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The major nutrients available to human colonic Bacteroides species are 39 
glycans exemplified by pectins, a network of covalently linked plant cell wall 40 
polysaccharides containing galacturonic acid (GalA). Metabolism of complex 41 
carbohydrates by the Bacteroides genus is orchestrated by polysaccharide 42 
utilisation loci or PULs. In Bacteroides thetaiotaomicron, a human colonic 43 
bacterium, the PULs activated by the different pectin domains have been 44 
identified, however, the mechanism by which these loci contribute to the 45 
degradation of these GalA-containing polysaccharides is poorly understood. 46 
Here we show that each PUL orchestrates the metabolism of specific pectin 47 
molecules, recruiting enzymes from two previously unknown glycoside 48 
hydrolase (GH) families. The apparatus that depolymerizes the backbone of 49 
rhamnogalacturonan-I (RGI) is particularly complex. This system contains 50 
several GHs that trim the remnants of other pectin domains attached to RGI, 51 
while nine enzymes contribute to the degradation of the backbone compring of 52 
a rhamnose-GalA repeating unit. The catalytic properties of the pectin 53 
degrading enzymes are optimized to protect the glycan cues that activate the 54 
specific PULs ensuring a continuous supply of inducing molecules throughout 55 
growth. The contribution of Bacteroides spp. to the metabolism of the pectic 56 
network is illustrated by cross-feeding between organisms.    57 
 58 
The human gut microbiota (HGM) impacts on host physiology and health1,2. 59 

Understanding the mechanisms of nutrient acquisition by the HGM, exemplified by 60 

glycan metabolism3-5, underpins the development of probiotic and prebiotic 61 

strategies that maximize human health. While glycan acquisition by human colonic 62 

Bacteroides species is well established6-9, it should be emphasised that Firmicutes 63 

are more abundant in the HGM of Western populations, however, the mechanism by 64 

which they metabolise complex carbohydrates is less well understood3. Indeed, it is 65 

likely that Firimicutes make a substantial contribution to the degradation of dietary 66 

and host glycans in the HGM. The glycan degrading systems of Bacteroidetes are 67 

encoded by polysaccharide utilization loci (PULs) that are activated by the target 68 

carbohydrate3. These systems comprise surface glycan binding proteins (SGBPs), 69 

outer membrane oligosaccharide transporters; SusC and SusD homologues (SusCH 70 

and SusDH, respectively), and surface and periplasmic carbohydrate active enzymes 71 

(CAZymes) that are grouped into sequence based families in the CAZy database10. 72 

Relevant to this work are glycoside hydrolase (GH) and polysaccharide lyase (PL) 73 

families11.  74 

 75 

Pectins are D-galacturonic acid (D-GalA) rich plant cell wall polysaccharides that are 76 

abundant in fruits and vegetables. The two major pectins (see12 for review) are 77 

homogalacturonan (HG) and rhamnogalacturonan-I (RGI) (Fig. 1a). HG comprises 78 
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α-1,4-linked D-GalA and the backbone of RGI is a repeating unit of the disaccharide 79 

α-1,2-L-rhamnose (Rha)-α-1,4-D-GalA. Depending on the plant species, the RGI 80 

backbone is decorated with galactans (β-1,4-D-galactose (D-Gal) units) and/or 81 

arabinans (α-1,5-linked L-arabinofuranose (L-Araf) units with additional L-Araf side-82 

chains)13. The backbones of HG and RGI are covalently linked14. Although individual 83 

microbial pectin degrading enzymes have been described15, the mechanism by 84 

which these biocatalysts participate in the concerted degradation of intact pectin 85 

remains opaque. Bacteroides thetaiotaomicron, a member of the HGM, utilizes all 86 

known pectins structures and discreet PULs activated by these glycans have been 87 

identified16. Here we have characterized the function of PULs associated with pectin 88 

metabolism, and explored how they contribute to interactions within the HGM 89 

foodweb. The data show how these loci coordinate the complex degradative 90 

interactions between the backbone and oligosaccharide decorations of these acidic 91 

polysaccharides. 92 

 93 

Results 94 

The PULs that orchestrate pectin degradation. Transcriptomic data16 revealed the 95 

PULs upregulated in response to arabinan (bt0348-bt0369, Ara-PUL), galactan 96 

(bt4667-bt4673, Gal-PUL), RGI backbone (bt4145-bt4183, RGI-PUL) and HG 97 

(bt4108-bt4124, HG-PUL) (Fig. 1b). To determine the mechanisms by which these 98 

loci mediate pectin degradation, the biochemical functions of recombinant proteins 99 

encoded by the PULs were determined (Supplementary Tables 1-5).  100 

 101 

Cell surface degradation, substrate binding and import. Initial degradation of the 102 

pectins by B. thetaiotaomicron is mediated by endo-acting CAZymes on the surface 103 

of the bacterium (Fig. 2c and Supplementary Fig. 1). These enzymes are essential 104 

for pectin utilization as they generate glycans with an appropriate degree of 105 

polymerization (DP) for transport into the periplasm17. Consistent with this premise, 106 

deletion of the genes encoding the single outer membrane endo-acting enzymes 107 

encoded by RGI-PUL (BT4170) and Gal-PUL (BT4668), Supplementary Fig. 2 and 108 

Fig. 2c, prevented growth on the respective pectin (Fig. 2a). The surface location of 109 

these enzymes was consistent with whole cell assays of B. thetaiotaomicron under 110 

aerobic conditions (Fig. 2b), which report only the activity of surface proteins. To 111 
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explore the function of the rhamnogalacturonan lyase BT4170, a key component of 112 

the RGI degrading apparatus, the crystal structure of the enzyme was determined in 113 

complex with ligands. The data (Supplementary Fig. 3) showed that the catalytic 114 

apparatus of BT4170 and a HG lyase (Pel9A, 1RU4) both located in family PL9, 115 

comprising a Brønstead base (Lys285 in BT4170) and a calcium, was conserved. 116 

Specificity determinants were identified in subsites distal to the active site, explaining 117 

why Pel9A and BT4170 target distinct substrates (see Supplementary Discussion 118 

and Supplementary Fig. 3).   119 

  120 

Ara-PUL and HG-PUL each encode two surface enzymes. The enzymes derived 121 

from Ara-PUL, BT0360 and BT0367, are α1,5-arabinanases that display endo- and 122 

endo-processive activity, respectively (Supplementary Fig. 4 and Supplementary 123 

