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1. Introduction 

Medicine and healthcare are often highlighted as some of the most promising domains 

of application for artificial intelligence (AI). Building on recent breakthroughs in machine 

learning, medical AI systems are developed to take on increasingly critical roles in assisting 

with clinical reasoning tasks such as diagnosis, prognosis and treatment decisions. 

For example, in one recent study researchers used machine learning to build a 

prognostic model to predict whether patients at a military hospital in Beijing suffering from 

disorders of consciousness (DoC) following brain injury would recover within 12 months 

(Song et al. 2018).1 The model takes inputs from fMRI scans and a few clinical details to 

generate a predicted score on a standard 23-point scale for signs of consciousness, as well as 

a binary prediction of whether the patient will recover consciousness.2 The results were 

promising: the model achieved 88% accuracy in predicting consciousness recovery on 

external validation data (including from a different hospital in Guangzhou), with similarly 

 
1 DoC is defined as conditions where a patient’s capacity for arousal or awareness is absent or inhibited. 

These mainly include coma, persistent vegetative state and minimally conscious state. 

2 Specifically, a regression model was first trained to predict patients’ score on the Coma Recovery 

Scale-Revised (CSR-R), which combines six sub-scales estimating auditory, visual, motor, oromotor, 

communication, and arousal functions. To produce a binary classification, a cut-off point on the predicted CSR-

R scores was then calculated, above which patients were predicted to recover consciousness (defined as a score 

of 3 or higher on the Glasgow Outcome Scale). The cut-off point was selected to maximise the sum of true 

positive and true negative classifications in the training data. 
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promising true positive and true negative rates. The system was reported by the World 

Economic Forum as one of the “7 amazing ways artificial intelligence is used in healthcare” 

(Gray 2018) and used in the daily operations of the Beijing hospital (Chen 2018). 

We highlight this case for a couple of reasons. First, it illustrates the potential benefits 

that could be gained from medical applications of machine learning and related technologies. 

For instance, the model correctly predicted seven out of eight patients in the validation 

dataset who regained consciousness, despite doctors scoring them below 7 for signs of 

consciousness, the legal threshold for a family to withdraw life support (Chen 2018). This 

also illustrates how machine learning may be relied upon in high-stakes decision-making. 

When a patient is predicted not to recover, this could lead to life-support being removed or 

therapeutic interventions being prioritised for other patients (Song et al. 2018, pp. 1-2). 

What interests us most about this case, though, is the claim by the authors that their 

model “also has good interpretability, thereby providing a window to reassure physicians and 

scientists about the significance of different predictors” (p. 21). This claim is significant, 

since it addresses one of the major concerns about the increased reliance on AI systems in 

high-stakes contexts, such as the medical domain, namely that they are “opaque” (Burrell 

2016), “black boxes” (Castelvecchi 2016), or lacking in “interpretability” or “explainability” 

(Watson et al. 2019). This concern is taken seriously by many, including policy makers and 

technology companies. For instance, a recent survey found that 73 out the 84 reviewed AI 

ethics guidelines proposed ethical principles relating to Transparency (including 

‘explainability’, ‘explicability’, ‘understandability’ and ‘interpretability’), making it the most 

commonly discussed type of principle (Jobin et al. 2019). In response, a growing body of 

technical AI research has emerged, which seeks to develop methods for making AI systems 

more “interpretable” or “explainable” (see e.g., Doshi-Velez and Kim 2017; Biran and Cotton 
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2017; Chakraborty et al 2018; Guidotto et al. 2018; Gunning and Aha 2019), a field often 

known as Explainable AI (XAI).3 

An overarching difficulty in this research is that the end goal of having an explainable 

or interpretable system lacks a precise definition (Doshi-Velez and Kim 2017; Lipton 2017). 

XAI researchers are increasingly recognising explainability as a context- and audience-

sensitive phenomenon, rather than a single mathematically defined property that can be 

directly measured and optimised (Tomsett et al. 2018; Kim 2021). The lack of precise 

definitions is problematic for several reasons. First, for technical researchers it means a 

constant need for direction verification and course correction to make sure they focus on the 

right goals and make progress toward them (Kim 2021). Second, discussions about 

explainability involve many different groups, including the technical machine learning 

community, domain experts who are meant to use models, human-computer interaction 

researchers working to bridge the gap between technical models and users, and regulators and 

ethicists seeking to establish principled ways to safely oversee these advances. In a 

multidisciplinary space such as this, having clear definitions of key terms is crucial to ensure 

productive communication and common goals. In short, the problem is this: how can we 

conceptualise explainability in a way that is unified enough to allow cross-disciplinary 

communication, while also capturing its context- and audience-sensitivity? 

This is the problem we aim to resolve in this paper. We will outline a framework, called 

Explanatory Pragmatism, which we argue can illuminate some nuances and key questions 

relevant to evaluating explainability in AI systems, especially in medical applications. We 

 
3 There is considerable terminological variation in these literatures. Some use terms such as 

‘interpretability’ and ‘explainability’ more or less interchangeably, while others define them to mean different 

things (e.g. Lipton 2017). Our account is framed in terms of ‘explainability’ (for reasons that will become 

apparent below) and we will mainly be using this term, except when quoting others. 
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start by briefly reviewing some of the recent developments in the technical research and 

ethical debates about explainable AI. Next, we propose and defend a general account of what 

it means for an AI system to be explainable, based on pragmatic accounts of explanation and 

understanding in philosophy of science. We highlight several attractive features of this 

framework. First, it allows us to conceptualise explainability in explicitly context-, audience- 

and purpose-relative terms, while retaining a unified underlying definition of explainability. 

Second, it makes visible any normative disagreements that may underpin conflicting claims 

about explainability regarding the purposes for which explanations are sought. Third, it 

allows us to distinguish several dimensions of AI explainability. Finally, we apply 

Explanatory Pragmatism to the consciousness recovery case study introduced above, to 

illustrate its usefulness for distinguishing and analysing different types of explainability in 

medical AI. 

