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ABSTRACT (250 words) (as 05.02.18 word N= 253)  

BACKGROUND: Common resistance mechanisms to endocrine therapy (ET) in estrogen 

receptor (ER) positive metastatic breast cancers include, among others, ER loss and acquired 

activating mutations in the ligand-binding domain of the ER gene (ESR1LBDm). ESR1 mutational 

mediated resistance may be overcome by selective ER degraders (SERDs). During the first-in-

human study of oral SERD AZD9496, early changes in circulating tumor cells (CTC) and 

circulating tumor DNA (ctDNA) were explored as potential non-invasive tools, alongside paired 

tumor biopsies, to assess pharmacodynamics and early efficacy.  

METHODS: CTC were enumerated/phenotyped for ER and Ki67 using CellSearch
®

 in serial 

blood draws. ctDNA was assessed for the most common ESR1LBDm by droplet digital PCR 

(BioRad).  

RESULTS: Before starting AZD9496, 11/43 (25%) patients had ≥5CTC/7.5mL whole blood 

(WB), none of whom underwent reduction to <5CTC/7.5mL WB on C1D15. 5/11 patients had 

baseline CTC-ER+, 2 of whom had CTC-ER+ reduction. CTC-Ki67 status did not change 

appreciably. Patients with ≥5CTC/7.5mL WB pre-treatment had worse progression-free survival 

(PFS) than patients with <5CTC (p=0.0003). Fourteen of 45 (31%) patients had ESR1LBDm+ 

ctDNA at baseline, 5 of whom had ≥2 unique mutations. Baseline ESR1LBDm status was not 

prognostic. Patients with persistently elevated CTC and/or ESR1LBDm+ ctDNA at C1D15 had 

worse PFS than patients who did not (p=0.0007).  

CONCLUSIONS: Elevated CTC at baseline was a strong prognostic factor in this cohort. Early 

on-treatment changes were observed in CTC-ER+ and ESR1LBDm+ ctDNA, but not in overall 
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CTC number. Integrating multiple biomarkers in prospective trials may improve outcome 

prediction and ET resistance mechanisms’ identification over a single biomarker. 
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Statement of translational relevance (120-150 words) (as 05.02.18 words= 149) 

Determination of the molecular status of a cancer by evaluating circulating biomarkers 

has been designated as a ‘liquid biopsy’. Liquid biopsies offer the possibility of serial non-

invasive monitoring of the overall tumor burden as opposed to traditional research tissue 

biopsies, which assess a single site of disease. In patients with metastatic breast cancer (MBC), 

elevated circulating tumor cells (CTC) or ESR1 mutations assessed in circulating tumor DNA 

(ctDNA) have been previously associated with worse prognosis. In this work, we used these 

circulating markers to assess pharmacodynamic (PD) changes in patients with ER positive/HER2 

negative MBC participating in a first in human study of the oral selective estrogen receptor 

degrader (SERD), AZD9496. By integrating CTC and ctDNA, we were also able to explore the 

potential complementary utility of these circulating markers to detect more general mechanisms 

of resistance to ET non-invasively within a phase I trial of an oral SERD. 

 

 

 



8 
 

INTRODUCTION 

Endocrine (or anti-estrogen) therapies (ETs) are the favored initial choice of treatment for 

most patients with estrogen receptor (ER) positive metastatic breast cancer (MBC). Commonly 

used ETs include the selective estrogen receptor modulator (SERM) tamoxifen, third-generation 

aromatase inhibitors (AIs) and the selective estrogen receptor degrader (SERD) fulvestrant (1). 

 Resistance to ET can occur de novo or be acquired during the course of therapy (2). 

Absence of ER expression is the single most potent mechanism of ET resistance (3). Other 

mechanisms of ET resistance include de-regulation of the ER pathway, for example by 

phosphorylation of factors downstream of ER, and/or activation of alternative pro-survival or 

proliferative pathways (4).   

Several investigators have reported activating mutations in the ligand binding domain 

(LBD) of ESR1, the gene encoding ER. These mutations induce ligand-independent ER activity, 

leading to apparent resistance to AIs and other estrogen depletion strategies (5-8). The potential 

impact of ESR1LBD mutations (ESR1LBDm) on clinical outcomes together with implications of 

sub-clonality of these mutations have not been fully elucidated. However, pre-clinical and 

independent exploratory clinical studies have suggested that patients with ESR1LBDm have 

shorter progression free survival (PFS) on subsequent AI therapy vs patients with ESR1LBD wild-

type (WT) cancers and yet may retain relative (possibly dose-dependent) sensitivity to 

fulvestrant (5, 9-12). Increased dosing of fulvestrant might further improve its efficacy, but the 

bioavailability and pharmacokinetic (PK) limitations of this drug restrict the maximum feasible 

dose (MFD) to 500 mg once monthly intramuscular injection and steady state plasma 

concentrations are not reached until 3 to 6 months after first administration.  

The development of an oral SERD with satisfactory bioavailability that could be given at higher 

relative doses than fulvestrant is highly desirable. AZD9496 (13) is one of several oral SERDs 
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that are being tested in clinical trials such as RAD1901 (NCT02338349) (14), GDC-9545 

(NCT03332797); LSZ102 (NCT02734615); SAR439859 (NCT03284957).  

In this first in human study, the PK of AZD9496 was characterized by a rapid absorption 

(median tmax: 1.55-3.00 h) and fast biphasic decline after reaching the maximum concentration 

with a mean terminal half-life (t½) of 1.4–5.7 h (13). Following multiple doses of AZD9496 the 

exposures of AZD9496 were consistently and dose-dependently lower than for a single 

AZD9496 dose, presumably due to auto-induction of cytochrome P450 (CYP) isoenzymes (13). 

 Ideally, pharmacodynamic (PD) markers should be incorporated into early therapeutic 

development trials to determine if the drug is reaching and affecting its drug target. However, 

serial metastatic tissue biopsies are invasive(15) and expensive. Conversely, ‘liquid biopsies’, 

such as assays for circulating tumor cells (CTC) or cell free tumor DNA (ctDNA), are relatively 

non-invasive and allow longitudinal assessment of circulating biomarkers (16). These markers 

may allow monitoring of PD changes, as well as identification of genetic and non-genetic 

determinants of drug response and development of drug resistance. We and others have reported 

the ability to accurately and reproducibly measure ER and Ki67 levels in CTC as well as 

ESR1LBDm from ctDNA (ESR1LBDm ctDNA) (11, 17-19). 