Discussion). Only Δbt0367 led to the loss of the arabinan utilization phenotype (Fig. 124 

2a). Gene deletion studies showed that of the two surface PLs (BT4116 and 125 

BT4119, Supplementary Fig. 4 and Supplementary Table 2) encoded by HG-PUL, 126 

only BT4116 was essential for growth on HG (Fig. 2a). The functional significance of 127 

BT0360 and BT4119 are unclear, but may reflect the targeting of substrates not 128 

evaluated here.  129 

 130 

Gene deletion studies explored the functional significance of the SusCH/SusDH pairs 131 

encoded by each pectin PUL (Supplementary Fig. 5). In HG-PUL, which contains 132 

two SusCH/SusDH pairs, only the Δbt4114 mutant displayed no growth on HG, 133 

indicating that BT4114 plays a key role in the import of this pectic glycan. Similarly, 134 

the Ara-PUL encodes two pairs of SusCH/SusDH transporters (BT0361/BT0362 and 135 

BT0363/BT0364)16. Deletion of bt0364, but not bt0362, prevented growth on 136 

arabinan. This indicates that only the BT0363/BT0364 complex is capable of 137 

transporting arabinooligosaccharide products. The rationale for the presence of two 138 

SusCH/SusDH pairs in the HG-PUL and Ara-PUL remains unknown, but likely 139 

increases access to additional pectins.  140 

 141 

SGBPs contribute to glycan degradation by bringing substrates into proximity of 142 

membrane bound enzymes7. Here a single SGBP encoded by each PUL was 143 

identified and shown to be specific for the target polysaccharide (Supplementary 144 
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Table 5). Only SusDHs encoded by Gal-PUL and HG-PUL displayed affinity for their 145 

cognate glycans (Supplementary Table 5). The lack of glycan recognition by 146 

SusDHs associated with the arabinan and RGI degrading systems suggests that the 147 

corresponding SusCH partner is required for ligand recognition. Recent structural 148 

data demonstrate that the tight association of SusCH-DH pairs18, supporting the 149 

concept that initial ligand recognition can require participation of both protein 150 

partners.   151 

 152 

Periplasmic degradation of pectins. The oligosaccharides imported into the 153 

periplasm were degraded by GHs and PLs. The oligosaccharides generated from 154 

galactan and arabinan were depolymerized exclusively by exo-GHs, with HG and the 155 

RGI backbone by endo-PLs and exo-GHs (Supplementary Fig. 2 and 6).   156 

 157 

With respect to galactan degradation only a single GH2 β1,4-galactosidase (BT4667) 158 

depolymerized galactooligosaccharides generated by the surface endo-galactanase 159 

(Supplementary Fig. 6 and Supplementary Table 3). Surprisingly the Δbt4667 160 

mutant displayed no growth defect on galactan (Supplementary Fig. 5). This may 161 

reflect an element of redundancy within the large number of predicted B. 162 

thetaiotaomicron β-galactosidases19.  163 

 164 

Periplasmic degradation of arabinan-derived oligosaccharides was mediated by 165 

three exo-α-L-arabinofuranosidases (Supplementary Fig. 6). BT0369 removed α-166 

1,2-L-arabinofuranose side chains20. Here we demonstrate the GH51 enzymes 167 

BT0348 and BT0368 target arabinan side chains, likely α-1,3-arabinofuranosyl 168 

linkages, and the backbone α-1,5-arabinofuranosyl linkages, respectively 169 

(Supplementary Table 4 and Supplementary Fig. 6). BT0349 released β-L-170 

arabinose from an arabinan derived oligosaccharide (Supplementary Fig. 7 and 171 

Supplementary Table 7). The enzyme reveals a previously unknown GH family now 172 

designated GH146 (Supplementary Fig. 8 and Supplementary Discussion).  173 

 174 

RGI released from the pectin network contains remnants of arabinan, galactan and 175 

HG. Prior to RGI backbone depolymerisation these accessory structures must be 176 

removed, explaining why RGI-PUL is so complex. To characterise these accessory 177 
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enzymes we used RGI from potato galactan (RGI-P), which contains many of these 178 

remnants. Galactan substitutions were cleaved from the RGI-P backbone by the 179 

synergistic action of three exo-β-1,4-galactosidases, BT4151, BT4156 and BT4160 180 

(Supplementary Table 1).  BT4160 targeted galactooligosaccharides, while the 181 

other two enzymes released galactose only from RGI-P. The lack of functional 182 

arabinofuranosidase genes in RGI-PUL likely reflects the role of single β1,4-D-Gal 183 

units in linking arabinan chains to the RGI backbone13. Enzyme cocktail data indicate 184 

that BT4151 and BT4156 play a pivotal role in exposing the backbone of RGI to 185 

enzymatic attack (Supplementary Fig. 9). RGI-PUL also encodes the esterase 186 

BT4158 (Supplementary Table 1), which releases acetyl groups from D-GalA in the 187 

RGI backbone, was also shown to be important for the depolymerisation of the 188 

glycan (Supplementary Fig. 9). A GH28 α-D-galacturonidase (BT4155), which 189 

targets HG (Supplementary Table 1), removed D-GalA from RGI-P but not from the 190 

glycan in Arabidopsis mucilage (RGI-AM), which contains no HG decorations. The 191 

crystal structure of BT4155 (Supplementary Fig. 10) revealed the expected β-helix 192 

for a GH28 enzyme21.  In the center of the helix is a pocket that houses three 193 

carboxylate residues that comprise the predicted catalytic apparatus based on 194 

conservation with other GH28 enzymes22 and mutagenesis data (Supplementary 195 

Table 6). The pocket extends into a channel-like structure that likely accommodates 196 

the conformation adopted by HG but not the RGI backbone.  197 

 198 

In addition to enzymes classically associated with pectin degradation, RGI-PUL 199 

encodes BT4157, which is located in the apparent “non-pectinase family” GH27. The 200 

enzyme (Supplementary Table 1) was shown to be a α-galactosidase, which likely 201 

targets single α-galactose units that decorate the RGI backbone from Okra plants23. 202 

Another example of enzyme diversity is the β-D-glucuronidase activity  displayed by 203 

BT4181 against sugar beet arabinan in which the RGI backbone is known to contain 204 