 

2. Current directions in Explainable AI 

Much progress has been made in the last few years in response to the above concerns 

about explainability. Early debates tended to focus on black-and-white questions of whether 

or not AI systems could be explainable and still predictive or whether they should be 

deployed at all without being fully explainable. For instance, the UK House of Lords report 

on AI stated that “it is not acceptable to deploy any artificial intelligence system which could 

have a substantial impact on an individual’s life, unless it can generate a full and satisfactory 

explanation for the decisions it will take” (House of Lords 2018, p. 40). Meanwhile, critics, 

such as Weinberger (2018) and London (2019), rejected blanket requirements for 

explainability on the grounds that this would risk forgoing the highest possible accuracy, by 

giving preference to simpler but less accurate models, which in high-stakes medical contexts 

ultimately would translate into higher morbidity and mortality for patients. 
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More recently, however, researchers have questioned whether there is in fact an 

inherent trade-off between explainability and predictive power (Kim 2021). There has been a 

proliferation of approaches to improving explainability without necessarily restricting oneself 

to simpler models. Some current directions in XAI research include verification of 

explanations (Camburu et al. 2019), making explanations more amenable to human 

understanding by defining concept-equivalent components rather than explanations based on 

individual features (e.g. training an algorithm in a pathology context to recognise groups of 

pixels as glands rather than just pointing to particular regions on the image in isolation) (Kim 

et al. 2018; Cai et al. 2019), and automatically discovering such concepts (Ghorbani et al. 

2019). Some researchers have also started to explore explainability at a system-level, where 

developers can struggle to explain the behaviour of ensembles of models because of 

unpredictable or unforeseen interactions between the component models, and suggest new 

ways of building systems to meet this challenge (Lawrence 2020; Zittrain 2019).  

More generally, researchers have started to investigate explainability in specific 

contexts rather than as an abstract desideratum. For instance, in a recent paper in the applied 

machine learning space, Sendak et al. (2020) built and deployed a tool to detect sepsis. They 

raise several instructive points in relation to their case study of developing and deploying this 

model. First, they question whether the purposes for which explainability is being used—e.g. 

as a way to build trust in machine learning models in medicine or to ensure transparency—

have been overemphasised. In their case study, they found that there were other ways of 

developing trust and accountability, for instance in the ways that teams were designed. These 

included involving domain stakeholders in the development and acknowledging the labour of 

interpreting and translating the outputs of the model into clinical practice. They also raised 

more detailed points about which parts of the model required explainability and which did 

not. For instance, clinicians were not interested in interpreting the cause of sepsis since the 
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treatment pathways were the same regardless, but they did want to know key facts about the 

model such as what input data the model used, how it had been validated, and which types of 

decisions it was designed to support. 

Regulatory thinking has also come some distance from the earlier statements, such as 

the 2018 House of Lords report. For instance, recently released regulations addressing 

clinical trials for machine learning-based decision support tools include more specific 

guidelines for researchers and developers aiming to deploy models in the clinical context, 

including thinking about the skills needed for people to use and understand the models as 

well as error cases and evaluation contexts (Liu et al. 2020; Heaven 2020; Genin and Grote 

2021). 

Finally, there is an increased focus on the need for conceptual clarification. While 

‘explainable AI’ and related terms are widely used in the technical and policy literatures, 

commentators have highlighted that these terms lack any clear, agreed-upon definition 

(Kirsch 2017; Weller 2017; Felten 2017; Besold and Uckelman 2018; Selbst and Barocas 

2018; Lipton 2017; Tomsett et al. 2018; Krishnan 2019; Zednik 2019). As the brief review in 

this section illustrates, there is considerable variety in what kinds of things are meant to be 

explained—e.g., models, components of models, individual decisions, interacting ensembles 

of models, the design process that produced a given system—and the types of features that 

are claimed to make a given system or model (etc.) explainable. Moreover, when motivating 

the need for explainability, people highlight many different kinds of problems it is supposed 

to help alleviate. What people regard as an adequate explanation seems to vary by user, 

context and purpose. 

In response to this apparent disunity, some have doubted the usefulness of the term 

‘explainable AI’ (Krishnan 2019). Others have proposed more contextual accounts of 
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explainability, aiming to accommodate this plurality within a general, unified framework 

(Besold and Uckelman 2018; Tomsett et al. 2018; Zednik 2019).  

We subscribe to the latter approach. Being able to compare and contrast different 

approaches to explainability within a unified framework will be valuable as a means to 

facilitate communication within and across the different communities working on XAI. Of 

course, such a framework also needs to be flexible enough to genuinely capture the different 

aspects of the problem(s). In the next section, we develop an account of explainability which, 

we argue, achieves just that. 

 

3. A framework for explainable AI 

A natural starting point for an account of explainability is to ask what counts as a good 

explanation. We start by outlining an answer to this question, based on some ideas from the 

philosophical literature on explanation and understanding, before proposing a definition of 

explainability and comparing it to some extant proposals. We defend our framework against 

some potential objections in Section 4. 

In recent decades, philosophers of science have increasingly emphasised that scientific 

explanations vary along several different dimensions, such as the type of information 

provided (e.g. general laws or local causes), implicit contrast-classes (why did you close the 

window vs. why did you close the window), and level of abstraction and idealization (e.g. 

Potochnik 2016; Weisberg 2007; Jackson and Petit 1992; Sterelny 1996). Often, for the very 

same phenomenon, several valid explanations are available. For instance, if we ask why the 

cheetah is able to reach speeds of up to 120 km/h, the available explanations include: a 

physiological explanation, highlighting facts about the build, muscle-structure and 

metabolism of the cheetah’s body; an ecological explanation, highlighting that the cheetah’s 

ecological niche involves hunting certain kinds of fast prey for which the ability to reach high 
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speed is necessary; and a phylogenetic explanation, which tracks the series of historical 

speciation events that led to the emergence of the cheetah. Crucially, all three types of 

explanations are valid and can, depending on purpose and audience, count as the best or most 

adequate explanation. 

Our account of AI explainability draws on two, broadly pragmatist ideas that 

philosophers of science have proposed to account for this plurality in what counts as good 

explanations: a communicative view of explanation and an inferentialist view of 

understanding. 

 

3.1. Communicative view of explanation 

It has been noted that the verb ‘explains’ can take at least three different kinds of 

things as its subject (Craver 2014, cited by Potochnik 2016): a fact or entity in the world (“the 

cold explains his sore throat”), a theory or other representation of the world (“infections are 

explained by the germ theory”) and an agent (“the doctor explains how the vaccine works”). 

Existing philosophical theories differ as to which of these uses constitute the most 

fundamental phenomenon and which are merely derivative. Communicative views prioritise 

the third use (Wilkenfeld 2014; Potochnik 2016; Franco 2019). 

