene into a 

whole mouse, the first formal legitimation of this work in the journal circuit as a replication of 

sorts. However, other citation choices also stressed the existing expertise of the group and a long-

running commitment to inserting genes into embryos, starting with the 1974 Jaenisch & Mintz 

paper, and referencing Teh-Ping Lin as the source of the microinjection technique. Finally, the 

discussion section stressed their demonstration of the tk gene expression, implying that this made 

the technique meaningful:

Inasmuch as the ultimate objective of in vivo gene transfer is the study of gene regulation 

during development, it was important to learn whether the foreign genetic material in 

our developing mice could function in its new environment... 

The existence of the alpha-thalassemic mutation in mice presents a unique opportunity 

to extend this experimental system, with alpha-globin gene transfer, for the further analy-

sis in vivo of tissue-specific gene function in a hereditary disease.84

Yet despite clear progress in establishing gene expression, the criteria that many, including Rud-

dle, had raised as key to a useful mouse system remained to be met in full. These were the produc-

tion of proteins from the foreign genes and germline transmission – that is, the inheritance of the 

genes by the following generations.85  Wagner’s paper claimed both and featured a variety of data 

indicating the expression of the rabbit globin gene, but his results were treated with suspicion, 

especially as the other major labs could not demonstrate the presence of the globin protein. While 

a relationship with the press or commercial ties may have played a role, such treatment was more 

to do with the lack of an established reputation.

Another important concern in the early days of microinjection was the fate of the injected DNA. 

Gordon and Ruddle’s paper suggested that the DNA integrated into the mouse genome, yet their 

evidence was ambiguous. Some of the injected DNA was heavily rearranged and appeared to have 
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multiplied; this would become a commonly observed phenomenon. The existence of foreign DNA 

as a separate non-integrated molecule that propagated autonomously, or even contamination of 

samples with the plasmid, remained a possibility. Such concern was expressed explicitly in a pa-

per from Jaenisch’s group.

When Jaenisch secured a tenured position in Hamburg, his laboratory continued working on in-

serting viral DNA into embryos, and he adapted the microinjection techniques used for blasto-

cysts to fertilised mouse eggs. His results on injecting the Moloney virus were published shortly 

after Mintz’ and Thomas Wagner’s reports, in the October 15, 1981 issue of Nature.86  The paper in-

dicated the presence of the viral DNA and suggested its integration into the genome, but ex-

pressed caution as to the meaning of the results:

The data, however, were difficult to interpret with respect to the structure and origin of 

the recombinant DNA found in the newborns. We find a general problem in such ex-

periments – the possibility of plasmid contamination.87

While gene expression was presented by both the scientists and the press as a crucial means of 

demonstrating that gene transfer into whole animals was an efficient and promising technique, 

germline transmission – the presence of the gene in subsequent generations – was a major desid-

eratum. Establishing strains in the lab that could be bred and exchanged was crucial to make pos-

sible all the applications mentioned in the papers, and would enable the novel animals to colonise 

further laboratories and recruit more researchers. Moreover, it had been established as an impor-

tant failure in much previous work. Jaenisch and Mintz’ mice born in 1974 did not transmit the 

SV40 virus to the offspring, nor did the chimeras made from teratocarcinoma cells. Mintz’s work 

on developing a cell line that would contribute to the germline was the group’s parallel project, 

and the laboratory claimed such a line in 1981.88 However, the results could not be replicated and 

the original cells were lost. 
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The concern over the actual integration of foreign DNA in the process was also expressed more 

privately throughout the early days of gene transfer, among both the participating scientists and 

interested observers.89 Looking at conference ephemera shows some doubts about the categories 

firmly postulated in publications. For instance, following their initial announcement, Ruddle and 

Gordon presented at the 9th Congress of the International Society of Developmental Biologists in 

Basel, Switzerland, on 29 August–1 September 1981. Among many established developmental bi-

ologists, the congress was attended by Anne McLaren. Her notes in the margins suggest a less 

than wholehearted reception. Thus, in quotation marks there is a weaker claim that most likely 

came from the presenters: “[the plasmid] has at least interacted w[ith] mouse DNA”. But the notes 

conclude with what appears to be her reflection on the presentation, “Prob[abl]y not integr[ate]d. 

How can non-integr[ate]d material be maintained this long?”90 

Integration thus became an important issue that was resolved when germline transmission could 

be demonstrated. Again, while Thomas Wagner’s paper had claimed germline integration, it was a 

relatively minor point and it was not supported with Southern blot photographs that had become 

the standard method of visualising specific bits of DNA. By contrast, a paper published in Nature 

just over a month later, on 15 November 1981, revolved around the demonstration of germline in-

tegration, and recruited several modes of evidence.91  It was published by two postdoctoral re-

searchers at Oxford, Frank Costantini and Elizabeth Lacy. 

The couple had moved to Oxford from CalTech, where both were exposed to innovative work in 

molecular biology. Lacy had been a PhD student of Tom Maniatis and moved to CalTech with him. 

There, Costantini was working with Eric Davidson, an eminent developmental biologist who was 

elaborating molecular models of sea urchin development. After both completed their graduate 

studies, they were eager to move into developmental biology, and managed to secure a double 

postdoc at Chris Graham’s lab in Oxford’s Zoology Department. There, equipped with the purified 
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rabbit beta globin DNA from Maniatis’s lab, the couple learned the elaborate techniques of mouse 

embryology (Fig. 4-5). 

While trying to come up with a promising project, Lacy and Costantini were immersing them-

selves in the lively network of mammalian development in Oxford and Europe more generally. 

After Graham returned from the Cell Biology Congress in West Berlin where he had heard Rud-

dle’s paper, he encouraged them to pursue pronuclear microinjection. On their visit back to the 

USA for the Christmas holidays of 1980, Lacy and Costantini went to Yale, where Gordon taught 

them the technique, the couple thus becoming the first adopters of an uncertain but promising 

technology. Armed with expertise in molecular biology, their own source of DNA to work with, 

and growing competency in embryology, the two pursued gene transfer experiments.
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Lacy and Costantini went to some length to maintain their genetically modified mice that they 

referred to as founders, and incorporated them into further genetic experiments. From about 100 

mice, 24 showed the rabbit globin DNA in their liver samples – a significant increase in efficiency 

of the procedure compared to Gordon’s 2–3 out of 70. However, in order to establish the strains of 

these animals, the couple went on to cross the ‘successful’ males with unmodified female mice of a 

different strain. A fraction of the second-generation animals that were born as a result showed 

the rabbit gene, with even more copies than the first-generation parents. 

Lacy and Costantini reported these early results in a letter to Nature, which was submitted in July 

1981 and published in November.92 They invoked the familiar Mendelian ratios (“These fractions 

are: one out of four progeny for mice 4 and 23, two out of four for mouse 7, and two out of six for 

mouse 13.”93), even though the small sample size could not support a statistical analysis. They also 

highlighted the possibility of keeping the lines of animals with large inserts of foreign DNA, that 

could become a permanent resource to be bred and studied. The conclusion foregrounded what 

they saw as the next step in the gene transfer work and its key potential: the spatial and temporal 

exploration of specific gene expression in a living mammal, from conception to death:

With such strains of mice it will be possible to examine the expression of the rabbit beta 

globin gene and to investigate whether expression is restricted to specific tissues and/or 

developmental stages. If the rabbit sequences are integrated into mouse chromosomes, 

presumably different strains will contain the rabbit genes at different chromosomal loca-

tions. This will allow us to investigate how the host chromosomal environment influ-

ences the expression of a foreign gene.94

Finally, also in November 1981, a paper from the Brinster-Palmiter collaboration came out in 

Cell.95  The paper confidently claimed that the HSV tk gene was expressed strongly and predictably 

under the control of the metallothionein-1 promoter – a control DNA element that regulated ex-

pression and could be activated by injecting mice with heavy metal salts. Moreover, it proposed 

models of the molecular mechanism of gene integration, suggesting that the inserted plasmid 
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likely underwent a series of duplications before being integrated. This publication marked the 

beginning of a series of highly successful experiments that Brinster and Palmiter would orches-

trate, and it offered a hope of control over foreign genes, especially since Thomas Wagner’s claims 

were not taken seriously.  

This was not exactly the first publication from Brinster’s lab on the subject, though. A 1980 Nature 

paper had described the production of protein from RNA injected into embryo cytoplasm.96 A note 

added in proof to another RNA article in Science, published in January 1981, claimed that DNA in-

jection had been achieved with Carlo Croce at Wistar, without revealing further detail. In a 1998 

interview, Brinster said that his group had succeeded in inserting genes into mice by the end of 

1980, and that “[t]hese were tantalizing and encouraging results but certainly did not warrant 

publication.”97 The comment – rather transparently hinting at Ruddle’s haste – does, however, 

open up a question: what counted as publishable for these different groups? 

For Ruddle, the experiment was an extension of a research programme aimed at gene mapping, 

and he expressed hopes that it could be used to study the sites where foreign genes integrate, and 

therefore to map mouse genes further. Expression and transmission were desirable criteria that 

the group went on to pursue, but the focus was mainly at the gene level. For Brinster and Mintz, 

the promise of developmental questions that the system could answer made tracing expression a 

key priority, as well as observing how genes could affect the embryo or be used to trace lineage. 

Similarly, Thomas Wagner’s fascination may have lain in whether a foreign gene could integrate 

into the mouse genome based on his ideas about DNA repair after fertilisation, but his engage-

ment with a biotech company put a stress on demonstrating protein products. 

The need to publish novel results was a bigger pressure, as routine replications would not secure 

much credit. As a result, a range of experimental programmes were pursued to establish these 

unmet criteria. The overall effect of these efforts, and of the independent publications, was to es-

tablish the credibility and efficiency of the new technique. The multiple invention of the geneti-

cally modified mice not only reflected the general interest in such a project or the availability of 
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techniques and molecules to perform such work – it was also integral to turning claims into in-

ventions as reports from reputable labs confirmed Ruddle’s initial result. Revisiting Merton’s 

claim as to the ubiquity of multiple discoveries, the confirmation that they confer on experimen-

tal results should be thematised. Especially in a case where credit for such events is negotiated 

amicably, the social process of establishing a claim as a discovery or an invention is much more 

rapid and straightforward. In subsequent years, as a citation pattern was established and more 

dramatic results reported, transgenic mice were embraced by the laboratories who could afford 

the funding, time and expertise to make them. In the process, the name and properties of these 

animals were defined. 

§5. “These mice, that we call transgenic”

Credit for discoveries and inventions is necessarily decided retrospectively, and can result in bit-

ter feuds about priority, but it can also be distributed between different actors. I have shown the 

communication strategies employed in making such claims, which routinely involved popular 

science and general-interest media as well as traditional journals. As a result, certain exclusions 

did take place: Thomas Wagner was not a major part of the re-telling of the story either in its im-

mediate aftermath or later, and Jaenisch’s work was less prominent, though his older experiments 

with Mintz remained a common ‘precursor’. This final section will examine the establishment of a 

citation pattern that fortified the distributed priority, and show the different reinterpretations 

that were still possible within this framework.   

While other laboratories were announcing their results of microinjection into mouse eggs, the 

Yale group was the first to start assimilating and reviewing the work. In 1981, Ruddle co-authored 

several reviews of gene transfer with his lab colleagues.98  These mainly focused on somatic cell 

manipulation, but also mentioned microinjection into zygotes. But in December 1981, Ruddle and 

Gordon published a high-profile paper in Science that reported their success at breeding second-
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generation offspring that also carried the inserted HSV tk gene.99 While only 3 pages long, the pa-

per also functioned as a summary and programmatic statement for a new field.

The Science paper referenced previous publications from the authors’ laboratory, and the groups 

at Fox Chase, Ohio, Oxford, and even unpublished collaborative work from Kurt Bürki at Illmen-

see’ lab at the University of Geneva with Axel Ullrich at Genentech.100 Gordon and Ruddle did, 

however, ignore the new microinjection work done in Hamburg by Jaenisch and colleagues. This 

Science paper was submitted on 30 September 1981, and revised on 30 October, and the summary 

of Jaenisch’s experiments appeared in Nature on 15 October. However, Gordon and Ruddle’s article 

did cite the Lacy and Costantini paper that was published on 5 November 1981, also in Nature, so 

the editing clearly continued in response to peer review, but given the connection between the 

two laboratories Ruddle must have seen the preprint of the Oxford paper in advance and could 

also have acted as a referee.

In this paper, Gordon and Ruddle coined the word ‘transgenic’ to describe their mice: “The feasi-

bility of producing such genetically transformed mice, which we call ‘transgenic’ mice, depends 

upon several factors.”101 Transgenic is derived from gene, and the prefix trans- indicates otherness 

and crossing boundaries, as opposed to cis-, which indicates the same side. The pair of prefixes 

were in common use in molecular biology, when talking about control of DNA function – thus, 

trans-factors usually meant proteins that interact with DNA, while the cis-factors are bits of the 

sequence that control or enable such interactions. However, the practical etymology was much 

more local and related to the research genealogy of the Yale lab. It was derived from ‘transge-

nome’, a word Frank Ruddle had coined when describing bits of alien chromosomes inserted into 

somatic cells through chromosome-mediated gene transfer.102  The naming was decided internally, 
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after Gordon came up with a list of names for consideration. As he recalls, this included “pecalo-

mice”,103 “transgenomic mice”, even “mighty mice”, by analogy with the cartoon character.104 

Names can be important in biology, and sometimes remain linked to individuals and their re-

search agendas. Many examples are at hand in developmental biology. The tension between Mintz 

and Tarkowski over ‘allophenic’ vs. ‘chimaeric’ mice has been discussed in chapter 1. In 1981, 

Cambridge University-based Martin Evans and Matthew Kaufmann cultured what are now 

known as mouse embryonic stem cell, which they called EK cells (for Evans and Kaufman – the 

name did not stick, however), to parallel ‘EC cells’, a name given to teratocarcinomas that were a 

major reference point for their work.105 Similarly, the coinage of ‘transgenic’ contributed to secur-

ing the Yale group’s authority in the field. Despite competition, the word was quickly adopted by 

other groups working on gene transfer in mice, notably Brinster and Palmiter, became common-

place and was extended to other animals, plants and bacteria, even though it was not used widely 

in the media until 1985. This adaptation was one of the many ways in which a retrospective narra-

tive of invention was accepted, despite early doubts about the utility of the Yale methods and the 

real meaning of their data.  