GlcA24 (Supplementary Fig. 6). It is evident, therefore, that the pectin degrading 205 

systems are able to accommodate diversity in the fine-chemistry of RGI structures 206 

from a variety of plants. 207 

 208 

In contrast to exo-cleavage of arabinan and galactan, the backbone of RGI and HG 209 

were initially cleaved by endo-PLs and the products depolymerized by exo-GHs (Fig. 210 
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1 and Supplementary Fig. 2 and 6). The different degradative strategy likely reflects 211 

the high DP of the imported RGI- and HG-derived oligosaccharides compared to the 212 

neutral glycans. Thus, the initial concentration of available substrate for exo-GHs is 213 

low, but is increased by the endo-PLs. RGI-PUL encodes three periplasmic PLs, 214 

respectively. Of particular note is BT4175, which was shown to accommodate 215 

glycans appended to backbone rhamnose units (Supplementary Fig. 2), ensuring 216 

that cleavage of the (Rha-GalA)n polymer occurred in concert with, and not 217 

subsequent to, side-chain removal.  218 

 219 

The β-elimination of the RGI and HG backbone by the PLs generated Δ4,5-GalA. 220 

The unsaturated residues were removed from RGI oligosaccharides with a DP of 2 221 

or ≥4 by BT4176 or BT4174, respectively (Supplementary Table 1); and HG 222 

oligosaccharides by BT4108 (Supplementary Table 2), which expands the activity 223 

for the GH105 family. BT4108 products were then depolymerized to GalA by the 224 

exo-α-galacturonidase BT4123 (Supplementary Table 2 and Supplementary Fig. 225 

6). The RGI-AM oligosaccharides were degraded through the successive action of a 226 

RGI-specific GH106 α-L-rhamnosidase (BT4145) and one of three GH28 227 

rhamnogalacturonidases (BT4146, BT4153 and BT4149) that target [D-GalAp-α-1,2-228 

L-Rhap]n with a DP of 2, ≥2 or ≥4, respectively (Supplementary Table 1). BT4145 229 

cleaved rhamnosidic linkages through an inverting mechanism (Supplementary Fig. 230 

11). The biological rationale for galacturonidases that target substrates with different 231 

DPs is unclear. Surprisingly deletion of BT4145 only extended lag phase 232 

(Supplementary Fig. 5), likely reflecting the slow but complete degradation of RGI-233 

AM by the PLs and Δ4,5-unsaturated-α-rhamnogalacturonidases.   234 

 235 

The ligands that activate the pectin degradative system. Previously 236 

arabinooligosaccharides with DP ≥6 were shown to activate Ara-PUL16. Here we 237 

determined ligands that bound and activated the hybrid two component system 238 

(HTCS) of the pectin PULs. The data (Supplementary Table 5 and Supplementary 239 

Fig. 12) demonstrate that the HTCS of Ara-PUL bound linear but not decorated 240 

arabinan, and the sensor of the Gal-PUL HTCS (BT4673) recognised small 241 

galactooligosaccharides. Only the oligosaccharide Δ4,5GalA-α-1,2-Rha-α-1,4-GalA-242 

α-1,2-Rha, a major limit product of the rhamnogalacturonan lyases, bound the HTCS 243 
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(BT4178) that regulates RGI-PUL. Saturated RGI oligosaccharides failed to bind the 244 

sensor, indicating that unsaturation of the non-reducing terminal sugar is a 245 

recognition determinant. The HTCS that unregulates HG-PUL recognised only 246 

saturated HG-derived oligosaccharides. The mRNA levels of the susCH genes of the 247 

pectin PULs showed that activation of RGI-PUL resulted in a small up-regulation of 248 

HG-PUL and RGII-PUL1 (Supplementary Fig. 13). This may reflect the need to 249 

extract RGI from pectins networks through cleavage of adjacent HG segments, as a 250 

prelude to its degradation.   251 

 252 

Exo-acting enzymes that target the remnants of RGI side chains and α-1,3-L-Araf 253 

units that decorate arabinan were substantially less active than GHs that 254 

depolymerised the backbone of the respective glycans (Supplementary Tables 1 255 

and 4). Additionally,  BT4108, which removed 4,5ΔGalA from HG-oligosaccharides 256 

generating the HTCS activating ligand was slow compared to the other enzymes that 257 

act on these pectins (Supplementary Tables 1 and 2). The biological rationale for 258 

this difference in catalytic competence, may reflect the need to protect the inducing 259 

ligand (Fig. 3), as proposed for the  chondroitin sulfate utilization system25. Slow 260 

release of the side chain stubs or unsaturated uronic acids will block the rapid 261 

degradation of the backbone ensuring that there is continuous production of the 262 

activating molecules throughout growth on the respective glycan.  263 

 264 

Pectin utilization within the HGM Bacteroidetes and the extent of cross-265 

feeding. 266 

To explore pectin utilization by HGM Bacteroidetes growth of the different species on 267 

these GalA-rich polysaccharides was determined. The data showed that only B. 268 

ovatus, B. thetaiotaomicron and B. finegoldii utilised all the pectins, although the 269 

majority of other organisms could grow on at least some of these glycans 270 

(Supplementary Fig. 14 and Supplementary Table 8). Around 70% of the 271 

organisms grew on HG and galactan, while only four Bacteroides strains utilise the 272 

RGI backbone (RGI-AM). However, 56% and 100% of the strains unable to utilise 273 

RGI-AM and potato galactan, respectively, grew on the respective oligosaccharides, 274 

demonstrating that  these organisms utilise pectin degradation products. A key 275 

question is the source of oligosaccharides available to these organisms. Evidence of 276 
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cross-feeding was provided by mutants of B. thetaiotaomicron engineered to utilize 277 

only pectic oligosaccharides [lacking the surface endo-galactanase (Δbt4668) or RGI 278 

lyase (Δbt4170)], which grew on the cognate polysaccharide when co-cultured with 279 

wild type B. thetaiotaomicron (Fig. 4a). These data show that wild type B. 280 

thetaiotaomicron released polysaccharide breakdown products (PBP; Fig. 2f) into 281 

culture media, which were available to other organisms. This is consistent with B. 282 

uniformis (grows on galactooligosaccharides but not galactan in mono-culture) 283 

utilisation of the polysaccharide when co-cultured with wild type B. thetaiotaomicron 284 