We adopt the following formulation of the communicative view: explanations are 

communicative acts where an explainer conveys some information to an audience, in order 

for that audience to obtain some relevant understanding. This contains two ideas. First, that 

explanations should be conceived as speech acts (Austin 1962) and thus be evaluated in terms 

of how well they achieve their communicative function. Second, that the characteristic 

communicative function of explanations is for the audience to obtain some relevant 

understanding (Franco 2019). In other words, the ‘goodness’ of an explanation depends on 

whether it would, under the right circumstances (the audience is attentive, makes an effort to 
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understand what was said, etc.), help the audience obtain the relevant type of understanding. 

Explanations can of course be used for other purposes, such as to mislead or manipulate 

people into trusting the explainer. But these uses are parasitic on the paradigmatic function of 

explanations, viz. to improve the audience’s understanding, in the same way that lying is 

parasitic on the fact that assertions are generally assumed to aim at conveying truthful 

information. 

As Wilkenfeld (2014) points out, this view avoids imposing any general constraints 

on the structure of explanations or the type of information they should cite. Instead, an 

explanation is functionally defined simply as the kind of thing that, under the right 

circumstances, produces the right kind of understanding. This is how the communicative 

view builds in the plurality and context-sensitivity noted above, while maintaining an 

underlying unified notion of explanation (Wilkenfeld 2014: 3367-69). This is not to say that 

there are no constraints whatsoever or that all explanations are equally good. Rather, what 

counts as explanatory (or a good explanation) in a given context depends on what best helps 

the audience obtain the relevant kind of understanding. The point is that these constraints are 

derived from what constitutes ‘relevant understanding’, rather than the concept of explanation 

itself. 

 

3.2. Inferentialist view of understanding 

What is relevant understanding, then? As several philosophers have argued, 

understanding is closely related to the ability to draw relevant practical and theoretical 

inferences (e.g. Stuart 2018; de Regt 2017; Wilkenfeld 2013; Leonelli 2009). While 

understanding (at least of the kind conveyed through explanations) involves having some 

kind of information or representation of the thing understood, simply knowing a set of facts is 

insufficient for understanding. A person might know many facts about computers through 
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reading an authoritative textbook: e.g. that the harddisk stores programmes, that most 

computers require stored programmes to function, that overheating can cause components to 

break, etc. However, if they are unable to use this information to competently draw 

inferences like “the computer stopped working because the harddisk broke” or “we should 

identify potential sources of overheating to prevent this from happening again”, we would be 

reluctant to say that they understand computers.4 

Notably, ascriptions of understanding are context-sensitive (Kelp 2015; Wilkenfeld 

2017). When we say that a person “understands” something, we do not simply praise their 

ability to draw any inferences whatsoever. Rather, the conversational context will implicitly 

pick out some purpose which in turn determines a class of inferences that are relevant for 

achieving that purpose. For instance, if Mo says “I understand how my fridge works” in an 

everyday context, he may simply mean that he knows how to use it to keep food fresh. 

However, if it breaks and Mo exclaims “I don’t understand this fridge, I wish Jill was here!”, 

he is making a different purpose salient—namely repairing the fridge—which he thinks Jill is 

able to achieve. Notice that the context-sensitivity here tracks the conversational context of 

the speaker, not the subject of understanding-ascriptions. Given the purpose Mo makes 

salient, whether he is correct to say that Jill understands the fridge depends on whether she is 

in fact able to repair it, regardless of whether she has any interest or intention of doing so. 

 
4 There is a debate over whether abilities are an essential part of understanding. Some argue that 

inferential and practical abilities are simply the typical consequence of the right kinds of knowledge, e.g. of 

inferential or explanatory relations (Kelp 2015; Sullivan 2018). Others argue that these types of knowledge are 

simply the typical means of achieving the right kind of abilities (e.g. Wilkenfeld 2013; Stuart 2018). For our 

purposes, it is not crucial how this debate is resolved. In practice, robust inferential and practical abilities can 

usually only be achieved through having at least some relevant knowledge; conversely, we can usually only 

know that someone has certain beliefs or representations if they manifest some relevant abilities. 
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3.3. Explanatory Pragmatism 

Putting together the above ideas, we obtain the following account of good explanations: 

a communicative act is a good explanation to the extent it provides information that, under 

the right circumstances, enables the audience to competently draw inferences that are needed 

to achieve the contextually salient purposes. Based on this, we propose the following 

schematic definition of explainability: 

 

Explainability: in the conversational context C, a given phenomenon (model, system, 

prediction, …), P, is explainable by an explainer, S, to an audience, A, to the extent S 

is able to convey information to A that enables A to draw inferences about P that are 

needed to achieve the purposes that are salient in C. 

 

The explainer can either be a human, possibly supported by some technical XAI tool for 

extracting relevant information, or a fully automated explanation-generator.5 The key point 

here is that explainability by this definition is always relative to a specific audience and 

contextual purpose. Without first specifying the relevant audience and purpose, there is no 

well-defined sense in which a given system is more or less explainable. 

This definition forms the core of our framework. Its main function is to help elucidate 

what is at stake in different claims about explainability (or the lack thereof), by suggesting a 

series of heuristic questions. Given some claim about whether a system (or model, decision) 

is explainable, ask first: to whom does it need to be explainable and why, i.e., who is the 

audience and what purposes motivate this need? Second, what inferences does this audience 

 
5 We are open to the explainer and audience in some cases being the same individual. We would construe 

this as a limiting case of our definition where “S is able to convey information to A” reduces to “A is able to 

obtain information”. 
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need to be able to draw in order to achieve this purpose? Third, what information does the 

audience need in order to competently draw those inferences? Finally, who is supposed to 

supply this information, i.e., who is the explainer? The answers to these questions will 

determine to what extent the system is explainable, namely to the extent that the explainer is 

able to convey the necessary information to the audience. This heuristic, together with our 

definition of explainability, constitutes the framework we call Explanatory Pragmatism. In 

the rest of this section, we clarify a few of its key features. 

As with the Mo/Jill fridge example in Section 3.2, the context-sensitive elements of this 

definition, i.e. what the salient purpose, explainer and audience are, is determined by the 

speaker context, i.e. the conversational context within which an explainability claim is put 

forward and evaluated. The intentions, wants and needs of the explainer and audience 

themselves have no direct relevance, except insofar as they happen to be the ones discussing 

the explanation claim. It is because different speakers may have different audiences and 

purposes in mind that they risk talking past each other. By providing a framework for making 

these presuppositions explicit, Explanatory Pragmatism can facilitate cross-disciplinary 

communication and help resolve disagreements that arise from such misunderstandings. 

