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Essays in Hierarchical Time Series Forecasting

and Forecast Combination
Christoph Weiss

This dissertation comprises of three original contributions to empirical forecasting
research. Chapter 1 introduces the dissertation.

Chapter 2 contributes to the literature on hierarchical time series (HT'S) modelling
by proposing a disaggregated forecasting system for both inflation rate and its
volatility. Using monthly data that underlies the Retail Prices Index for the UK,
we analyse the dynamics of the inflation process. We examine patterns in the
time-varying covariation among product-level inflation rates that aggregate up to
industry-level inflation rates that in turn aggregate up to the overall inflation rate.
The aggregate inflation volatility closely tracks the time path of this covariation,
which is seen to be driven primarily by the variances of common shocks shared by
all products, and by the covariances between idiosyncratic product-level shocks. We
formulate a forecasting system that comprises of models for mean inflation rate and
its variance, and exploit the index structure of the aggregate inflation rate using the
HTS framework. Using a dynamic model selection approach to forecasting, we obtain
forecasts that are between 9 and 155 % more accurate than a SARIMA-GARCH(1,1)
for the aggregate inflation volatility.

Chapter 3 is on improving forecasts using forecast combinations. The paper
documents the software implementation of the open source R package for forecast
combination that we coded and published on the official R package depository, CRAN.
The GeomComb package is the only R package that covers a wide range of different
popular forecast combination methods. We implement techniques from 3 broad
categories: (a) simple non-parametric methods, (b) regression-based methods, and
(c) geometric (eigenvector) methods, allowing for static or dynamic estimation of
each approach. Using S3 classes/methods in R, the package provides a user-friendly
environment for applied forecasting, implementing solutions for typical issues related
to forecast combination (multicollinearity, missing values, etc.), criterion-based
optimisation for several parametric methods, and post-fit functions to rationalise and
visualise estimation results. The package has been listed in the official R Task Views
for Time Series Analysis and for Official Statistics. The brief empirical application in
the paper illustrates the package’s functionality by estimating forecast combination

techniques for monthly UK electricity supply.



Chapter 4 introduces HTS forecasting and forecast combination to a healthcare
staffing context. A slowdown of healthcare budget growth in the UK that does
not keep pace with growth of demand for hospital services made efficient cost
planning increasingly crucial for hospitals, in particular for staff which accounts
for more than half of hospitals’ expenses. This is facilitated by accurate forecasts
of patient census and churn. Using a dataset of more than 3 million observations
from a large UK hospital, we show how HTS forecasting can improve forecast
accuracy by using information at different levels of the hospital hierarchy (aggregate,
emergency/electives, divisions, specialties), compared to the naive benchmark: the
seasonal random walk model applied to the aggregate. We show that forecast
combination can improve accuracy even more in some cases, and leads to lower
forecast error variance (decreasing forecasting risk). We propose a comprehensive
parametric approach to use forecasts in a nurse staffing model that has the aim of
minimising cost while satisfying that the care requirements (e.g. nurse hours per

patient day thresholds) are met.
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Chapter 1

Introduction

This dissertation consists of three self-contained chapters that contribute to the
field of applied hierarchical forecasting and forecast combination. In the context of
forecasting index-type variables, the two approaches are intertwined in an intriguing
way: While hierarchical forecasting aims to maximise forecast accuracy by optimal
reconciliation of forecasts at different levels of aggregation, forecast combination does
so by combining forecasts at the same level of aggregation. An additional feature
that conveniently links the two approaches is that hierarchical forecasting tends
to result in a considerable number of candidate forecasts by combining different
aggregation approaches and forecast approaches, while forecast combination relies
on the existence of a sufficient number of candidate models that serve as input for

the estimation of combination weights.

This introduction to the dissertation introduces the three substantive chapters,
summarising the motivations, research questions, and main contributions. The
second chapter, “Hierarchical Modelling and Forecasting System for Inflation Rate
and Volatility” relates to the hierarchical time series forecasting literature. The third
chapter “Forecast Combination in R Using the GeomComb Package” introduces a
software contribution to applied forecast combination. The fourth chapter “Efficient
Nurse Staffing: The Value of Hierarchical Time Series Forecasting and Forecast
Combination” draws on the value of both approaches, applying them to a healthcare

context and offering a systematic approach to hospital staffing.



2 Introduction

1.1 Hierarchical Modelling and Forecasting Sys-
tem for Inflation Rate and Volatility

Adverse effects of inflation and inflation volatility on economic growth and welfare
have been well documented in economic research (Friedman, 1977; Fischer, 1981; Hol-
land, 1993). Yet, the discussion on the causal relationship between the two measures
has caused considerable dichotomy in the research community: The “Friedman-Ball
hypothesis” (e.g. Friedman, 1977; Ball and Cecchetti, 1990) documents a positive
impact of inflation rate on inflation volatility. The “Cukierman-Melzer hypothesis”
(e.g. Cukierman and Meltzer, 1986; Holland, 1995) suggests that causality is reversed,
from inflation volatility to inflation rate. This ongoing argument has the effect that

the data-generating process of inflation and its volatility is not very well understood.

Shedding some light on the dynamic drivers of inflation volatility in order to
understand this important economic measure better is the aim of the first part
of this chapter. Borrowing from the approaches in applied disaggregated research
on the drivers of shocks to economic activity (e.g. Quah, 1994; Gabaix, 2011), we
decompose aggregate inflation volatility into its disaggregated components (product-
level variances and covariances), extending Comin and Mulani (2006)’s variance
specification to a finer decomposition that splits up product-level price growth rates
into common, industry, and product-level shocks. The detailed decomposition model
contributes to our understanding of the inflation process and to literature on the
potential impact of micro-level shocks on macroeconomic variables by documenting
that aggregate volatility is driven by a combination of the variance of common shocks

to the entirety of product prices, and product-level (co-)variances.

The second part of the chapter contributes to disaggregated forecasting literature
by suggesting a modification of the hierarchical time series (HTS) forecasting frame-
work by Athanasopoulos et al. (2009) and Hyndman et al. (2011) that allows the
incorporation of index weights into the model without harming the required property
of aggregation consistency. Building on the two-level decomposition from the first
part, we formulate a joint hierarchical forecasting system for inflation rate and its
volatility that takes note of the variables’ hierarchical structure and — evaluating the
resulting forecasts against a SARIMA-GARCH model — find overwhelming support
for the use of hierarchical methods for inflation forecasting. Using a dynamic model
selection model that switches between forecasting models conditional on in-sample

estimates of time-varying inflation volatility (an extreme form of ensemble forecast),
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the chapter also provides some evidence for the potential of revising hierarchical

forecasts via forecast combination.

1.2 Forecast Combination in R Using the Geom-

Comb Package

Ever since the seminal paper by Bates and Granger (1969), a large stock of literature
has accumulated on different approaches to forecast combination — the integration of
several forecasts for a single time series into one combined forecast. The proposed

methods differ in their strategies to estimate combination weights.

A large number of empirical applications document the appealing features of
combined forecasts that in many cases improve upon even the best component
forecast’s accuracy and can be used to reduce forecast risk, reducing forecast error
variance and leading to higher consistency between in-sample and out-of-sample
error distributions (Barrow and Kourentzes, 2016). Due to their data-driven nature,
forecast combination has not been as widely employed in econometric applications as
one should expect given the methods’ appealing properties. However, econometric
research has recently turned away from the assumption of the existence of one
true data-generating process (Hansen, 2005), which led to a paradigm shift from
model selection to model averaging and consequently an increasing interest in the
potential of forecast combination techniques for econometric applications — recent
empirical econometric research in the field includes Stock and Watson (2004) for
output forecasting, Kapetanios et al. (2008) for inflation forecasting, Wright (2008)

for exchange rate forecasting, and Rapach et al. (2010) for stock return forecasting.

Despite the methods’ continuous and increasing popularity, the lack of compre-
hensive software implementations is astounding. We close this gap by introducing
the R package GeomComb, a software contribution that we coded which is entirely
focused on forecast combination: The package provides tools for data preparation
that deal with two problems that are commonly related to forecast combination
input data — missing values and multicollinearity. The package further implements
static and dynamic estimation variants of 15 of the most widely employed forecast
combination techniques, including statistics-based, regression-based, and eigenvector-
based methods, and includes post-fit functions that facilitate the interpretation and

visualisation of forecast combination results.
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Our software package has made a valuable contribution to applied forecasting
and forecasting research: Since its acceptance and release on the official R package
depository, CRAN, in November 2016, the package has been added to the official R
task views for ‘Time Series Analysis’ and ‘Official Statistics & Survey Methodology’,
and has been downloaded 2605 times by forecasting practitioners and forecasters (as
of 20 August 2017).

The dissertation chapter describes the package’s functionality and illustrates its

use in a brief application to monthly UK electricity supply data.

1.3 Efficient Nurse Staffing: The Value of Hierar-
chical Time Series Forecasting and Forecast

Combination

A combination of neoliberal austerity (slowdown in healthcare budget growth) and
demographic factors (population growth, ageing population) have led to a widening
gap between healthcare expenditure and healthcare budget in the UK since 2010,
causing record deficits for the National Health Service (Maguire et al., 2016). Op-
erating within the financial constraints requires efforts to increase cost efficiency.
With staff costs accounting for over 50 % of hospitals’ expenditures, making nurse
staffing more efficient can help hospitals to deliver better value care and do so in a
cost-efficient manner. This is our focus, analysing a dataset with more than 3 million
observations from a large UK hospital.

Exploiting the convenient link between hierarchical forecasting and forecast
combination, (i.e. the former’s tendency to produce a large number of candidate
models and the latter’s dependence on the existence of a sufficient number of candidate
models) and applying our GeomComb package, this final chapter of this dissertation
evaluates and extends extant hospital occupancy forecasting research. Taking note
of the hospital structure, we show how these approaches can forecast patient census
and patient churn more accurately than univariate forecast methods that have been
proposed in the past for this purpose.

Subsequently, we propose a parametric nurse staffing model that systematically
and efficiently uses the mean forecasts and the forecast error distributions for patient
census and churn, and show that high quality of patient care (measured by the
relative number of understaffed shifts) can only be assured if staff planning allows

utilises (i) short-term adjustment of nurse deployment calling on temporary agency
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nurses, (ii) accounting for patient churn in the estimation of workload, and (iii)
adjusting the mean forecasts with a distributional factor to account for a target
minimum of fully staffed shifts. Taking this best practice approach to nurse staffing
forward, we show how it can be implemented in a cost-efficient manner through a
constrained optimisation approach that is suited to save the hospital £3.5 million in
staff costs annually.

The chapter further includes a discussion how the staffing model can be refined
in future research by using non-linear forecasting techniques that specifically take
into account the multimodal distribution of patient churn data and/or allowing for
explanatory variables, such as average length-of-stay, in the churn forecasts. Keeping
the model very flexible using a set of parameters allows a wide range of hospital

service providers to directly and easily implement the proposed staffing model.
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Chapter 2

Hierarchical Modelling and
Forecasting System for Inflation
Rate and Volatility

2.1 Introduction

It is widely accepted that inflation and inflation volatility can distort saving, invest-
ment and resource allocation decisions (cf. Friedman, 1977; Fischer, 1981; Holland,
1993). Low and steady inflation rates are the avowed objective of most mone-
tary authorities, many of which have adopted inflation targeting, acknowledging
the negative consequences of inflation volatility for economic growth and welfare.!
Notwithstanding their importance, the causal relationship between inflation and
inflation volatility is not well understood. The “Friedman-Ball hypothesis” (e.g.
Friedman, 1977; Cukierman and Wachtel, 1979; Ball and Cecchetti, 1990; Evans,
1991) suggests that average inflation rate impacts inflation volatility positively. The
“Cukierman-Melzer hypothesis” (e.g. Cukierman and Meltzer, 1986; Holland, 1995)
suggests that the causality runs the other way, from inflation volatility to inflation.
Kim and Lin (2012) address the reverse causality question using a system of simulta-
neous equations and panel data for 105 countries, and find the relationship between

inflation and its volatility to be bi-directional, consistent with both hypotheses. This

Inflation targeting describes a central bank’s medium-term goal to reach an explicitly announced
target inflation rate through monetary policy actions. In the UK, inflation targeting was first
adopted in October 1992 and currently a point inflation target of (annualised) 2 % is applied at all
times. For a historical overview of inflation targeting in the UK, see Bean (2003).
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points to the value of a modelling system that can forecast both jointly, which is the

basic focus of this paper.?

In a comprehensive review of econometric models for inflation, Stock and Watson
(2008) compare univariate time series models, backward-looking Phillips curve models,
and models with other explanatory variables (e.g. term spread). They conclude that
structural (Phillips curve-based) models do not improve upon the forecast accuracy
of univariate models overall. “...for the last 15 years, economists have not produced
a version of the Phillips curve that makes more accurate inflation forecasts than
those from a naive model” (Atkeson and Ohanian, 2001). Based on estimates from a
large set of inflation forecasting models Faust and Wright (2013) agree, concluding
that simple models that limit or avoid parameter estimation — e.g. a driftless random

walk — are hard to beat.

Univariate time series approaches do not generally distinguish between models for
aggregate variables such as the inflation rate, and models for constituent variables
such as product-level inflation rates. In modelling aggregates, and particularly the
volatility of aggregates, there are potential gains from taking note of covariance
patterns among the constituents that are nested hierarchically in the aggregate.
Indeed, the Great Moderation — the sharply lower aggregate economic volatility from
mid-80s to 2007, which is held to be a reason for the poor forecasting performance of
structural models (Stock and Watson, 2008) — could be explained in terms of changes
in covariance patterns among firms in growth (Comin and Mulani, 2006). Further,
in many contexts where the forecast of an aggregate variable (inflation rate) is of
interest, aggregation-consistent forecasts of its constituents (product-level inflation
rates) are also of interest. Finally, given the multiplicity of models, some of which
work better than others in time phases that differ in terms of volatility, it would be
useful to exploit the potential of switching between models in order to generate more

accurate forecasts.

There is a gap in the literature in terms of modelling systems for inflation and
inflation volatility that explicitly consider the way product-level inflation series
combine in the aggregate inflation rate and address the above-mentioned issues. In
this paper we apply aggregation consistent methods for hierarchical time series (HTS,
Athanasopoulos et al., 2009; Hyndman et al., 2011) modelling to obtain forecasts of

inflation and inflation volatility. A large number of alternative specifications of HTS

2The results of Granger causality tests for our sample support the view of a bi-directional causal
relationship and are presented in Appendix 2.C.
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models can be used in forecasting, and we offer a dynamic model selection approach

that improves the accuracy of forecasts.

2.2 Inflation Rate and Its Volatility as Aggregate

Variables

2.2.1 Inflation Rate

The aggregate inflation rate (Y;) is constituted as the weighted average of product-

level inflation rates, y; :

N
Y, = Zwi,tyz’,t
=1

where N; is the number of products in the price index at time ¢ (time-invariant N in
this study) and w;; are the products’ weights (share) in the price index at time ¢.3
A second level decomposition of product-level inflation rates, into common, industry,
and idiosyncratic parts, can be helpful in understanding the inflation data generating

process.

Vit =Ct+ Lt + €y

N N
Y, = Z Wi tYit = Z wiy (e + Lig +€ir)
i=1 i=1
where ¢; is the part of a product’s inflation rate that is shared with all products,
attributable to common shocks — (weighted) average over all product price growth
rates; I;; is the part of i product’s inflation rate that it shares with products in
the same industry, but not with products in other industries — (weighted) excess

growth rate of the products in the industry that product ¢ belongs to, relative to all

3In this study, the aggregate inflation rate is the month-to-month growth rate of the Retail Price
Index (RPI). The product-level inflation rates, y; ;, are the month-to-month growth rates of the
respective product price indices, p; ¢, calculated as: y; ; = %
in the series that we take to our modelling exercises, rather than difference it out. This growth
rate estimator is symmetric about zero, and bounded, allowing the treatment of entries, exits, and
continuers on the same footing (Comin and Mulani, 2004; Davis et al., 2006). It allows for consistent
aggregation, and is identical to log differences up to a second-order Taylor Series expansion. See
Davis et al. (2006) and references therein for discussions of the appeal of this estimator.

This preserves seasonality
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products in the price index; and ¢;, is the excess inflation rate for product 7 relative
to the sum of the common and the industry parts relating to it — the residual.

Figure 2.1 illustrates this decomposition for ‘Oil and Other Fuels’ It is obvious
that the idiosyncratic part (green line) is the main driver of the product-level inflation
rate (solid black line).
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Fig. 2.1 Product-Level Inflation Rate Decomposition: Oil and Other Fuels.

2.2.2 Variance of Inflation Rate

While the inflation rate is observed, its volatility is an unobserved, latent variable —
measures can be constructed in different ways.* Our focus is on notional volatility
which corresponds to the ex-post sample-path of the inflation rate over a fixed
time interval and can be measured without contingency on any specific model, non-
parametrically; unlike instantaneous volatility which corresponds to the strength of
the volatility process at a point in time and is model-specific. The simplest notional
volatility measure is the simple moving average (SMA) variance. For a generic

variable Y, over the chosen discrete time interval m > 0:

6'2 roll __ = (}/T _ }/15)2

T=t—m
% m

4See Andersen et al. (2010) for a comprehensive review of parametric and non-parametric
volatility measurement.
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where Y, is the estimate of E(Y;), the time-varying expectation, the mean of Y
over the interval (Comin and Mulani, 2006).° Conceptually, instantaneous volatility
is the limiting value as m — 0 in the [t — m, t] interval, with m determining the
bias-variance tradeoff of the estimator (larger values of m reducing variance, but

2 moll gg estimate of the ‘current’ variance of

increasing bias) in the interpretation of v,
Y;. The exponentially weighted moving average (EWMA) variance estimator which

we use, is more appealing in that it places higher weights on more recent observations:

t—1
6-12/; roll _ Z aT<YT . }/;)2

T=t—m
where the weight scheme is given by: «,.; = Ao, with A € [0, 1] being the decay
factor. A higher X indicates slower decay, i.e. indicates strong persistence in
volatility.5

The (rolling window EWMA) variance of the aggregate inflation rate, 63, roll can
be written in terms of weighted (rolling window) estimators of product-level 1nﬂation
rate variances and covariances. An exact decomposition in terms of a “variance
component” (VC) and a “covariance component” (CC) is straightforward (Comin

and Mulani, 2006):"

A2 roll 2 A2 roll ~ roll
Z Wit Oy, + Z Z Wit W5t Oy, s
VvC CcC

Our focus in the volatility modelling part is on identifying the dynamic patterns
in the way time-varying variances and covariances of the disaggregated components
feed into the wvolatility of the aggregate, in order to forecast aggregate volatility better.
Characterising time series dependencies in the variance component and the covariance

component is a useful step in this. We work with estimates of product-level variances

5This volatility estimate is a modification of the measure used by Comin and Mulani (2006)
— rather than symmetric about ¢, it is one-sided with respect to ¢t. This makes it suitable for
forecasting.

SEWMA models are related to GARCH-type models. In asset pricing, E(Y;), which is estimated
as Yt, is usually assumed to be zero; this collapses the EWMA model to a zero-intercept IGARCH(1,1)
— see Guo (2012, p. 193) for derivation:

6%, = Ao + (1= Y2,

Another appealing feature favouring the use of EWMA is the existence of variants that take
note of distributional divergence from normality, which allows its use with great flexibility in our
framework. See Lucas and Zhang (2016) for a review of robust EWMA, skewed EWMA, and
fat-tailed skewed EWMA and their corresponding GARCH and GAS/DCS models.

"See Comin and Mulani (2004, p. 13) for a derivation of the variance identity.
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&y, 7", and covariances, 6, that are EWMA-smoothed.®
t—1
~2 roll 5.2
Tyiw = aT(yiJ - yi,t)
T=t—m
t—1
~ roll 0 i
in,t,yj,t = aT(yi,T - yi,t)(yjﬂ' - yj7t>
T=t—m

The time-varying volatility can be further decomposed into common, industry, and

idiosyncratic parts. The Variance Component (VC) is:

2 ~2 roll 2 A2 roll 2 A2 roll
VCt_szt O +Z Wi ¢ Ol Z W; 10 €t

VC VC \Y©
(Var Common) (Var industry) (Var Idio.)

2 & roll 2 ~ roll 2 & roll
+ 2 Z W;40¢, It + 2 Z wiyto-ct7€i,t +2 Z Wi ¢ Iz t5€it
7

VC VC VC
(Cov Common/Ind)  (Cov Common/Idio.) (Cov Ind/Idio.)

The Covariance Component (CC) is

A A2 roll A roll
CC =3 > winwyabe, " +23 ) wigwiib, 7, +
L A E

cc cc
(Var Common) (Cov Common/Ind)

~ roll ~ roll
+2 Z Z wivtwjvto-ct75j,t + Z Z wivtwjvtgfi,m[j,t +
(VE i j#

cc CcC
(Cov Common/Idio.) (Cov Ind/Ind)

~ roll ~ roll
+2 Z Z Wit Wit O, 4 ey + Z Z WitWiit Oy e

i g E

CC cc
(Cov Ind/Idio.) (Cov Idio./Idio.)

8Tt is worth considering how inflation targeting can be incorporated into the model. One
possibility is to assume that the expected inflation rate E(Y;) = p is the target inflation rate. The
EWMA model under this assumption is:

6%, = Ao + (1= NY2 —2(1 = \)Ymap + (1= A)p?

The volatility estimate is now a function of lagged inflation rate and target inflation rate as well.
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We proceed to hierarchical time series modelling of the inflation system comprising
mean inflation rate and inflation volatility, based on the above decompositions.
We examine dynamic patterns in and between the variance and the covariance
components, to distinguish high volatility / low volatility periods. We then proceed
to forecast aggregate inflation rate and volatility, and compare results with extant

volatility forecasting approaches.

2.3 Data and Descriptive Analysis

2.3.1 Data: UK Retail Price Index (RPI)

RPI is a long-standing measure of inflation in the UK, though it is no longer
designated an official National Statistic (Office for National Statistics, 2013). RPI
measures inflation with reference to the cost of a “representative basket of goods and
services bought by consumers within the UK”. It is calculated from the same basic
price data as the CPI, and uses similar methodology in compiling and aggregating the
constituent price indices. RPI covers 85 products.” Monthly data from January 1987
has been published by the Office for National Statistics. The weights are updated at
the beginning of each year using the information on household spending. They are

relatively unchanging, and may be considered exogenous.!’

2.3.2 Descriptive Analysis

Inflation Rate. Figure 2.2 presents stylised facts of the monthly growth rate of
the RPI and its volatility. The most notable features are the increased stability
at a low inflation level after the introduction of inflation targeting (October 1992)
and increased inflation volatility during recessions. The behaviour of inflation does
not appear to be sensitive to changes in government or changes in the governance
of the Bank of England. In the analysis that follows, we focus on the period after
introduction of inflation targeting, which marks a clear structural break in the data

generating process.

9For a full documentation of the representative products, see Annex C in Beeson (2016).

10The Herfindahl-Hirschman index (HHI) for the RPI lies in the range of 0.0210 to 0.0289 for
the entire sample period from 1987 to 2015. For 85 items, a HHI of 0.0117 would indicate equal
weighting, while a value of 1 would indicate concentration in a single product, suggesting that the
RPI is relatively unconcentrated over the entire observation period.
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Fig. 2.2 Stylised Facts: UK Inflation — Impacts of Recessions and Monetary Policy.
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Fig. 2.3 Decomposition of Aggregate Inflation Variance into Variance (VC) and Covariance
(CC) Components.
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Inflation Volatility. We begin with the decomposition of rolling sample variance
of the aggregate inflation rate into its variance and covariance components (Figure
2.3). Two evident phases of high volatility appear to differ sharply from each other.
In the early 90s, the recession saw high inflation and high volatility. The Great
Recession saw negative inflation rate and high volatility. Both the variance and the
covariance components differed in behaviour immediately following the first and the
second high-volatility periods. A more detailed product-level analysis sheds some

light on the underlying dynamics at play during these recession phases:

o The spikes in the Variance Component (the contribution of product-level
variances to aggregate variance) are mostly due to a single product. The
increased variance from April to October 1990 is caused by ‘Council Tax and
Rates’ (responsible for 75 - 83 % of the Variance Component in this period);
the increased value from April to October 1991 is caused by the same item (69
- 74 % of VC in this period), the spike in VC in December 2008 is due to the
item ‘Mortgage Interest Payments’ that contributed 63 % that month.!!

o Examining the Covariance Component, it is evident that product-level inflation
rates co-move more strongly during recessions. The spikes in the CC are also
linked to the items that cause increases in the VC: The main contributors
to the positive spike in the CC from April to October 1990 are the positive
covariances between ‘Council Tax and Rates” and ‘Rent’, and between ‘Council
Tax and Rates’ and ‘Petrol and Oil’ — all of which had positive product-level
inflation rates. The main contributors to the CC from April to October 1991
were the negative covariances between ‘Council Tax and Rates’ (which showed
a negative product-level inflation rate) with ‘Beer on Sales’, ‘Rent’” and ‘Petrol
and Oil’ (which showed positive product-level inflation rates); as well as the
positive covariance between ‘Council Tax and Rates’ and ‘Mortgage Interest
Payments’ (which also showed a negative product-level inflation rate). The
main contributors to the CC from December 2008 to July 2009 (note that
the CC remains high for longer than the VC) are the positive covariances of
‘Mortgage Interest Payments’ with ‘Gas’ and with ‘Petrol and Oil’ (all of which

showed negative product-level inflation rates).

" The time series of the monthly inflation rates corresponding to these items can readily be
accessed on the ONS website: www.ons.gov.uk/economy/inflationandpriceindices/
timeseries/sgpr/mm23 (Council Tax and Rates), www.ons.gov.uk/economy/
inflationandpriceindices/timeseries/sgpn/mm23 (Mortgage Interest Payments). The
specific drivers in play are likely to have been the short-lived poll tax in 1990 and 1991 (e.g. Ridge
and Smith, 1991), and the sub-prime crisis in 2008 (e.g. Galati et al., 2011).


www.ons.gov.uk/economy/inflationandpriceindices/timeseries/sgpr/mm23
www.ons.gov.uk/economy/inflationandpriceindices/timeseries/sgpn/mm23
www.ons.gov.uk/economy/inflationandpriceindices/timeseries/sgpn/mm23
www.ons.gov.uk/economy/inflationandpriceindices/timeseries/sgpr/mm23
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In recessions, we find that both the variance and covariance components of
aggregate volatility tend to increase — with elevated variances of product-level
inflation rates and elevated covariances across products. This is consistent with
economic and financial contagion theory that builds on the idea that a shock to
an individual item can cause a significant increase in co-movement between items.
Dornbusch et al. (2000) find that while some degree of spill-over of micro-level
shocks is expected even in tranquil times due to similarities between items (termed
“fundamentals-based contagion” by Calvo and Reinhart, 1996), co-movement between
items by far exceeds the amount that can be ascribed to macro-level shocks and
fundamentals during periods of financial/economic turmoil. They link this excessive
contagion to irrational phenomena — for instance financial panics, herd behaviour,

loss of confidence, and extreme risk aversion.

In the immediate aftermath of the high-volatility phase we find that the covariance
component is negative, while the variance component remains elevated. While the
variance and covariance components are similar in magnitude, the dynamics of the
covariance component drive the path of aggregate volatility, in particular in the
aftermath of recessions. It is clearly important to understand covariation among

product-level inflation rates.

Decomposition of the Variance and Covariance Components of Volatility.
We turn to the decomposition of the variance component, using the breakdown of the
product-level inflation rate into common, industry, and idiosyncratic parts (Figure
2.4). Product-level inflation rate variances are mainly driven by the variances of
their idiosyncratic part, which seems reasonable given our earlier finding that the
idiosyncratic part is the dominant driver of product-level inflation rates and that the
spikes in the VC are driven by high variances of individual products, rather than an

increased variance of all products in the economy or an industry.

Figure 2.5 shows the decomposition of the covariance component (again using
the breakdown into common, industry, and idiosyncratic at the product level). The
variance of the common part appears to be the main driver of this component. This
is intuitive, since the common part is designed to capture positive co-movement of
the entirety of product-level inflation rates. Correspondingly, covariances between
idiosyncratic parts capture a good part of the negative co-movement between product-
level inflation rates. These patterns are consistent with the patterns found in the

product-level analysis of recessions — during these phases, the CC is driven by a
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Fig. 2.4 Decomposition of Variance Component: Common, industry, and Idiosyncratic
Part (Product-Level)
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combination of stronger co-movement between all products, as well as covariances
between individual products that are most responsible for the high aggregate volatility.

The above summary points to the potential for understanding phases of high
aggregate volatility in terms of the dynamics in product-level inflation rates, paying
attention to combining aggregate shocks (variance of common part) and industry /id-
iosyncratic shocks (covariances between industry and idiosyncratic parts).

Quah (1994) sounded an early warning of the potential fallacy of composition
involved in modelling dynamics of macro aggregates ignoring the dynamic behaviour
of disaggregates. The question whether aggregate volatility can be caused by shocks
at microeconomic levels has been subject of much recent attention (e.g. Comin and
Mulani, 2006; Gabaix, 2011; Carvalho and Gabaix, 2013). Abadir and Talmain (2002)
have argued that common shocks are a more potent driver of aggregate fluctuations
than idiosyncratic shocks. The disaggregated analysis of inflation suggests that
aggregate volatility is driven by a combination of common shocks (through the CC)
and idiosyncratic shocks (through the VC). We now turn to the question of using

disaggregated information to forecast aggregate inflation and its volatility.

2.4 Forecasting Inflation Rate and Volatility: HTS

The issue of optimally forecasting contemporaneously aggregated variables — in
particular the attempt of finding an optimal level of disaggregation for that purpose
— is an ongoing debate in forecasting research (Hendry and Hubrich, 2006; Chen
and Boylan, 2007, 2009). The approaches proposed in forecasting literature include:
forecasting the aggregate using only aggregate information, forecasting the aggre-
gate by aggregating forecasts of disaggregates, and forecasting the aggregate using
information on disaggregates.

It is well established that if the data-generating process is known to the forecaster,
then a procedure that aggregates the forecasts of disaggregates always outperforms
direct forecasting of the aggregate, as the disaggregate information can be used
optimally. But when the data-generating process is not known, as is common, the
uncertainties in specification and estimation make the relative efficacies of the two
approaches an empirical question. The Hierarchical Time Series (HTS) procedure of
Athanasopoulos et al. (2009) is suitable for addressing this empirical question.

The starting point is to write the inflation rate as a hierarchical time series,
noting that the index weights feature in the aggregation procedure. The decomposi-

tion involved is multi-stage, involving 1 aggregate series, 15 industry-level inflation
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rates, 85 product-level inflation rates, and 255 inflation rates that correspond to
the decomposition of product-level inflation rates into common, industry, and id-
iosyncratic parts). The total number of time series in a hierarchy with K levels is
n=14n;+ -+ ng, where n; is the number of series at level i of the hierarchy
(356 individual time series in our exercise).

Expressed in matrix form, the hierarchical time series (Z;) is obtained by applying
a summation matrix (S, of order n X nk ) to aggregate the base-level series (zk ;). For
the inflation rate, it is necessary to extend the simple aggregation in Athanasopoulos
et al. (2009), to weighted aggregation.!? To do this the simple summation matrix can
be rewritten to contain the corresponding index weights of the bottom-level series.

As an illustration, consider 9 products (labelled 1 to 9) that aggregate into 4
industries (AA, AB, BA, BB), which then aggregate into core inflation (A) and
non-core inflation (B), and finally into inflation (Y'). The resulting hierarchical time

series, can be expressed as follows:

Pyy Wi War Wzr Wap Wsp Wer Wrp Wgr Wy
P Wiy Wap w3y Wiy wsy 0 0 0 0
P;};,t 0 0 0 0 wey wry wgy Woy
By Wiy Wy 0 0 0 0 0 0 .
L 0 0wz way wsy O 0 0 0 Pyl’t
Bt 0O 0 0 0 0 we wyy 0 0 PW
L O 0 0 0 0 0 0 ws wy Pys’t
Pis | _|we 00 0 0 0 0 0 0] Py‘*’z
ot 0 wy O 0 0 0 0 0 0 Pys,
v 0 0 wy O O O 0 0 0 Py‘*t
Pt 0 0 0 wqe O 0 0 0 0 Py7’t
Py, O 0 0 0 ws, O 0O O O Py&t
P 0O 0 0 0 0 wge O 0 O oSt
P, 0O 0 0 0 0 wry 0 0 et
L o 0 0 0 0 0 0 wg O
Py, 00 0 0 0 0 0 0 wy
7. S,

The incorporation of index weights into the summation matrix allows us to obtain

forecasts of the unweighted series at each level of disaggregation as zk ¢ contains the

12The original version of a hierarchical time series by Athanasopoulos et al. (2009) is a simple
summation of base-level series. With weighted averages, such as the inflation rate, the index weights
have to be incorporated into the summation matrix.



