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Abstract

Title: Application of Deep Learning to Brain Connectivity Classification in Large

MRI Datasets

The use of machine learning for whole-brain classification of magnetic resonance imaging

(MRI) data is of clear interest, both for understanding phenotypic differences in brain struc-

ture and function and for diagnostic applications. Developments of deep learning models

in the past decade have revolutionized photographic image and speech recognition, bringing

promise to do the same to other fields of science. However, there are many practical and

theoretical challenges in the translation of such methods to the unique context of MRIs of

the brain. This thesis presents a theoretical underpinning for whole-brain classification of

extremely large datasets of multi-site MRIs, including machine learning model architecture,

dataset curation methods, machine learning visualization methods, encoding of MRI data,

and feature extraction. To replicate large sample sizes typically applied to deep learning

models, a dataset of over 50,000 functional and structural MRIs was amassed from nine dif-

ferent databases, and the undertaken analyses were conducted on three covariates commonly

found across these collections: sex, resting state/task, and autism spectrum disorder. I find

that deep learning is not only a method that has promise for clinical application in the future,

but also a powerful statistical tool for analyzing complex, nonlinear relationships in brain

data where conventional statistics may fail. However, results are also dependent on factors

such as dataset imbalances, confounding factors such as motion and head size, selected meth-

ods of encoding MRI data, variability of machine learning models and selected methods of

visualizing the machine learning results. In this thesis, I present the following methodologi-

cal innovations: (1) a method of balancing datasets as a means of regressing out measurable

confounding factors; (2) a means of removing spatial biases from deep learning visualiza-

tion methods; (3) methods of encoding functional and structural datasets as connectivity

matrices; (4) the use of ensemble models and convolutional neural network architectures to

improve classification accuracy and consistency; (5) adaptation of deep learning visualiza-

tion methods to study brain connections utilized in the classification process. Additionally,

I discuss interpretations, limitations, and future directions of this research.

Matthew Leming, June 2020
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Chapter 1

Introduction

1.1 MRI

1.1.1 Structural MRI

The phenomenon of nuclear magnetic resonance (NMR) was originally described in the first

half of the 20th century (Purcell et al., 1946; Bloch et al., 1946). NMR refers to the physical

observation that atomic nuclei, when held in a strong magnetic field, may be perturbed by a

weaker magnetic field and, when released, send out an electromagnetic pulse as the nucleus

returns to its original alignment. This outgoing pulse is proportional to the strength of the

applied magnetic field, which is the property that MRI takes advantage of to acquire 3D

images (Damadian, 1971; Lauterbur, 1973; Mansfield and Maudsley, 1977). By applying

and varying magnetic field strengths in unique intensity ranges in three dimensions (thereby

assuring that only localized protons with a certain field strength applied will reply to a

magnetic pulse) and detecting the output nuclear magnetic resonance strengths, a 3D k-

space varying across spatial frequencies can be filled (or, more commonly, many slices of

2D k-spaces that compose a 3D space). By the application of a Fourier transform, a 3D

representation of water density in tissue can be derived.

3D MR images can take different forms by varying the repetition time (TR) (or the time

between successive pulse sequences applied to a particular slice) and the echo time (TE) (or

the time between the delivery of the magnetic pulse and the reception of the echo signal).

The most common of these forms are T1- and T2-weighted images. T1, the longitudinal

1



2 CHAPTER 1. INTRODUCTION

relaxation time, refers to the time required for shifted electrons to return to equilibrium

with the strong magnetic field after the pulse is removed, and can be emphasized in MRIs

with short echo and repetition times. T2, the transverse relaxation time, refers to the time

taken for excited protons to lose phase with each other, measuring the coherence of nuclei

spinning perpendicular to the main magnetic field, and can be obtained with long repetition

and echo times. Practically, T1 is useful for viewing brain structure (with cerebrospinal

fluid appearing darker and brain matter appearing brighter), while T2 is more often used to

view lesions (with fluids appearing brighter). Other variations of 3D MRI can be obtained

by varying TE and TR, such as fluid-attenuated inversion recovery (FLAIR) and proton

density imaging, but T1- and T2-weighted MRIs are the most commonly used.

The 1990s saw several extensions of MRI into four dimensions, through rapid acquisition of

multiple 3D volumes with different settings, that produced a number of new innovations in

the field. Most notably, diffusion-weighted imaging, which produces diffusion tensor imaging

(Basser et al., 1994), has aided the study of white matter tracts in the brain, while functional

MRI (Ogawa et al., 1990) produced a means of studying localized brain function.

1.1.2 Functional MRI

Functional MRI (fMRI) (Ogawa et al., 1990) builds on 3D MRI by taking advantage of the

magnetic properties of hemoglobin (Pauling and Coryell, 1936) to show variation in brain

metabolism across time. This is called the blood-oxygen level dependent (BOLD) signal,

which is believed to be an indirect indicator of brain activity. The use of rapid 3D acquisition

allows for the measurement of the BOLD signal within a given period of time. However,

due to time constraints, these individual slices are often of lower resolution than typical

structural MRI, and even with different optimizations applied, fMRI’s temporal resolution,

being limited by acquisition speeds and the haemodynamic response that composes the

BOLD signal, is within the range of 1-2 seconds. This puts it at a disadvantage over methods

of detecting brain activity, such as EEG, which has a higher temporal resolution, but it is the

best means available of studying it in localized areas of the brain, even though the BOLD

signal is considered an indirect indication of brain function.

FMRI has not yet found widespread clinical use, but is most often applied in psychological

studies, typically either to test brain activation in different psychological tasks, or to compare

resting-state brain activity in different populations. Task studies have found that different

tasks characterize different localized activations and brain network patterns across different
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populations, but the nature of the tasks, differences in population sample sizes and covariates,

and vastly different preprocessing and analysis methods, often make it difficult to compare

two different task fMRI studies. The use of resting-state fMRI alleviates the first of these

issues, though had been found to have a higher variability than task fMRI when only a single

task is considered (Elton and Gao, 2015).

FMRI is hugely affected by confounding factors, notably head motion, which affects the

reading of the BOLD signal (Duncan and Northoff, 2013). This has particularly high po-

tential to affect the outcomes of studies when motion is measurably different between two

populations being studied, which is often the case. While physical constraints and seda-

tives may provide a means of reducing motion in the patient, these are either inconsistently

applied, undesirable for a study, or ineffective at completely eliminating motion effects. A

number of preprocessing steps have been proposed to regress out the effects of motion in

the acquired data (Caballero-Gaudes and Reynolds, 2017), including registration of the 3D

timepoints, head re-alignment (Goto et al., 2016), wavelet despiking (Patel et al., 2014), and

more advanced methods (Kundu et al., 2012, 2013), but because the spin-echo effects of mo-

tion on water molecules are extremely difficult to model, none have been able to completely

eliminate the effects of motion. While it may be difficult to fully regress, it is possible to

detect the amount of motion by measuring the displacement of one 3D slice with its neighbor

(Freire et al., 2002). A common practice in fMRI studies is to remove subjects with excessive

measured head motion from the study and apply standard motion regression methods to the

remaining data.

1.2 Graph theory

Graph theory is the study of nodes (or vertices) interconnected by edges that compose

networks (or graphs). It is used to model many real-world systems, such as airline routes,

road systems, and social networks. Graph theory has seen extensive development in the

fields of computer science, statistics, and mathematics, and this wide development is often

borrowed by other fields to analyze complex scientific data for which a graph representation

can be found (Papo et al., 2014). Because of this, graph theory is a favorable means to

model and analyze brain networks. This field is often called “connectivity”. For instance,

two frequent applications of graph theory to brain connectivity are assessments of node

centrality (Zuo et al., 2011; van den Heuvel and Sporns, 2013) (i.e., determining which

nodes are “important” in a graph) and community partitioning (Sporns and Betzel, 2016)
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(i.e., determining ways to separate networks into smaller subnetworks).

1.3 Connectivity

In brain connectivity, MRI datasets are reduced to a graph representation that is referred to

as a “connectome”. In this context, while brain “connections” may represent some type of

physiological relationship between two areas of the brain, they may also represent measure-

ments of functional or physiological similarity. Other than being a function that reduces an

MRI dataset to a network representation, different methods of estimating brain connectivity

may have little else in common. In this section, I review different types of connectivity and

previous work on identifying subnetworks in brain connectomes.

1.3.1 Functional connectivity

Since its inception, many computational methods have been developed to analyze fMRI

data. One such method, functional connectomics (Friston et al., 1993), reduces the dimen-

sionality of fMRI datasets to graphs (or networks), comprising nodes, representing brain

areas, connected by edges, that represent the relationships between the measured BOLD

signals (usually reduced to a timeseries) in these localized areas of the brain. While this

dimensionality reduction simplifies the data and does away with a large amount of signal, it

does allow for the use of graph theoretical methods, which has been extensively developed

in pure mathematics and computer science. Furthermore, depending on the method used to

construct the connectome, it allows for the direct analysis of relationships between regions

of the brain. This enables the study of brain networks and pathways.

Graph theory metrics, when applied to functional connectomes, can estimates the qualities

of brain organization with measurements such as centrality (or “hubness”) (Sporns et al.,

2007; Joyce et al., 2010; Lohmann et al., 2010; Rubinov and Sporns, 2010; Tomasi and

Volkow, 2010, 2011b; Zuo et al., 2011) and community structure (or “modularity”) (Traag

and Bruggeman, 2009; Mucha et al., 2010; Bassett et al., 2013; Sporns and Betzel, 2016).

In general, the functional connectome is characterized by high complexity (Sporns et al.,

2000; Sporns, 2006), high efficiency (Buzsaki et al., 2004), global and local synchronizability

(Masuda and Aihara, 2004), and high levels of clustering with short path lengths (Hilgetag

et al., 2000; Stephan et al., 2000; Bassett and Bullmore, 2006), indicating a small-world
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architecture (Milgram, 1967; Watts and Strogatz, 1998). Functional connectomes are also

unique to individuals; this is called the connectome “fingerprint” (Finn et al., 2015). Fox

et al. (2005) posited that the brain is organized into anticorrelated functional networks

distributed over a wide area.

Individual brain networks have been consistently discerned from functional connectivity – for

instance, the default mode network (DMN) in resting-state – though there is some disagree-

ment as to the makeup and discernment of these networks Stanley et al. (2013). Research

in brain networks is often performed with methods other than functional connectivity, such

as independent component analysis (ICA). Some brain parcellations model common a-priori

networks rather than smaller, anatomical areas of the brain. Discrepancies in brain networks

are exacerbated by technical factors such as the parcellation used to derive the network;

function-structure couplings (i.e, whether certain functional areas appear consistently in a

particular anatomical area); whether the subject was in task or resting state and, if task,

which task was performed; and other factors (Power et al., 2011; Sung et al., 2018).

Types of functional connectivity

Given a 2D timeseries, composed of a 1D signal for each parcellated area, functional con-

nectivity can be derived using one of the many time series comparison metrics available; the

output of a connectome parcellation program with N areas and M timepoints is a timeseries

of size N×M . Using a timeseries comparison metric, this can be transformed into an N×N
matrix. Due to its widespread use in other fields, the most commonly favored metric is

Pearson correlation, though the use of partial correlation, average mutual information, co-

herence, multi-band wavelet correlation, and others, have been proposed, with each having

its own features and limitations, such as linearity versus nonlinearity, regression of global

signal, and widespread use that contributes to general understanding (Bastos and Schoffelen,

2016). The use of predictive metrics (such as Granger causality (Ding et al., 2006)) may also

be applied, but this models a causal relationship between brain regions and is more often

referred to as “effective connectivity”, rather than functional connectivity (Friston, 1994;

Kriston, 2011).

Different timeseries comparison metrics can lead to the expression of different properties

and connectomes with very different topologies; furthermore, differences in the output do-

main of different timeseries metrics affect the analysis techniques. For instance, any type of

correlation values are between -1 and 1; these negative correlations give rise to a problem
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of interpretability that is not easy for neuroscientists to address and which has generated

a wide debate in connectomics (Zhan et al., 2017). However, mutual information, another

comparison technique, produced values that are above 0, effectively avoiding this issue.

The most common metric of comparison is Pearson’s correlation, which captures the linear

relationship between timeseries values. While it is quick to compute and, given its prevalence

in statistics, easy to interpret, it also fails to adequately capture nonlinear relationships be-

tween timeseries. Mutual information is a common alternative that does capture nonlinear

solutions; however, while there is a theoretical basis of mutual information in information

theory, there is no standardized way to calculate it on real-world data, leading to a number

of different implementations. Partial correlation is a metric that regresses out every other

timeseries when comparing two timeseries. It is the inverse of the correlation matrix. A qual-

ity of partial correlation is that it effectively regresses the global signal, including unwanted

fluctuations in the BOLD signal due to blood flow. However, given too many parcellation

areas and too few timepoints, partial correlation may regress out too much of the signal for

useful analysis.

These three metrics may also be repeated on the timeseries following a wavelet transform

(Patel and Bullmore, 2016); wavelet transforms operate on the signal, producing a decom-

position in different frequency bands (requiring information about the repetition time of the

MRI when comparing across sites), and, for Q different frequency ranges, this allows for the

transformation of an N ×M timeseries into an N × N × Q matrix. Often, the analysis of

such wavelet correlation matrices are performed on just one of these N ×N matrices, as it

is more difficult to interpret a multi-slice matrix as a graph, though more advanced methods

allow for the analysis of multi-slice connectomes (Bassett et al., 2013).

1.3.2 Structural connectivity

Tractography and diffusion-based methods

The most well-known structural connectivity methods are based on white matter tract trac-

ing between regions (Basser et al., 1994). While this produces the same output format as

functional connectivity – an undirected adjacency matrix representing a single subject – they

are methodologically very different. Structural connectivity, in its most widely-used form,

represents the integrity of white matter fiber tracts. Producing such representations requires

diffusion-weighted imaging, as this encodes information about the Brownian motion of water
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molecules, which is directionally restricted by white matter tracts, allowing for the structure

of white matter to be inferred (Jones et al., 2013). The strength of the connection can be

quantified in several ways, such as the probability of a connection, fiber length, fiber density,

or fiber count (Jones et al., 2013; Ji et al., 2014).

Structural covariance

Structural covariance (Wright et al., 1999) is an alternative means of constructing structural

brain networks, though it is applied to represent groups, rather than individual subjects.

After an N -area parcellation to a group of M structural MRIs, some scalar measurement

(such as cortical thickness (Gong et al., 2012)) is estimated for each subject within each

parcellation, producing N ×M values. Like functional timeseries, these values may then be

correlated. This offers a description of how different brain measurements of brain structure

may relate to one another across populations.

Structural covariance networks have similar properties to functional connectivity networks,

such as small worldness, nonrandom clustering, and modularity. Such properties, however,

can also be seen in many real-world networks (Alexander-Bloch et al., 2013a) and may

be linked to the tendency of structures to commonly co-vary over short distances (Chen

et al., 2008) and occasionally over long distances; for instance, symmetrical regions of the

brain, though often spatially disparate, tend to co-vary (Mechelli et al., 2005). Typically,

spatial proximity is an indicator of both higher structural covariance between two regions

and correlated functional activity (Salvador et al., 2005; Honey et al., 2009; Alexander-Bloch

et al., 2013b).

1.3.3 Multi-slice connectomes

Given the diverse means available of analyzing timeseries, some are able to produce a multi-

slice functional connectome (i.e, a K × N × N matrix, as opposed to a single-slice N × N
matrix). Such connectomes play an important role in this thesis.

Research in the analysis of multi-slice matrices is more difficult due to the complexity of

analysis and visualization of an added dimension, and the under-development of it in other

fields compared to single-slice graphs. Because of the more diverse means of calculating

timeseries comparisons, multislice analysis is more developed in functional connectivity than
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in structural connectivity. Even with developments that show high potential for multi-slice

matrices, such as multi-level wavelet correlation (Patel et al., 2014; Patel and Bullmore,

2016) and dynamic functional connectivity (Calhoun et al., 2014; Calhoun and Adali, 2016;

Preti et al., 2017), a typical practice is often to average such matrices into a single one,

or to select a single timeseries comparison, or to analyze timeseries comparisons separately

Achard et al. (2006); Achard and Bullmore (2007); Mucha et al. (2010).

Wavelet correlation (Bullmore et al., 2004; Achard et al., 2006; Achard and Bullmore, 2007;

Skidmore et al., 2011) is the correlation of different scales in the wavelet decomposition of an

fMRI timeseries, which allows for the building of a multislice connectome representative of

the whole timeseries. Though it is more common to use a wavelet decomposition (Bullmore

et al., 2004; Zhang et al., 2016b) for preprocessing (Patel et al., 2014), they have been used

to derive multislice connectomes by correlating regional timecourses in different frequencies

(Achard et al., 2006; Thompson and Fransson, 2015); most often, however, after deriving

such a multislice connectome, slices are analyzed independently (Berlingerio et al., 2011).

1.3.4 Identification of brain networks

The application of graph theory to MRI data has led to the identification of anatomical and

functional brain networks. This can be applied to the context of structural connectivity,

which most often refers to white matter networks, but is most often used in reference to

functional connectivity, indicating groups of disparate brain areas that are functionally simi-

lar under certain tasks (Bressler and Menon, 2010). These networks have been characterized

by general, global properties, quantified by graph theoretical measurements, as well as iden-

tification of subnetworks in functional MRI data that have been associated with different

properties. While identification of these networks is subject to the selected psychological

task, brain parcellation, and analysis methods, a few common networks are consistently

identified.

Common brain networks

The identification of brain networks in functional data in the literature is often dependent on

the aim of the study and datasets analyzed. For instance, Sung et al. (2018) identified 111

brain networks related to psychometric parameters, while Smith et al. (2009) identified just

10. Greene et al. (2018) listed 10 “canonical” networks: the medial frontal, frontoparietal,
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default mode, motor cortex, visual A, visual B, visual association, salience, subcortical, and

cerebellum. Generally, the networks discussed the most in literature of resting-state and task

fMRI are the default mode (Raichle et al., 2001), executive control, salience (Seeley et al.,

2007), dorsal attention, and ventral attention networks (Vossel et al., 2014).

Issues in quantifying brain networks

Atlas-based parcellations are used to derive a brain network using predefined ROIs, defined

either by anatomical regions, common functional areas, or randomly. Brain networks are

affected by the selection of the parcellation atlas to a large extent (Yao et al., 2015). This is

true in a trivial sense, as finer parcellations are able to quantify finer sections of the brain

and lead to more detailed networks, but atlases also affect measurements derived from such

networks; Wang et al. (2009) found that small worldness is substantially different depending

on the selected parcellation atlas, and Zalesky et al. (2010) found that node scale in randomly

parcellated structural connectomes affected global connectivity measurements substantially.

Brain network estimation can be affected as well by spatial variability of functional hubs

(Mueller et al., 2013) (which can be addressed by subject-specific parcellations (Dhillon

et al., 2014)), inaccuracies in spatial alignment of the parcellation atlas (Smith et al., 2011;

Allen et al., 2012), and the natural variability of cortical area size, which can vary by twofold

or more across individuals (Amunts et al., 2000; Glasser et al., 2016; Bijsterbosch et al., 2018).

As one way to account for variability of functional locations in subjects, cluster-based parcel-

lations have been proposed. In cluster-based parcellations, the parcellation is developed for

the individual based on where activity is localized in the brain (Yao et al., 2015). Groupwise

comparisons across personalized parcellations has its advantages and disadvantages; under-

lying networks are captured more effectively in personalized parcellations, but the fact that

certain parts of the functional network are located in different anatomical areas may also

be of interest, and this information is lost in personalized parcellations. Bijsterbosch et al.

(2018) noted that differences in connectivity may indicate more about anatomical layout of

functional regions than about differences in connectivity between those regions.

In order to address the shortcomings of hard parcellation techniques that fail to account for

individual variations in functional hub locations and overlapping hubs, more advanced ICA

parcellation techniques are able to parcellate overlapping areas (i.e., “soft” parcellations)

using dual regression analysis or back projection (Calhoun et al., 2001; Filippini et al.,

2009), which obtain subject-specific spatial maps using a group ICA maps (Bijsterbosch
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et al., 2018). Seed correlation analysis is also used as a means of studying brain networks;

however, this requires a prior assumptions about the location of the network, as one must

predefine the areas to correlate.

Besides parcellations, another issue that can affect the quantification of brain networks

is anatomical factors that confound the BOLD signal itself. Functional connectivity may

increase as the result of non-neuronal fluctuations in the BOLD signal, such as blood pressure,

head motion, or respiratory activity (Caballero-Gaudes and Reynolds, 2017). In most cases,

the magnitude of changes from these confounding factors are greater than what one can

expect from neuronal fluctuations in the BOLD signal, and so simple options such as wavelet

despiking (Patel et al., 2014) or other bandpass filtering methods may be adopted. However,

it is difficult to remove this global signal, and even with advanced preprocessing techniques

(Kundu et al., 2012) and preventative efforts, trace effects of these non-BOLD artefacts

usually remain.

1.4 Machine learning

1.4.1 Overview

“Machine learning” (ML) refers to a number of statistical models for identifying and gen-

eralizing patterns in data. Machine learning can either be unsupervised, which consists of

methods of clustering unlabeled data (for instance, identifying friend groups in a social net-

work, or communities in a brain network), or supervised, in which a model learns to associate

patterns in the data with different labels (for instance, distinguishing between images of cats

and dogs). This thesis focuses on supervised learning.

1.4.2 Training

In the typical supervised learning paradigm, one has a collection of data and a selected

model. The data is then divided into two parts: training and test data. Most often, the

majority of the data is used for training. The model is then “trained” on the training data

for a number of iterations, often with datasets grouped into smaller batches. One update

of the model’s parameters over a single batch is called an “iteration”, and when the model

iterates over enough batches such that it has seen the entire training set, one “epoch” has
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been completed. After the training algorithm has finished a set number of epochs, or has

achieved 100% classification accuracy on the training set, it is then evaluated on the test set,

and the final accuracy is reported.

One problem in machine learning is overfitting, in which the model overfits on the training

set, such that it fails to generalize underlying patterns in the data. This is often the result

of a model with too many parameters being trained on a training set that is too small, and

thus the model is inappropriate for the data. It may also result from overtraining the model.

To address this, data may be divided into three sets: training, test, and validation sets. The

model does not train explicitly on the validation set, but it uses the validation set to measure

accuracy at each epoch, stopping either when an accuracy threshold is reached, or saving a

copy of the model on the iteration that produced the highest accuracy on the validation set.

Underfitting during training – in which the model fails to achieve 100% accuracy on the

training set – is another problem, and is typically the result of too few parameters in a

model, or patterns in a dataset too complex to effectively be characterized by the selected

model (for instance, linear regression is likely insufficient to distinguish between pictures of

cats and dogs).

Accuracy achieved on a particular division between training, test, and validation data is

not deterministic, and it may change if that division changes. Furthermore, some machine

learning models (especially neural networks) have stochastic elements that affect the final

outcome of the model, even if the divisions remain the same. For this reason, a typical

strategy in machine learning studies is to employ cross-validation (Kohavi, 1995), in which a

number of independent models (usually a minimum of 10) are trained on different divisions

of the data, with the divisions being deliberate such that each datapoint is included equally

as often in the training, test, and validation sets. Another form of cross-validation, called

leave-one-out testing, is typically employed for much smaller datasets; for a dataset of size

n, n independent models are trained on a training set consisting of n − 1 datapoints, then

evaluated on the one missing datapoint.

1.4.3 Overview of machine learning methods

Unsupervised machine learning methods refer to a number of techniques that may be applied

to data without the need for labels, and these methods may be used for applications such

as cluster identification (i.e., K-means clustering). Two popular unsupervised deep learning
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models are Restricted Boltzmann Machines (RBMs) and variational autoencoders, which are

used for data dimensionality reduction.

Support Vector Machines (SVMs) are supervised machine learning models capable of per-

forming linear classification of high-dimensional data. SVMs find the best-fit linear division

that separates data into two classes, possibly after artificially raising the dimensionality of

this data. However, SVMs are only capable of finding linear divisions in data, usually failing

to classify complex data such as photographic images.

Neural Networks refer to a number of models inspired by studies of neurons. Neural networks

consist of layers of perceptrons, or units that receive a number of inputs and produce a

single output. Deep learning is a subfield of machine learning that refers to the use of neural

networks with different layers. Neural networks are particularly useful for characterizing

complex and high-dimensional data, though extremely large amounts of data are necessary

to train a neural network without overfitting. While neural networks have been the subject

of research for decades, they were quickly popularized by the method of efficiently training

neural networks (Hinton et al., 2006) and the subsequent display of their efficacy in the

ImageNet competition (Krizhevsky et al., 2012). Since then, deep learning has been applied

to many other fields of research, including MRI analysis.

In modern deep learning, two types of neural networks are very often used. Recurrent Neural

Networks (Lipton, 2015) (RNNs) are particularly powerful deep learning models that use,

as part of their input, the model output from previous data inputs. As such, they are

best for learning sequences, such as semantic sentence interpretation (Karpathy and Fei-Fei,

2014). Convolutional Neural Networks (LeCun et al., 1999) (CNNs) are a powerful model for

classifying images and videos, which encode the spatial organization of data by convolving

adjacent pixels in successive layers, creating an abstract representation of objects in the

process. This thesis employs convolutional neural networks extensively.