Here, we report the results of correlative studies of CTC-phenotype, ESR1LBDm status in ctDNA, 

and PD analyses of paired biopsies in blood and tissue samples collected from patients with ER 

positive/HER2 negative MBC who participated in the first in human Phase I dose escalation trial 

of the oral SERD AZD9496 (13).   
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MATERIALS AND METHODS 

Study Design and objectives 

This correlative study was performed using specimens prospectively collected from patients who 

participated in a Phase I, open-label, multicenter trial (NCT02248090 in clinicaltrials.gov), 

designed to investigate the safety and tolerability and pharmacokinetics of increasing doses of 

the oral SERD AZD9496 (13). The main study was carried out in accordance with the principles 

of the International Conference on Harmonization guidelines for Good Clinical Practice, the 

Declaration of Helsinki, and all applicable laws. All subjects provided written informed consent 

approved by their local Institutional Review Board for collection of serial tissue biopsies and 

serial blood draws as part of their participation in the clinical trial.  

The primary objectives of this correlative trial were to investigate: 1) the prognostic role of CTC 

enumeration and characterization prior to treatment and whether CTC enumeration, CTC-ER 

status and CTC-Ki67 status could be used as a PD biomarker of AZD9496 activity; 2) the 

prognostic role of baseline ESR1LBD mutational status in ctDNA and early changes in mutational 

levels during treatment as potential PD biomarker and/or for early prediction of response; 3) 

changes in ERα, progesterone receptor (PR), and Ki67 expression in optional paired tumor 

biopsies to assess the PD activity of AZD9496. Moreover, baseline variability of CTC and 

ctDNA was investigated. 

 

Patient staging and follow-up  

Details of eligibility, accrual, and conduct of the clinical trial have been reported in Hamilton et 

al (13). Briefly, eligibility was limited to patients with ER positive/HER2 negative metastatic or 
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locoregionally recurrent disease, not amenable to treatment with curative intent, who had 

progressed after ≥6 months of ET for ER positive breast cancer (before protocol amendment 

August 21 2015 must have spent ≥6 months on a line of endocrine therapy in the advanced 

setting). Pre- or peri-menopausal women must have started luteinizing hormone-releasing 

hormone (LHRH) agonist treatment at least 4 weeks before study treatment, and must have 

continued this treatment throughout the study. Sex hormone containing drugs such as hormone-

replacement therapy (HRT), dehydroepiandrosterone (DHEA), other androgens (e.g., 

oxandrolone), selective estrogen receptor modulators (SERMs e.g. raloxifene), megestrol acetate 

were not permitted during the study. Of note, a wash out from any cytotoxic chemotherapy, 

investigational agents or other anti-cancer drugs for the treatment of advanced breast cancer from 

a previous treatment regimen or clinical study within 14 days of the first dose of study treatment 

was required. Although a fulvestrant-specific ‘wash-out’ period was not defined, for the purpose 

of CTC analysis in this study we defined fulvestrant ‘wash-out’ as 120 days (~3.3 half-lives). 

Assessment of tumor response by RECIST 1.1 was performed every 8 weeks after the start of 

treatment for 24 weeks, and thereafter every 12 weeks (± 1 week) until objective disease 

progression, as defined by RECIST 1.1, even if a patient discontinued treatment prior to 

progression. A ‘rolling 6’ design was employed, in which each cohort at least three and up to six 

patients received AZD9496 at escalating dose. Dosing began at 20 mg once-daily up to 600 mg 

twice-daily, which was regarded as the maximum feasible dose on the basis of the number of 

tablets required for each dose. 
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Collection of CTC, plasma for ctDNA analysis, and paired biopsies 

Overall timeline of sample collection is shown in Supplementary Table 1. Blood samples were 

drawn twice prior to starting therapy: a screen time point (-28 to -1 days prior to treatment 

initiation) and a second sample on the day of treatment initiation (C1D1). The duration of a cycle 

was 4 weeks for the first 6 cycles and 6 weeks thereafter. In one patient, Cycle 1, Day 2 (C1D2) 

sample was used as a surrogate sample for ESR1LBDm assessment due to missed screening/C1D1 

samples. Collectively, these specimens are designated as ‘baseline’ but results from individual 

timepoints are reported separately as stated throughout this report.   

CTC 

For CTC evaluation, whole blood (WB) was collected into CellSave preservative tubes 

(Menarini Silicon Biosystems, Inc., San Diego) during a screening window [-28 to -1 days prior 

to C1D1], and subsequently on C1D1, Cycle 1, Day 15 (C1D15), and at treatment 

discontinuation. Three CellSave tubes were pooled and divided into 3 aliquots for CTC 

assessment (one to test CTC-ER status, one to test CTC-Ki67 status and one to perform RNA 

extraction from CTC [data not reported], respectively). Blood samples were maintained and 

shipped at room temperature to one of two central laboratories (University of Michigan or 

Cancer Research UK Manchester Institute) where they were processed within a maximum of 96 

hours after blood draw.  

ctDNA 

For ctDNA analysis, blood was drawn into 10 mL Streck Cell-Free DNA BCT
®

 (STRECK, INC, 

La Vista, NE) tubes at screening, C1D1, C1D2, C1D15, C3D1, Day 1 of every alternate cycle 

after C3D1, and at treatment discontinuation. Screening or C1D1 samples were used for baseline 
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determination of ESR1LBDm status (mutation detected at any of the 2 timepoints), but the C1D2 

sample was used as a surrogate in case of missing screening/C1D1 samples. For determination of 

changes of ESR1LBDm levels at C1D15 versus baseline, C1D1 (when available) was used as 

baseline levels, otherwise screening was used.  One tube of WB per timepoint was collected for 

ctDNA and shipped to a central lab (Covance) at ambient temperature range (6-37°C) for further 

processing. 

Tissue 

Consent for paired research tumor biopsies was optional for patients enrolled in this study. The 

pre-treatment samples were collected during screening or at disease progression on the therapy 

administered prior to study. Sites were requested to obtain the on-treatment sample on C2D1 +/- 

7 days, but the sample could be taken outside this time window if agreed with the sponsor 

(before protocol amendment August 21, 2015, the on-treatment sample was scheduled at C1D15, 

however anytime between C1D7 and C1D28 was acceptable). Sites were instructed to collect the 

on-treatment biopsy between 2-12 hours after the latest dose of AZD9496. Patients could also 

consent to a tumor biopsy at disease progression, if clinically feasible. 