22 Hierarchical Forecasting System for Inflation Rate and Volatility

unweighted bottom-level series, and keeps the weights exogenous from the forecast
estimation of the inflation rates at the different levels. The forecasts in Z, contain
the inflation rate at the aggregate level, and the weighted series at the disaggregated
levels — indicated by the superscript w. It can easily be checked that Z; contains the
actual contribution of the respective series to the aggregate inflation rate, making

the hierarchical time series aggregation consistent:!

9
W W __ wo
Z Pyi,t - Z Pyi,t - Z Pyivt - PY7t
i=1 i€{AA,AB,BA,BB} i€{A,B}

~—
Level 3 Level 2 Level 1 Level 0

Thus we can obtain valid forecasts of all series in the hierarchical time series, Z;,
applying the different aggregation approaches for hierarchical time series (presented
in the following section).

It is desirable to have forecasts of the unweighted series at the disaggregated
levels — e.g. the forecast of industry level inflation, instead of the forecast of industry
level inflation’s contribution to aggregate inflation. This can be addressed easily:
Noting that the h-step ahead forecasts of the quasi-exogenous index weights are
Wiy = Wiy, we can readily retrieve the forecasts for the unweighted series by

dividing by the corresponding weights.

Aggregation Approaches. We consider the following aggregation approaches to
forecasting the mean and variance of aggregate inflation, adapting the Hierarchical

Time Series framework:

o Top-down: Forecast aggregate series and then disaggregate based on historical
proportions (Gross and Sohl, 1990) or forecast proportions (Athanasopoulos
et al., 2009). The methods can produce different forecasts for the disaggre-
gated levels (Level 1 & Level 2), but all produce the same forecast for the
aggregate level (Level 0). When the focus is on forecasting aggregate inflation

rate/volatility, top-down methods are equivalent to an aggregate forecast.

o Bottom-up: Forecast disaggregate series at the lowest level and then aggregate
up to forecast at higher levels. The argument in favour of the bottom-up
approach is that the bottom-level series contain valuable information (e.g.

different seasonal patterns in the bottom-level series). At the same time,

13This is a modification of the structure used in Capistran et al. (2010), as their proposed
approach does not satisfy aggregation consistency — a necessary property for HT'S modelling.
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smoothing noisy bottom-level series may lead to better forecasts of the aggregate.
The empirical results are inconclusive. Top-down approaches do outperform
bottom-up forecasts when the bottom-level data is noisy (e.g. Shlifer and Wolff,
1979; Fliedner, 1999; Hendry and Hubrich, 2006). There is also support the
efficacy of bottom-up forecasts over top-down forecasts (e.g. Orcutt et al., 1968,;
Collins, 1976; Dunn et al., 1976; Dangerfield and Morris, 1992; Zellner and
Tobias, 2000). While it seems intuitive that the bottom-up approach might
provide higher bottom-level accuracy, and a top-down approach higher top-level
accuracy, Hyndman et al. (2011) conclude that the bottom-up method performs
significantly better than the conventional top-down method even for top-level

forecasts.

Kahn (1998) suggests a hybrid approach, based on the argument that the efficacy
of aggregation depends on the covariance structure of the constituent series (Tiao
and Guttman, 1980; Kohn, 1982).

o Middle-out: A hybrid approach involving forecasting at intermediate levels, for
aggregation to the higher levels (using a bottom-up approach), and disaggrega-

tion to the lower levels (using a top-down approach).

o Optimal Combination: Forecast each series in the hierarchy not heeding “aggre-
gation consistency”. Then optimally combine the forecasts to generate revised
forecasts that are aggregation consistent and as close as possible to univariate
forecasts. The reconciliation of forecasts is usually based on a Generalised
Least Squares (GLS) estimator, but in practice reverts to OLS (Hyndman
et al., 2011) or WLS (Hyndman et al., 2016a) due to the difficulty of estimating
the covariance matrix of the reconciliation errors, which is non-identifiable
as formally shown by Wickramasuriya et al. (2017). Several adjustments to
the general approach have been proposed: Di Fonzo and Marini (2011) and
Hyndman et al. (2016a) exploit the sparsity of the linear system, thereby
making it possible to reduce computational complexity when a very large
number of time series is involved. Van Erven and Cugliari (2015) propose
the Game-Theoretically OPtimal (GTOP) method that guarantees that the
total weighted quadratic loss of the reconciled forecasts will never be greater
than the total weighted quadratic loss of the base forecasts. Wickramasuriya
et al. (2017) recently proposed the Minimum Trace (MinT) reconciliation that
minimises the sum of variances of the reconciled forecast errors under the

assumption of unbiasedness.
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Forecasting Approaches We assess the forecast accuracy of each of these four
aggregation approaches, using six different univariate forecasting methods. Three
of the methods are commonly used in hierarchical time series forecasting and are
included in the R package hts (Hyndman et al., 2016b) — ARIMA (Box and Jenkins,
1970), ETS (introduced/extended by: Pegels, 1969; Gardner, 1985; Hyndman et al.,
2002; Taylor, 2003), and a naive Random Walk forecast as benchmark. We use
the selection algorithms based on minimising AICc proposed by Hyndman and
Khandakar (2008) to fit the ARIMA and ETS models. In addition, the following
methods, which have found favour in forecasting competitions as accurate, robust,

and reliable, are also employed:

o Damped Trend (Gardner and McKenzie, 1985): These models deal with the
problem that exponential smoothing methods with constant trend tend to
over-forecast, by introducing a parameter that dampens the trend to a flat
line some time in the future. The superior performance of the damped trend
model compared to a range of other methods is documented (Fildes and Ord,
2002; Armstrong, 2006). We employ an additive damped trend model with
additive errors and an additive seasonal component — this corresponds to an
ETS(A, Ag, A) model in the general notation of (Hyndman et al., 2008).

o Theta method (Assimakopoulos and Nikolopoulos, 2000): The Theta method
has been found to produce the most accurate forecasts for monthly data in the
M3 forecasting competition (Makridakis and Hibon, 2000) and come to serve
as a benchmark in more recent forecasting competitions (Athanasopoulos et al.,
2011). It is also relatively simple and computationally fast (Nikolopoulos et al.,
2012). The Theta method is applied to deseasonalised time series (usually
based on the multiplicative classical decomposition).!® The forecasts obtained
with the Theta method are equivalent to Simple Exponential Smoothing with
drift, where the drift is equal to half the slope of a linear regression fitted to
the data (Hyndman and Billah, 2003).

14The damped trend model is part of the ETS framework. So the ETS algorithm will also select
a damped trend specification for some of the series in the hierarchy. However, it is common to use
it as a separate method — thereby forcing all series into a damped trend specification.

5Fiorucci et al. (2016b) argue that the seasonality test employed might not work well if the
time series has one or more unit roots with a slow decay in the autocorrelation function. Since the
inflation rate in our forecasting sample is stationary, this is not an issue — see 2.B for results of
stationarity tests.
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o Dynamic Optimised Theta Model (Fiorucci et al., 2016b) is a generalisation of
the standard Theta method. DOTM produced more accurate forecasts than
the standard Theta model for almost all combinations of type of data and
frequency of the M3 time series (Fiorucci et al., 2016b) — the disadvantage is its
higher computational intensity, which may be important when the number of
base-level series is very large. With only 356 series (for the mean equation) and

15 series (for the variance equation), we have no difficulty in using DOTM.'6

Some special features of our data are to be noted. Thomakos and Nikolopoulos
(2014) document that the Theta method performs especially well with trended
series. Seasonality is a more dominant feature in our data than trend, and
this might favour ARIMA and ETS models which incorporate seasonality in
estimation. The Theta method only forecasts the deseasonalised series and
then reseasonalises the data based on the multiplicative classical decomposition.
The Theta method is inferior to other methods for forecasting monthly data

with strong seasonality (Athanasopoulos et al., 2011).

The accuracy of the forecasts produced with these six forecasting methods is
evaluated based on MAE!. Our forecast accuracy evaluation involves time series
cross-validation based on training sets with a minimum of 180 observations, and
constant length test sets. This involves separate analyses for 1 month, all the way

up to 12 months horizons.!®

Forecast Combination: Dynamic Model Switching. So far, we have been
concerned with methods for determining the best individual forecast model, and
aggregation procedure, for disaggregated inflation forecasting. In the next step, we
take on board the fact that the models that produce most accurate forecasts often
differ depending on different economic conditions. For example, Philips Curve-based

models are more accurate during recessions, but do not consistently outperform the

16The variants of the Theta models were estimated using the forec Theta package in R (Fiorucci
et al., 2016a). The provided seasonality test was used in order to choose between additive and
multiplicative decomposition. Model parameters were optimised using the Nelder-Mead algorithm.

7Qther standard measures such as RMSE, MPE, MAPE, MASE can be readily used. Since
all the forecasts are computed for a single series — aggregate inflation rate, or aggregate inflation
variance — we prefer MAE for its easy interpretation, because it is less sensitive to outliers than
MSE or RMSE and it avoids common problems with MPE and MAPE in the presence of zero or
very small values in some series. It should be noted that MAE is a scale-dependent measure and
could not be used in a comparison between series, in which case MAPE or MASE (Hyndman and
Koehler, 2006) should be used.

18The suitability of cross-validation for accuracy assessment with time series data is discussed in
Bergmeir et al. (2015).
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best univariate models at other times (Stock and Watson, 2008). We adopt a dynamic
model selection (DMS) approach, which leverages the ability of different models
to produce more accurate forecasts under different conditions. DMS is an extreme
variant of forecast combination (i.e. weighted averaging of individual forecasts for
a single time series) in which a combination weight of 1 is allocated to one of the
candidate forecasting models, in a time-varying fashion depending on pre-defined

criteria.

The literature on DMS is limited but promising: Belmonte and Koop (2013) use
switching linear Gaussian state space models to forecast inflation; McMillan (2014)
uses in-sample criteria in order to select between linear and nonlinear models for
stock return forecasting; Buncic and Moretto (2015) use a dynamic model selection
and averaging framework for copper price forecasts. Bagdatoglou et al. (2016) find
that a dynamic model selection and averaging algorithm can improve forecasting
accuracy for US inflation significantly compared to the UC-SV model of Stock and
Watson (2008).

The forecast combination approach typically uses a linear combination of forecasts
obtained from different models for the same time series, motivated by the view that
all models of real world data generation processes are mis-specified, and combining
forecasts across models can decrease model uncertainty and improve accuracy, by
exploiting the different strengths of different models while compensating for their
weaknesses.'® One challenge of applying forecast combination to hierarchical time
series is that the requirement of lack of high collinearity between the different forecast
series is rarely satisfied. Similar methods — such as ETS and damped trend, or the
Theta method — tend to produce collinear forecasts. As it relies on dynamic selection
rather than averaging, the model switching approach that we employ does not break
down under collinearity (McMillan, 2014). It can be seen as a boundary case of

forecast combination.

9Different methods have been proposed and implemented: Clemen (1989) argues that simple
averaging of all available forecasts is a successful and robust method; Armstrong (2001) suggests
the use of trimmed means to avoid sensitivity to extreme values. Stock and Watson (2004) find
that symmetric 5 % trimming performed about the same as simple averaging, while Jose and
Winkler (2008) find that trimming of 10 - 30 % or Winsorising of 15 - 45 % can lead to improved
accuracy compared to simple averages using data from the M3 forecasting competition; Granger
and Ramanathan (1984) calculate the combination weights using an OLS regression; Aiolfi and
Timmermann (2006) group forecasts into several clusters using a k-means algorithm, final forecasts
are then obtained by averaging forecasts of the historically better performing cluster; and Hsiao
and Wan (2014) introduce several ways of eigenvector-based forecast combination. For an in-depth
discussion of different available methods, see Chapter 3 of this dissertation.
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We have a number of candidate models — 26 of them, resulting from combining
every aggregation approach with every forecasting approach. It is likely that different
models forecast better for different parts of the sample. Choosing a single model out of
many for the entire sample is likely to lead to poor out-of-sample forecasts. We noted
earlier that the inflation rate series can be considered to have two volatility regimes,
high and low. It is well-established that inflation rate and inflation volatility are
strongly interconnected (Friedman-Ball hypothesis & Cukierman-Melzer hypothesis).
The model switching approach allows us to use in-sample variance as criterion to
select the best model for each point in time. The interconnection between inflation
rate and volatility makes it more likely that changes in in-sample variance affect the
underlying data generating process. This is the fundamental rationale for switching
between models.?’ The model switching approach involves recursive estimation and
in-sample forecast evaluation to guide the switching between forecasts produced
using different models.

We adopt the following model switching rule (for both the mean and variance
forecasts): Split up the validation set, S®V into two subsets, a high-volatility set,
Sfipn(z) and a low-volatility set, S{} (). The elements of the high-volatility subset
relate to those time points where the unconditional inflation volatility (as measured
by the variance of the aggregate inflation rate over the past 6 months) exceeds the

2™ quantile of in-sample variance distribution, ®(02,,, .. z):*

Shoon(@) = {ve € SV |07 < ®(02 0 7) }

sample)r

S (@) = {m € 8V 0} > B(02,0 ) }

low sample)

This leaves the choice of x — the threshold that optimally splits the support
of the sample variance distribution, such that validation set is split into the two
sub-samples in a way that allows us to minimise the MAE of the final forecast.

We adopt the following procedure:

1. Compute Sf}7, () and Sf,) () for each possible z, i.e. for each percentile of

the sample variance distribution,

2. For each value of z (100 cases), produce forecasts for S, (z) with all 26

candidate models and select the model with the highest accuracy (lowest MAE)

20McMillan (2014) used the best-fitting model of the previous period (according to AIC) as
in-sample criterion to select a forecast model in a recursive framework.

21The switching rule is presented for the inflation rate for illustration, but applies to inflation
volatility forecasts analogously.
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for the given high-volatility subset — denote this optimal model for the high-
volatility subset for a given x by modelif;h(x); for each x, produce forecasts
for SCV (x) with all 26 candidate models and select the model that shows the

low

highest accuracy (lowest MAE) for the given low-volatility subset — denote this

optimal model for the low-volatility subset for a given by model;" (z)

~high .
an it

. For each x, use model}of;h(:c) to produce h-step ahead forecasts, ¥, it

opt
low

(z) to produce h-step ahead forecasts, gjiﬂ‘t, if

y € Sy, (x); and model
y, € SCV(z). This yields forecasts for the entire cross-validation set, by

combining the forecasts from the two subsets:

~high . cv
Jerner Huye € Shign (%)

@t+h\t($): R )
0 i v € iy (@)

. Compute MAE for the forecasts of the cross-validation set for each x, and

select the MAE-minimising x, x,,, as a splitting point for our switching rule,

which now becomes:
~high . cv
Yevnt> if y, € Shigh(xopt>

Jrsnpe(Topt) = '
0% 3 v € S (Topt)

To summarise, the general approach is a data-driven procedure to select the

forecast model depending on an in-sample criterion as it varies over time — in this

study, the unconditional sample variance corresponding to the point in time at which

the forecast is made. Due to the greater flexibility relative to a fixed forecast model,

this approach has the potential to improve forecast accuracy.

Forecasting System: Inflation Mean & Variance. The empirical strategy is

to estimate time-varying expectation of the inflation rate, fitting the model (e.g.
ARIMA, ETS) to Y;, and to use the fitted conditional mean YV, as the expected

inflation rate in the variance equation:??

22 An alternative would be to think of the expected inflation rate as a linear combination of the

mean model, Y;, and the target inflation rate, u:

Wi+ (1= y)p

The EWMA variance equation is then:
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62 = Aot + (1= NY2 —2(1 = MYV + (1 - \)Y;

The above equation illustrates how the fitted conditional mean enters the variance
equation through the EWMA calculation. In order to keep the presentation simple
we show this only for the aggregate inflation; however, this system that comprises

of a mean model and a variance model can easily be applied at various levels of

2

disaggregation (e.g. §;; entering into the EWMA calculation for 0y,

. at the product
level).

To obtain the mean forecast, we use the subcomponents of the product-level
inflation rates as input. These base-level series are combined with the index weights
into a hierarchical time series. Forecasts are produced for the aggregate mean inflation
rate using the aggregation approaches and forecast methods described above.

The mean model fit will be used for the calculation of EWMA-smoothed base-
level (co)variances (and, consequently, to create the input series of the variance
model). Before this, the optimal EWMA decay parameter, A, must be determined.
Our strategy, consistent with inflation volatility literature, is to use the conditional
volatility as estimated by a GARCH(1,1) as proxy for the ‘actual’ values of volatility,
and to estimate EWMA-smoothed aggregate volatility using a large range of potential
decay parameter values. The RMSE-minimising A can then be selected and — together
with the fitted values of the base-level parts from the best mean model — used for
the computation of the EWMA-smoothed base-level covariance matrix. By applying
the index weights to the corresponding terms of the smoothed base-level covariance
matrix, we directly compute the parts of variance component and the covariance
component as inputs for the HTS volatility forecasts that are produced using the

forecasting and aggregation methods described above.

2.5 Results

We now present an evaluation of forecast accuracy of the hierarchical time series

based mean and volatility forecasts. With the exception of the Theta method

6%, =Aot  + (1 =Y, —2(1— MY
—2(1 = A)(1—7)Yioip+ (1 = A Y2
(=)= )2
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variants, the models were estimated using data with no prior seasonal adjustment,
extracting seasonality in the estimation.?® For the Theta method models, the series
were deseasonalised first, using the algorithm provided in Fiorucci et al. (2016a)
which bases the choice between additive and multiplicative classical decomposition
on a seasonality test, and were reseasonalised after the estimation. The tables in this
section present the relative accuracy of the forecasts, i.e. %}%‘fl where M AE,,; is

the accuracy of the best model.

Mean Model — Results. The hierarchical time series data that is used to estimate
the mean models has 4 levels of disaggregation (from lowest to highest): Level 0
— is the aggregate inflation rate, Level 1 — is the 15 industry-level inflation rates
(e.g. Food, Housing, etc.), Level 2 — is the 85 product-level inflation rates (e.g.
Bread, Furniture, Pet Care, etc.), and Level 3 — decomposes each product-level
inflation rate into common, industry, and idiosyncratic parts. Consequently, the
Bottom-Up approach works with the 255 base-level series and, using the summation
matrix, aggregates the fitted values to obtain a fit for aggregate inflation rate; the
Middle-Out (Level 2) approach fits the product-level series and aggregates to the
aggregate inflation rate?!; the Middle-Out (Level 1) approach fits the industry-level
series and aggregates to the aggregate inflation rate; and the Top-Down approach
works directly with the aggregate inflation rate series. The Optimal Combination
approach fits all 356 constituent series of the hierarchical time series, at their different
levels of disaggregation, and then applies the WLS method of Hyndman et al. (2016a)
to reconcile the forecasts.?> Table 2.1 presents relative forecast accuracy compared
to the best model of the respective horizon for the full validation set — the absolute
MAE value is presented in brackets for the best model for each horizon.

Accuracy assessment based on time series cross-validation provides clear support
for the disaggregated approach. The best disaggregated model beats the best top-
down univariate approach for all horizons, by a range between 8 % (for a one-step

ahead forecast) and 21 % (for a twelve-step ahead forecast). For all horizons apart

23 Alternatively, deseasonalised base-level series could be used. However, since the forecasting
frameworks — ARIMA and Exponential Time Series Smoothing (including Damped Trend) — are
able to incorporate seasonality in the model, we choose to use seasonal base-level series to avoid
losing valuable base-level information.

24Middle-Out approaches apply a bottom-up approach to obtain estimates for levels of lower
disaggregation and a top-down approach to obtain estimates for levels of higher disaggregation.

251t is worth noting that Wickramasuriya et al. (2017) document promising results for the recently
proposed minimum trace (MinT) reconciliation method, making it likely that this algorithm could
further improve the optimal combination forecasts — given the novelty of the method, its performance
will have to be evaluated in future research.
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Table 2.1 Cross-Validated Test Set Accuracy - Mean Model.

1m 2m 3m 4m 5m 6m Tm 8m 9m 10m 11m 12m
Naive
Naive 1915 1.860 1925 1.874 1.879 1.846 1.868 1.884 1.899 1.893 1.897 1.854
Top-Down
ETS 1.080 1.116 1.170 1.178 1.202 1.229 1.246 1.262 1.263 1.257 1.254 1.257
ARIMA 1172 1.160 1.163 1.167 1.174 1.18 1.197 1.206 1.207 1.208 1.209 1.212
Theta 1.093 1.117 1.151 1.165 1.190 1.210 1.224 1.234 1.232 1.229 1.227 1.231
Damped Trend 1.106 1.128 1.183 1.200 1.230 1.259 1.278 1.292 1.293 1.287 1.282 1.282

Dynamic Optimised Theta  1.093 1.115 1.147 1.160 1.184 1.203 1.217 1226 1.224 1221 1220 1.223
Middle Out (Level 1)

ETS 1.008 1.021 1.048 1.072 1.088 1.106 1.119 1.126 1.128 1.129 1.132 1.137
ARIMA 1.017 1.001 1.011 1.023 1.028 1.030 1.031 1.029 1.025 1.021 1.018 1.018
Theta 1.047 1.059 1.094 1.113 1.136 1.154 1.166 1.174 1.175 1.176 1.176 1.183
Damped Trend 1.014 1.019 1.060 1.089 1.115 1.140 1.157 1.169 1.172 1.174 1.178 1.183

Dynamic Optimised Theta 1.043 1.055 1.090 1.109 1.132 1.150 1.163 1.170 1.171 1.172 1.173 1.179
Middle Out (Level 2)

ETS 1.018 1.003 1.027 1.039 1.048 1.062 1.073 1.079 1.080 1.082 1.084 1.087
ARIMA 1.021 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.0023)  (0.0024)  (0.0024)  (0.0024)  (0.0024)  (0.0024)  (0.0024)  (0.0024)  (0.0024)  (0.0025)  (0.0025)
Theta 1.085 1.069 1.084 1.092 1.099 1.116 1.125 1.132 1.132 1.132 1.139 1.149
Damped Trend 1.065 1.045 1.078 1.104 1.121 1.137 1.148 1.157 1.160 1.160 1.165 1.171
Dynamic Optimised Theta 1.110 1.084 1.090 1.096 1.104 1.121 1.131 1.138 1.137 1.137 1.144 1.154
Bottom Up
ETS 1.088 1.114 1.169 1.201 1.230 1.250 1.258 1.269 1.265 1.261 1.263 1.262
ARIMA 1.092 1.076 1.079 1.083 1.088 1.088 1.089 1.085 1.080 1.077 1.072 1.069
Theta 1.154  1.166 1.204 1.218 1.238 1.259 1.272 1.282 1.284 1.284 1.284 1.288
Damped Trend 1.083 1.101 1.159 1.185 1.212 1.244 1.261 1.278 1.285 1.284 1.287 1.290

Dynamic Optimised Theta 1.144 1.157 1.193 1.207 1.227 1.247 1.260 1.268 1.269 1.270 1.270 1.274
Optimal Combination

ETS 1.000 1.022 1.070 1.089 1.113 1.138 1.155 1.169 1.170 1.168 1.170 1.175
(0.0022)

ARIMA 1.061 1.053 1.060 1.068 1.076 1.086 1.094 1.098 1.098 1.099 1.099 1.101

Theta 1.087 1.109 1.144 1.158 1.182 1.202 1.216 1.226 1.225 1.222 1.220 1.224

Damped Trend 1.089 1.110 1.164 1.182 1.213 1.242 1.261 1.276 1.277 1.272 1.268 1.269

Dynamic Optimised Theta 1.087 1.108 1.140 1.153 1.176 1.196 1.209 1.219 1.217 1.215 1.213 1.217

from 1 month, the Middle Out (Level 2) ARIMA model produces the most accurate
forecasts, i.e. the best approach to forecasting the conditional mean of aggregate
inflation is to forecast product-level inflation rates (Level 2) using (seasonal) ARIMA

models and then aggregate these forecasts.

These results are consistent with previous empirical findings on both aggregation
approaches and forecasting methods: Our conclusions are similar to those of Athana-
sopoulos et al. (2011) about the dominance of ARIMA and ETS techniques compared
to Naive, Damped Trend, and Theta method for non-trended data that has strong
seasonality. The results also support findings of a variety of studies evaluating the
potential of disaggregated methods (e.g. Kahn, 1998) that conclude that bottom-up
methods do not usually produce good aggregate forecasts: We find that the hybrid
approaches (Middle-Out and Optimal Combination) outperform bottom-up; however,
it should be noted that the best bottom-up approach outperforms top-down for all
horizons except for 1-month forecasts — this suggests that the value of disaggregated

information (in this case, mainly the different seasonal patterns of the bottom-level
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Fig. 2.6 Ranking (Mean and Range) of the Mean Model Approaches.

series) outweighs the cost of noisy bottom-level data. Finally, while both Theta
method variants do not seem well-suited for forecasting seasonal, non-trended data,
the dynamic optimised Theta method produces slightly better results than the
original Theta method for 4 out of 5 aggregation approaches. All methods produce

much better results than a naive approach.

In order to present the information from the table in a concise way, Figure 2.6
plots the mean ranking, as well as the range of rankings, for each method out of the
26 models. This shows much better that (a) ARIMA and ETS methods are dominant
for seasonal, non-trended monthly data, and (b) how valuable the disaggregated
modelling approach is for inflation forecasting, given that the best aggregate model
(Top Down ARIMA) has an average ranking of 16.5 out of 26 models.

Table 2.2 shows the test statistics and p-values of the Diebold-Mariano test (with
a quadratic loss function) for predictive accuracy, comparing the performance of the
best disaggregated model with the best aggregate model. For all horizons except for

1-month forecasts, the disaggregated model forecasts significantly better, at least at
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Table 2.2 Diebold-Mariano Tests of Predictive Accuracy

1m 2m 3m 4m 5m 6m

Best Aggregate Opt Comb ETS MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA

Best Disagg. TD ETS TD DOTM TD DOTM TD DOTM TD ARIMA TD ARIMA
DM Statistic -0.80 -1.62 -1.57 -1.41 -2.12 -2.19
p-value 0.210 0.054 0.059 0.080 0.018 0.015

Tm 8m 9m 10m 11m 12m

Best Aggregate MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA
Best Disagg. TD ARIMA TD ARIMA TD ARIMA TD ARIMA TD ARIMA TD ARIMA
DM Statistic -2.28 -2.31 -2.20 -2.13 -2.04 -2.04

p-value 0.012 0.011 0.015 0.018 0.022 0.022

the 10 % level. The disaggregated models are seen to be relatively more valuable for

multi-horizon forecasts.

Mean Model — Dynamic Model Switching. In order to assess the value of
allowing for different models in low-volatility and high-volatility phases, we applied the
dynamic model switching rule outlined in Section 2.4. Table 2.3 presents the optimal
(MAE-minimising) quantiles (®(02,,,,pc: Zopt)) of the sample variance distribution that
divide the validation set into the high-volatility and low-volatility subsets (denoted

as ‘Split Variance’), and the best models selected for the two subsets.

Table 2.3 Switching Rule Mean Model: Results for Different Horizons.

1m 2m 3m 4m 5m 6m
Best High Vol MO L1 ARIMA MO L1 ARIMA MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA
Best Low Vol BU ETS BU ETS BU ETS BU ETS BU DampedT BU Theta
Split Variance 5.45e-06 5.42e-06 5.29¢-06 5.29¢-06 5.29¢-06 5.29¢-06

Tm 8m 9m 10m 11m 12m

Best High Vol MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA MO L2 ARIMA MO L1 ARIMA MO L1 ARIMA
Best Low Vol ~ MO L2 Theta MO L2 Theta MO L2 ETS MO L2 ETS MO L2 ETS MO L2 ETS
Split Variance 5.29e-06 5.29¢-06 8.99e-06 8.99¢-06 1.79e-05 2.29¢-05

The application of the switching rule delivers some interesting insights in the
previous findings: We find that the dominance of the Middle Out ARIMA approaches
stems from their better performance at times of higher volatility. In phases of lower
volatility, Bottom-Up ETS, Damped Trend, and Theta models (all of which belong to
the exponential smoothing family) are best up to 6-months, and Middle Out (Level 2)
Theta and ETS are best for longer horizons. It makes sense that bottom-up models
are well-suited for forecasting at times of low volatility, as they contain valuable
additional information and noise is often considered to be positively correlated with
volatility (e.g. Bandi and Russell, 2006).
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Fig. 2.7 Mean Model: MAEs of Switching-Rule vs. Best Single-Method HTS.

Figure 2.7 shows the MAEs of the switching-rule models in Table 2.3, comparing
their accuracy to the best single-method HTS model. The switching-rule forecasts
are between 1.8 % and 9.3 % more accurate compared to the best single-method
HTS model, depending on horizon. For all horizons, the Diebold-Mariano test leads
to the conclusion that the switching rule forecast significantly outperforms the best

single-method HTS model, confirming the potential of the technique.

Variance Model — Results. The fitted values of the mean model are used in the
EWMA calculation of the base-level covariance matrix that is subsequently used to
compute the parts of the VC and the CC — the inputs of the variance model. The
decay parameter for EWMA, A, was selected by the RMSE minimisation procedure
described above, which returned a A of 0.83 (Figure 2.8).

The hierarchical time series used as input for the variance models has 3 disaggre-
gation levels (from lowest to highest): Level 0 — aggregate inflation variance, Level 1
— variance component (VC) and covariance component (CC), Level 2 — the 6 subparts
cach of VC and CC (Section 2.2.2).

Turning to the variance forecast results (Table 2.4), again based on a time series

cross-validation, several aspects are noteworthy:
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Table 2.4 Cross-Validated Test Set Accuracy - Variance Model.
1m 2m 3m 4m 5m 6m Tm 8m 9m 10m 11m 12m
Naive
Naive 1.008  1.006 1.004  1.004 1.003 1.003 1.002 1.006 1.003 1.003 1.003 1.003
Top-Down
ETS 1.350 1.365 1.388 1.519 1.621 1.694 1.783 1.872 1.993 2.206 2.504 2.899
ARIMA 1.306  1.386 1.417 1427 1.426 1.422 1.407  1.402 1.396 1.410 1.434 1.459
Theta 1.075 1065  1.054  1.048 1.041 1.036 1.032 1.034 1.030 1.031 1.033 1.034
Damped Trend 1.319 1.252 1.198 1.164 1.131 1.118 1.102 1.104 1.103 1.114 1.120 1.124
Dynamic Optimised Theta 1.071 1.062 1.052 1.046 1.039 1.034 1.030 1.031 1.027 1.028 1.029 1.029
Middle-Out
ETS 1.244 1.241 1.248 1.265 1.272 1.278 1.283 1.299 1.310 1.333 1.358 1.385
ARIMA 1.108 1.038 1.029 1.020 1.019 1.004 1.000  1.000 1.001 1.012 1.025 1.036
(4.21-06)
Theta 1.064  1.058  1.049  1.044 1.038 1.033 1.030 1.032 1.028 1.029 1.031 1.032
Damped Trend 1.231 1.195 1.174 1.166 1.157 1.158 1.157 1.161 1.163 1.179 1.193 1.205
Dynamic Optimised Theta 1.061 1.055 1.047 1.042 1.036 1.031 1.028 1.029 1.025 1.026 1.026 1.027
Bottom-Up
ETS 1.273 1.209 1.116 1.071 1.029 1.004 1.002 1.017 1.025 1.033 1.033 1.031
ARIMA 1.141 1.254 1.257 1.240 1.235 1.212 1.194 1.187 1.182 1.192 1.206 1.225
Theta 1.002 1.002 1.001 1.001 1.001 1.001 1.001 1.006 1.002 1.003 1.003 1.004
Damped Trend 1.728 1.665 1.594 1.566 1.535 1.514 1.518 1.535 1.545 1.558 1.572 1.580
Dynamic Optimised Theta ~1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.000 1.000 1.000 1.000
(1.84¢-06)  (2.31e-06)  (2.77e-06)  (3.14e-06)  (3.46e-06) (3.77e-06)  (4.03-06) (4.376-06)  (4.43¢-06)  (4.47e-06)  (4.500-06)
Optimal Combination
ETS 1.235  1.244 1.247 1297 1.326 1.348 1.382 1.424 1.475 1.564 1.685 1.844
ARIMA 1.183 1.172 1.159 1.155 1.156 1.155 1.153 1.156 1.158 1.174 1.195 1.216
Theta 1.065 1.059 1.049 1.044 1.038 1.033 1.030 1.032 1.028 1.029 1.030 1.032
Damped Trend 1.194 1.154 1.118 1.107 1.095 1.097 1.095 1.103 1.106 1.122 1.133 1.140
Dynamic Optimised Theta 1.061 1.055 1.047 1.042 1.036 1.031 1.027 1.029 1.025 1.026 1.026 1.027

o The value of the disaggregated approach is understated in the variance forecasts.