1.4.4 Convolutional neural networks to classify graphs

While the most popular application of CNNs has been in classifying 2D images (Krizhevsky

et al., 2012), there has been a particular effort in recent years to adapt them to other kinds

of data, such as 3D images (Maturana and Scherer, 2015), video (Karpathy and Fei-Fei,

2014), and audio-to-text conversion (Lipton, 2015). Because of their wide applicability in

representing data such as proteins and social networks, much work has been done on clas-
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sifying connected networks, including whole-graph classification, clustering, and node-wise

classification (Bruna et al., 2014; Defferrard et al., 2016; Hamilton et al., 2017; Hechtlinger

et al., 2017; Kipf and Welling, 2017; Nikolentzos et al., 2017). Graph classification is typ-

ically performed in one of three ways: graph kernels (Jie et al., 2013; Kriege et al., 2019;

Nikolentzos et al., 2019), translating the graph to another representation (such as an image)

before classifying it with a CNN (Tixier et al., 2017), or directly with convolutional neural

networks (Kawahara et al., 2017).

Convolutional neural networks (CNNs) adapted for graphs have potent applications in the

classification of brain connectomes. While other machine learning (ML) models have been

developed for analyzing graph data (Jie et al., 2013; Kriege et al., 2019), they have often

been designed to characterize general networks (such as social networks) rather than fixed-

node matrix representations, and so are not ideal for brain connectomes. With its utilization

of powerful deep learning structures (Kawahara et al., 2017; Brown et al., 2018), however,

CNNs are among the most promising ML tools for the diagnosis and prognosis of neurological

and mental health disorders using graph representations of the structure and function of the

brain. This thesis largely focuses on the adaptation of CNNs to classify graphs.

1.4.5 Explainable AI and the black box problem

A common problem in deep learning is the “black box” problem. A black box is any system

that receives an input and outputs a signal without knowledge of its internals, which are

abstracted from users. Deep learning models, which often require millions or tens of millions

of parameters, are abstracted from human understanding by their own complexity and are

thus considered black boxes.

While the black box problem does not directly affect the performance of deep learning models,

it creates difficulties when verifying whether a model is focusing on signal or confounding

factors. In a well-known instance, Ribeiro et al. (2016) discussed a problem in which a

classifier learned to reliably distinguish between pictures of wolves and huskies. However, a

proposed explanation of the classifier revealed that, since wolves were mostly imaged with

snow in the background, the classifier focused on snow rather than the face of the wolf. They

concluded that, in spite of high accuracy, this would not be an appropriate classifier to rely

on in a real-world setting.

In machine learning for scientific discovery, interpretability is arguably just as important as



14 CHAPTER 1. INTRODUCTION

classification accuracy. The need for explainable machine learning models in a clinical setting

has previously been discussed (Gottesman et al., 2019). Clinicians need to fully understand

the decision-making process of an automated diagnosis if they are to eventually rely on it.

AI models that make a linear, understandable decision-making process are called “expert

systems”. These often rely on human-readable information, such as the diagnostic history

of an electronic health record. However, such systems would not be capable of making use

of more complex datasets that are not always human-readable, such as medical images or

genetic records.

Deep learning models have been shown to be capable, at least to a degree, of making sense

of complex datasets, in a way that an explainable expert system (Gottesman et al., 2019)

would not, in applications like whole-brain MRI diagnostics (Kawahara et al., 2017; Khosla

et al., 2018; Leming and Suckling, 2020a,b)). Unlike expert systems, deep learning models’

decision-making processes are too complex for human understanding (i.e., the black box

problem). Because of the need for clinicians to explain their decisions, this would make deep

learning models of limited value. There has been great effort in visualizing deep learning

models in other contexts in the hope of making them explainable. These methods include

occlusion, gradient class activation mapping, and activation maximization (Zeiler and Fergus,

2013). While these methods fail to reveal the exact decision-making process used to make

classifications, they are capable of showing which parts of the input data are taken into

account for the classification. Use of such techniques can make deep learning models more

explainable, and thus more useful in an eventual clinical context. But while such methods

help explain machine learning models, the full extent of these techniques, and the exact

interpretation of any visualization techniques in a scientific context, is still the subject of

ongoing research.

1.4.6 Methods of visualizing deep neural networks

The black box problem has motivated a sub-field of research into methods of analyzing and

visualizing deep learning models. Most of these techniques were originally developed for

2D image recognition and adapted later to abstract data types. The interest in visualiza-

tion methods has motivated different sub-fields of deep learning, such as generative models

(Goodfellow et al., 2014), unsupervised object localization (Zhou et al., 2015b; Oquab et al.,

2015; Cinbis et al., 2015; Pinheiro and Collobert, 2015; Bergamo et al., 2014; Oquab et al.,

2014), and deconvolutional neural networks (Zeiler et al., 2010).
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Of particular interest in this thesis are those methods that show which parts of input data

contribute to classification accuracy – i.e., salience – with the aim being that this elucidates

group differences, as well as methods that analyze how the machine learning model itself

sorts large datasets during classification, in order to quantify whether a classifier focuses on

signal or confounding factors. Three general methods are discussed here: class activation

maps, occlusion, and activation maximization.

Class activation maps

Class activation maps (CAMs) measure the influence of localized areas of input on the final

accuracy calculation (i.e., “salience”). In the context of photographic image recognition,

this is usually interpreted as a measurement of human fixation; for instance, in a classifier

that distinguishes between pictures of cats and dogs, the CAM should highlight the shape

of the cat or dog in the input image. In its earliest iteration (Simonyan et al., 2014),

CAMs were estimated as the derivative of the deep learning function with respect to the

input image, approximated as a first-order Taylor series. This, in effect, showed the degree

to which each part of the input image altered the final classification. However, the first

implementations of CAM estimation offered noisier results before algorithmic improvements

were developed. Zhou et al. (2015a) developed CAM estimation further with an algorithm

that was more effective at object localization but was only used for specialized CNNs with

no fully-connected layers. The later innovation of Selvaraju et al. (2017) generalized this

to Guided Grad-CAM, a version of this class activation mapping algorithm that could be

applied to a wider variety of deep learning models.

Developments in CAM estimation have re-formed it into an object segmentation tool (Zhou

et al., 2015a). Many later developments (Li and Yu, 2018) expanded on it by employing

contour-based methods for object segmentation. However, when applicable deep learning

models are adapted to other, abstract data types, such object-segmentation-focused salience

detection may not be ideal. The parts of input data that affect the output the most would

likely not be able to be clustered together in the way objects in 2D images are, as other data

may be more abstract than 2D objects. This thesis makes extensive use of CAM algorithms,

but because of the irrelevance of object segmentation to brain connectomes, I opt for an

earlier implementation (Selvaraju et al., 2017), Guided Grad-CAM, rather than the current

state-of-the-art.

Guided Grad-CAM obtains the class-discriminated gradient (i.e., first-order derivative with
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respect to a class) of a neural network with respect to the feature maps of a convolutional

layer. The gradients are then average-pooled. This represents the salience of particular

feature maps for a particular class. A weighted combination of all of these forward activation

maps are then added and followed by a rectified linear unit (ReLU, i.e. the absolute value),

to obtain a coarse heat map of the same size as the convolutional feature maps (Selvaraju

et al., 2017).

Occlusion

Occlusion (Zeiler, 2012) consists of occluding local areas of data and testing which of these

lowers classification accuracy the most, effectively showing which areas of the image are

most important in this classification. Like CAMs, it is a salience detection technique, and

it is advantageous in that it more directly tests for salience. Unlike CAMs, occlusion does

not actually involve direct analysis of deep learning parameters at all, but instead works by

editing input data; this makes it an applicable method for analyzing black box models in

general.

Occlusion can have several variations that have been applied creatively to deep learning:

Zhou et al. (2015b) proposed an interesting variation on occlusion, in which the the pixel of

an input image that caused the least accuracy was erased until the image was inaccurately

classified, and Bergamo et al. (2014) used it as a means of unsupervised object segmentation.

However, occlusion is also more computationally intensive than CAM estimation, somewhat

limiting its use. Furthermore, the elimination of certain parts of input data may cause the

deep learning model to act unpredictably, as it is known that random noise as inputs may

output unpredictable results in deep learning models (Szegedy et al., 2014; Goodfellow et al.,

2015).

Activation maximization

Activation maximization (Erhan et al., 2009) consists of recording which input data maximize

which units in a particular hidden layer of a deep learning model. Typically, one finds the

activation maximization of convolutional layers rather than dense layers, as convolutional

layers maintain a level of stratification that helps with analysis; for instance, activation

maximization of convolutional layers in 2D image recognition can render visuals of abstract

shapes and textures of particular input objects within the network. Activation maximization
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is used to assess how data is organized by the model; for instance, certain subclasses of data

are often found to maximally activate different filters in convolutional layers.

1.4.7 Machine learning in medical imaging of the brain

Machine learning has been applied to medical imaging since the 1990s (Zhang et al., 1994),

though in more recent years, the industrial deep learning boom has substantially affected

medical imaging; the number of publications about machine learning in medical imaging

has increased substantially since 2012, with CNNs being the most published about by far

(Litjens et al., 2017; Shen et al., 2017a).

Machine learning has been applied to medical imaging for segmentation (Perone and Cohen-

Adad, 2019), detection (Tajbakhsh et al., 2015; Tajbakhsh and Liang, 2015; Shin et al.,

2016), object classification (Singh and Singh, 2017), and single-subject phenotypic classi-

fication (Arbabshirani et al., 2017). Such applications may generally be divided into two

categories: ones for which human experts can achieve near-perfect accuracy, and ones which

cannot due to the non-discovery of consistent biomarkers. The first category tends to see

applications related to image segmentation, such as skull-stripping and tumor segmentation,

and even extends into cancer diagnoses (Munir et al., 2019) by analyzing images of tumors

or cells; because expert human interactors can achieve near-perfect accuracy with such im-

ages, it is established that the necessary information to succeed at the classification task is

present in the given dataset. In the second category are image-based diagnostics, often of

degenerative or mental disorders, for which human interactors cannot readily make a suc-

cessful classification given this data, since the given data is usually not the primary source

of such a diagnosis in the first place. For instance, clinicians and radiologists would not di-

agnose autism based on brain images, but rather by behavioral markers; thus, it is unknown

whether a biomarker exists for autism (Plitt et al., 2015). The present thesis largely focuses

on single-subject phenotypic classification using MRIs, which is in the latter category.

Several different classes of machine learning models are in popular use in medical imaging;

however, because of their applicability to images, CNNs are a popular choice. According to

Litjens et al. (2017), “out of the 47 papers published on [whole-image] classification in 2015,

2016, and 2017, 36 are using CNNs, 5 are based on [autoencoders] and 6 on RBMs”. A

review of more years in Arbabshirani et al. (2017) also revealed a widespread use of SVMs,

which are more applicable to smaller datasets and suffer less from the black box problem,

though SVMs require specialized feature extraction methods, which are often study-specific,
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and are often unable to characterize nonlinear patterns in data.

Machine learning studies in brain connectivity have been used for single-subject classification

of bipolar disorder, attention deficit hyperactivity disorder (ADHD), mild cognitive impair-

ment (MCI), schizophrenia, autism, attention deficit hyperactivity disorder (ADHD), and

Alzheimer’s disease (AD) (Du et al., 2018), with studies variously using functional and struc-

tural data for classification, depending on the task. Certain disorders, such as autism and

ADHD, are mainly characterized by behavioral symptoms, with structural and functional

brain differences still being an active area of research. However, even these behavioral symp-

toms are difficult to characterize; individuals with autism are not characterized by the same

profile, and their symptoms are known to change over time (Lord et al., 2000). The causes of

ADHD are still unclear and are likely a number of possible factors, including heredity, brain

chemistry, and malnutrition (Biederman, 2005; Dey et al., 2014). Naturally, an incomplete

understanding of the disorders themselves does not help with the technical difficulties of

classifying images of the brain.

Most of these studies rely on small training datasets. As noted by Arbabshirani et al.

(2017) and Katuwal et al. (2015), machine learning models for whole-brain MRI classification

generally perform better on small, single-site datasets than on large, mixed-site datasets.

This would seem to contradict the conventional wisdom in machine learning that larger

training datasets aid model performance. A thorough explanation of this phenomenon has

not been offered, but it is typically assumed that mixed-site datasets add confounding factors

and variations that are difficult for a model to characterize.

The shortage of health data to aid in machine learning algorithms has led to several efforts

in industry at amassing data already present in health records, such as Google’s Project

Nightingale (Copeland, 2019) or IBM Watson Health’s partnerships with hospitals (Quach,

2018), though such efforts are routinely plagued by controversy, either due to concerns with

diagnostic accuracy (IBM Watson) or data privacy (Project Nightingale). The collection of

larger datasets in the research world, such as UK BioBank, holds more promise for studies

of big data in the near future.
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1.5 Big data in medical imaging

1.5.1 Overview

Like many biological applications, machine learning studies in MRI are limited by sample

size, as MRIs are comparatively expensive and labor-intensive to acquire. With growing

interest in big data in MRI (Smith and Nichols, 2018), wider initiatives to acquire large

datasets has allowed for training sets in the hundreds (Abraham et al., 2016) or thousands

(He et al., 2018), though even these are orders of magnitude smaller than those used in

mainstream computer vision (Wu et al., 2019).

1.5.2 Role in machine learning

There have been methods of overcoming the limitation of small sample sizes in medical

imaging, such as data augmentation (Hussain et al., 2017), the use of leave-one-out classifiers

(Anderson et al., 2011b; Jang et al., 2017), the use of simulated data (Meszlényi et al.,

2017), or the development of methods that specialize in training on lower sample sizes (Liu

et al., 2014; Akkus et al., 2017; Gibson et al., 2018; Han et al., 2017; Shen et al., 2017a).

However, Arbabshirani et al. (2017) observed that most results that showed extremely high

accuracy (> 90%) were most often performed on samples of less than 100. This could be

due to overfitting of newly developed models, homogeneity of samples, the use of leave-

one-out classification (which, though it may seem appropriate for small datasets, can prove

statistically unsound (Kohavi, 1995)), or unknown factors. In any case, this brings into

question the generalizability of many such models, and it is likely another expression of

the statistical problems associated with low sample sizes (also called “power failure”) in

neuroscience (Button et al., 2013; Nord et al., 2017).

This necessitates the use of big datasets. In recent years, this has become a more viable

option, as there have been several larger initiatives – for instance, the UK Biobank and

ABCD – that have collected thousands of datasets from different facilities that centrally

work to minimize site differences and make the data as high-quality and homogeneous as

possible. The UK Biobank is especially notable for housing extremely detailed metadata

about its subjects, allowing for many big-data psychological studies to be performed on the

basis of this metadata alone. Such large databases, however, can be lacking in variety of

patients with a clinical diagnosis that is often of particular interest to researchers, though
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there are several medium-sized (100 < N < 5000) databases that are dedicated to the study

of particular disorders (i.e., ADNI for Alzheimer’s and ABIDE for autism).

Large imaging databases are often composed of smaller batches collected by individual re-

search groups, which are then amalgamated in repositories, such as NDAR and OpenfMRI.

These small MRI datasets, however, often have variations that make it extremely difficult

to compare subjects in cross-dataset studies. Such differences are not only limited to MRI

hardware, parameter, and population differences, but subtle variations in clinical and diag-

nostic practices depending on the disease being studied, and preprocessing practices of the

holding database. Furthermore, standard practices in brain imaging often calls for a level

of human interaction, if only to perform quality control, when preprocessing data, and for

collections of this size such standard preprocessing practice would not be viable.

Nonetheless, noisy repositories, in aggregate, house much data of interest, and though the

many factors noted above may make it impractical to compare them using conventional

methods, deep learning was designed to classify such data with high levels of noise and

variation. Deep learning does not resolve all such concerns – for instance, one has to be

sure that high accuracy is not simply due to gross imbalances in classes or site differences

– but, in theory, it does lessen the need to explicitly model and regress artifacts such as

motion or signal weakness, as long as the model is unable to utilize such factors to improve

classification accuracy.

1.6 Connectivity in different cohorts

Brown and Hamarneh (2016) provides an overview of previous efforts in brain connectome

classification on different phenotypic groups. A direct comparison between deep learning

studies is complicated by differences in machine learning models; differences in datasets;

preprocessing practices; division between training, test, and validation sets within the same

dataset; and differences in metrics used to validate one’s machine learning model. In this

section, I summarize previous efforts to classify based on phenotypes considered in the present

work (sex, task, autism, and depression); when such studies are sparse or nonexistent, I

discuss factors that would likely affect such studies.
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1.6.1 Task fMRI

The functional differences found between task-based and resting-state fMRI may be among

the most consistent occurrences in fMRI studies. Corbetta and Shulman (2002) first discov-

ered the dorsal and ventral attention networks (Vossel et al., 2014), which were respectively

concerned with voluntary focus on features and switches in attention or unexpected stim-

uli. As noted by Fox et al. (2005), when performing simple memory tasks in a fMRI, the

response commonly observed is increased activity in certain frontal and parietal cortical re-

gions (Cabeza and Nyberg, 2000; Corbetta and Shulman, 2002) and decreased activity in the

posterior cingulate, medial and lateral parietal, and medial prefrontal cortex (Gusnard et al.,

2001; Simpson et al., 2001; Shulman et al., 1997; McKiernan et al., 2003; Mazoyer et al.,

2001), which form the default mode network; the intensity of this response was proportional

to the intensity of the task. Fox et al. (2005) identified two widely distributed, anticorrelated

networks in the brain that exist in the resting state but intensify during tasks.

The default mode network has been consistently identified as a marker of resting-state con-

nectomes since it was first described in Raichle et al. (2001), and other brain networks,

including some emblematic of particular tasks, have been identified as well (Smith et al.,

2009). Using fMRI and diffusion-weighted MRI, Yoldemir et al. (2015) distinguished, with

79% accuracy, between seven functional tasks using the fMRI timeseries. On the whole, clas-

sification of resting-state and task-based fMRI is underexplored, though Zhang et al. (2016a)

recently used sparse representations to distinguish between task- and resting-state fMRI in

the Human Connectome Project data, achieving 100% accuracy and distinguishing between

subjects by identifying the presence of the default mode network, though this was done on

a dataset consisting of only 60 subjects (even though the data collected on each subject was

robust and detailed). There has also been work in using deep learning to decode different

brain states in individuals (Koyamada et al., 2015), and Li and Fan (2018) creatively applied

recurrent neural networks to decode brain states in single-subject fMRI as they changed over

the course of a timeseries.

1.6.2 Sex

Evaluation of male-female brain differences are of general and widespread interest in neu-

roscience, but this has uniquely complicated the subject: the frequency with which it is

studied, combined with the statistically unsound use of small sample sizes (Button et al.,
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2013; Nord et al., 2017) in studies that use different analytical methods, has created a very

inconsistent picture across the board with regards to brain functional and structural differ-

ences between sexes; another view of this, however, is simply that male-female differences

are highly complicated and the literature reflects that (Ruigrok et al., 2014).

Functional differences between the sexes are debated and findings generally vary, depending

on which aspects of it are studied. A review by Sacher et al. (2013a) cited evidence for

functional sex differences in emotional and visuospatial processing, but noted that, up to

that point, it was rarely considered as a covariate in fMRI studies, and thus more rarely in

resting-state fMRI. Noted differences in emotional and visuospatial processing include arousal

differences in the bilateral amygdala and hypothalamus (Hamann et al., 2004; Takahashi

et al., 2006; Mackiewicz et al., 2006), the right cerebellum, and the posterior and superior

temporal sulcus (Takahashi et al., 2006), as well as hemispheric differences, in response to

various emotional stimuli. Men and women also differed in right hemisphere activation in

response to visuospatial tests (Gur et al., 2000), and differing activations in the superior

parietal lobule and the inferior frontal cortex in response to mental rotation tasks (Hugdahl

et al., 2006). In a task in which subjects were presented with emotional faces, men showed

higher activation in limbic and prefrontal regions and women higher activation in the right

subcallosal gyrus (Fusar-Poli et al., 2009). In response to angry and fearful faces, men show

higher activation than women in the visual cortex and the anterior cingulate gyrus (Fischer

et al., 2004).

Later studies were performed on large samples of resting-state data rather than smaller sam-

ples of task fMRI with different emotional stimuli, mitigating the concerns raised in Button

et al. (2013) and Nord et al. (2017). Sex differences have been analyzed in large-sample

studies of children and adolescents (Gur and Gur, 2016; Gennatas et al., 2017; Wierenga

et al., 2017) and the release of large samples of data in the UK Biobank (Ritchie et al.,

2018) (2750 females and 2466 males). (Because this work uses both resting-state and task

fMRI, it is reasonable to include both of these in my analysis and hypothesis formation.)

High-sample-size studies of resting-state fMRI differences between sexes have not typically

implicated differing activations in very localized portions of the brain; generally, however,

studies have reported, through different measurements, higher local functional connectivity

in women than in men (Tomasi and Volkow, 2011b; Gur and Gur, 2016), though different

analytical methods can also make these studies particularly tricky to compare, since indi-

vidual studies report arbitrary graph-theoretical measurements or different network ROIs in

seed-based analysis.
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Unlike function, differences in brain structure between females and males has been exten-

sively documented (Ruigrok et al., 2014), both in the developing brain and later in life.

Earlier, smaller-scale studies reported that, in the beginning of life, one-year-old boys have

bigger brains by about 10 percent, but girls have bigger structures in the brain stems (Giedd

et al., 1997) (50 males and 70 females, aged 3–18), and in both sexes the right hemisphere

is generally bigger than the left (Baibakov and Fedorov, 2010) (30 males and 30 females,

age 12). The sizes of structures are not proportionally bigger across age and sex (allom-

etry) (Giedd et al., 2012). Development of certain structures, such as the amygdala and

hippocampus, are different in early adolescent years for females and males (Uematsu et al.,

2012) (58 males, 53 females, studied from 1 month to 25 years).

Among the most notable findings of large-scale studies of the developing brain, which repre-

sent samples of total size 1929 males and 2065 females aged 3 to 23 years (of whom 745 males

and 826 females were analyzed functionally (Gur and Gur, 2016)) were the following: (1) a

steeper increase in white matter volume in males than in females during puberty, especially

in the frontal lobe (Lenroot and Giedd, 2006; Gur and Gur, 2016); (2) bilaterally larger hip-

pocampal volume in females after puberty, correlated with memory tests, and equal volumes

before (this effect was not seen in the amygdala, however) (Gur and Gur, 2016); (3) in their

resting-state functional networks, when they were separated into modules, males showed

higher between-module connectivity and females showed higher within-module connectivity

(Gur and Gur, 2016); use of SVMs to classify males and females achieved 63% accuracy using

only their cognitive profile but 71% accuracy using functional connectivity data (Gur and

Gur, 2016), improving on a previous accuracy of 65% accuracy for a similar age group based

on functional data from the human connectome project (Casanova et al., 2012) (74 females

and 74 males, age 21); (4) the functional connectome shows greater modularity in females

and the structural connectome has greater modularity in males (Gur and Gur, 2016); (5)

Throughout the brain, females have lower gray matter volume but higher gray matter den-

sity than males (Gennatas et al., 2017); (6) with regards to the volume of several key brain

structures, including cerebral white matter and cortex, hippocampus, pallidum, putamen,

and cerebellar cortex, males showed significantly greater variance than females (Wierenga

et al., 2017). Many of these results were supported by an earlier study (Tomasi and Volkow,

2011a) that used a notably large sample size of young adults (336 females and 225 males,

aged 18–30 years), finding that women have higher local functional connectivity density and

higher gray matter density than men.

The findings of Ritchie et al. (2018), which represent a much older sample of 2750 females and



24 CHAPTER 1. INTRODUCTION

2466 males, aged 44 to 77 with a mean of 61.7, found that males have higher brain volumes,

surface areas, and white matter fractional anisotrophy, whereas females have higher cortical

thickness and white matter complexity. With regards to resting-state functional connectivity,

females had stronger connectivity in the default mode network and stronger connectivity for

males in the sensorimotor cortices; this may be another expression of the findings of Gur

and Gur (2016) and Tomasi and Volkow (2011b) with regards to females having higher

within-network/local connectivity (considering the default mode network is one of the most

prominent networks in the brain), but given that the results are presented differently, it

remains difficult to tell. Supporting the findings of a younger cohort in Wierenga et al. (2017),

males also had greater variation in these measurements. With regards to all measurements

taken, however, there is considerable overlap between groups.

Studies of sex differences in brain structure and function are underpinned by a wide body

of literature concerning cognitive and emotional differences between males and females that

may coincide with these functional and structural differences. Studies have shown that

males outperform females on spatial and motor cognitive tasks, while females outperformed

males on nonverbal reasoning and emotional identification (Gur and Gur, 2016). Males are

generally more physically aggressive (Archer, 2004) and more interested in things rather

than people (Su et al., 2009), while females more often display neuroticism (Schmitt et al.,

2008) and agreeableness (Costa et al., 2001) and are more interested in people rather than

things (Su et al., 2009). With regards to neurological and psychological illness, females show

a higher prevalence for Alzheimer’s (Mazure and Swendsen, 2016) and major depressive

disorder (Rutter et al., 2003; Gobinath et al., 2017), while males show higher prevalence for

autism (Baron-Cohen et al., 2011), schizophrenia (Aleman et al., 2003), Tourette syndrome

(Bitsko et al., 2014), and dyslexia (Arnett et al., 2017). Cognitive-functional studies have

found differing functional responses in men and women in response to menstrual cycles and

emotional stimuli (Stevens and Hamann, 2012; Sacher et al., 2013b). Past ML studies using

methods ranging from support vector machines to CNNs have achieved sex classification

accuracies between 65% and 87% (Casanova et al., 2012; Satterthwaite et al., 2015; Gur and

Gur, 2016; Zhang et al., 2018), depending on the dataset and methods used.