(Fig. 4b). This pectin cross-feeding between B. thetaiotaomicron and other 285 

Bacteroides species, however, is variable. Although B. massiliensis utilize HG or RGI 286 

oligosaccharides, the bacterium failed to grow on the cognate polysaccharides when 287 

co-cultured with B. thetaiotaomicron (Fig. 4b). This likely reflects the large PBPs 288 

generated by B. thetaiotaomicron from these pectins, while B. massilensis appears 289 

to import only RGI and HG oligosaccharides with a low DP. The lack of cross-feeding 290 

of some pectin-derived PBPs is evident in arabinan utilization. B. ovatus and 291 

engineered B. thetaiotaomicron (Δbt0360/Δbt0367, lacking the two surface endo-292 

arabinanases) both grew on arabinooligosaccharides but not arabinan. The two 293 

organisms, however, failed to utilise arabinan when co-cultured with wild type B. 294 

thetaiotaomicron (Fig 4b). Although B. thetaiotaomicron released 295 

arabinooligosaccharides (Fig. 2f), the high DP of these molecules (reflects slow 296 

activity of the surface endo-arabinanases20) may have prevented transport into the 297 

periplasm of these organisms.  298 

 299 

Genetic basis of pectin utilization among the Bacteroides. Loci corresponding to  300 

B. thetaiotaomicron Gal-PUL in other Bacteroides species (Supplementary Fig.  15) 301 

contained an additional ORF, which, in the B. ovatus Gal-PUL, encodes a β-302 

galactosidase (BACOVA_05493) with a retaining mechanism (Supplementary Fig. 303 

16) that belongs to a previously unknown CAZy family (assigned GH147). The 304 

enzyme was particularly active against galactohexaose and galactan 305 

(Supplementary Fig.  6 and Supplementary Table 3). The importance of this 306 

enzyme is illustrated by the severe growth defect displayed by Δbacova_05493 on 307 

galactan (Fig. 2). Whole cell assays with galactan revealed the accumulation of 308 

galactose and not galactooligosaccharides, as occurs in B. thetaiotaomicron, 309 
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suggesting that BACOVA_05493 is located on the bacterial surface. This was 310 

confirmed by whole cell assays of Δbacova_05493, which revealed no products were 311 

generated from galactan. This not only demonstrates that BACOVA_05493 is a 312 

surface enzyme but shows that the endo-galactanase, BACOVA_05488, consistent 313 

with its very low activity (Supplementary Fig. 2), did not contribute to galactan 314 

degradation.  315 

 316 

We examined whether the B. thetaiotaomicron pectin PULs provide a genetic model 317 

for Bacteroides utilisation of these glycans. A 16S-based phylogenetic tree of the 318 

Bacteroides species was constructed and the organisms labelled for PUL 319 

conservation and growth on the respective oligo- and polysaccharides 320 

(Supplementary Fig. 14). There is ≥80% agreement between the presence of a 321 

PUL and growth of the bacterium on the corresponding poly- or oligosaccharide. 322 

Growth, however, was apparent in some organisms without an equivalent PUL, 323 

showing that bacteria can deploy alternative pathways to utilise a particular glycan. 324 

There were also examples of the presence of the cognate PUL without growth of the 325 

corresponding pectin.  PUL conservation was also not always congruent with the 326 

16S phylogeny (Supplementary Fig. 14 and Supplementary Fig. 15). Thus, B. 327 

ovatus, B. xylanisolvens and B. caccae form a monophyletic group yet only B. 328 

xylanisolvens has a galactan PUL, while only B. caccae has lost the RGI PUL 329 

(Supplementary Fig. 14). The arabinan PUL of B. ovatus is fragmented and that of 330 

B. caccae absent (Supplementary Fig. 15a). B. egghertii, B. stercoris and B. clarus, 331 

also form a monophyletic group, but only B. stercoris has conserved the galactan 332 

PUL, while B. eggerthii has an arabinan PUL but has lost its RGI PUL 333 

(Supplementary Fig. 15d). A final example involves B. thetaiotaomicron and B. 334 

xylanisolvens, which are closely related species, yet have different arabinan PULs. 335 

The arabinan PUL of B. thetaiotaomicron is identical to B. 336 

cellulosilyticus/oleiciplenus/intestinalis, while the arabinan PUL of B. xylanisolvens is 337 

similar to B. egghertii. Our observations suggest that in the course of evolution 338 

Bacteroides rapidly gain and lose PULs that target different pectin structures.  339 

 340 

Discussion  341 
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Combining biochemical properties and cellular location of the enzymes that target 342 

pectins, with growth profiles of mutants containing gene deletions in the appropriate 343 

PULs, enabled models for the metabolism of each pectic substructure, showing how 344 

the individual pathways are coordinated by B. thetaiotaomicron (Fig 5). The data 345 

revealed that 30 GHs and PLs are required to degrade the major pectin domains. 346 

Given that large numbers of enzymes are also required to degrade starch and the 347 

hemicelluloses, it is evident that plant glycan metabolism explains the extremely 348 

large repertoire of CAZyme gene clusters in colonic Bacteroides species.  349 

 350 

In contrast to several Bacteroides glycan degrading systems where the surface GHs 351 

act slowly and target infrequent linkages7,26,27, the equivalent enzymes of B. 352 

thetaiotaomicron that cleave galactan and the backbone of HG and RGI rapidly 353 

degrade their target polysaccharide. This likely reflects substrate accessibility to 354 

enzyme attack, and thus organisms with efficient surface enzymes that target 355 

accessible carbohydrates would be more competitive than bacteria in which the 356 

corresponding GHs or PLs were inefficient. This model (Fig. 5), however, does not 357 

apply to arabinan degradation where low activity of the surface enzymes was 358 

evident. This observation underpins the distinct mechanisms, distributive or selfish, 359 

by which glycans are metabolized by Bacteroides spp.  360 

 361 

The RGI-PUL, in addition to orchestrating RGI backbone depolymerisation, removes 362 

remnants of linked polysaccharides and single sugar sidechains (Fig. 5). In contrast, 363 

PULs that mediate degradation of other branched glycans7,8,26,27 depolymerize both 364 

the respective side chains and backbone structures. We propose that B. 365 

thetaiotaomicron does not necessarily target intact pectin structures but are able to 366 

utilise pectin domains generated by other organisms in the HGM. The RGI backbone 367 

exposed through symbiotic relationships with other intestinal microorganisms, or 368 

upstream processing by other PULs of B. thetaiotaomicron, is likely to contain 369 

additional pectin remnants explaining the complexity of enzymes encoded by the 370 