The parallel work that happened in the laboratories involved working synthetically to establish a 

cumulative narrative of invention, as problems were consecutively ‘resolved’ by serial publica-

tion: gene expression, germline integration and its likely molecular structure. The need to make 

further claims about the microinjection work was a response to the pressure for novelty in jour-

nal articles, and reflected the theoretical commitments of specific groups. I argue that the rapid 

pace of publication, enhanced by the liberal communication with mainstream media, facilitated 

the establishment of the success of the new kind of experiment. Reliance on journals that offered 

rapid publication, such as PNAS, further facilitated the transition from uncertainty that Ruddle 

was keen to emphasise to the press early on, to a perception of a new field and a new means of 

investigating genes in a living animal. 
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The change is traceable through outsider accounts of the field. If early descriptions, both in scien-

tific periodicals and newspapers, placed microinjection alongside many other attempts to insert 

genes into animal cells, increasingly commentators treated transgenic mice as a separate agenda. 

By transforming a group of parallel results into a sequence of successes, a productive set of prom-

ises was elaborated, for instance in the Nature comment piece on the work from Hamburg and 

Oxford, which claimed that genetic engineering had entered a new era: “if it has indeed been pos-

sible to insert a cloned gene sequence into the mammalian genome so that it functions correctly, 

the wider implications are enormous. Leaving aside the controversial question of gene therapy in 

humans, it seems certain that the genetic manipulation of agriculturally important animals will 

quickly follow”.106 

Giving the new object a name helped crystallise a new approach, and the coinage as well as prior-

ity allowed the Yale scientists to define the terms of the game, literally and metaphorically. With 

exchanges between the competing laboratories, their wide and rapid communication, a successful 

new thing – a transgenic mouse – became real, through the discovery narrative of an apparent 

collective. This narrative, however, was unstable and could be revisited in the later years, espe-

cially where questions of property and biotechnological interest came into play. Through the 

1980s, as the focus on microinjection of plasmid DNA into the pronucleus of a fertilised egg per-

sisted, the papers from Jaensich’s group were occasionally omitted in review articles, as was Tho-

mas Wagner’s contribution (Table 4-2).  

Yet, while the Ohio-Jackson work may have been sidelined in the journals, Thomas Wagner and 

Peter Hoppe remain the inventors of transgenic technology from the perspective of the US Patent 

and Trademarks Office as supported by a highly unusual adjustment to their patent that was 

granted in 2005, after its power had expired, which legitimised most of the original application 

claims107 – unlike the more contained 1989 patent. At the same time, the patent had little impact 

on university research and was not contested from therein, and in public discussions was eclipsed 

by the 1988 Harvard mouse patent, the first to be granted on an animal as a product of an inven-
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Table 4-2: Allocation of credit in the major reviews of transgenic technology, 1983–1990. Papers cited 
as a pioneering contribution are indicated with a tick, and in most cases the exact contributions – 
demonstrating successful microinjection, gene expression or germline transmission – are detailed. 

Review Gordon et 
al. 1980 

E. Wagner 
et al. 1981 

T. Wagner 
et al. 1981

Harbers et 
al. 1981 

Costantini & 
Lacy 1981

Brinster et 
al. 1981 

Gordon, ‘Transgenic 
mice...’, Developmental 
Genetics, 1983

Gordon & Ruddle, ‘Gene-
transfer into mouse em-
bryos...’ Methods in Enzy-
mology 1983

Palmiter & Brinster, ‘Germ-
line transformation of 
mice’, Annual Review of 
Genetics, 1986

Hogan, Lacy & Costantini, 
Manipulating the Mouse 
Embryo, 1986

Jaenisch, ‘Transgenic ani-
mals’, Science 1988

Gordon, ‘Transgenic Ani-
mals’, International Review 
of Cytology, 1989

Hanahan, ‘Transgenic mice 
as probes into complex 
systems’, Science, 1990

E. Wagner, ‘On transferring 
genes into stem cells and 
mice’, EMBO medal review, 
EMBO Journal, 1990. 

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ — ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ — ✓ ✓ ✓

✓ ✓ ❊ — ✓ ✓

✓ ✓ — ✓ ✓ ✓

✓ ✓ ✓ — ✓ ✓

❊ The Wagner-Hoppe paper is not cited with the other pioneering contributions here, but is mentioned as a 

claim of gene expression of rabbit beta globin that others could not replicate.



tion. Even if most of Wagner’s competitors still think his first expression results were most likely 

a curious artefact,108 his priority is registered by the US government. 

The curious thing about this recent Wagner patent is that it was issued two years after it would 

have expired, and has largely symbolic value. At this point, I also wish to emphasise that despite 

active measures to secure priority, it was not the ultimate goal, nor did the scientific decorum ever 

break down. These strategies were mostly acceptable in the climate of the 1980s, and few printed 

records of the story survive beyond ephemeral newspaper publications. The diversity of interests 

and plans for the new animals, as well as the sheer number of pioneer groups, prevented a bitter 

controversy, while opening up space for diverse lines of experimentation and keeping the moral 

economy of research in balance.

Conclusion

Through multiple publications in journals with cross-disciplinary readership, claims were made 

about a new living mammalian system for the study of gene function and further molecularisa-

tion of development, employing the most promising techniques from molecular biology. But the 

work to register the advance went far beyond journals. The scientific paper, especially after World 

War II, is a genre that necessarily conceals irregularities, uncertainty and debate as much as it 

reveals the proposed facts. The mediation of these mice was incorporated into existing narratives 

of genetic engineering and biomedical work more broadly.

The key criteria brought together in the very word ‘transgenic’ – gene expression, germline inte-

gration and insertion into the genome – were articulated early, but also left the future open. Until 

1983 the question of what transgenic mice were for was by no means settled, nor were techniques 

standardised or easy to adapt by labs that did not carry a similar combination of expertise and 

resources. While priority order was not explicitly articulated in journal papers, it mattered at the 

time, and was contested more widely via the general press. While all of the scientists I have inter-

viewed admit independent co-invention, most of them predictably emphasised that they were the 
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ones that did the experiment that really mattered. For Jaenisch, transgenic mice were invented in 

1974 during the Mintz collaboration. For Thomas Wagner, his mice were the first to show gene 

expression that came out of molecular biological considerations about the state of DNA in the 

sperm cell, which had not been fully recognised. Similarly, Erwin Wagner and Timothy Stewart 

suggested that while the Yale mice may have been the first transgenics, theirs were certainly the 

first unambiguous evidence of the technology working. Finally, Brinster’s subsequent high-

throughput collaboration with Richard Palmiter became so defining for the field that the animals 

born out of their 1982 experiment, discussed in the next chapter, are sometimes quoted as the 

first transgenic mice. 
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Chapter 5. Bespoke animals: Adoption of transgenic technology, 1982–1988

Histories of successful laboratory animals have tended to focus on dissemination of an organism 

from a single place, often its key supplier. For example, Drosophila strains from the Columbia Fly 

Room, Jackson mice, the Wistar rat were all promoted, shared or sold by the scientists and other 

actors who domesticated these animals.1  New organisms enter biological research with difficulties 

associated with domestication, standardisation, building infrastructure and the establishment of 

experimental credibility. Transitions to new research organisms are only worth the effort when 

new scientific agendas are being articulated. Thus, the switch of some drosophilists to the fungus 

Neurospora allowed them to open up a new agenda in biochemical genetics, but also to move up the 

career ladder more rapidly.2 Importing Xenopus from South Africa started as an experimental 

physiology project, but gained traction when the frogs began to be used routinely for pregnancy 

testing.3 Sydney Brenner’s choice of the nematode worm C. elegans allowed for a molecular take on 

tracing development, which combined multicellularity with simple and predictable 

differentiation.4 The recent explosion of organisms used in developmental biology is a reflection 

of the evolutionary focus and the rise of evo-devo, enabled through the molecular transforma-

tions of the 1970s and 80s when cross-species comparisons were made more straightforward by 

reduction to the level of DNA sequence.5

Unlike new laboratory species, transgenic mice fitted within existing infrastructures. Moreover, 

their epistemic value relied heavily on the established status of mice as the genetic animals best 

suited to studying human pathology. At the same time, despite the initial publicity and multiple 

claims for the viability of gene transfer into mice, the credibility and utility of that approach were 

not self-evident. A group of users had to become converts to the interdisciplinary procedures for 
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making the new animals. For molecular biologists in particular, using transgenic mice would of-

ten mean transitioning to an unfamiliar organism.  

Historians of technology often employ the diffusion metaphor when they talk about how innova-

tions spread. While perhaps more appropriate in a commercial context where mass-produced 

items may be sold and used with subsequent modification, this metaphor tends to place the 

agency firmly in the hands of inventors and designers. The spread of a given technology is thus 

imagined as an ever-expanding contagion, ironing out geographic variation and the historical 

fluctuations in its popularity and credibility.6 Turning the tables and focusing on adoption instead 

restores agency to the users who may or may not find a new technology attractive or affordable. 

Users determine whether or not an innovation is successful and able to replace existing alterna-

tives or create new niches for use. Experimental animals – moving in networks between suppli-

ers, stock centres and laboratories – become legitimate research subjects when a large enough 

fraction of users and external observers can be convinced of their utility and promise.

This chapter addresses the adoption of transgenic technology in the 1980s, considering the major 

events and avenues of their dissemination. I begin by discussing the giant ‘supermice’ produced 

through growth hormone gene injections in 1982. These animals were the first and soon the 

dominant success story, because they displayed the immediately visible effects of gene transfer, 

and their images circulated widely between scientific and lay publications. In section 2, I trace the 

early adoption of transgenic mice in the USA and beyond. Some scientists picked up the tech-

niques independently, building on their experience with related methods, but many were aided 

by courses, conferences and personal contacts with established researchers. Section 3 reflects on 

the strategies of making new knowledge with transgenic mice in 1983–88 and considers the rela-

tionship between mice and other animal systems in the molecular age. I argue that the most dra-

matic utility of transgenic mice was the ability to study gene expression in a whole mammal, and 

show how the perceived limitations of technology could be recruited to pose new questions. Fi-

nally, section 4 considers the relationship between transgenic research and the traditional sites of 

mouse genetics and supply, especially the Jackson Lab. The mouse genetics community was not 
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involved in transgenic work and did not supply transgenic mice until the mid-1990s, because of 

its limited communication with the growing transgenic community, diverging practices of estab-

lishing new stocks and the knowledge that could be made with them. Unlike the large-scale 

crosses and mutagenesis assays, transgenic research was a local, bespoke operation. 

§1. Supermice

As I have shown in chapter 4, the coverage of the 1980–81 gene transfer experiments with mouse 

embryos steered media narratives away from any serious controversy. Yet unlike the daily press, 

longer journalistic investigations continued to take a more critical approach to future possibilities 

stemming from genetic intervention, especially genetic testing in the workplace, prenatal diagno-

sis and gene therapy. Following the tradition of long-form reportage on the new biology, these 

stories reviewed multiple strands in biological research. Transgenic mice were occasionally in-

corporated into the narrative of the genetic revolution. Some pieces were optimistic; when con-

sidering the implications of reproductive and genetic technologies for cattle breeding, Business 

Week envisioned vast progressive changes to agricultural industry, referring to Thomas Wagner 

and Ralph Brinster among other scientists.7  Other articles, while fascinated with the scientific 

advances, raised concerns. In the March 1982 issue of OMNI, Yvonne Baskin combined the stories 

of the Yale gene transfer, Martin Cline’s gene therapy attempts and IVF to raise questions about 

the future of human genetics: 

News articles glibly refer to a future when we will program our cattle to put all their en-

ergy into producing milk and we’ll engineer our crops to survive on salt water. Will we 

use our burgeoning knowledge to enhance the individual? Or will we use it to make indi-

viduals, like cattle and plants, to suit society’s needs?8

After the Cline affair, genetic modification of humans was at the crux of such discussions. “Brave 

New Babies”, a November 1982 episode of the BBC science documentary series Horizon, used the 

footage of Jon Gordon microinjecting mice in a montage of recent biomedical advances. Narrated 
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by the bioethicist Jonathan Glover, it included eerie discussions with the presenter’s children and 

a sinister vision of a clinic where parents could choose the desired features of their future child.9 

Increasingly ready to engage with the media coverage, eminent biologists were discussing these 

issues. At the 1982 Banbury meeting in Cold Spring Harbor, leading experts on gene transfer met 

to discuss the future of gene therapy. Attendees included Brinster, Costantini, Illmensee, Jaenisch 

and Ruddle as well as the likes of French Anderson, Richard Axel, Paul Berg and Victor McKusick. 

Banbury meetings were initiated post-Asilomar in 1978 as a space to discuss potential biohazards, 

and the published proceedings had been technical and dense. The 1983 publication, Gene Therapy: 

Fact and Fiction, was by contrast a cheap and slim paperback that aimed to address a broader audi-

ence and combined summaries of discussions with transcribed dialogue.10 The overall conclusion 

was that germline gene therapy was an unlikely and impractical outcome of the gene transfer ex-

periments, and the somatic approaches were to be pursued. Similar arguments were presented at 

the congressional hearings on gene therapy in November 1982. Transgenic mice did not feature 

prominently, but were mentioned by Barbara Sanford, director of Jackson lab, as a potential step 

on the path towards germline therapy.11 

When talking to the press, pioneers of transgenesis tried to distance themselves from any applica-

tion to the human germline, but at the more esoteric conferences transgenic animals were all the 

rage when it came to gene function and development. The new mice were the highlight of the 

June 1982 meeting of the Society for Developmental Biology, where Mintz and Palmiter presented 

their most recent work on the HSV tk gene expression. As Nature reported, the general mood was 

that “real progress towards understanding the control of gene expression and development may 

be at hand”.12  
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Among the first groups to insert genes into mice, Brinster and Palmiter were at the forefront of 

controlling foreign gene expression, having used the metallothionein promoter that could be 

switched on in the presence of heavy metal salts. Seeking to continue the collaboration, the two 

scientists were considering other genes to inject into mouse embryos that would have clear effects 

and had potential relevance to human health or agricultural improvement. Other labs were mov-

ing to explore more pertinent genes, too. Thus, Ruddle’s group experimented with interferon 

DNA, while Karl Illmensee and Axel Ullrich worked on the human insulin gene. On his way to 

meet Brinster in person for the first time in late 1981, Palmiter stopped over to give a seminar at 

Roswell Park, Buffalo. where he learned of a dwarf strain of mice that could potentially be treated 

by a growth hormone gene. Shortly afterwards, he obtained the recently-cloned rat growth hor-

mone gene from Ron Evans at the Salk Institute, spliced it with the metallothionein promoter and 

sent it off to Brinster who had started building a colony of the little mice. But even before these 

animals were ready for experiments, Brinster discovered that injection of the growth hormone 

plasmid into normal strains also had the envisioned effect – the modified mice grew much larger 

than normal.13 In Brinster’s recollection, “The giant mouse experiment was a fantastic experi-

ment. That is the experiment that made everybody, including us, stop and say, ‘This is incredibly 

powerful.’ That you could enter the germ line and make a change like that”.14 The experiment be-

came the biggest news story in early transgenic research.