It should be noted that disaggregated models by far outperformed the aggregate

models for the conditional mean of inflation and that these estimates were

used as inflation expectation in the computation of the EWMA-smoothed

bottom-level covariance matrix. Using inflation expectations of higher accuracy

(compared to ones from aggregate models) improves the input data that the
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variance forecasts are based on — this value is not incorporated in the forecast

accuracy tables.

o For the variance forecast, the naive model performs extremely well. This could

be due to a number of different reasons:

— Even though we used EWMA to compute the rolling-window covariances
between series (rather than the equally-weighted SMA), the resulting
smoothing of the input data removes some of the structure that might

make more sophisticated models useful.

— Over most of the observation period, the variance series is relatively stable
at a low level — conditions that favour a naive forecast, even more so given
the lack of pronounced seasonality in the aggregate variance or its parts
at the disaggregated levels. The only period that is characterised by high
variance is the Great Recession, which caused a sudden spike in volatility

that none of the models managed to capture very well;

— The first part of this paper has established that since inflation targeting
was introduced, VC (the part of aggregate variance due to bottom-level
variances) and CC (the part of aggregate variance due to co-movement of
the bottom-level units) are highly correlated (Correlation Coefficient =
84.94 %). This suggests that a middle-out approach cannot be expected
to be of very high value for the variance forecast, as the 2 series do not

add a lot of information compared to a forecast at the top level.

o The only models that can consistently beat the naive forecast for all horizons
are the Bottom-Up Theta model (except for 11 and 12-month forecasts) and
the Bottom-Up Dynamic Optimised Theta model. This can be rationalised:
First, the variance series are not dominated by seasonality as was the case for
inflation rate itself. These are favourable conditions for Theta models. Second,
while the Theta model — as special case of simple exponential smoothing with
drift — is also a relatively simple forecasting model, it is designed to model
the local curvature of the data (through the second Theta line). This can
explain why these methods can actually beat the naive forecast, which does not
separately model long term and local trends. The Dynamic Optimised Theta
model is designed to optimise the line for the local curvature more flexibly
and it is unsurprising that the model outperforms (slightly) the original Theta
model for all horizons. Third, the first part of this paper has shown that on the
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bottom level (i.e. among the subparts of VC and CC), there is some variation —
while the VC is dominantly driven by the variance of the idiosyncratic part
and to some extent the variance of the industry part (two series again follow
similar patterns), the CC is driven by the variance of the common part and
the covariances of the idiosyncratic parts — two series that follow very different
patterns. This variation on the bottom-level, which was identified through the
two-stage decomposition, is information that improves forecast accuracy, even

if only slightly.2¢

o The good performance of the Middle Out ARIMA (which is among the best
4 models for almost all horizons) seems like a curiosity at a first glance —
ARIMA models do very poorly for all other aggregation approaches and the
high correlation between the two series at the middle level also provides no
explanation why this approach does relatively well. A more detailed analysis
shows that this is due to Middle Out ARIMA being the best model in periods
of high volatility (as presented in the switching model results). While we are
able to identify its good performance at times of high volatility as reason for the
good overall result, we have found no convincing explanation why the Middle
Out ARIMA approach does so well in high-volatility phases — looking at the
time points when volatility was above is 90 % quantile, we found that during
these times, correlation between VC and CC were even higher with 92.69 %,
which makes it very difficult to explain why this approach produces 30-40 %

more accurate forecasts than the top-down ARIMA model.

Variance Model — Dynamic Model Switching. Table 2.5 presents the results

of the application of the switching rule.

Table 2.5 Switching Rule Variance Model: Results for Different Horizons.

1m 2m 3m 4m Sm 6m
Best High Vol Opt Comb DampedT Opt Comb DampedT Opt Comb DampedT Opt Comb DampedT Middle Out ARIMA Middle Out ARIMA
Best Low Vol BU DOTM BU DOTM Naive Naive Naive Naive
Split Variance 1.64e-05 1.68e-05 2.78e-05 1.68e-05 2.78e-05 2.57e-05

Tm 8m 9m 10m 11m 12m
Best High Vol Middle Out ARIMA  Middle Out ARIMA Middle Out ARIMA  Middle Out ARIMA  Middle Out ARIMA  Middle Out ARIMA
Best Low Vol Naive BU ETS Naive Naive Naive Naive
Split Variance 2.78e-05 1.60e-05 2.78e-05 2.78e-05 2.78e-05 2.78e-05

26Diebold-Mariano tests for the best disaggregated model compared to a naive forecast returned
p-values between 0.037 and 0.269 for the different horizons and therefore document that the forecast
performance of the disaggregated models is better than the naive forecast, but only for two horizons
this improvement is significant at the 10 % level.
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Fig. 2.9 Variance Model: Switching Rule vs. Best Single-Method HTS.

While overall the results coincide with the findings from the mean model section
— simple models, such as naive and Theta method tend to be best for low-volatility
phases and more structured models, such as ARIMA are better suited for high-
volatility phases — there are two notable features that are worth discussing: The
Bottom-Up Dynamic Optimised Theta is only selected as the best model for short-
term low-volatility forecasts — given that it is overall the best model for all horizons
apart from one, this suggests that while not being much worse than a naive model for
longer-horizon forecasts in low-volatility phases, it produces more accurate forecasts
than a naive model in high-volatility phases; this can be ascribed to its ability to

capture the local curvature of the series.

Another interesting aspect is that a model from the exponential smoothing family
— Optimal Combination Damped Trend — is selected for short-horizon forecasts in
high-volatility periods. However, this also shows the appeal of this switching-rule
approach to some extent: Over the entire test set, the Optimal Combination Damped
Trend model only ranks between 11 and 13 of the 21 candidate models even for 1- to
4-month forecasts due to its below-average forecasting performance in periods of low
volatility — consequently, without the switching rule, we probably would not have
identified this model’s good ability to produce short-term forecasts in high-volatility
phases. Figure 2.9 plots the improvement in MAE of the switching-rule models
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compared to the best single-method HTS model for each horizon — the switching

rule improves accuracy by between 1.8 % and 6.3 %, depending on horizon.

Validation of HTS Variance Models For the purpose of validating the HTS
variance models, we use GARCH-type models as benchmark. Estimating infla-
tion uncertainty with GARCH-type models has a long history dating back to the
seminal paper of Engle (1982) who first introduced the autoregressive conditional
heteroskedasticity (ARCH) model, as well as Bollerslev (1986) who introduced the
generalised ARCH model. Since then, GARCH-type models have become the most
popular choice for characterising conditional inflation uncertainty of developed coun-
tries: e.g. Brunner and Hess (1993) for US CPI data; Joyce (1995), and Kontonikas
(2004) for US inflation; and Grier and Perry (1998), and Fountas et al. (2000) for G7
countries.

Myriad extensions of the basic GARCH model have been employed to inflation
modelling: A very popular model in the inflation literature is the Component
GARCH (CGARCH) model by Engle and Lee (1993) that is equivalent to a restricted
GARCH(2,2) model and decomposes conditional volatility into a permanent and a
transitory component, thereby allowing for a time-varying long run volatility (e.g.
used by Grier and Perry, 1998; Kontonikas, 2004). Common models in finance
are the asymmetric volatility models Threshold GARCH (TGARCH), Exponential
GARCH (EGARCH), and GJR-GARCH due to their ability to capture the “leverage
effect” — the tendency of negative shocks to increase volatility by more than positive
shocks of the same size. In the inflation context, previous empirical research has
produced inconclusive evidence for asymmetric effects in conditional volatility: Grier
and Perry (1998) employ a GJR-GARCH model and find no significant asymmetric
effects for G7 countries. This coincides with e.g. Kontonikas (2004) who uses a
GARCH-M model for monthly UK CPI data, and Shaikh and Salam (2014) using a
GARCH model for inflation in Pakistan. In contrast, there are some studies that find
supportive evidence for asymmetric conditional volatility in inflation rates: Moradi
(2006) employs a TGARCH model for inflation in Iran, and Hossain (2014) uses an
EGARCH model for Australia.

While the leverage effect is a widely accepted phenomenon in financial modelling,
we do not find it surprising that there is a lack of evidence for it in inflation
modelling. First, compared to financial markets, inflation targetting leads to a much
more controlled environment in which inflation operates, leading to fewer extreme

observations — so even if there was a leverage effect in inflation data, this exogenous
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control of inflation levels and the low reporting frequency (leading to smaller sample
sizes than with financial data) could make it difficult for models to pick up the effect.
In particular large negative shocks seem rare in the inflation context for the UK.
Second, and more importantly, there is no theoretical reason why a leverage effect
should exist for inflation. In a stock context it is clear that a positive shock to a
stock price is ‘good news’ and a negative shock is ‘bad news’. Is this situation the
same for inflation? Our view is that if the inflation level is close to the regulators’
inflation target, only a stable inflation rate is ‘good news’, while large positive or
negative shocks to the inflation rate are both ‘bad news’, thus making a significant
asymmetric effect unlikely.

In order to identify the best model for the conditional mean for our RPI data, we
use automated ARIMA selection and find that a SARIMA(1,0,1)(1,0,1);5 model
is the best fit. The ARCH-LM test rejected the null hypothesis of no ARCH effects
(p-value: 0.25 %). ARCH/GARCH models are required.

Residual diagnostics revealed that the histogram of the residuals has a negative
skew (Skewness: -0.896) and is leptokurtic (Kurtosis: 7.712). Previous research in
the field documents that under these circumstances, the fit of GARCH-type models
can be improved by using a leptokurtic error distribution — most commonly Student’s
t (proposed by Bollerslev, 1987) or GED (proposed by Nelson, 1991). Since the
non-normality is primarily due to the largest outlier (a data point during the Great
Recession), we also analysed normality without this outlier and find that without this
data point, the histogram of the residuals approximates normality - the Jarque-Bera
test statistic is 1.626 (p-value: 44.34 %). Given these results, we decided to estimate
both GARCH-type models with Gaussian error distribution and ones with leptokurtic
error distributions.

AIC-based selection returned a SARIM A(1,0,1)(1,0,1)1o—GARCH (1, 1) model
with Gaussian error distribution as best fit for the inflation data (Table 2.6). We
tried fitting asymmetric specifications (EGARCH, TGARCH), as well as Component
GARCH due to its popularity in empirical inflation research, but none of the
specifications were able to improve AIC compared to the GARCH(1,1). We also
estimated the in-mean variants of all the mentioned models, but the in-mean effects
were not significant. The AIC values of the estimated models are presented in
Appendix 2.A.

Having found the optimal GARCH-type model for our data, we turned to the
validation of our models comparing the best HTS variance model against the selected
SARIMA-GARCH model. Thus, to test the quality of our disaggregated forecasting
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Table 2.6 Best GARCH specification: SARIM A(1,0,1)(1,0,1)12 — GARCH (1,1).

Variable Coefficient Std.Error z-Statistic p-value
AR(1) 0.657 0.182 3.615 0.0003
SAR(1) 0.983 0.008 125.442  0.0000
MA(1) -0.420 0.226 -1.858 0.0632
SMA(1) -0.887 0.027 -33.330 0.0000
Variance Equation
C 1.60e-06 7.21e-07 2.221 0.0264
a (ARCH) 0.302 0.075 4.004 0.0001
£ (GARCH) 0.395 0.175 2.261 0.0237

system for inflation mean and variance, we again apply time series cross-validation to
compare the best disaggregated model’s accuracy with the SARIMA-GARCH model.
Given the previous optimisation of the decay parameter, we use the conditional
variance from an EWMA model fitted to the full aggregate data as proxy for ‘actual’
inflation variance.

Table 2.7 Forecasting Performance: Single-Method HTS vs. Switching Rule vs. SARIMA-
GARCH.

Best Single HTS Best Switching HTS SARIMA-GARCH A

1m 1.845e-06 1.754e-06 4.470e-06 2.55
3m 2.768e-06 2.687e-06 4.333e-06 1.61
6m 3.772e-06 3.615e-06 4.551e-06 1.26
9m 4.366¢-06 4.104e-06 4.776e-06 1.16
12m 4.500e-06 4.271e-06 4.642e-06 1.09

Table 2.7 compares the MAE accuracy of the SARIMA-GARCH forecasts with
those obtained from the best single-method HTS model and the best switching-rule
model, respectively; A gives the relative advantage of the best switching-rule model
compared to the SARIMA-GARCH. Accuracy is presented for selected horizons; the
results are preserved in quality for the other horizons. Depending on horizon, the best
switching-rule model forecasts 9 - 155 % more accurately than the SARIMA-GARCH
model, while the biggest relative advantage of the HTS models is for short-horizon

forecasts.

2.6 Discussion & Conclusions

We began by using a two-level decomposition of aggregate inflation volatility to

shed light on the DGP of inflation volatility. Combining the variance/covariance
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decomposition with the inflation rate decomposition into common, industry and
idiosyncratic components adds to our understanding of the inflation process: The
main drivers of the Variance Component (the part of aggregate volatility that is due
to variances of product-level inflation rates) are the variances of idiosyncratic shocks.
The main drivers of the Covariance Component (the part of aggregate volatility
that is due to co-movement of product-level inflation rates) are the variances of the
common shocks and the covariances of the product-level idiosyncratic shocks. The
industry (product group) level plays only a subsidiary role.

Thus aggregate volatility is generated by a combination of common shocks (driving
the covariation of product-level inflation rates) and idiosyncratic shocks (driving the
product-level variances). Product-level analysis shows that episodes of high inflation
volatility (generally in recessions) are often driven by a single or a few selected
products, rather than a sweeping increase in product-level variances — the recession
in the early 1990s was characterised by a shock to ‘Council Tax & Rates’, and
covariation of other products with this item; the Great Recession was characterised
by a shock to ‘Mortgage Interest Payments’, and covariation of other products
with this item. Both high volatility phases also showed increased covariation of
product-level inflation rates in general.

In the second part of the paper, we established the value of hierarchical time
series modelling for forecasting the conditional mean and volatility of the aggregate
inflation rate. For both the inflation rate and its volatility, the usefulness of explicitly
considering the aggregation scheme underlying the RPI is evident from accuracy
comparisons against conventional (aggregate) univariate modelling approaches. For
the inflation rate (mean model), Middle Out Level 2 ARIMA produces the most
accurate forecasts. For inflation volatility (variance model), the results respond to
the call for an application of the recently introduced Dynamic Optimised Theta
Model to a data set that is dominated by stationarity (by Fiorucci et al., 2016b).
Bottom-Up DOTM produces the most accurate forecasts for inflation volatility. This
can be attributed to the method’s ability to capture local trends very well, and also
to the heterogeneity of the Covariance Component’s subparts — disaggregated level
information that is ignored by aggregate models.

Finally, we presented an extreme variant of the forecast combination approach
that appears to work well for inflation forecasting — this involves a dynamic switching-
rule that, in a time-varying fashion, applies a combination weight of 1 to the best
forecasting model based on an in-sample criterion (in our case the rolling sample

variance), and a combination weight of 0 to all other models. While the predicted
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inflation rate enters inflation volatility through the forecasting system in the standard
way (the fitted mean model values are used to obtain the smoothed variance), the
model switching approach lets inflation volatility affect the forecast of the inflation
rate through the switching rule. This accommodates bi-directional relationship
between inflation rate and its volatility. We find that the switching-rule approach
can improve forecast accuracy compared to the best single-method HTS model — due
to ARIMA models’ superior performance in high-volatility episodes, and exponential
smoothing-type models’ superior performance in low-volatility episodes.

It is worth discussing some implications of our modelling approach in more detail:
Given that our focus lies on forecasting aggregate inflation rate and volatility, some
readers might ask why it is important to have aggregation consistent forecasts across
the hierarchy. The reasons for aggregation consistency as a requirement of our
modelling approach are both practical and statistical. First, in many cases applied
inflation forecasting is interested in forecasts for the entire index, but simultaneously
some of its components (for example, core inflation and non-core inflation), i.e.
the hierarchical structure in itself is of interest in this context. Second, mean
consistency implies that the variance of the aggregate series will be equal to the
(weighted) sum of the variances and covariances of the bottom-level series. Since
the mean forecasts directly feed into the variance forecasts through the variance
identity, inconsistent forecasts (in the sense of aggregation consistency) would not
be an accurate representation of the actual generating process underlying inflation
volatility.

Another natural comment when talking about aggregation is the role played by
the central limit theorem (CLT). While currently HTS forecasting is limited to point
forecasts, probabilistic forecasting is a desirable extension of the approach in future
research. Some first promising results for interval construction of HTS forecasts
have been documented in a very recent paper by Taieb et al. (2017), who also take
note of the challenges in creating probabilistic hierarchical forecasts: (a) the need to
estimate the entire distribution of future observations, not only the mean (Kneib,
2013; Hothorn et al., 2014), (b) computing the distribution of hierarchical sums of
random variables in high dimensions, and (c) accounting for the possible variety
of distributions in the hierarchy; the distributions become more Gaussian with the
aggregation level as a consequence of the CLT, while the series at lower levels often
exhibit non-normality including multi-modality and high levels of skewness.

To summarise, this chapter has made several original contributions to research in

the fields of hierarchical modelling and inflation forecasting:
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e The additional detail of our variance decomposition compared to the original
version of Comin and Mulani (2006) (a) helps with the identification of drivers
of variance/covariance in different volatility regimes, and (b) can improve

forecasts at the bottom level.?”

o To the best of our knowledge this paper is the first that designs an aggregation
consistent, weighted hierarchical time series, thereby providing a solution to
the problem of combining index weighting with the HTS framework, which
has the potential to turn HTS forecasting into a powerful forecasting tool in

economics and finance.

o By applying HTS forecasting to an inflation context, we made a contribution
in the ongoing debate about the optimal level of disaggregation (e.g. Hendry
and Hubrich, 2006) — we show how (suboptimal) selection by the forecaster
prior to estimation can be avoided and how this empirical question can be

optimally resolved within the forecasting step itself instead.

o We proposed a dynamic switching model that accounts for the observed level
of volatility in the selection of the optimal forecasting model and showed that

this extreme case of forecast combination can lead to accuracy gains.

Overall, we find overwhelming support for the use of a hierarchical forecasting
approach for UK inflation forecasting. The models can be extended and improved
in several ways in future research. First, recent progress in Optimal Combination
methods are designed to reconcile individual forecasts at the different levels of
disaggregation to make them aggregate consistent — it is to be examined whether
using more recently developed approaches (in particular Wickramasuriya et al., 2017)
can further improve the disaggregated HTS forecasts and/or model switching based
forecasts. Second, the UK has experienced major fluctuations in key macro variables
over the last three decades. It should be useful to incorporate structural change in
forecasting models — for example, by combining the HTS forecasting system with
time-varying parameters inflation models — e.g. TVP-VAR models, TVP-FAVAR

2TWhile it is true a hierarchical forecast of the aggregate does not use more information through
our refined structure (industry and aggregate information is already part of the hierarchy), it is
important to note that especially in an inflation context, forecasters are often interested in the
inflation rate of components of the index. Assume for instance that an energy company wants to
forecast the inflation rate of ‘Oil and Other Fuels’ — the original decomposition did not allow them
to incorporate aggregate and industry information in the forecasting model in a straightforward
way, while our refined structure does.
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models, or regime-switching VAR models.?® Our dynamic switching model is a
first promising step on the way to the design of a hierarchical forecasting model
that can incorporate both permanent and transitory shocks at different levels of
aggregation. Third, the potential of incorporating explanatory variables in the
hierarchical forecasting models should be explored — Barnett et al. (2012) find that
models that include a large set of explanatory variables tend to do well for quarterly
inflation forecasting. Aggregate explanatory variables can easily be incorporated in
the HTS framework at least for a subset of forecasting methods. Fourth, despite
the documented value of hierarchical forecasts and dynamic model switching, one
challenge is that the estimation of the full set of hierarchical forecasts and of dynamic
model switching is computationally expensive, making it difficult to apply in other
practical contexts that require fast decision-making: For this purpose the results
of this paper could be used to modify the recently proposed hierarchical selection
algorithm by Nenova and May (2017). Finally, the issue of choosing a proxy for
‘actual’ inflation volatility remains open: one possible approach might be to use
intra-month dispersion of product prices estimated using daily online prices as in the
Billion Prices Project (Cavallo and Rigobon, 2016); another potential solution for
this problem might be the extension of the recent probabilistic method proposed by
Taieb et al. (2017) which could be modified to allow a joint estimation of mean and
time-varying variance without the need to separately construct a proxy for volatility

— similar to a GARCH approach, but incorporating the hierarchical information.

Z8Barnett et al. (2012) argue for the superiority of models with time-varying parameters primarily
for the dataset that spans the inflation targeting, a clear structural break. See references therein
for an overview of time-varying parameter methods.



46 Hierarchical Forecasting System for Inflation Rate and Volatility

2.7 References

Abadir, K., and G. Talmain. 2002. Aggregation, Persistence and Volatility in a
Macro Model. The Review of Economic Studies 69:749-779.

Aiolfi, M., and A. Timmermann. 2006. Persistence in Forecasting Performance and

Conditional Combination Strategies. Journal of Econometrics 135:31-53.

Andersen, T. G., T. Bollerslev, and F. X. Diebold. 2010. Parametric and Non-
parametric Volatility Measurement. In Y. Ait-Sahalia and L. P. Hansen (eds.),
Handbook of Financial Econometrics, chap. 2, pp. 67-128. Amsterdam: Elsevier.

Arize, A. C. 2011. Are Inflation Rates Really Nonstationary? New Evidence
from Non-Linear STAR Framework and African Data. International Journal of

Economics and Finance 3:97-108.

Armstrong, J. S. 2001. Combining Forecasts. In J. S. Armstrong (ed.), Principles of
Forecasting, pp. 417-439. Boston, MA: Springer.

Armstrong, J. S. 2006. Findings from Evidence-Based Forecasting: Methods for
Reducing Forecast Error. International Journal of Forecasting 22:583-598.

Assimakopoulos, V., and K. Nikolopoulos. 2000. The Theta Model: A Decomposition
Approach to Forecasting. International Journal of Forecasting 16:521-530.

Athanasopoulos, G., R. A. Ahmed, and R. J. Hyndman. 2009. Hierarchical Forecasts

for Australian Domestic Tourism. International Journal of Forecasting 25:146-166.

Athanasopoulos, G., R. J. Hyndman, H. Song, and D. C. Wu. 2011. The Tourism

Forecasting Competition. International Journal of Forecasting 27:822-844.

Atkeson, A., and L. E. Ohanian. 2001. Are Phillips Curves Useful for Forecasting
Inflation? Federal Reserve Bank of Minneapolis Quarterly Review 25:2-11.

Bagdatoglou, G., A. Kontonikas, and M. E. Wohar. 2016. Forecasting US Inflation
Using Dynamic General-to-Specific Model Selection. Bulletin of Economic Research
68:151-167.

Ball, L., and S. G. Cecchetti. 1990. Inflation and Uncertainty at Short and Long
Horizons. Brookings Papers on Economic Activity 1/1990:215-254.



2.7 References 47

Bandi, F. M., and J. R. Russell. 2006. Separating Microstructure Noise from Volatility.
Journal of Financial Economics 79:655-692.

Barnett, A., H. Mumtaz, and K. Theodoridis. 2012. Forecasting UK GDP Growth,
Inflation and Interest Rates Under Structural Change: A Comparison of Models
with Time-Varying Parameters. Working Paper No. 450, Bank of England.

Bean, C. 2003. Inflation Targeting: The UK Experience. Bank of England Quarterly
Bulletin, Winter 2003 pp. 479-494.

Beeson, J. 2016. Consumer Price Inflation: 2016 Weights. Technical Report (22
March 2016), Office for National Statistics.

Belmonte, M., and G. Koop. 2013. Model Switching and Model Averaging in Time-
Varying Parameter Regression Models. Working Paper No. 1302, University of

Strathclyde Business School, Department of Economics.

Bergmeir, C., R. J. Hyndman, and B. Koo. 2015. A Note on the Validity of Cross-
Validation for Evaluating Time Series Prediction. Working Paper No. 10/15,

Monash University, Department of Econometrics and Business Statistics.

Bollerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity.
Journal of Econometrics 31:307-327.

Bollerslev, T. 1987. A Conditionally Heteroskedastic Time Series Model for Spec-
ulative Prices and Rates of Return. The Review of Economics and Statistics

69:542-47.

Box, G. E. P., and G. M. Jenkins. 1970. Time Series Analysis: Forecasting and
Control. San Francisco, Calif.: Holden-Day Inc.

Brunner, A. D., and G. D. Hess. 1993. Are Higher Levels of Inflation Less Predictable?
A State-Dependent Conditional Heteroscedasticity Approach. Journal of Business
and FEconomic Statistics 11:187-197.

Buncic, D., and C. Moretto. 2015. Forecasting Copper Prices with Dynamic Averaging

and Selection Models. North American Journal of Economics and Finance 33:1-38.

Calvo, S., and C. Reinhart. 1996. Capital Flows to Latin America : Is There Evidence
of Contagion Effects? Policy Research Working Paper Series 1619, The World
Bank.



48 Hierarchical Forecasting System for Inflation Rate and Volatility

Capistran, C., C. Constandse, and M. Ramos-Francia. 2010. Multi-Horizon Inflation
Forecasts Using Disaggregated Data. Economic Modelling 27:666-677.

Carvalho, V., and X. Gabaix. 2013. The Great Diversification and Its Undoing.
American Economic Review 103:1697-1727.

Cavallo, A., and R. Rigobon. 2016. The Billion Prices Project: Using Online Prices

for Measurement and Research. Journal of Economic Perspectives 30:151-178.

Chen, H., and J. E. Boylan. 2007. Use of Individual and Group Seasonal Indices in
Subaggregate Demand Forecasting. Journal of the Operational Research Society
58:1660-1671.

Chen, H., and J. E. Boylan. 2009. The Effect of Correlation Between Demands
on Hierarchical Forecasting. Advances in Business and Management Forecasting
6:173-188.

Clemen, R. T. 1989. Combining Forecasts: A Review and Annotated Bibliography.
International Journal of Forecasting 5:559-583.

Collins, D. W. 1976. Predicting Earnings with Sub-Entity Data: Some Further
Evidence. Journal of Accounting Research 14:163-177.

Comin, D.; and S. Mulani. 2004. Diverging Trends in Macro and Micro Volatility:
Facts. Working Paper No. 10922, National Bureau of Economic Research.

Comin, D., and S. Mulani. 2006. Diverging Trends in Aggregate and Firm Volatility.
Review of Economics and Statistics 88:374-383.

Cukierman, A., and A. H. Meltzer. 1986. A Theory of Ambiguity, Credibility, and
Inflation under Discretion and Asymmetric Information. Econometrica 54:1099—
1128.

Cukierman, A., and P. Wachtel. 1979. Differential Inflationary Expectations and
the Variability of the Rate of Inflation: Theory and Evidence. The American
Economic Review 69:595-609.

Culver, S. E., and D. H. Papell. 1997. Is There a Unit Root in the Inflation Rate?
Evidence from Sequential Break and Panel Data Models. Journal of Applied
Econometrics 12:435-444.



2.7 References 49

Dangerfield, B. J., and J. S. Morris. 1992. Top-Down or Bottom-Up: Aggregate Versus
Disaggregate Extrapolations. International Journal of Forecasting 8:233-241.

Davis, S. J., J. Haltiwanger, R. Jarmin, and J. Miranda. 2006. Volatility and
Dispersion in Business Growth Rates: Publicly Traded Versus Privately Held
Firms. NBER Macroeconomics Annual 21:107-156.

Di Fonzo, T., and M. Marini. 2011. Simultaneous and Two-Step Reconciliation of
Systems of Time Series: Methodological and Practical Issues. Journal of the Royal
Statistical Society. Series C: Applied Statistics 60:143-164.

Dornbusch, R., Y. C. Park, and S. Claessens. 2000. Contagion: Understanding How
It Spreads. World Bank Research Observer 15:177-97.

Dunn, D. M., W. H. Williams, and T. L. Dechaine. 1976. Aggregate Versus Sub-
aggregate Models in Local Area Forecasting. Journal of the American Statistical
Association 71:68-71.

Engle, R. F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of
the Variance of United Kingdom Inflation. Econometrica 50:987-1007.

Engle, R. F., and G. G. J. Lee. 1993. A Permanent and Transitory Component
Model of Stock Return Volatility. Discussion Paper No. 92-44R, Department of
Economics, UCSD.

Evans, M. 1991. Discovering the Link Between Inflation Rates and Inflation Uncer-
tainty. Journal of Money, Credit and Banking 23:169-184.

Faust, J., and J. H. Wright. 2013. Forecasting inflation. Handbook of Economic
Forecasting 2:1-56.

Fildes, R. A.; and J. K. Ord. 2002. Forecasting Competitions — Their Role in
Improving Forecasting Practice and Research. In M. P. Clements and D. F. Hendry
(eds.), Companion to Economic Forecasting, pp. 322-353. Oxford: Blackwell.

Fiorucci, J. A., F. Louzada, and B. Yiqi. 2016a. forecTheta: Forecasting Time
Series by Theta Models. URL http://CRAN.R-project.org/package=forecTheta.
[Accessed on July 15, 2017], R package version 2.2.

Fiorucci, J. A., T. R. Pellegrini, F. Louzada, F. Petropoulos, and A. B. Koehler.
2016b. Models for Optimising the Theta Method and Their Relationship to State
Space Models. International Journal of Forecasting 32:1151-1161.


http://CRAN.R-project.org/package=forecTheta

50 Hierarchical Forecasting System for Inflation Rate and Volatility

Fischer, S. 1981. Towards an Understanding of the Costs of Inflation: II. Carnegie-
Rochester Conference Series on Public Policy 15:5 — 41.

Fliedner, G. 1999. An Investigation of Aggregate Variable Time Series Forecast Strate-
gies with Specific Subaggregate Time Series Statistical Correlation. Computers
and Operations Research 26:1133-1149.

Fountas, S., M. Karanasos, and M. Karanassou. 2000. A GARCH Model of Inflation
and Inflation Uncertainty with Simultaneous Feedback. Discussion Paper 2000/24,

Department of Economics, University of York.

Friedman, M. 1977. Nobel Lecture: Inflation and Unemployment. Journal of Political
Economy 85:451-472.

Gabaix, X. 2011. The Granular Origins of Aggregate Fluctuations. Econometrica
79:733-772.

Galati, G., S. Poelhekke, and C. Zhoua. 2011. Did the Crisis Affect Inflation
Expectations? International Journal of Central Banking 7:167-207.

Gardner, E. S. 1985. Exponential Smoothing: The State of the Art. Journal of
Forecasting 4:1-28.

Gardner, E. S.; and E. McKenzie. 1985. Forecasting Trends in Time Series. Manage-
ment Science 31:1237-1246.

Granger, C. W. J., and R. Ramanathan. 1984. Improved Methods of Combining
Forecasts. Journal of Forecasting 3:197-204.

Grier, K. B., and M. J. Perry. 1998. On Inflation and Inflation Uncertainty in the
G7 Countries. Journal of International Money and Finance 17:671-689.

Gross, C. W., and J. E. Sohl. 1990. Disaggregation methods to expedite product
line forecasting. Journal of Forecasting 9:233-254.

Guo, H. 2012. Estimating Volatilities by the GARCH and the EWMA Model of
PetroChina and TCL in the Stock Exchange Market of China. In Proceedings of
the 6th International Scientific Conference Managing and Modelling of Financial
Risks, pp. 191-202. Ostrava.



2.7 References 51

Hendry, D. F., and K. Hubrich. 2006. Forecasting Economic Aggregates by Dis-
aggregates. ECB Working Paper Series No. 589 (Feb 2006), European Central
Bank.

Holland, A. S. 1993. Uncertain Effects of Money and the Link Between the Inflation
Rate and Inflation Uncertainty. Fconomic Inquiry 31:39-51.

Holland, A. S. 1995. Inflation and Uncertainty: Tests for Temporal Ordering. Journal
of Money, Credit and Banking 27:827-837.

Hossain, A. A. 2014. Inflation and Inflation Volatility in Australia. Fconomic Papers:
A Journal of Applied Economics and Policy 33:163-185.

Hothorn, T., T. Kneib, and P. Bithlmann. 2014. Conditional Transformation Models.
Journal of the Royal Statistical Society, Series B (Statistical Methodology) 76:3-27.

Hsiao, C., and S. K. Wan. 2014. Is There an Optimal Forecast Combination? Journal
of Econometrics 178:294-309.

Hyndman, R., and G. Athanasopoulos. 2014. Forecasting: Principles and Practice.
OTexts.