 

Sample processing and assay methods 

Blinding 

Laboratory personnel were not blinded to trial subject number, dose group and timepoint of CTC 

and ctDNA samples. For the paired tumor tissue samples, the laboratory personnel and the 

pathologist were blinded to the timepoint, but not to trial subject number and dose group. 

Laboratory personnel for all samples types were blinded to the clinical outcomes. 
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CTC 

Enrichment, enumeration, and characterization 

Blood specimens were analyzed for CTC enumeration and semi-quantitative analysis of 

expression of ER and Ki67 using the CXC CellSearch
®

 Kit and CellSearch
®

 system (Menarini 

Silicon Biosystems, Inc., San Diego), as previously reported (17, 19). CTC were considered 

elevated if the aliquot contained ≥5 CTC/7.5 mL of WB according to previous literature (20). If 

an aliquot had elevated CTC, CTC-staining was expressed on an arbitrary scale of 0-3+, as 

described previously (19). For each marker, 0 and 1+ was considered negative and 2-3+ was 

considered positive (19). CTC enumeration, CTC-ER status and CTC-Ki67 status were 

determined by two independent reviewers (E.M.D.; E.P.D.; K.A.; C.P.; F.B.; N.I.). Discordant 

results were reconciled by joint readings. Quality control between the two sites was performed 

every 3-4 weeks to ensure reading methods were concordant. CTC response was defined as a 

reduction to <5 CTC/7.5 mL WB at C1D15 as previously described (21, 22). 

 

CtDNA and tissue: molecular analyses 

ddPCR analyses: tumor tissue DNA and circulating free DNA (cfDNA) extraction 

DNA was extracted from FFPE sections using the QIAamp DNA FFPE Tissue Kit (QIAGEN
©

, 

Düsseldorf, Germany) according to the manufacturer’s protocol, buffer ATE was applied to each 

column and incubated for 5 minutes at room temperature prior to elution into Eppendorf LoBind 

Microcentrifuge tubes. Blood samples were processed on day of arrival in two steps. In the first 

step, WB was centrifuged at approximately 2,000G for 10 mins using a pre-chilled centrifuge set 

to 4°C, and plasma was separated by pipette and transferred to a 15 mL Falcon tube. In the 

second step, plasma was centrifuged again at approximately 12,000G or higher for 10 mins using 

a pre-chilled centrifuge set to 4°C, separated by pipette, aliquoted and frozen at minus 80°C until 
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extraction. ctDNA was extracted from 2 mL plasma using the QIAamp Circulating Nucleic Acid 

Kit with the QIAvac 24 Plus vacuum manifold (QIAGEN
©

, Düsseldorf, Germany) as previously 

described (23). Samples were stored at –20
o
C prior to ddPCR analysis. 

ESR1 mutations analyses by ddPCR 

Droplet digital PCR (ddPCR) was performed using the QX200 AutoDG Droplet Digital PCR 

System (BioRad, Hercules, CA, USA) according to the manufacturer’s protocol. Custom assays 

were designed by IDT (Coralville, IA, USA), incorporating locked nucleic acid (LNA) bases into 

each probe to increase discrimination. Probes were from IDT and primers (SePOP desalted) from 

Eurogentec (Liège, Belgium) (Supplementary Table 2). The D538G, E380Q, Y537C, Y537N, 

and Y537S ESR1 assays were run as singleplex assays. Multiplexing three assays (V534E, 

L536Q and L536R) was achieved by modifying both probe concentrations and the concentration 

of FAM and HEX fluorescent labels. In any cases where the ESR1 multiplex result was not 

conclusive, ddPCR was repeated with relevant singleplex assays. If the baseline sample was 

negative for E380Q and the multiplex assay, no samples of subsequent timepoints were tested 

due to limited sample material. For the remainder of the assays (D538G, Y537C, Y537N and 

Y537S), every time point was tested regardless of status at baseline. Each 20 µL ddPCR reaction 

contained 5 µL of cfDNA or formalin-fixed paraffin embedded (FFPE)-extracted DNA. Positive 

and negative controls were run in triplicate or quadruplicate on each plate. 150 bp gBlocks (IDT) 

or sheared plasmids (AZ Bioscience) containing the mutation of interest were used as positive 

controls. Human genomic DNA (male) was used as wild-type control (Promega, Madison, WI, 

USA). Appropriate elution buffer and water served as negative controls. Thresholds were 

manually set for each sample using acceptance criteria defined during the optimization of each 

assay. QuantaSoft software (version 1.7.4; BioRad, Hercules, CA USA) was used to assign 
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positive/negative droplets and convert counts into mutant copies/mL (23). Mutation levels were 

expressed as mutant DNA copies/mL plasma. ‘ESR1LBDm+’ ctDNA indicates the presence of at 

least one ESR1LBDm (i.e. definite positive by the pre-defined acceptance criteria) in the ctDNA 

(at baseline or at other time-point, as specified throughout the report). ‘Borderline’ cases (i.e. <3 

positive droplets, which is the pre-defined threshold of positivity) were considered “not 

detected” (or “negative”) unless otherwise specified. A ‘ctDNA response’ was defined as ≥50% 

decline in mutational levels of the dominant mutation at C1D15 versus baseline. 

 

Tissue 

Immunohistochemistry analyses 

Tumor biopsies were processed into FFPE blocks prior to immunohistochemistry (IHC) analysis 

at the participants’ institutions. IHC analysis was performed at AstraZeneca for semi-quantitative 

ER, progesterone receptor (PR), and Ki67 (24). See Supplementary Table 3 for antibody details. 