This is not to say that the framework will automatically resolve all disagreements. In 

particular, there may remain substantive normative disagreements over which purposes it is 

important that the audience is able to achieve. Our framework is neutral with regards to those 

questions. Similarly, a given type of explainability may sometimes trade off against other 

important purposes. Again, Explanatory Pragmatism does not provide guidance as to how 

such trade-offs should be resolved. Disagreements will instead have to be resolved through 

independent normative arguments and value judgements. The value of our framework is that 

it forces us (designers, evaluators, etc.) to make these disagreements explicit such that they 

can be directly debated and potentially resolved. 
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As mentioned, we are not the first to highlight the importance of audience and purposes 

for XAI. Besold and Uckelman (2018) argue that a criterion for explainability is that the 

system can satisfy the user’s “subjective epistemic longing”, i.e., that it helps the audience 

learn things they desire to know. Tomsett et al. (2018) distinguish between different roles 

agents can play in the “machine learning ecosystem”, such as creators, examiners, operators 

or decision-subjects. They argue that the goals of a given agent depend on the role(s) they 

play, and that this in turn affects what kinds of explainability the agent requires to achieve 

those goals. Building on Tomsett et al., Zednik (2019) distinguishes different types of 

explanation-seeking questions that different stakeholders require answers to. For instance, he 

argues that system operators need to know what the system is doing, i.e., how it maps inputs 

to outputs, while decisions subjects (the individuals about whom predictions and decisions 

are being made) require answers to why its outputs are appropriate, i.e., what correlations in 

the environment make the outputs a reliable guide to a given decision.  

Like Explanatory Pragmatism, these accounts define explainability to depend on 

audience and purposes. However, their starting point is the explanatory interests (desires, 

goals) of the audience (or generic roles, e.g., decision-subjects in general). By contrast, our 

framework starts from the purposes that are salient in the speaker context and asks what 

inferences different agents need to be able to draw to achieve those purposes. Thus, it 

highlights that debates about explainability can involve normative disagreements about what 

the audience should be able to do, rather than what the audience happens to want or desire. 

Notice, finally, that our framework only gives a criterion for evaluating whether a 

system is explainable to a given audience, and a heuristic for identifying what kinds of 

information the audience needs for the system to be explainable. It does not entail the further 

claim that conveying this information would count as an explanation of the system or, more 
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generally, what type of explanation-seeking question it would be an answer to.6 Similarly, we 

do not assume that the solution to lacking explainability is always to provide more 

information. Sometimes, a better solution is to change the system (e.g., making it simpler and 

easier to understand) or improve the audience’s inferential abilities by some other means. 

(We discuss an example of the latter in Section 6.4). In other words, if we take explainability 

to mean something like “the things that need to be explained, can be explained”, there are two 

ways to ensure this: either make sure more things can be explained (i.e., provide more 

information) or make sure that fewer things need to be explained (i.e., change the system or 

the audience’s inferential abilities). 

 

4.  Potential objections 

We flesh out Explanatory Pragmatism further in the following sections, by using it to 

introduce and distinguish several different kinds of challenges to explainability (Section 5) 

and by applying it to a concrete case study (Section 6). First, however, let us address a few 

potential objections. For, on this type of contextualist, pragmatist view, is there any objective 

basis or guidelines for deciding how good a given explanation is? Worse yet, since we 

impose no general restrictions on the salient purposes, does our view entail that anything can 

count as a good explanation? If so, doesn’t that trivialise the notion of explanation beyond the 

point of usefulness?7 

Regarding the first point, our framework does have an objective basis for evaluating 

explanations, namely whether they improve the inferential abilities that the audience needs to 

achieve the salient purpose. Now, as mentioned, there is no determinate answer to how good 

a given explanation is independently of such purpose and audience. But once these are 

 
6 Many thanks to an anonymous referee for alerting us of this ambiguity in our view. 
7 We are grateful to an anonymous referee raising these points. The same reviewer also suggested we 

discuss a variant of Salmon and Kitcher’s (1987) astrology example. Notice, since most of Salmon and 

Kitcher’s arguments focus on the details of Van Fraassen’s (1980) view, they do not apply to our account. 
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specified, Explanatory Pragmatism provides clear, objective guidelines for determining the 

quality of an explanation. 

On whether this means that anything can count as a good explanation, the answer is no: 

only information which improves the audience’s inferential abilities can be explanatory. 

Nonetheless, in many cases there will still be some ingenious way to specify a purpose and an 

audience, such that a given type of information will improve the inferential abilities the 

audience needs to achieve the purpose. To take a vivid example (adapted from Salmon and 

Kitcher 1987), suppose an AI system predicts that a patient will not recover from a coma, and 

their relatives ask why. Suppose, moreover, that the only contextually salient purpose is to 

enable the relatives to articulate a coherent narrative about their loved one’s illness and 

trajectory, irrespective of the truth or predictive accuracy of this narrative. If the relatives 

believe in astrology, information about the current position of the stars and their (supposed) 

influence on the patient’s specific condition might serve this purpose well. Then, according to 

our framework, this type of astrological information would count as a good explanation. 

While true, this implication is less radical than it may sound. First, the fact that it counts 

as a good explanation in that context does not entail that it counts as good in all other 

contexts. Second, even when the ability to articulate a coherent narrative is a salient purpose, 

it is rarely the only one. Presumably, we are not just looking to help the relatives articulate a 

coherent narrative, but also one that is (at least to some extent) true or accurate. Assuming the 

position of the stars does not, in fact, influence or predict terrestrial events in anything like 

the way astrology postulates, and the model does not rely on this type of information either, 

no amount of astrological explanation would serve those purposes. Thus, in most contexts 

conveying astrological information would not be a good explanation. 

An analogy with other context-sensitive terms may be helpful here: whether something 

counts as ‘big’ depends on a contextually salient standard. 180 centimetres is tall for a miner, 
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but short for a basketball player. 18 centimetres is big for an insect, but not at all for humans. 

260 picometers is big for an atom, but small for most other things. However, this does not 

mean that there is no objective basis for calling things big or that there are no guidelines for 

determining whether a given entity is big, once the relevant standard is clear. Likewise, it is 

true that almost any size can count as big in some context, but this does not mean that they 

count as big in all other contexts. In most contexts, 260 picometres is very small indeed. 