Hyndman, R. J., R. A. Ahmed, G. Athanasopoulos, and H. L. Shang. 2011. Optimal
Combination Forecasts for Hierarchical Time Series. Computational Statistics and
Data Analysis 55:2579-2589.

Hyndman, R. J., and B. Billah. 2003. Unmasking the Theta Method. International
Journal of Forecasting 19:287-290.

Hyndman, R. J., and Y. Khandakar. 2008. Automatic Time Series Forecasting: The
Forecast Package for R. Journal of Statistical Software 27:1-22.

Hyndman, R. J., and A. B. Koehler. 2006. Another Look at Measures of Forecast
Accuracy. International Journal of Forecasting 22:679-688.

Hyndman, R. J., A. B. Koehler, J. K. Ord, and R. D. Snyder. 2008. Forecasting with
Exponential Smoothing: The State Space Approach. Berlin, Heidelberg: Springer.

Hyndman, R. J.; A. B. Koehler, R. D. Snyder, and S. Grose. 2002. A State Space
Framework for Automatic Forecasting Using Exponential Smoothing Methods.
International Journal of Forecasting 18:439-454.



52 Hierarchical Forecasting System for Inflation Rate and Volatility

Hyndman, R. J., A. J. Lee, and E. Wang. 2016a. Fast Computation of Reconciled
Forecasts for Hierarchical and Grouped Time Series. Computational Statistics and
Data Analysis 97:16-32.

Hyndman, R. J., E. Wang, A. Lee, and S. Wickramasuriya. 2016b. hts: Hierar-
chical and Grouped Time Series. URL http://CRAN.R-project.org/package=hts.
[Accessed on July 15, 2017], R package version 5.0.

Jose, V. R. R., and R. L. Winkler. 2008. Simple Robust Averages of Forecasts: Some
Empirical Results. International Journal of Forecasting 24:163-169.

Joyce, M. 1995. Modelling UK Inflation Uncertainty: The Impact of News and the
Relationship with Inflation. Working Paper 30, Bank of England.

Kahn, K. B. 1998. Revisiting Top-Down Versus Bottom-Up Forecasting. The Journal
of Business Forecasting 17:14-19.

Kim, D.-H., and S.-C. Lin. 2012. Inflation and Inflation Volatility Revisited. Inter-
national Finance 15:327-345.

King, R. G., C. I. Plosser, J. H. Stock, and M. W. Watson. 1991. Stochastic Trends

and Economic Fluctuations. American Economic Review 81:819-840.
Kneib, T. 2013. Beyond Mean Regression. Statistical Modelling 13:275-303.

Kohn, R. 1982. When is an Aggregate of a Time Series Efficiently Forecast by Its
Past? Journal of Econometrics 18:337-349.

Kontonikas, A. 2004. Inflation and Inflation Uncertainty in the United Kingdom:
Evidence from GARCH Modelling. Economic Modelling 21:525-543.

Lee, J. 2005. Estimating Memory Parameter in the US Inflation Rate. Economics
Letters 87:207-210.

Lee, J., C. J. Huang, and Y. Shin. 1997. On Stationary Tests in the Presence of
Structural Breaks. Economics Letters 55:165 — 172.

Lucas, A., and X. Zhang. 2016. Score-Driven Exponentially Weighted Moving
Averages and Value-at-Risk Forecasting. International Journal of Forecasting
32:293-302.


http://CRAN.R-project.org/package=hts

2.7 References 53

Makridakis, S., and M. Hibon. 2000. The M3-Competition: Results, Conclusions

and Implications. International Journal of Forecasting 16:451-476.

McMillan, D. G. 2014. Forecasting Stock Returns: Does Switching Between Models
Help? In J. Ma and M. Wohar (eds.), Recent Advances in Estimating Nonlinear
Models: With Applications in Economics and Finance, pp. 229-248. New York:
Springer.

Moradi, M. A. 2006. A GARCH Model of Inflation and Inflation Uncertainty in Iran.
Quarterly Journal of the Economic Research 6:122-145.

Nelson, C. R., and C. R. Plosser. 1982. Trends and Random Walks in Macroeconmic
Time Series: Some Evidence and Implications. Journal of Monetary Economics
10:139 — 162.

Nelson, D. B. 1991. Conditional Heteroskedasticity in Asset Returns: A New
Approach. FEconometrica 59:347-370.

Nenova, Z. D., and J. H. May. 2017. Determining an Optimal Hierarchical Forecasting
Model Based on the Characteristics of the Data Set: Technical Note. Journal of
Operations Management 44:62—68.

Nikolopoulos, K., D. Thomakos, F. Petropoulos, A. Litsa, and V. Assimakopoulos.
2012. Forecasting S&P 500 with the Theta Model. International Journal of

Financial Economics and Econometrics 4:73-78.

Noriega, A., C. Capistran, and M. Ramos-Francia. 2013. On the Dynamics of
Inflation Persistence Around the World. Empirical Economics 44:1243-1265.

Noriega, A. E., and E. de Alba. 2001. Stationarity and Structural Breaks — Evidence
from Classical and Bayesian Approaches. Economic Modelling 18:503 — 524.

Office for National Statistics. 2013. Assessment of Compliance with the Code of
Practice for Official Statistics. UK Statistics Authority Assessment Report 246
(March 2013).

Orcutt, G. H., H. W. Watts, and J. B. Edwards. 1968. Data Aggregation and

Information Loss. The American Economic Review 58:773-787.

Pegels, C. C. 1969. Exponential Forecasting: Some New Variations. Management
Science 15:311-315.



54 Hierarchical Forecasting System for Inflation Rate and Volatility

Quah, D. 1994. One Business Cycle and One Trend From (Many,) Many Disaggregates.
European Economic Review 38:605-614.

Ridge, M., and S. Smith. 1991. Local Taxation: The Options and the Arguments.
IF'S Report Series No. 38, Institute for Fiscal Studies.

Russell, B., and A. Banerjee. 2008. The Long-Run Phillips Curve and Non-Stationary
Inflation. Journal of Macroeconomics 30:1792-1815.

Shaikh, E. A., and R. B. M. Salam. 2014. Inflation Volatility Using GARCH-Family
Models: Empirical Evidence from Pakistan. Journal of Contemporary Issues in
Business Research 3:168-173.

Shlifer, E., and R. W. Wolff. 1979. Aggregation and Proration in Forecasting.
Management Science 25:594-603.

Stock, J. H., and M. W. Watson. 2004. Combination Forecasts of Output Growth in
a Seven-Country Data Set. Journal of Forecasting 23:405—430.

Stock, J. H., and M. W. Watson. 2008. Phillips Curve Inflation Forecasts. NBER
Working Paper No. 14322, National Bureau of Economic Research.

Taieb, S. B., J. W. Taylor, and R. J. Hyndman. 2017. Coherent Probabilistic Forecasts
for Hierarchical Time Series. Proceedings of the 34th International Conference on
Machine Learning (ICML) .

Taylor, J. W. 2003. Exponential Smoothing with a Damped Multiplicative Trend.
International Journal of Forecasting 19:715-725.

Thomakos, D., and K. Nikolopoulos. 2014. Fathoming the Theta Method for a Unit
Root Process. IMA Journal of Management Mathematics 25:105-124.

Tiao, G. C., and . Guttman. 1980. Forecasting Contemporal Aggregates of Multiple

Time Series. Journal of Econometrics 12:219-230.

Van Erven, T., and J. Cugliari. 2015. Game-Theoretically Optimal Reconciliation
of Contemporaneous Hierarchical Time Series Forecasts. In A. Antoniadis, J.-M.
Poggi, and X. Brossat (eds.), Modeling and Stochastic Learning for Forecasting
in High Dimensions, Lecture Notes in Statistics Vol. 217, pp. 297-317. Paris:
Springer.



2.7 References 55

Wickramasuriya, S. L., G. Athanasopoulos, and R. J. Hyndman. 2017. Optimal
Forecast Reconciliation of Hierarchical and Grouped Time Series Through Trace

Minimization. Working paper, Department of Econometrics and Business Statistics,
Monash Business School.

Zellner, A., and J. Tobias. 2000. A Note on Aggregation, Disaggregation and

Forecasting Performance. Journal of Forecasting 19:457-465.



56 Hierarchical Forecasting System for Inflation Rate and Volatility

Appendix

2.A AIC Selection of Candidate GARCH-Type Models

Table 2.A1 shows AIC values of candidate GARCH-type models. In-mean variants
were also estimated, but are not presented due to the insignificance of the in-mean

effects in the output equations.

Table 2.A1 AIC Selection of GARCH-type Models.

Model AIC

Assuming Constant Variance of Residuals

SARIMA(1,0,1)(1,0,1)15 -9.082

Adjusting for Non-Constant Variance of Residuals

SARIMA(1,0,1)(1,0,1);,-GARCH(1,1)

Gaussian Error Distribution -9.388
Student’s t Error Distribution -9.384
Generalised Error Distribution -9.385

SARIMA(1,0,1)(1,0,1)1-EGARCH(1,1)

Gaussian Error Distribution -9.378
Student’s t Error Distribution -9.374
Generalised Error Distribution -9.375

SARIMA(1,0,1)(1,0,1).-CGARCH(1,1)

Gaussian Error Distribution -9.380
Student’s t Error Distribution -9.375
Generalised Error Distribution -9.376

Note that the EGARCH specification has not led to improvements over the
original GARCH specification for our sample. No evidence of a significant leverage
effect.

2.B Stationarity of Inflation Rates

It is worth discussing that none of the automated forecasting methods in the main
chapter require prior transformation to a stationary time series — ARIMA takes the

required number of differences within the estimation procedure, and exponential
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smoothing-based methods do not assume stationarity in the first place. In fact, every
ETS model is non-stationary (Hyndman and Athanasopoulos, 2014).

The use of such methods is appealing in general, but in particular in the inflation
context, due to the large stock of literature on the stochastic nonstationarity of
inflation rates that was sparked by the seminal paper of Nelson and Plosser (1982)
who claim that most macroeconomic time series have a stochastic trend. Empirical
studies that support this claim include: King et al. (1991), Lee (2005), Russell and
Banerjee (2008), and Arize (2011). This stochastic nonstationarity implies that a
shock to inflation has a permanent effect due to the presence of unit roots.

The nonstationary behaviour of inflation rates is not undisputed. Some authors
find that inflation rates satisfy stationary — for instance Culver and Papell (1997), and
Noriega et al. (2013) — which would mean that shocks to inflation are of transitory
nature and die off over time.

Testing for stationarity using our sample led to interesting results. We applied
both the KPSS test (a common test for stationarity) and the Augmented Dickey
Fuller test (a common test for the presence of a unit root). The test statistics are

presented in Table 2.B1 (p-values in brackets).

Table 2.B1 Results of Stationarity Test for UK RPI.

Test Full Sample Reduced Sample

ADF 590 (< 1%)  -6.34 (< 1%)
KPSS 0.71 (1.26%) 0.07 (> 10%)

While both tests indicated stationarity for the reduced sample that we used for
forecasting (discarding data before inflation targeting was introduced), the tests
give conflicting results when testing for the full sample: The KPSS test rejected
stationarity at the 5% level, but the ADF test rejected the presence of a unit root
even at the 1% level. This adds potential insight to the explanation why past research
has not come to a consensus view on the stationarity of inflation rates — structural
breaks can severely affect inference depending on what kind of test is used (e.g. Lee
et al., 1997; Noriega and de Alba, 2001). This constitutes an interesting topic for
future research, but exceeds the scope of our main chapter; for us, it is important
that issues linked to stationarity do not jeopardise the validity of our forecasting
results, which is satisfied as (a) none of our forecast methods require stationarity,
and (b) we work with a reduced subsample that does not show any evidence of
non-stationarity. Designing a hierarchical structural break model for the inflation

rate is a topic for future research in the field; our switching model in the main chapter
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is a promising first step in this direction that allows for temporary changes in the
volatility regime and should be used as starting point for the design of a hierarchical
inflation forecasting model that can accommodate both transitory and permanent

shocks at different levels of aggregation.

2.C Directionality of Causation

The main chapter motivated the design of a joint forecasting system of inflation
rate and volatility with previous research in the field on the relationship between
these two variables. While there is a heated debate on the directionality of causation
between inflation rate and inflation volatility, it is accepted that both are strongly

interlinked, which clearly makes separate models for these variables suboptimal.

The purpose of this chapter was the design of such a joint forecasting system,
rather than solving the feud between the “Friedman-Ball” and “Cukierman-Meltzer”
hypotheses. Nevertheless, it is worth discussing how our modelling approach and
results are linked to this strand of research: Our first approach is by and large
based on the “Friedman-Ball” hypothesis — we forecast inflation rates at the different
aggregation levels and use these forecasts to inform the volatility model; this model
does not take into consideration the possibility that inflation volatility can also
have an impact on inflation rates. Hence, this first model is a step-wise model,
rather than a joint forecasting system. Our second approach, the dynamic switching
model, resolves this by allowing inflation volatility to affect the inflation rate forecast
(through the selection of a forecasting model for the mean).

The finding that incorporating the mean forecasts into the variance model can
improve accuracy suggests that inflation rate causes inflation volatility to some extent
(“Friedman-Ball” hypothesis). The finding that the dynamic switching model does
not lead to only one ‘best’ forecasting model irrespective of volatility suggests that
volatility has a causal effect on inflation rate (“Cukierman-Meltzer” hypothesis). Our
results therefore support the findings of Kim and Lin (2012) of a bi-directional causal
relationship between these two variables, a feedback mechanism.

The hypothesis of a bi-directional causality between inflation and inflation volatil-
ity is further supported by a causality test for our sample: We first estimated a
VAR(12) model?®; and subsequently performed Granger causality tests. The null
hypothesis of this test is that Variable 1 does not Granger-cause Variable 2, so a

A lag order of 12 was indicated by optimising AIC.
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significant p-value indicates causality — for both directions, the p-value was significant
at the 1 % level (Table 2.C1).

Table 2.C1 Results of Granger Causality Test for inflation rate and volatility.

Direction of Causation Test Statistic = p-value
Infl. Rate — Infl. Vol. 4.97 8.23 x 1078
Infl. Vol. — Infl. Rate 2.35 0.62%







Chapter 3

Forecast Combination in R Using
the GeomComb Package

3.1 Introduction

9

In the business of time series forecasting, accuracy is key. The advent of “black-box’
statistical learning methods (such as Artificial Neural Networks) testifies to the fact
that forecasting practitioners and researchers alike tend to favour accuracy over
explainability of a forecast model. There is a strong consensus in the social sciences
that the observed processes are too complex to be modelled perfectly. Excluding
some natural sciences, it is generally undisputed that the underlying data-generating
process (DGP) is unknown. Hence, statistical models are habitually too simple,
mis-specified, and/or incomplete; a fact that is widely accepted in theory, but less
widely applied in practice, in the field of econometrics, in which researchers often
still hang on to the conceptual error of assuming one true DGP and putting too
much focus on model selection to find the one true model. Hansen (2005) takes
note of this and related misconceptions of econometric forecasting practice in his
essay on the challenges for econometric model selection: “models should be viewed

as approximations, and econometric theory should take this seriously”

Following the advice in Hansen (2005), we abandon the quest for the one true
correctly specified model, so that we are free to include information from different
models. In the context of forecasting, this means combining forecasts from different
sources (models, experts). This emphasises the aforementioned shift in approaching
practical econometric forecasting problems: model mis-specification cannot be fully

rectified, but strategies can be found to mitigate its adverse effects on forecast quality.
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Selecting a single “best” forecasting model bears the risk of ending up with a model
which is only accurate when evaluated using some validation sample, yet might prove
unreliable when applied to new data. In the past decades, ample empirical evidence
on the merits of combining forecasts has piled up; it is generally accepted that
the (mostly linear) combination of forecasts from different models is an appealing
strategy to hedge against forecast risk. Even though reduction of forecast risk is
the main argument for using combined forecasts, it should also be noted that there
are cases when combined forecasts are more accurate than even its best component
(e.g. Graefe et al., 2014). While this is not theoretically founded, it is somewhat
intuitive that in a continuously changing environment different forecasting models
deliver different results at different time periods. For example, it is reasonable for
one method to perform well in a low-volatility regime, and for another method to
perform poorly in that regime, but perform well in a high-volatility regime. Strong
empirical support for this argument of change in relative performance of different
methods over time is found among others by Elliott and Timmermann (2005).

“Hedging” against model risk by combining different forecasts is intuitive and
appealing. Joined with accuracy gains, the idea is widely adopted in macroeconomics
and finance, with application abound. Magnus and Wang (2014) explore growth de-
terminants, Stock and Watson (2004) use forecast combination for output forecasting,
Wright (2009) and Kapetanios et al. (2008) for inflation forecasting, Avramov (2002),
Rapach et al. (2010) and Ravazzolo et al. (2007) for forecasting stock returns, Wright
(2008) for exchange rate forecasts, Andrawis et al. (2011) for forecasting inbound
tourism figures, Nowotarski et al. (2014) and Raviv et al. (2015) for electricity price
forecasting, and Weiss (2017) for healthcare demand forecasting. More recently,
forecast combinations have been applied not only in “first moment” applications, but
for higher moments as well. For example in Christiansen et al. (2012) for volatility
forecasting, and Opschoor et al. (2014) for Value-at-Risk forecasting.

The theoretical foundations of forecast combination date back five decades to
the seminal papers of Crane and Crotty (1967) and Bates and Granger (1969).
Yet even in the recent past, papers discussing new combination techniques are
published in reputable journals and stimulate further research still (Hansen, 2007,
2008; Hansen and Racine, 2012; Elliott et al., 2013; Morana, 2015; Cheng and Yang,
2015). Two extensive reviews of the literature, techniques and applications of forecast
combinations are Clemen (1989) and Timmermann (2006).

Given the topic’s popularity in both theoretical and empirical research, it is

somewhat surprising that very few combination techniques are readily available in R:
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There are some packages that cover specialised specific topics related to combination
methods, e.g. the BMA package by Raftery et al. (2017) for Bayesian model averaging,
as well as the opera package by Gaillard and Goude (2016) and the forecastHybrid
package by Shaub and Ellis (2017). However, as of now the only two R packages that
are entirely devoted to forecast combination are the ForecastCombinations package
by Raviv (2015), which focuses on regression-based combination methods, and the
GeomComb package by Weiss and Roetzer (2016), which focuses on geometric,
eigenvector-based combination methods. With the aim of improving user experience
we have merged these two packages, providing one unified package for the widest
range of forecast combination approaches available today in R. The package is flexible
and provides enough guidance for users familiar or unfamiliar with the world of
forecasting. We have made both regression-based and eigenvector-based combination
methods available to users in a single standardised framework based on S3 classes
and methods. The logic behind this choice is that comparing regression-based and
eigenvector-based combination methods is often insightful — as pointed out by Hsiao
and Wan (2014), the conditions under which these two approaches perform well differ
from each other: regression-based methods tend to produce more accurate forecasts
when one or a few of the individual forecasts are considerably better than the rest,
while eigenvector-based methods perform better when the individual forecasts are
in the same ballpark. This paper presents the functionalities made available in the
package and demonstrates how to implement them in an empirical exercise.

The GeomComb package was created in version 3.2.5 of R, and imports the
following packages: forecast, ggplot2, Matrix, mtsdi, psych, quantreg, quadprog,
and utils. It is available from the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/web /packages/GeomComb /index.html.

The remainder of this paper is structured as follows. Section 3.2 reviews the
forecast combination methods that are available in the GeomComb package, Section
3.3 provides a detailed implementation description using the package. Section 3.4
presents an empirical example — we combine univariate time series forecasts for UK

energy supply. Section 3.5 concludes.

3.2 Forecast combinations

To fix notations, denote Fryp as the matrix of forecast with dimension T" x P where
T is the number of rows and P is the number of columns (so we have P forecasts at

each point in time). Denote f; as the forecast obtained using model i, ¢ € {1... P}.


https://cran.r-project.org/web/packages/GeomComb/index.html
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When there is no danger of confusion, we omit the additional subscript ¢ which
denotes the time dimension of the forecast. Some combination methods require an
ordering of the component forecasts. When this is the case, f(;) denotes the ith order
statistic of the cross-section of component forecasts. Finally, the weight given to
that forecast in the overall combined forecast is denoted as w;, and the combined

forecast as f¢.

3.2.1 Frequently used schemes for forecast combinations
Simple Combination Methods

1. Simple Average. The most intuitive approach to combine forecasts is using
the average of all those forecasts. Over the years this innocent approach has
established itself as an excellent benchmark, despite or perhaps because of its
simplicity (e.g. Genre et al., 2013). The combined forecast is straightforwardly
given by

e 1
=St (31)

Clemen (1989) argues that this equal weighting of component forecasts is often
the best strategy in this context. This is still true almost thirty years later
and called the “forecast combination puzzle”, a term coined by Stock and
Watson (2004). A rigorous attempt to explain why simple average weights
often outperform more sophisticated forecast combination techniques is pro-
vided in a simulation study by Smith and Wallis (2009), who ascribe this
surprising empirical finding to the effect of finite-sample error in estimating the
combination weights. Recently, Claeskens et al. (2016) provide a theoretical
argumentation to these empirical findings. The authors make the fine case that
lower estimation noise, when the weights are determined rather than estimated,
goes a long way in explaining the puzzle. A more detailed overview of the
empirical support for the “forecast combination puzzle” can be found in Graefe
et al. (2014).

2. Median. Another fairly simple and appealing combination method is using
the median of the component forecasts. The median is insensitive to outliers,

which can be relevant for some applications. Palm and Zellner (1992) suggest
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that simple averaging may not be a suitable combination method when some of
the component forecasts are biased. This calls for the use of another location
measures which is robust to outliers. The median method is an appealing,
rank-based combination method that has been used in a wide range of empirical
studies (e.g. Armstrong, 1989; McNees, 1992; Hendry and Clements, 2004; Stock
and Watson, 2004; Timmermann, 2006).

For the median method, the combined forecast is given by:

e For odd P:
fe= f(§+0.5) (3.2)
e For even P:
1
1= 5 (e + figan) (3:3)

3. Trimmed Mean. Another outlier-robust location measure that is commonly
used is the trimmed mean (e.g. Armstrong, 2001; Stock and Watson, 2004;
Jose and Winkler, 2008).

Using a trim factor A (i.e. the top/bottom 100 x A% are trimmed) the combined

forecast is calculated as:

1 (1-\)P
fo = — fu 3.4
P(1—2)) iz%;ﬂ ® (3-4)

Typically, we use A = 0.1 indicating we trim the top and bottom 10% of the
most extreme component forecasts, excluding those from the computation of
the combined forecast. The trimmed mean is an interpolation between the

simple average (A = 0) and the median (A = 0.5).

4. Winsorised Mean. Like the trimmed mean, the winsorised mean is a robust
statistic that is less sensitive to outliers than the simple average. It takes a
softer line when handling outliers: Instead of altogether removing them as in the

trimmed mean approach, it caps outliers at a certain level. By capping outliers
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rather than removing them, we allow for at least some degree of influence.

For this reason, the measure is sometimes preferred, for example by Jose and

Winkler (2008).

Let A be the trim factor (i.e. the top/bottom 100 x A% are winsorised) and
K = AP. The combined forecast is then calculated as:

1 P-K
fo==|Kfkxsny+ Y. Kfir-x (3.5)
P i=K+1

. Bates/Granger (1969). In their seminal paper, Bates and Granger (1969)

introduced the idea of combining forecasts. Their approach builds on portfolio
diversification theory and uses the diagonal elements of the estimated mean

squared prediction error matrix in order to compute combination weights:
2 .
Z fix A( ) (3.6)
o

where 62(i) is the estimated mean squared prediction error of model 4.

The approach ignores correlation between component forecasts due to difficulties

in precisely estimating the covariance matrix.

. Newbold/Granger (1974 ). Building on the earlier research by Bates and Granger

(1969), the methodology of Newbold and Granger (1974) also extracts the

combination weights from the estimated mean squared prediction error matrix.

Let ¥ be the mean squared prediction error matrix of Fyyxp and e be a P x 1
vector of (1,1,...,1)". Newbold and Granger (1974)’s method is a constrained
minimisation of the mean squared prediction error using the normalisation

condition €'w = 1. This yields the following combined forecast:

Y le

f _FNXPX /- 16

(3.7)

While the method dates back to Newbold and Granger (1974), the variant

of the method we use in the GeomComb package does not impose the prior
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restriction that ¥ is diagonal. This approach, used by Hsiao and Wan (2014),

is a generalisation of the original method.

7. Inverse Rank. The inverse rank approach, suggested by Aiolfi and Timmermann
(2006), ranks the forecast models based on their performance up to time N.
The model with the lowest mean squared prediction error is assigned the rank
1, the model with the second lowest mean squared prediction error is assigned

the rank 2, etc. The combined forecast is then calculated as follows:

P Rank:*
=N fiX = 3.8
! a fi % P | Rank;' (3:8)

Timmermann (2006) points out that this method, just like Bates and Granger
(1969), also ignores correlations across forecast errors. However, the method is
more robust to outliers, since total rankings are not likely to change dramatically

by the presence of extreme forecasts.

Regression-based Combination Methods

8. Ordinary Least Squares (OLS) regression. The idea to use regression for com-
bining forecasts was put forward by Crane and Crotty (1967) and successfully
driven to the forefront by Granger and Ramanathan (1984). Using this ap-
proach, the combined forecast is a linear function of the individual forecasts
where the weights are determined using a regression of the individual forecasts

on the target itself:

P
y:a%—Zwifi—l—s, (3.9)

=1

Using a portion of the forecasts to train the regression model, the OLS coef-
ficients can be estimated by way of minimising the sum of squared errors in

equation(8). The combined forecast is then given by:

P
fe=a+) wfi (3.10)
i=1

An advantage of the OLS forecast combinations is that the combined forecast

is unbiased due to the intercept in the equation, even if one of the individual
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forecasts is biased. A disadvantage is that the method places no restriction on
the combination weights (i.e. they do not add up to 1 and can be negative),

which complicatesinterpretation, especially if the coefficients are non-convex.

9. Least Absolute Deviation (LAD) regression. While the OLS regression minimises
the coefficients in equation (3.10) by minimising the sum of squared errors,
we may want to estimate those coefficients differently, minimising a different
loss function?, for example the absolute sum of squares. The reason is best
explained using an example: Assume we have a model that performs well in
general, yet every now and then misses the target by a very large margin.
Such a model would be weighted more heavily under the LAD scheme than
under the OLS scheme since those large but infrequent errors will be more
heavily penalised using OLS. Whether this is beneficial depends on the user’s
preference and/or the cost of missing the target given the problem at hand. It
should be noted that this lower sensitivity to outliers has another advantage:
OLS weights can be unstable when predictors are highly correlated, which is
the norm in forecast combination. Minor fluctuations in the sample can cause
major shifts in the coefficient vector (‘bouncing betas’), often leading to poor
out-of-sample performance. This suggests that LAD combination should be
favoured in the presence of highly correlated component forecasts (Nowotarski
et al., 2014).

10. Constrained Least Squares (CLS) regression. Like the LAD approach, CLS
addresses the issue of ‘bounding betas’. It does so by minimising the sum of
squared errors under some additional constraints. Specifically, we constrain
the estimated coefficients {w;}, allowing only for positive solutions: w; > 0 Vi,
and to sum up to one: 3.7  w; = 1. The solution requires numerical minimisa-
tion, but good optimisation algorithms are readily available: The GeomComb
package relies on the function solve.QP available from the quadprog package
(Turlach and Weingessel, 2013). To tackle problems with high (but imperfect)

collinearity that can cause errors in the CLS estimation, we also implement

Lif the combination of two individual forecasts is not convex, the resulting combined forecast will
not necessarily lie between those individual forecasts. As an example, we can look at the first quarter
(2014 or 2015) GDPplus series estimate, published by the Federal Reserve Bank of Philadelphia. The
combined prediction of two individual estimates of the US GDP; one based on the expenditure-side
and one based on the income-side, lied above the sum of those two estimate. Intuitively, this is hard
to communicate (https://www.philadelphiafed.org/research-and-data/real-time-center /gdpplus).

2For a discussion of optimal forecast combinations under general loss functions, see Elliott and
Timmermann (2004)


https://www.philadelphiafed.org/research-and-data/real-time-center/gdpplus
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11.

a revised Cholesky decomposition based on Ridge regression which has been
proposed by Babaie-Kafaki and Roozbeh (2017) and can mitigate issues with

multicollinearity.

Theoretically, the additional constraints set CLS sub-optimally compared to
the OLS. It lacks the good asymptotic properties admitted by OLS. However,
in practice it is often found to perform better, especially so when the individual
forecasts are highly correlated. In addition, the CLS weights are more easily
interpretable. It is hard to justify a non-convex linear combination of two
forecasts, while CLS weights can be conveniently interpreted for example as

percentages devoted to each of the individual forecasts.

Complete subset regression. The GeomComb package allows the relatively new
idea of computing forecast combination weights using complete subset regression.
The underlying idea is relatively straightforward: With P component forecasts
that can serve as predictors in the regression model, we can form n regression
models, each with a unique subset of predictors. n, the total number of

combined forecasts from regression models is given by

c(p P
":;<z) :;ﬂ(P—i)! (3:11)
In the most basic variant, the final combined forecast is obtained by taking
the simple average over the cross-section of these n combined forecasts from
complete subset regressions. The method is proposed by Elliott et al. (2013)
who develop the theory behind this estimator and present favourable results
from simulations and empirical application for US stock returns. Admittedly,
the scheme is computationally expensive, and thus additional computational
resources may be required if P is in the dozens (Elliott et al. (2013), Section
2.5.1 proposes a workaround based on random sampling from P). Additionally,
since all n forecasts are returned, the user can freely refine the technique further
— for example by choosing not to average over all n forecasts, but some partial
subset. Using the median instead of the mean is another option that comes to

mind.

Obtaining n combined forecasts from the complete subset regression also
allows us to use a frequentist approach to forecast combination, also known
as information-theoretic forecast combinations. In the GeomComb package,

several information criteria are available in the complete subset regression
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method, each with its own merits and weaknesses: By far the most common are
the AIC (Akaike’s information criterion) and the BIC (Bayesian information
criterion, also known as the Schwarz information criterion). Both are supplied
in addition to the corrected AIC (Hurvich and Tsai, 1989) and the Hannan

Quinn information criterion (Hannan and Quinn, 1979).

Formally, the weight given to each forecast based on the information-theoretic

forecast combinations is the following:

o exp(—1/20;)
bOYexp(—1/20)

(3.12)

where p; is the information criterion for forecast ¢ obtained using a regression
with a specific combination of forecasts. The value of n is fixed as the number

of possible combinations, and the combined forecast is given by:

o= szﬁ (3.13)
i=1

It is worth noting that this is a two-step combination method. The first
step is the computation of n combined forecasts ﬁ using the complete subset
regression method with the original P forecasts as predictors; the second step
is the combination of these combined forecasts using the weights based on

information criteria.

One advantage of this frequentist approach to model averaging is that the
amount of shrinkage enforced on each individual forecast is data driven. The
specification of a shrinkage hyper-parameter, which is required in the corre-
sponding Bayesian framework (e.g. Raftery et al., 2017) is spared from the user

in this case.

Eigenvector-based Combination Methods

The eigenvector-based forecast combination methods, proposed by Hsiao and Wan

(2014), are based on the idea of minimising the mean squared prediction error subject

to a normalisation condition.

The most commonly used normalisation condition for this purpose is to require the

combination weights to add up to one, i.e. 3 w; =1 (e.g. Newbold and Granger,
1974; Timmermann, 2006). Hsiao and Wan (2014) show that this normalisation

condition leads to a constrained minimum of the mean squared prediction error
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(MSPE), and propose a normalisation condition that leads to an unconstrained
minimum of the MSPE:

P
S w?=1 (3.14)
i=1

This unconstrained minimum of the MSPE is the basis of the four eigenvector-

based approaches in the GeomComb package.

12.

13.

Standard Figenvector Approach. The standard eigenvector approach retrieves
combination weights from the estimated MSPE matrix as follows: The P
positive eigenvalues of the MSPE matrix are arranged in increasing order
(P1 = Dyin, Po, ..., Pp), and k; denotes the eigenvector corresponding to ®;.

Let d; = €'k; with e being a P x 1 vector of (1,1,...1)". The combination

‘bl CI>2 <I>p)7

weights w are then chosen corresponding to the minimum of (E’ B d

denoted as k;, as:

1
w = Ellil (3.15)

The combined forecast is then obtained as usual:

P
fc = Zlewz (316)
=1

Bias-Corrected Eigenvector Approach. The bias-corrected eigenvector approach
builds on the idea that if one or more of the component models yield biased
forecasts, the accuracy of the standard eigenvector approach can be improved
by eliminating the bias. It modifies the standard approach by decomposing
forecast errors into three parts: model-specific bias, omitted common factors
of all component models, as well as an idiosyncratic part that is uncorrelated

across the component models.