While there are evidently differences in many aspects of the male and female brain, nearly all

of these studies note the distributional overlap and differences in variation between groups.

This indicates that any machine learning tests on the brain will (1) likely never reach perfect

accuracy, especially if they include a younger age group, and that any study approaching

perfect accuracy should be approached with a degree of skepticism; (2) be strengthened with
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additional information about brain structure, function, and cognitive tests; and (3) probably

never find one localized biomarker of male-female differences by analyzing only MRI brain

structure and function, though this may be changed with future improvements in spatial

and temporal resolution of MRI.

1.6.3 Autism

Although there have been multiple reports of structural brain differences in autism (Redcay

and Courchesne, 2005; Stanfield et al., 2008; Nickl-Jockschat et al., 2012a), this has not been

substantiated by a wider-scale analysis (Haar et al., 2016). Recent longitudinal analyses in

brain volume growth have shown that age trajectories in autism development had high inter-

individual variability (Ha et al., 2015; Lange et al., 2015; Wolff et al., 2018), and this complex

age/disease interaction renders autism even more difficult to study.

However, autism has been consistently associated with differences in brain function (Müller

et al., 2008; Simas et al., 2015a). Efforts to find differences in functional connectivity between

autistic patients and control groups have characterized autism as a disorder exhibiting under-

connectivity and thus greater segregation of functional areas (Just et al., 2004; Cherkassky

et al., 2006; Kennedy and Courchesne, 2008; Assaf et al., 2010; Jones et al., 2010; Weng

et al., 2010). Other studies, mostly of children and adolescents, found evidence of over-

connectivity in specific areas of the brains of subject with autism (Cerliani et al., 2015; Chien

et al., 2015; Delmonte et al., 2013; Di Martino et al., 2011; Nebel et al., 2014a,b), finding

hyperconnectivity in the posterior right temporo-parietal junction (Chien et al., 2015) and

in striatal areas and the pons (Di Martino et al., 2011; Delmonte et al., 2013). A recent

review (Hull et al., 2017) posited that autism is likely characterized by a mix of these traits.

Autism has been characterized by several cognitive theories (Lai et al., 2014); the three

dominant ones still actively researched (Hull et al., 2017) are the Weak Central Coherence

theory (Frith, 1989, 1996; Happé and Frith, 2006), the Executive Dysfunction hypothesis

(Levy, 2007; Romero-Mungúıa, 2013; Fishman et al., 2014), and Theory of Mind (Baron-

Cohen, 1988c,a,b; Baron-Cohen et al., 1994; Baron-Cohen, 2004). In early infancy, however,

autism is particularly difficult to diagnose, since most diagnostics rely on behavioral measures

(Shen and Piven, 2017), though there has been success in identifying behavioral markers in

a particularly affected subgroup of infants in the 6–9 month period, such as unusual visual

fixations and lack of intentional communicative acts (Bryson et al., 2007; Rogers et al., 2014).
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Previous efforts to classify functional connectivity in autism on small datasets have achieved

accuracies that have been described as “modest to conservatively good” (Hull et al., 2017),

though such methods have had trouble replicating on different data (Jung et al., 2014; Price

et al., 2014; Iidaka, 2015). Generally, studies achieved classification accuracies that widely

varied depending on the modality used, sample size, data quality, selected methods, and

diagnostic criteria. More recently, the application of convolutional neural networks to the

substantially larger ABIDE I and II datasets have achieved achieved 68% to 77.3% classifica-

tion accuracy (Subbaraju et al., 2017; Brown et al., 2018; Heinsfeld et al., 2018; Khosla et al.,

2018). A recent study (Hazlett et al., 2017) of 106 high-risk infants between 6-12 months

linked brain volume overgrowth to the emergence and severity of autism symptoms, using a

deep learning algorithm capable of predicting autism with 81% specificity and 88% sensitiv-

ity using brain surface information. Another study by the same group (Emerson et al., 2017)

found that autism could be predicted in 59 6-month-old infants with 81.8% sensitivity using

functional imaging. In the general population, efforts in single-participant classification of

autism from MRI data have had mixed results (Anderson et al., 2011a; Barttfeld et al.,

2012; Nielsen et al., 2013b; Jung et al., 2014; Iidaka, 2015; Plitt et al., 2015; Tejwani et al.,

2017), with studies rarely exceeding 80% classification accuracy (Hull et al., 2017). Again,

however, this varies substantially by modality and which site data were collected (Katuwal

et al., 2015). Nielsen et al. (2013b) found that multisite functional connectivity classification

in autism outperformed chance, but the highest accuracy obtained was 60%. It also found

that accuracy was significantly higher for sites with longer BOLD imaging times; this is

compared with a single-site study (Anderson et al., 2011b) that saw around 80% accuracy

for whole-brain autism classification and 91% for subjects under the age of 20, though this

used a sample size of 80, and, as mentioned earlier, such disparities are common between

high-sample-size and low-sample-size machine learning studies (Arbabshirani et al., 2017).

In a recent study, Eill et al. (2019) performed a classification on individuals with autism

and neurotypical controls using structural MRI, DWI, and fMRI data, finding that features

derived from fMRI provided the highest accuracies with an SVM classifier. They did, how-

ever, encounter the issue of fMRI feature extraction simply producing more variables than

its structural counterparts, offering the machine learning model more information to work

with, although attempts were made to mitigate this issue.
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1.6.4 Depression

MDD has been studied extensively (Zhang et al., 2011a; Bora et al., 2013; Graham et al.,

2013; Li et al., 2013; Roiser and Sahakian, 2013; Singh and Gotlib, 2014; Qiu et al., 2015).

Using different methodologies, different studies and meta-analyses have implicated case-

control differences (both in terms of structure and function) in many different parts of the

brain (Kaiser et al., 2015; Mulders et al., 2015), and others have shown only limited areas

of difference (Bora et al., 2013). There are several possible explanations for this. The first

is that MDD is a complex disorder and each methodology uniquely captures a different

aspect of the disorder. The second is that many methods used potentially capture spurious

differences in the data. The third is that MDD is a system-wide disorder and different

methods implicate specific parts of the brain, each partially illuminating a deeper, more

widespread effect. Another explanation for the dissimilarities is the slight differences in the

datasets studied.

On small samples, there has been marked success in classifying major depressive disorder,

with accuracies up to 100% (Zeng et al., 2012; Rosa et al., 2015; Sato et al., 2015; Rama-

subbu et al., 2016; Wang et al., 2017; Yoshida et al., 2017), and overall accuracies of 77% in

subclinical depression (Modinos et al., 2013). While there were found to be average differ-

ences in subcortical volume and white matter integrity in UK Biobank participants (Shen

et al., 2017b), there have been no published efforts to classify subclinical depression on the

BioBank’s large functional MRI datasets.

1.7 Research Aims

The overarching purpose of deep learning for MRI classification is twofold. First, there is a

scientific interest: if a deep learning model is able to classify a MRI data by a certain mental

disorder, then studying this deep learning model would undoubtedly aid in understanding

of this disorder. The second interest is in future clinical application: given high enough

classification accuracy, this research has a clear potential application in automated clinical

diagnosis and prognosis.

The aim of the research presented in this thesis is also twofold: first, to leverage big MRI data

to classify phenotypes with as high a performance as possible. This involves obtaining such

data and designing a deep learning scheme that can classify it as well as possible. Unique to
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science, however, this also means ensuring that such classification is not due to confounding

factors (such as, with MRI, head motion or intracranial volume), but rather to signals

such as fluctuations in the BOLD signal. The second aim is to study these models to aid

understanding of the studied phenotypes. This involves adapting deep learning visualization

methods used to detect which parts of input data drive classification, thereby shedding light

on the nature of phenotypic differences.

1.8 Thesis outline

The research of this thesis revolves around the use of deep learning for the phenotypic clas-

sification of whole-brain MRIs. Three major deep learning studies are presented throughout

the thesis (in Chapters 4, 7, and 8), with other chapters outlining supporting material or

specific methods to improve and elucidate these results.

Chapter 2 details my efforts in amassing and preprocessing an extremely large dataset from

multiple different databases, as well as the practical challenges, otherwise out-of-place in the

scientific narrative, in working with this data and designing deep learning models.

Chapter 3 presents an initial foray into connectivity analysis by presenting two distinct

methods of analyzing connectomes, though neither rely on machine learning. The first of

these, an analysis of “normative pathways”, is a self-contained study on a smaller dataset

that shows an interesting application of graph theory to functional connectomes, which is

applied to adolescents with MDD; Chapter 9 later discusses means of applying such methods

in future deep learning models. The second of these methods is a structural connectivity

metric estimated from T1-weighted MRIs, which is later used in Chapter 8 for a deep learning

study.

Following this, Chapter 4 presents a deep learning study on the massive aggregated dataset,

using a convolutional neural network to classify functional connectomes by autism, sex, and

resting state/task. This tested the viability of deep learning on such data. The study

used ensemble CNNs in a cross-validation scheme, using an original deep learning encoding

method that was partially inspired by an earlier framework called BrainNetCNN (Kawahara

et al., 2017); it also took advantage of the depth of CNNs to encode multi-band wavelet

correlation functional connectomes. This is accompanied by an analysis of the ensemble

models and classification accuracy across different tasks and collections.
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Subsequent chapters focus on analysis and improvement of the deep learning scheme from

Chapter 4; however, to focus research efforts, deep learning studies presented after this point

focus on only one of the classification tasks. Chapter 5 presents a method of analyzing the

clustering of data throughout the deep learning ensemble models, as a means of measuring

the degree to which it focused on confounding variables. Chapter 6 presents a method of

mitigating this problem with an improved dataset balancing scheme. Chapter 7 focuses on

addressing the “black box” problem by presenting two methods of analyzing the salience

of input edges and networks, honing in on one classification problem in doing so: sex,

specifically in UK BioBank data (a large subset of the full dataset collected). Finally,

Chapter 8 homes in on another classification task, autism versus controls, by encoding both

functional connectivity data and the structural connectivity metric presented in Chapter 3,

and presents methods of using graph theoretical metrics for more advanced analysis of edge

salience.

Chapter 9 ends the thesis with a discussion of the implications of this research; the limita-

tions of big data, machine learning, and advanced statistical methods in whole-brain MRI

classification; caveats in interpreting visualization metrics; failed research directions that I

attempted; and potential future directions of this research. Purely neuroscientific implica-

tions of this research are relevant to the context of individual chapters, so this discussion

mainly focuses on methodology, which is the overarching contribution of this thesis.

1.9 Motivation and Themes

In general, the boom of research in computer science has led to the creation and rapid de-

velopment of many novel analysis methods that have been adopted by other scientific fields.

However, because deep expertise rarely spans across two fields, these methods are often mis-

applied, either by pure computer scientists or statisticians failing to respect the complexities

of another field, or by field experts using an off-the-shelf tool created by computer scientists.

This tendency is especially true of medical image analysis. For instance, a major pitfall

discussed in this work is the emphasis on high test set accuracy in machine learning studies.

In photographic image classification or speech recognition, high test accuracy is often the

central goal, and so medical imaging researchers in whole-brain MRI or EEG classification

often equate high accuracy with superior performance. However, such accuracy may be due

to confounding factors such as motion, head size, or age, and because such factors do not
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play a part in photographic images, they are often not fully considered in other fields.

Thus, a significant underlying theme of this study is the proper adaptation of computer

science methods to the analysis of MRI brain data, respecting the complexities of both fields

while exploiting unique properties of computer science methods to reveal novel neuroscientific

insights. To this end, this thesis prototypes the use of “big data” in medical image analysis,

collecting large samples of MRI data and adapting other metrics to analyze this data, ranging

from deep learning visualization methods to pure graph theory, while carefully considering

these methodologies in the context in medical image analysis.

The choice of which neuroscientific questions to address in this thesis have largely been

driven by available data. Even with a sufficiently large dataset, there are limited means of

applying it to supervised learning. Supervised learning requires data to be labeled. However,

in collecting this data, I found large datasets to be inconsistently labeled; and, often, in the

case of large datasets that do have consistent labels (such as the UK BioBank), the labels

may not be of particular scientific interest. Furthermore, labels that are of scientific interest

are not guaranteed to produce meaningful results. For instance, I do not present classification

results based on factors such as age, which had too many confounding factors across data,

and hallucination and subclinical depression data, which was present in the UK BioBank but

failed to yield a meaningful classification accuracy when tested for. The only three interesting

labels found consistently across a sufficiently large dataset, which also produced significant

classification accuracy, were sex, autism, and resting-state/task. Thus, the classification

tasks presented focus on those three labels.

Many methods presented in this thesis are targeted to datasets of very large sample sizes,

and so would have relatively limited application to many studies in medical imaging today.

One instance of this inapplicability is the heavy use of balancing algorithms, presented in

Chapter 6, as a method of regressing out confounding factors. In some cases, this required

discarding 90% or more datasets in model training; doing so on much smaller sample sizes

would likely lose any statistical power, let alone their application to deep learning models,

which require large amounts of data to be effective. However, with many ongoing big data

initiatives in MRI, such methods will undoubtedly become more and more useful in the

future.



Chapter 2

Amassing and processing large

datasets

Throughout this thesis, I focus on the application of deep learning for whole-brain phenotypic

classification to a large, mixed-site MRI dataset. This chapter provides an explanation of

the acquisition and preprocessing of this data, practical details of the implementation of the

deep learning framework, and memory management and computing challenges inherent in

this study. Details in this chapter are applicable to all following it, except when otherwise

noted.

I first present dataset collections, acquisition techniques, and labeling. I then detail general

techniques for preprocessing fMRI data (note that structural data processing is the subject

of Chapter 3). I then outline the implementation behind the deep learning framework used

to classify this data, including the specific software libraries used. Aspects of these are

expounded upon in later chapters as well, though the emphasis in those contexts is on

design and scientific applications, while this chapter details implementation and practical

challenges that do not otherwise fit in a scientific narrative.

2.1 Data acquisition

A very large number of structural and functional MRI datasets were collected from nine

different sources: OpenFMRI (Poldrack et al., 2013; Poldrack and Gorgolewski, 2017); the

31
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Alzheimer’s Disease Neuroimaging Initiative (ADNI); ABIDE (Di Martino et al., 2014);

ABIDE II (Di Martino et al., 2017); the Adolescent Brain Cognitive Development (ABCD)

Study (Casey and Dale, 2018); the NIMH Data Archive, including the Research Domain

Criteria Database (RDoCdb), the National Database for Clinical Trials (NDCT), and the

National Database for Autism Research (NDAR) (Hall et al., 2012) (note: due to the dif-

ficultly in distinguishing between these three datasets when downloading them, I refer to

these collectively as “NDAR”; while ABCD was downloaded from the NIMH database as

well, this was significantly easier to distinguish); the 1000 Functional Connectomes Project

(Dolgin, 2010); the International Consortium for Brain Mapping database (ICBM); and

the UK Biobank; I refer to each of these nine sets as collections. These collections con-

tain both resting-state and task-based fMRI from both control and various types of test

subjects. OpenFMRI, NDAR, ICBM, and the 1000 Functional Connectomes Project are

each collections that comprise different datasets submitted from unrelated research groups;

ADNI, ABIDE, ABIDE II, ABCD, and the UK Biobank are collections that were acquired

as part of a larger research initiative, and, while many of them did collect data from different

sites, there was deliberate effort to minimize site differences. The numbers of subjects, total

numbers of functional datasets, and connectomes derived from each, as well as phenotypic

distributions, are shown in Table 2.1.

2.1.1 Dataset descriptions and labeling

Following are in-depth descriptions of each dataset and the means used to gather labels

from each one. The labels most commonly occurring across each were (1) sex; (2) resting-

state/task; and (3) age. Several datasets also contained large numbers of labeled data for

autism.

NIMH (including NDAR and ABCD) The NDAR datasets include 12895 different

datasets submitted by independent research groups as part of grant requirements, as well

as the ABCD study, which includes 15312 child and adolescent fMRI datasets. These were

downloaded in bulk from the NIMH servers, using a query that included every fMRI dataset

available that had a corresponding structural image. The format of the label from NIMH are

large CSV files that include descriptions and different covariates for large chunks of, though

not all of, the data. Labeling was inconsistent across collections, but many datasets included

descriptive fields specific to each study, which included key words that indicated different

classifications for each study. After manually reviewing these descriptions across datasets
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and identifying their use in respective studies, labeling for autism versus healthy control,

resting-state, and sex was performed using a Python program that pulled key words from

these descriptions. Information about age, depression, and handedness was also collected.

Due to the need to conserve memory on servers, datasets that failed format conversion or

preprocessing were deleted, so the actual number of datasets downloaded from the NIMH

exceeds this number; additionally, data releases after 2018 were not used.

UK BioBank UK BioBank data included 27,870 task- and resting-state datasets, from

healthy adults between the ages of 40 and 70. These downloaded to Cambridge servers in

a separate project, though I was granted permission to use this data. As the BioBank is a

centralized initiative, the data was already labeled. It consisted mostly of healthy controls,

though a large number reported subclinical depression.

OpenfMRI: OpenfMRI is a repository of datasets voluntarily submitted by different re-

search groups, often in experiments related to psychological tasks. Many individual datasets

came with a corresponding CSV file that included information about age and sex, and

these files sometimes included information about handedness as well. However, many of the

datasets did not include any covariate information, and research into the respective publi-

cations resulting from these datasets, and even direct enquiries to the research groups that

submitted these data usually revealed that this information could not be obtained. As such,

much of the data in OpenfMRI was unusable. Many of the OpenfMRI datasets included

multiple runs from the same individual, usually to indicate different memory tasks or time-

points; all of these were included in the classification task as separate datapoints, though, as

will be specified later, measures were taken to ensure that no one subject was used in both

the training and test/validation sets.

ADNI, ABIDE, and ABIDE II: The Autism Brain Imaging Data Exchange (ABIDE) I

and II, the International Consortium for Brain Mapping (ICBM) and the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) datasets constituted a relatively small portion of the

data used, though ABIDE I and II were a large bulk of the non-control data used in autism

classification. All of these data were downloaded from the University of Southern California

Laboratory of NeuroImaging website. Covariate information was included with the data in

a CSV file.

ICBM: the International Consortium for Brain Mapping (ICBM) presents a relatively large

collection of control datasets, though fMRI was only collected in their UCLA site (largely
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Figure 2.1: The signal-to-noise ratios (SNRs) of the raw BOLD and structural MRI files

from each collection, prior to any preprocessing, taken by dividing the mean of the nonzero

voxels by their standard deviation (note that this refers to SNRs from an information theory

standpoint, rather than the term as it is usually used in MRI analysis). Some of the data

had either extremely high BOLD or structural SNR (4 or greater), but this plot is zoomed

in to display the vast majority of data.

task data) and the Montreal Neurological Institute (MNI) (largely resting-state data). From

this, I used 410 task fMRI datasets from 83 unique subjects and 35 resting-state fMRI

datasets from 35 unique subjects. Like ADNI and ABIDE, these were also stored on the

USC database.

1000 Functional Connectomes Project: The 1000 Functional Connectomes project

includes resting-state functional connectomes from various sources; much like OpenfMRI,

it included covariate information contained in separate CSV files, though these were more

standardized and label collection was easier.
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Figure 2.2: A high-level description of the functional connectivity preprocessing pipeline,

from input structural and functional MRI data, to the output functional connectome. The

selected timeseries comparison metric varies throughout this thesis, ranging from partial

correlation, Pearson correlation, and normalized mutual information, producing a 116× 116

functional connectome, to multi-band wavelet correlation, producing a 3 × 116 × 116 or

4× 116× 116 functional connectome.

2.1.2 Distribution of data quality

Figure 2.1 shows a simple calculation of the signal-to-noise ratio of the raw voxel values in

both the structural and functional data (note that this does not utilize the more complex

signal-to-noise calculations often applied to MRI data; this is simply a display of the mean

divided by the standard deviation of nonzero voxels, as a means of showing data distribution).

This displays the fundamental differences in raw data between these collections, likely due

to differences in sites and preprocessing practices of different databases. Because of the

differences between collections in terms of sex, rest/task, and autism, this also makes clear

the necessity of balancing data by collection prior to building a training set, as Figure

2.1 shows that even a basic clustering algorithm would be capable of capturing differences

between collections.

2.2 FMRI signal processing toolbox

Functional data were preprocessed using the fMRI Signal Processing Toolbox and the Brain

Wavelet Toolbox (Patel et al., 2014; Patel and Bullmore, 2016) on the 116-area Automated

Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). Following skull-stripping,

motion correction was accomplished using SpeedyPP version 2.0, which utilized AFNI tools

and wavelet despiking (Patel et al., 2014; Patel and Bullmore, 2016), with a low-bandpass
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filter of 0.01Hz, in addition to motion and motion derivative regression. Both functional and

structural datasets were non-linearly registered to Montreal Neurological Institute (MNI)

space (Collins, 1998) and parcellated using the 116-area automated anatomical labeling

(AAL) template (Tzourio-Mazoyer et al., 2002), which includes subcortical regions. Ex-

tracted time series were the means of each AAL region. A high-level description of this

pipeline is shown in Figure 2.2. Due to the large number of data in this study, quality

control was not performed during the preprocessing stage. Table 2.1 shows the percentage

of datasets for each collection that passed through each stage of parcellation. Note that

this table includes specialized structural measurements, which are detailed in Chapter 3.

Because specific preprocessing choices differed between the presented deep learning studies,

study-specific details, such as the time series comparison metrics used to create functional

connectivity matrices, are given in later chapters.

2.3 Dataset counts

Exact counts of data in the context of different chapters were complicated by several factors,

listed here:

• Raw datasets were downloaded from various databases, each comprising one struc-

tural and one or more functional datasets. Because one subject may have had data

from multiple fMRI procedures, there were fewer structural than functional datasets.

However, to simplify the storage and preprocessing of data at scale, multiple copies of

structural datasets were created such that each fMRI had a corresponding structural

MRI file.

• Failed data format conversions eliminated many datasets from consideration. The

preprocessing of functional connectomes and structural connectomes was performed

independently; thus, a dataset may have failed the preprocessing step for one but not

the other.

• In order to effectively compare functional connectome classification to structural classi-

fication (as is done in Chapter 8), it was necessary to duplicate structural connectomes

in order to maintain the same number of datapoints across the same unique identifiers,

though this also means that the structural classification sees less data, and that may

have negatively affected its accuracy. Thus, many of the structural files listed in Table

2.1 are duplicates.
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• Differing uses of wavelet correlation estimations, which forced the exclusion of several

datasets due to a too-low TR rate, and Pearson correlation.

• Chronology of the studies complicated the counts of data. For the most part, the studies

in presented chapters were undertaken in chronological order, over a period from 2016

to 2020; the only exception to this is the structural connectivity metric presented in

Chapter 3 and the visualization of vertical-filtered models presented in Chapter 7.

Some data were added to their respective collection later on due to scheduled releases;

in other cases, I later found errors in the original data processing scripts that led to

fewer failures in format conversions (notably for NDAR and ABCD datasets).

• Different chapters had differing regional dropout criteria (i.e., in which no signal is

detected when parcellating data to the AAL template). In some chapters, datasets

with no more than 10% regional dropout were included, whereas in others data were

excluded if any dropout was present.

As of 2020, 70,331 potential functional matrices were identified across all databases (i.e., the

databases listed the functional MRI and a corresponding structural MRI as being present).

Of these, 47,732 unique functional MRIs were actually downloaded, with 49,182 non-unique

structural files. 25,166 total unique structural connectomes were successfully preprocessed,

though accounting for duplicates across subjects, 47,359 were generated. 39,461 unique

functional connectomes were successfully preprocessed. Pairing the successful connectomes

with the successful structural connectomes resulted in 33,547 total; most of this admittedly-

significant drop can be explained by ABCD, which dropped from 11,789 correlation matrices

to 7,063 when paired with structural connectivity matrices, mainly due to regional dropout.

Exact counts of data, as well as exclusion criteria, are given in the context of future chapters

as necessary.

2.4 Deep learning model

2.4.1 Implementation

The deep learning models in this thesis were all based on an implementation in Python that

used the Keras deep learning library, supported by a Tensorflow backend. Keras was selected
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as a machine learning library of choice due to its design, ease of use, and wide number of

supporting libraries. Preliminary tests that utilized the cross-shaped convolutional neural

network, BrainNetCNN (Kawahara et al., 2017), were carried out to classify functional con-

nectivity datasets, and, indeed, the code behind this implementation was studied carefully,

all presented studies used an altered architecture in Keras that used vertical filters instead.

BrainNetCNN was originally designed using Caffe, an earlier deep learning library which was

found to be poorly supported for Cambridge’s servers without significant backend support,

and the cross-shaped model, even when re-implemented in Keras (Leming and Suckling,

2019), was found to suffer from frequent training failures that disappeared when replaced

with vertical filters (see Chapter 4.

All code that performed class balancing (Chapter 6) was entirely original and produced out-

side of the Keras framework, as well as code that scrambled input data for the stochastic

models (introduced in Chapter 7). Furthermore, code to average ensemble models (intro-

duced in Chapter 4) was implemented by using text file outputs from individual CNN models.

Code for normative pathways was implemented entirely using libraries from Matlab (see

Chapter 3). Code for estimating the structural connectivity metric (also in Chapter 3) relied

on a combination of FSL and original Python code.