Granted, our framework is more permissive than what more restrictively minded 

philosophers might accept. But is it therefore useless? That depends (of course) on what we 

want to use the notion of explanation for. The restrictively minded philosopher, we suspect, 

wants to use it as a tool for criticism, by denying that astrology provides good explanations. If 

such explanations can count as good in some contexts (however unusual), that might seem to 

blunt the critical force of explanation claims. However, Explanatory Pragmatism leaves 

plenty of space for criticism. 

First, if astrological explanations are evaluated in a context where some degree of truth 

or predictive accuracy is a salient goal—which is arguably the case in most scientific and 

medical conversations—one can point out that the proposed explanations lack those qualities. 

A proponent of astrology can of course retort that they believe their theory to be true (or 

accurate). But the same disagreement would arise even if we built some truth/accuracy 

constraint into the definition of ‘good explanation’. 

Second, if a proponent of astrology only claims that their explanations are good relative 

to the purpose of articulating internally coherent narratives, one can highlight that there are 

many other important purposes that astrological explanations do not serve well. Furthermore, 

one can plausibly argue that only giving patients and their relatives the ability to articulate 

coherent narratives is paternalistic and potentially manipulative. It is a widely accepted 

principle of medical ethics that patients should be given truthful information about their 
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condition and the basis upon which medical decisions affecting them are made. Here, the 

underlying disagreement is revealed to be a normative, ethical one, namely about what 

purposes we should prioritise and thus what kinds of understanding our explanations should 

aim to provide. If anything, this strikes us as a stronger basis for criticism than whether 

astrological information can ever count as explanatory. 

Finally, we regard it as a virtue of Explanatory Pragmatism that it leaves space for these 

kinds of normative disagreements to be debated directly and explicitly, rather than packing 

them into a dispute about what counts as good explanations. For instance, it could be argued 

that the above-mentioned principle can be defeated or outweighed in certain cases. In the case 

of terminally ill patients, for example, it might be argued that the overriding priority should 

be to help them articulate a coherent and meaningful narrative about the end of their life. 

Regardless of whether one accepts this argument, we want our framework to leave space for 

the view that, in some cases, it would be inappropriate to insist on truthfulness/accuracy as a 

criterion for good explanations. 

To summarise, if any critical potential is sacrificed by Explanatory Pragmatism, it is 

negligible and more than made up for by its advantages, namely: (1) that it accommodates the 

plurality and context-sensitivity of explanations within a unified framework, and (2) that it 

requires underlying factual and normative disagreements to be made explicit, thereby 

facilitating communication and preventing misunderstandings between different stakeholders 

and disciplinary communities. 

 

5. Challenges to explainability 

In our framework, the guiding question in determining whether an AI system is 

explainable is whether the audience has information that enables them to draw contextually 
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relevant inferences. Building on earlier literature, we distinguish several different ways this 

can fail to be the case. 

Some challenges arise due to features of the agents involved, i.e., the explainer and 

audience. Consider for instance: 

 

Secrecy: even if the relevant information is available, the explainer may not be willing, 

permitted or designed to convey it to the audience. This can be for legitimate purposes, 

such as preserving trade secrets or other confidential information (Burrell 2016). 

 

Technical literacy: even if the explainer conveys the information, the audience may not 

be familiar enough with the relevant vocabulary to fully comprehend this information. 

For instance, they may not be familiar with certain types of mathematical formalism or 

the definition of technical terms, such as what it means for a model to be ‘optimised’ 

for a certain goal (Burrell 2016). 

 

While these are both important, our focus in this paper will be on challenges that arise 

even if there are no restrictions on the types of information that can be conveyed by the 

explainer or comprehended by the audience. 

A further type of challenge arises due to intrinsic features of the model, in particular its 

size or complexity: 

 

Complexity: even if the audience can comprehend the information, it may be too 

complex for the audience to effectively and efficiently reason with or about. For 

instance, advanced machine learning models, such as a deep neural networks or large 

ensemble models, can take hundreds or thousands of input variables and use these to 
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calculate a highly nonlinear and non-monotonic function (Selbst and Barocas 2018, 

1094-96), meaning that there are no simple, overall rules for whether increasing a given 

input variable will increase or decrease (and by how much) the probability of a given 

decision.  

 

When a system becomes too large or complex, it can become infeasible for humans to 

competently draw inferences about its behaviour (at least within timescales that do not defeat 

the point of automating decision making in the first place). For instance, it may become 

infeasible to meaningfully follow and trace how the inputs get transformed into a given 

output, or to make even qualitative predictions about the behaviour of the system given 

different inputs. 

Finally, often the inferences needed to achieve certain goals require relating the model 

to other relevant information.8 We can distinguish two potential problems here. 

 

Semantic mapping: even if the audience is able to effectively and efficiently reason 

about what goes on within the model itself (e.g., how a given decision depends on the 

input), they may not be able to meaningfully relate this information to any of their other 

representations. Thus, they are unable to compare and integrate this information with 

any of their pre-existing knowledge.  

 

Domain knowledge: even if the audience is able to relate information about the model 

to other representations of the world, these representations may not be sufficiently 

 
8 Other commentators have emphasised that explainability (or the lack thereof) is often a product of the 

model’s relation to other background information or representations of the world, including Felten (2017), 

Selbst & Barocas (2018), Sullivan (2019), Zednik (2019), Heinrichs & Eickhoff (2020). 
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connected to other relevant pieces of background knowledge to allow the audience to 

competently make the inferences they need to achieve the contextual purpose. 

 

Another way to spell out the difference between the two challenges is this. Semantic mapping 

concerns the links between the model and other representations of the world: the extent to 

which the audience can translate or interpret information about the model in terms of their 

other knowledge of the world. By contrast, domain knowledge concerns the links between 

these other representations: the extent to which the audience is able to make further, 

contextually relevant inferences once they have interpreted the model (or its predictions) in 

terms of a given set of representations. 

Here is a toy example to illustrate this distinction. Suppose we have trained a machine 

learning system to predict where and when traffic congestion is likely to arise, based on input 

data from CCTV images of current traffic. We are able to extract the decision rules of the 

system and discover that predictions of congestion at junction J58 rely on a simple linear rule 

such that activity in a certain collection of pixels, F, makes future congestion at J58 more 

likely. Consider now three different scenarios: 

 

 

1. F consists of a diffuse collection of pixels from several different cameras. 

2. F consists of a region of a specific camera, depicting the turn-off onto road R15, one of 

the main roads leading to J58. 

3. F consists of a region of a specific camera, depicting a car park in a different part of the 

city than J58. 