IHC staining was performed using a LabVision™ Autostainer (Thermo Fisher Scientific, Inc, 

Massachusetts, USA), following optimal pretreatment using a HistoS-3 microwave pressure 

retrieval system. Antibody-specific staining for ER and PR was scored manually by a board 

certified pathologist at AstraZeneca (J.G.) and/or at a contracted external GCP accredited 

laboratory (Source BioScience, Nottingham, United Kingdom). For both hormone receptors, the 

percentage of tumor cells was assessed with an intensity of negative, weak, moderate, and strong 

staining (0, negative; 1, weak; 2, moderate; 3, strong). Results for ER and PgR were recorded as 

an H score (sum of [1 x percentage weak] + [2 x percentage moderate] + [3 x percentage strong]) 

to a maximum of 300. Ki67 index was expressed as average % positive cells (count 300 cells).  
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Pharmacokinetics 

The exploratory PK/PD analysis involved visual evaluation of changes in CTC count and CTC-

ER status, CTC-Ki67 status, and ESR1LBDm ctDNA levels over treatment time in relation to 

AZD9496 dose and PK parameters (AUC, Cmax), assessed by standard non-compartmental 

methods. Absolute changes in biomarker at C1D15 (compared with baseline) were used to 

perform the assessment. The CA15-3 time-series biomarker data (assessed by local laboratories) 

was assessed through visual evaluation and model based assessment using mixed effects 

modelling in R software v3.3.1. In the initial modelling step, linear and nonlinear models were 

investigated within the R software package ‘nlme’ to describe the time course of the biomarker 

data. Subsequently, model-based evaluations were performed to test the statistical significance of 

AZD9496 dose or PK endpoints as explanatory covariates for the rate of change of CA15-3 over 

the time course of the study. Model selection was based on the likelihood ratio test (p=0.01). The 

PK/PD relationship analysis with tissue markers was not performed. 

Statistical analysis 

All statistical analyses were performed with GraphPad Prism version 7.04 (GraphPad Software, 

La Jolla, CA, USA) or Microsoft Excel. Association of CTC levels and ctDNA with PFS was 

assessed using logrank test. Progression free survival was defined as the time from start of 

treatment until objective disease progression as defined by RECIST 1.1 or death (by any cause in 

the absence of progression) regardless of whether the patient withdrew from study treatment or 

received another anti-cancer therapy prior to progression. Patients who had not progressed or 

died at the end of the study were censored at the time of their last evaluable RECIST assessment. 

Unless stated otherwise, p values were two tailed and considered significant if p<0.05. Treatment 
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was ongoing in six patients (13.3%) at the data cut-off of January 31, 2017. The study is reported 

according to the REMARK guidelines (25).   
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RESULTS 

Patients 

All 45 patients enrolled in the Phase I trial were also enrolled in this correlative study. Each 

subject had at least one blood sample collected at any time point for CTC and ctDNA assessment 

(Figure 1). In particular, 43 patients had CTC collected at screening and/or C1D1, whereas 2 

patients only had CTC collected at time of study discontinuation. In addition, 44 patients had 

ctDNA collected at screening and/or C1D1. For the patient, who did not have ctDNA collected at 

screening and C1D1, the sample from C1D2 was considered as baseline. Patient and disease 

characteristics were previously described (13). Data cut-off was on 31 January 2017. 

CTC enumeration and ESR1LBDm+ ctDNA at baseline 

Of the 43 patients for whom CTC were collected at screening and/or C1D1, 23 (53.5%) and 11 

(25%) had ≥1 and ≥5 CTC/7.5 mL WB at one or the other, or both, baseline blood draws 

(screening or C1D1), respectively (Table 1; Figure 2A).  Fourteen of 45 (31%) patients had 

ESR1LBDm+ ctDNA at baseline (screening or C1D1 sample for 44 patients and C1D2 for 1 

patient). Five of these 14 patients (36%) had more than one ESR1LBDm identified in the ctDNA in 

the same blood draw (Figure 2B), all of which featured a D538G clone (5/5). For this report, the 

‘dominant mutation’ was considered the mutation with the highest mutational levels at baseline. 

When considering all ESR1LBDm detected at baseline, the most common mutations were D538G 

(6/14), followed by Y537S (5/14) and Y537N (5/14). Overall, of the 43 patients who had both 

CTC and ctDNA assessed, 23 (53.5%) patients had either elevated CTC numbers or ESR1LBDm+ 

ctDNA. In particular, 11 patients (26%) had elevated CTC (≥5 CTC/7.5 mL WB), and 12 (28%) 

had ESR1LBDm+ ctDNA at baseline (Table 1). Only four (9%) patients had both elevated CTC 

and ESR1LBDm+ ctDNA. Eight of the 32 (25%) patients with <5 CTC/7.5 mL WB had elevated 
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ESR1LBDm+ ctDNA, whereas 7/31 (23%) patients with ‘ESR1LBDm not detected’ (ESR1LBDm– 

ctDNA) had elevated CTC levels (Table 1). 

CTC count, ER positivity on CTC [(CTC-ER positive), % ER positive CTC], and ESR1 

mutational levels tended to remain stable in absence of treatment (screening vs C1D1, with a 

median interval period of 9 days, range 3-21) (paired T test) (Figure 2C, D). One patient had a 

dramatic reduction and one patient had a substantial increase in ESR1LBDm ctDNA levels (Figure 

2D). Variation in CTC number and/or ER positivity was observed in three cases. As illustrated in 

Figure 3A, patient #36 had 12.5% of CTC that were ER positive on 16 CTC at screening, which 

decreased to 0% on 13 CTC at C1D1. Similarly, patient #6 had 7.7% ER positivity on 13 CTC at 

screening which decreased to 0% on 12 CTC at C1D1. Likewise, patient #27 had 21.2% CTC-

ER positive on 74 CTC at screening which reduced to 4.3% on 208 CTC at C1D1.  

Early changes in CTC levels, CTC-ER status, and ESR1 mutational levels in ctDNA during 

treatment with AZD9496 

CTC 

None of the 11 patients with ≥5 CTC/7.5 mL WB at baseline experienced a CTC 

response defined as a reduction to <5 CTC/7.5 mL WB (Figure 3A). Of the 10 patients for whom 

CTC-ER analysis was available at baseline, five had CTC with some degree of ER positivity (2+ 

and 3+) prior to treatment (Figure 3A). In two of these five patients (patients #30 and #27) 

treated at the dose of 150 mg twice daily (BID) and 250 mg BID, respectively, CTC-ER 

positivity was reduced in the subsequent sample (C1D15) compared to baseline (Figure 3A).  