2.4.2 Implementation of visualization methods

Activation maximization

Activation maximization (Erhan et al., 2009) is a technique to determine the maximally

activated hidden units in response to the test set of the CNN layers following training. This

method is presented in Chapter 5 to analyze the ways in which data bottlenecked and was

organized in a convolutional layer. The code of activation maximization was entirely original,

with the Keras model being edited to output maximal activations as text files; the analysis

and graphing of this data was performed in MATLAB.

Occlusion

Occlusion (Zeiler and Fergus, 2013) refers to the omission of different parts of data and

recording which parts of the data lead to the greatest drops in accuracy. This indirectly
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estimates which parts of data are most salient for classification. Occlusion is used extensively

in Chapter 7, but due to its particularly high computational requirements for the purposes

of these studies, it is only seen in that context (this limitation is discussed further in Chapter

7). Occlusion was performed using entirely original Python code, with the stochastic deep

learning framework also presented in Chapter 7.

Class activation maps

In Chapters 7 and 8, I deployed class activation maps (Simonyan et al., 2014; Kawahara

et al., 2017; Khosla et al., 2018) using a previous Keras implementation (Kotikalapudi and

contributors, 2017) to display the parts of the connectivity matrix the CNN emphasized in

its classification of the test set. The original code I produced for this was to average class

activation outputs from the code given in Kotikalapudi and contributors (2017).

2.5 Use of Connectivity

In this thesis, I opted to classify data based on connectivity matrices, which model covari-

ances in data rather than data itself (Sporns, 2010). This choice was made for two primary

reasons, which are explained here.

The first reason is related to formatting. Besides the practical advantages in saving memory

(covered in Section 2.6), connectivity matrices maintain a consistent dimension that makes

them ideal for inputting into a convolutional neural network. Raw MRIs from different

sources tend to have inconsistent dimensionality; while 3-dimensional images may be re-

sampled to a consistent dimensionality, achieving this in the fourth dimension for fMRI

data or, by extension, a timeseries derived from fMRI, is nontrivial, due to wide differences

in fMRI sampling rates and sequence lengths. Such data may be encoded using recurrent

neural networks or LSTMs, but these are more suited to making predictions about particular

timepoints rather than an entire timeseries.

The second reason is that functional brain networks, which have been the subject of intense

study in recent decades, especially in relation to the phenotypic differences studied in this

thesis, only emerge explicitly when covariances in data, rather than variances themselves,

are analyzed. While deep learning models may infer covariances, this should not be assumed.
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Additionally, modelling covariances is a form of feature extraction that maintains a form of

spatial encoding in a way that variance analysis (such as voxel or ROI intensities in structural

data, or t-statistics for functional data) does not.

2.6 Practical limitations

Limiting factors on research included the amount of server space, the size of working memory

allowed for any one job, allotted time to run a job, and the real time it took to run multiple

jobs. Certain research questions of interest were impractical to answer due to the high

computational power necessary.

Across all collections, after data format conversions, a single structural MRI had an average

size of 171 MB per file, while preprocessed BOLD MRI had an average size of 176 MB per

file. In contrast to raw data, connectivity matrices were just under half a megabyte each

(116 × 116 × 4 × 8 bytes = 430.592 kilobytes), less than one five-hundredth the size. Pre-

processing of this data using standardized pipelines, such as SpeedyPP (Patel et al., 2014),

was computationally intensive, with a single dataset requiring approximately 30 minutes

to run, and had to be performed across more than 60,000 datasets (even if many failed).

However, these tasks could be run in parallel.

The training of deep learning models required the loading of all, or a substantial portion of,

a whole dataset during training. Training on 5,000 or 50,000 raw NIFTI files would exceed

the allotted memory allowed by available computational resources; even if this were not the

case (and, in theory, it may be possible to read into main memory only one batch of data at

a time before clearing the space), the training time required is proportional to the size of the

training data. Still another prohibitive reason was that deep learning models do not give an

exact accuracy, but rather an accuracy within a statistical distribution; achieving statistical

power thus required the training of multiple independent deep learning models (introduced

in Chapter 4), which further strained computational resources. Thus, even though raw

data encoded more information of interest and may have led to higher accuracy in deep

learning studies, I studied only connectivity matrices due to concerns with practicality and

reproducibility.

The choice to use multiple, independent deep learning models was also influenced by the type

of computing resources immediately available. The Cambridge University Department of
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Psychiatry used the High Performance Hub for Clinical Informatics (HPHI), which provided

CPU clusters and allowed computing times of several days. Additionally, it provided very

high storage capacity. However, it did not provide graphical processing units (GPUs) for

wide use, and each computing node had a set memory limit. This prohibited the use of a

high-parameter machine learning model that would have required GPUs; it also prohibited a

model’s ability to analyze many raw datasets at once, which would have exceeded the single-

job memory limit. What the resources did allow, however, was the widespread, parallel

preprocessing of an extremely large dataset using pre-existing medical imaging software, as

well as the utilization of many, smaller machine learning models that trained on compressed

versions of the whole dataset. This allowed for was the averaging of many outputs, reducing

the noise in the experiments, and the use of ensemble machine learning models, which greatly

increased accuracy and allowed for the utilization of the whole dataset in a cross-validation

scheme.

2.7 Hyperparameter tuning

When building a deep learning model, one has a number of hyperparameters on the model to

tune. This is usually done with a grid search, in which every hyperparameter combination

over a reasonable range of values is tested. Within the models considered in the present

work, these may include the number of convolutional layers, the number of convolutional

filters, the number of dense layers, the number of hidden units per layer, dropout percentages,

initialization techniques, the slope on leaky ReLU layers, and the encoding method. Training

techniques also present their own hyperparameters, including the optimization method, loss

function, learning rate, weight decay, batch size, size of training/test set division, stopping

criteria, and momentum. Assuming each of these variables has even three unique values

that would be reasonable to test, that would imply 313 > 1, 500, 000 possible combinations

of hyperparameters to test. Additionally, in the context of functional brain networks, there

are a number of variables to consider when preprocessing the training data. Among the

major considerations are the selection of parcellations, exclusion and dropout criteria, and

methods of timeseries comparison. Finally, even for a particular set of hyperparameters

chosen, test set accuracy naturally varies, and so 40 to 300 models ought to be trained and

their accuracies averaged, before a selection can be made; given a high volume of tests, this

number may have to be raised to achieve statistical significance. Another factor in this,

additionally, is that certain combinations of hyperparameter values may interact to slow
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down the training process and make it impractical. Neural networks with a prohibitively

high number of both hidden units and layers, for instance, may take an exponentially longer

time to train than networks that are only very deep or very wide.

One option may be to train each of these variables independently, making the number of tests

rise linearly rather than exponentially with the number of hyperparameters. However, this

would still necessitate choosing an initial set of hyperparameters, and, with N hyperparam-

eters and an average of K choices per hyperparameter, it would still necessitate N ×K × 40

tests at minimum – which, in this case, is still a very high number. Furthermore, this would

fail to capture the complex interactions between variables that a grid search would be able

to do.

Another option is to use commonly accepted implementation standards across deep learning.

This does not necessarily promise to yield the absolute highest accuracy possible, but it is

practical.

In selecting hyperparameters for this work, a combination of these approaches were con-

ducted. Limited access to computing resources also dictated choices in these areas. While

developing the code base for the models used in this thesis, grid tests on limited hyperpa-

rameters were conducted, though this was less to optimize accuracy and more to mitigate

issues with vanishing and exploding gradients (the inclusion of Batch Normalization layers

at a later point in development, as well as the adoption of vertical over cross-shaped filters,

helped to alleviate these issues). In other cases, parameters within the same order of mag-

nitude as those used by others were adopted, sometimes based on the scientific work and

informal advice of others using similar models. Extensive tests were conducted on the orig-

inal BrainNetCNN model in its Cafe implementation, prior to re-implementation in Keras;

these tests revealed very few consistent improvements in accuracy could be had by varying

the number of hidden units. However, while limited grid searches could reveal places to im-

prove the stability of the model, improvements in accuracy were quite limited and spurious

with a balanced dataset. As stated in Section 1.9, however, optimizing test set accuracy

should not necessarily be the goal of deep learning in medical imaging.
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2.8 Note about AUROC and accuracy

In this thesis, both Area Under the Receiver Operating Characteristic (AUROC, sometimes

called AUC as well) and accuracy are reported. In machine learning, AUROC compares the

tradeoff between the true- and false-positive classification rates, while accuracy is a direct

measure of the success of a binary classification. In machine learning, AUROC is often pre-

ferred as a superior indicator of model performance because accuracy can be misleading when

class proportions are unbalanced (for instance, if a training set were 99 percent class A and

1 percent class B, 99 percent accuracy could be achieved by labeling everything as class A),

though accuracy is often reported because it is more intuitively understandable. Throughout

this thesis, a 1:1 ratio between classes is maintained, so a gross difference between AUROC

and accuracy is usually not present. However, accuracy is most often reported in machine

learning literature, so a need was found to report that metric, but in practice it was also

found to be more volatile than AUROC when finer comparisons were needed, so AUROC is

still preferred throughout when evaluating models.
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Chapter 3

Brain connectivity analysis for mental

conditions

In this chapter, I present two forays into connectome analysis for the characterization of

mental conditions. The first, normative pathways, describes a method of pathway analysis

on groups of functional connectomes. Because this particular method may only be applied to

small groups of data, it was used to differentiate between groups in a small dataset (N = 116)

of clinically depressed and non-depressed adolescents. The second, a structural similarity

metric, was used to derive connectomes from T1-weighted structural MRI; this was applied to

the dataset presented in Chapter 2, specifically to study brain structural differences between

autistic and non-autistic controls.

3.1 Normative pathways

Functional connectivity is frequently derived from fMRI data to reduce a complex image of

the brain to a graph, or “functional connectome”. Often shortest-path algorithms are used

to characterize and compare functional connectomes. Previous work on the identification

and measurement of semimetric (shortest circuitous) pathways in the functional connectome

has discovered cross-sectional differences in major depressive disorder (MDD), autism, and

Alzheimer’s disease. However, while measurements of shortest path length have been ana-

lyzed in functional connectomes, less work has been done to investigate the composition of

the pathways themselves, or whether the edges composing pathways differ between individu-

45
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als. Developments in this area would aid in understanding how pathways might be organized

in mental disorders, and whether a consistent pattern can be found. Furthermore, studies

in structural brain connectivity and other real-world graphs suggest that shortest pathways

may not be as important in functional connectivity studies as previously assumed. In light

of this, I present a novel measurement of the consistency of pathways across functional

connectomes, and an algorithm for improvement by selecting the most frequently occurring

“normative pathways” from the k shortest paths, instead of just the shortest path. I also

look at this algorithm’s effect on various graph measurements, using randomized matrix

simulations to support the efficacy of this method and demonstrate the algorithm on the

resting-state fMRI (rs-fMRI) of a group of 34 adolescent control participants. Additionally,

a comparison of normative pathways is made with a group of 82 age-matched participants,

diagnosed with MDD, and in doing so I find the normative pathways that are most disrupted.

My results, which are carried out with estimates of connectivity derived from correlation,

partial correlation, and normalized mutual information connectomes, suggest disruption to

the default mode, affective, and ventral attention networks. Normative pathways, especially

with partial correlation, make greater use of critical anatomical pathways through the stria-

tum, cingulum, and the cerebellum. In summary, MDD is characterized by a disruption of

normative pathways of the ventral attention network, increases in alternative pathways in

the frontoparietal network in MDD, and a mixture of both in the default mode network.

Additionally, within- and between-groups findings depend on the estimate of connectivity.

3.1.1 Introduction

Resting-state fMRI and connectomics

Functional Magnetic Resonance Imaging (fMRI) acquires temporal information on blood-

oxygen level dependent (BOLD) signals from the human brain. Functional connectomics

(Friston et al., 1993) reduces the dimensionality of these datasets to graphs (composed of

nodes, representing brain areas, connected by edges) that illustrate the relationships between

areas of the brain. Graph theory estimates the qualities of brain organization with measures

such as centrality (or “hubness”) (Sporns et al., 2007; Joyce et al., 2010; Lohmann et al.,

2010; Rubinov and Sporns, 2010; Tomasi and Volkow, 2010, 2011a; Zuo et al., 2011) and

community structure (or “modularity”) (Traag and Bruggeman, 2009; Mucha et al., 2010;

Bassett et al., 2013; Sporns and Betzel, 2016). In general, the functional connectome is

characterized by high complexity (Sporns et al., 2000; Sporns, 2006), high efficiency (Buzsaki
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et al., 2004), global and local synchronizability (Masuda and Aihara, 2004), and high levels

of clustering with short path lengths (Hilgetag et al., 2000; Stephan et al., 2000; Bassett and

Bullmore, 2006), indicating a small-world architecture (Milgram, 1967; Watts and Strogatz,

1998).

Path analysis of connectomes

Studies of average shortest path length (Gong et al., 2009; Yan et al., 2011; Lynall et al., 2010;

Betzel et al., 2014) and its inverse, graph efficiency (Latora and Marchiori, 2001), have been

conducted on both binarized functional (Bassett and Bullmore, 2006; Sporns et al., 2007;

Wang et al., 2009; Lynall et al., 2010) and structural connectomes (Achard and Bullmore,

2007; Gong et al., 2009; Yan et al., 2011). Related to these measures are “rich clubs” (van den

Heuvel and Sporns, 2011; van den Heuvel et al., 2012) that measure the tendency of nodes

with high degree to be more densely connected amongst themselves than with other nodes

of the connectome, which has implications for which nodes tend to be the most utilized in

pathways. Like the functional connectome, an efficient, small-world structure has been shown

to characterize the structural connectome (Hilgetag et al., 2000; Sporns and Zwi, 2004; Gong

et al., 2009; Yan et al., 2011). Shortest-path-based node centrality measurements (such as

betweenness (Freeman, 1977), regional efficiency (Latora and Marchiori, 2001; Achard and

Bullmore, 2007), and closeness (Freeman, 1979)) are outlined and discussed in Sporns et al.

(2007), Joyce et al. (2010), Zuo et al. (2011), and Rubinov and Sporns (2010).

The majority of connectomic analyses assume the importance of the shortest pathway, even

though real-world networks often do not have knowledge of their own global structure

(Boguña et al., 2009; Abdelnour et al., 2014; Goñi et al., 2013b), and so in practice, the

shortest pathway is unlikely to utilized by prior planning (da Fontoura Costa and Travieso,

2007; Serrano et al., 2007; Estrada and Hatano, 2008). Studies of structural connectivity

have investigated the relationships between two nodes other than the shortest pathway, such

as path ensembles derived from the k shortest pathways (Avena-Koenigsberger et al., 2017),

maximum flow (Yoo et al., 2015), and robustness (Kaiser et al., 2007). Furthermore, the

structural connectome is both a predictor and a constraint for neural communication across

the functional connectome (Passingham et al., 2002; Galán, 2008; Honey et al., 2009; Her-

mundstad et al., 2013; Park and Friston, 2013; Goñi et al., 2013a; Betzel et al., 2014; Miˇ sić

et al., 2015), and thus I hypothesize that alternatives to the shortest pathway provide a

richer description of the topology of the functional connectome.
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Figure 3.1: Illustration of different graph types and the terminology used to ref-

erence them in this article. See also Methods 3.1.2

Previous work on semimetric analysis of functional connectomes

Functional connectomes are represented, in the case of Pearson correlations, as a positive

semi-definite matrix with values on [-1,1] or, in the case of alternative measurements like nor-

malized mutual information (i.e., the shared information between two timeseries)(Kvalseth,

2017), as a matrix with values on [0,1]. It is often the case that path finding is performed

after thresholding of edges to generate a binary graph with nodes defined as voxels (van den

Heuvel et al., 2009) or regional parcels of the brain (Sporns et al., 2000; Stephan et al., 2000;

Bassett and Bullmore, 2006). More recently, however, path finding on unthresholded func-

tional connectomes has been undertaken (Rocha, 2002; Cao et al., 2014; Simas and Rocha,

2014; Simas et al., 2015b; Suckling et al., 2015) by inverting them from a proximity graph

to a distance graph, which is embedded in a semimetric space (see Methods and Figure 3.1).

Previous studies have shown both sensitivity and specificity in differentiating control par-

ticipants from individuals with autism and major depressive disorder (MDD) (Simas et al.,

2015b) using the proportion of edges in semimetric distance space with a shorter indirect

path: the semimetric percentage. Additionally, Suckling et al. (2015) used a similar semi-
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metric analysis to classify patients with Alzheimer’s Disease (AD). Although successful in

distinguishing alterations in brain functional organization, these semimetric approaches ren-

dered scalar measurements for large regions of the brain without investigating the origins of

the changes, and in particular the edge composition of the constituent pathways.

Whilst there may be a difference in the proportion of shortest paths between two nodes

that are indirect, there has not yet been a characterization of the routing of the shortest

indirect paths, or their consistency of routing through particular areas of the brain. Fur-

thermore, if the shortest indirect path among individuals is inconsistent, is there a second,

third, or kth shortest pathway that consistently connects two areas? And do indirect paths

differ in patients with mental health disorders; for example, MDD, as compared to healthy

individuals?

Many psychiatric and neurological (Delbeuck et al., 2003) disorders are now being character-

ized from the perspective of altered or disrupted connectivity. Functional plasticity is central

to the development and aging of the brain (Anderson and Thomason, 2013), its response to

injury (Anderson et al., 2005), and neurodegeneration (Greenwood, 2007). Thus, an expan-

sive analysis of the constellation of shortest paths that route information through complex

brain networks is key to a deeper understanding of the information contained within the

functional connectome. Below, I identify and analyze the normative pathways, which refer

to a set of the most consistently occurring of the k shortest pathways across a group of

connectomes.

3.1.2 Methods

Measurements and optimization

In this chapter, I define normative pathways and discuss a method for their detection, il-

lustrating its performance on simulated data and in vivo images acquired in a case-control

design. I present: (1) an index to measure the consistency of pathways between two nodes

across a group of individuals—the Jaccard edge index; (2) an optimization problem that

maximizes this index, thus identifying normative pathways, by analyzing the k shortest

pathways between two nodes; (3) an optimization algorithm that heuristically estimates this

problem, providing a practical means of finding normative pathways; (4) the behavior of

the optimization algorithm and its ability to accurately identify normative pathways tested

with simulated matrices where the ground truth is known; (5) a comparison of normative
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pathways to shortest pathways, in terms of edge composition, centrality measures, and ef-

ficiency, in a group of control adolescents; and (6) a derivation of a statistical method for

the detection of differences between normative pathways in two groups of connectomes, and

apply it to a case-control comparison between adolescents with a diagnosis of MDD and

control individuals.

In common with the overwhelming body of prior work in functional connectomics, the Pear-

son correlation of time-series extracted from two nodes is the estimate of connectivity that

weights the edges between the nodes in the connectome. However, I also applied the methods

of identifying and comparing normative pathways when estimating connectivity with partial

correlation (which regresses out the time series of every other node in its comparison), and

normalized mutual information (which quantifies the shared information between two vari-

ables). I refer to different connectivity measurements as modalities, and in each experiment

I compare across modalities.

Terminology

A graph, G is defined as a set of nodes, or vertices V , connected by edges E (G = V,E),

that may be directed or undirected, depending on whether edges have associated direction-

ality. Functional connectomes are generally undirected graphs of which there are two types:

weighted and unweighted (or binary) which, respectively, refer to graphs with and without

numerical values associated with their edges. I use the term proximity graph when larger

edge values represent stronger connections. Thus, in a proximity graph with edge values

on [0, 1], 0 represents a weak association and 1 represents a strong association. Conversely,

I use the term distance graph when smaller edge values are associated with stronger (i.e.

closer) connections and larger edge values are associated with weaker (i.e. more distant)

connections. In distance graphs, edges may be metric or semimetric, depending on whether

or not they satisfy the triangle inequality. Thus, an edge is semimetric if it is not the shortest

path between the two nodes it directly connects. See Figure 3.1 for a visual depiction of

these different terms.

Participants and MRI data

Data used in this chapter was collected as part of the MR-IMPACT study (Hagan et al.,

2013, 2015). BOLD-sensitive MRI were acquired on a Siemens 3T Tim Trio scanner located
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at the Wolfson Brain Imaging Centre, University of Cambridge, UK whilst participants were

resting with eyes closed. Details of the MRI acquisition parameters as well as explanations

for participant exclusions can be found in Chattopadhyay et al. (2017). Participants and

their families gave written and informed consent, and ethical approval was provided by the

Cambridgeshire Research Ethics Committee (Reference: 09-H0308-168).

The control data were taken from a sample of 34 healthy adolescents (7 males and 27 females,

aged 12 to 18 years, mean age = 15.7, standard deviation = 1.45) with no family history of

depression, who were recruited by advertisement from local schools. Forty (40) were initially

recruited, with a total of 6 excluded. All of the participants were rescanned six months later

as part of a longitudinal study, with four excluded.

Patients with MDD were recruited from East Anglia and North London, United Kingdom.

109 participants were reported in the MR-IMPACT study (Hagan et al., 2015), and of these

108 were used in Chattopadhyay et al. (2017), with exclusions for 26 participants on the basis

of head motion, psychosis, withdrawals, parcellations, dropouts, and missing data, leaving

82 (18 males and 64 females, aged between 13 and 18 years, mean = 15.6 years, standard

deviation = 1.12 years) for inclusion in this study.

Deriving the semimetric connectome

Due to controversies around interpretation of negative correlations between brain regions

(Fox et al., 2009; Murphy et al., 2009), when constructing a graph from estimates of con-

nectivity I first take the common step of setting the negative Pearson correlations to zero

(Cao et al., 2014), and additionally set those correlations with an associated p > 0.05 to zero

(this value is, of course, arbitrary, but it is an effort to eliminate spurious connections). To

convert the edges of this weighted proximity graph to a distance graph on which path finding

algorithms may be applied, I use a mathematical construct called a t-norm that converts

from [0, 1] to (∞, 0] using a version of the Dombi t-norm (Dombi, 1982; Simas, 2012):

f(x) =
1

x
− 1 (3.1)

As these inverted weights may violate the triangle inequality, the distance graph is embedded

in a semimetric space in which path finding algorithms may be applied. To convert back

from semimetric distance space to a proximity space, I apply the inverse of Equation 3.1:
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f−1(x) =
1

x+ 1
(3.2)

Path length measurements

Functional connectomes are most commonly represented as proximity rather than distance

graphs, and thus it is convenient to also express paths in proximity space. I therefore find

path lengths by first converting the graph from a proximity to distance space (Equation

3.1), summing the distances, and then converting back from distance to proximity space

(Equation 3.2).

Within a distance graph, the path length is the sum of the values of edges that make up a path

between two nodes. Within the Pearson correlational space that has negative correlations

set to 0 and using a Dombi t-norm to sum correlations, the path, P , from node i to node j,

consisting of correlations (i.e. edges) {P1, P2, ...Pn} is summed to weight W (P ):

W (P ) =
1∑n

i=1( 1
Pi
− 1) + 1

(3.3)

This is simply Equation 3.1 (the Dombi t-norm) embedded in a summation within Equation

3.2 (the inverse of the Dombi t-norm).

Jaccard edge index

When assessing the shortest pathways connecting nodes i and j in two functional connec-

tomes, both may have similar lengths yet be routed through different brain regions. Thus,

when comparing pathways connecting two areas across individuals, not only is the length

(W (P ), Equation 3.3) of the paths important, but also their edgewise composition. I perform

this comparison by viewing a path as a set of edges.

The Jaccard index is a value between 0 and 1 that compares the composition of two sets:

J(A,B) =
|A ∩B|
|A ∪B|

(3.4)

If J(A,B) = 1, then A and B are identical sets, and if J(A,B) = 0, then A and B have
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no elements in common. Thus, taking the Jaccard Index of the edges of two paths gives a

measure of their similarity; i.e., the number of edges the paths have in common divided by

the number of unique edges that compose the two paths. Across multiple paths, the index

is averaged between each pairing of pathways. For example, suppose η(G, i, j) returns the

shortest path from nodes i to j for graph G. Then, for N graphs, [G1, G2, ...GN ], using

Equation 3.3 (W (P )) to evaluate path lengths, this gives an array J with elements:

Jij =
2

N(N − 1)

N∑
x=1

N∑
y=x+1

|η(Gx, i, j) ∩ η(Gy, i, j)|
|η(Gx, i, j) ∪ η(Gy, i, j)|

(3.5)

See Figure 3.2 for an illustration of the Jaccard edge index on toy graphs.

The Jaccard edge index provides a measure of consistency of the shortest paths across a

group of functional connectomes. If Jij = 1, then the same pathway connects nodes i and j

in all connectomes; if Jij = 0, then the pathways connecting i and j do not have a common

edge. To find a global measurement of shortest path consistency, I took the average of the

n× n matrix J , excluding redundant paths:

Jglobal =
2

n(n− 1)

n∑
i=1

n∑
i=j+1

Jij (3.6)

I refer to Equation 3.5 as the Jaccard edge index of the path connecting nodes i and j, and

to Equation 3.6 (the average of all Jaccard Edge Indices) as the Global Jaccard edge index.

Normative pathways

For a variety of reasons, the shortest paths may not be utilized in real-world graphs. To

accommodate this perspective, I found the paths across a particular group that minimized

path length whilst maximizing edge sharing. I refer to these pathways as normative.