 

In the first scenario, F is not related in any meaningful way to the concepts we use to 

understand traffic flows. Despite the simplicity of this decision rule, it does not help us 
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understand the system’s ability to predict congestion at J58. It lacks an adequate semantic 

mapping. 

By contrast, in scenario 2 we are able to relate the decision procedure of the system to 

our other representations of the traffic system, putting us in a better position to understand the 

algorithm’s predictive power. We can for example infer that it predicts congestion at J58 by 

monitoring the amount of traffic going onto one of the main roads leading to J58. This in turn 

allows us to make predictions about the performance of the system under different 

circumstances, e.g. whether it will continue to be reliable if roadworks cause traffic on R15 to 

be diverted around J58. 

However, having a meaningful representation is not sufficient to make these inferences: 

we also need the right kinds of domain knowledge about how traffic flows work. This is 

illustrated by scenario 3. Here, F does map onto our concepts and representations of the 

traffic system, so the decision rule has a good semantic mapping. But we lack the domain 

knowledge to infer what kind of causal chain might make activity in the parking lot 

predictively relevant to future congestion at J58. 

To summarise, we have distinguished five potential challenges to explainability: (i) 

secrecy, (ii) technical illiteracy, (iii) complexity, (iv) inadequate semantic mapping, and (v) 

lack of relevant domain knowledge.9 What they have in common is that they in some way or 

another limit what inferences can be drawn in relation to the system or its decisions.  

Improving the explainability of a system can involve overcoming any of these 

challenges. For instance, if technical literacy poses a challenge, improving explainability 

 
9 A further challenge arises for systems that continue to change whilst being deployed, e.g., due to 

online-learning or frequent manual updates. Here, even if an explanation can be given at one time, the system 

may change in ways that render the explanation it provides no longer adequate. We will not discuss this 

challenge further. 
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might involve high-level explanations of the nature and limitations of machine learning, 

while, if complexity is the issue, it may be possible to provide some kind of simplified (e.g., 

partial, localised or approximate) representation of the model or the relation between its 

inputs and outputs.10 Similarly, if semantic mapping or domain knowledge is the issue, what 

is needed may be explanations of how the model relates to model-external features of the 

world. Furthermore, as highlighted in Section 3.4, sometimes the best way to improve 

explainability will involve changes to the model or improving the audience’s inferential 

abilities, rather than providing explanations. Overall, whether any of these potential 

challenges in fact undermine the explainability of a system, and how best to overcome them, 

depends on the salient purposes, the audience’s background knowledge and other factors 

shaping their inferential abilities.  

 

6. Purposes and audiences in medical AI 

In this section we illustrate how our framework can be applied within the medical 

context, by using it to evaluate the explainability of the consciousness recovery prediction 

model introduced in Section 1. We start by reviewing why the authors regard this model as 

explainable. We then consider three salient purposes for making this model explainable: (i) 

further research, (ii) deployment decisions and (iii) clinical reasoning. While we do not 

provide an exhaustive analysis of what explainability would amount to in each case (that 

would go far beyond the scope of a single paper), we aim to illustrate the flexibility of our 

framework by identifying the varying requirements for explainability that arise across these 

contexts. We briefly summarise and discuss some further lessons from these analyses in 

Section 6.5. 

 

 
10 See Erasmus, Brunet and Fisher (2020) for a useful typology of this type of explanation. 
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6.1. Explainability in Song et al. 

Song et al. highlight three factors in support of their claim that their model is 

“interpretable”. First, their model is fairly simple: in fact, it consists of a linear function of 

just nine input features. Moreover, they were able to use a technique called Significant 

Multivariate Correlation (sMC) to estimate the relative importance of each input feature for 

the model’s predictions. Second, the input features of the model represent either clinical 

characteristics (aetiology, patient age and duration of condition) or features of the patient’s 

brain activity extracted from an fMRI scan of the patient. The latter represent either activity 

in specific well-defined brain areas or the functional connectivity between these brain areas. 

These include, for instance, areas in the default motor network (DMN), the executive control 

network (ECN) and the functional connectivity between parts of these two networks. Third, 

the authors highlight in their Discussion section that some of these brain areas have been 

related to disorders of consciousness in previous studies. In particular, they highlight that 

correct communication between DMN and ECN is “thought to be very important for optimal 

information integration and cognitive functioning” (p. 20) and that “A recent study reported 

that negative functional connectivities between the default mode network and the task-

positive network were only observed in patients who recovered consciousness and in healthy 

controls, whereas positive values were obtained in patients with impaired consciousness” (p. 

20). 

In terms of the typology developed in Section 5, what the authors are pointing out is 

that their model has  

 

(a) low complexity: the model is simple, and it is easy to determine the contributions 

each feature makes to model predictions; 
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(b) a good semantic mapping: the input features represent the world in the same way 

that a human neuroscientist would; 

(c) at least some domain knowledge connections: the authors were able to reason about 

the relation between their results and previous studies of the neural mechanisms 

involved in DoC. 

 

Is this enough to make the model (or its decisions) explainable? As we have argued, this 

question cannot be fruitfully addressed in isolation from any particular contextual purpose 

that a given audience needs to achieve. 

Song et al. mention two audiences that could benefit from the explainability of their 

model: scientists and physicians (p. 21). They also suggest a purpose, namely to “reassure 

[them] about the significance of different predictors” (ibid.). However, there are arguably 

many different reasons these audiences might need such reassurance. For the purposes of our 

analysis, we distinguish three salient (but non-exhaustive) purposes.11 First, we assume that 

by ‘scientists’, the authors mainly have in mind medical researchers and neuroscientists who 

need to use or build on the results of this study for further research on DoC. Second, for 

physicians, we consider two potential purposes: deployment decisions and clinical reasoning. 

 

 
11 We say non-exhaustive, as there are certainly other audiences and purposes for which explanations can 

be required. For reasons of space we have chosen to focus on a few in order to illustrate the utility of our 

framework. However, it is worth briefly mentioning two further important purposes that have been highlighted 

as motivations for requiring explainability in medical contexts. First, enabling patient-centred care and patient 

autonomy through informed consent and shared decision-making practices arguably requires its own type of 

explainability (Bjerring and Busch 2020; Keeling and Nyrup 2021). Second, the issue of algorithmic bias 

remains an important problem (Crawford 2017; Buolamwini and Gebru 2018). For example, in medical 

contexts, algorithms have been found to systematically underestimate the healthcare needs of Black patients 

relative to white patients (Obermeyer et al. 2019; Benjamin 2019). Explanations that describe the construction 

and workings of AI systems are arguably an important tool for the purpose of auditing and ensuring fair 

systems, for which the relevant audiences include designers, regulators and potentially the wider public. 