Brinster and Palmiter outlined this work in a letter that appeared in the 16 December 1982 issue of 

Nature, and the front cover carried a photograph of a giant mouse next to its regular kin (Figs. 5-1, 

middle & 5-1a).15 This was not the first time that the group’s work made journal covers. In Novem-

ber 1981, when Brinster and Palmiter’s first gene transfer paper had been published in Cell, two 

transgenic mice had also featured on the cover of the journal (Fig 5-1, left) In November 1983, a 

similar image appeared on the cover of Science, accompanying a paper of theirs on the transfer of 

the human growth hormone gene.16  (Fig. 5-1, right) The use of journal covers to highlight research 
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was a relatively recent development in the early 1980s. Science had first put a photograph on its 

cover in October 1959, with an editorial announcing the redesign and speculating as to the diffi-

culties in obtaining images for every issue,17 and through the 1960s, journal covers frequently fea-

tured abstract photographs. Nature used most of its cover as an advertising space until the 28 May 

1971 issue, when a larger black-and-white image took about half of the cover, with issue highlights 

listed underneath. In the 1970s, despite printing on cheaper paper, Nature’s cover images became 

more prominent, and authors were encouraged to submit images as “artwork”.18 Colour photo-

graphs made it to the covers of Science only in 1976, with Nature and Cell following suit in 1978. 

This trend was driven not only by declining colour printing costs, but also by the proliferation of 

popular science periodicals in the late 1970s, which in turn took their aesthetic guidance from 

mainstream weekly magazines. By contrast, more specialised periodicals, as well as PNAS – where 

most of the transgenic papers had appeared at that point – kept the table of contents on their 

front cover. 

Striking visualisation of experimental results in these relatively new spaces conferred an addi-

tional advantage to the scientists attempting to make their research stand out. The images in Fig 

5-1 show pairs of mice – apparently siblings – with their tails clipped for molecular analysis, and 
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Fig. 5-1. Brinster and Palmiter’s mice on journal covers. 

Left to right, Cell, 15 November 1981; Nature, 16 December 1982; Science, 11 November 1983.

© Cell, Nature Publishing Group, AAAS.
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Fig. 5-1a. “Gigantic mice” on the cover of Nature, 16 December 1982.

© Nature Publishing Group.



framed by a plasmid map in the Science image. They alluded to before-and-after advertising im-

ages and the genre of juxtaposing dwarfs and giants, which had been used in much older work on 

growth hormone injections.19  The giant mouse images spread through the scientific and general 

press to a remarkable degree, and their significance persisted in recollections. Thus in 1989, the 

co-inventor of the OncoMouse Philip Leder said of the result: “It was... this uncanny evidence of 

functional expression, that made us sit up and realize that transgenics was [sic] more than just 

some technological stunt.”20  

A sizeable final section of the Nature paper elaborated the potential applications of growth hor-

mone gene transfer: the production of bigger cattle, the synthesis of valuable protein in farm 

animals, and the development of mouse models for gigantism to study the effects of growth hor-

mone gene expression. In parallel with the Nature paper, Brinster and Palmiter wrote a less tech-

nical piece for Trends in Biochemical Sciences (TIBS), which also appeared in December 1982. Re-

viewing their own work and the research of others, the conclusion summarised an agenda for 

future work and press discussion: “Clearly the introduction of new genes into animals promises 

to have considerable importance in addressing fundamental scientific questions regarding gene 

regulation and may, in addition, be put to practical or commercial use.”21 In a final bit of journal 

publicity, Nature commissioned a companion News & Views piece, titled “Mouse and super-

mouse”. Jeffrey Williams, a slime mould researcher at the Imperial Cancer Research Fund labora-

tories in Mill Hill, London, noted that this was “the first time that genetic engineering [had] been 

used to alter the phenotype of an animal in such a profound manner” and the “culmination of a 

series of elegant experiments performed by Palmiter, Brinster and their colleagues over the past 

few years.”22 The article also hinted that the technique might be used to produce strains of com-

mercially valuable farm animals and improve meat yields, as well as placing these ‘supermice’ – a 

name that stuck – within the recent advances that could lead towards gene therapy, with a quali-

fier indicating that human embryo modification was unlikely ever to be considered in the clinic.
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The University of Pennsylvania Press Office was eager to advertise Brinster’s work as a break-

through. In a press release accompanied by the manuscript of the group’s Nature paper, embar-

goed until publication, the experiments were described as opening a “new era in genetic 

engineering.”23 A United Press International wire, with a photograph of the mice, spread the news 

rapidly through the US and beyond.24 On 16 December, the day the article was published, Brin-

ster’s giant mice made it to the front page of The New York Times and The Washington Post and ap-

peared inside The Wall Street Journal, and the British Guardian and Times (via the Nature-Times 

News Service).25  All articles focused on the agricultural applications of the mice, envisioning the 

potential for giant cattle. As the London Times put it, “The parallel development of an outsized 

breed of cattle could have obvious appeal to both farmers and steak-eaters.”26 On 27 December, the 

giant mice made it to TIME magazine. Dramatising the significance of the experiment (“It was the 

sort of biological alchemy that abounds in science fiction”), the article featured a small photo-

graph from the Nature cover, captioned “Next step: enormous cattle”, and a brief interview with 

Brinster and Palmiter. The two were eager to speculate about the implications of their experi-

ments. They emphasised that any modification to humans was premature and unlikely to be at-

tempted, while suggesting less threatening outcomes. Brinster said, “If we can make bigger mice 

we can make bigger cows,” while Palmiter noted that, “in a sense, the big mice are models of pitui-

tary gigantism in humans.”27

Once again, the major focus of the initial newspaper coverage was on the scientific advance and 

the work that went into making these mice. Often, the animals were taken lightly. Editorials in 

The Washington Post and The New York Times made tongue-in-cheek remarks about the new need 

for bigger mousetraps, or perhaps bigger cats.28 Introducing the report from Philadelphia, the CBS 
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anchor remarked, “however you feel about mice, you probably think they’re big enough.”29 To 

Palmiter’s delight, the story was also picked up by the comedian Johnny Carson on the Tonight 

Show. In Carson’s monologue, full of incredulity over anyone wanting bigger mice, “one mouse 

kicked out the door to the lab and said, 'I want a cheeseburger and I want it now!’”30

Unlike the first stories of gene transfer into mice that received fleeting attention, the supermouse 

persisted in the news, aided by the impressive images. Journalists were able to use the story to 

revisit the recent government report on Splicing Life, published on 16 November 1982. The docu-

ment was authored by the recently-founded (and short-lived) US President’s Commission for the 

Study of Ethical Problems in Medicine and Biomedical and Behavioral Research, which weighted 

the ethical issues of human genetic manipulation against the benefits that biotechnology might 

bring to the ailing economy. While the report explored issues around manipulating life, it came 

short of any recommendations to limit research, except to reject human-animal hybrids.31  

Schmeck’s later opinion piece in the New York Times described the report as raising “thorny ethical 

issues” about extending this work to farm animals or, especially, humans.32 Similarly, the last 

paragraph of an article in Boston’s Christian Science Monitor referred to the continued opposition 

to any human genetic modification from US church leaders and the caution urged by bioethicists. 

Another New York Times editorial, from 29 December 1982, took a more sober tone.33 Using the gi-

ant mice as a segue to the discussion of Splicing Life, it argued that the Commission had tiptoed 

around the pertinent issues such as banning human genetic intervention, while entertaining ex-

periments that no one had been planning to undertake.34 

In November 1983, Brinster and Palmiter published another paper featuring a new batch of su-

permice, this time produced with the human growth hormone gene under the metallothionein 
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promoter. These mice, superimposed on a schematic plasmid map, made the cover of a special 

issue of Science that featured papers from the biological frontier of molecular techniques (Fig. 5-

1a, right). The introduction of the human gene led to renewed coverage of supermice that fol-

lowed the pattern of late 1982 very closely. That the gene was human made some uncomfortable, 

although Mintz’s group had already been inserted the human beta globin gene into mice by in 

1981. An unidentified clipping from the University of Pennsylvania archive, likely from a Seattle 

newspaper just after the Science publication, offers a rare glimpse into private letters that Palmiter 

received as it quoted from one such letter at length:

...when I read this (an article about the experiment), my blood began to boil, my stomach 

turned and my mind cranked up some revolting thoughts!!! To me the marriage of hu-

man tissue – no matter how minute – is an abomination when connected with animal, 

bird, insect or plant life... to read about this at Christmas was a double blow to my 

senses... What kind of MONSTERS do you have working with you? Is nothing sacred??35

The quotation, with its preservation of the idiosyncratic style of the original letter, was clearly 

included as a sympathetic gesture towards the scientists. The other letters cited in the piece were 

much less dramatic – for instance, one suggested gorilla genes should be spliced into sheep to 

make more wool. In the conclusion of the article, Palmiter was given the final word to point out 

that it made little difference, “chemically”, that the gene was human. In all sorts of news settings, 

Palmiter and Brinster continued to evoke practical uses, implicitly including possible applications 

in medicine, and sought to frame their experiments in safer terms. 

Before anyone seriously proposed that a particular transgenic mouse could be a useful model of 

human pathology, the widespread coverage and the context of debates around genetic engineer-

ing turned supermice into models of the moral and ethical dilemmas to come. Scholars of human-

animal relations have repeatedly pointed at how animals are used to mimic and perform impor-

tant cultural anxieties and ambiguities.36 The light-hearted take on the supermouse drew on a 

long history of using mice in laboratories. The familiar place of the animal in a laboratory allowed 
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journalists and activists to rehearse cultural debates with a ‘safe’ species.37 Yet such safety was not 

inherent in the mouse species but came out of the specifics of the communication process, as sci-

ence reporters emphasised scientists’ perspectives and subsequently used supermice to introduce 

issues about human genetics. The difference between the mouse – a familiar experimental animal 

ensconced in the laboratory – and other mammals is starkly visible in later debates around the 

first attempts to introduce genes into farm animals, again spearheaded by Brinster, which proved 

significantly more controversial. In 1984, Jeremy Rifkin recruited the US Humane Society to file 

lawsuits against the US Department of Agriculture for collaborating with Brinster, and to raise 

publicity around similar experiments attempted by Thomas Wagner with pigs, sheep and cattle. 

With this renewed media attention, the older images of giant mice were occasionally featured, 

this time with a new ability to become controversial.38

With the circulation of supermouse images, transgenic animals were made visible as they became 

incorporated into different narratives about farm animals and humans. Yet these remarkable 

creatures yielded no significant controversy in the context of increasingly positive media cover-

age of biotechnology in the USA. Rather, as I show in the next section, the circulation of the im-

ages played a role in the wider acceptance of transgenic technology among molecular and devel-

opmental biologists and their scientific, regulatory and lay audiences. 

§2. Adopting transgenesis

While the possibility of human genetic intervention occupied many column inches in 1982–3, the 

mouse work continued at full pace. If for certain science journalists the images of supermice 

hinted at the future of human genetic intervention, for molecular biologists they demonstrated 

the success of directed gene expression in mammals: a central criterion for the utility of trans-

genic technology. Expression and germline transmission had already been claimed in 1981. But 

while previous experiments had established the expression of viral genes though mundane as-

says, and evidence for the production of foreign beta globin proteins in mice had been contest-
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ed,39  the growth hormone experiments showed the dramatic effect that a foreign gene could have 

on the physiology of an organism. 

These images were thus a testament to the power of transgenic technology. For a Boston Globe 

piece on the first supermouse paper, several prominent scientists were asked for their opinion on 

the experiment. David Baltimore, a celebrated molecular biologist and head of MIT’s newly-

established Whitehead Institute, remarked, “This demonstrates that you can put a gene into an 

embryo and have it function at a high level in the resulting organism”. Another MIT biologist, 

Philip Sharp, described the work as “the most striking demonstration of success” in animal gene 

transfer. With supermice, Brinster’s lab established a firm place at the forefront of transgenic re-

search, and their giant mice were often picked up as a key breakthrough in transgenesis, and to 

date they are occasionally referred to as the ‘first transgenic mice’.40  

In 1983–85, accounts of gene transfer into mice also began appearing in textbooks dealing with 

genetics and biotechnology, often accompanied by the supermouse images. Fincham’s Genetics 

(1983) mentioned the experiments by Thomas Wagner as well as Lacy and Costantini.41  The first 

edition of Karp’s Cell Biology (1984) featured the supermouse image, as did the second edition of 

Benjamin Lewin’s Genes (1985).42  Moreover, a drawing of the mice made it to the cover of Recombi-

nant DNA: A Short Course (1983) by James Watson, John Tooze and David Kurtz (Fig. 5-3).43  The 

book was published under the Scientific American brand, with illustrations in its characteristic 

style. It targeted a broad audience, primarily undergraduate students, and summarised the key 

developments in recombinant research and their applications to biology. A whole chapter was 

devoted to gene transfer in higher organisms, with a particular focus on Brinster’s experiments 

and Jaenisch’s viral work. 
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The highly-publicised promise of transgenic mice made them an attractive research system for 

those labs that were well-placed to adopt them. The combination of skills, know-how and instru-

ments and infrastructure was unusual and costly, yet between 1982 and 1985, a number of labora-

tories succeeded in adopting the technology, some with relative ease: elite institutions at the 

cross-roads of academic exchanges, with existing animal colonies and developmental biologists 

on hand. A series of courses spread the techniques through direct hands-on teaching from ex-

perts in the field. Other places succeeded in relative isolation, with little or no immediate contact 

with experienced scientists.