RGI-PUL.  371 

 372 

 373 
The cross-feeding experiments demonstrate that galactooligosaccharides released 374 

by B. thetaiotaomicron are used by other organisms. The utilization of other pectin-375 
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derived PBPs, however, is more restricted. These data illustrate how glycans are 376 

made available to the general community by primary degraders. Such cross-feeding 377 

has been observed between strains of Bacteroides cultured on fructans and soluble 378 

starch28, with the recipient organism providing a benefit to the glycan degrading 379 

bacterium29. Possible non-Bacteroides beneficiaries of pectin-derived cross-feeding 380 

within the HGM are Bifidobacterium species, which generally utilize PBPs rather than 381 

the polysaccharide27. Contrasting oligosaccharide utilisation profiles observed 382 

among Bacteroides spp. may allow for co-existence of species within the same niche 383 

targeting different components of the same glycans without competition. 384 

 385 

The critical role played by a surface exo-β-galactosidase in galactan metabolism in 386 

some Bacteroides species is intriguing. This contrasts with all other Bacteroides 387 

glycan degrading systems described to date, which deploy endo-acting 388 

CAZymes2,7,8,27,30. These organisms may target galactooligosaccharides, albeit with 389 

a high DP, released by other organisms within the HGM, obviating that need for 390 

endo-cleavage. This indicates that different Bacteroides target galactans in distinct 391 

nutritional niches within the gut. The data also illustrate the risk associated with 392 

generating models for glycan degradation based solely on prediction of enzyme 393 

function through CAZy family assignment. To fully understand glycan metabolism a 394 

molecular genetics approach informed by biochemical and transcriptional data in 395 

harness with bioinformatics predictions is required.     396 

 397 

This report provides a model for how the pectic network is metabolized by a 398 

Bacteroides species in the HGM. Surprising variations in selective glycan 399 

metabolism and the constitution of individual pathways were apparent. This contrasts 400 

with the extensive conservation of other PULs7-9,27. This suggests that organisms 401 

have adopted a variety of strategies to metabolise dietary pectins. A salient feature 402 

of pectin utilization is the elaboration of enzymes in the RGI-PUL, reflecting the 403 

requirement to remove remnants from other pectic glycans and the extraordinary 404 

number of enzymes deployed in depolymerizing the disaccharide backbone. 405 

Dissecting the mechanism of pectin degradation contributes to our understanding of 406 

the foodweb within the HGM.  407 

 408 
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Methods 409 

Producing recombinant proteins 410 

DNA fragments encoding predicted CAZymes and binding proteins were amplified 411 

without signal sequence by PCR using appropriate primers. The resultant DNA was 412 

then cloned into pET21a or pET28a/b linearized using appropriate restriction 413 

enzymes. The expressed protein included a His6-tag fusion at the N-terminus. 414 

Escherichia coli strains BL21(DE3) or TUNER were transformed with the plasmids 415 

and grown to mid-exponential phase before induction with 1 mM (BL21(DE3)) or 416 

0.2 mM (TUNER) isopropyl β-D-galactopyranoside (IPTG), and the culture was 417 

grown for a further 5 h at 37 °C or 16 h at 16 °C, respectively. The recombinant 418 

proteins were purified to >90% electrophoretic purity by immobilized metal ion affinity 419 

chromatography (IMAC) using Talon, a cobalt-based matrix, with bound proteins 420 

eluted with 100 mM imidazole, describe previously 9. To generate seleno-methionine 421 

(Se-Met) proteins for structure resolution, E. coli cells were cultured as described 422 

previously 9, and the proteins were purified using IMAC as described above. For 423 

crystallization, the Se-Met proteins were further purified by size exclusion 424 

chromatography. After IMAC, fractions containing the purified proteins were buffer-425 

exchanged, using PD-10 Sephadex G-25M gel-filtration columns (GE Healthcare), 426 

into 10 mM Na-HEPES buffer, pH 7.5, containing 150 mM NaCl and were then 427 

subjected to gel filtration using a HiLoad 16/60 Superdex 75 column (GE Healthcare) 428 

at a flow rate of 1 ml min−1. For crystallization trials, purified proteins were 429 

concentrated using an Amicon 10-kDa molecular mass centrifugal concentrator and 430 

washed three times with 5 mM DTT (for the Se-Met proteins) or water (for native 431 

proteins).   432 

 433 

Site-directed mutagenesis 434 

Site-directed mutagenesis was carried out employing a PCR-based NZY-435 

Mutagenesis kit (NZYTech Ltd) using the plasmids encoding the appropriate 436 

enzymes as the template. The mutated DNA clones were sequenced to ensure that 437 

only the appropriate DNA change was introduced after the PCR. 438 

 439 

Purification of oligosaccharides 440 
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Galactooligosaccharides were generated by incubation of 3 g of galactan with 100 441 

mM HCl incubated for 3 h at 100 ˚C and neutralised by NaOH titration. The 442 

oligosaccharide mixture was freeze dried and resuspended in water before being 443 

applied to a P2-BioGel (BioRad) column with a 0.22 ml/min flow rate. Fractions were 444 

evaluated for oligosaccharide content and purity by TLC. Pure fractions of defined 445 

oligosaccharides were pooled and concentrated. Oligosaccharide size was 446 

confirmed by Mass Spectrometry and HPAEC. Crude oligosaccharide mixtures were 447 

generated by partial digestion with appropriate enzymes; BT0360 and BT0367 448 

(arabinan), BT4668 (galactan), BT4170 (P-RGI/AM-RGI) and BT4116 (HG). 449 

Reactions were boiled and filter sterilised to remove precipitate before being 450 

evaluated by TLC.     451 

 452 

Preparation of RGI-AM 453 

Arabisopsis thaliana seeds were resuspended in distilled water (1 g/ml) and 454 

incubated at 4 ˚C for 16 h while stirring. The solution was centrifuged and 455 

supernatant filtered through G1 glass filter (15-40 µm pore size). This was then 456 

dialysed against 2 x 40 volumes of water before freeze drying. Typical yield was 1 g 457 

from 80 g seeds. 458 

 459 

CAZyme Assays 460 

Spectrophotometric quantitative assays for the �-L-rhamnosidase BT4145, L-461 

arabinofuranosidases (BT0349, BT0348 and BT0368), �-D-galactosidases (BT4667, 462 

BT4151, BT4156, BT4160 and BACOVA_05493) and carbohydrate esterase 463 

(BT4158) were monitored by the formation of NADH, at A340 nm using an extinction 464 

coefficient of 6,230 M−1 cm−1, with an appropriately linked enzyme assay system. 465 

The assays were adapted from purchased Megazyme International assay kits. 466 

These kits were as follows: the L-rhamnose assay kit (K-RHAMNOSE); L-467 

arabinose/D-galactose assay kit (K-ARGA); acetic acid detection kit (K-ACET). 468 