 CTC-ER status was negative in the remaining five patients with ≥5 CTC/7.5 mL WB 

prior to treatment (Figure 3A). Samples from two patients (patients #44 and #26) were drawn 
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within the ‘wash-out’ period of fulvestrant and therefore, the CTC may have exhibited 

downregulated-negative ER. The remaining three cases (patients #35, #13, and #17), who were 

outside the fulvestrant ‘wash-out’ period, had CTC-ER negative at all time points with an 

increase in CTC number on treatment. All but two patients with ≥1 CTC/7.5 mL WB, from 

whom blood specimens were drawn during the wash-out period of fulvestrant, had CTC-ER 

negative, except patient #15 and #26, who had one and two CTC-ER positive, respectively 

(Supplementary Table 4). The mean Ki67 positivity on CTC (CTC-Ki67 positivity) was 11.7% 

(range 0-21%) in all the patients at baseline and did not change appreciably over time [mean at 

C1D15 was 15.2% (range 0-45%)] (Figure 3B). There was no apparent correlation between 

changes in CTC-Ki67 status and CTC-ER status. 

 

ESR1 mutational status in ctDNA 

ESR1LBD mutations exhibit variable dynamics during AZD9496 therapy (Figure 4A). A 

decline of ESR1LBDm mutational levels (dominant mutation) of ≥50% at C1D15 vs baseline was 

observed in 8 of the 14 (57%) patients with detectable ESR1LBDm at baseline (Figure 4B), 

without apparent dose-response relationship (Figure 4B). In 3 out of these 8 patients, the 

ESR1LBDm+ ctDNA became ESR1LBDm- ctDNA at C1D15. In patient #1, ESR1LBDm+ ctDNA 

was detected again at C3D1 when she discontinued treatment, whereas, in patients #29 and #21, 

clearance was durable until the last on-treatment sample tested (C7D1 and C9D1), respectively. 

Within the blood specimens from the five patients with multiple ESR1 mutations, serial levels 

demonstrated both convergent and divergent evolution of the different sub-clones during 

treatment with AZD9496 (Figure 4C). 
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Three patients (patients #31, #37, #12) who had ESR1LBDm– ctDNA at baseline had 

ESR1LBDm+ ctDNA at a later time point. The immediate prior therapy for these 3 patients was 

everolimus plus exemestane (patient #31; wash-out 35 days), fulvestrant +/- BYL719 (patient 

#37; wash-out 35 days), and letrozole plus palbociclib (patient #12; wash-out 20 days). Overall, 

when considering any given timepoint, 17/45 (38%) patients had ESR1LBDm+ ctDNA (Figure 

4A).  

Clinical Outcomes associated with CTC and ctDNA analyses 

The median duration on treatment with AZD9496 was 64 days (range 22 to 643 days, 

across the wide range of doses examined) (13) (Supplementary Figure 1) and 6 patients (13.3%) 

were still on treatment up to the data cut-off of January 31, 2017.  Of the 39 patients who 

discontinued treatment, 38 discontinued due to progressive disease or death, one due to an 

adverse event. 

The prognostic effect of the baseline circulating biomarkers was investigated. Consistent 

with prior reports (21, 22, 26), patients with ≥5 CTC/7.5 mL WB at baseline had significantly 

worse PFS than those with <5 CTC/7.5 mL WB (median PFS of 54 vs 164 days; logrank 

p=0.0003) (Figure 5A). In contrast, ESR1LBD mutational status at baseline was not predictive of 

outcome on AZD9496 in all patients (Figure 5B) and when considering only the subgroup of 

patients with <5 CTC/7.5 mL WB (Figure 5C).   

As noted, none of the 11 patients with elevated CTC at baseline experienced a decline to 

<5 CTC/7.5 mL WB at C1D15. Using relative changes in CTC enumeration from baseline to 

C1D15 (+/-50% from baseline), numerically similar median PFS (mPFS) was seen between 

patients who had an increase (changes ≥50%) in CTC number (N=5; mPFS of 45 days), stable 

(changes <50%) CTC number (N= 3; mPFS of 56 days), or a decrease (changes ≥50%) in CTC 
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number (N=3; mPFS of 54 days). Six of the seven patients with available CTC enumeration at 

treatment discontinuation had a ≥50% increase in CTC at C1D15 (range from 195% to 7,538%). 

By protocol, if a patient had <5 CTC/7.5 mL WB at screening/C1D1, subsequent blood draws 

were not collected for CTC analysis and therefore, we could not address whether these patients 

had developed ≥5 CTC/7.5 mL WB on C1D15.  

Patients with ESR1LBDm- at baseline or decline of ≥50% at C1D15, had a trend towards 

longer PFS compared to those with residual ESR1LBDm+ ctDNA at C1D15, when the analysis 

included all patients (N=38; mPFS=111 days vs. N=6; mPFS=54 days; logrank p=0.055; Figure 

5D). The subgroup of patients with <5 CTC/7.5 mL WB showed a similar trend (N=28 

mPFS=166 days vs N=3; mPFS= 109 days), but numbers were too small to draw meaningful 

statistical conclusion (Figure 5E). At C1D15, patients with either persistently elevated CTC or 

ESR1LBDm+ ctDNA had a worse PFS (N=15; mPFS= 55 days) compared to patients with neither 

biomarker elevated (N=30; mPFS= 166 days) (logrank p=0.0007) (Figure 5F).  

Of note, one patient (#43) achieved partial and durable response on AZD9496 

accompanied by sustained reduction of the tumor marker CA15-3 (13). She had ESR1LBDm– 

ctDNA at baseline and during treatment, and 0 CTC/7.5 mL WB at baseline (Supplementary Fig 

1). The patient was treated with 250 mg BID AZD9496 and stopped treatment due to progressive 

disease after approximately 26.4 months on therapy. 

Tissue markers 

Paired biopsies from 5 patients were considered evaluable for PD analysis (Figure 1; 

Supplementary Figure 2). Timing of the on-treatment samples and number of hours post-last 

dose of AZD9496 are shown in Supplementary Figure 2A. These 5 patients were treated at 

various AZD9496 doses ranging from 40 to 400 mg BID. 
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We identified significant limitations (i.e. sample characteristics and/or time point of 

collection) associated with the paired tumor samples collected from metastatic lesions in this 

trial. A reduction in ER H score was detected in paired biopsies from two subjects (31% and 

47%), of whom the first one was accompanied by reduction in Ki67 (52%). Details are described 

in Supplementary Figure 2B. 