The postdocs involved in making the first transgenic mice were in an enviable position career-

wise and some of the leading molecular biologists were eager to recruit them. Philip Leder, who 

had received one of the first major university-industry grants in molecular biology at Harvard 

with money from the chemical giant DuPont, attempted to recruit Gordon, who took up a position 
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at the Mount Sinai medical school in New York instead.44  Leder then hired Tim Stewart, who of-

fered the embryological expertise and was eager to learn molecular techniques that he was unable 

to pick up in Mintz’s lab. He began working with the new gene called c-myc at Harvard, a project 

that later gave birth to OncoMouse.45  Yale’s George Scangos secured a permanent position at Johns 

Hopkins, only to move back to Connecticut in 1986, to work in Frank Ruddle’s start-up company, 

Molecular Diagnostics. Erwin Wagner secured a post at the European Molecular Biology Labora-

tory (EMBL) in Heidelberg, a major institution where he set up transgenic facilities. Frank Co-

stantini and Elizabeth Lacy had been approached by James Watson to join Cold Spring Harbor, but 

both ended up securing permanent positions in New York City, at Columbia and the Sloan Ketter-

ing Institute, respectively.

The transit of postdocs was one early and safe way to spread the new techniques. Such direct ex-

change of skill was not, however, essential. Many classic studies in history and sociology of ex-

perimentation stressed the difficulty with which experiments travel and become replicated, and 

therefore the importance of personal demonstration and contact to make novel instruments 

work. But such replication challenges were not always insurmountable at a distance.46 While per-

sonal contact aided the adoption of transgenesis in specific labs, pronuclear microinjection relied 

on well-established instruments and procedures that could be honed under the right conditions. 

After all, most transgenic pioneers devised pronuclear microinjection independently. 

Several sites with expertise in mammalian embryo manipulation succeeded at replicating the 

technique from published descriptions. With the country’s considerable tradition of mammalian 

development, British centres were in a particularly strong position. At the Agricultural Research 

Council’s Animal Research Station in Cambridge, a key site for farm-animal genetics and embry-

ology, Azim Surani set up a transgenic mouse project. After working on mouse parthenogenesis, 

Surani’s main interest was the epigenetic differences between maternal and paternal chromo-
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somes in the embryo, and the techniques for introducing new genes into mice offered the promise 

of exploring their fate and regulation. His lab assistant, Sheila Barton, was crucial to helping Su-

rani make microinjection work. Barton had trained as a historian and entered the world of devel-

opment as a secretary to Bunny Austin, eventually becoming extremely skilled at micromanipula-

tion, recognised for her gold hands. Ironically, she taught one of the transgenic pioneers, Thomas 

Wagner, to actually perform pronuclear microinjection when he visited Surani, an old friend, in 

early 1982. The microinjections for Wagner’s previous work had been done by Peter Hoppe at the 

Jackson Lab, and Wagner was eager to learn the embryological technique, despite Barton’s obser-

vation that he was “ambidextrous – lousy with both hands”.47

At Anne McLaren’s MRC Mammalian Development Unit in London, Robin Lovell-Badge started 

microinjecting genes into mouse eggs after his move from Cambridge in 1982. He had been in-

volved in another pioneering project, the isolation of mouse embryonic stem cells in Martin 

Evans’s lab in Cambridge, and this system occupied the rest of his time in McLaren’s unit.48 

McLaren’s 1983 report to the MRC emphasised that pursuing recombinant DNA was a good strat-

egy, confirmed by “the evident eagerness of molecular biology laboratories to acquire from us the 

methodologies of mammalian development.”49 She also expressed a continued commitment to 

gradually integrating molecular tools throughout her unit. However, the opinions of some refe-

rees of McLaren’s work illustrate the community’s ambivalence about embracing the molecular 

approach wholeheartedly and indicate a skepticism less frequently aired in publications. Jonathan 

Slack stated that “There is no doubt that solutions to the major problems of developmental biol-

ogy will come about through a combination of micromanipulative skills with modern molecular 

biology. It is rare to find both in the same laboratory and I think they are quite right to claim this 

as a major strength.”50 Martin Evans’s report saw the encroachment of molecular tools as both 

illuminating and threatening to the study of mammalian development, and encouraged McLaren 

to maintain a firm footing in traditional embryological and genetic approaches. Along similar 
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lines, Chris Graham commended the unit for a new generation of PhD students who combined 

both molecular and embryological skills, but felt the transgenic project was a risk that “requests 

the Unit to become an injection factory for gene cloners (à la Brinster) or to increase their post-

doctoral investment in the work, or to be very, very lucky.” 

While some embryologists were not convinced, a number of molecular biology laboratories 

showed strong interest in picking up the techniques of mammalian embryology and soon several 

workshops and courses were established to address this demand. The Molecular Embryology of 

the Mouse course at Cold Spring Harbor was the first and most influential. It was initiated by Bri-

gid Hogan, a British molecular biologist working on teratocarcinoma cells at the British NIMR. In 

England, Hogan had been learning the techniques of mammalian development first-hand, and 

remembers her frustration at the lack of clear recipes or handbooks. The mystique of embryology 

with its emphasis on the complexity of embryonic manipulation and manual talent was main-

tained, with pervasive local beliefs about what made experiments succeed. Hogan had envisaged a 

course that could synthesise these techniques, but received negative responses from most embry-

ologists. It took James Watson to broker the arrangement and set up such a course at Cold Spring 

Harbor, after a conversation with Hogan at a 1982 teratocarcinoma symposium there. Cold Spring 

Harbor had an established tradition of running summer courses in biological techniques, from 

phage genetics in the 1950s to the key course on recombinant DNA that had started in 1981 and 

was collated into the very successful 1982 handbook, Molecular Cloning.51

James Watson’s clout helped the course start smoothly within a year. He had a strong interest in 

running a transgenic project at Cold Spring Habror, and persuaded Douglas Hanahan to start one. 

Watson approached Lacy and Costantini to help run the course, got the mouse colony organised, 

and secured sponsorship from Leica and Zeiss, which provided micromanipulators and micro-

scopes. The two-week Molecular Embryology of the Mouse course was launched in summer 1983, 

with Costantini and Lacy on board (Fig. 5-4).52  Lacy and Costantini’s own experience in transi-
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tioning from molecular techniques to embryo manipulation proved helpful. From the early days, 

it attracted major figures in mammalian embryology, including McLaren. Structured around an 

invited lecture followed by hands-on lab demonstrations, with full support from the Cold Spring 

Harbor infrastructure, it was an efficient way to transmit mouse transgenesis techniques. It was 

also an opportunity to raise awareness of other aspects of mammalian development among mo-

lecular biologists. IVF and embryo transfer, isolation of stem cells, making chimeras, nuclear 

transfer and teratocarcinoma work were all included alongside basic introductions to mouse de-

velopment and the routine but crucial advice on animal husbandry and running mouse facilities. 

Much of the demand for learning how to make transgenic mice came from molecular biologists 

eager for a new system to extend their ongoing work on gene expression. According to Costantini, 

“at the beginning, pretty much everyone who came wanted to learn how to make transgenic mice. 

A lot of them weren’t so interested in learning other stuff. They would bring their DNA, and their 

boss said, ‘don’t come [back] without knowing how to make a transgenic mouse.’ And then, over 

time, I think it started to get a more diverse bunch of students.”53 Other institutions followed suit. 

The Jackson Lab included transgenesis in its established ‘Short course’ on mouse and human 

genetics.54 Peter Hoppe did much of the teaching on the new techniques there, though Lacy and 

Costantini participated in the 1985 course. In Europe, EMBL ran an annual workshop on gene ex-

pression in mammalian development, with a stronger focus on newly-available embryonic stem 

cells. These, however, were lecture courses without practical demonstrations.55 In Britain, Brigid 

Hogan attempted to replicate the Cold Spring Harbor course at NIMR in 1985, but without compa-

rable resources and strict requirements that all visitors should have Home Office licences to work 

with animals, it did not become a recurring event.56  

In 1986 the handouts from the Cold Spring Harbor course were compiled into a handbook, Ma-

nipulating the Mouse Embryo: A Laboratory Manual, authored by Lacy, Hogan and Costantini.57 
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Whereas its hugely influential predecessor, Molecular Cloning, had been routinely referred to as 

the “Bible”, Hogan, Lacy and Costantini’s output was labelled “the Mouse Book”. Beyond detailed 

advice on how to make transgenic mice, it included materials on general mammalian develop-

ment and other techniques such as nuclear transfer and stem cell culture, a brief history of mouse 

embryology, as well as information on setting up a mouse colony. It was intended to be used at the 

bench, as evidenced not only by its clear step-by-step recipes and a wealth of diagrams and pho-

tographs, but also by its comb-binding, which meant it could be laid down flat and photocopied 

more easily – a printing choice increasingly employed by the Cold Spring Harbor Laboratory 

Press. 
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Back row: Peter Rigby, NIMR • Douglas Hanahan, CSHL • ? • Brigid Hogan, NIMR • ? • ?

Middle row: Kathie Raphael, CSIRO, Australia • Tadatsugu “Tada” Taniguchi, Japanese Foundation for Cancer Research • Anne 
McLaren, UCL • ? • Lee Silver, CSHL • Frank Costantini, Columbia • Minoo Rassoulzadegan, Nice University • Elizabeth Lacy, 
Sloane Kettering

Front row: Denise Barlow, NIMR • ? • Bryan Crenshaw, UCSD • ? • Lisa Stubbs, CalTech.
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The Mouse Book was favourably reviewed. In Trends in Genetics, the Cambridge embryologist Mar-

tin Johnson noted that “all laboratories that aspire to the genetic manipulation of the mouse 

should buy at least two copies immediately – my single copy is never there when I need it, a sure 

sign of its value.”58 A review in Genetical Research praised the book’s contribution as an introduc-

tion to mammalian development at large: “this book is probably unique in its coverage of mam-

malian developmental biology, and will be welcomed by anyone who has tried to plough through 

embryology texts in search of information relevant to mammals.”59 The handbook also did well 

commercially, even though it never quite matched the success of Molecular Cloning or the Press’s 

monoclonal antibody series.60 

Similar books appeared in 1986–7, embracing a wider focus on molecules and mammalian devel-

opment. Janet Rossant and Roger Pedersen’s Experimental Embryology of the Mouse was a collection 

of chapters from prominent biologists, and it aimed to become a more theoretical introduction for 

any “serious student of mammalian development”, focusing on the state of the art. It recognised 

the role of transgenic mice in raising the status of the field: “For the many molecular biologists 

who have discovered the mouse embryo in their quest for transgenic mice, it will provide an in-

troduction to the wider issues of mammalian embryogenesis.”61 Similarly, Marilyn Monk’s Mam-

malian Development, an instalment in the extensive ‘Practical Approach’ series from IRL Press, was 

a British multi-authored handbook with a broader scope.62 Azim Surani, Sheila Barton and two 

postdocs in Surani lab wrote their contribution on transgenic mice. While these volumes were 

favourably reviewed, they did not become as widely used as the Mouse Book.

The success of the Cold Spring Harbour course was partly owing to its ability to bring in heavy 

sponsorship, and in fact, Watson may have considered extending the laboratory’s own transgenic 

work into a commercial venture.63 The 1980s saw a dramatic expansion of the biotech industry 
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and reorganisation of biomedical research. Beyond the success stories of Genentech and Cetus, 

the 1980s was a decade of hybrid arrangements between universities and industry. Major phar-

maceutical and chemical companies – Pfizer, Monsanto, DuPont – funded high-profile 

collaborations.64 The Whitehead institute, founded with a major donation in 1982 and affiliated 

with MIT after protracted faculty debates, became a new site for exciting molecular work, giving 

its first director, David Baltimore, extensive control over hiring and research strategies.65  Trans-

genic technology followed the early success stories of biotech and many institutions were keen to 

introduce it into their routine. A 1985 opinion piece in Nature, tellingly titled ‘DNA makes protein 

makes money,’ listed the various recombinant systems used in biotechnological production, and 

then remarked: “Now that the [transgenic] technique has been established... it offers the possibil-

ity of investigating the mechanism of tissue-specific gene expression and maybe eventually of 

producing useful proteins in the milk of cows or in the eggs of chickens” (Fig. 5-5).66

Some commercial applications for transgenic animals were envisioned, but the bigger biotechnol-

ogy firms also pursued cutting-edge research to build reputations and attract university scien-

tists. Seeking to attract the best scientific talent to a new industry, Genentech built on the collabo-

ration between Axel Ullrich and Karl Illmensee and in 1984 recruited Tim Stewart to set up its 

own transgenic facilities. Following prominent research universities and the NIH intramural pro-

gramme, Baltimore offered Jaenisch a place at the Whitehead institute and invested in building 

proper mouse infrastructure.67 Yet the commercial entities keen to attract transgenic research 

were not limited to the biotech hubs of the Bay and Boston areas. Smaller start-ups emerged, 

some of them led by transgenic pioneers. Frank Ruddle was involved in two related ventures, Mo-

lecular Therapeutics and Molecular Diagnostics in West Haven, Connecticut, where George Scan-

gos moved in 1986 to organise transgenic mouse research, taking a sabbatical from his tenure-

track position at Johns Hopkins, and eventually fully moving into industry. In Ohio, Thomas Wag-
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ner was heavily involved with the foundation of an animal biotechnology research institute and 

Embryogen, a company intended to commercialise its outputs.