I define the normative pathways as the selection of pathways that maximise the Jaccard edge

index over a selection of the k shortest pathways, across a group of connectomes. Informally,

this means that, instead of identifying the optimally shortest pathways connecting two nodes

(which may differ depending on the connectome), I identify a set of slightly suboptimal

pathways that pass through similar areas. Thus, to identify the normative pathways between
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Figure 3.2: Optimal Jaccard Edge Index that is obtained when K = {1, 2, 3} (i.e.

when the first, second, and third shortest paths are considered) on a set of toy binary graphs.

The top row displays, on the colored dotted lines, the three shortest paths of each of the three

binary networks between the start and end nodes. The following three rows show which path

would be selected in each of the three networks to obtain the optimal Jaccard Edge Index

(if K = 2, the two shortest paths are considered but not the third). The function J(x, y) is

the Jaccard Edge index for the paths considered between two given networks. Note that the

first and second shortest paths for network A are equal in length and the choice is arbitrary.

two nodes across individuals, I search for the k shortest paths that maximize J . To do this,

I use Yen’s K-Shortest Path algorithm (Yen, 1971), which finds the k shortest pathways by

searching around each edge in the shortest path (found by Dijkstra’s algorithm) and ranking

the resulting paths.

Suppose that k(G, i, j) returns the kth shortest path for a given connection from nodes i to j

in graph G, searching across a maximum of K paths, for computational feasibility. Suppose,

also, that kl is the kth path selected for network l (so that, for instance, [k1, k2, k3...kN ] =

[1, 18, 2...9]). For a group of N graphs, [G1, G2...GN ], the normative pathways yield the
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maximum Jij in the following equation:

Jij = max
kl,l∈N

(
2

N(N − 1)

N∑
x=1

N∑
y=x+1

|ηkx(Gx, i, j) ∩ ηky(Gx, i, j)|
|ηkx(Gx, i, j) ∪ ηky(Gy, i, j)|

)
(3.7)

An instance of the maximum Jaccard edge index found for K = {1, 2, 3} on a set of toy

graphs can be seen in Figure 3.2.

When K = 1 in the Jaccard edge index Maximization problem, this simply returns the

shortest paths. As K increases, pathways become more consistent across individuals (i.e., the

Jaccard edge index increases), although the path lengths become longer.

Identification of normative pathways by maximization of the Jaccard edge index

The maximisation problem expressed in Equation 3.7 is nontrivial to solve, and must be

estimated via a heuristic. For each of N graphs, the k shortest paths are computed (a total

of N × k paths). With each graph contributing one path, the set of N pathways is found

that share the most common edges, thus maximizing the Jaccard edge index, Jij.

I can maximise each Jij value independently. Given N connectomes and starting from

∀l ∈ N, kl = 1, I may iterate through l ∈ N in random order, finding the value kl ∈ K that

maximizes Jij. I cease when no further increases in Jij or can be made for ∃l ∈ N : kl < K.

I refer to this algorithm as the Jaccard edge index Maximization Algorithm.

Informally, iterating through the set of functional connectomes in random order, I test which

of the k shortest paths connecting nodes i and j in a particular graph is most similar to the

current set of paths from all other connectomes (Equation 3.7). I then use the path that

maximizes the Jaccard edge index, stopping when no further increments can be made to the

Index.

I tested the algorithm on all node pairings of a test group of 34 control participants across

K = [1...20], testing its ability to raise the Jaccard edge index as K increases.
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Ground-truth simulation of randomized matrices

To test the efficacy of this algorithm in identifying normative pathways, I simulated ran-

domized matrices with seeded ground-truth pathways. I randomly generated a path and

seeded it into in a randomly-generated set of time series, by adding a random variable to

each time series (i.e., node) that the path passed through. I varied path length (by varying

the number of time series that were seeded in this way), as well as signal-to-noise ratio (by

varying the weight of the random variable in relation to the time series to which it was

added). I performed two classes of tests, one in which I either used a single, global random

variable per simulation, and the other in which I used one per edge. To match the mean,

variance, and distribution of the values in these random matrices to real data, the time se-

ries and random variables were sampled randomly from the images in the control and MDD

individual’s datasets. I then derived the connectomes with correlation, partial correlation,

and normalized mutual information estimates and tested whether the seeded path appeared

in the k shortest paths. I varied path length from 3 to 6 and signal-to-noise ratio of the sim-

ulated effects from 0 to 2 with increments of 0.025, then measured the percentage of times

in 20 tests that the seeded pathway was present in the 20 shortest pathways connecting

the respective nodes, for a total of 19,200 simulations. Following this, I tested whether the

Jaccard edge index Maximization Algorithm converged on the simulated pathway between

the two seeded nodes.

Comparing edge usage of normative pathways to that of shortest pathways

As a means of displaying which edges are more utilized between the shortest pathways and the

normative pathways, I ran the Jaccard edge index Maximisation Algorithm on the test group

of 34 control adolescents (K = 20), finding all normative pathways for each node pairing

across all participants. I separately find the shortest pathways (K = 1). I then count, for each

edge in each participant’s connectome the number of times that a normative and a shortest

pathway utilizes it, giving a groupwise aggregate. The counts of normative and shortest

usage are each normalized to a z-score and subtracted from one another, giving each edge

in the connectome a score that approximates its increased utilization by either normative or

shortest pathways. Informally, this shows which areas and connections normative pathways

tend to utilize more than shortest pathways.
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Closeness centrality and efficiency of normative pathways

To summarise normative pathways in a connectome, I analyzed modified versions of two

common graph measurements: closeness centrality (Bavelas, 1950; Freeman, 1979) and aver-

age efficiency (Latora and Marchiori, 2001). In this context, the closeness centrality of node

i is the average path length (W (P ), Equation 3.3) of the normative paths extending from

node i to all other nodes in that graph. Average efficiency is the average of all closeness

centralities for a particular graph.

Both measures were modified to consider the normative (K = [2...20]) pathways, rather

than only the shortest (K = 1) pathways. Given a set of paths from i to all other n nodes,

{Pi,1, Pi,2..., Pi,i−1, Pi,i+1...Pi,n}, I define closeness centrality for node i as

Ci =
1

n− 1

∑
j∈n,j 6=i

W (Pi,j) (3.8)

The variance of these centralities with increasing paths (K = 1, 2, ...20) was also recorded,

as well as the derivative of this value with respect to the number of paths used, since I am

interested in the stability of these measurements as the set of shortest paths increases in

number.

Additionally, the average efficiency of the graphs as K increased was calculated to observe

the Jaccard edge index Maximization Algorithm’s effect on global path length measurements.

E =
1

n

n∑
i=1

Ci (3.9)

I calculated these values and variances for the test and retest control groups and plotted

them against K.

Cross-group normative pathway comparison

To apply these concepts to case-control studies, I look at a statistical method of comparing

the normative pathways in two separate groups of connectomes, in order to detect the areas

in which normative pathways converge in one group but not another and vice-versa. This

method focuses on finding differences in the Jaccard Edge Indices of normative pathways
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between groups that show statistically significant differences, with significance found via

comparison to a null model.

For two groups, A and B, the n × n Jaccard Edge Indices, JA and JB respectively, are

obtained for each separately:

Jdiff = JA − JB (3.10)

High values of elements in the resulting matrix, Jdiff , are node pairings with normative

pathways that converge to a greater in extent in Group A than Group B, while low values

are node pairings with normative pathways with greater convergence in Group B, but not

Group A.

To find the statistically significant values of Jdiff , I created n null model matrices, [JN1 , JN2 ..., JNn ],

each found by applying the Jaccard edge index Maximization Algorithm samples of connec-

tomes randomly assigned to each of the two groups preserving the group sizes of the observed

sample. For each possible pairing, Jdiff was calculated (Equation 3.10) to give a total of

n×(n−1) different Jdiff matrices. Subsequently, the distribution of n×(n−1) values under

the null hypothesis was derived for each connection between nodes i and j. By taking the

mean and standard deviation of these distributions, I converted the values of the observed

Jdiff matrix into a z-score for each node pairing:

Jz =
Jdiff − 〈JNi

∀i ∈ n〉√
〈JNi

2∀i ∈ n〉 − 〈JNi
∀i ∈ n〉2

(3.11)

Z-scores, in this case, were preferred over t-scores because the population of Jdiff matrices,

growing at a polynomial rate in proporion with the sample size, is quite substantial, whereas

t-scores are generally preferred for cases in which population statistics are based on smaller

samples. The z-scores were converted to p-values using the Fisher Z transformation. Cor-

rection for multiple comparisons was undertaken using false discovery rate (Benjamini and

Hochberg, 1995) and thresholding at q = 0.05, identifying the elements of Jdiff that were

statistically significant between groups.

I performed this analysis on the MDD and control groups, which gives a number of norma-

tive pathways for each group. I quantifed the number of times each edge was used across

participants for each group, then determined to which regions of the brain these edges con-
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nected and which they passed through most often, using the same normalization technique

as above. As a means of validation, I compared these results with different studies including

meta-analyses performed in MDD-control connectivity, primarily with adult participants. I

counted the number of edges composing normative pathways that were significantly differ-

ent that crossed through each area. The areas were then ranked and compared with those

areas found to be functionally different between MDD and control adult groups in the meta-

analysis of Kaiser et al. (2015). When a different parcellation, or no parcellation, was used,

I manually found the closest corresponding area of the brain in the Automated Anatomical

Labelling (AAL) parcellation (Tzourio-Mazoyer et al., 2002).

Code

Code for the computations was written in Matlab, using functions from the Matlab BGL tool-

box (https://uk.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl), the Brain Con-

nectivity Toolbox (Rubinov and Sporns, 2010), and functions in Matlab for computing the

k shortest paths (https://uk. mathworks.com/matlabcentral/fileexchange/32513-k-shortest-

path-yen-s-algorithm) and the average mutual information (https://uk.mathworks.com/matlabcentral/fileexchange/10040-

average-mutual-informat). To speed up computation times, pathways were encoded as 64-bit

integers, which limited the size of the pathways to
⌊
log(264)
log(116)

⌋
= 9 edges for a parcellation

with 116 nodes. The computations were carried out in parallel, with each graph having

its 20 shortest paths for each possible connection computed independently, followed by the

Jaccard edge index Optimization for 1 ≤ k ≤ 20. Visualization functions were all written

in Matlab, with the functions for reading in relevant NIFTI files drawing on the Vistasoft

library (https://github.com/vistalab/vistasoft).

3.1.3 Results

Performance of the Jaccard edge index maximization algorithm

Figure 3.3 shows the improvements in the Jaccard edge index as K = [1...20] increases, while

Figure 3.4 shows the decrease in overall efficiency (indicating path length) as K = [1...20]

increases. The matrices for K = [0, 10, 20] are shown in Figure 3.5. Each modality saw a

sharp increase in internal consistency of its pathways by the application of the Jaccard edge

index Maximization Algorithm, utilizing a greater distribution of edges in composition of
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paths (Figure 3.6), with a small loss in overall efficiency of these paths. The most consistent

pathways were seen with connectivity estimated by normalized mutual information at K =

20, with Jglobal = 0.80; in other words, the normative pathways of connectomes using the

normalized mutual information modality, on the whole shared the fewest edges, but exhibited

the most internal consistency.

Figure 3.3: Comparison of the Jaccard Edge Indices with normalized mutual in-

formation, partial correlation, and correlation modalities in the test group of

control participants. This displays the levels of consistency in pathways for each of the

modalities. As we can see, Normalized Mutual Information offers the highest path consis-

tency overall, being 0.80 at K = 20.

Figure 3.4: Comparison of the average path lengths (i.e. efficiency) for different

modalities over all subjects in the control group as K increases. The left side shows

the average efficiency of connectomes in the control group as more pathways are optimized

for consistency; upper dotted lines represent the efficiency at K = 1, while the lower dotted

lines represent the efficiency of the mean graph, which offers a way of scaling these lines.

The right shows these three lines after scaling. See Methods 3.1.2.
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K = 1 K = 10 K = 20

Correlation

Partial Correlation

Normalized Mutual Information

Figure 3.5: The matrices of the Jaccard Edge Index across three modalities, only

considering the shortest paths, the 10 shortest paths, and the 20 shortest paths.

These matrices compare the consistency (as measured by the Jaccard Edge Index) of the

pathways selected by the Jaccard Edge Index Optimization Algorithm when considering the

K = 1, K = 10, and K = 20 shortest pathways across a group of 30, between the 116× 115

possible pathways between nodes in the AAL parcellation. The averages of these matrices

over K = [1...20] can be seen in Figure 3.3
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Figure 3.6: Comparison of the overall edge utilization between the shortest path-

ways (K = 1) and the normative pathways (K = 20) for the 34 control subjects.

Ground-truth simulation with randomized matrices

I simulated randomized matrices that maintained a small-world structure and degree dis-

tribution of functional connectomes by randomly sampling time series from the control and
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Figure 3.7: Percentage of times that seeded pathways appeared in top 20 shortest

pathways in simulated matrices. In the top row (“Local”), one random variable was

used for each edge in the path; in the bottom row (“Global”), one random variable was used

for the entire path, effectively seeding a subgraph into the time series. See Methods 3.1.2.

Figure 3.8: The Jaccard Edge Indices from the simulations in Figure 3.7. These

show that, in the presence of real paths, the Jaccard Edge Index converges, even if it does

not necessarily converge on the exact path that was seeded.

MDD datasets. The results are shown in Figure 3.7. I then applied the Jaccard edge index

maximization algorithm to each set of 20 matrices having the same seeded path, signal-to-

noise ratio, and edge independence. The means of each of the recovery percentages (the

percent of tests in which the seeded path appeared in the 20 shortest paths) and the Jaccard

edge index, across all tests, path lengths, and signal-to-noise ratios, are shown in Tables 3.1

and 3.2, respectively.
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Local Global

Path length 2 3 4 5 6 2 3 4 5 6

Corr 0.5025 0.2006 0.0549 0.0136 0.0006 0.6790 0.5469 0.4494 0.0049 0.0000

Part 0.8562 0.8210 0.7562 0.6753 0.5994 0.7216 0.3568 0.0568 0.0000 0.0000

NMI 0.6784 0.1765 0.0031 0.0000 0.0000 0.7438 0.5531 0.4130 0.0006 0.0000

Table 3.1: Mean pathway recovery percentages across all tests and signal-to-noise ratios for

randomized simulations. See Figure 3.7.

When independent variables were seeded for each edge, partial correlation saw the highest

success in recovering the seeded pathway, uncovering paths an average of 59.94% of the time

on paths of length 6, while the highest average recovery rate for correlation and normalized

mutual information for paths of length four and above was 5.49% (see Table 3.3). When a

single, global variable was seeded for each path, however, partial correlation did a poorer

job of recovering these pathways (as one may expect, since the single random variable,

appearing in multiple time series, is regressed out), having a 5.6% average recovery rate for

paths of length 4 and 0% for lengths 5 and 6. Correlation and normalized mutual information

modalities had a 44.94% and 41.30% average recovery rate, respectively, for paths of length

4.

In general, the Jaccard edge index converged in the presence of a normative path with a

high signal-to-noise ratio, regardless of path length. This indifference to path length is likely

due to the convergence of the algorithm on another path that utilized individual edges of

the seeded path. See Table 3.2 and Figure 3.8.

Due to the recovery percentages, this result indicates that the Jaccard edge index Maximiza-

tion Algorithm is capable of finding seeded pathways in data, although this is dependent on

both the modality and the exact method of seeding the pathways (i.e., whether I use one ran-

dom variable per edge or different ones). Although this is an imperfect analogy for real-world

fMRI data, it does offer an idea of the baseline efficacy of the algorithm.

Comparing edge usage of normative pathways to that of shortest pathways

Figure 3.9 shows which edges and nodes were utilized more, in aggregate, by normative

pathways (K = 20) than shortest pathways (K = 1), between modalities. As expected,

normative pathways utilized a wider range of edges, including weaker ones. Average path

lengths of the normative pathways for Pearson’s correlation, partial correlation, and normal-
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Local Global

No. Edges 2 3 4 5 6 2 3 4 5 6

Corr 0.3296 0.1157 0.0581 0.0596 0.0662 0.6970 0.7025 0.7048 0.6859 0.6813

Part 0.7589 0.7440 0.6999 0.6340 0.5682 0.6670 0.4925 0.3838 0.2764 0.2212

NMI 0.7978 0.8337 0.8187 0.8342 0.8300 0.8806 0.8800 0.8835 0.8761 0.8777

Table 3.2: Mean Jaccard Edge Indices across all signal-to-noise ratios for randomised simu-

lations. See Figure 3.8.

ized mutual information modalities were 3.48, 3.93, and 2.12, respectively, compared to 3.39,

2.37, and 3.35 for the shortest pathways.

Normative pathways were more frequently routed through nodes along the upper cerebellum

and the border between the brain hemispheres. With emerging evidence that white matter

affects the BOLD signal in fMRI (Grajauskas et al., 2019), these are areas in which one may

expect anatomical pathways to bottleneck. This is most apparent with connectomes con-

structed with partial correlations which showed particular increased traversing of pathways

through the striatum, which receives projections from the entire cerebral cortex. Connec-

tomes constructed with normalized mutual information showed large increases in the left

and right middle cinguli; anatomically, the cingulum is a highly connected area (Hagmann

et al., 2008) that acts as a global connector for other functional networks (Guimera et al.,

2007; Leech and Sharp, 2014). Finally, connectomes constructed with Pearson’s correlation

showed large increases in parts of the upper cerebellum and vermis, and along areas directly

bridging the two hemispheres; the most apparent exception, however, is between the two

superior temporal lobes.

These differences suggest that normative pathways vary depending on the modality. Con-

sidering the differing values of individual edges in each connectome and the edge utilization

in the K = 1 shortest pathways and the K = 20 normative pathways (Figure 3.3), this is

more than likely due to inherent differences in the modalities.

Closeness centrality and efficiency of normative pathways

I measured the closeness centrality and the efficiency of normative pathways in the test group

of 34 control participants for K = [1...20]. As noted above, the efficiency of normative path-

ways for all three modalities decreases as K increases, indicating that closeness centralities,

on average, decrease. This is trivially true. However, I also measured the variance of the
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Figure 3.9: A display of which edges are more utilized between the shortest path-

ways and the normative pathways in the control participants. This visualization

shows the difference in edge usage between K = 1 in the Jaccard Edge Index Maximization

Algorithm (i.e., when only the shortest paths are considered) and when K = 20 (i.e., when

the most consistently occurring, normative pathways are used). I counted the number of

each times an edge appeared in a pathway when K = 1 and K = 20 across the 34 control

participants, normalized these values to have the same mean and variance, and subtracted

these normalized counts in K = 1 from those in K = 20, giving each edge a difference in

z-score; the results are visualized in the second column, while the first column shows the

hubs in the parcellation whose outgoing edges showed the greatest increments in utilization

between K = 1 and K = 20; the flatmaps in the third column show this across the whole

brain. The fourth column shows the raw values of each edge for K = 1 and K = 20.

closeness centralities across all brain areas in all participants as K increased, finding that

these variances, on average, increase as K increased. The average variance of these centrali-

ties (displayed as the red lines in Figure 3.10) monotonically increased except in the case of

correlation, which reached its minimum at K = 4 and monotonically increased thereafter.
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While it may be thought that normative pathways provide more stability in their global

measurements than shortest pathways, this appears to not be the case in the test group.

However, in the retest group of 30 control participants (scanned six months later), the vari-

ance of all three modalities tested decreased monotonically as more paths were considered

(Figure 3.11), possibly reflecting an increased stabilization effect seen on fMRI retests. Thus,

correlation displays a consistent decrease in its closeness centrality variance with this algo-

rithm for up to K = 4, though this is not replicated for partial correlation and normalized

mutual information.

While I can conclude that the algorithm is effective in recovering normative pathways on

real-world data, with substantial differences between modalities, the question of whether

this algorithm has an effect on the consistency of measurements of these pathways within a

group is inconclusive.

Cross-group comparisons

Using the cross-group normative pathway comparison, I performed a groupwise comparison

between the control and MDD groups, finding the normative pathways that were more

frequently present in one group relative to the other, across all three modalities. Figure 3.12

displays the edges most used by normative pathways that were significantly different between

the test group and the MDD group. In the section below, I generalize those differences.

In all three modalities, I identified, in both groups, unique normative pathways in the frontal

lobe; the MDD group had unique normative pathways in the cerebellum. Normative path-

ways derived from correlation and partial correlation were found more utilized in the control

group in the occipital lobe. The MDD group was found to utilize a number of normative

pathways more in the temporal lobe. With the exception of normalized mutual information

in the control group, these normative pathways were typically local in nature, occurring

within brain regions and within particular lobes.

Table 3.3 shows the brain areas connected to the most edges in each group and their asso-

ciated network found to be disrupted in depression in a meta-analysis of studies with adult

participants Kaiser et al. (2015). In the case of partial correlation, the clearest disrupted

network intersected the occipital lobe, which has been linked to anxiety in patients with

MDD (Goddard et al., 2001; Adenauer et al., 2010; Br uhl et al., 2011; Graham et al., 2013).

The right cuneus and superior and mid occipital lobe were also those three areas found in
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Figure 3.10: Variance of closeness centrality for all 116 nodes in the control group.

(Above) The variance of the closeness centrality of each node, depending on the modality

analyzed. Each blue line indicates the closeness centrality of one particular node in the

parcellation, while the red line is the average. In general, higher variance is associated

with a higher centrality value. (Below) The derivatives of these variances over path lengths

considered after being fitted to a polynomial curve, which makes their fluctuations more

evident. Note that, in these graphs, the order of magnitude is different, and these are

meant to compare merely the fluctuations in variance per modality as the number of paths

considered increases. Also note that the red lines are not true sums of variances in the true

statistical sense, but are mainly used for display purposes to show general trends.

Kaiser et al. (2015) to have significant hypoconnectivity in MDD with the ventral attention

network. Differential normative pathways derived from partial correlation also implicated

areas previously found to be hyperconnected with the default mode network and hypocon-

nected to the affective network in MDD, supporting many of the findings in Kaiser et al.

(2015).

Normalized mutual information and correlation detected many new and disrupted normative

pathways that intersected the cerebellum. Though the cerebellum is not implicated in the

meta-analysis performed by Kaiser et al. (2015), which used a multikernel density analysis,

it was found to have significantly altered connectivity in rs-fcMRI in Guo et al. (2015), a

study which used Pearson correlations as the estimate of connectivity, and altered negative

correlations (Cao et al., 2012).
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Figure 3.11: The same closeness centrality variance results as Figure 3.10 on the

retest group. The retest group showed decreasing variances on its closeness centrality

values, whereas the original group only showed this behavior in correlation.

Discussion and future work

The overarching goal of this study was to find evidence of pathways that are utilized by

the functional connectome in order to discover common, potentially underlying routes of

information transfer in human brains. The specific objective in this study was to find and

analyze a consistent set of strong pathways in the functional connectome, to distinguish

them from the shortest pathways, and to analyze the ways in which these paths differed

between groups. This study provides evidence that these normative pathways are present in

the functional connectome and utilized in different ways in MDD and control adolescents.

Semimetricity

The extensive development and application of graph theory in a wide range of scientific

fields has encouraged its use in brain connectomics. A key concept frequently adopted is

the idea of shortest pathways connecting spatially distinct regions along which information

might preferentially flow. Although few studies have analysed the application of pathfinding

algorithms directly in functional connectomes, such algorithms are often used indirectly; for
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Figure 3.12: A visualization of the normative pathways that appear differentially

in each group. These values were obtained by subtracting the Jaccard Edge Indices in each

group from each other and comparing those values with differences found in a set of null

models, to determine which were statistically significant. Edge intensity in the visualization

is associated with that edge’s use in the selected normative path in its respective group.