Activity of pectic lyases (BT4170, BT4175, BT4115, BT4116) were measured at 469 

A235nm. Activity on 4-nitophenyl-glycosides was monitored at A400nm. The activity of 470 

BT4668 to hydrolyse galactan was determined in 20 mM sodium phosphate buffer, 471 

pH 7.5 at 37 °C containing an appropriate concentration of the polysaccharide and 472 

1 mg ml−1 BSA. Reactions were incubated at 37 oC and at regular time intervals 473 
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500 μl aliquots were removed and the amount of reducing sugar was quantified using 474 

the dinitrosalicylic acid reagent 31 and a standard curve of xylose in the reaction 475 

conditions used. Substrate depletion assays were performed as described previously 476 
7 to determine BT4668 activity on galactooligosaccharides while production of D-477 

galactose was used to assay BT4160 activity on galactooligosaccharides. The mode 478 

of action of enzymes were determined using PAEC or TLC, as appropriate. In brief, 479 

aliquots of the enzyme reactions were removed at regular intervals and, after boiling 480 

for 10 min to inactivate the enzyme and centrifugation at 13,000g, the amount of 481 

substrate remaining or product produced was quantified by HPAEC using standard 482 

methodology. The reaction substrates and products were bound to a Dionex 483 

CarboPac PA100 (Galactooligosaccharides/Arabinooligosaccharides), PA1 484 

(Monosaccharides) or PA20 (Polygalacturonic acid oligosaccharides) column and 485 

glycans eluted with an initial isocratic flow of 100 mM NaOH then a 0–200 mM 486 

sodium acetate gradient in 100 mM NaOH at a flow rate of 1.0 ml min−1, using pulsed 487 

amperometric detection. Linked assays were checked to make sure that the relevant 488 

enzyme being analysed was rate limiting by increasing its concentration and 489 

ensuring a corresponding increase in rate was observed. A single substrate 490 

concentration was used to calculate catalytic efficiency (kcat/KM), and was checked to 491 

be markedly less than KM by halving and doubling the substrate concentration and 492 

observing an appropriate increase or decrease in rate. The equation 493 

V0 = (kcat/KM)[S][E] was used to calculate kcat/KM unless substrate depletion was used 494 

then the calculation was as follows ln(kcat/KM) = (S0/St)/[E], in which [E] and [S] are 495 

enzyme and substrate concentration, respectively. All reactions were carried out in 496 

20 mM sodium phosphate buffer, pH 7.0, with 150 mM NaCl (defined as standard 497 

conditions) and performed in at least technical triplicates. 498 

 499 

Isothermal Titration Calorimetry 500 

The binding of proteins to their glycan ligands was quantified by isothermal titration 501 

calorimetry (ITC), as described previously27. Titrations were carried out in 50 mM Na-502 

HEPES buffer, pH 7.5 at 25 °C. The reaction cell contained protein at 50–100 μM, 503 

while the syringe contained either the oligosaccharide at 1–10 mM or the 504 

polysaccharide at 3–10 mg ml−1. Integrated heats were fitted to a single-site model 505 

using Microcal Origin v7.0 to derive n, Ka, and ΔH values. ΔG and ΔS were 506 
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calculated from the equation –RTlnKa = -ΔG = ΔH -TΔS where R is the gas constant 507 

and T temperature in Kelvins. 508 

 509 

Electrospray ionisation mass spectrometry (ESI-MS) 510 

The molecular mass of purified oligosaccharides (in 10 mM ammonium acetate, pH 511 

7.0) were analysed via negative ion mode infusion/offline ESI-MS following dilution 512 

(typically 1:1 (v/v)) with 5% trimethylamine in acetonitrile. 513 

 514 

Electrospray data was acquired using an LTQ-FT mass spectrometer (Thermo) with 515 

a FT-MS resolution setting of 100,000 at m/z = 400 and an injection target value of 516 

1,000,000. Infusion spray analyses were performed on 5–10 μl of samples using 517 

medium ‘nanoES‘ spray capillaries (Thermo) for offline nanospray mass 518 

spectrometry in negative ion mode at 1 kV. 519 
 520 
1H-NMR determination of catalytic mechanism 521 

Enzymes BT4145 and BACOVA_05493 were freeze dried in 20 mM Tris-HCl, 500 522 

mM NaCl, pH 7.5 as were substrates α-L-Rha-α1,4-D-GalA and (β1,4-Galp-)3, 523 

respectively and resuspended in deuterium oxide. Prior to addition of enzyme an 524 

initial 1H-NMR spectra was obtained. Enzyme was added and spectra recorded at 525 

appropriate time intervals. The ratio of α- and β- monosaccharide products was 526 

determined to deduce catalytic mechanism. 527 

 528 

2D NMR of arabinotetraose before and after treatment with BT0349 529 

NMR spectra were recorded at 298 K in D2O with a Bruker AVANCE III spectrometer 530 

operating at 600 MHz equipped with a TCI CryoProbe. Two-dimensional 1H-1H 531 

TOCSY, ROESY, DQFCOSY, 13C HSQC and HSQC-TOCSY experiments were 532 

performed, using established methods32; the mixing times were 70 ms and 200 ms 533 

for the TOCSY and ROESY experiments, respectively. Chemical shifts were 534 

measured relative to internal acetone (δH =2.225, δC=31.07 ppm). Data were 535 

processed using the Azara suite of programs (v. 2.8, copyright 1993-2017, Wayne 536 

Boucher and Department of Biochemistry, University of Cambridge, unpublished) 537 

and chemical-shift assignment was performed using Analysis v2.433. 538 

 539 
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Growth of Bacteorides and generation of mutants 540 

Bacteroides mutants were generated by deletion or replacement of the target gene 541 

with an inactive version by counter selectable allelic exchange using the pExchange-542 

tdk plasmid. The full method is described in34. Mutants generated in this study are 543 

distinguished by the locus tag of the gene deleted/inactivated (∆btxxx or 544 

∆BACOVAxxxxx).  545 

 546 

Bacteroides spp. were routinely cultured under anaerobic conditions at 37 °C using 547 

an anaerobic cabinet (Whitley A35 Workstation; Don Whitley) in culture volumes of 548 

0.2, 2 or 5 ml) of TYG (tryptone-yeast extract-glucose medium) or minimal medium 549 