The Ohio story showcases heavy state support for the ‘private science‘ of biotechnology, and dem-

onstrates alternative modes of funding and network-building.68  Wagner’s original work on gene 

transfer was partially funded by the Detroit-based Genetic Engineering, Inc. which would have 

held an exclusive licence under the Ohio University/Jackson patent on microinjection filed in June 

1981. From the very start, the Ohio University administration was backing Thomas Wagner’s work 

to put the institution on the map and raise revenues. Charles Ping, the University President, man-

aged to secure an important and lucrative alliance with the state administration, which largely 

relied on Wagner’s research and the promise biotechnology held for employment and economic 

growth in a ‘rust-belt’ state. Ohio University opened the Institute for Animal Biotechnology in 

1984 with a grant from the Thomas Alvaro Edison programme, a fund initiated by the new Demo-

crat governor Dick Celeste to provide seed capital for innovative projects. The same year, the uni-

versity bought out the Genetic Engineering, Inc. claim to the exclusive licence, and established its 

own spin-off company, Embryogen.
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The agricultural promise of transgenic technology loomed large in corporate strategy. It was 

made feasible by Brinster’s collaboration with USDA researchers in Beltsville, Maryland that 

started in 1984 and resulted in transgenic sheep and pigs.69 In 1985, Azim Surani reported the 

production of transgenic sheep at the Animal Research Station in Cambridge, a project enthusias-

tically promoted by its funder, the recently renamed UK Agricultural and Food Research 

Council.70  Sheep transgenesis was also pursued the Edinburgh site of the Institute for Animal 

Physiology and Genetic Research (IAPGR),71 and a spin-off company, Caledonian Transgenics, was 

founded to commercialise this work in 1986. The global reach and the promise of real applications 

encouraged agricultural institutions to build up their molecular portfolios. Thus, in the Soviet 

Union, a collaborative project focusing on transgenesis and embryo transfer in farm animals was 

established at the All-Union Institute for Animal Husbandry in the Moscow satellite town of Du-

brovitsy. Led by Lev Ernst, the project relied on the infrastructure of Soviet research institutes.72  

With one microinjection facility available and limited molecular expertise on site, Ernst followed 

the Brinster example and secured DNA supply from a molecular biology laboratory at the Moscow 

State University.73   

Biotech companies and universities interested in agricultural applications of animal transgenesis 

created alternative networks through which individuals, skills, DNA and animals travelled. While 

Wagner was being delicately excluded from the citation history of transgenic mice (see Chapter 4 

§5), the fledging patent application ended up creating a new legitimacy – and controversy – for his 

claims when it was granted in 1989. Furthermore, despite Embryogen’s struggle to attract inves-

tors willing to pour money into the Ohio facilities, and the company’s ultimate merger with an-

other start-up and move to New Jersey, Wagner’s involvement in a state-private enterprise opened 
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other doors. Thus, Ohio built connections with emerging Asian institutions, for instance Beijing 

Agricultural University and provincial biotechnology centres in China, as well as universities in 

Japan and Malaysia. Finally, Wagner’s position as scientist-entrepreneur, a new identity forged by 

the rise of biotech, secured him an invitation to the US Congress’s Office of Technology Assess-

ment (OTA) Committee on Biotechnology in 1986, and he was a prominent voice in congressional 

investigations and media debates on transgenic research and animal patenting.

The success of transgenic experiments was constructed in the early 1980s in a highly visible fash-

ion. A number of laboratories invested in the new technique, hoping to capitalise on a new ex-

perimental system through publications, expanding knowledge and, in some cases, by attracting 

funding and building hope of future profits. A network of courses and personal contacts, with 

active engagement from several pioneers, helped with the transmission of elaborate techniques, 

though a number of laboratories picked the skills up independently. Through different strategies, 

new laboratories embraced transgenesis and adapted it to their infrastructure and research pro-

grammes. Moreover, with the expansion of commercial interest in genetic engineering and en-

couragement of private funding for biomedical research, new networks were being built around 

the commercial exploitation of transgenic technology. In the early days, these connections were 

driven by the agricultural promise.  

§3. Making knowledge with transgenic mice 

Unusually, the mouse was the first animal for which a novel molecular technology had been im-

plemented, while other laboratory animals lagged behind. This state of affairs did not last. Be-

tween 1982 and 1985, gene transfer was achieved in other animals key to developmental biology. 

The use of P-elements (transposable genetic elements that ‘jumped’ in the genome) to transfer 

genes into Drosophila was reported in 1982 by Gary Rubin with Allan Spradling, both molecular 

biologists working with the fly at the Carnegie Department of Embryology.74  Gene transfer at-

tempts were also performed with the nematode C. elegans, with genome integration and germline 
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transmission announced in 1986.75 These experiments did not receive attention comparable to 

mice outside of the embryological community, but their profile was high within. With the prolif-

eration of eukaryotic experimental systems suitable for molecular intervention, these species 

were being used to elaborate new knowledge about gene action in higher organisms. The empha-

sis on molecular genes as a unifying focus of research, aided by the ability to splice and hybridise 

genes between species, made comparisons between different experimental organisms more 

straightforward. 

In 1985, the Cold Spring Harbor Symposium on Quantitative Biology celebrated its 50th anniver-

sary with a meeting on ‘The Molecular Biology of Development’. It was organised by Joe Sam-

brook, a molecular biologist at Cold Spring and co-author of the Molecular Cloning handbook. In 

his foreword to the published proceedings, Sambrook explained the choice of topic:

In recent years... developmental biology has undergone a dramatic change and has ma-

tured from a descriptive to an analytical science. There is no doubt in my mind that this 

change stems almost entirely from two technical advances – the ability to use molecular 

cloning to isolate and characterize wild-type and mutant versions of genes that control 

or are expressed at specific developmental stages and, second, the ability to generate 

transgenic organisms in which the expression of the introduced gene(s) is correct both 

spatially and temporally.76

Such emphasis could be expected from a molecular biologist and a Cold Spring Harbor event, and 

the programme reflected such excitement. Yet the opening and closing remarks at the sympo-

sium, by John Gurdon and Gerry Rubin, respectively, presented two contrasting perspectives.77  

Rubin’s concluding lecture celebrated the newly available methods such as gene transfer, in vitro 

mutagenesis and antisense RNA – which he characterised as  ‘non-classical’ or ‘surrogate’ genetics 

– and highlighted the variety of species with which new molecular knowledge of development 

was being produced: mice, but also Drosophila (his organism of choice), C. elegans, yeast and 

Xenopus. Gurdon’s introductory lecture emphasised the historical achievements of experimental 

embryology and downplayed the importance of genetics, as he urged his audience to keep in mind 
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the ambitious developmental questions of determination, axis formation and patterning. Recog-

nising the promise of gene transfer, to which he himself had greatly contributed, he reminded the 

audience that the traffic between molecular biology and embryologists had been two-directional, 

and suggested that to answer the big developmental questions, studies of protein interactions and 

using cell-free systems had to be taken seriously alongside transgenic organisms.

Transgenic mice were certainly a highlight of the symposium, with leading researchers reporting 

their latest work. However, it was a consensus of the meeting that their utility left something to 

be desired. In Drosophila, a single gene integrated into the genome on a P-element showed rea-

sonably predictable levels of expression – something emphasised in discussions around the fly 

publications.78 In mice, integration of foreign genes happened at random into unknown genomic 

positions. The DNA itself did not insert as a single copy, but replicated into tandem repeats 

through a mystifying mechanism. The levels of expression could vary widely and seemed to cor-

relate poorly with the number of gene copies that ended up in the mouse genome.79 Jaenisch’s ap-

proach, which relied on retroviruses with a single copy integration, circumvented that problem, 

but it involved the extra step of purifying the viruses and was more likely to give rise to mosaic 

animals with genes in only some tissues. 

Transgenic researchers were aware of this lack of control and emphasised it in talks (Fig. 5-6). At 

the same time, it did not remain merely a limitation. Unpredictable integration and the lack of 

correlation between gene copies and expression levels became resources to articulate further 

questions. Thus, random insertion could give rise to mutations, some of them resulting in embry-

onic lethality, and several were reported at the Cold Spring Harbor meeting. Such mutants had 

been the staple of developmental genetics since the 1930s. However, with transgenic mice, the 

disruptive gene was known and a molecular probe could be designed to map and sequence the 

affected chromosomal region, offering a molecular take on gene hunting. 

Molecular tinkering with the injected DNA constructs drove attempts to circumvent unpredict-

able expression and define the key elements that were required. It fit well with the intense inter-
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est in eukaryotic gene regulation from molecular biologists. While the possibilities of genetic 

therapies and agricultural promises captured media attention, the immediate attraction of trans-

genic mice in their early years was the ability to examine eukaryotic gene function in space 

(across tissues) and time (during development). In 1982–88, a great variety of gene constructs 

were injected into mouse embryos, connecting experts across fields. Here, I will consider two ex-

amples of research with transgenic mice to illustrate the broader pattern of their use: the study of 

control sequences in human globin genes and work with oncogenes as the genetic basis of 

cancer.80  

As Chapter 2 showed, much impetus behind recombinant DNA research was to provide a new way 

to investigate and understand eukaryotic genes. With the ability to isolate genomic or cDNA, the 

study of expression exploded.81  The second edition of Benjamin Lewin’s Gene Expression (1980)was 

devoted to eukaryotic chromosomes, after the 1974 text on bacterial expression, and was a com-

pletely different text intended as another volume rather than an update.82 Over a thousand pages, 

the book struggled to reflect the dramatic amounts of new knowledge made in only three years. 

Studies of the structure of eukaryotic chromatin – the combination between DNA and various 

protein that packaged it into chromosomes – and the effect of different sequence regions on ex-

pression levels was booming. Introns – regions of DNA sequence not found in the final RNA tran-

script – were a hot topic in the late 1970s.83

Promoters, well-described by bacterial molecular biologists, were already instrumental in the 

first gene transfer experiments. These elements initiated RNA transcription from DNA, and had 

to be located upstream of the gene, with their specific position in the sequence affecting the rate 

of RNA production. Yet in eukaryotes, other regulatory elements worked at a long distance away 

from the gene were being identified. These ‘enhancers’ were first described in 1981 in the familiar 

tumour virus SV40. Their striking feature was demonstrated by Paul Berg in the same year, as he 
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showed that removing these bits of DNA and moving them downstream of the gene did not reduce 

expression. Initially, enhancers were suspected to be specific viral elements. However, by 1983 

similar sequences were detected in lymphocytes, suggesting they were cellular elements that the 

viruses hijacked and moved, and the search for new enhancers continued.84  

The vast majority of gene expression analysis in this period was performed in cultured cells or 

cell-free systems. Work with transgenic mice could build on in vitro experiments by showing 

whether the foreign gene expression was limited to the predicted tissues and to what extent the 

existing control elements could mimic expected quantities of protein. Human globin genes were a 

major genetic system for such projects as they were among the first genes to be cloned. Develop-

mental changes in the way human haemoglobin is made – the embryonic, foetal and adult mole-

cules combine different globin subunits – were another attraction. Unlike other genes, significant 

expression of foreign beta globin in transgenic mice had not been achieved. Lacy and Costantini 

continued working with beta globins in New York, and while they managed to detect some ex-

pression, tissue specificity was a problem. They could detect the rabbit beta globin mRNA in some 
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tissues – skeletal muscle and testes – but not the expected blood cells.85 By 1985, however, the team 

published a paper with a mouse-human beta globin gene hybrid, including some mouse and hu-

man regulatory sequences upstream and downstream of the gene. The result showed specific ex-

pression in red blood cells, even though the levels remained low.86 In the same year, Brinster, Pal-

miter and collaborators at the universities of Alabama and Cincinnati reported tissue-specific 

expression of human beta globin with a different construct.87 Removing prokaryotic sequences 

from the plasmids or phage vectors improved the levels, and was recommended for all subsequent 

transgenic experiments.88   

In 1987, after years of experimenting with the globin genes in cultured cells, Frank Grosveld and 

George Kollias at NIMR constructed a beta globin DNA that showed predictable expression. 

Through a contact with Hogan, Kollias had attended the second Cold Spring Harbor course and 

brought transgenic techniques into Grosveld’s lab.89  Drawing on extensive work on globin pro-

moters and enhancers in culture, studies of thalassaemia patient cells and transgenic experi-

ments, Grosveld and Kollias designed a control sequence that they expected to combine all the 

crucial features required for expression. The resultant transgenic mice showed very high expres-

sion, comparable to the levels observed in humans. Significantly, the levels of human globin pro-

tein also correlated with the number of foreign genes that incorporated into the germline – an 

indication that their combination of promoters and enhancers alone was sufficient to generate 

normal expression. This region, that they labelled the Dominant Control Region, became a key 

part in the regulator model of globin genes.90
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In parallel with the globin work, other groups made transgenic mice with new eukaryotic genes 

that had receiving dramatic attention circa 1980. These were oncogenes, associated with the mo-

lecular processes behind carcinogenesis. The research into origins of cancer, in which mice 

played a central role, had oscillated between emphasising genetic and environmental causes. Pro-

viding animals for cancer research persisted as a key agenda for mouse genetics, as the disease 

became a major locus of biomedical funding. Viruses were an important research programme for 

cancer causation in the 1930s and again in the 1960s and 70s, with major interest in animal tu-

mour viruses that I discussed in Chapter 2.91  In 1975, Dominique Stehelin, Harold Varmus and Mi-

chael Bishop used Southern blotting with a viral probe to detect a Rous sarcoma virus gene (later 

labelled src) in the chicken genome. While this result is celebrated as the beginning of oncogene 

research, work from other groups, detection in different species and alternative methods that re-

lied on gene transfer were required to make a convincing case for their importance in cancer 

causation.92 In only a few years, oncogenes became the dominant concern of carcinogenesis stud-

ies and a key instrument for research.93

Several laboratories pursued inserting oncogenes into the mouse germline. Brinster and Palmiter 

attached the viral src gene to their metallothionein promoter in the summer of 1982, with no tu-

mours in the resulting mice. However, in the same summer, an experiment that relied on improv-

ing expression of the thymidine kinase gene by SV40 enhancers led to unexpected brain tumours. 