Exploring the implications of our framework for these is an important task for future research. 
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6.2. Further research 

For the purpose of conducting further research, the relevant inferential abilities that 

researchers need include being able to see how the results of this study relate to other 

literature on the neural mechanisms involved in DoC. For instance, scientists need to be able 

to reason about the theoretical implications of the correlations found by Song et al., and to 

evaluate whether these are consistent with previous research. The model seems well-suited 

for this: first, the low complexity makes it easy to identify and reason about the implications 

of the correlations built into the model (or at least, easier than if it had been a high-

dimensional model with many nonlinear interactions between the input features); second, the 

semantic mapping makes it easy to compare the model to other relevant studies, as the 

authors themselves do. 

Thus, for the purpose of conducting further research by an audience of medical 

researchers and neuroscientists, the model can plausibly be said to have a high degree of 

explainability.  

Interestingly, in the research context, more extensive semantic mappings (or more 

extensive domain knowledge) might detract from other important goals. Though a key to 

effective explanations of machine learning systems is integration of their outputs with 

existing knowledge (Gil 2021), in many cases, the aim of using machine learning in research 

is to discover new correlations that extend or contradict our existing beliefs. Thus, there is a 

potential trade-off here. On the one hand, if we were to always insist on complete semantic 

mappings so that all aspects of the model could be tied neatly to our existing understanding, 

we would miss out on new discoveries. On the other hand, if a new correlation cannot be 

related in any way to existing knowledge, how would we be able to recognise or make sense 

of it? 
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Exactly how to balance this trade-off will involve contextual value judgements. In 

more exploratory research, a quite minimal semantic mapping may suffice, as developing 

more detailed understandings can be left for future research. In deployed contexts, where the 

health of patients is on the line and novel discoveries are at most a secondary concern, it is 

probably best to skew conservatively towards integration with accepted knowledge and 

clinical practice. However, as we emphasised in Section 3, the Explanatory Pragmatism 

framework is not designed to directly adjudicate such decisions, but rather to help make 

explicit the value judgements involved. 

 

6.3. Deployment decisions 

In some contexts, physicians will have to make decisions about whether to deploy the 

model in a new hospital, either individually or in the role of a hospital administrator or health 

policy advisor (such as Chief Medical Officers in the UK). To constrain the case, let us 

assume that the population at the new hospital differs in a number of potentially relevant 

factors (in, for example, genetic characteristics, socio-economic status, age distribution, 

environmental exposures, etc.) from the population the model was tested on. We will also 

assume that the decision specifically concerns whether to deploy the model now, in its 

current form, or to wait for the model to be tested and possibly retrained on data from the 

new application context. The latter option would, of course, reduce the risk but gathering new 

data would also be costly and time-consuming, thus delaying any potential benefits that could 

be gained from the system. 

For this purpose, the inferential capacities needed include being able to determine how 

likely the model is to perform reliably in this new setting and to evaluate the overall risks and 

benefits deploying the model would entail. This is necessary to decide, e.g., whether 

decisions to remove life sustaining interventions can responsibly be based on, or at least 
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informed by, the model’s predictions. As we have stipulated, the physician needs to be able to 

determine this from an explanation of the current model rather than by testing or retraining 

the model on new data. However, the model did achieve a high predictive performance at the 

hospitals in both Beijing and Guangzhou. The question, then, is whether the physician is 

warranted in expecting a similarly high performance in the new population. In other words, 

does she have good reason to believe that the correlations that the model relies on, e.g. 

between activation in the default motor network and consciousness recovery, also obtain at 

the new hospital? 

Inferences about whether the results from a given study apply in a new context are 

called extrapolation in philosophy of science, where their logic has been extensively 

studied.12 A general lesson from this literature is that extrapolation always relies on some 

background knowledge or theory, in addition to information about the results in the study 

population. In simple cases, we might know that two populations are generally similar (e.g. if 

one is a representative sample of the other). However, in cases like the one considered here, 

where the populations are known to be dissimilar, more detailed information about the 

conditions underwriting the performance achieved in the study population is required. For 

instance, there may be features of the study population that were necessary for producing a 

given correlation that are missing in the target population. Similarly, there may be additional 

features of the target population that modulate or block the same correlations from obtaining. 

Without a good understanding of which features could influence the correlations that the 

model relies on, it is difficult to make reliable inferences about whether any of the known 

 
12  See e.g. Steel (2007), Cartwright (2011; 2013) and Khosrowi (2019) for general discussion, and 

Pietsch (2015; 2016) and Northcott (2019) for analyses focused on machine learning and data-driven modelling. 

The extent to which a result can be extrapolated to new contexts is sometimes called its ‘external validity’. 
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differences between the two populations are likely to affect the model’s performance and, 

similarly, if there are any unknown differences that might be relevant. 

Returning to the consciousness recovery model, to be warranted in applying the model 

at the new hospital a physician needs some information about the world, namely what neural 

mechanisms and processes that underpin the correlations embedded in the model. Despite the 

simplicity of these correlations, they may nonetheless be the result of highly complex neural 

processes involving many features not represented in the model itself. For instance, as noted 

above, one of the most important predictors in the model is activity in certain areas within the 

DMN and their functional connectivity to areas in the ECN. However, the interpretation of 

DMN activity remains controversial within neuroscience (e.g. Harrison et al. 2008). A 

number of factors, both physiological and environmental, have been shown to affect baseline 

DMN activity. These include childhood poverty (Sripada et al. 2014), being an experienced 

meditator (Brewer et al. 2011), off-task thought and mind wandering (Zhang et al. 2019), 

depression (Wise et al. 2017), antidepressants (Posner et al. 2013), systemic inflammation 

(Marsland et al. 2017), Alzheimer’s and cognitive decline (Zhang et al. 2020). It is possible 

that these factors could change DMN activity post-DoC as well. Thus, if the distribution of 

these factors—or other currently unknown factors affecting baseline DMN—differ 

significantly between the study and target population, this could invalidate the model’s 

predictions. Even if overall predictive accuracy remains similar, there may be sub-

populations within the target population for whom the model’s performance declines 

significantly. 