The optimisation procedure to obtain combination weights coincides with the
standard approach, except that we use as an input the centered MSPE matrix,

i.e. after extracting the bias by subtracting the column means of the MSPE:

w= =y (3.17)
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14.

15.

where dNi and K; are defined analogously to d; and k; in the standard eigenvector
approach with the only difference that they correspond to the spectral decom-
position of the centered MSPE matrix rather than the original (uncentered)
MSPE matrix.

The combined forecast is then obtained by:

P
ff=a+> flw (3.18)
i=1
where the intercept « corrects for the potential bias.

Trimmed Eigenvector Approach.

The standard approach is highly sensitive to the disparities in performance
of different predictive models, i.e. the standard eigenvector approach’s per-
formance could be severely impaired by one or more component models that
produce poor forecasts. This is due to treating uncertainties in the actual
series, y, and the uncertainties of the component models, Fiy«p, symmetrically.
For a detailed discussion of this so-called orthogonality principle, see Section 3
in Hsiao and Wan (2014). The trimmed eigenvector approach takes note of

this issue.

The idea of trimming the pool of input forecasts has been used by Aiolfi and
Timmermann (2006) and is picked up by Hsiao and Wan (2014) using the
eigenvector framework — the weights are computed exactly as in the standard
eigenvector approach, but based on the MSPE matrix of the trimmed forecasts,

after discarding particularly bad component models.

Trimmed Bias-Corrected Eigenvector Approach. The underlying methodology
of the trimmed bias-corrected eigenvector approach is the same as the bias-
corrected eigenvector approach: The weights are retrieved through the spectral

decomposition of the centered MSPE matrix.

The only difference to the bias-corrected eigenvector approach is that this
method, like the trimmed eigenvector approach, pre-selects component models
that serve as input for the forecast combination; only a subset of the available
forecast models is retained, while the models with the worst performance are
discarded, thereby combining the favourable modifications of the previous two

methods.
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3.3 Implementation

Table 3.1 Summary of the Main Functions Available in the GeomComb Package.

Function Description

Data Preparation Functions

foreccomb Transform raw input data for forecast combination
cs_dispersion Compute cross-sectional dispersion

Forecast Combination Functions
Stmple Methods

comb_BG Bates/Granger (1969) forecast combination

comb_InvW Inverse Rank forecast combination

comb_MED Median Forecast Combination

comb_NG Newbold/Granger (1974) forecast combination

comb_SA Simple Average forecast combination

comb_TA Trimmed Mean forecast combination

comb_WA Winsorised Mean forecast combination

Regression-Based Methods

comb_CLS Constrained Least Squares forecast combination

comb_CSR Complete Subset Regression forecast combination

comb_LAD Least Absolute Deviation forecast combination

comb_0OLS Ordinary Least Squares forecast combination

Eigenvector-Based Methods

comb_EIG1 Standard Eigenvector forecast combination

comb_EIG2 Bias-Corrected Eigenvector forecast combination

comb_EIG3 Trimmed Eigenvector forecast combination

comb_EIG4 Trimmed Bias-Corrected Eigenvector forecast com-
bination

Other Methods

auto_combine Automated grid-search forecast combination

rolling combine Rolling forecast combination (time-varying

combination weights)

Post-Fit Functions

plot.foreccomb_res 383 method to plot results from a forecast combina-
tion model

summary.foreccomb_res S3 method — summary of the forecast combination
estimation

The main functions provided in the GeomComb package can be classified in 3

categories:

» Data Preparation
o BEstimation of Forecast Combination

e Post-Fit Presentation of Results
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In addition, some auxiliary functions are provided. Table 3.1 provides a list of

the main functions.

3.3.1 Data Preparation

The GeomComb package considers as a starting point that the user has already
obtained a set of component forecasts, either from survey data or using statistical
techniques, and now seeks to improve accuracy by combining those component
forecasts into one. If the user only has the actual time series data, other packages in
R can be used to create a set of component models. For instance, the forecast Hybrid
package by Shaub and Ellis (2017) which creates several univariate forecasts using
methods available in the mature and popular forecast package (Hyndman, 2017).

The method foreccomb is the workhorse in the data preparation step. It supports
the user with transforming the raw input data to make sure that the estimation of
the forecast combinations will run smoothly.

The call of foreccomb is:

foreccomb(observed_vector, prediction matrix, newobs = NULL,
newpreds = NULL, byrow = FALSE, na.impute = TRUE,

criterion = "RMSE")

The function requires user input for the parameters observed_vector (a vector,
the actual data) and prediction_matrix (a matrix, the set of component forecasts
to be combined). The format of the input matrix is as follows: Each column contains
the forecasts from one of the P component models. Each row corresponds to the
cross-section of component forecasts at a specific point in time. A situation where
the format of the data is reversed, meaning that rows correspond to forecast models
and columns correspond to the time index, is handled by setting the argument byrow
= TRUE.

The foreccomb function includes some convenient features that take note of the
fact that in many cases combination methods are applied to survey forecasts and the

challenges that come along with this:

o Split into Training Set and Test Set. The function allows the user to spec-
ify a training set (observed_vector and prediction_matrix)and a test set
(newobs and newpreds) separately. This is useful since most combination

functions have to estimate the weights (requiring part of the sample to be
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dedicated to that task), while it is recommended that a test set is available to

evaluate the model’s performance on “new” data.

o Missing Value Imputation. Survey forecasts usually include missing values.
This can be either because some of the survey participants did not respond
or because the set of survey participants is changed. The foreccomb function
provides two alternatives to deal with missing values: The default option
(na.impute = TRUE) uses the missing value imputation algorithm from the
mtsdi by Junger and de Leon (2012). It is a modified version of the EM
algorithm for imputation that is specifically adjusted for multivariate time
series data, accounting for correlation between the forecasting models and
the time structure of the series itself. A smoothing spline is fitted to each of
the time series at every iteration and the degrees of freedom of each spline
are chosen by cross-validation. Alternatively, the argument can be set to
na.impute = FALSE, which means the component forecast models that include
any missing values are dropped prior to estimating forecast combinations, and

the user is notified in the console if so relevant.

e Handling Multicollinearity. More often than not component forecasts that
are used in the forecast combination are highly correlated. This can trouble
the estimation process which does not handle well perfect collinearity. The
foreccomb function has an inherent algorithm that checks the set of compo-
nent forecasts for perfect multicollinearity, and if detected, drops one of the
component models from the input data. The algorithm is designed to minimise
the cost of dropping one or more models from the input data, in the sense
that out of the models that cause perfect multicollinearity, it drops the least
accurate forecast model. By default, Root Mean Squared Error (RMSE) is
used as the accuracy metric, but alternatively the user may choose the Mean
Absolute Error (MAE) or the Mean Absolute Percentage Error (MAPE) by

changing the argument criterion.

The output of the foreccomb function is an object of S3 class foreccomb that
can be passed on to the estimation functions or the other auxiliary functions, for
instance the function cs_dispersion which computes the cross-sectional dispersion
of the set of component forecasts.

This is often helpful for selecting a suitable combination method: One of the

main findings of Hsiao and Wan (2014) is that regression-based methods produce
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more accurate forecasts when one or a few of the component forecasts are much
better than the rest, while eigenvector-based methods perform better when there is
low dispersion among the component forecasts. The cs_dispersion function can
be used to compute and plot this cross-sectional dispersion using standard deviation

(default), interquartile range, or range.

3.3.2 Estimation of Forecast Combination

The package provides the user with functions for the 15 estimation techniques for
combined forecasts, which were described in Section 3.2. The estimation functions
require an object of S3 class foreccomb as input, which is obtained using the methods
from the previous subsection.

Four of the methods include trimming, i.e. a pre-selected subset of the full set of
component models that should be used in the estimation of combination weights.

These are:

o Trimmed Mean (comb_TA)
« Winsorised Mean (comb_WA)

o Trimmed Eigenvector Approach (comb_EIG3)

Trimmed Bias-Corrected Eigenvector Approach (comb_EIG4)

For these methods, the user has some flexibility. The package provides the option
to set the trimming factor (or, for the eigenvector methods, the number of retained
component models) manually. Otherwise, an inbuilt optimisation algorithm is used
for choosing the trimming factor such that the combined forecast has the best possible
fit. Again, this optimisation can be based on either RMSE, MAE, or MAPE, which
are controlled by the argument criterion.

A simple simulation example:

R> actual <- rnorm(100)
R> forecasts <- matrix(rnorm(1000, 1), 100, 10)

R> input_data <- foreccomb(actual, forecasts)

R> # Manual Selection of Trimming Factor:

R> modell <- comb_TA(input_data, trim factor = 0.3)
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R> # Assess accuracy of the combined forecast:

R> modell$AccuracyTrain

ME RMSE MAE MPE  MAPE ACF1 Theil’s U
Training Set -1.07 1.52 1.27 146.41 486.35 -0.04805 1.698456

R> # Algorithm-Optimised Selection of Trimming Factor:
R> model2 <- comb_TA(input_data, criterion = "RMSE")

Optimisation algorithm chooses trim factor for trimmed mean approach.

Algorithm finished. Optimised trim factor: 0.1

R> # Assess accuracy of the combined forecast:

R> model2$AccuracyTrain

ME RMSE MAE MPE  MAPE ACF1 Theil’s U
Training Set -1.06 1.51 1.27 134.72 489.43 -0.03678 1.692617

As can be seen, the automated selection of the trimming factor leads to an
improved accuracy of the combined forecast.

The 15 methods included in the package all produce static combination weights,
i.e. the models use the training set data to estimate combination weights, which
will in turn be applied to all periods of the test set. The research community in the
forecasting field is strongly divided in the assessment of the value of time-varying
combination weights, since putting higher weights on more recent data tends to
increase the parameter variance. Section 4.1 in Timmermann (2006) reviews the
advantages and challenges of allowing for time-varying weights.

While the GeomComb mainly uses time-invariant combination weights, the user
is provided with some flexibility. The rolling combine function allows for the
estimation of each of the methods with time-varying weights. The approach builds
on the idea of time series cross-validation (Bergmeir et al., 2015), using the provided
training set as a departure point to estimate starting weights, and then increasing

the training set one step at a time and re-estimating the weights for the remaining
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test set. However, this approach requires that the user provides a full test set, i.e.

also providing observed values for the test set.

Finally, the package carefully considers not only experienced forecasting re-
searchers or professionals. Exploring a wide range of combination techniques can be
a daunting task for inexperienced forecasters. Therefore, the function auto_combine
provides a quick and painless alternative. The function is based on a grid-search
optimisation that returns the combined forecast with the best in-sample accuracy

(using RMSE as accuracy metric in the default setting).

Table 3.2 Output Components of the Forecast Combination Estimation Methods.

Output Description

For all methods

Method Returns the used forecast combination method

Models Returns the individual input models that were used
for the forecast combinations

Weights Returns the combination weights obtained by ap-
plying the combination method to the training set

Fitted Returns the fitted values of the combination
method for the training set

Accuracy_Train Returns a range of accuracy measures for the training set

Forecasts_Test Returns forecasts produced by the combination method for
the test set. Only returned if input included a forecast matrix
for the test set

Accuracy _Test  Returs a range of accuracy measures for the test set. Only
returned if input included a forecast matrix and a vector of
actual values for the test set

Input_Data Returns the data forwarded to the method

Only for comb_TA and comb_WA

Trim Factor Returns the trim factor, A

Only for comb_OLS, comb_LAD, comb_EIG3 and comb_EIGY

Intercept Returns the intercept (bias correction)

Only for comb_EIG3 and comb_EIG/,

Top_Predictors Number of retained predictors

Ranking Ranking of predictors that determines which models are re-
moved in the trimming step
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All of the estimation methods return an object of S3 class foreccomb_res with
the components presented in Table 3.2. The object can subsequently be passed on

to post-fit functions.

3.3.3 Post-Fit Functions

Results from the estimation of combined forecasts can be passed on to two post-fit
convenience functions: summary and plot, which are S3 methods specific to the class
foreccomb_res.

The summary function displays the output of the respective forecast combination
in concise form, it displays the estimated combination weights (and the intercept, if
the combination method includes one), as well as accuracy statistics for the training
set and the test set.

The plot function will produce different plots based on the input data. If only a
training set was provided, it plots the actual versus the fitted values; if a test set was
also provided, it plots the combined forecasts as well. Another option for the user is
a plot of the combination weights®, obtained by setting which = 2 in the function
call. For the case of dynamic estimation, an additional weights plot is implemented:

the evolution of the combination weights over time (which = 3).

3.4 UK Electricity Supply: An Empirical Exam-
ple

The GeomComb package includes the dataset electricity, which is a multivariate
time series of monthly UK electricity supply (in GWh) from January 2007 to March
2017, and 5 univariate time series forecasts for the same series and period. The
observed data series is sourced from the International Energy Agency (IEA, 2017).
The component models to be combined are the following cross-validated one-month

univariate forecasts in the dataset:

ARIMA (produced using the auto.arima function in the forecast package),
o ETS (produced using the ets function in the forecast package),

o Neural Network (produced using the nnetar function in the forecast package),

3In case the combined forecast is produced using time-varying combination weights, the weights
plot displays only the average weight of the respective component model over the test set period.
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o Damped Trend (produced using the ets function in the forecast package),

e Dynamic Optimised Theta Model (produced using the dotm function in the
forecTheta package by Fiorucci et al. (2016)).

To illustrate the functionalities of the package, we apply 4 combination tech-
niques: the simple average (comb_SA), the OLS regression (comb_0LS), the standard
eigenvector approach (comb_EIG1) and the trimmed bias-corrected eigenvector ap-
proach (comb_EIG4). The selected methods span all three categories of combination
techniques (statistics-based, regression-based, and eigenvector-based) and includes
trimmed and bias-corrected methods and are therefore suitable to show the full
functionality of the GeomComb package in this empirical context. using both the
static and dynamic version of each. For the selected combination methods, we
produce both static and dynamic forecasts, which gives us a total of 7 different time
series of combined forecasts (not 8, since the static and dynamic versions of the

simple average combination are identical).

UK Electricity Supply, 2007 - 2017
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Fig. 3.1 UK Electricity Supply, 2007 - 2017: Actual Value and Forecasts.

For the purpose of this exercise, we use the first 84 months as training set,
which leaves us with a test set size of 39. Figure 3.1 plots the actual series and the

univariate forecasts. The forecasts (which are 1-month forecasts obtained via time
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series cross-validation) track the actual series very well. None of them performs
exceptionally poorly compared with the rest, which are conditions that tend to
favour eigenvector approaches (Hsiao and Wan, 2014). As it is with most electricity
data, the main difference between the individual models is in their ability to quickly
recognise and adjust for turning points. For example, the neural nets model handles
turning points well, but sometimes also overshoots, while the ARIMA model has a
smoother behaviour around turning points.

First, we format the data correctly for the estimation of combination weights.
This step ensures that all later operations would proceed without any hiccups. Since
there are no missing values and no perfectly collinear columns in our dataset, this is

relatively straightforward:

R> data(electricity)

R> train.obs <- electricity[1:84, 6]

R> train.pred <- electricity[1:84, 1:5]

R> test.obs <- electricity[85:123, 6]

R> test.pred <- electricity[85:123, 1:5]

R> input_data <- foreccomb(train.obs, train.pred,

test.obs, test.pred)

Once the object of S3 class foreccomb is created, it can be fed into the estimation
functions. We can look at the cross-sectional dispersion, to get a better idea of

variability in the univariate forecasts.

R> cs_dispersion(input_data, measure = "SD", plot = TRUE)

Figure 3.2 shows that apart from a brief period of increased dispersion around
the end of 2009, the cross-sectional standard deviation of the component forecasts
is rather stable and low given the level of around 25,000 to 35,000 GWh. This
begs the question whether conditions have fluctuated enough during the test set so
that estimation of time-varying weights is beneficial, yet we proceed with it for this

demonstration.

R> ####### ESTIMATION OF STATIC FORECAST COMBINATIONS ########
R> SA <- comb_SA(input_data)

R> OLS_static <- comb_OLS(input_data)

R> EIG1 static <- comb_EIG1(input_data)

R> EIG4_static <- comb_EIG4(input_data, criterion = "MAE")
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Fig. 3.2 Cross-Sectional Standard Deviation of the Component Forecasts.

R> ###### ESTIMATION OF DYNAMIC FORECAST COMBINATIONS
R> OLS_dyn <- rolling combine(input_data, "comb_OLS")
R> EIG1_dyn <- rolling combine(input_data, "comb_EIG1")
R> EIG4 dyn <- rolling combine(input_data, "comb_ EIG4",

criterion = "MAE")

The 7 combined forecasts can be evaluated separately by looking at their summary

measures, which we present here for the static Ordinary Least Squares approach:

R> summary(OLS_static)

Summary of Forecast Combination

Method: Ordinary Least Squares Regression
Individual Forecasts & Combination Weights:
Combination Weight

arima 0.02152869
ets -0.20646266



3.4 UK Electricity Supply: An Empirical Example 83

nnet 0.20992792
dampedt -1.04349858
dotm 1.97991049

Intercept (Bias-Correction): 962.3229

Accuracy of Combined Forecast:

ME RMSE MAE MPE MAPE
Training Set -4.417560e-12 888.1433 697.8645 -0.08262472 2.254470
Test Set -4.007742e+01 671.5214 536.0331 -0.24705122 1.841961

Additional information can be extracted from the combination object:
For fitted values (training set): OLS_static$Fitted
For forecasts (test set): OLS_static$Forecasts_Test

See str(0OLS_static) for full list.

The output shows that the OLS combination puts an extremely high relative
weight on the forecast from the Dynamic Optimised Theta model, which seems to
be the best component forecast, which is rather surprising given that seasonality is
an important feature in the analysed series and Theta models cannot incorporate
seasonality into the estimation so far, relying on pre-estimation deseasonalising and
post-estimation reseasonalising. Table 3.3 shows a comparison of the accuracies
achieved by the combined forecasts. Since all forecasts are for the same series, it is

reasonable to use MAE as accuracy metric.

Table 3.3 Mean Absolute Errors of Combined Forecasts.

Method MAE Training Set MAE Test Set
Simple Average 819.28 573.39
Ordinary Least Squares (static) 697.86 536.03
Ordinary Least Squares (dynamic) 697.86 533.47
Standard Eigenvector (static) 821.60 573.84
Standard Eigenvector (dynamic) 821.60 572.99
Trimmed Bias-Corrected Eigenvector (static) 785.30 540.18
Trimmed Bias-Corrected Eigenvector (dynamic) 785.30 541.98

The evaluation of accuracy delivers some interesting insight: All of the com-
bination models perform better in the test set than in the training set, which is

counter-intuitive, but is likely due to the increased dispersion among the component
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forecasts in the early period. The results also clearly suggest that one or more of
the component forecasts were biased. The two methods with an intercept (i.e. bias
correction) perform best. Finally, allowing for time-varying combination weights
does not seem to change test-set accuracy much compared with the models’ static
counterparts, suggesting that the estimated combination weights did not fluctuate a
lot over time. There are some potential explanations why the OLS method performed

extremely well in this case:

« With such stable conditions the risk of ‘bouncing betas’ (described in Section
3.2) is low,

e The OLS method produces unbiased forecasts even if one or more of the
component forecasts are biased (which is why the trimmed bias-corrected

eigenvector approach performed reasonably well too),

e One of the component forecasts is much better than the rest, a situation that is
favourable for regression-based approaches, as pointed out by Hsiao and Wan
(2014). These are also conditions under which sophisticated methods actually

can largely improve upon a simple average combination.

Now that we learned that some of the combination models produced more accurate
forecasts than the simple average, we address the next, very natural question: How
well did the combination methods perform compared to the univariate component
forecasts themselves? To shed more light on this question, Table 3.4 shows the MAE

values for the univariate models during the test set period.

Table 3.4 Mean Absolute Errors of Univariate Component Forecasts.

Method MAE Test Set
ARIMA 770.32
ETS 615.88
Neural Network 730.35
Damped Trend 660.08
DOTM 540.24

The results of the accuracy evaluation speak for themselves. Not only did two of
the combined forecasts perform better or equally well as the best univariate forecast
over the test set period, but also the forecast risk is considerably lower indeed. In
the test set the range of MAESs of the different combined forecast methods is only

40, while the corresponding value for the univariate forecasting methods is 230. It is
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worth noting that all of the combined forecasts perform considerably better than even
the second-best univariate forecast, emphasising the appeal of forecast combination:
In the ideal case, it is possible to end up with a forecast that is better than the
best univariate forecast. Even if this is not the case, using forecast combination
considerably decreases the risk of ending up with a poorly performing model.
Finally, we take a closer look at the results from the best combined forecast,

which is the dynamic OLS combination method in this exercise.

R> ##### ACTUAL VS FITTED PLOT #####
R> plot (OLS_dyn)

Ordinary Least Squares Regression Forecast Combination
Actual vs. Fitted/Test Set Forecast
37500 -

I
|
|
35000 - I
|
|

Series

— ACTUAL

— COMBINED (FIT)

== COMBINED (FORECAST)
DOTM (FORECAST)

32500 -

30000 - }

!

25000 -

Fitted Values/Forecasts

Ordinary Least Squares Regression

0 12 25 37 49 62 74 86 98 111 123
Index

Fig. 3.3 Dynamic OLS Forecast Combination: Actual vs Fitted Plot.

R> ##### COMBINATION WEIGHTS #####
R> OLS_static$Weights

fhatarima fhatets fhatnnet fhatdampedt  fhatdotm
0.02152869 -0.20646266 0.20992792 -1.04349858 1.97991049

R> colMeans (OLS_dyn$Weights)
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fhatarima fhatets fhatnnet  fhatdampedt fhatdotm
0.002750948 -0.123811218 0.184846358 -1.098381593 2.001988985

R> par(mfrow = c(1,2))
R> plot(OLS_static, which = 2)
R> plot(OLS_dyn, which = 3)

Static OLS Regression: Dynamic OLS Regression:
Combination Weights Combination Weights

20
]

1.5

10

Combination Weight
05

Time-Varying Combination Weight

o | -
°© L] '
0 T T T T T
< 0 10 20 30 40
o | Test Set Period
' ARIMA

e 2 5 5 £ — EI8

= . = 4 s Neural Net

® § Damped Trend

DOT™M

Fig. 3.4 (left) Combination Weights of the Static OLS Method; (right) Time-Varying
Combination Weights of the Dynamic OLS Method.

Figures 3.3 shows how well the combined forecast obtained from the dynamic OLS
method predicts the monthly electricity supply series; the best univariate component
forecast (DOTM) is also plotted as benchmark. Figure 3.4 confirms the conjecture
that the stable conditions (low cross-sectional dispersion and one very dominant
univariate component forecast) do not cause a lot of fluctuation in the combination
weights even when allowing for time-varying weights.

The weights graph also confirms another thing: That the weights obtained
from OLS combination methods can be hard to interpret. It seems obvious that
the method should put a high weight on the DOTM forecast, since it is the best

univariate forecast by far. However, the reason why it assigns negative weights
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to the ETS and Damped Trend forecasts (the second- and third-best univariate
forecasts) is not very intuitive. A possible explanation might be that all three of these
are exponential smoothing-type models, suggesting that the information obtained
from the ETS and Damped Trend models is better captured by the DOTM model,
while ARIMA and Neural Networks are not closely related modelling approaches to
the Theta model, so that even though these models perform far worse on average,
they capture information differently and might outperform the DOTM forecast in
some periods for that reason, justifying their positive weights (however small) and
explaining how the combined forecast can slightly outperform the best component

forecast.

3.5 Discussion and Conclusions

Forecast combination is a useful strategy to hedge against model risk. Even if
combined forecasts do not win over the most accurate component forecast, they
generally avoid poor performance by circumventing the choice between individual
methods (Timmermann, 2006). Instead of putting all eggs into one basket using
model selection, these model averaging techniques are motivated by portfolio theory
and diversify across component forecasts.

The best way to combine different forecasts has no theoretical underpinnings,
a lot depends on the specifics of the data at hand. Since the seminal paper by
Bates and Granger (1969), myriad combination strategies have been put forward in
theoretical and empirical literature.

The GeomComb package categorises some of the most popular approaches into
3 groups: (a) simple statistics-based methods, (b) regression-based methods, and
(c) eigenvector-based methods. Providing both regression-based combinations and
eigenvector-based combinations to the users is considered useful, since the former
tend to perform relatively better when one or a few component forecasts are much
better than the rest, while the latter perform relatively better when all forecasts are
in the same ballpark (Hsiao and Wan, 2014).

The package is designed to support users along the entire modelling process: data
preparation, model estimation, and interpretation of results using summaries and
plotting functionalities. It includes tools for data transformation that are designed to
deal with two common issues in forecast combination prior to estimation — missing
values and multicollinearity. The 15 combination methods are available in both static

and dynamic variants, and users have the option to automate the selection algorithm
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so that a good combination method is found based on training set fit. Finally, the
package offers specialised functions for summarising and visualising the combination
results.

While the current version of the package already provides a comprehensive toolset
for forecast combination, there is scope for further extensions in future updates.
First, additional combination methods that showed promising results recently can be
added, for instance the factor-augmented regression approach by Cheng and Hansen
(2015) and the AdaBoost algorithms reviewed by Barrow and Crone (2016). Second,
additional algorithms for adaptive combination weights (cf. Timmermann, 2006) can
be implemented to provide even more flexibility with dynamic estimation. Finally,
we plan to design an adaptation for a forecast combination context of the mean
absolute scaled error (Hyndman and Koehler, 2006) — the current gold standard for
accuracy evaluation — using the in-sample MAE of the best component forecast as

scaling factor.
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Appendix

3.A Reference Manual for the GeomComb Package

Package ‘GeomComb’

July 14, 2017
Type Package

Title Forecast Combination Methods
Version 1.1
Depends R (>=3.0.2)

Imports forecast (>=7.3),
ForecastCombinations (>= 1.1),
geplot2 (>=2.1.0),

Matrix (>= 1.2-6),
mtsdi (>= 0.3.3),
psych >=1.6.9)

Suggests testthat (>=1.0.2)
Author Christoph E. Weiss, Gernot R. Roetzer, and Eran Raviv
Maintainer Christoph E. Weiss <info@ceweiss.com>

Description Provides eigenvector-based (geometric) forecast
combination methods; also includes simple approaches (simple average,
median, trimmed and winsorized mean, inverse rank method) and regression-based
combination. Tools for data pre-processing are available in order to deal with
common problems in forecast combination (missingness, collinearity).

URL https://github.com/ceweiss/GeomComb

BugReports https://github.com/ceweiss/GeomComb/issues
License GPL (>=2)

LazyData true

RoxygenNote 5.0.1

R topics documented:

auto_combINE . . . . . . . . e e e e e e 2
comb_BG . . .. e 4
comb_CLS . . . . e 5
comb_CSR . . . e 7
comb_EIG1 . . . . . . e 8
comb_EIG2 . . . . . . e 10
comb_EIG3 . . . . . . e 12
comb_EIG4 . . . . . . . e e e 14

comb_InvW . . . L e e e 15
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2 auto_combine
comb_LAD . . . . . e 17
comb_MED . . . . ... e e 19
comb_NG . . . . . . e e 20
comb_OLS . . . . e 22
comb_SA . .. e 24
comb_TA . . . e 25
comb_WA . . . 27
Cs_diSpersion . . . . ... e e 29
electriCity . . . . . . . e e e 30
foreccomb . . . . . L e 31
plotforeccomb_res . . . . . . ... 33
rolling_ combine . . . . . . . .. 34
summary.foreccomb_res . . . . . ... 35

Index 37

auto_combine Automated Forecast Combination

Description

Computes the fit for all the available forecast combination methods on the provided dataset with
respect to the loss criterion. Returns the best fit method.

Usage

auto_combine(x, criterion = "RMSE", param_list = NULL)

Arguments

X An object of class *foreccomb’. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.

criterion Specifies loss criterion. Set criterion to either 'RMSE’ (default), "MAE’, or
"MAPE’.

param_list Can contain additional parameters for the different combination methods (see
example below).

Details

The function auto_combine allows to quickly apply all the different forecast combination methods
onto the provided time series data and selects the method with the best fit.

The user can choose from 3 different loss criteria for the best-fit evaluation: root mean square er-
ror (criterion='RMSE'), mean absolute error (criterion="'MAE"), and mean absolute percentage
error (criterion="MAPE").

In case the user does not want to optimize over the parameters of some of the combination methods,
auto_combine allows to specify the parameter values for these methods explicitly (see Examples).

The best-fit results are stored in an object of class *foreccomb_res’, for which separate plot and
summary functions are provided.
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auto_combine

Value

Returns an object of class foreccomb_res that represents the results for the best-fit forecast com-

bination method:

Method
Models

Weights

Fitted
Accuracy_Train

Forecasts_Test

Accuracy_Test

Input_Data

Author(s)

Returns the best-fit forecast combination method.

Returns the individual input models that were used for the forecast combina-
tions.

Returns the combination weights obtained by applying the best-fit combination
method to the training set.

Returns the fitted values of the combination method for the training set.
Returns range of summary measures of the forecast accuracy for the training set.

Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Returns the data forwarded to the method.

Christoph E. Weiss and Gernot R. Roetzer

See Also

foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:89,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

data<-foreccomb(train_o, train_p, test_o, test_p)

# Evaluating all the forecast combination methods and returning the best.

# If necessary, it uses the built-in automated parameter optimisation methods
# for the different methods.

best_combination<-auto_combine(data, criterion = "MAPE")

# Same as above, but now we restrict the parameter ntop_pred for the method comb_EIG3 to be 3.
param_list<-list()

param_list$comb_EIG3$ntop_pred<-3

best_combination_restricted<-auto_combine(data, criterion = "MAPE", param_list = param_list)
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4 comb_BG

comb_BG Bates/Granger (1969) Forecast Combination Approach

Description

Computes forecast combination weights according to the approach by Bates and Granger (1969)
and produces forecasts for the test set, if provided.

Usage
comb_BG(x)
Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
Details

In their seminal paper, Bates and Granger (1969) introduce the idea of combining forecasts. Their
approach builds on portfolio diversification theory and uses the diagonal elements of the estimated
mean squared prediction error matrix in order to compute combination weights:

_ o)

oo}
Q
q

where 62(i) is the estimated mean squared prediction error of the i-th model.
The combined forecast is then obtained by:

~ /.. BG
Uy = f'w

Their approach ignores correlation between forecast models due to difficulties in precisely estimat-
ing the covariance matrix.

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method

to the training set.
Fitted Returns the fitted values of the combination method for the training set.
Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.
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comb_CLS 5

Author(s)
Christoph E. Weiss and Gernot R. Roetzer

References

Bates, J. M., and Granger, C. W. (1969). The Combination of Forecasts. Journal of the Operational
Research Society, 20(4), 451-468.

Timmermann, A. (2006). Forecast Combinations. In: Elliott, G., Granger, C. W. J., and Timmer-
mann, A. (Eds.), Handbook of Economic Forecasting, 1, 135-196.

See Also

foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_BG(data)

comb_CLS Constrained Least Squares Forecast Combination

Description

Computes forecast combination weights using constrained least squares (CLS) regression.

Usage
comb_CLS(x)

Arguments
X An object of class *foreccomb’. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
Details

The function is a wrapper around the constrained least squares (CLS) forecast combination imple-
mentation of the ForecastCombinations package.

Compared to the ordinary least squares forecast combination method, CLS forecast
combination has the additional requirement that the weights, w¢™% = (wy, ..., wx)’, sumup to 1

and that there is no intercept. That is, the combinations of comb_CLS are affine combinations.
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This method was first introduced by Granger and Ramanathan (1984). The general appeal of the
method is its ease of interpretation (the weights can be interpreted as percentages) and often pro-
duces better forecasts than the OLS method when the individual forecasts are highly correlated. A
disadvantage is that if one or more individual forecasts are biased, this bias is not corrected through
the forecast combination due to the lack of an intercept.

In addition to the version presented by Granger and Ramanathan (1984), this variant of the method
adds the restriction that combination weights must be non-negative, which has been found to be
almost always outperform unconstrained OLS by Aksu and Gunter (1992) and was combined with
the condition of forcing the weights to sum up to one by Nowotarski et al. (2014), who conclude
that even though the method provides a suboptimal solution in-sample, it almost always produces
better forecasts than unrestricted OLS out-of-sample.

The results are stored in an object of class *foreccomb_res’, for which separate plot and summary
functions are provided.

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the best-fit forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method
to the training set.

Fitted Returns the fitted values of the combination method for the training set.
Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

References

Aksu, C., and Gunter, S. I. (1992). An Empirical Analysis of the Accuracy of SA, OLS, ERLS and
NRLS Combination Forecasts. International Journal of Forecasting, 8(1), 27-43.