Palmiter’s construct included a large part of the viral ‘early’ region. In subsequent studies, Brin-

ster and Palmiter showed that the control region in the virus and the T-antigen gene were suffi-

cient for tumour formation, thus demonstrating that SV40 T-anitgen was an oncogene.94 In Le-

der’s Harvard lab, Tim Stewart was working with the cellular myc oncogene involved in Burkitt’s 

lymphoma – Leder’s long-term interest. Learning the molecular techniques, Stewart combined 

the gene with a promoter and enhancer sequence from the mouse mammary tumour virus 

(MMTV), in the hope that it would be a ‘strong’ control element. Gene expression was targeted to 
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the mammary tissue, leading to breast tumours in resulting mice. Papers from both groups were 

published in Cell in June and October 1984, respectively, and both experiments featured on the 

cover (Fig. 5-7).95  

Famously, a patent was filed on the Harvard mouse, in line with the agreement Philip Leder had 

with DuPont who sponsored his research and move to Harvard. It would appear that they re-

sponded to the promise of disease models that had been articulated in anticipation of successful 

gene transfer into mice, most coherently by Mintz. Yet Leder and Stewart’s mice were not initially 

presented as models of breast cancer. The major utility of these animals, reflected in the patent 

claims, was as instruments for expression analysis and carcinogen testing, potentially superior to 

the non-transgenic mice that had been used for similar purposes. They were presented as a source 

of novel tumour cell lines that could be derived from different tissues, and a means of studying 

the MMTV promoter sequences further. 

Gene expression was one of the major issue at stake: was the mere presence of a single oncogene 

sufficient to cause tumours, or was gene regulation to blame?96 On top of that, the slow emergence 

of tumours fit with the already-articulated multi-step models of carcinogenesis, in which several 

things had to go awry for a tumour to emerge.97  With further results form Brinster, Hanahan and 

Wagner reported in 1985, mice were promoted over cell culture as tools for dissecting multi-step 

carcinogenesis. In a 1987 experiment, Leder’s group showed that when mouse strains with differ-

ent oncogenes were crossed, tumour development increased dramatically in offspring that carried 

two oncogenes.98 While this work relied heavily on knowledge generated in vitro, transgenic re-

searchers argued their mice were genetic animals that were best-suited to help solve genetic 

problems.99
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For developmental biologists, the utility of transgenic mice was less immediate. Insertional muta-

tions were a promising line of work, but creating new lines was slow.100 Some oncogenes were 

implicated in differentiation and cell division, and the haemoglobin system held the promise of 

developmental switches to be determined. However, the interest in gene regulation fit well with a 

molecular take on differentiation that had been promoted in the 1970s by the like of Gurdon, 

Markert and Davidson. Thus, Azim Surani’s work on genomic imprinting – the idea that alleles of 

the same gene could behave differently depending on whether they were on a paternal or mater-

nal chromosome – initially relied on making parthenogenetic embryos by moving two male or two 

female pronuclei into a mouse zygote. While Illmensee had claimed such constructed embryos 

viable, both Surani and Davor Solter’s group argued their development was in fact severely ab-

normal. Surani proposed that the same genes could be regulated by means external to their DNA 

sequence, or epigenetically, and undertook a molecular demonstration to make a case for imprint-
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ing. In 1987, Surani’s postdoc Wolf Reik – a former PhD student of Jaenisch’s – made transgenic 

mice with a gene whose methylation could be assessed. Methylation – presence of added methyl 

groups on chromatin – was known to affect expression in vitro. Crucially, the pattern of methyla-

tion in the resulting mice changed depending on whether it was inherited from the mother or the 

father in subsequent crosses.101  

Transgenic mice were thus being embraced as a means to investigate gene function where differ-

ences between tissues could be demonstrated and controlled. The ability to detect promoters and 

enhancers was assumed to correlate with gene numbers, and showed sufficient conditions for ex-

pression. Moreover, the very limitations of transgenesis by pronuclear microinjection were re-

cruited to pose new questions and generate novel experimental agendas. The promise of trans-

genic mice had been accepted before reliable gene expression was achieved, but the very process 

of controlling expression was informative for molecular biologists. These results were not chal-

lenged in print, but rather integrated into the growing knowledge about eukaryotic genes. The 

heavy focus on DNA made comparisons between systems as diverse as mice and yeast increasingly 

productive, especially since nucleic acid hybridisation showed high levels of evolutionary conser-

vation between many gene families.102 To revisit Rubin’s summary of the 1985 Cold Spring Harbor 

meeting: “The surprising finding of evolutionary conservation of a number of DNA sequences 

known to encode important functions has provided a way to relate observations made in diverse 

systems. The use of sequence cross-homology as a tool to utilize the advantages or advances of 

one experimental system in another was a recurring theme in this year’s Symposium.”103

Heralded by the supermouse, the study of gene expression was thus the primary focus and most 

celebrated application of transgenic mice in the 1980s. Yet, while most studies maintained a mo-

lecular focus without a clear goal at medical translation, transgenic researchers were not blind to 

the world of biomedicine, and biotech and medical researchers paid attention. As noted already, 
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while the studies may have focused on specific gene expression, the genes selected often had po-

tential medical relevance – insulin, interferon, globin genes and oncogenes were all hot subjects. 

Moreover, the number of transgenic researchers entering new niches in the biotech industry was 

considerable. While most early projects focused on the production of valuable proteins in animals 

and attempts to breed better farm animals, and not disease models per se, relevance to human 

health remained on the agenda, and became a priority after 1987. Thus, in their studies of on-

comice, Brinster, Leder and Hanahan built links with cancer researchers and clinical scientists 

who provided detailed descriptions of the cancers his mice developed. Between 1987 and 1990, a 

flurry of reviews and papers on transgenic animals targeted clinical audiences through medical 

journals, increasingly employing the language of “models”.104  

They easily achieved a high profile due to their novelty, scarcity and the ability to claim in vivo 

analysis. This status was reflected in the publication pattern. Even as the scale of transgenic work 

expanded considerably and entered more disciplines, the majority of transgenic papers were pub-

lished in high-profile journals – ‘bridge’ publications covering multiple fields such as Science, Na-

ture or PNAS, or generalist biological journals like Cell (Fig. 5-8). Yet such experiments were few in 

comparison to cell culture studies, they required more time, a rare combination of expertise and 

animal infrastructure. As I discuss in the next section, this focus on individual gene expression 

and the scarcity of transgenic animals affected the way they were produced and defined.
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§4. “A boutique operation”: Standards and scales 

Today, transgenic mice are easily available through university ‘core facilities’ – to which their 

production was outsourced in the 1990s – as well as the Jackson Lab and the many commercial 

suppliers, both new and established. Yet most early users had to rely on their own ability to intro-

duce foreign DNA into the germline, or find willing collaborators. The resulting strains could then 

be studied in more detail or crossed to observe the effects of multiple genes or control elements, 

yet the primary style of research was to produce new animals with an ever-expanding number of 

available cloned genes and control elements. The husbandry, record-keeping, disease manage-

ment and breeding of transgenic mice relied on established practices of mouse genetics that were 

propagated through demonstration, handbooks and existing institutional experience.105 Yet, de-

spite their place as tools and iconic symbols in the molecular interpretation of mammalian devel-

opment, the established mouse genetics community was barely involved in transgenic work until 

the 1990s. The focus on specific genes was the core interest for molecular biologists, and many 

cloned genes remained to be introduced and studied. Some transgenic experiments paid attention 

to the genetic background of the strains they were using and the designed mouse stocks had to be 

maintained, much like novel mutant strains produced through classical genetic means. But as this 

section will show, the institutional separation of transgenic research from traditional mouse 

genetics created modes of production and exchange outside of the usual supply networks.

Despite its role in all things murine, the Jackson Lab did not begin advertising transgenic mice 

until 1993, and even then served largely as a repository for external providers. The Lab was also 

marginal in research with transgenic animals.106  Thomas Wagner’s collaborator Peter Hoppe con-

tinued to work on making transgenics there, but anecdotal evidence suggests that he was hard-hit 

by the Illmensee affair as the prime collaborator and co-author on the mouse cloning paper. He 

taught the techniques of mammalian development, including pronuclear microinjection, at the 

Jackson Short Course in Mammalian Genetics, but did not publish any further work on transgene-
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Data obtained using Web of Science core database search for ‘transgenic AND mouse’, with relevance 
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sis until 1987. 

As an institutional strategy, leaders of the Jackson Lab focused the limited resources elsewhere. 

As a global repository of mouse strains, the lab was heavily involved in the techniques of embry-

onic cryopreservation. Another example of a technology that came from the intersection between 

mouse embryology and farm animal research, the ability to safely freeze and thaw embryos and 

transfer them to surrogate females had been established as a feasible technology in 1977 at a Ciba 

foundation meeting in London.107  In 1978, Jackson started its cryopreservation programme, with 

281 strains stored this way by the summer of 1982;108  similar efforts were made at the MRC Har-

well unit in Britain. The Jackson Lab did recruit two molecular biologists in 1983 to establish 

cDNA libraries from well-known inbred strains of mice, in line with the institution’s archival mis-

sion, and to study cancer in existing mouse lines. In a 1986 oral history interview commissioned 

by the lab, David Baltimore, who had spent his high-school summers at the Jackson student 

courses, lamented that the laboratory was unlikely to become an efficient site for molecular re-

search. While predicting an important role for the lab in mouse supply and quality control, Balti-

more felt that the narrow research focus, remote location and 9-to-5 work ethic were inadequate 

to rewrite the mouse in the language of DNA.109

Community-wide, there was some effort to integrate transgenic mice into the existing genetic 

standards. In 1984, a group of the International Committee on Standardised Genetic Nomencla-

ture for Mice met at the Jackson Lab to discuss symbols for mouse globin genes, and in the process 

produced standard designations for transgenic mice. Their guidelines were published in the 

Mouse Newsletter as part of a 90-page nomenclature update.110  The transgenic designations sug-

gested criteria for what a geneticist would count as a good mouse. There were multiple options for 

the exclusion and inclusion of extra information, but the basic structure was as follows, to take an 

example: Tg(12OCUHba)N33. Tg stood for transgenic; the number in parentheses designated the 
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chromosome into which the gene had integrated (here, chromosome 12); the three-letter code in 

capitals indicated the species that the gene came from (here, OCU for the rabbit, Oryctolagus cu-

niculus); the italicised or underlined three letters represented the standard gene abbreviation 

(Hba for alpha-globin). The numbers after the brackets designated the Newsletter code for the in-

stitution where the mouse was made (N for NIH), and the the final number referred to the serial 

number of the insertion at that institution. 

The same document recognised the unwieldiness of this nomenclature by suggesting that full 

names be reserved for Materials and Methods sections. Despite this allowance, the Jackson no-

menclature set itself against the established short names of existing transgenic mice, named lo-

cally after the gene of interest. The laboratories that produced transgenic mice were happy to 

maintain their own naming systems in the scientific press, adding to the credit contribution they 

received in collaborative papers and future applications. The suggested nomenclature was not 

picked up. In 1989, when the committee published its nomenclature recommendations alongside 

the list of known mouse strains and genes – over 800 pages long – transgenic designations re-

mained tucked away as a few paragraphs in the section on globin genes, while inbred, congenic 

and recombinant strains received a chapter each.111

By contrast, existing accounts suggest that transgenic Drosophila were readily integrated into the 

practices and institutions of fly genetics.112  While also used heavily in gene expression studies, 

fruit flies modified with P-elements could be readily used in large-scale mutagenesis screens and 

in mapping projects via ‘chromosome walking’ that allowed mapping of unknown elements adja-
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cent to the known marker on the chromosome.113  Such approaches, however, were too laborious in 

mice, and chromosome walking was not achievable with any ease.114 

A number of factors might explain the gap between mouse genetics community and transgenic 

researchers. First, most scientists working with transgenic mice were trained in molecular biol-

ogy or mammalian development, and often had worked with different species before. Communi-

cation networks had few overlaps – few transgenic labs contributed to the Mouse Newsletter, and 

few genetic labs carried the molecular expertise. Finally, the experimental focus, costs and genetic 

uncertainties of making transgenic mice made Jackson-style practices of genetic purity that had 

been established for inbred lines a secondary concern.

On one level, genetic specificity was a selling point for transgenic mice. Accessing and editing in-

dividual genes and observing the effects in a well-studied mammal was a major attraction. The 

emphasis on bespoke production and designer genes – a term that had spread through news arti-

cles on genetic engineering since the mid-1970s – was not limited to transgenic animals. Mono-

clonal antibodies, another major biomedical innovation of the 1970s that attracted much more 

dramatic commercial interest promised to produce antibodies against any substance.115  In her 

neo-Marxist analysis of biotechnology, Melinda Cooper has argued that genetic intervention re-

placed the industrial emphasis on mass production and reproduction of standardised life forms in 

biomedicine with a destandardisation project.116 The tension between standards and specificity is 

also thematised in studies the of more recent uses of transgenic mice, in which the animals are 

described as simultaneously made-to-order and relying on established genetic standards.117  

196

113 ‘Chromosome walking’ relies on in situ hybridisation on giant Drosophila ‘polytene’ chromosomes in salivary 
gland cells, so that the cloned gene or a P element can be mapped with high resolution. The labelled part of the 
chromosome can then be cut with restriction enzyme, identified with Southern blotting, and the extra bits of the 
chromosome that have been restricted then used as the next probe further along the chromosome – hence ‘walk-
ing’. A similar approach was initially used to compile sequences in the public Human Genome Project initiative.

114 E. Wagner interview.

115 Keating & Cambrosio 1995, de Chadarevian 2011, Marks forthcoming.

116 Cooper 2008:15–50.

117 Haraway 1997: 96–101, Birke, Arluke & Michael 2007: 49–51.



These studies tend to conflate the worlds of mouse genetics and transgenic work – an under-

standable state of affairs since the mid-1990s, but one that ignores the historicity of “transgenic 

models” and the work involved in the uneasy reconciliation of the supply and maintenance of 

transgenic and inbred mice that had taken place in the preceding decade.118  The divisions between 

the different institutions can be linked to the style and scale of research. Where a new mouse mu-

tant had been discovered, whether spontaneously or as part of a planned mutagenesis screen, for 

instance by exposing mice to radioisotopes or chemicals, it had first to be treated as a genuine 

novelty rather than as an anomaly to be ignored.119 To produce a recognised inbred strain, it then 

had to be crossed to its siblings or parents for at least twenty generations, where ideally an indi-

vidual mutation would be the clear source of variation in future crosses. 