Matrices show the fractions of edges in each extrema that connect different regions and

halves of the brain.

instance, deriving system-level structures such as “rich clubs” (van den Heuvel and Sporns,

2011), and in the calculations of metrics that characterize overall network topology, such as

betweenness centrality, closeness centrality (Zuo et al., 2011), and efficiency (van den Heuvel
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Frontoparietal Default Mode Affective Ventral Attention

Controls

Corr Par. Corr NMI

Anat. Area # Edges Anat. Area # Edges Anat. Area # Edges

Cerebelum 6 L 1186 Postcentral L 362 SupraMarginal R 70

Occipital Sup L 626 Precentral L 208 Occipital Sup L 68

Cerebelum Crus1 L 624 Occipital Sup R 176 Cerebelum 10 R 34

Occipital Mid L 538 Cuneus R 172 Pallidum L 34

Cerebelum Crus2 R 446 Calcarine L 142 Parietal Sup L 34

Frontal Mid R 400 Vermis 1 2 132 Calcarine R 34

Temporal Sup L 348 Frontal Sup Medial R 132 Rectus L 34

Caudate R 348 Rectus R 130 Frontal Med Orb R 34

Vermis 6 312 Vermis 9 122 Frontal Sup Medial L 34

Frontal Sup Medial L 302 Rectus L 118 Olfactory R 34

Cuneus L 294 Occipital Mid R 108 Rolandic Oper R 34

Temporal Sup R 272 Cuneus L 106 Frontal Inf Oper R 34

Cingulum Mid L 264 Olfactory R 106 Frontal Sup Medial R 8

Frontal Sup R 256 Cerebelum Crus2 L 100 Cerebelum 6 R 2

Supp Motor Area R 254 Fusiform R 94 Temporal Sup R 2

Precuneus L 244 Calcarine R 86 Precuneus L 2

Frontal Inf Oper R 234 Lingual L 76 SupraMarginal L 2

Cerebelum Crus1 R 220 Paracentral Lobule L 74 Lingual L 2

Cingulum Mid R 192 Olfactory L 74 Cingulum Post R 2

Frontal Sup Medial R 192 Frontal Sup Medial L 72 Frontal Mid R 2

Cerebelum 6 R 188 Rolandic Oper L 72 – –

MDD

Corr Par. Corr NMI

Anat. Area # Edges Anat. Area # Edges Anat. Area # Edges

Insula R 384 Temporal Mid R 672 Supp Motor Area R 792

Temporal Pole Sup R 268 Temporal Sup R 487 Precentral L 702

Fusiform L 260 Temporal Mid L 296 Postcentral L 698

ParaHippocampal R 258 Frontal Sup Medial L 272 Cingulum Mid L 634

Frontal Mid R 240 Temporal Inf R 236 Temporal Pole Sup R 588

Fusiform R 178 Frontal Sup Medial R 228 Frontal Mid R 564

ParaHippocampal L 174 Frontal Mid R 202 Cerebelum 4 5 L 560

Lingual L 172 Cingulum Mid L 188 Rolandic Oper L 544

Temporal Inf L 164 Cerebelum Crus1 R 178 Cerebelum 6 L 524

Insula L 164 Frontal Sup R 172 Precentral R 524

Frontal Inf Orb R 164 Cerebelum Crus2 R 170 Fusiform L 514

Putamen L 150 Frontal Mid L 162 Frontal Med Orb L 494

Frontal Inf Tri R 96 Cerebelum Crus2 L 155 ParaHippocampal R 484

Temporal Pole Sup L 92 Cerebelum Crus1 L 150 Frontal Sup L 480

Cerebelum 6 R 90 Calcarine L 142 Supp Motor Area L 478

Cerebelum 4 5 R 86 Frontal Sup L 142 Insula R 470

Lingual R 86 Cingulum Mid R 140 Thalamus L 468

Cingulum Mid R 86 Caudate R 136 Cerebelum 8 L 444

Rolandic Oper R 84 Temporal Sup L 132 ParaHippocampal L 432

Cerebelum 9 R 82 Fusiform L 126 Cerebelum 6 R 426

Cerebelum Crus2 R 82 Calcarine R 122 Frontal Sup Orb R 400

Table 3.3: Areas with the most unique normative pathways. Shown are the 20 areas

through which the most normative pathways unique to that group (see Figure 3.12) pass

through. Highlighted are those anatomical areas in which differences in connectivity between

adult MDD sufferers and healthy subjects were observed between the highlighted network

in the meta-analysis performed by Kaiser et al. (2015).
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et al., 2009). Though the idea of shortest pathways is embedded in the analysis of brain con-

nectomes, previous studies have neither asked where these shortest pathways travel through

in the brain, nor whether these pathways vary from one individual to another. Many studies

have applied them to binarized functional connectomes (Bassett and Bullmore, 2006; Sporns

et al., 2007; Wang et al., 2009; Lynall et al., 2010), but this approach reduces the amount

of data represented by a connectome. By mapping connectomes from a proximity space to

a distance space, I can apply pathfinding algorithms to weighted functional connectomes,

offering a richer analysis of the data.

Normative pathways

As in other real-world networks, information does not necessarily travel along the shortest

pathways (Borgatti, 2005; Hromkovic et al., 2005; da Fontoura Costa and Travieso, 2007),

and indeed the quality of the information might be enhanced by additional input, I argue

against the preeminence of shortest pathways in brain connectivity and suggest instead

that normative pathways are a key element to the distribution of information across the

connectome.

This chapter demonstrates that normative pathways are distinct from shortest pathways

in the functional connectome; that inter hemispheric normative pathways closely follow di-

rect callosal connections (Figure 3.9), which, considering previous work showing that inter-

hemispheric functional connections are closely related to the integrity of the corpus callosum

(Quigley et al., 2003; Johnston et al., 2008; Putnam et al., 2008; Uddin et al., 2008), suggests

that they may follow the underlying biological substrate; and that analysis of their presence

can yield knowledge about the differences between subnetworks in patient groups. Addition-

ally, random matrix simulations and single-group normative pathway analysis suggest that

different modalities may reveal different properties and effects in the underlying data, if they

are present. This is supported by the cross-group comparison of normative pathways, which

generally yielded different results depending on the modalities used, but revealed different

subnetworks that were consistent with previous literature.

Studies in functional connectivity that are concerned with the analysis of the connectome

itself (rather than methods of deriving the connectome from raw fMRI data, which this chap-

ter is largely unconcerned with) are often concerned with describing the general structure of

the connectome (e.g. the small-world hypothesis (Bassett and Bullmore, 2006; Sporns, 2006;

Salvador et al., 2005; Achard et al., 2006)), community partitions, or finding subnetworks



72 CHAPTER 3. BRAIN CONNECTIVITY ANALYSIS FOR MENTAL CONDITIONS

such as the default mode (He et al., 2009; Smith et al., 2009; Betzel et al., 2016; Sporns and

Betzel, 2016; Nicolini et al., 2017); or centrality, such as finding which parts of the brain

play a central (i.e., more important) role in network dynamics (Sporns et al., 2007; Joyce

et al., 2010; Zuo et al., 2011). However, initial work on functional pathways in the brain

was limited due to the use of binarized networks (Bassett and Bullmore, 2006; Sporns et al.,

2007; Wang et al., 2009; Lynall et al., 2010).

Avena-Koenigsberger et al. (2017) preceded this work in the use of Yen’s k shortest path

algorithm, arguing against the importance of shortest pathways in connectivity by analyzing

path ensembles between brain regions in individual structural connectomes, relaxing the

assumption that a shortest path must be taken. The presented method, by selecting one

common path among a group of participants, addresses stability and reproducibility problems

unique to rsfMRI (Honey et al., 2009). While this method does not exclude the hypothesis

that signal communication may occur over an ensemble of pathways, it is more concerned

with finding whether at least one viable pathway exists in the unstable topology of fMRI

connectomes.

I found that normalized mutual information had the highest Global Jaccard edge index,

correlation had the second highest, and partial correlation the lowest. This could mean that

normalized mutual information naturally produces more stable pathways in its topology, or

it means that other factors, such as average path length and degree distribution, trivially

lower the Global Jaccard edge index. The latter reason is most likely the case. In the test

group, normalized mutual information’s average normative path length was smaller than

that associated with other modalities (2.12 for normalized mutual information versus 3.48

and 3.93 for Pearson’s correlation and partial correlation, respectively). As there are fewer

possible one- or two-edged pathways that may connect two nodes, it is more likely that the

Jaccard edge index Maximization Algorithm would converge on one of these as a normative

pathway, thus raising the Global Jaccard edge index. Likewise, a lower average degree

distribution of edge lengths (as normalized mutual information displays; see the histograms

in Figure 3.9) in proximity space would inflate edge values in distance space (after application

of Equation 3.1), favouring the use of fewer edges in pathways. Within modalities, the degree

distributions of correlation and partial correlation were similar, with the normative pathways

using a wider variety of edges than their counterpart shortest pathways (see Figures 6 and

11).

In the within-group analyses of the controls, the greatest evidence of the importance of the

normative pathways is the greater use of edges along the cingulum, striatum, and the upper
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cerebellum; these being central areas of the brain, one would expect them to act as bottle-

necks that connect the cerebral hemispheres and the cerebellum (this is particularly true of

partial correlation, which is discussed below). This supports the idea that the functional

connectome is constrained by major white matter pathways, and that normative paths con-

sisting of a larger number of edges are able to be visualized as following these constraints

more closely than shortest pathways (Figure 3.9).

Modality differences

An interesting question to address is why modalities behaved in such different ways in these

analyses. It is common practice in connectivity studies to select a favoured modality with-

out considering other possibilities. This is a likely reason for some discrepancies in findings

between different studies in rs-fcMRI, that can influence subsequent meta-analyses. Con-

nectivity measures include Pearson’s correlation (Eguiluz et al., 2005; Buckner et al., 2009;

He et al., 2009; Wang et al., 2009), partial correlation (Liu et al., 2008; Nakamura et al.,

2009; Zhang et al., 2011b), and mutual information (Salvador et al., 2008; Lynall et al.,

2010; Eqlimi et al., 2013), as well as coherence (Bassett and Bullmore, 2006; Bassett et al.,

2013), wavelet-based methods (Lynall et al., 2010), and other original methods that explore

relationships in the frequency domain (Salvador et al., 2008; Goelman et al., 2017). Differ-

ent types of analyses may also produce different results; while Kaiser et al. (2015) used a

multilevel kernel density analysis, for instance, Mulders et al. (2015) looked at studies that

used both a seed-based correlation analysis and independent component analysis.

I offer an explanation that partial correlation, by regressing out the global signal, is more

focal in nature, and that correlation and normalized mutual information are more suited to

detect global normative pathways and disruptions. Through fMRI simulations, Smith et al.

(2011) found partial correlation to be among the most effective measures of connectivity, as it

correctly detected connections in simulated data at a higher rate than most other modalities

tested. My findings, likewise, support the efficacy of partial correlation in three contexts.

First, in the ground-truth simulations, partial correlation for locally-seeded edges detected

seeded pathways more effectively than any other measurement (Figure 3.11).

Second, the within-group analysis revealed a higher path usage that included the cingulum

and other callosal areas bridging the cerebral hemispheres (Figure 3.9), while the cross-group

analysis implicated many areas in the middle of the cerebellum and the corpus callosum.
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Previous studies have shown that the integrity of the corpus callosum is related to inter

hemispheric resting-state functional connectivity (Quigley et al., 2003; Putnam et al., 2008;

Johnston et al., 2008; Uddin et al., 2008). If white matter pathways bottleneck between the

left and right brain in the corpus callosum, then the increased usage and emphasis of those

areas is evidence that the normative pathways follow an underlying anatomical substrate

that intersects these areas more frequently than the shortest pathways.

The last place that supports the strength of partial correlation is in the cross-group analysis,

in which more areas previously implicated in MDD-control group differences in Kaiser et al.

(2015) were found by partial correlation than the other two other modalities (Table 3.3).

The Kaiser et al. (2015) analysis, however, considered older age groups, so my analysis may

only have found the areas implicated in the early stages of depression.

While this indicates that partial correlation is a particularly effective means of modelling

the data, I view correlation and normalized mutual information as simply alternate means

of modelling the data. While partial correlation showed a clear dominance of areas adjacent

to the corpus callosum, normalized mutual information also had a strong increase in usage

of the left and right middle cinguli, while correlation showed increased use of edges in areas

that connected either halves of the cerebellum to the rest of the brain (Figure 3.9).

When making a practical choice of which modality to use, I would generally recommend the

use of partial correlation for the above reasons. Nonetheless, Pearson’s correlation remains

the more prevalent metric of connectivity, and its use allows easier comparison a wider variety

of other studiest. Furthermore, partial correlation may be impractical on finer parcellations,

or on datasets with fewer timepoints, since the number of time points cannot exceed the

number of nodes in the parcellation. Normalized mutual information is advantageous in

avoiding the negative edge problem.

Case-control differences in depression

Many different methods have been developed to analyze functional connectivity (Li et al.,

2009). This and other studies have found many different approaches of finding groupwise

differences in brain images, and these different methods often offer different results. MDD has

been studied extensively (Zhang et al., 2011a; Bora et al., 2013; Graham et al., 2013; Li et al.,

2013; Roiser and Sahakian, 2013; Singh and Gotlib, 2014; Qiu et al., 2015). Using different

methodologies, different studies and meta-analyses have implicated case-control differences
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(both in terms of structure and function) in many different parts of the brain (Kaiser et al.,

2015; Mulders et al., 2015), and others have shown only limited areas of difference (Bora

et al., 2013). There are several possible explanations for this. The first is that MDD is a

complex disorder and each methodology uniquely captures a different aspect of the disorder.

The second is that many methods used potentially capture spurious differences in the data.

The third is that MDD is a system-wide disorder and different methods implicate specific

parts of the brain, each partially illuminating a deeper, more widespread effect. Another

explanation for the dissimilarities is the slight differences in the datasets studied; for instance,

here I studied adolescents, and so a comparison to studies on MDD in adults is not one-

on-one; or, individual datasets may simply be too small to give statistically reliable results.

This begs the question of whether normative pathway analysis is a comprehensive means of

describing a system-wide disorder, or just another analysis method that offers its view of

depression.

Considerations in the interpretation of normative pathways

There are several controversies surrounding the interpretation of pathways in functional con-

nectomes, which partially stems from controversies with functional connectivity itself. First,

there are functional connections that are not fully accounted for by the underlying structural

connectivity (Honey et al., 2009; Meier et al., 2016), and which may not be explained by

two-edged indirect pathways. Although there is evidence in time-lag-based analyses that in-

formation propogates, either directly or indirectly, across functional connections (Cole et al.,

2016; Mitra and Raichle, 2016; Ito et al., 2017), there remains concern that observed causal-

ity in the BOLD signal is due to the kinetics of neurovascular coupling (Handwerker et al.,

2004; Friston, 2009).

More fundamentally, the analysis of pathways in functional connectomes is complicated by

the presence of relatively strong edges that may be the byproduct of the shared variance of

an indirect pathway, rather than a true instance of information transfer. For instance, an

indirect pathway B → A → C may introduce shared variance between B and C by their

relationships with A that expresses as a strong edge B → C, despite the lack of any direct

information transfer between regions B and C.

There are means of calculating whether, for an indirect path, the shared variance between

two areas is stronger than the calculated indirect pathway. Consider the three-node case,

B → A→ C. For Pearson’s correlation, the following inequality holds:
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If corr(A,B) = c, corr(B,C) = a, and corr(C,A) = b, then a >= b× c−
√

1− c2
√

1− b2

And, if the following is true: 1
(1+((1− 1

b
)+(1− 1

c
)))
> a,

then the indirect pathway is stronger than its shared variance, and, when calculating norma-

tive pathways, the indirect pathway would rank higher in the list of the k shortest pathways

than the direct edge, making it more likely that the Jaccard edge index Maximization Algo-

rithm would converge on the indirect pathway.

To generalize this, of course, one must consider degree distributions (which, as I have shown,

vary substantially between Pearson’s correlation, partial correlation, and normalized mutual

information), the transitivity qualities of the considered modality (i.e., the above equation

for Pearson’s correlation), the selected t-norm used to invert and sum edges, and the number

of edges in a given path.

In general, if the indirect pathway, calculated by Equation 3.3, is consistently stronger than

the direct edge connecting two areas, it is more likely to be converged upon by the Jaccard

edge index Maximization Algorithm and identified as a normative pathway.

3.1.4 Conclusion

In this study, I proposed an alternative measurement to shortest pathways in weighted func-

tional connectomes. I demonstrated that the composition of shortest pathways in functional

connectomes is inconsistent and I propose a means of improving this by discovering the nor-

mative pathways. I showed that the resulting pathways from this algorithm closely utilise

key anatomical areas close to the corpus callosum, which have been shown to be key to

inter hemispheric functional connectivity, especially when the connectome is modelled using

partial correlation. I demonstrated, as well, that the areas in the functional connectome

where these normative pathways converge differently in participants with MDD and controls

correspond to findings in other studies of connectivity. This demonstrates the usefulness

of the method. Future studies assessing the relationship between normative pathways and

underlying white matter connectivity are of importance and may improve understanding of

the relationship between functional and structural connectomes.
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3.2 A novel structural connectivity metric

3.2.1 Introduction

Machine learning has found multiple applications to the analysis of brain images in recent

years, including pre-processing, segmentation, and diagnostics. Of great interest has been

whole-brain phenotypic classification, in which MRI data of two or more phenotypes (such

as sexes, or a diseased group and healthy controls) are trained and classified with a machine

learning algorithm. Such studies most often include four steps: (1) selection of MRI modality

and derived features that are sensitive to the problem at hand ; (2) feature extraction, to

reduce data dimensionality; (3) inputting features to train a machine learning model with

the selected architecture; and (4) classification and interpretation.

MRI feature extraction is most often performed using techniques previously developed in

image analysis, and the specific method is dependent on the selected modality and features.

For instance, based on a large body of research and predictable dimensionality reduction

(Behrens et al., 2007; Kriston, 2011), it is common to use for classification functional con-

nectivity matrices (Meszlényi et al., 2017; Kazeminejad and Sotero, 2019; Al-Zubaidi et al.,

2019) representing correlations in time-series between pre-defined regions derived from blood

oxygenation level-dependent (BOLD) sensitive fMRI. Likewise, to classify diffusion weighted

images (DWI) it is common to use structural connectivity matrices representing the number

of white matter tracts traversing the brain between specific regions (Dodonova et al., 2016;

Kawahara et al., 2017; Frau-Pascual et al., 2019).

However, while there exists several consensus methods for deriving connectivities from fMRI

(Kriston, 2011; Patel and Bullmore, 2016) and DWI (Behrens et al., 2007) (though this

is still an active area of research (Seidlitz et al., 2018; Paquola et al., 2019)), analogous

means of connectivity-based dimensionality reduction for T1-weighted structural MRI (Kong

et al., 2014, 2015) are less widely used, even though this is the most common (Preston,

2006) modality available to study. One reason for the lack of common methodology is

that reductions from three-dimensional data to network representations with meaningful

physiological interpretation are more difficult to produce than reductions of four-dimensional

data. In most existing feature extraction methods for T1-weighted MRI, extracted features

are typically independent, univariate measures from regions of interest, such as cortical

thickness and surface curvature. However, the lack of a connectivity metric leads not only to

the loss of spatial encoding seen in network representations, but fewer features overall (i.e.,
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Age Sex

Collection Subjs FCs Rest Task Min Max Mean Stdev Female Male Autism

ABCD 1049 5142 2296 2846 0.42 11.08 10.12 0.69 2474 2668 61

ABIDE 412 412 412 0 6.00 45.00 17.00 7.16 45 367 181

ABIDE II 682 717 717 0 5.22 55.00 14.39 7.39 169 548 350

BioBank 9791 9791 9791 0 40.00 70.00 55.00 7.51 5178 4613 4

NDAR 1050 7958 5531 2427 0.58 55.83 18.71 7.80 3816 4142 930

Open fMRI 1194 5268 820 4448 5.89 78.00 27.12 10.24 2346 2479 29

Total 14178 29288 19567 9721 0.42 78.00 30.72 – 14028 14817 1555

Table 3.4: Statistics for each dataset used.

for N ROIs, connectivities output O(N2) features while univariate measurements output

O(N)), reducing effectiveness for machine learning.

For this chapter, I designed a similarity metric that reduced T1-weighted MRIs to a network

representation without an a priori physiological interpretation, then applied it a dataset of

autistic individuals and neurotypical controls. I applied this method to an extremely large

dataset of participants with autism, representing a disorder for which structural character-

ization had proven difficult (Plitt et al., 2015; Katuwal et al., 2015; Heinsfeld et al., 2018;

Khosla et al., 2018).

3.2.2 Methods

In the present work, I present a simple method of deriving structural connectivity matrices

from T1-weighted MRI. My method compared the distributions of grey matter in pairs

of parcellated areas of T1-weighted MRI. While this method has no specific physiological

interpretation, it acted as an effective means of dimensionality reduction that allowed for

T1-weighted MRIs to be encoded into a machine learning model.

Dataset

I used a dataset containing 29,288 total instances each with a structural MRI and a func-

tional MRI in both task-activated and task-absent (rest) conditions. (Note that in many

instances, data were acquired from the same participant.) In total, 1555 data points were

from participants with autism. These data were drawn from six different databases: OPEN
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Figure 3.13: Illustration of the procedure used to estimate the structural connectivity ma-

trices used in the present study.

fMRI, the UK BioBank, ABIDE I, ABIDE II, NDAR (minus ABCD), and ABCD (Table

3.4). Covariates of age, sex, task were also compiled.

Single-participant structural connectivity matrices

To estimate gray matter distributions in each area in the AAL parcellation, structural MRI

were first skull stripped using tools from the Analysis of Functional Neuroimages (AFNI)

toolbox, then registered to MNI space and grey matter values estimated using FSL VBM.

I measured the similarity, s between two regions by comparing the distributions of nonzero

voxel values within the distributions of each region (u and v), using the following equation:

s = inf
π∈Γ(u,v)

∫
x,y∈R×R

|x− y|dπ(x, y) (3.12)

in which Γ(u, v) is the set of distributions on R× R whose marginals are u and v (Ramdas

et al., 2017). This is simply the Wasserstein metric; intuitively, this indicates the minimal

amount of work necessary to transport one distribution to another (in describing this metric,

the two different distributions are often described as piles of dirt – hence its alternative name,

“Earth-Mover’s distance”). This is an ideal metric as it non-parametically compares two

statistical distributions, regardless of relative region sizes. A similar metric, the Kullback-

Leibler divergence, has previously been used in brain morphology comparisons (Kong et al.,

2014, 2015), but this metric required the estimation of a probability density function rather

than operating on discrete data directly, because it is sensitive to histogram binning, whereas

the Wasserstein distance is less so (Rubner et al., 2000). While this similarity metric does do
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away with spatial encoding and thus eliminates crucial information such as curvature, it acts

as a comparison of the distributions of grey matter volumes between two areas in an easily

understood way, and at a low computational cost. An illustration of this is shown in Figure

3.13. While this is a similarity metric that implies no unique physiological relationship

between areas, I refer to it as a form of “connectivity” in line with the commonly used

vocabulary in connectomics.

Comparison of functional and structural connectivities

To determine whether functional connectivity and the novel structural connectivity metric

shared information, I correlated Pearson functional connectivity matrices from each instance

with their corresponding structural matrices, in 10,000 random samples. I then compared

these correlations with a null model estimated by correlating random pairings of functional

and structural matrices across the collection. This comparison was done by comparing the

two sets of 10,000 R values with a t-test, and indicates the amount of common information

encoded by both functional and structural connectivities.

3.2.3 Results

Comparison of functional and structural connectivities

Figure 3.14 shows the average functional and structural connectivity matrices for a balanced

group of autism and neurotypical controls. Correlations of functional and structural con-

nectivity matrices from the same participants suggest a modest negative correlation. Across

10,000 random comparisons, the average R value of correlated raw edge values was -0.118

against a null model of -0.108. Subsequent t-tests showed that the R values of the direct

comparisons and null model test fell under different distributions (p=2.216 × 10−13). This

indicates that structural and functional connectivities share only a modest amount of similar

information for the same participant.
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Figure 3.14: The average structural (left) and functional (right) connectivity matrices. The

distribution of values of the structural connectivity metric is also shown.

3.2.4 Discussion

In this chapter, I proposed a new feature extraction method for inputting structural MRIs

into a network-based machine learning model, as well as applicable analysis methods to de-

tect areas of that were particularly involved in determining the classification. Estimating

single-participant structural connectivity matrices from T1-weighted images without supple-

mentary modalities such as DWI or fMRI is uncommon, and research in this area is ongoing

(Tijms et al., 2012; Kong et al., 2014, 2015). In structural covariance, VBM data is used

to produce inter-regional relationships at a group level, but this is inapplicable at a single-

participant level, which is necessary to make structural MRIs applicable to machine learning

models. The proposed method provides a means of doing so.

In developing this method, other means of estimating single-participant connectivity ma-
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trices from T1-weighted MRI were considered, such as estimating the correlation between

different univariate measurements (cortical thickness, curvatures, and so on) of the structural

image (Seidlitz et al., 2018; Paquola et al., 2019), but this was too computationally intensive

for a large dataset. Another method was investigated that involved finding the difference

between group structural covariance matrices with and without a certain participant. While

classifications on these matrices were successful, the matrices themselves varied to such an

extent that the output CAMs were inconsistent. In the end, the proposed method was used

because of its simplicity and effectiveness in classification.



Chapter 4

Ensemble CNNs for connectivity

classification

In the this chapter, I use labels from the large functional connectivity dataset described in

Chapter 2 in a deep learning task, using a model inspired by a previously-designed deep

learning framework, BrainNetCNN. This study has three important innovations: (1) the

encoding technique of BrainNetCNN is changed from cross-shaped to vertical convolutional

filters; (2) an ensemble of models, rather than a single one, is used, to ensure statistical

robustness; and (3) multi-band wavelet correlation is used, allowing me to take advantage of

depth encoding built in to neural network libraries. Results from these studies, and further

analysis of the ensemble, are presented. Three labels are classified: autism, sex, and resting

state/task fMRI. Employing class-balancing to build a training set, I trained 3×300 modified

CNNs in an ensemble model to classify fMRI connectivity matrices with overall AUROCs of

0.6774, 0.7680, and 0.9222 for autism vs typically-developing (TD) controls, sex, and task vs

rest, respectively. Projections of AUROCs if models were added to the ensemble ad infinitum

are also provided. This study is presented primarily as an analysis of autism.

4.1 Introduction

The characterization of brain differences in autism is an ongoing challenge. Although the

consensus is that there are widespread structural and functional differences, the direction

and spatial patterns of differences are not reliably observed and overlap with inter-individual

83
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variability in the neurotypical population.

Estimates of grey matter volume with voxel-based morphometry (VBM) have been the most

commonly used methodology to assess brain structure, but have resulted in discrepancies

amongst meta-analytic findings (Cauda et al., 2011; DeRamus and Kana, 2015; Yang and

Hofmann, 2015), at least a partial explanation for which are the small sample sizes that are

a prevalent feature of the primary literature (Button et al., 2013; Nord et al., 2017).