Overall, variable and inconsistent changes were seen in biomarker expression 

(Supplementary Figure 2B) without any clear dose-response. Taken together, this limited sample 

set did not allow a robust assessment of the PD activity of AZD9496, speaking to the importance 

of circulating tumor biomarker evaluation. 

PK/PD relationship analysis 

We examined whether there was a correlation between doses of AZD9496 and the PK 

parameters (AUC, Cmax) for AZD9496 and the changes over time for CTC, ESR1LBDm ctDNA 

levels, and CA15-3. No graphical correlation was found between the dose nor the PK parameters 

of AZD9496 and CTC number or status, ESR1LBDm ctDNA levels, or CA15-3 at any time point 

studied. With respect to model based assessments of CA15-3, no significant relationships 

between dose or PK parameters (AUC, Cmax) and change in CA15-3 (linear slope parameter) 

could be detected over the course of the study at any time point. 
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DISCUSSION 

In this correlative study of a prospective first-in-patient Phase I trial, we have 

investigated the PD activity of an oral SERD, AZD9496, through blood-borne and tumor tissue 

biomarkers. We have also explored potential predictive markers of outcome on AZD9496 in ER 

positive MBC patients. 

As expected, pre-treatment CTC levels (≥5 CTC/7.5 mL WB) were a strong prognostic 

marker in this cohort of MBC, as seen in prior studies (21, 22). Twenty-five percent of patients 

had ≥5 CTC/7.5 mL WB at baseline, but none had a reduction of CTC numbers to <5 CTC/7.5 

mL WB on treatment (C1D15). The lack of reduction suggests that, at least in this patient group, 

the agent failed to induce an early ‘CTC response’, defined as a reduction to <5 CTC/7.5 mL 

WB.  It remains unclear whether this is due to the insufficient target inhibition of the agent or 

due to the C1D15 timepoint’s being too early to assess changes in CTC during ET monotherapy. 

Additional data regarding CTC numbers and ET at different timepoints are under investigation 

within a prospective Phase 2 clinical trial (COMETI P2 NCT01701050) (27) . 

Of the 10 patients for whom CTC-ER status was available at baseline, only five had pre-

treatment CTC-ER positivity, while the others with CTC-ER negative were not informative for 

PD. In two of the five patients there was a reduction of CTC-ER positivity at C1D15 versus 

baseline, although it is difficult to discern if this observation was due to a true PD effect or due to 

analytic variability, since we did not have an untreated patient group as control. 

The other five patients with ≥5 CTC/7.5 mL WB at baseline had CTC-ER negative 

(Figure 3A). We speculate that two of these cases may have represented ‘downregulated’ CTC-

ER, since they had received recent fulvestrant treatment with possible impact on ER expression 

in CTC due to its mechanism of action. Three cases, which were not recently treated with or 
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were beyond the fulvestrant ‘wash-out’ period, had CTC-ER negative at all time points, and all 

three experienced an increase in CTC number during treatment with AZD9496. We speculate 

that in these patients ER negative clones may have emerged, and therefore endocrine 

independent metastases, even though their primary cancers were ER positive. We have 

previously reported data regarding CTC enumeration and CTC characterization of ER and BCL2 

in patients progressing on fulvestrant and have shown potential ability for CTC to provide 

insights into the potential mechanisms of resistance to this drug (17). 

Because serial tissue Ki67 reduction is associated with benefit from neoadjuvant ET (28), we 

explored whether serial Ki67 values on CTC would reflect response to AZD9496. Proliferative 

status of CTC using Ki67 expression has been investigated in several diseases including breast 

cancer (19, 29-32). However, in this study, the percentage of CTC-Ki67 positivity within each 

patient at baseline was relatively low (<21%) and did not change substantially in any patient. 

Although we only collected 5 paired biopsies, of interest, a paired liver biopsy was obtained 

from patient #30 at roughly the same time as CTC collection, and tissue Ki67 decreased by 

~50% in a set of paired baseline-follow-up biopsies. This observation suggests that CTC-Ki67 

status may not reflect tissue Ki67. We speculate, but would require further study to demonstrate, 

that CTC may stop proliferating when they are in circulation.  

ESR1LBDm+ ctDNA was detected in 31% of patients at baseline, and about a third of these 

patients had at least two different ESR1LBD mutations. Ninety percent of all patients had received 

prior AI therapy, consistent with the evidence that profound estrogen depletion may select for 

ESR1m (9). We observed that neither CTC enumeration, CTC-ER status, nor ESR1LBD 

mutational levels changed significantly between screening and treatment initiation (C1D1), 

confirming the analytic validity of serial assays for these markers in the absence of intervening 



27 
 

therapy in this disease and setting. To our knowledge this is the first study reporting ‘double 

baseline’ results on ctDNA mutational levels and CTC. 

The presence or absence of ESR1LBDm+ ctDNA at baseline was not associated with 

outcome in this study. Serial tracking of ESR1LBDm showed variable patterns of dynamics during 

AZD9496 therapy. A ‘ctDNA response’ (decline in ESR1LBDm levels of ≥50% at C1D15 

compared to baseline) was observed in 57% of patients (8 of 14) who harboured ESR1LBDm at 

baseline, of whom 3 had a complete and durable clearance of the dominant mutation. Patients 

with lack of ctDNA response had shorter time of study versus patients with ctDNA response or 

ESR1LBDm– ctDNA. There was no apparent relationship between high mutational levels at 

baseline and later ctDNA response. In patients with “ctDNA response” at C1D15, ESR1LBDm 

levels increased at subsequent timepoint in some cases, while some others maintained suppressed 

ESR1LBDm levels throughout treatment, even at the time of progression. While early changes of 

ESR1 mutational levels in ctDNA might be a valid tool to assess PD of a SERD, tracking 

ESR1LBDm+ ctDNA levels to anticipate relapse could be of limited value in some cases, possibly 

due to the fact that ESR1LBDm are frequently subclonal (i.e. they represent a subclone in a 

substantial fraction of patients, poorly representing the cancer overall). This observation is 

supported by recent findings by O’Leary et al. who investigated the dynamics of PIK3CAm and 

ESR1LBDm during treatment with fulvestrant plus palbociclib/placebo and described that 

ESR1LBDm can be lost even when patients are experiencing disease progression and may not 

determine clinical outcome (33). Taken together, these results indicate that genetic heterogeneity 

might be itself another mechanism of resistance (34). Among the ESR1LBDm+ cases, five had 

multiple ESR1LBDm in ctDNA and mutation tracking revealed that both convergent and divergent 

evolution of different sub-clones is possible. It is uncertain whether this is dependent on varying 
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affinity of AZD9496 to the different mutant receptors or other factors associated with clonal 

abundance of the concurrent ESR1LBD mutations. Of note, we do not report here on the more 

comprehensive assessment of tumor genetics. However, investigating the dynamics of tumor 

mutational burden or truncal mutations during treatment with AZD9496 and their correlation 

with clinical outcomes warrants further exploration. Additional genomic analyses of DNA 

derived from CTC would also help to clarify if these mutations are polyclonal or if they are 

present in the same DNA sequence. Prior studies suggest that both circumstances are possible 

(11, 35, 36).   