The focus of most inbred strains remained on a single gene or a locus, with extensive inbreeding 

designed to make the remaining background uniform. Yet the core aim of the process was to make 

these mice useful in future crosses for large-scale mapping projects, or, crucially, for research into 

diseases in which concerns about genetic purity could be black-boxed. By contrast, transgenic 

mice were designed with a specific construct in mind that was central to the immediate investiga-

tion. If a mouse showed the presence of the foreign gene, its most likely destiny was that it would 

be killed, its organs separated, homogenised and assessed for tissue-specific expression. In most 

experiments, which specific strain the modified embryos came from was unimportant. The vast 

majority of transgenic experiments relied on the first-generation (F1) hybrids between common 

inbred strains – a strategy that had been common in mouse embryology where hybrids were val-

ued for their recalcitrance to manipulation (see Chapter 1 §2). Not all experiments would require 

further breeding, and many mice were discarded in the hope that they could be derived again.120

If there was an interest in establishing a new strain, the resulting transgenic “founder” mice were 

then bred to hybrids of similar crosses, allowing researchers to follow foreign genes through gen-

erations. The husbandry section of the Mouse Book dedicated four short paragraphs to the gen-

197

118 As does Fiona Murray’s analysis of sharing oncogene mice, Murray 2010.

119 Gaudillière 2004: 193–201. On contemporary analysis of designating aberrant mouse as a novel mutant rather 
than an anomaly, see Davies 2013, esp. 139–145.

120 Hogan, Costantini & Lacy 1986: 153–6.



eration of transgenic mouse lines, paying more attention to the pseudopregnant surrogates and 

sterile males required to make them receptive to embryo transfer after microinjection.121 While 

noting that some experiments would require specific inbred strains if the genetic background 

was important for specific purposes, the handbook recommended using the F1 hybrids in most 

cases and stressed the limitations of microinjection. It also had to warn against killing the foun-

der mice to assess their gene expression until a line was securely established and several genera-

tions of offspring were able to show clear presence of foreign DNA. 

There were also issues of cost and scale. My oral history interviews, researcher survey and analy-

sis of transgenic papers in the late 1980s show that few mice had been sent off indiscriminately, in 

the manner of plasmids, but were mostly exchanged among collaborators with a view to shared 

authorship on resulting publications.122 First, little could be gained by using others’ strains that 

had already been published, as the key attraction of the technology was the ability to examine 

new molecular constructs. Second, production of transgenic mice was resource-intensive and 

uncertain. A 1989 report described microinjection as tedious and inefficient, estimating the cost of 

the instrumental set-up at $50,000, with an annual colony cost that could fall anywhere between 

$10,000 and $100,000, depending on size.123  The timeframes required to establish new lines were 

often unaffordable, given the inefficiency of the procedure. Certain injected elements – for in-

stance the growth hormone gene – reduced fertility. Despite the relative standardisation of pro-

nuclear microinjection, its success rate remained low and was a continuous source of concern. To 

quote a review in BioTechniques,  

Typically, if 100 eggs are collected, approximately 85 will be suitable for injection, 60 will 

survive the injection, 6 of the implanted zygotes will be born and 1–2 of the mice will be 

transgenic. The inherent inefficiency of this process can be a source of frustration for the 

beginner.124
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With local difficulties in making transgenic mice, concerns more pressing than genetic purity oc-

cupied most workers. Yet despite these difficulties, the genetic status of mice was recruited to 

promote transgenic research. In 1989, the US Congress Office of Technology Assessment pub-

lished a report on Patenting Life in its New Developments in Biotechnology series, largely in response 

to the OncoMouse patent granted the year before. In its review of transgenic technology, it noted 

that despite the limited number of labs involved in such work – it estimated several hundred 

worldwide – and the scarcity of experts with the right skills, mice remained a promising animal 

for genetic modification. It listed several advantages for the species: being a “warm-blooded 

mammal with many similarities to humans in genetics and physiology”, small and inexpensive, 

with well-known genetics and physiology compared to other mammals and “available in a variety 

of different, well-characterized, genetically consistent lines for use in different types of 

studies”.125

The invention of a different method for inserting or removing genes helped bridge the divisions 

between transgenic research and mouse supply. It relied on homologous recombination in embry-

onic stem cells that finally allowed the selection of cells in which foreign DNA was integrated at a 

known site, or where a wild-type gene was removed. The latter approach yielded ‘knockout mice’, 

the subject of the 2007 Nobel Prize, first reported in 1989.126 They allowed the generation of 

strains in which specific genes could be removed and phenotypes observed, making the strains – 

rather than individual animals – more valuable to outsiders. These new techniques, alongside the 

expanding number of conventional transgenic strains, generated an interest in integrating mo-

lecular embryology with mouse genetics. 

Another nomenclature case illustrates these changes, as a new effort to establish transgenic des-

ignations was undertaken by a committee at the Institute of Laboratory Animal Resources at the 

US National Resource Council. Chaired by Jon Gordon, the Committee on Transgenic Nomencla-

ture published a report in 1992 that offered a minor update on the existing but underused guide-
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lines, but it had more impact as the research interests shifted since 1984. The report highlighted 

the need to organise the boutique operation, citing several reasons:

Duplication of effort. Many different transgenic animals already exist (perhaps as many as 

10,000 strains). Without a catalog, investigators might needlessly reproduce existing 

models.

Loss of valuable transgenic models. Many transgenic models are not relevant to the re-

search programs of the laboratories in which they are made [...] In the absence of an ef-

fective method to make their existence known, such models would probably be dis-

carded, even though they might be extremely valuable to investigators in other laborato-

ries.

Loss of information. Many of the subtleties of gene regulation are discernible only by 

comparing the expression of closely related transgenes in different strains.127

In 1993, Jackson Lab created a resource and offered to supply researchers with transgenic and 

knockout mice, insisting that it would only accept mice with no intellectual property 

restrictions.128  In the same year, the NIH gave a major grant to develop a database at Oak Ridge 

that then moved to Johns Hopkins. TBASE, as it was called, used the transgenic nomenclature in 

its computerised entries, making the management of cumbersome designations more 

straightforward.129 These changes went a long way towards centralising supply and easing com-

munication of transgenic animals, and set up the infrastructure that made these organisms much 

more routine in the 1990s.  

C"#$%&'("#

From giant rodents to patented beings, transgenic mice created a new niche for research into the 

molecular genetics of higher animals. Their novelty and the dramatic results obtained in the early 

work attracted many biologists to the new technique. With multiple models of communication 

and sustained attention from molecular biologists, courses and handbooks allowed the technology 
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to be adopted in laboratories that could afford to venture into a new system. The difficulties asso-

ciated with their production and considerable costs – financial, but also temporal – were a limit-

ing factor that kept the work concentrated in under a thousand laboratories worldwide. The pow-

erful and widely-circulating images of supermice promised a controlled way to study genes and 

make new kinds of animals. However, in practice multiple issues with controlling gene expres-

sion remained, especially in comparison with tissue culture and Drosophila. Yet these very prob-

lems were recruited to generate new questions about gene expression and attempts to control 

them made new knowledge about DNA elements, demonstrated in a whole animal. 

The prominent research questions, low efficiency of the procedures, limited control over integrat-

ing genes and limited communication with the established sites of mouse genetics restricted the 

circulation of the new animals. Transgenic mice were both valuable and difficult to make and 

maintain, but their scientific worth was also more transient given the dominant scientific inter-

ests in the 1980s. The difference of scales between the local small laboratories and the big animal 

suppliers made widespread circulation and integration of transgenic animals into preexisting 

mouse networks problematic, and it was not a priority for either side. Much like in the case of 

gene mapping and sequencing, scaling up local laboratory practices required articulated agendas, 

resources, a critical mass of researchers and a new social order. With the expansion of transgenic 

enterprise – both academic and commercial, – conflicts over intellectual property, and new tech-

nologies such as knockout animals, transgenic research went through a series of standardisation 

attempts, centralisation of information and outsourced production. To this day, however, the 

craft-like procedures and local difficulties mean that making transgenic animals remains, to 

quote one researcher, a “boutique operation”.130   
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Conclusion: Transforming mice, transforming biology

This thesis has presented a multi-sited analysis of the development and early adoption of a hybrid 

set of techniques and a novel laboratory animal. Transgenic mice were born and made at a time of 

significant shifts in the way biological research was funded and regulated, especially in the USA. 

While the sparse historiography of 1980s biology has understandably focused on controversy, bio-

tech enterprise and expansion of intellectual property in academic research, transgenic mice of-

fer a less polarising case study that is better suited to highlight continuities as well as changes in 

this period. 

Introducing isolated DNA into mice had been envisioned since the 1960s, but the strategy for such 

a feat moved between disciplines and fashions in biomedical research: somatic cell geneticists, 

mouse developmental biologists and animal virologists variously imagined using their pet sys-

tems to manipulate mouse genetics in a molecular vein. Attempts to introduce foreign genetic 

material into the germline predated recombinant DNA, as manifested most clearly by the 

Jaenisch-Mintz experiments of 1972–74. However, these various experiments alone were not suf-

ficient to generate a large-scale programme of inserting isolated genes into mice, and researchers 

often pursued more pragmatic and immediate goals. New networks built around eukaryotic DNA 

and the circulation of experts, techniques and molecules made gene transfer into mouse embryos 

feasible. This agenda aligned the growing interest in higher animals as objects of molecular 

analysis with isolation and exchange of genes and control sequences, simplified dramatically by 

the recombinant DNA methods. 

The multiple and rapid success of pronuclear microinjection conferred credibility on the new 

method. Moreover, the competition for priority pushed the groups to elaborate the new proper-

ties of these new animals and pursue avenues of communication to a variety of audiences. These 

interventions steered away from controversy, but raised the profile of the new animals, epito-

mised by the dramatic images of supermice. The subsequent adoption of transgenic mice relied 

on their high profile, as well as the diversity of collaboration strategies and interests of the pio-

neer groups. In the 1980s, they were first and foremost a tool to study molecular gene function in 
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a whole developing animal and as such new mice had to be produced constantly, with little de-

mand to exchange strains. However, within the wider changes in the biomedical patronage, com-

mercial ventures were increasingly creating new networks for research, outside of the estab-

lished sites. 

While genetics provided a crucial set of knowledge, tools, practices and infrastructure for trans-

genic mice, it did not play a direct role in their invention and early adoption. These mice were 

made possible by a new alliance between molecular biologists working with viruses and isolated 

genes, and mouse embryologists drawing on the prestige and promise carried by the cutting-edge 

field of genetic modification. The molecularisation of the mouse embryo happened as new prac-

tices centred around molecules took centre stage in the 1980s, linking diverse groups of scientists 

and interested observers through exchanging DNA and driving interest in molecular explanation, 

and they met some resistance.1 Transgenic mice were not the sole or indeed most common way to 

apply molecular thinking and methods to the developing mouse embryo, but they were certainly 

the most symbolic and widely-publicised case in this transition.

The place of the mouse in biomedical researched transformed in this period. Domesticated as a 

genetic mammal useful for studies of cancer,  the post-war uses of the species diverged. The prac-

tices of genetic purity that were to sustain mass-production of mice relied on the dramatic scaling 

up of mouse work in institutions such as Oak Ridge and Harwell. Such expansions of scale en-

abled previously-difficult mapping projects, expanded the infrastructures and focused the atten-

tion of key suppliers on maintaining the animals genetically standardised and free of disease. Yet 

these major projects, underwritten by the dramatic expansion in biomedical research in the USA 

and Europe, were challenged successfully by the outsiders who promoted different strategies for 

handling variation. In a new niche, the mouse embryo became an experimental object that com-

bined techniques of mammalian embryology with genetic promise. By investing resources into 

culture techniques and building connections across disciplines, the growing community of mouse 

embryologists propelled their research object from a marginal and difficult embryo to a widely 

used system. 
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This ability to attract new workers drew on the changing conceptualisation of embryology as de-

velopmental biology, and the molecular promise attached to the mouse. Existing mouse infra-

structure eased transitions from other laboratory animals. In the 1960s, a substantial fraction of 

these questions relied on the promise of molecular analysis and intervention, as molecular biol-

ogy was receiving greater funding and many practitioners were eager to expand the knowledge 

generated in bacteria and viruses to animals. The mouse became the only mammal suited for the 

job, and the challenges of embryonic manipulation and slow work were outweighed by its unique 

attractions in the menagerie of laboratory life – availability, comparatively low cost, genetic status 

and established connections to human biology. The existence of the quasi-embryonic teratocarci-

noma cells were another crucial link to the molecular world in the 1970s.

These transitions made transgenic mice possible, and these modified animals invited researchers, 

politicians and journalists to imagine a world where genetic engineering could be done with 

mammals. Despite the claims to human and farm animal applications, transgenic mice were not 

immediately made as models of human disease. Most dramatically, transgenic mice conferred the 

credibility of a whole developing living animal on molecular analyses of gene function. This work 

relied on the dramatic attention they received from molecular biologists and other outsiders, as 

well as the ability to ease comparisons with other species and in vitro systems by referring to con-

served molecular genes and the uniform techniques used for their analysis.

But long before they were made into models of human conditions, transgenic mice allowed sci-

ence writers, journalists and policy makers to approach the future of genetic intervention in hu-

mans. Despite severe public discomfort with genetic manipulation, journalists covered these ani-

mals in neutral tones, marginalising the activist voices and using the new experiments to reflect 

on changes in biology, future therapies and enterprise. Used extensively in laboratories for over 

80 years, mice themselves did not invoke a clear ethical threat and their origin in universities 

kept them away from the controversies that centred on privatising biological research until the 

OncoMouse patent. 