To address variations in data acquisition and processing that make between-study com-

parisons less powerful, publicly available large-sample datasets are now pivotal to imaging

research. ABIDE has made available over 2000 images in two releases, but cross-sectional

VBM analyses have failed to observe significant differences (Haar et al., 2016; Zhang et al.,

2018). Other morphological properties of the cortex may yield greater sensitivity (Khun-

drakpam et al., 2017), and recent findings using estimates of cortical thickness from the

ENIGMA working group suggest a complex pattern of differences relative to neurotypical

controls that varies across the lifespan (van Rooij et al., 2017). Other databases, such as the

National Database for Autism Research (NDAR) act as aggregates of MRI data for different

smaller-scale studies, though centre differences complicate conventional analyses on these

data as a whole.

Autism has been consistently associated with differences in brain function (Müller et al.,

2008; Simas et al., 2015a). This is often studied in the context of EEG (Ahmadlou et al.,

2010, 2012; Bhat et al., 2014b,a), for which several studies have been conducted to achieve

automated diagnosis (Antoniades et al., 2018; Hua et al., 2019; Ansari et al., 2019; Schaper

et al., 2019; Acharya et al., 2018b,a), and fMRI. Functional connectivity has shown promise in

localizing characteristic differences for autism in resting activity to specific large-scale brain

networks (Wang et al., 2018). Whilst there is cautionary evidence using the ABIDE dataset

and others (Plitt et al., 2015), it would appear that statistically significant differences in

connectivity are generally observable, but like measurements of brain structure, are variable

in their presentation. With consistent and localized changes remaining elusive, a number

of studies have characterized autism as exhibiting under-connectivity in certain areas of the

brain (Just et al., 2004; Cherkassky et al., 2006; Kennedy and Courchesne, 2008; Assaf et al.,

2010; Jones et al., 2010; Weng et al., 2010), while others show evidence of over-connectivity

(Cerliani et al., 2015; Chien et al., 2015; Delmonte et al., 2013; Di Martino et al., 2011; Nebel

et al., 2014a,b). A recent review (Hull et al., 2017) posited that autism is likely a mix of

these traits.
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Neural networks (LeCun et al., 1999; Hinton et al., 2006; Krizhevsky et al., 2012) are es-

pecially adept at classifying complex and large data which parametric inferential statistics

may fail to fully characterize due to their inherent assumptions. Given that brain function

in autism has been consistently found to be different but in different ways, such a model

may be a sensible approach for a comprehensive representation. Previous efforts to classify

functional connectivity in autism on smaller datasets have achieved accuracy rates that have

been described as “modest to conservatively good” (Hull et al., 2017), though these methods

have had trouble replicating on different data (Jung et al., 2014; Price et al., 2014; Iidaka,

2015). More recently, the application of convolutional CNNs to ABIDE data has achieved

achieved 68% to 77.3% classification accuracies. (Subbaraju et al., 2017; Brown et al., 2018;

Heinsfeld et al., 2018; Khosla et al., 2018).

In this chapter, I leverage the functional connectomes presented in Chapter 2, automati-

cally pre-processing a total of 43,838 functional MRIs from nine different collections. To

test the application of CNNs to imaging data, I first classify autistic individuals from typi-

cally developing (TD) controls. To validate the proposed models, I then classify functional

connectivity matrices based on sex and task vs resting state. All classifications were un-

dertaken using a CNN that uniquely encodes multi-layered connectivity matrices, using an

original deep learning architecture, partially inspired by Kawahara et al. (2017). Due to the

stochastic properties of NNs and set divisions, I used a standard stratified cross-validation

strategy, performing each test across 300 independent models using different subsamples

and divisions of the total dataset. To incentivise the model to classify based on phenotypic

differences rather than centre differences, a class-balancing technique across participant age

and collection were used when building the training and test sets, and compared against the

fully-inclusive samples.

4.2 Methods

4.2.1 Datasets and preprocessing

Data were pre-processed using the fMRI Signal Processing Toolbox (SPT), and the full

description of extracting functional time series from data is described in Chapter 2. After

pre-processing, each dataset was transformed intoN 4×116×116 connectivity matrices, using

edges weighted by the Pearson correlation of the wavelet coefficients of the pre-processed
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Age Sex Disorders

Collection Subjs FCs Rest Task Min Max Mean Stddev F M Autism

1000 FC 764 764 764 0 7.88 85.00 25.76 10.18 443 321 0

ABCD 1319 9205 4043 5162 0.42 11.08 10.08 0.65 4339 4866 113

Abide 193 193 193 0 9.00 50.00 17.81 6.69 21 172 94

Abide II 720 761 761 0 5.22 55.00 14.44 7.45 174 587 375

ADNI 141 261 261 0 56.00 95.00 73.57 7.32 146 115 0

BioBank 11811 16970 9937 7033 40.00 70.00 55.23 7.51 8752 8218 8

ICBM 112 381 29 352 19.00 74.00 43.53 14.83 188 193 0

NDAR 1123 8569 5952 2617 0.25 55.83 18.65 7.82 4165 4404 994

Open fMRI 1443 6655 1169 5486 5.89 78.00 27.22 10.40 2768 3133 127

All 17614 43838 23109 20650 0.25 95.00 33.05 20.68 20996 22009 1711

Table 4.1: Average populations present for successfully-preprocessed datasets. Some datasets

were not labeled with respect to one or more covariates, so counts may not sum to the listed

total.

time-series in each of four frequency scales: 0.1-0.2 Hz, 0.05-0.1 Hz, 0.03-0.05 Hz, and 0.01-

0.03 Hz. Because different collections contained fMRIs that used different TRs and sampling

rates, wavelet correlation estimates were adjusted to equalize the frequency ranges across

different collections. Due to the volume of datasets, individualized quality control was not

possible. The proportion of datasets failing pre-processing varied by collection.

Across all collections, 70,284 potential datasets were identified of which 67,396 contained

suitable functional and structural datasets. Of these, 52,396 succeeded pre-processing to

parcellation. However, datasets with regional dropout of greater than 10% were omitted

from the analyses, and redundant datasets across collections were also discarded along with

those data with a TR outside of the desired range. In total, 43,838 connectomes from

17,614 unique participants were available for analysis with the NN. Multiple instances of

connectomes from the same individuals were used, though they were not shared between the

training, validation, and test sets. The numbers of participants, total numbers of datasets

used as well as phenotypic distributions, are shown in Table 4.1.

4.2.2 Neural network model and training

The data used for training and testing the CNN were 4 × 116 × 116 (4 wavelet scales and

116 nodes) symmetric functional connectivity (wavelet coefficient correlation) matrices, with
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Figure 4.1: The structure of the neural network. These were applied in an ensemble model, so

the outputs of 300 independently-trained neural networks were averaged in a cross-validation

scheme.

values linearly scaled from [-1,1] to [0,1] for easier use in a NN.

To classify the data, I employed a CNN with vertical convolutional filters on the first layer

followed by horizontal convolutional filters on the second layer, effectively reducing the ma-

trices to single values to allow the network to train on connectivity matrices (Figure 4.1).

This approach was partially inspired by the cross-shaped filters described in Kawahara et

al 2017 (Kawahara et al., 2017), though previous tests with that architecture resulted in a

number of failed models with no apparent increase in accuracy over the simpler architecture

proposed here.

The CNN was constructed with: 24 edge-to-node vertical convolutional filters; 24 node-to-

graph horizontal convolutional filters; 3 fully-connected layers, each with 64 nodes; and a

final softmax layer. Separating each layer were batch normalization, rectified linear unit

(ReLU), and dropout layers, with the dropout being 0.3 in the convolutional layers and 0.7

in the dense layers. The layer structures and ordering followed the advice offered in Ioffe and

Szegedy (2015). Specifications are shown in Figure 4.1. No pooling layers were used, and all

strides were of length 1. The model was trained using an Adam optimizer with batch sizes

of 64. Otherwise, Keras defaults were used. Models were trained for 200 epochs, and the

epoch with the highest validation accuracy was selected.

To obtain a reliable average, I trained 300 models independently for each classification,

which were then combined in an ensemble model. In each training instance, a subset of the

total available data was taken. A holdout test and validation set were not used (Kohavi,

1995), but instead a division of the data was performed for each model in a stratified cross-
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validation schema, subject to the rules detailed below. The ensemble scheme combined

these 300 independent models with their own training/test/validation sets by averaging the

predictions of any one datapoint across all test sets it was in. Thus, if functional connectivity

matrix A appeared in 50 of the 300 test sets, its final output prediction is the average of

the 50 independent scores. Datapoints that appeared in at least one test set are considered

as being included in the ensemble, while datasets that did not appear in any test sets are

excluded from consideration in the final evaluation of model performance.

4.2.3 Set division

Data were divided into three sets: a training set, comprising two-thirds of the data and used

to train the model; a validation set, comprising one-sixth of the data and used to select

the epoch at which training stopped; and a test set, used to assess the trained classifier

performance, comprising one-sixth of the data. The approximate total number of images

used by each model was 10,000 for the sex and resting-state classification, and 4000 (limited

by sample size) for the autism classification.

For all classifications, a rudimentary balancing algorithm was used such that each class

comprised approximately half of the datasets. To account for covariates, classes were ad-

ditionally balanced such that the distributions of different collections and ages were equal

between classes. For collection balancing, equal numbers of datasets were used from each

collections. For continuous age values, distributions of age between classes were made to fail

a Mann-Whitney U-test, with p > 0.05. Standard stratified cross-validation, rather than a

holdout division, was used across the 300 runs.

Because of the collection balancing procedure, many data were excluded from certain clas-

sification tasks; for instance, as BioBank only included eight subjects with autism. Due to

the class balancing, set divisions were not precise in each instance.

4.2.4 Test set evaluation

Inter-data classification

Following the training of the models, the accuracy and the area under the receiver operating

characteristic curve (AUROC) were calculated as measures of machine learning performance
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Figure 4.2: Histograms of all AUROCS for 300 independent models, using different, stratified

samples of the whole dataset.

on the test set. This was to determine if one group in the classification outperformed the

other in training leading to a biasing of the overall accuracy.

Projection of ensemble upper limit

The total accuracy of an ensemble model increases with the number of independent models.

Assuming an upper limit to the accuracy that can be achieved by adding more models to

the ensemble, I measured the AUROC for random samples of 1 to 300 models and fit this

relationship to a logarithmic curve (y = a
1+be−kx , k > 0), in which a is the upper limit,

predicting the accuracy in the limit of a large number of independent models.

4.2.5 Experiments

I performed the classification on class- and age-balanced datasets that then classified based

on sex, task vs rest, and autism vs TD controls in separate analyses.
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Autism Sex Rest v Task

Ensemble AUROC 0.6774 0.7680 0.9222

Ensemble Acc. 67.03% 69.71% 85.20%

Average AUROC 0.6133 0.6858 0.9231

Average Acc. 57.12% 63.34% 84.32%

Table 4.2: The ensemble and averaged AUROCS and accuracies for 300 models.

Figure 4.3: The overall classification AUROC and the AUROC of individual data collections

for autism classification, showing the overall and relative success of the model.

4.3 Results

Table 4.2 shows the accuracies for the 300 models tested. The AUROCs for the individual

models, across all data (Figure 4.2) were averaged to give 0.6858, 0.9231, and 0.6133 for

sex, task vs rest, and autism vs TD classifications, respectively, while the average accuracies

were 63.33%, 84.31%, and 57.11%. In nearly all cases, however, as shown in Table 4.2, the

ensemble AUROC and accuracies were substantially higher. The ROC of ensemble models

with respect to collections are shown in Figures 4.3, 4.4, and 4.5.

4.3.1 Autism vs TD controls

With class balancing, the ensemble performance for autism v TD controls across test sets was

AUROC=0.6774 (Figure 4.3). Autism classifications were highly dependent on the collection
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Figure 4.4: The overall classification AUROC and the AUROC of individual data collections

for sex classification, showing the overall and relative success of the model.

Figure 4.5: The overall classification AUROC and the AUROC of individual data collections

for resting-state/task classification, showing the overall and relative success of the model.
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Figure 4.6: Projection of the model limits for AUROCs vertical-filtered CNNs in autism, sex,

and resting-state/task classification tasks. The raw data is plotted, as well as the projection

of this trend using a logistics growth model (y = a
1+be−kx , k > 0), which assumes a hard

upper limit (a) to the classification accuracy that can be achieved by simply increasing the

number of models in the ensemble. The model predicts that simply adding more models to

the ensemble beyond 300 achieves limited returns. In each case, the first ten datapoints were

excluded from the model fitting.

used, although the final AUROCs were above chance for all collections. Class balancing was

particularly necessary for this scheme, as data from autistic individuals comprised less than

10% overall.

4.3.2 Sex

The ensemble classification of sex yielded 0.7680 AUROC, with comparable AUROCs across

different collections (Figure 4.4).

4.3.3 Rest vs task

Task v rest classification had an ensemble classification of AUROC=0.9222 (Figure 4.5),

by far the highest of any classification task. BioBank rest/task classification had nearly

perfect classification, while other collections that contributed substantial amounts to both

resting-state and task participants, that is, NDAR, ABCD, and Open fMRI, had comparable

performance.
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4.3.4 Ensemble model limits

While the addition of independent CNNs to the ensemble model increases accuracy, this does

have a limit. Figure 4.6 shows the plotted AUROC of autism, sex, and rest/task classification.

Assuming a hard limit to classification AUROC that can be achieved by simply adding more

models to the ensemble, I fitted the data for one to 300 models used in the ensemble to a

logistics growth model. This trend showed that, beyond the number of models I have used,

there were diminishing returns: in my sex example in Figure 7.4, using another 400 models

would lead to a projected increase in AUROC of 0.776− 0.768 = 0.008 from 300. However,

as shown above, the benefit of using 300 has led to a clear increase in AUROC from just

one.

4.4 Discussion

This work describes how large and diverse imaging data might be analyzed by deep learning

models, encouraging the aggregation of publicly available collections. Data were partitioned

based on clear and logical features of the images and, even with imperfect classification accu-

racies, deep learning models were capable of recognizing complex patterns in large datasets,

many consistent with previous work.

The neuroscientific objective of this study was to use available imaging data with deep learn-

ing to describe the pattern of functional brain changes that distinguishes autism from TD.

With the absence of any gold standard in this cross-sectional comparison, I also undertook

classifications of sex and rest v task, which have more secure, robust findings in the extant

literature to confirm the veracity of the developed methods.

In autism, model accuracy was lower compared to the highest rates reported in literature

(Brown et al., 2018; Heinsfeld et al., 2018; Khosla et al., 2018), although this result should

be viewed with several caveats. The dataset used in this analysis was larger and more

varied than any previously analyzed, consisting of many collections. Direct comparisons

of machine learning classification methods are difficult as there are no universally accepted

schema to divide collections into training and test sets (unlike standardized competitions

in other fields, such as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

(Russakovsky et al., 2015)). Furthermore, my exclusion criteria differed, and, because I opted

to use multiple scanning sessions from single subjects during training, I also used follow-up
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data in ABIDE not employed in previous studies. Class balancing may also have significantly

affected the classification accuracy. However, this was necessary to avoid spuriously large

accuracies due to the highly skewed ratios of autism-to-TD individuals. Lastly, preprocessing

methods and exclusion criteria are not typically shared across collections, and thus technical

and demographic differences in the input data cannot be discounted.

While in this study (and all previous large sample-size studies of autism classification), the

classification percentage of autism v TD datasets does not approach the standards of clinical

diagnosis, but remains pertinent. First, the intention of the models is to encourage further

research and analysis in this field. Second, functional connectivity data may simply lack

discrete, distinguishing signals indicative of autism, making perfect classification impossible,

in which case deep learning ought to be viewed as an advanced statistical model rather than

a potential diagnostic tool. Third, autism is a spectrum and not binary (unlike resting-

state/task and, in the vast majority of cases, biological sex), and these labels were applied

with varying diagnostic standards. While I am simply using the information available, I

recognise that the problem itself may be ill-formed. This is also a potential explanation

for the variance in model accuracies seen in Figure 4.2, compared to the other classification

problems addressed. Fourth, due to the influence of confounding factors, high accuracy in

machine learning for scientific applications should be viewed with skepticism (Ribeiro et al.,

2016); for instance, I used several stringent motion-regression algorithms in preprocessing,

which likely mitigated the effects of group differences in motion that has previously been

observed between autistic and non-autistic subjects (Cook et al., 2013).

Finally, my deep learning model provides several advantages and unique features. First,

it employed multichannel input. Although this has long been the standard in 2D image

classification (for instance, RGB images), it has not been utilized before in the classification

of connectomes. Theoretically, this provides an advantage since it encodes more information

about the underlying time-series. In supplementary tests, multichannel inputs generally

increased the accuracy of the model by 2–3% over single-channel Pearson correlation input,

though this was not tested extensively. Second, it used vertical filters to encode matrices.

In initial versions of this study (Leming and Suckling, 2019), I opted to copy the framework

of Kawahara et al. (2017), which used cross-shaped filters, although this was found to not

increase accuracy over vertical filters and caused the model to sometimes fail. Vertical filters

were found to be more compatible with the frameworks of modern deep learning libraries,

even though they sacrificed the theoretical advantage of encoding edge-to-edge connections.

This training scheme found substantial accuracy increases with the use of “ensemble” models
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in machine learning (Table 4.2); that is, using many independent NNs to vote on a single

datapoint. This idea is not new in machine learning (Opitz and Maclin, 1999; Polikar,

2006; Rokach, 2010), but it is notable because the ensemble showed a substantial increase

in AUROC and accuracy over the sum of the individual models, and thus in this context

it was an effective method of smoothing out unexpected behaviour in models for potential

real-world applications. Additionally, it is an effective way to evaluate the performance

of a model across the entirety of a dataset, making a good case for classifying functional

connectomes using many independent models rather than one.

I showed that more models in an ensemble leads to higher accuracy, though this has dimin-

ishing returns after 300. There are two possible explanations behind this trend, and one or

both may be the case. The first is that simply adding more models refines the predictions

more and more and makes the ensemble less subject to noise. The second is that, with the

class balancing scheme used, more models gradually include more and more non-normative

test data in their respective training sets, until all data is used at least several times in the

prediction, strengthening the overall deep learning model just by the size of its dataset.

It should be noted that the final AUROC was well below the standard for clinical diagnosis,

and the variation of model accuracies across our ensemble was very high, especially in relation

to the other two categorical classifications. Thus, the areas observed are unlikely to fully

characterise autism. This variation across our very mixed dataset is related to the difficulties

of diagnosing autism in different contexts, and a binary label applied a spectrum disorder

may make for an ill-formed machine learning problem.

4.5 Conclusion

This investigation was the first to amass an exceedingly large and diverse collection of fMRI

data and then apply big data methods. I opted to present three important classification

tasks and focus on the one that is both most interesting and least-understood. With careful

class-balancing, I show that deep learning models are capable of good-quality classifications

across mixed collections detecting differences in brain networks, and functions of localized

structures, or connectivities over large areas. While the deep learning model in its present

form should not be viewed as a diagnostic tool, it is an example of the apparatus needed to

statistically analyse large and publicly accessible volumes of data.
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Chapter 5

Activation maximization

In this chapter, as a first step in addressing the black box problem, I demonstrate the appli-

cability of activation maximization (a neural network visualization technique) for measuring

the relative clustering of different covariates in the deep learning ensemble presented in Chap-

ter 4. By analyzing maximal activations of the hidden layers, I am able to explore how the

model organizes a large and mixed-centre dataset, finding that it dedicates specific areas of

its hidden layers to processing different covariates of data (depending on the independent

variable analyzed), and other areas to mix data from different sources. I present a means of

analyzing activation maximization in a single model, then introduce a metric that general-

izes this to be applicable to multiple models in the ensemble. This shows that, in spite of

collection-, age-, and class-balancing, the models from Chapter 4 nonetheless focused on a

number of undesirable confounding factors in its classification.

5.1 Introduction

Deep learning models for MRI classification face two recurring problems: they are typically

limited by low sample size, and are abstracted by their own complexity (the “black box

problem”). The first of these problems has effectively been addressed by the very large

dataset collected, described in Chapter 2. In an initial attempt to address the black box

problem, I analyze maximal activations of the hidden layers, allowing for an analysis of how

the deep learning model organizes a large and mixed-centre dataset, finding that it dedicates

specific areas of its hidden layers to processing different covariates of data (depending on the
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independent variable analyzed), and other areas to mix data from different sources. Activa-

tion maximization (Erhan et al., 2009) of a hidden layer visualizes how a model partitions

a dataset as a whole following classification. I suggest an index to quantify the output of

activation maximisation across the ensemble of models.

5.2 Methods

Activation maximization

Activation maximization (Erhan et al., 2009) is a technique to determine the maximally

activated hidden units in response to the test set of the CNN layers following training.

Activation maximization was applied to the 116 × 24 second layer of the network (Figure

4.1) as this convolutional layer acts as a bottleneck, and is thus easier to interpret and

visualize. This layer is naturally stratified by 24 filters, each with 116 nodes (i.e., brain

regions in the AAL parcellation). To offset the influence of spurious maximizations, I opted

to record the 10 datapoints that maximally activated each hidden unit, obtaining their mode

with respect to collection, sex, and whether it was task/rest; for example, if six connectomes

that maximally activated a unit were from Collection A and four were from Collection B,

Collection A would be recorded as maximally activating that hidden unit.

For each covariate, this method yields a 116 × 24 array of values for each of the 3 × 300

models. I opted to measure the stratification of the different convolutional filters in the

models by measuring whether it was maximally activated primarily by one source of data,

or whether it was activated by a mixed population. With this in mind, I calculated for each

layer a diversity coefficient, which is 0 if the layer is only maximally activated by one class of

data and 1 if it is maximized proportional to the population maximized. Given K possible

classes, Fk, k ∈ K indicating the proportion of each class in a given filter, and Tk, k ∈ K

indicating the percentage of each class across all filters, I calculated the diversity coefficient

for each filter as:

Di =

tan−1

(
ln

1−
√∑K

k=1 F
2
k√∑K

k=1
(Fk−Tk)2

2

)
+ π

2

π
(5.1)

Briefly, the justification for this equation is that the summation
∑K

k=1
(Fk−Tk)2

2
equals 0 if the
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distribution of the filter’s population is equal to the population of the whole layer; that is,

the distribution is ideally diverse, and this pulls the logarithm towards −∞, which in turn

pulls the inverse tangent function to π
2
. Conversely, 1 −

√∑K
k=1 F

2
k tends towards 0 if the

individual layer is only composed of a single class, pulling the inverse tangent towards -π
2
.

The diversity coefficient is normalized to be between 0 and 1. Its value is indeterminate if

only a single class is present globally.

This equation is a more complex version of other diversity coefficients, such as the Herfindahl-

Hirschman or Simpson diversity indices. However, the proposed index better accounts for

overall populations in the hidden layer activations and thus makes it easier to compare across

different classification tasks and independent variables. While the Herfindahl-Hirschman or

Simpson indices both approach their maxima when the measured population is completely

homogenous, their lower extrema varies depending on the number of distinct populations

present. This is problematic in comparing across indices, because the number of populations

varies depending on the application, and assumes that the expected (i.e., most diverse)

distribution occurs when different populations are perfectly proportional. The proposed

index defines the most diverse population as that which has distributions proportional to

the overall population, at which point the index is zero.

In practice, low diversity coefficients indicate that the ensemble models stratified data by

the covariate. This allows us to measure the degree to which individual covariates (such as

collection) were taken into account by the CNNs. I found the diversity coefficient of each

of the 24 filters of the hidden, 116 × 24, convolutional layers, then sorted these values to

show which filters were primarily activated by a few covariates and which were activated

maximally by many covariates.

5.3 Results

The results in Figures 5.1, 5.2, and 5.3 display the histogram of diversity indices across

all models’ activation maximisation values. This indicates the tendency of models to use

particular filters to sequester data by different covariates, especially if it were attempting

to classify by that variable; thus, a diversity index of 0 indicates that all nodes within a

particular filter were maximally activated from one or a small number of collections (i.e.,

BioBank or Open fMRI). The covariates measured are sex, rest/task, and collection site;

autism was not included as a covariate because of the relatively small percentage of autism
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Figure 5.1: The distribution of the diversity index of maximal activations across all filters

over 300 models for autism classification, showing how much filters in general were dedicated

to particular phenotypes.

data overall.

The diversity index of the activation maximization of the second hidden layer revealed that

filters, in many cases, sorted into two distinct groups, as shown by peaks on the lower and

upper end of histograms in Figures 5.1, 5.2, and 5.3: stratified layers (i.e., with a diversity

index close to 0), which were wholly maximally activated by one type of dataset, and mixed

layers (i.e., with a diversity index close to 1), which integrated data from different sources.

While sex and task vs rest each had a proportion of their filters wholly activated by a

single collection, the majority of filters were activated by a variety of different collections,

indicating the effective synthesis of data from different sources. Autism, however, had a

large proportion of data with a diversity index close to zero; this is expected for the sex

and resting-state covariates, given that the datasets were mainly from males, but the low

diversity indices for collection indicates that autism classification models sequestered data

based on collection, and thus many datapoints were considered independently.

5.3.1 Autism vs TD controls

Autism classifications were highly dependent on the collection used, although the final AU-

ROCs were above chance for all collections. Activation maximization saw high stratification

with regards to sex and resting-state (Figure 5.1). Collection also saw a mix of filters that

were both highly stratified and highly diverse, indicating the dual use of convolutional filters.
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Figure 5.2: This is the distribution of the diversity index of maximal activations across

all filters over 300 models for sex classification, showing how much filters in general were

dedicated to particular phenotypes.