When we correlated the blood-borne biomarkers with clinical outcome, we found that the 

presence of elevated CTC (≥5 CTC/7.5 mL WB) at baseline was a strong prognostic factor in 

this cohort (logrank p=0.0003). In contrast, ESR1LBDm status at baseline was not prognostic in all 

the patients or in those with <5 CTC/7.5 mL WB. Interestingly, patients with either persistently 

elevated CTC number or ESR1LBDm+ ctDNA at C1D15 compared to baseline had a worse PFS 

than patients with neither biomarker elevated (logrank p=0.0007). Although the small sample 

size limits the opportunity for a meaningful multivariate analysis, there was little overlap in the 

patient populations with respect to persistent elevations of CTC number and ESR1LBDm+ at 

C1D15.  Only 2 of 15 patients in this analysis had both persistently elevated CTC number and 

ESR1LBDm status, and persistent elevations of both factors appeared to be independently 

prognostic. Of note, none of the patients with elevated CTC at baseline converted to non-

elevated and residual ESR1m at C1D15 was prognostic (Figure 5D). 

Limitations of our exploratory study include the small sample size, the fact that patients 

were treated at different doses of AZD9496 and without a comparator arm, and the lack of 

conclusive data on the pharmacodynamically and clinically effective dose of AZD9496. 



29 
 

Additional limitations are that we only assessed the most common ESR1 LBD mutations and we 

tested relatively limited volumes of plasma. None of the PD markers early changes correlated 

with the AZD9496 dose or PK parameters. It remains uncertain whether C1D15 is a too early 

timepoint to assess PD changes during ET monotherapy. Only 11% of the patients (5/45) 

provided evaluable paired biopsies, preventing any conclusive data on the PD effect of 

AZD9496. These results illustrate the challenge of collecting serial tissue specimens from 

advanced cancer patients to enable a thorough assessment of proof of mechanism in early phase 

trials.  

Despite these limitations, >95% of patients enrolled in this Phase I trial provided blood 

samples for circulating biomarkers, whereas collection of tissue biopsies was limited to only few 

participants, emphasizing one of the potential advantages of liquid biopsies. In addition, we 

observed several potential general mechanisms of resistance to ET (37). The first potential 

resistance mechanism observed was the loss of ER expression on CTC in ER positive MBC. In 

particular, of the 10 patients who had ≥5 CTC/7.5 mL WB at baseline, three patients had CTC-

ER negativity after excluding the 2 patients who were within the fulvestrant ‘wash-out’ period. A 

second potential mechanism was the identification of a mutation of the ESR1 gene either by 

ctDNA at baseline or in tissue, with five patients harboring >1 ESR1LBDm+ ctDNA. We could 

also hypothesize that additional mechanisms may be present when CTC-ER positivity is still 

present along with ESR1LBDm– ctDNA, but these mechanisms were not assessed in this current 

trial. It should be noted that, although one patient treated with 250 mg BID AZD9496 achieved a 

confirmed and durable partial response (13), there is still uncertainty on the dose-response 

relationship for AZD9496. Moreover, the impact of the PK characteristics of AZD9496 (a 

relatively short half-life [alpha half-life of 1-2 h] and a dose-dependent decrease in exposure 
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upon multiple doses, presumably due to CYP auto-induction) on the PD activity is unclear, 

limiting our ability to be conclusive on the correlation between these biomarker findings and 

benefit from AZD9496. A pre-surgical window of opportunity study (NCT03236974) is 

currently ongoing and is aimed to compare the PD effects of AZD9496 with those of fulvestrant 

in women with ER positive early breast cancer awaiting surgery with curative intent, and to 

characterize the PK/PD relationship. In summary, possible mechanisms of ET resistance may 

differ for patients with CTC-ER positive vs. CTC-ER negative. For the ER positive component, 

failure to downregulate ER may be due to ESR1LBD mutations or because they received a non-

efficacious dose of AZD9496. In the CTC-ER negative component, it may be due the emergence 

of ER negative/endocrine independent clones, or perhaps due to a downregulation of CTC-ER 

positive accompanied by a concomitant upregulation of other secondary pathways. 

Taken together, these results suggest that complementary and comprehensive 

characterization of CTC and ctDNA may be required for noninvasive early prediction of 

outcome during ET. Once validated, these tools have the potential to be used in prospective trials 

to select optimal therapy upfront, or after short exposure to treatment. The latter could involve 

switching to different ET agent, continuing the same ET and adding other targeted treatment 

such as mTOR or CDK4/6 inhibitors, or switching to non-endocrine treatment.  
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Figures Legend 

Figure 1. Remark diagram for patient enrollment and distribution  

Figure 2. CTC enumeration and ESR1LBDm in ctDNA at baseline 

2A. CTC enumeration for ER aliquot in log scale only for patients with ≥1 CTC/7.5 mL WB; 

The red horizontal line represents 5 CTC/7.5 mL WB. No bar represent patient with 1 CTC only 

since the graph is in log scale. *Enumeration assessed in Ki67 aliquot; 2 patients were not 

included because CTC were only drawn at the time of discontinuation and had ≥5 CTC/7.5 mL 

WB. 2B. Prevalence and distribution of ESR1LBDm in ctDNA by ddPCR at baseline; *all the 

cases with ≥2 ESR1LBDm featured a D538G mutation. 2C. CTC enumeration of ER aliquot at 

screening and C1D1 (paired T test) in patients with ≥5 CTC/7.5 mL WB; *Enumeration assessed 

in Ki67 aliquot. 2D. ESR1 mutational levels (copies/mL plasma) at screening and C1D1 (paired 

T test). For patients with ≥2 ESR1LBDm, all mutations are reported. “Borderline” cases (i.e. <3 

positive droplets, which is the pre-defined threshold of positivity) were included if at least one 

definite positive mutant result was detected at one of the 2 timepoints. Abbreviations: CTC: 

circulating tumor cells; ctDNA: circulating tumor DNA; C1D1: Cycle 1 Day 1; ER: estrogen 

receptor; ESR1, Estrogen Receptor alpha gene; LBD: ligand-binding domain; ND: not detected; 

WB: whole blood.  