(MM) containing 0.5-1% of an appropriate carbon source and 1.2 mg ml−1 porcine 550 

haematin (Sigma-Aldrich) as previously described8. The growth of the cultures were 551 

routinely monitored at OD600 nm using a Biochrom WPA cell density meter for the 5 ml 552 

cultures or a Gen5 v2.0 Microplate Reader (Biotek) for the 0.2 and 2 ml cultures. 553 

 554 

Protein cellular localisation 555 

Cellular localization of proteins was carried out as described previously7. In brief, B. 556 

thetaiotaomicron cultures were grown overnight (OD600 nm value of 2.0) in 5 ml MM 557 

containing 0.5 % potato rhamnogalacturonan I (P-RGI) or homogalacturonan. The 558 

next day, cells were collected by centrifugation at 5,000g for 10 min and 559 

resuspended in 2 ml PBS. Proteinase K (0.5 mg ml−1 final concentration) was added 560 

to 1 ml of the suspension and the other half left untreated (control). Both samples 561 

were incubated at 37 °C overnight followed by centrifugation (5,000g for 10 min) to 562 

collect cells. To eliminate residual proteinase K activity, cell pellets were 563 

resuspended in 1 ml of 1.5 M trichloroacetic acid and incubated on ice for 30 min. 564 

Precipitated mixtures were then centrifuged (5,000g, 10 min) and washed twice in 565 

1 ml ice-cold acetone (99.8%). The resulting pellets were allowed to dry in a 40 °C 566 

heat block for 5 min and dissolved in 250 μl Laemmli buffer. Samples were heated for 567 

5 min at 98 °C and mixed by pipetting several times before resolving by SDS–PAGE 568 

using 12% gels. Electrophoresed proteins were transferred to nitrocellulose 569 

membranes by Western blotting followed by immunochemical detection using 570 

primary rabbit polyclonal antibodies (Eurogentec) generated against various proteins 571 

and secondary goat anti-rabbit antibodies (Santa Cruz Biotechnology). For BT4119 572 

the anti-sera failed to produce the desired reactivity. Thus, a C-terminal Flag peptide 573 
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(DYKDDDDK) was incorporated at the C-terminals of the native proteins expressed 574 

by B. thetaiotaomicron through counter-selectable allelic exchange34. This allowed 575 

for their detection using rabbit anti-Flag antibodies (Sigma) as primary antibodies. In 576 

the case of BT4668, BT0360 and BT0367 mutations (that lead to the inactivation of 577 

the encoded enzymes) were made in each gene within the B. thetaiotaomicron 578 

genome to generate the mutants ∆bt4668, ∆bt0360, ∆bt0367 and ∆bt0360/∆bt0367. 579 

Cells were grown in MM containing 0.5% arabino- or galacto-oligosaccharides to 580 

activate the target PULs. The cells were harvested from mid-log phase 5 ml cultures 581 

and concentrated in 0.5 ml PBS. The resuspended cells were incubated with the 582 

target glycans in an aerobic environment, conditions in which only the activity of only 583 

the surface enzymes can be monitored. The appropriate time intervals samples were 584 

taken, subjected to HPAEC analysis. The data were compared to that of wild type B. 585 

thetaiotaomicron to explore whether the loss in enzyme activity occurred at the 586 

bacterial surface.  587 

 588 

Cross-feeding and competition assays 589 

Prior to co-culture each Bacteroides spp. was grown in TYG and washed in PBS 590 

before being used to inoculate MM containing 0.5% glycan. Samples of 0.5 ml were 591 

taken at regular intervals during growth, which were serially diluted and plated onto 592 

Brain-Heart Infusion (BHI, Sigma-Aldrich) with agar and porcine hematin for 593 

determination of total CFU/ml of the culture. Genomic DNA was purified from the 594 

remainder of the sample (Bacterial genomic DNA purification kit, Sigma-Aldrich). 595 

Quantitate PCR was used to determine the ratio of different Bacteroides spp. or 596 

mutants in the sample using primers specific for unique regions in each Bacteroides 597 

sp. genome or tag introduced into one of two att sites. The Ratio of each 598 

species/mutant was used to calculate the CFU/ml of each organisms in the culture.   599 

 600 

Quantitative RT-PCR (RT-qPCR) 601 

Comparison of the levels of transcription of susC homologues (susCH) from each of 602 

the pectin PULs was performed by RT-qPCR. Previous studies have shown susCH 603 

genes are a good proxy for expression of their cognate PUL35. B. ovatus was 604 

cultured in 5 ml of MM containing 0.5% (w/v) carbon source, as described above. 605 

Triplicate bacterial cultures were harvested at mid-log phase (OD600 ∼0.8) and 606 

placed in RNAprotect (Qiagen), then stored at −80 °C overnight, before purification 607 
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with RNeasy kit (Qiagen). RNA purity was assessed spectrophotometrically, and 608 

1 μg of RNA was used immediately for reverse transcription (QuantiTect Reverse 609 

Transcription kit, Qiagen). RT-qPCR was performed in a 96-well plate on a 610 

LightCycler 480 System (Roche) with FastStart Essential DNA Green Master 611 

(Roche) using the standard primer. Reactions were carried out in 10 μl, consisting of 612 

5 μl SYBR Green mix, 20 ng of cDNA, and 1 μM (susCH genes) or 0.125 μM (16 S 613 

rRNA) primer mix. Reaction conditions were 95 °C 600 s, followed by 45 cycles of 614 

95 °C for 10 s, 55 °C for 10 s, 72 °C for 10 s. Cq values were calculated using 615 

LightCycler 480 SW 1.5. Data were normalized to 16 S rRNA transcript levels, and 616 

change in expression level calculated as fold-change compared with minimal media, 617 

glucose cultures. 618 

 619 

Crystal structure determination  620 

Crystallisation: All proteins were concentrated to 10 mg/ml. BT4170 native 621 

crystallised in 20 mM sodium/potassium phosphate 20% (w/v) polyethylene glycol 622 

(PEG) 3350. BT4170 co-crystallised with 10 mM of oligosaccharide reaction 623 

products generated by BT4170 (defined as ligand) in 100 mM succinic acid, sodium 624 

phosphate glycine buffer at pH 6.0 and 25 % (w/v) PEG 1500. BT4170 inactive 625 

mutant K285A was co-crystalized with 30 mM ligand in 200 mM potassium chloride 626 

and 20% PEG 3350. Selenomethionine-containing BT4155 crystalized in 200 mM 627 

sodium chloride, 100 mM Bis-Tris buffer pH 5.5 and 25% PEG 3350. BT0349 with 628 

500 mM L-arabinose was crystallised in 20 % PEG 3350 and 200 mM ammonium 629 

formate. All samples were cryo-protected by supplementing the mother liquor with 630 