Granger, C., and Ramanathan, R. (1984). Improved Methods Of Combining Forecasts. Journal of
Forecasting, 3(2), 197-204.

Nowotarski, J., Raviv, E., Trueck, S., and Weron, R. (2014). An Empirical Comparison of Alterna-
tive Schemes for Combining Electricity Spot Price Forecasts. Energy Economics, 46, 395-412.

See Also

Forecast_comb, foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
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test_o<-obs[81:100]
test_p<-preds[81:100,]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_CLS(data)

comb_CSR Complete Subset Regression Forecast Combination

Description
Combine different forecasts using complete subset regressions. Apart from the simple averaging,
weights based on information criteria (AIC, corrected AIC, Hannan Quinn and BIC) can be used.
Usage
comb_CSR(x)

Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
Details

OLS forecast combination is based on

P
obs; = const + Z w;obs;; + ey,
i=1
where obs is the observed values and obs is the forecast, one out of the p forecasts available.

The function computes the complete subset regressions. So a matrix of forecasts based on all
possible subsets of fhat is returned.

Those forecasts can later be cross-sectionally averaged (averaged over rows) to create a single com-
bined forecast using weights which are based on the information criteria of the different individual
regression, rather than a simple average.

Additional weight-vectors which are based on different information criteria are also returned. This
is in case the user would like to perform the frequensit version of forecast averaging (see references
for more details).

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights based on the different information criteria.

Fitted Returns the fitted values for each information criterion.
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Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

Author(s)

Eran Raviv and Gernot R. Roetzer

References

Hansen, B. (2008). Least-squares forecast averaging Journal of Econometrics, 146(2), 342-350.

Kapetanios, G., Labhard V., Price, S. (2008). Forecasting Using Bayesian and Information-Theoretic
Model Averaging. Journal of Business & Economic Statistics, 26(1).

Koenker R. (2005). Quantile Regression. Cambridge University Press.

Graham, E., Garganob, A., Timmermann, A. (2013). Complete subset regressions. Journal of
Econometrics, 177(2), 357-373.

See Also

foreccomb, plot.foreccomb_res, summary.foreccomb_res, comb_NG, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:89,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_CSR(data)

comb_EIG1 Standard Eigenvector Forecast Combination

Description
Computes forecast combination weights according to the standard eigenvector approach by Hsiao
and Wan (2014) and produces forecasts for the test set, if provided.

Usage

comb_EIG1(x)
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Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of

model forecasts) and optionally a test set.

Details

The standard eigenvector approach retrieves combination weights from the sample estimated mean
squared prediction error matrix as follows: Suppose y; is the variable of interest, there are N not
perfectly collinear predictors, f; = (f1t, ..., fne)’, & is the (positive definite) mean squared predic-
tion error matrix of f; and e is an N x 1 vector of (1,...,1)". The N positive eigenvalues are then
arranged in increasing order (®1 = P50, P2, ..., Py ), and wi is defined as the eigenvector corre-
sponding to ®;. The combination weights wPIG = (w,,...,wy)" are then chosen corresponding

to the minimum of (& k> S %N
N

1 — olrd ace
pale ), denoted as w', where d; = e'w/, as:

The combined forecast is then obtained by:

N 1 EIG1
U = fi'w

The difference to extant methods that minimize the population mean squared prediction error (e.g.,
Newbold and Granger, 1974) is the normalization function. While previous approaches optimize
MSPE under the constraint of €’ w = 1, Hsiao and Wan (2014) show that this is dominated by using
w’w = 1 as constraint in the optimization problem.

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method

to the training set.
Fitted Returns the fitted values of the combination method for the training set.
Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

Author(s)

Christoph E. Weiss and Gernot R. Roetzer
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References

Hsiao, C., and Wan, S. K. (2014). Is There An Optimal Forecast Combination? Journal of Econo-
metrics, 178(2), 294-309.

Newbold, P., and Granger, C. W. J. (1974). Experience with Forecasting Univariate Time Series and
the Combination of Forecasts. Journal of the Royal Statistical Society, Series A, 137(2), 131-165.

See Also

foreccomb, plot.foreccomb_res, summary.foreccomb_res, comb_NG, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:89,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_EIG1(data)

comb_EIG2 Bias-Corrected Eigenvector Forecast Combination

Description
Computes forecast combination weights according to the bias-corrected eigenvector approach by
Hsiao and Wan (2014) and produces forecasts for the test set, if provided.

Usage

comb_EIG2(x)

Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
Details

The bias-corrected eigenvector approach builds on the idea that if one or more of the predictive
models yield biased predictions, the accuracy of the standard eigenvector approach can be improved
by eliminating the bias. The optimization procedure to obtain combination weights coincides with
the standard eigenvector approach, except that it is applied to the centered MSPE matrix after
extracting the bias (by subtracting the column means of the MSPE).

The combination weights are calculated as:

1.
wBIG2 — L &l

l

t
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where (;l]- and W/ are defined analogously to d; and w/ in the standard eigenvector approach,
with the only difference that they correspond to the spectral decomposition of the centered MSPE
matrix rather than the uncentered one.

The combined forecast is then obtained by:

G = a+ £, wFIG?

where a = E(y;) — E(f;)'wP!? is the intercept for bias correction. If the actual series and the
forecasts are stationary, the expectations can be approximated by the time series means, i.e. the
intercept is obtained by subtracting the weighted sum of column means of the MSPE matrix from
the mean of the actual series. Forecast combination methods including intercepts therefore usually
require stationarity.

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Intercept Returns the intercept (bias correction).

Weights Returns the combination weights obtained by applying the combination method

to the training set.
Fitted Returns the fitted values of the combination method for the training set.
Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

Author(s)

Christoph E. Weiss and Gernot R. Roetzer

References
Hsiao, C., and Wan, S. K. (2014). Is There An Optimal Forecast Combination? Journal of Econo-
metrics, 178(2), 294-309.

See Also

comb_EIG1, foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy



Appendix

105

12
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Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_EIG2(data)

comb_EIG3 Trimmed Eigenvector Forecast Combination

Description

Computes forecast combination weights according to the trimmed eigenvector approach by Hsiao
and Wan (2014) and produces forecasts for the test set, if provided.

Usage

comb_EIG3(x, ntop_pred = NULL, criterion = "RMSE")

Arguments

X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.

ntop_pred Specifies the number of retained predictors. If NULL (default), the inbuilt opti-
mization algorithm selects this number.

criterion If ntop_pred is not specified, a selection criterion is required for the optimiza-
tion algorithm: one of "MAE", "MAPE", or "RMSE". If ntop_pred is selected
by the user, criterion should be set to NULL (default).

Details

The underlying methodology of the trimmed eigenvector approach by Hsiao and Wan (2014) is
the same as their standard eigenvector approach. The only difference is that the trimmed
eigenvector approach pre-selects the models that serve as input for the forecast combination, only
a subset of the available forecast models is retained, while the models with the worst performance
are discarded.

The number of retained forecast models is controlled via ntop_pred. The user can choose whether
to select this number, or leave the selection to the inbuilt optimization algorithm (in that case
ntop_pred = NULL). If the optimization algorithm should select the best number of retained
models, the user must select the optimization criterion: MAE, MAPE, or RMSE. After this
trimming step, the weights and the combined forecast are computed in the same way as in the
standard eigenvector approach.

The trimmed eigenvector approach takes note of the eigenvector approaches’ property to treat y and
f symmetrically, which bears the risk that the (non-trimmed) eigenvector approaches’ performance
could be severely impaired by one or a few models that produce forecasts much worse than the
average.
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Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method

to the training set.

Top_Predictors Number of retained predictors.

Ranking Ranking of the predictors that determines which models are removed in the trim-
ming step.
Fitted Returns the fitted values of the combination method for the training set.

Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

Author(s)
Christoph E. Weiss and Gernot R. Roetzer

References

Hsiao, C., and Wan, S. K. (2014). Is There An Optimal Forecast Combination? Journal of Econo-
metrics, 178(2), 294-309.

See Also

comb_EIG1 foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

## Number of retained models selected by the user:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_EIG3(data, ntop_pred = 2, criterion = NULL)

## Number of retained models selected by algorithm:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_EIG3(data, ntop_pred = NULL, criterion = "RMSE")
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comb_EIG4 Trimmed Bias-Corrected Eigenvector Forecast Combination

Description
Computes forecast combination weights according to the trimmed bias-corrected eigenvector ap-
proach by Hsiao and Wan (2014) and produces forecasts for the test set, if provided.

Usage
comb_EIG4(x, ntop_pred = NULL, criterion = "RMSE")

Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
ntop_pred Specifies the number of retained predictors. If NULL (default), the inbuilt opti-
mization algorithm selects this number.
criterion If ntop_pred is not specified, a selection criterion is required for the optimiza-
tion algorithm: one of "MAE", "MAPE", or "RMSE". If ntop_pred is selected
by the user, criterion should be set to NULL (default).
Details

The underlying methodology of the trimmed bias-corrected eigenvector approach by Hsiao and Wan
(2014) is the same as their bias-corrected eigenvector approach. The only difference is that
the bias-corrected trimmed eigenvector approach pre-selects the models that serve as input for the
forecast combination, only a subset of the available forecast models is retained, while the models
with the worst performance are discarded.

The number of retained forecast models is controlled via ntop_pred. The user can choose whether
to select this number, or leave the selection to the inbuilt optimization algorithm (in that case
ntop_pred = NULL). If the optimization algorithm should select the best number of retained mod-
els, the user must select the optimization criterion: MAE, MAPE, or RMSE. After this trimming
step, the weights, the intercept and the combined forecast are computed in the same way as in the
bias-corrected eigenvector approach.

The bias-corrected trimmed eigenvector approach combines the strengths of the
bias-corrected eigenvector approach and the trimmed eigenvector approach.

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Intercept Returns the intercept (bias correction).

Weights Returns the combination weights obtained by applying the combination method

to the training set.

Top_Predictors Number of retained predictors.
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Ranking Ranking of the predictors that determines which models are removed in the trim-
ming step.
Fitted Returns the fitted values of the combination method for the training set.

Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

Author(s)

Christoph E. Weiss and Gernot R. Roetzer

References

Hsiao, C., and Wan, S. K. (2014). Is There An Optimal Forecast Combination? Journal of Econo-
metrics, 178(2), 294-309.

See Also

comb_EIG2 comb_EIG3 foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

## Number of retained models selected by the user:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_EIG4(data, ntop_pred = 2, criterion = NULL)

## Number of retained models selected by algorithm:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_EIG4(data, ntop_pred = NULL, criterion = "RMSE")

comb_InvW Inverse Rank Forecast Combination

Description

Computes forecast combination weights according to the inverse rank approach by Aiolfi and Tim-
mermann (2006) and produces forecasts for the test set, if provided.
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Usage

comb_InvW(x)

Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
Details
In the inverse rank approach by Aiolfi and Timmermann (2006), the combination weights are in-
versely proportional to the forecast model’s rank, Rank;:
-1
J noW __ Ra’nkl
[3 - N —1
22 Rank;
The combined forecast is then obtained by:
gt _ fthIan
This is a robust variant of the Bates/Granger (1969) approach and also ignores correlations across
forecast errors.
Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method
to the training set.

Fitted Returns the fitted values of the combination method for the training set.

Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

Author(s)
Christoph E. Weiss and Gernot R. Roetzer
References

Aiolfi, M., and Timmermann, A. (2006). Persistence in Forecasting Performance and Conditional
Combination Strategies. Journal of Econometrics, 135(1), 31-53.

Bates, J. M., and Granger, C. W. (1969). The Combination of Forecasts. Journal of the Operational
Research Society, 20(4), 451-468.
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See Also

foreccomb, plot.foreccomb_res, summary.foreccomb_res, comb_BG, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_InvW(data)

comb_LAD Least Absolute Deviation Forecast Combination

Description

Computes forecast combination weights using least absolute deviation (LAD) regression.

Usage

comb_LAD(x)

Arguments
X An object of class *foreccomb’. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
Details

The function is a wrapper around the least absolute deviation (LAD) forecast combination imple-
mentation of the ForecastCombinations package.

The defining property of comb_LAD is that it does not minimize the squared error loss like comb_OLS
and comb_CLS, but the absolute values of the errors. This makes the method more robust to outliers
— comb_LAD tends to penalize models, which have high errors for some observations, less harshly
than the least squares methods would.

Optimal forecast combinations under general loss functions are discussed by Elliott and Timmer-
mann (2004). The LAD method is described in more detail, and used in an empirical context, by
Nowotarksi et al. (2014).

The results are stored in an object of class "foreccomb_res’, for which separate plot and summary
functions are provided.
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Value

comb_LAD

Returns an object of class foreccomb_res with the following components:

Method

Models

Weights

Intercept
Fitted
Accuracy_Train

Forecasts_Test

Accuracy_Test

Input_Data

References

Returns the best-fit forecast combination method.

Returns the individual input models that were used for the forecast combina-
tions.

Returns the combination weights obtained by applying the combination method
to the training set.

Returns the intercept of the linear regression.
Returns the fitted values of the combination method for the training set.
Returns range of summary measures of the forecast accuracy for the training set.

Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Returns the data forwarded to the method.

Elliott, G., and Timmermann, A. (2004). Optimal Forecast Combinations Under General Loss
Functions and Forecast Error Distributions. Journal of Econometrics, 122(1), 47-79.

Nowotarski, J., Raviv, E., Tr\"uck, S., and Weron, R. (2014). An Empirical Comparison of Alterna-
tive Schemes for Combining Electricity Spot Price Forecasts. Energy Economics, 46, 395-412.

See Also

Forecast_comb, foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)

comb_LAD(data)
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comb_MED Median Forecast Combination

Description
Computes a ‘combined forecast’ from a pool of individual model forecasts using their median at
each point in time.

Usage

comb_MED(x)

Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
Details
Suppose y; is the variable of interest, there are N not perfectly collinear predictors, f; = (f1¢, ..., fne)

For each point in time, the median method gives a weight of 1 to the median forecast and a weight
of 0 to all other forecasts, the combined forecast is obtained by:

9 = median(f;)

The median method is an appealing simple, rank-based combination method that has been proposed
by authors such as Armstrong (1989), McNees (1992), Hendry and Clements (2004), Stock and
Watson (2004), and Timmermann (2006). It is more robust to outliers than the simple average
approach.

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method

to the training set.
Fitted Returns the fitted values of the combination method for the training set.
Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.
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Author(s)
Christoph E. Weiss and Gernot R. Roetzer

References

Armstrong, J. S. (1989). Combining Forecasts: The End of the Beginning or the Beginning of the
End?. International Journal of Forecasting, 5(4), 585-588.

Hendry, D. F,, and Clements, M. P. (2004). Pooling of Forecasts. The Econometrics Journal, 7(1),
1-31.

McNees, S. K. (1992). The Uses and Abuses of *Consensus’ Forecasts. Journal of Forecasting,
11(8), 703-710.

Stock, J. H., and Watson, M. W. (2004). Combination Forecasts of Output Growth in a Seven-
Country Data Set. Journal of Forecasting, 23(6), 405-430.

Timmermann, A. (2006). Forecast Combinations. In: Elliott, G., Granger, C. W. J., and Timmer-
mann, A. (Eds.), Handbook of Economic Forecasting, 1, 135-196.

See Also

foreccomb, plot.foreccomb_res, summary.foreccomb_res, comb_SA, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_MED(data)

comb_NG Newbold/Granger (1974) Forecast Combination

Description
Computes forecast combination weights according to the approach by Newbold and Granger (1974)
and produces forecasts for the test set, if provided.

Usage

comb_NG(x)

Arguments

X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
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Details

Building on early research by Bates and Granger (1969), the methodology of Newbold and Granger
(1974) also extracts the combination weights from the estimated mean squared prediction error
matrix.

Suppose y; is the variable of interest, there are N not perfectly collinear predictors, f; = (f1¢, ..., fnt),
3] is the (positive definite) mean squared prediction error matrix of f; and e is an N x 1 vector of
(1,...,1).

Their approach is a constrained minimization of the mean squared prediction error using the nor-
malization condition €' w = 1. This yields the following combination weights:

-1
NG Y 'e

e/Y-le

The combined forecast is then obtained by:
Je = £/whe
While the method dates back to Newbold and Granger (1974), the variant of the method used here

does not impose the prior restriction that 3 is diagonal. This approach, called VC in Hsiao and Wan
(2014), is a generalization of the original method.

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method

to the training set.
Fitted Returns the fitted values of the combination method for the training set.
Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

Author(s)
Christoph E. Weiss and Gernot R. Roetzer

References
Bates, J. M., and Granger, C. W. (1969). The Combination of Forecasts. Journal of the Operational
Research Society, 20(4), 451-468.

Hsiao, C., and Wan, S. K. (2014). Is There An Optimal Forecast Combination? Journal of Econo-
metrics, 178(2), 294-309.

Newbold, P., and Granger, C. W. J. (1974). Experience with Forecasting Univariate Time Series and
the Combination of Forecasts. Journal of the Royal Statistical Society, Series A, 137(2), 131-165.
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See Also

comb_BG, comb_EIG1, foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy
Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_NG(data)

comb_OLS Ordinary Least Squares Forecast Combination

Description

Computes forecast combination weights using ordinary least squares (OLS) regression.

Usage

comb_OLS(x)

Arguments
X An object of class *foreccomb’. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
Details

The function is a wrapper around the ordinary least squares (OLS) forecast combination implemen-
tation of the ForecastCombinations package.

The OLS combination method (Granger and Ramanathan (1984)) uses ordinary least squares to

estimate the weights, wO&% = (wy, ..., wy)’, as well as an intercept, b, for the combination of the
forecasts.
Suppose that there are N not perfectly collinear predictors f; = (f1¢,. .., fnt), then the forecast

combination for one data point can be represented as:

N
ye=b+> wify
i=1

An appealing feature of the method is its bias correction through the intercept — even if one or more
of the individual predictors are biased, the resulting combined forecast is unbiased. A disadvantage
of the method is that it places no restriction on the combination weights (i.e., they do not add
up to 1 and can be negative), which can make interpretation hard. Another issue, documented in
Nowotarski et al. (2014), is the method’s unstable behavior when predictors are highly correlated
(which is the norm in forecast combination): Minor fluctuations in the sample can cause major
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shifts of the coefficient vector (‘bouncing betas’) — often causing poor out-of-sample performance.
This issue is addressed by the comb_LAD method that is more robust to outliers.

The results are stored in an object of class *foreccomb_res’, for which separate plot and summary
functions are provided.

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the best-fit forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method

to the training set.
Intercept Returns the intercept of the linear regression.
Fitted Returns the fitted values of the combination method for the training set.
Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

References

Granger, C., and Ramanathan, R. (1984). Improved Methods Of Combining Forecasts. Journal of
Forecasting, 3(2), 197-204.

Nowotarski, J., Raviv, E., Tr\"uck, S., and Weron, R. (2014). An Empirical Comparison of Alterna-
tive Schemes for Combining Electricity Spot Price Forecasts. Energy Economics, 46, 395-412.

See Also

Forecast_comb, foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_OLS(data)
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comb_SA Simple Average Forecast Combination

Description

Computes forecast combination weights using simple average and produces forecasts for the test
set, if provided.

Usage
comb_SA(x)
Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
Details
Suppose y; is the variable of interest, there are N not perfectly collinear predictors, f; = (fi¢, ..., fnt)'

The simple average gives equal weights to all predictors:

wSA —

1
N
The combined forecast is then obtained by:

e = f'w54

It is well-documented that simple average is a robust combination method that is hard to beat (e.g.,
Stock and Watson, 2004; Timmermann, 2006). This is often associated with the importance of
parameter estimation error in sophisticated techniques — a problem that simple averaging avoids.
However, simple averaging may not be a suitable combination method when some of the predictors
are biased (Palm and Zellner, 1992).

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method

to the training set.
Fitted Returns the fitted values of the combination method for the training set.
Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.
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Author(s)

Christoph E. Weiss and Gernot R. Roetzer

References

Palm, F. C., and Zellner, A. (1992). To Combine or not to Combine? Issues of Combining Forecasts.
Journal of Forecasting, 11(8), 687-701.

Stock, J. H., and Watson, M. W. (2004). Combination Forecasts of Output Growth in a Seven-
Country Data Set. Journal of Forecasting, 23(6), 405—430.

Timmermann, A. (2006). Forecast Combinations. In: Elliott, G., Granger, C. W. J., and Timmer-
mann, A. (Eds.), Handbook of Economic Forecasting, 1, 135-196.

See Also

foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)
comb_SA(data)

comb_TA Trimmed Mean Forecast Combination

Description
Computes a ‘combined forecast’ from a pool of individual model forecasts using trimmed mean at
each point in time.

Usage

comb_TA(x, trim_factor = NULL, criterion = "RMSE")

Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
trim_factor numeric. Must be between 0 (simple average) and 0.5 (median).
criterion If trim_factor is not specified, an optimization criterion for automated trim-

ming needs to be defined. One of "MAE", "MAPE", or "RMSE" (default).
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Details

Suppose y; is the variable of interest, there are N not perfectly collinear predictors, f; = (fiz, ..., fnt)'
For each point in time, the order forecasts are computed:

£ = (faye - fovye)
Using a trim factor A (i.e., the top/bottom A% are trimmed) the combined forecast is calculated as:
1 (1-2)N

N(1-2)) Z for

i=AN+1

Yt =

The trimmed mean is an interpolation between the simple average and the median. It is an appealing
simple, rank-based combination method that is less sensitive to outliers than the simple average
approach, and has been proposed by authors such as Armstrong (2001), Stock and Watson (2004),
and Jose and Winkler (2008).

This method allows the user to select A (by specifying trim_factor), or to leave the selection to an
optimization algorithm — in which case the optimization criterion has to be selected (one of "MAE",
"MAPE", or "RMSE").

Value

Returns an object of class foreccomb_res with the following components:

Method Returns the used forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the combination method
to the training set.

Trim Factor Returns the trim factor, \.

Fitted Returns the fitted values of the combination method for the training set.

Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.

Author(s)
Christoph E. Weiss and Gernot R. Roetzer

References
Armstrong, J. S. (2001). Combining Forecasts. In: Armstrong, J. S. (Ed.), Principles of Forecasting.
Springer, Boston, MA, 417-439.

Jose, V. R. R., and Winkler, R. L. (2008). Simple Robust Averages of Forecasts: Some Empirical
Results. International Journal of Forecasting, 24(1), 163-169.

Stock, J. H., and Watson, M. W. (2004). Combination Forecasts of Output Growth in a Seven-
Country Data Set. Journal of Forecasting, 23(6), 405-430.
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See Also

foreccomb, plot.foreccomb_res, summary. foreccomb_res, comb_SA, comb_MED, accuracy

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

## User-selected trim factor:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_TA(data, trim_factor=0.1)

## Algorithm-optimized trim factor:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_TA(data, criterion="RMSE")

comb_WA Winsorized Mean Forecast Combination

Description

Computes a ‘combined forecast’ from a pool of individual model forecasts using winsorized mean
at each point in time.

Usage
comb_WA(x, trim_factor = NULL, criterion = "RMSE")

Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
trim_factor numeric. Must be between 0 and 0.5.
criterion If trim_factor is not specified, an optimization criterion for automated trim-
ming needs to be defined. One of "MAE", "MAPE", or "RMSE" (default).
Details
Suppose y; is the variable of interest, there are N not perfectly collinear predictors, f; = (fi¢, ..., fne)'

For each point in time, the order forecasts are computed:

fzord = (f(l)t: ceey f(N)t)/

Using a trim factor A (i.e., the top/bottom A% are winsorized), and setting K’ = N\, the combined
forecast is calculated as (Jose and Winkler, 2008):
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N-K

K fx41ye + Z faye + Kf(n—kyt
i=K+1

R 1
yt:N

Like the trimmed mean, the winsorized mean is a robust statistic that is less sensitive to outliers than
the simple average. It is less extreme about handling outliers than the trimmed mean and preferred
by Jose and Winkler (2008) for this reason.

This method allows the user to select A (by specifying trim_factor), or to leave the selection to an
optimization algorithm — in which case the optimization criterion has to be selected (one of "MAE",
"MAPE", or "RMSE").

Value

Returns an object of class foreccomb_res with the following components:

Method

Models

Weights

Trim Factor
Fitted
Accuracy_Train

Forecasts_Test

Accuracy_Test

Input_Data

Author(s)

Returns the used forecast combination method.

Returns the individual input models that were used for the forecast combina-
tions.

Returns the combination weights obtained by applying the combination method
to the training set.

Returns the trim factor, A.
Returns the fitted values of the combination method for the training set.
Returns range of summary measures of the forecast accuracy for the training set.

Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Returns the data forwarded to the method.

Christoph E. Weiss and Gernot R. Roetzer

References

Jose, V. R. R., and Winkler, R. L. (2008). Simple Robust Averages of Forecasts: Some Empirical
Results. International Journal of Forecasting, 24(1), 163-169.

See Also

winsor.mean, foreccomb, plot.foreccomb_res, summary.foreccomb_res, comb_SA, comb_TA,

accuracy
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Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

## User-selected trim factor:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_TA(data, trim_factor=0.1)

## Algorithm-optimized trim factor:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_TA(data, criterion="RMSE")

cs_dispersion Compute Cross-Sectional Dispersion

Description

Computes (time-varying) dispersion measures for the cross section of individual model forecasts
that are the input of forecast combination.

Usage

cs_dispersion(x, measure = "SD", plot = FALSE)

Arguments
X An object of class foreccomb. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.
measure Cross-sectional dispersion measure, one of: "SD" = standard deviation (default);
"IQR" = interquartile range; or "Range” = range.
plot logical. If TRUE, evolution of cross-sectional forecast dispersion is plotted as
ggplot.
Details

The available measures of scale are defined as in Davison (2003). Let y(;) denote the i-th order
statistic of the sample, then:

Ranger = yny,e — Y1),

IQR: = Y3n/a),t — Yn/a)t

1
SDy = \/mzﬁzl (Yie — Tt)
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Previous research in the forecast combination literature has documented that regression-based com-
bination methods tend to have relative advantage when one or more individual model forecasts are
better than the rest, while eigenvector-based methods tend to have relative advantage when individ-
ual model forecasts are in the same ball park.

Value

Returns a vector of the evolution of cross-sectional dispersion over the sample period (using the
selected dispersion measure)

References

Davison, A. C. (2003). Statistical Models. Cambridge University Press.

Hsiao, C., and Wan, S. K. (2014). Is There An Optimal Forecast Combination? Journal of Econo-
metrics, 178(2), 294-309.

See Also

foreccomb, sd, IQR, range

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)
cs_dispersion(data, measure = "IQR")

electricity UK Electricity Supply 2007 - 2017

Description

The electricity dataset contains monthly data on the total UK electricity supply in GWh from
January 2007 to March 2017, as well as univariate time series forecasts for this series.

Usage

data(electricity)

Format

A multivariate time series of 123 observations; monthly, 2007-2017.

This data contains the following columns:

arima (ARIMA 1-month forecasts)
ets (ETS 1-month forecasts)
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nnet (Neural Network 1-month forecasts)

dampedt (Damped Trend 1-month forecasts)

dotm (Dynamic Optimized Theta 1-month forecasts)
Actual (Observed values)

Source

International Energy Agency (2017). IEA Monthly Electricity Statistics. Available at http://www.
iea.org/statistics/monthlystatistics/monthlyelectricitystatistics/

foreccomb Format Raw Data for Forecast Combination

Description

Structures cross-sectional input data (individual model forecasts) for forecast combination. Stores
data as S3 class foreccomb that serves as input to the forecast combination techniques. Handles
missing value imputation (optional) and resolves problems due to perfect collinearity.

Usage

foreccomb(observed_vector, prediction_matrix, newobs = NULL,
newpreds = NULL, byrow = FALSE, na.impute = TRUE, criterion = "RMSE")

Arguments

observed_vector
A vector or univariate time series; contains ‘actual values’ for training set.
prediction_matrix
A matrix or multivariate time series; contains individual model forecasts for
training set.

newobs A vector or univariate time series; contains ‘actual values’ if a test set is used
(optional).
newpreds A matrix or multivariate time series; contains individual model forecasts if a test

set is used (optional). Does not require specification of newobs — in the case in
which a forecaster only wants to train the forecast combination method with a
training set and apply it to future individual model forecasts, only newpreds is
required, not newobs.

byrow logical. The default (FALSE) assumes that each column of the forecast matrices
(prediction_matrix and — if specified — newpreds) contains forecasts from
one forecast model; if each row of the matrices contains forecasts from one
forecast model, set to TRUE.

na.impute logical. The default (TRUE) behavior is to impute missing values via the cross-
validated spline approach of the mtsdi package. If set to FALSE, forecasts with
missing values will be removed. Missing values in the observed data are never
imputed.

criterion One of "RMSE" (default), "MAE", or "MAPE". Is only used if prediction_matrix
is not full rank: The algorithm checks which models are causing perfect collinear-
ity and the one with the worst individual accuracy (according to the chosen cri-
terion) is removed.
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Details

The function imports the column names of the prediction matrix (if byrow = FALSE, otherwise the
row names) as model names; if no column names are specified, generic model names are created.

The missing value imputation algorithm is a modified version of the EM algorithm for imputation
that is applicable to time series data - accounting for correlation between the forecasting models
and time structure of the series itself. A smooth spline is fitted to each of the time series at each
iteration. The degrees of freedom of each spline are chosen by cross-validation.

Forecast combination relies on the lack of perfect collinearity. The test for this condition checks
if prediction_matrix is full rank. In the presence of perfect collinearity, the iterative algorithm
identifies the subset of forecasting models that are causing linear dependence and removes the one
among them that has the lowest accuracy (according to a selected criterion, default is RMSE). This
procedure is repeated until the revised prediction matrix is full rank.

Value

Returns an object of class foreccomb.

Author(s)

Christoph E. Weiss, Gernot R. Roetzer

References

Junger, W. L., Ponce de Leon, A., and Santos, N. (2003). Missing Data Imputation in Multivariate
Time Series via EM Algorithm. Cadernos do IME, 15, 8-21.

Dempster, A., Laird, N., and Rubin D. (1977). Maximum Likelihood from Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1-38.

See Also

mnimput, rankMatrix

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

## Example with a training set only:
foreccomb(train_o, train_p)

## Example with a training set and future individual forecasts:
foreccomb(train_o, train_p, newpreds=test_p)

## Example with a training set and a full test set:
foreccomb(train_o, train_p, test_o, test_p)

## Example with forecast models being stored in rows:
preds_row <- matrix(rnorm(1000, 1), 10, 100)
train_p_row <- preds_row[,1:80]

foreccomb(train_o, train_p_row, byrow = TRUE)



126 Forecast Combination in R

plot.foreccomb_res 33

## Example with NA imputation:

train_p_na <- train_p

train_p_nal[2,3] <- NA

foreccomb(train_o, train_p_na, na.impute = TRUE)

## Example with perfect collinearity:
train_p[,2] <- @.8xtrain_p[,1] + @.4xtrain_p[, 8]
foreccomb(train_o, train_p, criterion="RMSE")

plot.foreccomb_res Plot results from forecast combination model

Description

Produces plots for the results of a forecast combination method. Either an actual vs. fitted plot
(which = 1) or a barplot of the combination weights (which = 2).

Usage
## S3 method for class 'foreccomb_res'
plot(x, which =1, ...)
Arguments
X An object of class *foreccomb_res’.
which Type of plot: 1 = actual vs. fitted, 2 = combination weights.

Other arguments passing to plot.default.

Value

A plot for the foreccomb_res class.

Author(s)
Christoph E. Weiss and Gernot R. Roetzer

See Also

foreccomb, summary.foreccomb_res

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:89,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

data<-foreccomb(train_o, train_p, test_o, test_p)
fit <- comb_EIG1(data)
plot(fit)
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rolling_combine Dynamic Forecast Combination

Description
Computes the dynamic version of the combined forecast for a method included in the GeomComb
package.

Usage

rolling_combine(x, comb_method, criterion = NULL)

Arguments
X An object of class *foreccomb’. Must contrain full training set and test set.
comb_method The combination method that should be used.
criterion Specifies loss criterion. Set criterion to either 'RMSE’, "MAE’, or "MAPE’
for the methods comb_TA, comb_WA, comb_EIG3, and comb_EIG4, or to "NULL’
(default) for all other methods.
Details

The function rolling_combine allows to estimate a dynamic version of the other combination
methods of the package in a standardized way, i.e., it allows for time-varying weights. The function
builds on the idea of time series cross-validation: Taking the provided training set as starting point,
the models are re-estimated at each period of the test set using a revised (increased) training set.

Like univariate dynamic forecasting, the validation approach requires a full test set — including the
observed values.

The results are stored in an object of class *foreccomb_res’, for which separate plot and summary
functions are provided.
Value

Returns an object of class foreccomb_res that represents the results for the best-fit forecast com-
bination method:

Method Returns the best-fit forecast combination method.