Circulation and exchange were crucial in transforming the species. The simultaneous generation 

of transgenic mice through microinjection relied on extensive movement of individuals, tech-
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niques and materials. While insertion of foreign genetic material into mouse embryos predated 

1980, most notably in Rudolf Jaenisch’s viral programme, it was the availability of isolated genes 

and the comfortable mastery of embryo manipulation that made the first gene transfer projects 

viable. I have shown that the power of recombinant DNA technology lay not only with the techni-

cal abilities it offered – these were continuous with earlier approaches to gene transfer – but in 

their portability, the focus on eukaryote biology and the new networks of sharing isolated genes. 

These networks existed within a moral economy that resembled older cases of exchange in labo-

ratory animal biology in its emphasis on sharing and due attribution balanced against the motiva-

tions of maintaining priority. Unlike these older economies, however, these networks were rather 

decentralised, partly as a result of the dramatic expansion of biological research in the 1950s and 

60s, but also because cloned genes were highly mobile and extremely attractive. The dramatic 

pace of recombinant research made spontaneous sharing the rule. 

Another distinctive feature of recombinant DNA exchanges was that the troubled political climate 

emphasised containment of genetically modified organisms. Yet as I have shown, despite the 

common complaints about the stringency of the NIH guidelines and their real effects on career 

trajectories, isolated molecules could travel easily though the postal system or with individuals 

moving between laboratories. The effect of the guidelines was to limit the initial circulation of 

recombinant molecules to certain elite institutions, and while sharing was likely, accessing these 

networks relied on offers of collaboration or the fortuitous moves of a postdoc.

In analysing the circulation of materials and claims, I have emphasised the themes of proximity 

and distance. Being in the right place and combining expertise was a crucial precondition for ex-

tending novel molecular work to mouse embryos. Thus, Jaenisch’s position at Salk brought him in 

contact with Paul Berg who would share some techniques. Mintz’s and Ruddle’s strategies to bring 

molecular and developmental biologists together in one laboratory paid off. At the same time, di-

visions of labour within these groups made this speculative work manageable and provided a 

safeguard for junior scholars in case they had failed. Other collaborations – Brinster and Palmiter, 

as well as Thomas Wagner and Hoppe – achieved similar results by keeping molecular and em-

bryological work separate between sites, each playing to their strengths. Such divisions were 
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maintained by the former group and were productive in terms of making transgenics in the 

1980s, with others emulating distant collaborations. However, as transgenic techniques were 

adopted widely through courses, a more synthetic approach took hold. That Frank Costantini and 

Elizabeth Lacy were involved in teaching at the Cold Spring Harbor course was largely a matter of 

proximity, with both of them based in New York City. However, their own experience in transi-

tioning from molecular biology to mouse development no doubt contributed to the success of 

teaching diverse audiences all aspects of the process. 

Between laboratories, the competition and isolated communication were productive, as rumours 

encouraged others to attempt similar work, while the credit for making a genetically modified 

mouse was up for grabs. But that the claims came from multiple sites within a very short period of 

time also generated credibility around the technique. That the news of the 1980 gene transfer was 

confirmed so rapidly at multiple sites, many of them eager to communicate to broad audiences, 

ended up crystallising the criteria around what counted as a transgenic mouse and allaying initial 

suspicions of artefact and uncertainties as to the fate of injected DNA. 

Taking the circulation of knowledge and materials seriously delivers a more complete picture of 

the way science functioned on a middle scale in this period and beyond, because it can accounts 

for spatially and temporally distributed changes in ideas, practices and values while still tracking 

the local. The focus on circulation offers a specific explanation for the dynamics of a laboratory 

innovation, as transgenic mice were made as a desideratum, project, a potential result, a promis-

ing entity, a new word in the process of these interactions between multiple actors, technical tra-

ditions and audiences. Partially overlapping networks of communication and material exchange, 

relying on established infrastructures, drove the adoption of transgenic mice in multiple direc-

tions, and, despite considerable costs and experimental uncertainties, made them a fascinating 

and useful tool to generate and answer molecular questions about eukaryotic genes. 

This heavy focus on the molecular gene, combined with the difficulties and costs of production 

and control of gene integration, imposed limits on the scale of transgenic work and sharing, and 

defined the place of the modified lines.. Despite commercial interest in animal gene transfer and 

subsequent expansion of transgenic enterprise, in the 1980s the vast majority of transgenic mice 
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were produced in university laboratories, and travelled through academic networks. They were  a 

risky investment, especially when synthesising proteins in E. coli or making therapeutic and di-

agnostic products with monoclonal antibodies was a safer bet. Private initiatives did emerge, but 

the most successful ones revolved around sponsorship for established university sites. These ar-

rangements offered an alternative sources of funding and communication networks, minor in 

scale but increasingly important in the 1990s and beyond. 

Direct intervention into the germline made transgenic mice resemble Drosophila as a ‘breeder re-

actor’, where new mutants could be generated and published. However, if the explosion of the 

fruit fly strains at a single location in the Columbia Fly Room provided conditions for extensive 

crosses and mapping experiments, the diverse vectors of transgenic research, attention to specific 

cases of gene expression and the greater cost of maintaining strains made the stocks much more 

transient. This bespoke mode of production placed little value on maintaining all the mutants, 

many of them potential failures, and kept a distance between transgenic workers and the tradi-

tional sites of mouse supply. Since most research questions relied on the ability to make new mice 

with a gene of interest rather than obtain existing strains, the enthusiastic but troubled commer-

cialisation attempts were premature.

The tension between local production – characteristic of both molecular and developmental biol-

ogy laboratories – and expanding scales was typical in this period. Gene mapping initiatives en-

countered similar problems in converting local molecular projects into the global networks of 

sequencing consortia, where competition, credit and potential commercial spin-offs had to be 

negotiated against the common good. A new social order had to be established and enforced to 

enable large-scale collaboration and making comparable results.2 Moreover, potential for 

monetising research were a tension that affected the circulation and imposed controls on sharing.  

Beyond the patronage, the changes in mediation of new science circa 1980 were symptomatic. 

They were caused by these very hybrid university-industrial arrangements and the emerging bio-

tech industry, as well as the expansion of science reporting. Biologists have been addressing wide 
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audiences throughout the field’s existence, and embryologists and molecular biologists were all 

too familiar with controversy before 1980. But the new incentives to communicate wide and far 

were considerable. Multi-directional communication could not only turn the work safe in an en-

vironment of severe mistrust towards genetic manipulation, as it did with the Yale gene transfer 

experiment or supermice. It was also a means to establish claims to priority and control the narra-

tives and expectations about a novel technology. As science sections expanded and reports of ge-

netic advances and failures became commonplace, the saturation of science stories in the media 

became dramatic. Media relations became a routine part of conducting high-stakes biological re-

search. 

Nowhere did this become clearer than in the next phase of the story. On 12 April 1988, the US 

Commissioner of Patents Donald Quigg held a press conference to announce the first US patent on 

an animal, Leder and Stewart’s ‘Harvard mouse’. While the decision followed the logic of Diamond 

v. Chakrabarty, the news caused a dramatic controversy.3 Capitalising on its exclusive licence deal 

with Harvard, DuPont moved to commercialise the new intellectual property which it marketed 

as OncoMouse™  and supplied via Charles River, the commercial animal supplier, at $50 a mouse 

(compared to $5–10 per inbred animal).4  After the controversy, the US Patent and Trademarks 

Office (USPTO) established a moratorium on issuing patents on further animals. The Ohio Univer-

sity application for the microinjection process was granted in 1989, but its lawyers had dropped 

the product claim, so it did not cover the resulting animals.5 Three more patents on mice were 

granted in 1992, to Ohio University, Bay Area start up GenPharm and Cambridge University. 

It remained unclear whether the Harvard patent extended to academic users, especially as uni-

versity research was increasingly expected to generate commercial spin-offs. Most transgenic 

workers in a university setting ignored the intellectual property issues and continued producing 

their own animals.6 Yet resistance was growing, driven not so much by the price-tag as DuPont’s 
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prohibitive policy on breeding the animals, which required approval for mouse exchange and an 

annual update on all published and unpublished research. The small scale of the potential market 

for individual transgenic animals was another issue. The hope to mass-produce OncoMice as car-

cinogen test animals, with the claim that they could offer greater sensitivity would did not justify 

the price tag and restrictions; established mouse strains were reliable, cheap and good enough for 

the task. Furthermore, the patent’s claims and DuPont advertising did not address the disanalogy 

between having select oncogenes activated in every cell, and clinical carcinogenesis. Similarly, 

despite receiving the patent on pronuclear microinjection in 1989, Ohio University made much 

larger profits from Hybriwix™, a rapid DNA isolation and testing method patented in 1989 by Di-

agnostic Hybrids, another spin-off with Thomas Wagner as co-founder.7  

Products of individual collaborations and sustained labour, transgenic mice were still presented 

as first and foremost tools to study gene regulation.8 With the need to introduce new genes for 

future work, establishing existing models required larger scales and many more converts, as well 

as alliances with clinicians. The costs required to develop and maintain new strains were not jus-

tified by the small academic market. In response to another patent granted on a knockout mouse 

in 1992, and similarly strict conditions of distributions, a group at the Cold Spring Harbour course 

staged a rebellion that led to a major National Academy of Sciences meeting.9 While no simple 

solutions were found, the resulting discussion highlighted commercial limitations on transgenic 

research, to the extent that the NIH discouraged mouse patent applications from its grantees ex-

cept in the most promising cases. Storage, line maintenance and standards were the key issues, 

and the NIH was urged to set up a facility to exchange transgenics.

The issues of infrastructures were a pressing concern. In 1991, David Baltimore penned the edito-

rial for the first issue of SEARCH, the Rockefeller University’s short-lived magazine dedicated to 

biomedical research.10 He declared that the 1990s would be ‘The Decade of the Mouse’. Recruiting 
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the “new experimental capabilities” in molecular manipulation, Baltimore argued that the “lowly 

mouse, a pest to many, is man’s and woman’s best surrogate. Although so different from us – four-

footed, not very intelligent, a life span of two or three years, a gnawing rodent,” the animal was 

now “the ideal tool for investigating the functions of all mammalian genes, whether or not they 

have been associated previously with disease”. The enthusiastic conclusion called to improve 

animal supply and infrastructure for the glorious future of American science: “Fully realizing the 

potential of The Decade of the Mouse will test both our institutional flexibility and America’s 

commitment to rapid progress in health research”.

The continuities and changes during the ‘Decade of the Mouse’ require further critical examina-

tion. The focus on the alliances between academic, state and commercial institutions would help 

expand the historical understanding of the conditions familiar to today’s researchers. Synchro-

nising mouse genetics and transgenic work, the role of knockout mice and the establishment and 

marketing of disease models are all part of this story. The role of animal agriculture is another 

important direction for future research. Farm animal modification was the first trajectory for ap-

plying transgenesis globally, and a lot more controversial than mouse work. Farmer associations 

and property traditions were a key part of the debates and legislation around patenting life. Fur-

thermore, agricultural workers provided some of the crucial technologies in dealing with the em-

bryos, shipping and freezing them. Looking at crops and horticulture has adjusted our view of the 

history of genetics, and the plant GMO debates were the loudest and most lasting.11  Yet despite 

some historical attention,12  the animal farm remains a gap in our understanding of the life sci-

ences in the twentieth century, a missing area to be taken seriously alongside the laboratory and 

the clinic.
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http://libgallery.cshl.edu/collections/show/3.

Glasgow University Archive. 

Papers of Malcolm Feguson-Smith, UGS 188. Available online through the Wellcome Library, 

wellcomelibrary.org/using-the-library/subject-guides/genetics/makers-of-modern-genetics/digit

ised-archives/malcolm-ferguson-smith.

Jackson Laboratory Archives, Bar Harbor, ME

Papers of Barbara Sanford, Director, 1981-87, Box 37, RG1. 

National Archives, Kew, London, UK

Papers relating to the Developmental Biology Unit, MRC papers, FD 12/1198–99.

National Library of Medicine, NIH, Bethesda, MA

W. French Anderson papers, 101291466.

Paul Berg papers, 101584580. Available online at profiles.nlm.nih.gov/ps/retrieve/Collection/CID/CD.

Joshua Lederberg papers, 101584906. Available online at 

profiles.nlm.nih.gov/ps/retrieve/Collection/CID/BB. 

Ohio University Archives, Athens, OH

Charles J. Ping papers, Office of the President Record, Series 1, UA00001.

Alan Geiger papers, UA00272.

Peg Black research on Charles Ping, UA00413.

Othmer Library, Chemical Heritage Foundation, Philadelphia

Records of the Gordon Research Conferences,  2001.016.001.

Rockefeller Archives, Tarrytown, NY.
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Elaine Diacumakos papers, RU450.

Wellcome Library Archives

Francis Crick papers, PP/CRI. Available online at 
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ised-archives/hans-gruneberg.

Hans Grüneberg papers, PP/GRU. Available online at 

wellcomelibrary.org/using-the-library/subject-guides/genetics/makers-of-modern-genetics/digit

ised-archives/francis-crick.

University of Pennsylvania Archives, Philadelphia

University Relations News and Public Affairs Records, Biographical Files, UPF 8.5B.

Yale University Archives, New Haven, CT
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Audio-Visual Materials

 The Boys from Brazil. DVD. Directed by Franklin J. Schaffner. 1978; London: ITV Studios Home 

Entertainment, 2003. 

“Brave New Babies”, Horizon, BBC2. First aired 15 November 1982. 

Accessed through the British Film Institute

“The Cline Affair”, Horizon, BBC2. First aired 15 February 1982. 

Accessed through the British Film Institute

Evening News, CBS, 4 September 1980 and 16 December 1982. 

Accessed through the Vanderbilt Television News Archive. 

Evening News, NBC, 11 September 1980. 

Accessed through the Vanderbilt Television News Archive.

Tonight Show Starring Johnny Carson, NBC, 16 December 1982. 

Courtesy of the Carson Entertainment Group. 

Patents

Leder, Philip and Timothy A. Stewart. 1988. Transgenic non-human mammals. US Patent 4,736,866, filed 

22 June 1984 and issued 12 April 1988.

Wagner, Thomas and Peter Hoppe. 1989. Genetic transformation of zygotes. US Patent 4,873,191, 

filed 12 June 1981 and issued 10 October 1989.

———. 2005. Transgenic mammals. US Patent 6,872,868, filed 24 May 1995 and issued 29 March 2005.
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