20% PEG 400. 631 

 632 

Data collection and processing: BT0349, BT4170 and BT4170 K285A ligand data 633 

were indexed and integrated with the automated pipeline Xia2 (3da protocol)36. 634 

BT4170 in complex with ligand and BT4155 were indexed and integrated with XDS37. 635 

The data were scaled with either XDS or Aimless38. Space group determination was 636 

confirmed with Pointless39. The phase problem for BT0349 and BT4155 was solved 637 

by SeMet-SAD using hkl2map40 and the shelx pipeline41. BT4170 native apo data 638 

were solved by molecular replacement with the pipeline Balbes42 with the PDB 639 

model 1RU4 as search model. Initial models of BT0349, BT4155 and BT4170 were 640 

improved by successive runs of automated model building program arp_warp43 and 641 
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buccaneer44. BT4170 TRI SCACCHARIDE and BT4170 inactive mutant K285A data 642 

were solved using the 4170 native apo model. All models were refined and improved 643 

using successive cycle of Refmac45 and manual model building with Coot46. All 644 

models were validated using Coot46 and molprobity47. Five percent of the 645 

observations were randomly selected for the Rfree set. The data processing, 646 

refinement statistics and protein database (PDB) codes are reported in 647 

Supplementary Table 9 648 

 649 

Comparative genomics analysis 650 

PULs similar to the RGI, galactan, arabinan and homogalacturonan PULs were 651 

searched in HGM Bacteroidetes genomes. The identification of similar PULs was 652 

based on PUL alignments. Gene composition and order of Bacteroidetes PULs were 653 

computed using the PUL predictor described in PULDB48. Then, in a manner similar 654 

to amino acid sequence alignments, the predicted PULs were aligned to the 655 

appropriate pectin PULs according to their modularity as proposed in the 656 

RADS/RAMPAGE method49. Modules taken into account include CAZy families, 657 

sensor-regulators and suscd-like genes. Finally, PUL boundaries and limit cases 658 

were refined by BLASTP-based analysis. The previously unknown glycoside 659 

hydrolase families discovered in this study are listed in the main text. 660 

 661 

Data availability. The data that support the findings of this study are available from 662 
the corresponding author upon request. The authors declare that the data supporting the 663 
findings of this study are available within the paper and the Supplementary Information. 664 
Complete western blot images are provided in Supplementary Fig. 1. The crystal 665 
structure datasets generated (coordinate files and structure factors) have been deposited in 666 
the Protein Data Bank (PDB) and are listed in Supplementary Table 9 together with the 667 
PDB accession codes.   668 
 669 
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FIGURE LEGENDS 828 

 829 
Figure 1. Genomic organization of pectin PULs. a, Schematic of pectin structure 830 
showing the different polysaccharides highlighted with different coloured 831 
backgrounds. The respective linkages and monosaccharide composition are 832 
represented according to the Symbol Nomenclature for Glycans system50. b, genes 833 
encoding proteins of known or predicted functionalities are colour coded. GHs, CEs 834 
and PLs located in a known CAZy family are indicated by GHXX, CEXX or PLXX 835 
where XX indicates the number of the family.  836 
 837 
Figure 2. Depolymerization of pectins at the cell surface of B. thetaiotaomicron 838 
cell surface. a, Growth of wild-type and mutants of B. thetaiotaomicron (BtWT and 839 
Δbtxxxx) or B. ovatus (BoWT and Δbacovaxxxx) in minimal media containing the 840 
indicated pectic polysaccharide; HG, homogalacturonan; SBA, sugar beet arabinan; 841 
RGI-AM, rhamnogalacturonan I backbone from Arabidopsis mucilage  (biological 842 
replicates, n=3, error bars denote s.e.m). b, BtWT, BoWT and mutants lacking 843 
functional outer membrane enzymes were incubated with appropriate 844 
polysaccharides in aerobic conditions for the times indicated. Under these conditions 845 
substrate is only available to the surface enzymes. Products released from the 846 
glycans were monitored by High performance anion exchange chromatography 847 
(HPAEC) with pulsed amperometric detection (PAD) or UV detection at 235 nm 848 
(Abs235nm). The degree of polymerisation of the peaks corresponding to the 849 
galactose (Gal) and arabinose (Ara) oligosaccharides are shown in subscript 850 
numbers. c, Western blot detection of selected B. thetaiotaomicron enzymes 851 
encoded by the HG-PUL and RGI-PUL after treatment with proteinase K (PK+) or 852 
untreated (-). BT4661 is a known surface glycan binding protein (control)6. The 853 
cellular localization is indicated as periplasmic (P) or cell surface (CS). The example 854 
is from biological replicates n=3. The full western blots are shown in Supplementary 855 
Fig. 1. 856 
 857 
Figure 3. Signal molecule protection. Each panel shows the affinities of the signal 858 
molecules to respective sensors (top) and the catalytic efficiency of key enzymes 859 
implicated in signal molecule degradation (bottom) for a, galactan, b, arabinan and c, 860 
RGI. The data were from technical replicates, n ≥ 3. 861 

Figure 4. Cross-feeding of polysaccharide breakdown products between 862 
Bacteroides species.  a, Wild type B. thetaiotaomicron (WT) and mutants of the 863 
bacterium lacking the key surface degrading enzymes for each polysaccharide were 864 
mono-cultured and co-cultured with the wild type bacterium as indicated. Samples 865 
were taken at different time points. The colony forming units of these samples were 866 
determined by plating onto rich media (top panels) and the ratio of each bacterium in 867 
the culture (bottom panel) was determine by qPCR with primers unique to each 868 
strain. Error bars represent the s.e.m of biological replicates (n=3). b, B. ovatus (Bo), 869 
B. massiliensis (Bm) and B. uniformis were mono-cultured or co-cultured with wild 870 
type B. thetaiotaomicron (Bt) using the same experimental approach described in a.   871 
 872 
 873 
 874 
 875 
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Figure 5. Model of pectin utilization by B. thetaiotaomicron. Chemical structures 876 
of the sugars in the major pectins (a)Models for degradation of galactan (b, blue), 877 
arabinan (c, purple), homogalacturonan (d, green) and rhamnogalacturonan I (e, 878 
peach) are displayed. The black arrows indicate the linkage cleaved by the various 879 
enzymes, while the grey arrows show the direction of the degradative pathway.  880 
 881 
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