Models Returns the individual input models that were used for the forecast combina-
tions.

Weights Returns the combination weights obtained by applying the best-fit combination

method to the training set.
Fitted Returns the fitted values of the combination method for the training set.
Accuracy_Train Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set.

Accuracy_Test Returns range of summary measures of the forecast accuracy for the test set.
Only returned if input included a forecast matrix and a vector of actual values
for the test set.

Input_Data Returns the data forwarded to the method.
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Author(s)

Christoph E. Weiss

References

Bergmeir, C., Hyndman, R.J., and Koo, B. (2015). A Note on the Validity of Cross-Validation for
Evaluating Time Series Prediction. Monash University, Deparment of Econometrics and Business
Statistics, Working Paper No. 10/15.

Timmermann, A. (2006). Forecast Combinations. Handbook of Economic Forecasting, 1, 135-196.

See Also

foreccomb, plot.foreccomb_res, summary.foreccomb_res,

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100, ]

data<-foreccomb(train_o, train_p, test_o, test_p)

#Static forecast combination (for example OLS):
static_OLS <- comb_OLS(data)

#Dynamic forecast combination:
dyn_OLS <- rolling_combine(data, "comb_OLS")

summary . foreccomb_res Summary of Forecast Combination

Description

summary method for class ‘foreccomb_res’. Includes information about combination method, com-
bination weights assigned to the individual forecast models, as well as an accuracy evaluation of
the combined forecast.

Usage

## S3 method for class 'foreccomb_res'
summary (object, ...)

## S3 method for class 'foreccomb_res_summary'
print(x, ...)
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Arguments

object

Author(s)

summary.foreccomb_res

An object of class *foreccomb’. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.

potential further arguments (require by generic)

An object of class *foreccomb’. Contains training set (actual values + matrix of
model forecasts) and optionally a test set.

Christoph E. Weiss and Gernot R. Roetzer

See Also

foreccomb, plot.foreccomb_res,

Examples

obs <- rnorm(100)

preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]

train_p<-preds[1:89,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

data<-foreccomb(train_o, train_p, test_o, test_p)
fit<-comb_BG(data)

summary(fit)
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Chapter 4

Efficient Nurse Staffing: The
Value of Hierarchical Time Series
Forecasting and Forecast

Combination

4.1 Introduction

The dominant cost driver in the majority of service settings (e.g. restaurants, call
centres, hospitals) is labour. While service providers may perceive reductions in
staffing as a way of containing their costs, matching labour supply with demand is
non-trivial when customer arrivals (e.g. diners to a restaurant, callers to a helpline,
patients to a hospital) are stochastic. At the same time, the costs of being understaffed
may be high. For example, staffing shortages have been associated with reductions
in clinical safety (Kuntz et al., 2015) and reduced hospital reimbursement (Powell
et al., 2012), as well as worse restaurant sales performance (Tan and Netessine,
2014). Although such associations between staffing levels and service outcomes
continue to be explored in the operations literature, less attention has been paid to
the potential mitigators. Furthermore, those that have been discussed each carry
costs, for example, pooling customers may result in mismatches between need and
skill (e.g. senior doctors treating minor injuries), while flexible staffing (e.g. Freeman
et al., 2016) demands that higher wages be paid to offset workers’ inconvenience. An
alternative to a change in process is to improve the accuracy of the forecast itself,

thereby ensuring that only those staff necessary to achieve the desired service level
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are scheduled for any given shift. While this can be viewed purely as a forecasting
problem (see Section 4.4 for an overview in the context of nurse staffing), there are
also service-specific characteristics and operational objectives that make this problem

specialised. This paper explores this further in the context of hospital nurse staffing.

Hospitals are an especially compelling setting in which to investigate models of
staff forecasting. First, staffing in hospitals is very costly, with staffing cost (from e.g.
physicians, nurses, support staff) constituting over 50% of total hospital expenses
(Guarin-Calvert, 2011; Hurst and Williams, 2012). Second, in some countries,
mandatory inpatient nurse-to-patient ratios have been imposed to improve overall
working conditions in hospitals and to achieve higher standards of care. Ensuring
that sufficient staff are available is therefore critical from both a regulatory as well as
a safety perspective (see Section 4.3 for more details). Third, hospitals face two very
different types of demand: scheduled (elective) patients and unscheduled (emergency)
patients. While admissions of scheduled patients are known to the hospital in advance,
the arrivals of emergencies are unpredictable and volatile. Furthermore, variation in
patient length of stay (which applies to both elective and emergency patients) adds
another degree of demand stochasticity, compounded further by differences in the
intensity of patient arrivals and patient care needs. Fourth, hospitals are complex
organisations that typically operate as a “plant-within-a-plant” (Skinner, 1974).
The hierarchical structure, with medical specialties (e.g. cardiology, neurosurgery,
pediatrics) nested within divisions (e.g. general medicine, surgical medicine, women
and children’s), offers opportunities in forecasting future demand that has, as yet,
been unexploited (see Section 4.4). In this paper, we bring together these features of
the hospital and apply a recently introduced forecasting technique, hierarchical time
series (HTS) forecasting, as well as a range of forecast combination techniques, to
the hospital context. We show how this model can be used to reduce staff overage
while ensuring that the required nurse-to-patient ratios are achieved to a specified
service level (e.g. 95% of the time). The forecasting approach offers opportunities
for reducing staffing costs while maintaining, or even reducing, the percentage of
understaffed shifts.

Using seven years of detailed patient-level data from a large teaching and research
hospital in the United Kingdom, we find that the most common approach to nurse
staffing — based only on patient census (i.e. the number of patients residing in the
hospital at a given time) while ignoring churn (admissions and discharges) — lead to
chronic understaffing. In our constrained optimisation analysis (see 4.7), we conclude

that there are 3 factors that can considerably reduce the risk of understaffing: (a)
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the possibility of hiring temporary staff, (b) accounting for patient churn in the
staffing model, (c) accounting for forecast uncertainty in the staffing model using
the empirical forecast error distribution. We find that a staffing model based only
on census numbers and only allowing for permanent staff implies a probability of
understaffing of almost 80%, which is reduced to about 70% by allowing for hiring
temporary staff. This can further be improved by accounting for patient churn in the
staffing model, lowering the probability of understaffing to about 20% (which is a
particularly impressive improvement considering that staff cost related to churn only
contributes 10% to total staff cost). Finally, we show that a serious commitment
to full staffing requires accounting for forecast uncertainty in the staffing model
using the empirical forecast error distribution, which reduces the probability of
understaffing to 1%. Further, we show that using hierarchical or combined forecasts
gets relatively more beneficial with rising staffing model complexity, compared to
the benchmark forecast (a seasonal random walk) — leading to savings in staff cost

of roughly 5% in the staffing model that accounts for all of the mentioned factors.

4.2 Institutional Setting

Health services in the United Kingdom face unprecedented financial and operational
pressures: In the financial year 2015/16, hospitals in England have run up a record
deficit of £2.45bn, even while key performance measures have deteriorated. This is
despite an annual increase in the Department of Health budget in real terms in the
period 2009 to 2021.

The challenge that healthcare providers in the UK face is that the budget —
despite increasing — has not kept pace with the significant increases in demand for

healthcare services.

4.2.1 Healthcare Budget

The Department of Health budget has increased in real terms every single year
in the past 15 years — however, the growth rate has slowed down considerably in
recent years. The King’s Fund (2017) report that the between 2009/10 to 2020/21,
the budget will only grow by an annual 1.1 percent in real terms, which amounts
to an unprecedented slowdown in funding growth, and is far below the long-term
average of 4 percent per year in real terms since the National Health Service (NHS)

was created. This healthcare austerity can be attributed to a combination of the
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macroeconomic effects of the Great Recession, as well as a general tendency towards
neoliberal austerity of Conservative governments since the early 1980s (Ruckert and
Labonté, forthcoming) — its devastating effects on British healthcare are documented
by Loopstra et al. (2016).

4.2.2 Healthcare Demand

UK Healthcare demand has increased considerably and steadily over the 2000s.
Maguire et al. (2016) review the determinants of this trend:

o FEmergency Care. The increased demand for emergency care is evident in
two measures — first, attendances at major accident and emergency (A&E)
departments have risen by 18% between 2003/04 and 2015/16, an average
annual increase of 1.4%. Much more significantly, emergency admissions to
hospitals via major A&E departments has increased by 65% over this period,
an average of 4.3% per year. Maguire et al. (2016) argue that the majority of
this increase can be ascribed to increased short-stay admissions driven by the
introduction of a 4-hour waiting time standard for A&E departments. Overall,
this means that over a fourth of the arrivals at major A&E departments are
now admitted, while it was less than a fifth in 2003/04.

e FElective Care. Over the same period, elective care admissions have also

increased by an annual 4.3% on average.

There are two main drivers of the observed sharp increase in healthcare demand.
First, UK population has grown by 10% over the period from 2003 to 2015. Second
and more importantly, the number of people over 85 has increased by 40% over this
period. Jointly, these determinants account for a large part of the 50% increase in
admissions over this period. It is eminently plausible that both factors will continue

to rise in the near future.

4.2.3 Implications on the Micro Level

These macropolitical decisions and an ageing population have important implications
at the micro level. Demand for healthcare services has kept increasing by approxi-
mately 4 % per year from 2003 and is expected to grow at that pace for the next few
years, according to an NHS England projection (Maguire et al., 2016). Ever since
the funding slowdown started in 2010, this has led to a widening funding gap in
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the British healthcare system (Figure 4.1, based on data in Maguire et al., 2016),

causing the NHS to run up sizeable deficits in the past few years.
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Fig. 4.1 Slowdown in Healthcare Budget Growth: Increasing Funding Gap.

Between 2017/18 and 2019/20, the situation cannot be expected to improve, since

healthcare budget is only planned to increase by 0.6% annually (The King’s Fund,

2017). The outlook for patient care is not a happy one — Robertson et al. (2017)

argue that financial constraints have taken some time to adversely affect patient care,

but their impact will only intensify, especially due to the cuts to staff and preventive

services dictated by these constraints.

Since funding is unlikely to increase enough to close the funding gap any time

soon, it is reasonable to expect that the pressure on healthcare providers to become

more efficient will increase. The NHS was instructed to make savings of 4% per year
over 2011-2015 (Hurst and Williams, 2012).

Robertson (2016) lists four possible responses of healthcare providers:

e running up deficits,

 improve productivity (delivering better value care),
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o restrict access to services,
« dilute quality of services.

Running up sizeable deficits is not sustainable. The strategy to restrict access
to services or dilute quality of services may bridge short-term financial constraints,
but should be considered only as the last resort measure from the point of view
of the needs of long-term healthcare management. Improving productivity is the
unexceptionable approach to maintaining high service quality. Ham et al. (2016) argue
that the NHS must focus on delivering better value care to the public. This requires
a comprehensive and sustained commitment to quality improvement — including
actions at both the micro level (tackling unwarranted variations in clinical care,
reducing waste, becoming more patient-focused) and the macro level (ensuring that

quality and safety are central topics of the health policy agenda).

4.3 Efficiency Gains Through Nurse Staffing

So what actions can be taken to deliver better value care? An immediate starting
point is labour cost, which constitutes over 50% of hospital expenses (Guarin-Calvert,
2011; Hurst and Williams, 2012).

The growing funding gap has taken its toll and affected both short-term and
long-term staffing structurally: cuts of front-line staff have created immense workload
pressure, with the consequence that remaining staff are acting as shock absorbers,
facing increased workload due to longer working hours to protect patient care. This
led to higher perceived levels of stress and increased nurse absenteeism (Robertson
et al., 2017). Empirical healthcare research on the relationship between workload,
operational performance, and quality of care has established that workload is posi-
tively related with burnout in nurses (Greenglass et al., 2001; Vahey et al., 2004)
and nurse absenteeism (Green et al., 2013), both of which are negatively related to
nurses’ professional efficacy. Furthermore, the adverse effect of increased workload
on patient outcomes is well documented (e.g. Needleman et al., 2011; Kuntz et al.,
2014).

This (admittedly, involuntary) development of hospitals towards an environment
with even heavier workload than before is a major cause for concern. Obviously
quality of care and finance are closely intertwined through opportunities to deliver
better outcomes at lower cost (Alderwick et al., 2015). However, it should be noted

that given the workforce’s direct substantial impact on patient outcomes, this is
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a highly complex cost-cutting exercise for the NHS, which has to take note of its
effects on the delicate hospital ecosystem. Ham et al. (2016) argue that substantial
productivity gains can only happen if the NHS manages to engage staff in this
mission — making it crucial that the measures are perceived as a way to deliver better

value rather than a simplistic focus on cost cutting.

A related challenge for efficient nurse staffing is the balance between permanent
and temporary workforce. The NHS’s struggle in recruitment and retention of
permanent staff is widely acknowledged (National Audit Office, 2016). Since 55,000
of the NHS’s 1.3 million workforce are citizens of other EU countries, the current
Brexit negotiations — depending on outcome — could further exacerbate this problem
(McKenna, 2016).

All told, the organisation of services to assure both high-quality patient care and
cost efficiency is an important question for hospitals. The approach must deliver
better value care without increasing workload to unsustainable levels (i.e. permanent
understaffing). We take a constrained optimisation view: First, the modelling system
alms at assuring a sustainable workload level in aid of productivity; second, the

model minimises staff expenses under these circumstances.

4.3.1 Current Nurse Staffing Practices

Optimal nurse staffing is an enormous operational challenge, given the stochastic
nature of both demand for hospital services and duration over which services are to
be provided. A combination of both factors determines the key variables for nurse
staffing: patient census (i.e. the number of patients residing in the hospital at a given
time) and churn (i.e. the sum of admissions and discharges). The stochastic nature
of these measures means that purely cost-efficient staffing (i.e. hospitals running
close to full capacity) will occasionally cause unmanageably high levels of workload.
This leads to a clear trade-off: Overstaffing is costly and unsustainable — a waste of
financial resources that could be utilised to improve patient care by investment in new
technology, funding of clinical trials, and research. Understaffing could jeopardise
patient care and safety, as the research literature suggests: Several empirical studies
document the impact of understaffing on a surge in deaths on weekends (e.g. Lamn,
1973; Rogot et al., 1976; Bell and Redelmeier, 2001; Aylin et al., 2010), an increase
in medication errors (Frith et al., 2012), and higher probability of inpatient falls and
hospital-acquired pressure ulcers (Staggs and He, 2013).
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Nurse staffing is made more complex by the heterogeneous hierarchy of hospitals:
Different divisions in the hospital will require different types of nurse deployment,
and will differ in key measures for nurse staffing — for example due to the time-varying
volatility of admissions to and discharges from the respective division. Chief nursing
officers and other administrators predominantly optimise staffing on the division level.
There are also advocates of centralised staffing who argue that only a centralised
view of staffing needs can ensure an efficient allocation of staff throughout the entire
organisation — i.e. an efficient matching of permanent and temporary nurses with
patient care needs (Crist-Grundman and Mulrooney, 2011). This indicates the need
for a combination of decentralised monitoring and centralised planning in order to
achieve effective staffing and consequently a balance between quality, safety, labour
costs, and staff satisfaction. Designing a staffing model that takes note of the hospital

hierarchy is necessary.

4.4 Forecasting Demand for Hospital Services

4.4.1 Extant Forecasting Research for Nurse Staffing

The matching of health care demand with supply is the focus of a strand of literature
that aims to forecast hospital admission numbers or occupancy using statistical
models: for example, Lin (1989) forecasts hospital admission and discharge levels
using ARIMA and Holt-Winters Exponential Smoothing models; Jones et al. (2008)
forecast daily patient volumes at the emergency departments of three hospitals
using several univariate time series models (SARIMA, Time Series Regression,
Exponential Smoothing, and Artificial Neural Networks); Schweigler et al. (2009)
uses SARIMA models to forecast short-term (4-hour and 12-hour) patient volume at
three emergency departments; Jones et al. (2009) forecast emergency department
volumes with a multivariate time series approach using series for different measures
related to emergency department activity (arrivals, census, laboratory orders, etc.);
Kam et al. (2010) use a multivariate SARIMA (a SARIMA model with meteorological
explanatory variables) to forecast daily visits at an emergency department in Kore;
Perry et al. (2010) use exponentially weighted moving average (EWMA) and fast
orthogonal search models to forecast emergency department visits; and Koestler et al.
(2013) use a Poisson Autoregressive model that is suitable for forecasting patient

census, incorporating patient-level information into the model.
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Most of the extant research on time series forecasting for healthcare demand
documents promising results — however, previous empirical research focused forecast-
ing on specific time series to forecast. To our best knowledge, there is no previous
forecasting research that aims to create a comprehensive, integrated system that
takes note of the hospital hierarchy in the sense that it incorporates information at
all hierarchical levels (aggregate, divisions, specialties, etc.) into the forecast.

The above mentioned extant studies tend to focus on either census or churn as
predicted time series, which makes them difficult to apply in this context — nurse
allocation should be based on both census and churn (Tierney et al., 2013).

The purpose of predictions is to support chief nursing officers with efficiently
allocating both permanent and temporary staff. Thus a good forecasting system
for nurse staffing has to manage demand uncertainty in two stages, conceptually
consistent with Bard and Purnomo (2005) and Kim and Mehrotra (2015): an early
forecasting stage (planning stage) with the aim to find initial staffing levels and
schedules and plan deployment of permanent staff accordingly, and a later forecasting
stage (adjustment stage) to modify these schedules closer to the actual time of
demand realisation, deploying temporary staff if required.

Nurse staffing should also take into account potential legal requirements such as
mandatory nurse-to-patient ratios (Buerhaus, 1997; Ghosh and Cruz, 2005; Reiter
et al., 2012). As of now, there is no mandatory nurse staffing legislation in the UK.
Some professional organisations have produced guidelines for safe nurse staffing (e.g.
Royal College of Nursing, 2010), focussed on specialised units, such as intensive care
or neonatal services.

To summarise, these are the features of a comprehensive, integrated forecasting

system for the purpose of nurse staffing:

o It applies to the entire hospital hierarchical system

o It takes account of the main determinants of nurse workload, patient census

and churn;

o It allows for a planning stage (deploying permanent staff) and an adjustment

stage (deploying temporary staff);

o It accounts for potential mandatory regulatory requirements and voluntary

hospital targets;

It allows for sensitivity analysis with respect to key parameters, e.g. the advised

nurse hours per patient day (NHPPD) number for specific departments.
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4.4.2 Proposed Forecasting Approach

We proceed to formulate a model comprising of a comprehensive forecasting system for
nurse staffing by combining two powerful forecasting tools that suit the purpose very

well: (i) Hierarchical Time Series (HTS) Forecasting and (ii) Forecast Combination.

Hierarchical Time Series (HTS) Forecasting

The hierarchical time series (HTS) framework by Athanasopoulos et al. (2009) and
Hyndman et al. (2011) is a disaggregated forecasting framework that allows for the
joint forecast of a variable that is observed on all levels of a hierarchy. In the hospital
context, this means that using HTS it is possible to jointly forecast patient census
for the entire hospital, each division, and each primary specialty. HTS forecasting is
designed to generate aggregation-consistent forecasts, i.e. the sum of forecasts for
all primary specialties feeding into a division will equal the forecast for the division,
and the sum of forecasts for all divisions will equal the aggregate hospital forecast.

We illustrate the conceptual framework of a hierarchical time series using a
simplified hospital structure: Assume a hospital only has 2 divisions, with 3 primary
specialties feeding into the first division and 2 into the second. The simplified hospital

structure is shown in Figure 4.2.

Hospital Level 0

Division 1 Division 2 Level 1

[ Specialty 1 ] [ Specialty 2 ] [ Specialty 3 ] [ Specialty 4 ] [ Specialty 5 ] Level 2

Fig. 4.2 Simplified Hospital Hierarchy.

Expressed in matrix form, this illustrative hospital structure (e.g. for patient
census at all observed levels, denoted by the C'in the matrix) constitutes a hierarchical
time series (Z;), which is formally expressed in terms of the product of the summation
matrix which takes note of the hierarchy (S) with the bottom-level series (zg,) — in
our case the patient census values for the 5 primary specialties. The total number
of time series in a hierarchy with K levels is given by n = 1 +ny + --- + ng
where n; is the number of series at level ¢ of the hierarchy, so in this illustration
n=1+2+5=38. Of course the actual hospital structure with 8 divisions and 140
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primary specialties feeding into them is a much more challenging application of HTS

forecasting, constituting a hierarchy with a total of 149 time series.
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The current implementation of the HT'S framework provides 4 different aggregation

schemes for hierarchical forecasts:

o Top-Down methods forecast the aggregate time series and then disaggregate

to produce forecasts for lower levels, using either historical proportions (Gross

and Sohl, 1990) or forecast proportions (Athanasopoulos et al., 2009).

Bottom-Up methods forecast the series at the bottom level and then aggregate
up to forecasts at higher levels. Hyndman et al. (2011) find that the bottom-up
aggregation scheme usually performs better than a top-down forecast, by virtue
of utilising disaggregated information. However, noisy bottom-level series
might introduce bias that diminish or even fully eliminate the positive value of

disaggregated information.

Middle-Out methods constitute a hybrid approach that forecast at interme-
diate levels of disaggregation, subsequently aggregating to form forecasts for
more aggregated levels (using a bottom-up approach), and disaggregating to

form forecasts for less aggregated levels (using a top-down approach).

Optimal Reconciliation® approach starts by creating forecasts for each single

series in the hierarchy without taking the hierarchical structure into account

!Note that the ‘Optimal Reconciliation’ forecast is often called ‘Optimal Combination’ forecast,
like in Chapter 2 of this thesis. We use this terminology here to avoid confusing with forecast
combination techniques that are also used in this study. The difference is worth explaining:
While forecast combination techniques combine individual forecasts for the same time series, the
‘Optimal Reconciliation’ method forms a revised (aggregation-consistent) hierarchical forecast by
optimally reconciling individual (aggregation-inconsistent) forecasts for the different time series of
the underlying hierarchy.
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at that point, i.e. the initial forecasts will not be aggregation-consistent.
The forecasts are subsequently reconciled to satisfy the condition of aggrega-
tion consistency using one of the following methods: ordinary least squares
(Hyndman et al., 2011), weighted least squares (Hyndman et al., 2016a), the
game-theoretically optimal method (Van Erven and Cugliari, 2015), or the
minimum trace method (Wickramasuriya et al., 2017). In this study, the
‘Optimal Reconciliation’ forecasts are computed with weighted least squares,
using the R package hts by Hyndman et al. (2016b).

The individual forecasts in the HTS framework can be obtained from any time
series forecasting model. In this study, we create forecasts using 4 different univariate

forecasting approaches that have been popular in forecasting research:
» Seasonal ARIMA (Box and Jenkins, 1970)
o ETS (Pegels, 1969; Gardner, 1985; Hyndman et al., 2002; Taylor, 2003)
« Damped Trend (Gardner and McKenzie, 1985)
« Theta Model (Assimakopoulos and Nikolopoulos, 2000; Fiorucci et al., 2016b)?

For a detailed description of these forecasting methods, see Section 2.4 of this
thesis. In addition, we also estimate a seasonal naive random walk forecast that
serves as benchmark. In our context this corresponds to simply using the values
of census and churn for the current shift as the forecast for the same shift in the
following week. In the selection of forecasting method, we required the methods
to incorporate both non-stationarity and seasonality into the modelling procedure —
while the Theta model in general does not take seasonality into account, the algorithm
chosen for its estimation — using the R package forecTheta by Fiorucci et al. (2016a)
— relies on deseasonalising the series prior to estimation using a seasonality test, and

reseasonalising it after estimation.

Forecast Combination

Forecast combination describes the idea of combining (generally, linearly) different

forecasts for the same time series, for example, from different models, or different

2For the Theta model forecast, we use the dynamically optimised Theta model by Fiorucci
et al. (2016b), a generalisation of the standard Theta model that showed promising results in early
empirical applications. Since the individual forecasts are used as input to forecast combination
methods in this study, we refrain from estimating both versions of the Theta model in order to
avoid excessively high levels of multicollinearity.
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experts. First proposed almost five decades ago in the seminal paper by Bates and
Granger (1969), myriad methods for combining forecasts have been proposed — each
with its own merits and drawbacks. Overall, a large stock of empirical research
has built up, documenting that forecast combination is an appealing strategy to
decrease forecast risk (i.e. probability of obtaining a highly inaccurate forecast)
and can in some cases improve accuracy, even compared to the best component
forecast. Reviewing forecast combination techniques in detail is not the focus of this
chapter and the reader is referred to excellent review studies, such as Clemen (1989),
Armstrong (2001) or Timmermann (2006).

The idea of (linear) forecast combination methods is described in the following

formula:

N
o= Z Wi fit
i=1

where NN is the number of component forecasts that should be used in the forecast
combination, f;; is the ith component forecast, w;; is the weight that the employed
combination method assigned to the 7th component forecast, and f¢, is the revised
(combined) forecast.

In this study, we use the HTS forecasts as component forecasts and apply
14 different methods to compute combination weights in order to create revised
(combined) forecasts. The combination methods we use are estimated in R using
the GeomComb package by Weiss and Roetzer (2016) and can be categorised into 3

groups:

« Simple Methods: Simple Average (SA), Median (MED), Trimmed Mean
(TM), Winsorised Mean (WM), Bates/Granger (BG), Newbold/Granger (NG),
and Inverse Rank (InvR);

» Regression-Based Methods: Ordinary Least Squares (OLS), Constrained
Least Squares (CLS), and Least Absolute Deviation (LAD);

+ Geometric (Eigenvector-Based) Methods: Standard Eigenvector (EIG1),
Bias-Corrected Eigenvector (EIG2), Trimmed Eigenvector (EIG3), and Trimmed
Bias-Corrected Eigenvector (EIG4).

For a detailed description of the combination schemes, see Section 3.2.1 of this

thesis and references therein.
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4.5 The Data

The dataset we use for the empirical analysis reported in this chapter was provided
by a large UK teaching hospital. It includes exact times of all inpatient admissions
and discharges of both emergency and elective patients, including information on
the primary specialty to which the cases were assigned, from 1st January 2007 to
20th December 2013. An advantage of having exact times of these churn events,
instead of daily count data as in many previous forecasting studies, is the possibility
to create counts for smaller intervals — for example, shift intervals.> This is valuable,
as it is then possible to estimate the seasonal pattern shift by shift (i.e. the time
series has a frequency of 14) instead of only weekdays (i.e. a frequency of 7).

The data includes a total of 3,400,053 churn events — 1,700,053 of which were
admissions, the remaining 1,700,000, discharges. These were used to compute shift-
level counts of churn and of census numbers for each primary specialty in the following

way:

Churn;; = Admissions;; + Discharges; ,

Census;; = Census; ;1 + Admissions; ; — Discharges, ,

where 7 is the respective primary specialty and t is the time of the shift.

In this study, we limit our attention to two divisions of the hospital for illustration
purposes — the medical and the surgical units; it should be noted that the method
can readily be extended to forecast patient census and churn for the entire hospital
hierarchy (i.e. aggregate, emergency/electives, divisions, primary specialties), so that
the model can be used for staff planning at any desired level of disaggregation. Thus
the model is suitable for hospitals with either centralised or decentralised staffing.
Figures 4.3 to 4.6 display the time series behaviour of the census and churn series for
the divisions analysed. While all the series show seasonality as a dominant feature
(confirmed by the autocorrelation functions), the differences in the histograms are
striking: the census series are very well-behaved and approximate normality; the
churn series, however, very clearly follow two separate distributions, as indicated by
the bimodal mixture distribution. This is expected in a hospital context: Given the

strong demand for healthcare services, it is reasonable to expect hospitals to operate

3The hospital divides a day into 2 shifts: The day shift is from 7:30am to 7:29pm, the night
shift is from 7:30pm to 7:29am.
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close to full capacity at all times, keeping the census relatively stable; however, most
admissions and in particular discharges will be handled during day shifts rather than
at night time. This feature makes the churn series more challenging to forecast, since
linear time series analysis usually assumes both Gaussian marginal and conditional
distribution of the data (Wong and Li, 2000). At the same time, it emphasises the
importance of using shift-level data — with daily data, all this information would be

lost by aggregation of the two underlying distributions.*
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Fig. 4.3 Medical Services - Census: Time Series Behaviour.

4A case could be made for creating separate forecasts for (a) day-shift churn and (b) night-shift
churn. While this is a valid approach, it should be seen as a measure of last resort, since it decreases
the information that is used as input in either of the two univariate forecasting models — this
approach is only advisable if the bimodal distribution carries over to the distribution of forecast
errors of the full forecast model that uses both day-shift and night-shift churn, which would indicate
that the model does not manage to capture the seasonal pattern well.
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Fig. 4.6 Surgical Services - Churn: Time Series Behaviour.

There are 33 primary specialties feeding into the Medical Services division, and
42 feeding into the Surgical Services division. A full list is presented in Appendix
4.A. Figure 4.7 shows the (simplified) hierarchy for division-level census and churn
forecast for only 2 specialties feeding into a division. This shows that for divisional
census forecasts, the HTS framework provides 3 separate forecasts for each of the 4
forecasting approaches: a top-down forecast (forecasts divisional census directly), a
bottom-up forecast (forecasts specialty-level census and subsequently aggregates),
and the ‘Optimal Reconciliation” approach — i.e. including the seasonal random
walk forecast there are 13 separate HTS forecasts that can potentially be used as
component forecasts for forecast combination methods. For divisional churn, each
forecasting approach delivers 4 forecasts: top-down (forecasting divisional churn
directly), middle-out (forecasting specialty-level churn and subsequent aggregation),
bottom-up (forecasting specialty-level admissions and discharges and subsequent
aggregation), and the ‘Optimal Reconciliation” approach — giving us a potential of 17
separate forecasts (again, including the seasonal random walk) for combined churn

forecasts.
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Fig. 4.7 Simplified Division-Level Hierarchy: (left) census, (right) churn.

4.6 Evaluation of Forecasting Results

Using the forecasting methods described above, candidate forecasts were produced

for the following series:

« Census — Medical Services: 26 separate forecasting models (13 HTS; 13
Forecast Combinations — constrained least squares showed convergence issues

and was discarded)

« Census — Surgical Services: 27 separate forecasting models (13 HTS; 14

Forecast Combinations)

e Churn — Medical Services: 27 separate forecasting models (13 HTS -
SARIMA models were discarded due to estimation issues®; 14 Forecast Combi-

nations)

o Churn — Surgical Services: 27 separate forecasting models (13 HTS —
SARIMA models were discarded due to estimation issues; 14 Forecast Combi-

nations)

To allow for a two-step staffing approach (planning step, adjustment step), we
produced long-term (28-shift, i.e. 14-day) and short-term (2-shift, i.e. 1-day) forecasts.
The forecasting procedure used a time series cross-validation approach (Bergmeir
et al., 2015): Pseudo-out-of-sample HT'S forecasts were estimated for the final 200
shifts (i.e. 100 days) of the sample by re-estimating the models with increasing
training sets. Since most of the forecast combination techniques require a training set

of component forecasts (in our case, of HT'S forecasts) to establish stable combination

5Due to the very large number of series to forecast, HTS heavily relies on automated forecasting
methods. While the criterion-based automated ARIMA estimation by Hyndman and Khandakar
(2008) is popularly applied in forecasting research and practice, it is known to be prone to model
misspecification when seasonal differencing is required, which is very likely part of the explanation
for this method’s bad performance. Another feature of this data that represents a major challenge
for automated ARIMA modelling is its bimodal distribution explored in Section 4.5.
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weights, we computed combined forecasts for the final 100 shifts, also using a time
series cross-validation approach based on re-estimating the combination models with
increasing training sets, allowing for time-varying combination weights.

For the accuracy evaluation of the forecasts, we use mean absolute percentage
error (MAPE) — this is easy to interpret and consistent with previous research
on forecasting hospital time series (e.g. Jones et al., 2008; Carvalho-Silva et al.,
forthcoming). Hyndman and Koehler (2006) document problematic performance of
the measure in cases when a series includes values close to zero, but since the level
of divisional patient census and churn is much higher than zero at all times, this is
not concerning in this study.