The point is, given the current state of neuroscientific knowledge we simply do not 

know whether this will be the case. Thus, due to this lack of domain knowledge, we cannot 

explain the reliability of the model sufficiently well to allow physicians making deployment 

decisions to fully determine whether Song et al.’s model is likely to perform well in new 
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contexts. So, for the purpose of deployment decisions to new populations, the model is not 

fully explainable. This is not to say that it is completely unexplainable. As the above 

discussion illustrates, the semantic mapping together with our existing domain knowledge 

does allow us (at least to some extent) to reason about what the potential risk factors are. 

Whether this is sufficient to warrant deploying the model in a given setting will depend on 

the other potential risks and benefits at stake in that context. 

 

6.4. Clinical reasoning 

Where the model is deployed in clinical practice, physicians who will be relying on its 

predictions face a further challenge, namely how to integrate these predictions with other 

pieces of evidence into their overall clinical reasoning. For example, suppose that in addition 

to the predictions of Song et al.’s model, the clinician also orders a blood test for a certain 

enzyme which (let us assume) is known to correlate with consciousness recovery. If the 

model predicts a low score for consciousness recovery, but the blood test comes back positive 

for a given patient, is this sufficient to dismiss the model’s prediction? Similarly, if the blood 

test and the model’s predictions are both positive, should that make the clinician extra 

confident? If so, by how much? For instance, if the model predicts a high score of 18 for one 

patient who tests negative for the enzyme, while another patient receives a lower prediction 

of 13 but tests positive for the enzyme, who should we prioritise for therapeutic 

interventions? 

For the purpose of clinical reasoning, then, a salient contextual purpose is to make 

inferences about how to integrate the predictions of the model with other pieces of evidence. 

We outline two challenges to achieving this. 

The first concerns how probabilistically independent the two types of evidence are, i.e. 

whether knowing the result of one makes the other more likely to be observed. For instance, 
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if the enzyme turns out to be produced by the types of brain activity that the model relies on, 

observing both together would be less surprising and therefore add less confirmation. By 

contrast, if the enzyme is produced by a completely separate physiological process, 

consilience between the two pieces of evidence might significantly increase our confidence in 

the prediction. Now, for any two types of evidence it may of course be possible to do 

additional testing to estimate how much they correlate. However, if this has to be done for 

many different types of evidence, the combinatorial explosion would quickly make this 

strategy infeasible. Additional knowledge about the biological mechanisms underlying these 

correlations—as in the example above—can help overcome this challenge, allowing the 

physicians to reason about which pieces of evidence are more likely to be dependent. Here it 

is a lack of domain knowledge that limits explainability. 

The second challenge is that these types of formal knowledge may not be sufficient to 

figure out how to weigh the information provided by these machine learning models, even 

once validated. Some clinicians (e.g. see Norman 2006; Chin-Yee and Upshur 2018) 

maintain that experiential knowledge has been underemphasized in the teaching of clinical 

reasoning. Clinical practice is not just a matter of explicitly reasoning through the evidence, 

but also relies on recognition and clinical judgement. The latter is based on tacit knowledge 

which can arguably only be developed through practical experience. Thus, in addition to 

formal explanations, practical work is likely needed to help clinicians develop sufficient 

experience of how to integrate machine learning models into clinical practice, including how 

to weigh their predictions against other types of evidence and judgment that are available to 

them. As this experience develops, clinicians may in turn discover further knowledge gaps 

that need to be filled in order to improve their understanding of machine learning models. 

Thus, there will likely be an iterative interplay between formal explanation and clinical 
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experience, through which new requirements for explanation will need to be developed and 

discovered.  

An illustration of what this might mean in practice is given by the case study by Sendak 

et al. (2020) discussed in Section 2. In this case study, a specialised team of two nurses was 

trained to continuously monitor their deployed machine learning model and translate its 

outputs into actions for the different medical specialists treating the patient. This translational 

work is non-trivial. These nurses’ specialisation consisted not just in their formal knowledge 

of the model, but also their clinical experience of working with the model in practice. This 

was critical to ensure that the requirements for explanation are fully discovered and realised.  

So, for the purpose of clinical reasoning, the model by Song et al. is not fully 

explainable. In order to make it more explainable, additional domain knowledge is needed in 

order to weigh the predictions against other clinical evidence and further practical and 

experiential knowledge of working with the model. 

 

6.5. Summary 

The preceding analyses illustrate some (though not all) of the ways context and 

audience matters to whether an AI system counts as explainable. For the purpose of further 

research, we saw that the low complexity of the consciousness recovery model and its good 

semantic mapping made it sufficiently explainable. The limited available domain knowledge 

did not pose a challenge to explainability in this context. This turned out not to be the case for 

the other two purposes. In the case of deployment decisions, what was lacking was 

knowledge of the support factors that underpin the reliability of the model’s prediction and 

how these support factors relate to the potential deployment population. In the case of clinical 

reasoning, there was insufficient knowledge about the relationship between the biological 

mechanisms that this model relies on and those that are measured by other kinds of evidence. 
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Thus, although the lack of explainability in both cases stemmed from limited domain 

knowledge, different kinds of domain knowledge was lacking in each case. We also 

highlighted a further challenge in the case of clinical reasoning, namely that clinicians often 

also need certain kinds of practical and experiential knowledge to integrate new forms of 

evidence into their decision-making processes. 

 

7. Conclusion 

In this paper, we have proposed a pragmatist account of AI explainability. We have 

used it to classify five distinct challenges to explainability, as well as to elucidate the 

requirements for adequate explanations that arise in medical contexts with regards to three 

different purposes. 

A key takeaway from our analysis is that the problem(s) of explainability cannot be 

exhaustively solved in the abstract. There is not going to be a single approach to XAI that can 

simply be applied off-the-shelf to generate adequate explanations for any given AI system. 

Close attention to the context of application is necessary. In particular, we have highlighted 

three types of contextual detail that need to be considered. First, explainability on our account 

is relative to a specific audience and purpose. A strength of our framework is that it makes 

visible disagreement about which purposes are important and provides a way of analysing 

what is needed from explanations for each. Second, challenges to explainability often stem 

from the state of our domain knowledge, rather than (merely) the intrinsic complexity of the 

model or the limitations of the explainer or audience. Finally, as we discussed in relation to 

clinical reasoning, certain kinds of experiential knowledge are often necessary for a given 

audience to obtain the necessary inferential abilities, in addition to formal explanations.  
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Thus, a context-sensitive and iterative approach to the discovery and development of 

explainability requirements will often be needed. As we have argued, the framework 

defended in this paper is both unified and flexible enough to guide such explorations. 
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