 

 

Figure 3. Serial changes in CTC enumeration and characterization during treatment with 

AZD9496 for patients with ≥5 CTC/7.5 mL WB (N=11) 

CTC-biomarker enumeration and staining intensity for ER positivity (3A) and Ki67 positivity 

(3B). In both figures, the above bar graphs represent the number of CTC and each group of bars 

represents a different patient at different timepoints; in the below bar graph, the individual colors 

within each bar provide the percentage of CTC that stained 0 (■ blue), 1+ (■ red), 2+ (■ green), 

or 3+ (■ purple) for ER and Ki67 expression within each patient. ^patient within fulvestrant 

wash-out period at the time of trial enrollment; *patient was ESR1 (D538G) mutant at 

discontinuation; **patient was ESR1LBDm– in ctDNA, but ESR1 (Y537C) mutant in tissue. For 

the remaining cases, ESR1LBDm status in tissue was not available. Abbreviations: BID: twice-

daily; CTC: circulating tumor cells; C1D1-pre: Cycle 1 Day 1 pre-dose; C1D15-post: Cycle 1 

Day 15 post-dose; Disc.: discontinuation; ER: estrogen receptor; ESR1: Estrogen Receptor alpha 

gene; LBD: ligand-binding domain; OD: once daily; Screen: screening; WT: wild type. 

 

 

Figure 4. Dynamics of ESR1LBDm in ctDNA during treatment with AZD9496 

4A. ESR1 mutational levels tracking shown for 17 patients with longitudinal plasma collected 

throughout treatment and who were ESR1LBDm+ by droplet digital polymerase chain reaction 

analysis at any timepoint (14 patients with ESR1LBDm+ pre-treatment and 3 patients with 

ESR1LBDm absent prior to treatment, but detected in on-treatment ctDNA samples). For patients 

with ≥2 ESR1LBDm, the mutation with highest levels (copies/mL plasma) pre-treatment 

(“dominant mutation”) is shown; 4B. A decline of circulating ESR1LBDm of ≥50% at C1D15 

compared to treatment was evident in 8/14 (57%) of patients with no apparent dose-response 

relationship; 4C. ESR1LBDm tracking in five cases with ≥2 ESR1LBDm+ during treatment with 

AZD9496. In one case (patient #21) ESR1 (D538G and Y537N) mutations were detected at 

screen but not at C1D1. *ESR1LBDm status was “borderline” (i.e. below pre-defined threshold of 
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positivity) at C1D1, but clearly detectable at another timepoint. 
#
Still receiving treatment at data 

cut-off of January 31, 2017. Abbreviations: BID: twice a day; C1D15: Cycle 1 Day 15; C9D1: 

Cycle 9 Day 1; disc: discontinuation; ESR1: Estrogen Receptor alpha gene; LBD: ligand-binding 

domain; ND: not detected; OD: once daily.  

 

Figure 5. Circulating biomarkers data and prediction of treatment outcome 

Kaplan–Meier plots for: 5A. Progression-free survival (PFS) of all patients according to CTC 

levels (<5 vs. ≥5 CTC/7.5 mL whole blood (WB)) at baseline. Red line, ≥5 CTC/7.5 mL WB; 

Black line, <5 CTC/7.5 mL WB; 5B. PFS of all patients according to ESR1LBDm status 

(ESR1LBDm negative (-) vs. ESR1LBDm positive (+)) at baseline. Red line, ESR1LBDm+;  

Black line, ESR1LBDm–. 5C. PFS of patients with <5 CTC/7.5 mL WB according to ESR1 status 

(ESR1LBDm- vs. ESR1LBDm+) at baseline. 5D. PFS of all patients according to ESR1LBDm status 

(*ND=never detectable or “ctDNA response” defined as drop ≥50% at C1D15 in the dominant 

ESR1LBDm vs. residual ESR1LBDm) at C1D15. Red line, residual ESR1LBDm+; Black line, ND or 

ctDNA response. 5E. PFS of patients with <5 CTC/7.5 mL WB according to ESR1LBDm status 

(*ND=never detectable or “ctDNA response” in the dominant ESR1LBDm vs. residual ESR1LBDm) 

at C1D15. Red line, residual ESR1LBDm+; Black line, ND or ctDNA response. 5F. PFS of all the 

patients according to persistently elevated biomarker (**≥5 CTC/7.5 mL WB and/or lack of 

ctDNA response defined as a decline of <50% of ESRLBD1m level) at C1D15. Red line, 

persistently elevated biomarkers at C1D15; Black line, Other. Abbreviations: CTC: circulating 

tumor cells; ctDNA: circulating tumor DNA; C1D15: Cycle 1 Day 15; ESR1: Estrogen Receptor 

alpha gene; LBD: ligand-binding domain; ND: never detectable; WB: whole blood. 

 

 













Table 1. CTC enumeration (<5 vs. ≥5 CTC/7.5 mL whole blood) and ESR1LBDm status 

(“ESR1LBDm-” vs. “ESR1LBDm+” [≥1]) in 43 patients who had both CTC and ctDNA assessed at 

baseline. 

 

  

ESR1LBDm status at 

baseline 

CTC at baseline 

<5 CTC/7.5 mL WB ≥5 CTC/7.5 mL WB Total 

ESR1LBDm+ ctDNA 8 4 12 

ESR1LBDm- ctDNA 24 7 31 

Total 32 11 43
a
 

Legend: CTC: circulating tumor cells; ctDNA: circulating tumor DNA; ESR1
LBD

m+ : ESR1 mutation 

detected; ESR1
LBD

m- : ESR1 mutation “not detected”; LBD: ligand-binding domain; WB: whole blood; 
a43/45 patients had both CTC and ctDNA at baseline (2 patients only had ctDNA, but not CTC assessed). 
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