Tables 4.1 to 4.4 present the MAPE values for the pseudo-out-of-sample forecasts
for the final 100 shifts of the sample for the 4 series of interest. The results provide
insights:

« Patient census can be forecast much more accurately than patient churn for

both divisions.

o Forecasts for the medical division are slightly more accurate than the ones for

the surgical division — this holds for both census and churn.

o Long-term forecasts that are used for scheduling permanent staff are not that
much worse than short-term forecasts for census, suggesting that the series is
mainly driven by the seasonal pattern; curiously, for churn the results show
that the long-term forecasts are even slightly more accurate on average than
short-term ones. The good overall performance of the long-term forecasts
essentially means that the majority of staff needs can be filled with permanent
staff, which may be positive for patient outcomes — Hockenberry and Becker
(2016) find that a higher proportion of nursing hours provided by agency nurses
significantly lowers both patient satisfaction and nurses’ communication with

patients.

o HTS forecasts and forecast combinations can improve upon the benchmark
model — a seasonal random walk, that essentially coincides with the hospital’s
current staffing method — considerably: The long-term MAPE for the bench-
mark is 1.11 times the error from the best forecast for census in the medical
division, 1.09 for census in the surgical division, 1.29 for churn in the medical
division, and 1.11 for churn in the surgical division. This is even more severe
for the short-term MAPE, for which the benchmark error is 1.54 times the
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error from the best forecast for census in the medical division, 1.80 for census
in the surgical division, 1.31 for churn in the medical division, and 1.26 for

churn in the surgical division.

o For long-term forecasts, HT'S models produce the best forecast for two of the
analysed series, while forecast combinations perform best for the other two
series. For short-term forecasts, forecast combination seems even more valuable,
producing the best forecast for all but one of the series. For the HTS forecasts,
the exponential smoothing-based methods ETS and Damped Trend tend to
produce the most accurate census forecasts, which also holds for most of the
churn forecasts, although a top-down Theta model produces the best long-term

forecast for churn in the medical division.

o The results confirm that forecast combination can considerably reduce forecast
risk, with the range of MAPE values that the different combination methods
produce being much smaller than the correspondent ranges for individual

forecast models.

The best forecast method identified can be used to produce the forecast of
“patient days” per shift, which can then be used to compute the required number
of nurses, using the hospital’s target NHPPD value (see assumptions of the model
in the following section). The hospital’s quality assurance policy may require that
the target NHPPD value is hit in 95 % of the shifts — i.e. only a maximum of 5 %
of the shifts should be understaffed. Therefore, we also have to take into account
the 95 % quantiles of the forecast error distributions in order to adjust the mean
forecast, so that this requirement is satisfied. Figures 4.8 to 4.11 show the empirical
distribution of percentage errors for the best model for each of the series of interest,
comparing it to the corresponding distribution of the naive forecast (the seasonal
random walk) — the 95 % quantiles are indicated by the vertical lines. The plots show
that in each case, the identified best forecast model also has a lower 95 % quantile
of the percentage error distribution than the seasonal random walk forecast. This
is in line with the results presented by Barrow and Kourentzes (2016): combined
forecasts lead to reduced forecast error variance, and, — unlike for univariate forecasts

— out-of-sample distributions are consistent with in-sample ones.
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Table 4.1 MAPE Forecast Evaluation: Census — Medical Services.

Forecast Method Long-Term (14d) Short-Term (1d)
Seasonal Random Walk 3.16 % 3.47 %
HTS Forecasts

Arima (Top Down) 4.48 % 2.62 %
Arima (Bottom Up) 4.42 % 2.76 %
Arima (Optimal Reconciliation) 4.45 % 2.62 %
ETS (Top Down) 291 % 2.40 %
ETS (Bottom Up) 2.91 % 2.28 %
ETS (Optimal Reconciliation) 2.91 % 2.40 %
Theta Model (Top Down) 3.26 % 2.70 %
Theta Model (Bottom Up) 3.46 % 3.10 %
Theta Model (Optimal Reconciliation) 3.26 % 2.70 %
Damped Trend (Top Down) 2.91 % 2.41 %
Damped Trend (Bottom Up) 2.84 % 2.29 %
Damped Trend (Optimal Reconciliation) 2.91 % 2.40 %
Combined Forecasts

Simple Average 3.10 % 2.27 %
Median 2.89 % 2.26 %
Trimmed Mean 2.91 % 2.27 %
Winsorised Mean 2.94 % 2.29 %
Bates/Granger 3.03 % 2.29 %
Newbold/Granger 3.46 % 2.29 %
Inverse Rank 2.96 % 2.28 %
OLS 3.48 % 2.28 %
LAD 3.52 % 2.41 %
EIG1 3.12 % 2.28 %
EIG2 3.41 % 2.29 %
EIG3 2.95 % 2.28 %

EIG4 3.34 % 2.30 %
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Table 4.2 MAPE Forecast Evaluation: Census — Surgical Services.

Forecast Method Long-Term (14d) Short-Term (1d)
Seasonal Random Walk 5.58 % 7.16 %
HTS Forecasts

Arima (Top Down) 6.33 % 4.95 %
Arima (Bottom Up) 6.71 % 5.04 %
Arima (Optimal Reconciliation) 6.33 % 4.95 %
ETS (Top Down) 6.20 % 4.10 %
ETS (Bottom Up) 5.39 % 4.06 %
ETS (Optimal Reconciliation) 6.19 % 4.09 %
Theta Model (Top Down) 5.47 % 4.27 %
Theta Model (Bottom Up) 5.46 % 412 %
Theta Model (Optimal Reconciliation) 5.47 % 4.26 %
Damped Trend (Top Down) 5.50 % 4.05 %
Damped Trend (Bottom Up) 5.40 % 4.03 %
Damped Trend (Optimal Reconciliation) 5.50 % 4.05 %
Combined Forecasts

Simple Average 5.62 % 412 %
Median 5.49 % 4.10 %
Trimmed Mean 5.49 % 4.13 %
Winsorised Mean 5.50 % 4.15 %
Bates/Granger 5.59 % 411 %
Newbold/Granger 5.57 % 3.99 %
Inverse Rank 5.49 % 4.04 %
OLS 519 % 4.09 %
CLS 5.59 % 3.97 %
LAD 5.12 % 4.26 %
EIG1 5.63 % 413 %
EIG2 5.59 % 4.19 %
EIG3 5.40 % 4.14 %

EIG4 5.39 % 4.16 %
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Table 4.3 MAPE Forecast Evaluation: Churn — Medical Services.

Forecast Method Long-Term (14d) Short-Term (1d)
Seasonal Random Walk 16.19 % 16.87 %
HTS Forecasts

ETS (Top Down) 13.70 % 13.55 %
ETS (Middle Out) 13.34 % 12.88 %
ETS (Bottom Up) 13.69 % 13.64 %
ETS (Optimal Reconciliation) 13.69 % 13.53 %
Theta Model (Top Down) 12.52 % 12.89 %
Theta (Middle Out) 14.58 % 14.79 %
Theta Model (Bottom Up) 14.62 % 15.40 %
Theta Model (Optimal Reconciliation) 12.56 % 12.93 %
Damped Trend (Top Down) 14.09 % 13.88 %
Damped Trend (Middle Out) 14.03 % 14.08 %
Damped Trend (Bottom Up) 13.90 % 14.00 %
Damped Trend (Optimal Reconciliation) 14.08 % 13.88 %
Combined Forecasts

Simple Average 13.28 % 13.21 %
Median 13.50 % 13.01 %
Trimmed Mean 13.39 % 13.03 %
Winsorised Mean 13.52 % 13.01 %
Bates/Granger 13.35 % 13.20 %
Newbold/Granger 15.14 % 13.56 %
Inverse Rank 13.56 % 13.09 %
OLS 15.58 % 13.82 %
CLS 13.69 % 12.89 %
LAD 15.77 % 15.14 %
EIG1 13.26 % 13.22 %
EIG2 13.93 % 14.71 %
EIG3 13.61 % 12.89 %

EIG4 14.08 % 14.29 %
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Table 4.4 MAPE Forecast Evaluation: Churn — Surgical Services.

Forecast Method

Long-Term (14d) Short-Term (1d)

Seasonal Random Walk 16.33 % 19.87 %
HTS Forecasts

ETS (Top Down) 14.77 % 16.19 %
ETS (Middle Out) 15.85 % 16.72 %
ETS (Bottom Up) 14.78 % 16.17 %
ETS (Optimal Reconciliation) 14.78 % 16.17 %
Theta Model (Top Down) 17.42 % 17.80 %
Theta (Middle Out) 17.31 % 16.88 %
Theta Model (Bottom Up) 17.54 % 17.02 %
Theta Model (Optimal Reconciliation) 17.41 % 17.78 %
Damped Trend (Top Down) 16.03 % 17.32 %
Damped Trend (Middle Out) 15.83 % 16.74 %
Damped Trend (Bottom Up) 1537 % 16.15 %
Damped Trend (Optimal Reconciliation) 16.02 % 17.30 %
Combined Forecasts

Simple Average 14.71 % 15.93 %
Median 15.06 % 16.36 %
Trimmed Mean 14.78 % 16.23 %
Winsorised Mean 14.84 % 15.87 %
Bates/Granger 14.76 % 15.98 %
Newbold/Granger 16.24 % 17.32 %
Inverse Rank 14.78 % 15.97 %
OLS 17.61 % 19.03 %
CLS 14.81 % 15.80 %
LAD 16.33 % 16.10 %
EIG1 14.76 % 15.93 %
EIG2 14.70 % 16.07 %
EIG3 15.10 % 16.34 %
EIG4 16.07 % 14.74 %
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Medical Services (Census): Distribution of Percentage Forecast Errors
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Fig. 4.8 Empirical Distribution of Percentage Forecast Errors: Census — Medical Services
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Fig. 4.9 Empirical Distribution of Percentage Forecast Errors: Census — Surgical Services
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Medical Services (Churn): Distribution of Percentage Forecast Errors
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Fig. 4.10 Empirical Distribution of Percentage Forecast Errors: Churn — Medical Services
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Fig. 4.11 Empirical Distribution of Percentage Forecast Errors: Churn — Surgical Services

4.7 Using the Forecasts in a Staffing Model

In this section, we show (i) how the forecasts can be used for staffing decisions,
assuring that the target NHPPD value is satisfied in at least 95 % of the cases, and (ii)
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how the best HTS forecasts and/or forecast combinations can improve cost-efficiency
compared to the hospital’s current staffing routine (essentially being described by

the naive seasonal random walk).

4.7.1 Parameters of the Staffing Model

The proposed cost model operates with the following parameters (assumptions):

o Target nurse hours per patient day = 8 («;). This may be reasonable
in the medical and surgical divisions. Previous empirical studies (for the US)
document that the median NHPPD in these divisions are 7.17 (Blegen et al.,
2008) and that the mid range (the average between maximum and minimum
values) is between 6.8 and 11.8 for US hospitals, where hospitals at the high
end of this range tend to be teaching hospitals (Cavouras, 2002). Clarke and
Donaldson (2008) find that staffing at the lower end of the continuum increases
the risk of poor outcomes for patients and nurses, making it hazardous to staff

at the lowest levels relative to peer units.

« Target NHPPD value must be satisfied in at least 95 % of shifts (as).
While there is no mandatory nurse-to-patient ratio in the UK, this requirement

has been set by internal hospital policy as quality assurance.

« Total cost of permanent nursing staff per hour is £42.15 («3). The
hourly total cost of £41 for staff nurses and registered nurses was reported by
Curtis (2012) for the year 2011/12. We adjusted the cost to 2013 prices (our
forecasts are for 2013) using CPI inflation data from the Office of National
Statistics (ONS), estimating the current total cost per hour at £42.15.

o Temporary staff is 1.5 times as expensive as permanent staff (ay).
While the average total cost per hour for permanent staff nurses and registered
nurses is known to some accuracy, this is not the case for the cost of agency
nurses. We rely on information adducted from the hospital, and assume a cost

premium of 50% for temporary staff compared to permanent staff.

o The time required to deal with a churn event (i.e. admission or
discharge) is 0.5 nurse hours on average (a;). Again, information on
the time requirement for churn events is scarce in the literature and we rely on

the estimate by the hospital.
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These parameters of the cost model for medical and surgical units can easily be
varied to suit the other divisions — for instance, a staffing model for a critical care
unit should obviously use a much higher target value for the NHPPD parameter,
given the mid range between 14.6 and 25.5 for these departments (Cavouras, 2002).

4.7.2 Outline of the Staffing Model

The proposed staffing model utilises the patient census and churn forecasts, to
compute the required number of both permanent nursing staff (based on the long-
term forecasts) and agency nurses (based on the short-term forecasts). It is worth
fixing notation: Z;,,p; denotes the h-step ahead forecast of model i for a time series
x at time t, ®(e; jpe; k) denotes the kth quantile of the empirical h-step percentage
forecast error distribution of model 7 for series j at time ¢ (note that the distribution is
time-varying, as new forecasts are produced over time), C; describes patient census for
shift ¢ (at the level the staff model is applied to, e.g. the ‘Medical Services’ division)
and T; denotes patient churn for shift ¢ (based on the term ‘turnover’ to avoid
notational confusion, rather than ‘churn’). P, denotes the number of permanent
nursing staff scheduled for shift ¢, and A; denotes the number of agency nurses
scheduled for shift . 1; denotes the indicator function, i.e. 1 if condition j is satisfied
and 0 otherwise.

We specify 4 separate cases — each of which is a possible approach to nurse

staffing:

1. Case 1. Permanent nursing staff is scheduled using the long-term census
forecast (i.e. 28 shifts ahead). Churn is not accounted for in the nurse staffing
decision. No adjustment stage using short-term forecasts, i.e. no hiring of
agency nurses. No adjustment of the mean forecast to account for the target
of hitting a NHPPD number of at least 8, in a minimum 95 % of the shifts.

The number of required nurses for shift ¢ in this scenario using forecasts from

a model ¢ (that can be specified by the user) is given by:

1 N
P, = By X 0 X Ci,t|t—28

At:()
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The predicted number of patients that is taken into account in staffing (in
this case only the predicted census) is multiplied by ﬁ X alpha; applying the
NHPPD target. It is worth explaining the origin of this multiplicator, as it is
also used in the other cases: The predicted number of patients is multiplied
by 12 to give predicted number of patient hours in the shift and subsequently
divided by 24 to predict the number of patient days in the shift, then we
multiply by the target NHPPD value of «; to give required nurse hours in the
shift and divide by 12 (the length of a shift) to obtain the required number of
nurses, resulting in a factor of: (12/24) % oy /12 = 1/24 % o

Case 2. Same as Case 1, but allowing for an adjustment stage using short-term

forecasts (i.e. 2-shift ahead) and hiring agency nurses accordingly.

The number of required nurses for shift ¢ in this scenario using forecasts from

a model 7 is given by:

1 ~
P, = o X o1 X Cz’,t\t—28

1 N N
A = ]léi,t|t72>éi,t\t—28 X 24 X X (Civtlt_2 - Ci7t|t—28)

The number of permanent nurses hired, P;, in this scenario is equal to Case 1.
However, if the predicted patient census, 1 day ahead of the shift, is higher
than the prediction 14 days ahead of the shift, additional agency nurses will be

hired for the predicted excess census.

Case 3. Same as Case 2, but staffing decision takes into account patient churn.

The number of required nurses for shift ¢ in this scenario using forecasts from

a model ¢ is given by:

1 A 1 A
Py = B X ap X Cjyjp—og + ID X a5 X T g1—28

1 ~ ~
A= ﬂéi,m_péi,m_% X By X ap X (Ci,tlt—z - i,t|t—28)

1 ~ ~
X = Xag X (Ti,t|t—2 - Tz‘,t|t—28)

+ ]]-Tz‘,t|t72>,fi,t|t728 12
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The factor of 1/12 * a5 is applied to the predicted churn forecast, as a churn
event takes a nurse a5 hours, so that one nurse can cover 1/12* a5 churn events
in a 12-hour shift.

4. Case 4. Same as Case 3, but in addition the forecasts are adjusted using the

95 % quantile of the relevant empirical percentage forecast error distribution:

1 A 1 .
P = 3 X [1 4+ @085 02)] Cgje—28 + 21 X (14 ®(e;r2805 @2)] Tigj—28
1
At = ]l[ — X 01

14 (e, 0,2,6302) | Ci 402> [14@(e5,0,28,4302) | Ci 4]0 —28 X 24

X {[1 + ®(ei 0005 2)] éi,t|tf2 — 1+ P(es00814; 2)] éi,t|tf28}

1

- - X — X
+1 (14 (es,1,2,6302) | T 40— 2> [14D(es,7,28,6502) | Ti 4o 28— 19 @5

X {[1 + @€ 1245 2)] Ti,t|t—2 — [1 + D(e; 70805 )] Ti,t|t—28}

As can be seen, the only change relative to Case 3 is that a factor of [1 + ®(e; j 5+, 95)]
is assigned to the forecasts instead of the factor 1, thereby accounting for the
condition that the target NHPPD value should be satisfied in at least 95 %

of the shifts. The reasoning is as follows: Assume that the 95th quantile of
the empirical percentage forecast error distribution is 11 %, i.e. based on the
distribution it happens only 5 times in 100 that the observed value turns out

to be more than 11 % higher than the forecast. If conditions are relatively
stable, multiplying the forecast by a factor of 1.11 therefore should give us a

95 % probability of hitting the target, avoiding understaffed shifts.

Each of the staffing approaches above (Case 1 - 4) results in a different NV;, the

number of total scheduled nurses for shift ¢:

Ny =P, + A,

which can be compared to N, the required number of nurses that is calculated using

the actual (i.e. realised) numbers for patient census and churn:

~ 1 1
Nt:ﬂxalxcz‘ﬂf‘i‘ﬁxag))(ﬂ’t

A shift is understaffed if N, < N;.
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The £ staff expenditure for a given shift, F;, can be calculated in a straightforward

way using the model parameters:

Et:Oé3X(Pt+Oé4XAt)

4.7.3 Results — Staffing Model

Table 4.5 shows the results of the staff model using (a) the best hierarchical forecast

or forecast combination; versus (b) using a naive (seasonal random walk) forecast.

Table 4.5 Results Staffing Model — Staff Cost and Risk of Understaffing.

Forecast Approach Staff Cost (per Shift) % Understaffed Shifts
Best Hierarchical or Combined Forecast

Case 1 121,619.61 £ 79.50 %
Case 2 124,009.52 £ 72.50 %
Case 3 135,008.14 £ 22.50 %
Case 4 144,193.46 £ 0.50 %
Naive Forecast

Case 1 121,528.57 & 77.00 %
Case 2 125,481.39 £ 68.50 %
Case 3 137,195.72 £ 16.50 %
Case 4 150,895.31 £ 1.00 %

The relationship shown in the table is intuitive: The more effort the hospital
management undertakes to hit the target nurse-hours-per-patient-day level (by
readjusting staff levels with agency staff, accounting for churn workload, and setting
a target minimum of fully staffed shifts), the higher is the direct staff cost.

Using only patient census as input is the most common approach to nurse staffing
(Baernholdt et al., 2010). However, it can clearly be seen that Cases 1 & 2 lead to
more than two thirds of shifts being understaffed when taking into account actual
workload (including churn events) in the evaluation — these staffing approaches do
not come anywhere close to satisfying the hospitals commitment to quality care by
setting the internal target of hitting a NHPPD value of 8 in 95 % of the shifts. A first
very important step for the hospital to assure quality care is to account for churn in
staff planning (Case 3), which reduces the number of understaffed shifts vastly for
either forecasting approach — however, only adjusting staff levels for churn events
and using the mean forecasts for census and churn still leads to around a fifth of the

shifts being understaffed, due to the stochastic nature of demand. The best practice
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approach for the hospital — if it takes the quality care target seriously — must be
Case 4, adjusting the mean forecasts for census and churn by revising the forecasts
using the distribution of percentage forecast errors. This modification to the staff
planning procedure reduces the likelihood of understaffed shifts to extremely 1 %
or 0.5 %, depending on model selection. It is interesting that the approach leads
to the number of understaffed shifts being considerably lower than even the target
maximum of 5 %. This could in general be due to a break in the series — if the
series has become much more well-behaved and forecasts have become more accurate
than for earlier periods as a consequence, using the empirical distribution of forecast
errors could lead to overadjustment of the forecasts; however, this seems unlikely
for 2 reasons: first, none of the forecast series display any obvious break in level or
volatility, second, the forecast error distribution gets updated in each re-estimation
step in the cross-validation, allowing for a time-varying forecast error distribution.
The more plausible explanation why the number of understaffed shifts is even lower
than the target maximum of 5 % is due to the idiosyncrasies of staffing: The model
is designed such that permanent staff is scheduled 14 days in advance, and the 1-day
ahead adjustment only concerns temporary staff, i.e. if the 1-day ahead forecast
is higher than the 14-day ahead forecast, additional staff gets deployed, but if the
opposite is the case, the permanent staff cannot be called off on such short notice.
A comparison of the best practice approach for the different forecast models
shows that the best among the hierarchical and combined forecast approaches
is considerably more cost-efficient than the simple staffing rule that the hospital
currently applies, with a cost advantage of 4.44 % while also decreasing the risk of
understaffed shifts further.® When employing the best practice staffing approach,
the optimised hierarchical or combined forecast saves the hospital over £3.5 million
annually. Comparing the best practice approach to the other staffing options, it
is obvious that it increases the staff cost — however, these are merely direct staff
costs; the decrease in understaffed shifts (from almost 80 % to less than 1 % when
compared with Case 1) also decreases costs due to nurse burnout and absenteeism,
and increases staff satisfaction as well as patient outcomes, quality of patient care

and patient satisfaction, potentially reducing the hospital’s legal costs.

6Note that the naive approach slightly outperforms the ‘best hierarchical or combined’ approach
for Case 1, while also generating lower risk of understaffing for that case. This might appear
counter-intuitive, given that the best hierarchical or combined forecast approach had a better
MAPE value — however, a more detailed look at the understaffed shifts is revealing: The naive
approach indeed leads to fewer understaffed shifts using this staffing approach, but when it does, it
understaffs by 12.45 nurses on average, while the best hierarchical or combined approach understaffs
by 11.89 nurses.
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Table 4.6 shows the cost breakdown for an average shift applying the best practice
staffing approach using the best hierarchical or combined forecast. It delivers some
insight into the main cost factors: The vast majority (89.46 %) of the staff costs are
accounted for by permanent staff hours related to the patient census (i.e. patient
care excluding churn events). Most of the remaining staff costs are due to permanent
staff dealing with churn events, accounting for another 8.81 % of total staff cost.
Two conclusions follow immediately: (i) even though the staffing model results made
it obvious that staff planning must take note of churn events to avoid the risk of
understaffing, churn only accounts for a total of 9.28 % of staff costs, suggesting that
it contributes a similar fraction of a nurse’s workload; (ii) the best hierarchical or
combined forecast approach is very good at forecasting demand 14 days in advance,
keeping readjustments using temporary staff to a minimum: Agency nurses only
account for 1.73 % of total staff cost.” These results emphasise the importance of
the 14-day ahead census forecasts, as almost 90 % of total staff cost depend on their

quality.

Table 4.6 Staff Costs per Average Shift: Best Hierarchical or Combined Forecast, Case 4.

Staff Cost ...in % of Shift Cost

Total Cost 144,193.46 £ 100.00 %
Medical Services 83,300.20 £ 57.77 %
Census (Permanent Staff) 73,730.47 £ 51.13 %

Census (Agency Staff) 978.72 £ 0.68 %

Churn (Permanent Staff) 8,158.55 &£ 5.66 %

Churn (Agency Staff) 432.46 £ 0.30 %

Surgical Services 60,893.26 £ 42.23 %
Census (Permanent Staff) 55,271.30 £ 38.33 %

Census (Agency Staff) 834.57 £ 0.58 %

Churn (Permanent Staff) 4,544.61 £ 3.15 %

Churn (Agency Staff) 242.78 £ 0.17 %

Appendix 4.B presents the results of a sensitivity analysis with respect to staffing
model parameters. The parametric approach allows healthcare providers to replicate
our results with their own data and use the model for staffing by modifying the

parameters (staff cost per hour, NHPPD values, etc.) according to their requirements.

"The corresponding value for the naive forecast is 3.80 %. While this is not a vast difference,
the lower dependence on agency nurses should be considered as an additional advantage of the
hierarchical or combined forecast approach, as temporary staff are not only more expensive, but
also decrease patient satisfaction and quality of care (Kane et al., 2007; Hughes et al., 2015).
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4.8 Conclusion

An unprecedented slowdown in public healthcare funding growth, paired with rapid
growth of demand for health services, has increased the pressure on NHS hospitals

to delivering better value at lower cost.

In terms of this broad challenge, we evaluate the use of hierarchical time series
forecasting and forecast combination approaches for hospital staffing, and present
a comprehensive, integrated forecasting system for patient census and churn that
takes into account the hospital structure. The results fill a gap in nurse staffing
research, in going beyond the analysis of aggregated data that is common (Hughes
et al., 2015).

The proposed system provides guidance on managing staffing in two ways: First,
it provides highlights measures to avoid risk of understaffing — (i) accounting for
churn in nurse deployment, (ii) readjusting for predicted short-term demand changes
using agency staff, and (iii) modifying mean forecasts using empirical forecast error
distributions to incorporate a target minimum of fully staffed shifts. Second, using
accurate forecasting techniques that incorporate disaggregated information in the
model, staff cost is minimised under the ‘quality of care’ constraint.

This paper should be seen as an forerunner to a fully integrated, comprehensive
time series forecast system for hospital staffing. Some improvements for future
research are evident: One challenge is accurate modelling of shift-level churn time
series, given their bimodal distribution. While churn only accounts for roughly 10 %
of staff cost, it should be possible to further improve the forecast by applying non-
linear time series forecasting techniques — which are better suited for multimodal data
distributions — to the churn series. Candidate models to be tested in a hierarchical
framework are the self-exciting threshold autoregressive model by Tong (1990),
the multipredictor autoregressive time series model by Martin (1992), the mixture
autoregressive model by Wong and Li (2000), the dynamic switching Markov chain
model by Gouriéroux and Robert (2006), and the autoregressive conditional root
model by Bec et al. (2008). There will be a trade-off between optimising fit and
model usability — these non-linear methods are not widely known and are difficult to
automate, raising the question whether their potentially improved fit can make up

for the lost ease of implementation.

Another potential improvement for forecasting churn could be a forecasting model
that includes regressors such as length of stay, which is negatively related to churn
as documented by Unruh and Fottler (2006) and Hughes et al. (2015).
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Finally, an avenue for future research could be the attempt to combine census and
churn into one single hierarchy to make use of the hierarchical time series methods
that take note of co-movement between series. However the correlation between these
variables are low in our dataset (-0.039 for ‘Surgical Services’ and 0.192 for ‘Medical
Services’). It does appear that census and churn follow different data-generating
processes.

The model presented in this chapter addresses a gap in health care research in
enabling the combination of decentralised monitoring and centralised planning to
achieve effective staffing: balancing quality, safety, labour cost reduction, and staff

satisfaction.
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Appendix

4.A List of Primary Specialties

The following lists describe the primary specialties that feed into the divisions

‘Medical Services’ and ‘Surgical Services’

e Medical Services: Acute Medicine, Bone Density Scanning, Cardiology,
Clinical Pharmacology, Dermatology, Gastro Physiology, Gastro-Enterology,
Gauchers, General Medicine, Genito-Urinary Medicine, Geriatric Medicine,
Hepatology, Hepatology Biopsy, Hepatology Chronic, Hepatology ERCP, Hepa-
tology Other, Infectious Diseases, Medical Assessment, Metabolic Bone Disease,
Nephrology, Paedatric Allergy, Paediatric Dermatology, Paediatric Rheumatol-
ogy, Rehabilitation, Respiratory Physiology, Rheumatology, Special Vasculitis,
Stroke Medicine, Thoracic Medicine, Thoracic Surgery, Vasculitis, Vasculitis

Treatment

e Surgical Services: Bladder Cancer WL, Breast Surgery, Colorectal Surgery,
ENT, EPS Assessment, EPS Follow-up, EPS Surgery (Primary), General
Surgery, HPB & Pancreas Surgery, Liver Transplant Assessment, Liver Trans-
plant Follow Up, Liver Transplantation, Maxillo-Facial Surgery, Medical Oph-
thalmology, Ophthalmology, Oral Surgery, Orthodontics, Orthopaedic, Pae-
diatric ENT, Paediatric Gastro-intestinal Surgery, Paediatric Maxillo-Facial
Surgery, Paediatric Ophthalmology, Paediatric Orthopaedic, Paediatric Plastic
Surgery, Paediatric Transplant NOS, Paediatric Trauma, Pancreas Trans-
plant, Pancreas Transplant Follow-Up, Plastic Surgery, Renal Donor, Renal
Transplant, Renal Transplant Follow Up, Restorative Dentistry, Small Bowel
Assessment, Small Bowel Follow Up, Small Bowel Transplant, Transplant
Surgery NOS, Trauma, Upper Gastro-intestinal Surgery, Urology, Vascular

Access, Vascular Surgery

4.B Visualised Results of Sensitivity Analysis

The following figures show the effect of changing the staffing model parameters on

staff costs and risk of understaffing. The parameters were allowed to vary as follows:

o For the target nurse-hours-per-patient-day parameter values between 6.8 and
11.8 were considered, since this was the reported mid range for medical and

surgical divisions in Cavouras (2002).
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o For the target minimum percentage of fully staffed shifts values between 60 %
and 100 % were tested.

o The hourly cost for permanent staff was set to values between 30 and 60.

o The cost factor for agency staff was allowed to vary between 1 and 5 times the

cost for permanent staff.

o The average nurse time per churn event was set to values between 6 minutes

and 1 hour for the sake of the sensitivity analysis.

The dotted black vertical lines in the graphs indicate the values that were used

in the actual staffing model in this paper.
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Fig. 4.B8 Understaffing Sensitivity to Added Cost Factor of Temporary Staff.
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Chapter 5
Conclusions

This thesis has made contributions to a growing body of research that is concerned
with optimally incorporating disaggregated information into aggregate forecasts. The
linking theme between the chapters is the integration of a multitude of time series
forecasts into a single one, either vertically (hierarchical forecasting) or horizontally

(forecast combination).

The first study in this thesis, “Hierarchical Modelling and Forecasting System for
Inflation Rate and Volatility” contributes to research on the impact of microeconomic
shocks on macroeconomic volatility. A two-stage variance decomposition furthers
our understanding of the data generating process of inflation rate and its volatility.
We show that aggregate volatility is generated by a combination of macro shocks
(driving the covariation of product-level inflation rates) and micro shocks (driving
the product-level variances). Through a product-level analysis, we find that episodes
of high inflation volatility are often driven by a single or a few selected products,
rather than a general increase in product-level variances. The second part of the
paper formulates a forecasting system for inflation rate and volatility, building on the
variance decomposition from the first part. We explore the value of hierarchical time
series forecasting in the inflation context and find that bringing in the scheme of
aggregating product-level inflation rates, and of distinguishing between their common,
industry, and idiosyncratic parts, leads to (statistically) significant improvements
in forecast accuracy for both inflation rate and its volatility. Finally, we suggest a
dynamic switching model based on in-sample inflation volatility, which is an extreme
case of forecast combination, and find that this can further improve forecast accuracy,
indicating that there is no single best forecasting model, i.e. different models perform

better in different volatility regimes.
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The second study in this thesis, “Forecast Combination in R Using the GeomComb
Package” documents a software contribution. The GeomComb package in R was
developed by us with the aim to provide a comprehensive toolset for forecast combina-
tion, a statistical approach to forecasting that is based onn the (weighted) averaging
of several individual forecasts for the same time series, which can often improve upon
the best individual forecast and is a suitable strategy to reduce model risk. The
package provides functions that can be used for all steps of the forecasting procedure:
(a) data processing — functions dealing with common forecast combination issues such
as missing data and multicollinearity; (b) forecast estimation — 15 different static and
dynamic forecast combination methods ranging from simple statistics-based methods
to more sophisticated regression-based and eigenvector-based methods; (c) resutls
interpretation — summary and plotting functions allowing the users to rationalise
forecast combination results. The functionalities of the package are demonstrated
using UK electricity supply data.

The third study in this thesis, “Efficient Nurse Staffing: The Value of Hierarchical
Time Series Forecasting and Forecast Combination”, contributes to the healthcare
operations literature. Combining the value of HTS forecasting and forecast combina-
tion techniques, we show how the approaches can be used to minimise permanent
and temporary nurse staff cost in a large UK teaching hospital. We formulate a
parametric straffing model, a constrained optimisation, and find that the current
norm in nurse staffing (based only on patient census and ignoring workload related
to patient churn) lead to chronic understaffing issues, jeopardising patient safety
and staff satisfaction. We show how understaffing can be avoided by incorporating
three factors into the staffing model: (a) the possibility to hire temporary staff,
(b) taking into account workload related to patient churn, and (c) accounting for
forecast uncertainty using the empirical forecast error distribution. By adding these
factors to the staffing model, the probability of understaffing can be decreased from
almost 80% to 1%. The value of hierarchical forecasting and forecast combination is
evident when using the staff model that aims to avoid understaffing, reducing staff
cost by 5% compared to the benchmark forecast (a seasonal random walk). Due
to its parametric nature, the model is very flexible regarding the cost and quality
inputs, so that it can be readily employed by health care providers worldwide for

cost-efficient nurse staffing that aims to avoid understaffing.