Given the phenotypic differences in the autism datasets (with ABCD consisting largely of

children and ABIDE adolescents, for instance), it is likely that the models considered parts

of them independently during classification.

5.3.2 Sex

In activation maximization (Figure 5.2), most of the filters mixed data from different sexes

and rest/task. A proportion were maximally activated by individual collections, but for the

most part, this was mixed as well. Among the three classification tasks in this study, sex

integrated the most data from different sources. As sex distributions are likely the most

homogenous variable tracked across datasets (with the exception of ABIDE I and II), the

stratification with respect to individual collections was appropriately lower than expected

when classifying other variables.

5.3.3 Rest vs task

In activation maximization (Figure 5.3), stratification was found with respect to task (the

target covariate), somewhat on collection, and very little with respect to sex. A degree

of collection stratification may be expected due to the different tasks found in different

collections; for instance, BioBank consisted almost entirely of an emotional faces recognition
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Figure 5.3: The distribution of the diversity index of maximal activations across all filters

over 300 models for resting-state/task classification, showing how much filters in general

were dedicated to particular phenotypes.

task, while Open fMRI contains a medley of different tasks.

5.4 Discussion

Previously, activation maximization has been used for intuiting the internal configuration

of NNs rather than for quantitative interpretation (Erhan et al., 2009), which has never

been tried, especially across many different independent models. Many of the filters in these

models were wholly activated by datasets from a single group, while others utilized a mixture

of datasets. I sought to quantify this effect through a diversity index leading to two general

observations: first, across models, a few filters were entirely activated by a single collection

(i.e., had a diversity index of 0), though which collection remained inconsistent, and was

not apparently proportional to the amount of data contributed by that particular dataset;

Sscond, across models, the diversity index was not normally distributed but often had two

peaks, one at the low end of the spectrum (indicating stratification of the filters) and one

at the high end (indicating a highly diverse, or close to random, distribution of the filter).

In autism, a disproportionately high number of filters were activated by a single collection,

indicating that the NN split data internally more than other classification tasks.

This chapter shed light on a more general problem with whole-brain MRI classification: even

with basic collection and age balancing, the model may still take into account confounding
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factors. In the next chapter, this problem is discussed more in-depth, and sophisticated

class-balancing techniques are proposed.
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Chapter 6

Multivariate class balancing

In Chapter 4, I balanced data by collection and age groups, though, as shown by activa-

tion maximization in Chapter 5, there was still a degree of clustering of data during the

classification process by different covariates. Eliminating these effects entirely is nontrivial;

to mitigate them, however, I introduce in this chapter a more sophisticated class balanc-

ing algorithm than that used previously, which can be utilized to regress both discrete and

continuous confounding variables. In addition to age, I use this to regress two further con-

founding factors typically found in MRI data: head motion and intracranial volume. I

demonstrate the use of this algorithm for balancing data between different divisions in the

data, ensuring that the machine learning model is not incentivized to use confounding factors

during classification. This multivariate class balancing scheme ensures equal distributions of

these factors within statistical significance.

For this and the subsequent chapter, I choose to focus on a subset of data for one classification

task: the UK BioBank, specifically for sex classification. The UK Biobank included both

resting-state and task data from a faces/shapes “emotion” task (Hariri et al., 2002; Barch

et al., 2013). Details of the acquisition parameters for BioBank data are given elsewhere

(Ritchie et al., 2018). After pre-processing, the dataset consisted of 16,970 fMRI acquisitions,

decomposed into multi-wavelet-frequency functional connectivity matrices (Patel et al., 2014;

Patel and Bullmore, 2016).
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6.1 Introduction

Class balancing (often referred to as “dataset matching”) is the matching of data from a

test group to a control group across a number of discrete or continuous covariates, finding

which datapoints between groups are “closest” to one another (in the case of continuous

covariates) or which are in the same multiple categories (in the case of discrete covariates).

Dataset matching to remove bias from observational studies has been in practice since at

least the 1940s (Greenwood, 1945; Chapin, 1947), with a theoretical basis being developed

in the 1970s (Cochran and Rubin, 1973; Rubin, 1973). Given the general applicability and

need for this practice, development of such methods has been spread across different fields

(Stuart, 2010) such as statistics (Rosenbaum, 1989), sociology (Morgan and Harding, 2006),

epidemiology (Brookhart et al., 2006), economics (Imbens, 2004), and political science (Ho

et al., 2007).

However, the focus of such methods has largely been on small sets of data (Scotina and

Gutman, 2019) to simulate randomized control trials for inferential statistics. This field of

work is relatively undeveloped in the context of big data for machine learning, for which

many computational methods of matching data with continuous covariates would either be

computationally intensive, leave out too much, or have not considered the need to find a

matching subset of a larger dataset as much as finding test/control divisions. Given the

advent of extremely large datasets (Wu et al., 2019), as well as the differences in needs

between classical statistics and machine learning methods that use such large datasets (Bzdok

et al., 2018), there has emerged a need for alternative methods of dataset matching. With

fields ranging from healthcare to economics each having data released by many scattered

research groups, matching to synthesize disparate datasets has garnered even more interest

(Leulescu and Agafitei, 2013). Recent proposals have even used advanced deep learning

models solely to perform this class balancing (Kallus, 2018).

Various class balancing and regression algorithms have covered a large number of different

use cases. This chapter proposes a method that is uniquely suited for the purposes of this

work, namely balancing a mix of continuous and discrete covariates in a very large (40,000+)

dataset that can be measured, but not trivially regressed from, the data itself.
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6.2 Methods

6.2.1 Data pre-processing

Pre-processing was completed with the fMRI Signal Processing Toolbox (Patel et al., 2014;

Patel and Bullmore, 2016). Following initial identification of the brain parenchyma, and

affine registration of the 4D sequence to the mean of the sequence, head motion correc-

tion was accomplished using SpeedyPP version 2.0. This process utilized AFNI tools and

wavelet despiking (Patel et al., 2014; Patel and Bullmore, 2016), with low- and high-bandpass

filters of 0.01Hz and 0.1Hz, respectively, in addition to motion and motion derivative regres-

sion. Three motion indicators measured with tools in FSL (FSL motion outliers and FAST;

fsl.fmrib.ox.ac.uk/fsl) were recorded that were later applied in class balancing: framewise

displacement, spike percentage values (Patel et al., 2014; Patel and Bullmore, 2016), and

DVARs (D is refers to temporal derivative of time courses and VARS to root-mean-square

of the variance over voxels (Smyser et al., 2010)). Thus, even if motion correction were

imperfect, each dataset would have the same distribution of motion values in either class.

Time-series at each voxel in the brain were wavelet despiked to remove transient signals, and

then functional and structural datasets were registered to MNI space and parcellated using

the 116-area automated anatomical labeling (AAL) template, including subcortical regions

(Tzourio-Mazoyer et al., 2002), that defined the nodes of the graph.

The average BOLD signal from each parcel was decomposed by wavelet transform in to

three frequency bands: 0.05-0.1 Hz, 0.03-0.05 Hz, and 0.01-0.03 Hz. In each frequency band,

separately for each dataset, the correlation of the wavelet coefficients between parcels esti-

mated the edge weights resulting in N(numberofdatasets)× 3(waveletfrequencybands)×
116(parcels)× 116(parcels) symmetric connectivity matrices.

Intracranial volume was estimated from structural images with FSL FAST. This provided

an out-of-the-box means of estimating brain volume by deriving tissue types from an input

image of the brain. Intracranial volume was estimated by binarizing the GM/WM outputs

of FAST, counting the voxels composing this area, and multiplying this by the dimensions

of each voxel as read in the NIFTI file header.

This pre-processing was accomplished on a server cluster over a period of several weeks. Due

to the volume of datasets, individualized quality control was not possible. From beginning

to end, 34.8% of datasets failed the parcellation/wavelet correlation stages and were rejected
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from further analysis. Nonetheless, this resulted in 16,970 usable datasets.

6.2.2 Multivariate class balancing

When viewed across the full dataset, there were clear differences in the distributions of

covariates when stratifying data by both sex and resting-state/task. Sex differences in in-

tracranial volume are well-documented (Ruigrok et al., 2014), and differences in head motion

in resting-state and task datasets were also observed. To address these confounding factors, I

implemented an algorithm to balance the datasets such that confounding factors, if success-

fully measured, were not statistically different between groups. This algorithm first required

continuous covariates (such as mean framewise displacement, intracranial volume, and age)

to be discretized such that values within a given range are placed into “bins”, with each bin

covering an equal span of values. Covariates such as collection were already discrete.

6.2.3 Formalization of multivariate class balancing problem

Put in purely mathematical terms, if S is a nonparametric, two-sample test for statistical

significance, such that S(A,B) = 1 if the null model can be rejected with statistical signif-

icance and S(A,B) = 0 if it cannot; A = a1, a2... and B = b1, b2... are datasets A and B,

a
(j)
i , 0 < j < J and b

(j)
i , 0 < j < J one of J (continuous or discrete) measurable confounding

factors of the datapoints, then the class balancing problem seeks to optimize the following:

argmax|A′|(A
′ ⊂ A,B′ ⊂ B | |A′| = |B′| ∧

∑
j∈J S(A′(j), B′(j)) = 0 ∧ ∀a ∈ A′∃!b ∈ B′ :

∑
j∈J |a(j) − b(j)| ≈ 0) (6.1)

This maximizes the number of datapoints included (which benefits the machine learning

model) while leaving confounding factors indistinguishable between classes A and B. This

has the natural implication of reducing the size of the acquired subsets A′ and B′ the more

confounding variables are regressed.

Notably, the last part of the statement (∀a ∈ A′∃!b ∈ B′ :
∑

j∈J |a(j) − b(j)| ≈ 0) is included

to indicate that distributions of confounding variables ought not to be approached inde-

pendently, and to avoid this, each element in class A′ requires an element in class B′ that

approximately matches it in terms of each measured confounding factor (if the variables are
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discrete, this matching must be exact; if they are continuous, the “approximateness” of the

matching is dependent on the statistical test).

This issue is best illustrated by a counterexample. Suppose you are training an algorithm

to distinguish between a group of cats and a group of dogs, with the confounding factors

being sex and fur color. Because neither of those have anything to do with distinguishing

the species, the algorithm should not consider them. Suppose that, in a training set, exactly

half of the cats consisted of orange-haired females, while the other half consisted of black-

haired males; and that half of the dogs consisted of orange-haired males, while the other

half consisted of black-haired females. With a dataset such as this, the distributions of sex

and fur color are both exactly the same in both groups, yet an algorithm can still achieve

perfect accuracy by only considering the confounding factors. However, such a mishap with

the training set can be avoided by assuring that there is a one-to-one matching of datapoints

between classes with respect to confounding factors.

A further discussion of this problem, as well as the practical complications in finding a global

maximum of |A′|, is presented in Chapter 9. However, a practical approach to finding A′

and B′ is described below.

6.2.4 Balancing algorithm

The algorithm curated a subset of the total dataset such that a datapoint from class A within

bins b1, b2, ...bn had a corresponding datapoint within the same multivariate bins from class

B that was also within the bins b1, b2, ...bn. In effect, and bearing in mind that males have

larger average intracranial volumes, females with smaller intracranial volumes and males

with larger intracranial volumes were used less often in the training set, while males with

smaller intracranial volumes and females with larger intracranial volumes were more likely

to be included in a particular sampling. There is a tradeoff between the size of individual

bins and the size of the dataset, since larger bins are naturally more inclusive, but allow

for more variation in the distribution of covariates. Thus, the minimum number of bins was

used such that it would not reject the null hypothesis with a nonparametric Mann-Whitney

U-test with p > 0.10. This algorithm balanced by age, mean framewise displacement (MFD),

intracranial volume (ICV), mean DVARs, and mean spike percentage.

This algorithm was applied twice to the data. The first balanced men and women. This

scheme forced a 1:1 ratio between sexes, with distributions of respective covariates main-
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Figure 6.1: Histograms displaying distributions of random training sets with respect to mean

FD and intracranial volumes, divided both by gender and resting-state/task, before and after

the class balancing scheme.

tained. Data was then balanced by resting-state and task, though no ratios were forced.

This left four divisions in the data: resting-state and task, men and women, with approxi-

mately equal distributions of confounding factors.

6.3 Results

Prior to class balancing, the datasets displayed significant motion effects between groups,

especially with regards to task- and resting-state differences, as well as significant differences

in intracranial volumes between sexes (Figure 6.1). The class balancing scheme selectively

eliminated datasets such that each class had similar distributions across each covariate, as

well as a 1:1 ratio of males to females. The same balancing procedure was also performed

for resting-state and task data, with the original ratios present in the dataset maintained.

Class balancing disincentivized the model from classifying based on confounding factors.

The balanced class distributions can be seen at the bottom of Figure 6.1.

As shown in Figure 6.1, the balanced dataset resulted in a much lower number of usable

datasets. This limits the use of this methodology to big data contexts. Nonetheless, when

applied in a cross-validation schema with ensemble models, in which a balanced dataset is

prepared independently for each model, this still results in the majority of data being used

at least once in an ensemble, as will be shown in Chapter 7. However, data that is normative

in head motion and intracranial volume is utilized more across all ensembles, while data that

has any extrema is naturally excluded.



Chapter 7

Salience in brain connectomes

In this chapter, I introduce a framework for applying deep learning visualization techniques

on brain connectome data, thus allowing for the analysis of edge saliency (i.e., which edges

contributed the most to the output of classification tasks). First, I briefly demonstrate

the use of class activation mapping (Selvaraju et al., 2017) on the results in sex, autism,

and rest/task classification from Chapter 4, showing a problem in the encoding techniques

of the vertical CNNs from Chapter 4 when edgewise resolution is desired. To solve this

issue, I introduce a stochastic encoding method that may be applied in a CNN ensemble

to improve resolution. This method was applied to the balanced dataset from Chapter 6,

analyzing resting-state and task data from the UK BioBank in sex classification, using class

activation mapping and occlusion to measure the salience of three brain networks involved

in task- and resting-states, and their interaction. This achieved a final AUROC of 0.8459.

The results showed that resting-state data classified more accurately than task data, with

the inner salience network playing the most important role of the three networks overall in

classification of resting-state data and connections to the central executive network in task

data.

7.1 Introduction

While I have shown in Chapter 4 that CNNs can be powerful tools for classifying functional

connectomes, they face a problem with interpretability. Even if CNNs can classify data

successfully, it is unknown which features of input data make a disproportionate contribution
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in the process, and the model remains a black box. Although Chapter 5 presented one method

of analyzing the internals of CNNs, it said nothing about features of the input data itself.

Knowledge of such features are especially necessary for biological applications in which the

underlying mechanisms of the systems being classified are often of the greatest interest. To

overcome this issue, a number of ways to visualize and quantify neural networks have been

pioneered in recent years. Two such methods include occlusion, in which the classification

accuracy is measured when specific input data are systematically omitted from the process

(Zeiler and Fergus, 2013); and salience maps (Simonyan et al., 2014), later adapted into

class activation maps (Selvaraju et al., 2017), in which the derivative of the neural network

with respect to an input datapoint is approximated displaying which parts of the input data

effected the most change in the neural network.

This thesis has discussed issues in encoding graphs, particularly brain connectomes, for

CNNs. In Chapter 4, I adapted a framework called BrainNetCNN (Kawahara et al., 2017)

(which, notably, did use salience maps to analyze data) to use vertical filters to encode based

on the column of a connectivity matrix, in order to classify multi-slice functional connec-

tomes. This replaced square-shaped filters that are more typical for 2D image classification.

While encoding based on the columns of a connectivity matrix is intuitively sound, given

that it accounts for the edges connected to a particular node, it does in theory have three

problems, especially when a salience algorithm is applied. First, the convolutions bias the

output class activation maps; a highly salient single edge would also increase the salience of

edges in its same row or column. Second, it is difficult to determine the veracity of saliency

algorithms from biological data where the ground truth is unknown, as for single runs the

algorithms may give spurious results (Kohavi, 1995), whereas they often indicate “visual

saliency” for 2D images (i.e., areas of the image on which human subjects focus), which are

straightforward to verify by a human observer. Because of the inconsistencies between ML

models, the most robust solutions come from averaging salience maps found over a number of

trained models (Khosla et al., 2018; Leming and Suckling, 2020a). Third, convolving whole

columns or rows with a single value (node) encodes a large amount of input data that scales

with the size of the input matrix. This dilutes the relative contributions of single edges

which may be essential in classification, and possibly leads to underfitting.
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7.1.1 Network brain function across the sexes

Taken on their own, differences found between task-based and resting-state brain activations

may be among the most robust discoveries of fMRI studies. The default mode network

(DMN) has been consistently identified as a marker of resting-state (i.e. in the absence of

a cognitively effortful task) connectomes since it was first described (Raichle et al., 2001).

Other brain networks emblematic of particular tasks have been identified as well (Smith

et al., 2009), including the dorsal and ventral attention networks (Corbetta and Shulman,

2002; Vossel et al., 2014), which are respectively concerned with voluntary focus on features

and switches in attention or unexpected stimuli; i.e., the change between resting-state and

task fMRI. As noted by Fox et al. (2005), when performing simple memory tasks, the re-

sponse commonly observed is proportionally increased activity in certain frontal and parietal

cortical regions (Cabeza and Nyberg, 2000; Corbetta and Shulman, 2002) and decreased ac-

tivity in the posterior cingulate, medial and lateral parietal, and medial prefrontal cortex

(Gusnard et al., 2001; Simpson et al., 2001; Shulman et al., 1997; McKiernan et al., 2003;

Mazoyer et al., 2001), which form the default mode network. Fox et al. (2005) identified

two widely distributed, anticorrelated networks in the brain that exist in the resting state,

but intensify during tasks. Additionally, switches between the resting-state and task of-

ten involve transitions from the DMN to the central executive (CEN) and salience networks

(Goulden et al., 2014). The CEN is the dominant network following suppression of the DMN

when a cognitively demanding task is being performed (Fox et al., 2006), while the salience

network is activated in a less task-specific manner and more in response to perceived cogni-

tive, homeostatic, or emotional salience (Seeley et al., 2007), which may be brought on by

pain, uncertainty, or emotional tasks. Effective connectivity studies with granger causality

(Sridharan et al., 2008) and dynamic causal modeling (Goulden et al., 2014) have indicated

that the DMN to CEN transition is modulated by the salience network.

Sex differences in brain networks, and more generally the functional processing of tasks, is

an area of active scientific interest. But while functional imaging studies of the brain have

often found differences between men and women, it is difficult to compare studies due to

small sample sizes, differing analysis methods, different areas selected a priori for testing,

and differences in particular tasks. Various task fMRI studies have found widely spread

sex differences in the bilateral amygdala, hypothalamus, right cerebellum, and posterior

and superior temporal sulcus in response to emotional and visuospatial processing (Hamann

et al., 2004; Takahashi et al., 2006; Mackiewicz et al., 2006); right hemisphere activation in

response to visuospatial tests (Gur et al., 2000); differing activations in the superior parietal
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lobule and the inferior frontal cortex in response to mental rotation tasks (Hugdahl et al.,

2006); and limbic regions, prefrontal regions, visual cortex, the anterior cingulate gyrus, and

the right subcallosal gyrus in response to emotional faces (Fischer et al., 2004; Fusar-Poli

et al., 2009).

Three large sample-size neuroimaging studies that documented functional sex differences in

resting-state fMRI in both developing (Tomasi and Volkow, 2011b; Gur and Gur, 2016) and

adult populations (Ritchie et al., 2018) found higher local functional connectivity in women

than in men, higher connectivity in the DMN in women, and lower connectivity in the

sensorimotor cortices, though unlike the emotional stimuli studies there were no particularly

localized differences in activation between the samples. This was possibly due to the higher

variation of resting-state fMRI due to its unconstrained nature (Buckner et al., 2013; Elton

and Gao, 2015).

When classifying between sexes, past ML studies using methods ranging from support vector

machines to CNNs, have achieved classification accuracies between 65% and 87% (Casanova

et al., 2012; Satterthwaite et al., 2015; Gur and Gur, 2016; Zhang et al., 2018), depending on

the dataset and methods used. In Chapter 4, I performed a classification by sex of functional

connectomes acquired at multiple sites using a CNN with vertical filters, with a final area

under the receiver operating characteristic curve (AUROC) of 0.7680, including an AUROC

of 0.8295 with single-site, UK BioBank data. Additionally, DTI data classification has led

to exceptionally high accuracies (93%) (Anderson et al., 2019; Xin et al., 2019), though such

modalities are not always readily available.

The effects of sex on macro resting-state and task networks are still debated (Goldstone et al.,

2016). Some studies (Liu et al., 2009; Agcaoglu et al., 2015) have found that sex modulates

the lateralization of resting-state networks, while other studies have reported only a small

(Bluhm et al., 2008; Lopez-Larson et al., 2011) or non-significant effect (Weissman-Fogel

et al., 2010; Nielsen et al., 2013a). Network-level sex differences in task fMRI indicate

that men and women process tasks differently. Adolescent females have been reported as

having higher functional connectivity in the DMN and fronto-parietal networks during a

self-referential processing task (Alarcón et al., 2018). Analysis of canonical networks in task

fMRI, although not able to draw substantial conclusions on the roles of the networks in

different tasks, found that tasks involving fluid intelligence were the most discriminative for

sex (Greene et al., 2018). These studies would suggest that men and women process tasks

differently. However, they have not been validated on larger datasets.



7.1. INTRODUCTION 115

Table 7.1: Table of the averaged and ensemble AUROCS of the models run in this paper.

Each row represents a batch of 300 independent models. The complete model, which consid-

ered all edges, is shown in the top row. The next six rows showing the results of classifying

half of the edges including and excluding those edges inside a given network (45 unique edges

total). The next six rows show the same results, only considering the edges connecting to

those networks as well (1105 edges total).

All Rest Task

Ens. Mean Ens. Mean Ens. Mean

Complete 0.8459 0.8010 0.8923 0.8504 0.7683 0.7207

Inner Edges Only

CEN
Incl. 0.8380 0.7805 0.8844 0.8343 0.7609 0.7027

Excl. 0.8386 0.7798 0.8825 0.8315 0.7641 0.7050

DMN
Incl. 0.8407 0.7804 0.8868 0.8336 0.7643 0.7018

Excl. 0.8420 0.7806 0.8873 0.8334 0.7671 0.7030

SAL
Incl. 0.8388 0.7824 0.8860 0.8352 0.7600 0.7050

Excl. 0.8392 0.7782 0.8853 0.8308 0.7631 0.7021

Connecting Edges

CEN
Incl. 0.8406 0.7833 0.8872 0.8364 0.7624 0.7059

Excl. 0.8287 0.7704 0.8738 0.8228 0.7544 0.6939

DMN
Incl. 0.8396 0.7801 0.8836 0.8337 0.7660 0.7020

Excl. 0.8278 0.7712 0.8753 0.8246 0.7490 0.6929

SAL
Incl. 0.8397 0.7811 0.8875 0.8351 0.7619 0.7024

Excl. 0.8321 0.7739 0.8853 0.8253 0.7631 0.6993

The objective of this chapter is not only to utilize CNNs to classify functional connectomes,

but explain the classification performance in terms of those edges and subnetworks that are

most salient. To do so, I introduce a stochastic deep learning model that allows for the

consideration of each edge in a network independently without overfitting, presenting robust

results by training and combining many such models in the ensemble framework introduced in

Chapter 4. Convolutions with random samples of edges allow for the consideration of each

edge independently without overfitting, and in training many such models and averaging

their outputs, this effectively addresses all of the issues with class activation maps outlined

above.

Combining this with the dataset resulting from the multivariate class balancing scheme
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introduced in Chapter 6, I characterized sex differences in connectomic representations of

resting-state and task fMRI (in UK Biobank data, a faces/shapes “emotion” task (Hariri

et al., 2002; Barch et al., 2013)) with a focus on the DMN, the salience network, and the

CEN. I evaluate performance with the average AUROC across 300 models in the ensemble

scheme. To further justify the use of stochastic encoding, I applied guided gradient class

activation mapping (Grad-CAM) to the results from Chapter 4, showing the effects of this on

vertical-filtered CNNs. I then used Grad-CAM (Selvaraju et al., 2017) and occlusion (Zeiler

and Fergus, 2013) of individual brain networks to evaluate the salience of each edge within

and connecting to brain networks for the class-balanced UK BioBank data on stochastic

CNNs, comparing their relative salience within the model.

7.2 Methods

7.2.1 Machine learning

I classified functional data from the UK BioBank by sex. Because classification of UK

BioBank rest/task data achieved near-perfect accuracy in Chapter 4, I chose not to repeat

this analysis. Here, the focus was on the relative classification accuracy of task data and

resting-state data when classifying by sex.

Model structure

The deep learning model was an ensemble of stochastic CNNs. The architecture is shown

in Figure 7.1. I first randomly permuted the columns (nodes) of the connectivity matrices,

preserving the permutation order across wavelet frequency bands. These matrices were then

input to a CNN with 256 filters of shape 1× 58× 1. This convolved 58× 3 random values of

the matrix which was then fed into three dense layers, each with 64 hidden units, with batch

normalization layers, rectified linear unit (ReLU), and 0.5 dropout between them. Finally,

the data was binary classified through a softmax layer.
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Figure 7.1: In this model, matrices are encoded by random scrambling prior to being fed into

a single convolutional layer, followed by three dense layers. In between each layer is a batch

normalization and rectified linear unit (ReLU) layer, with 50 percent dropout in between the

dense layers. Our training scheme trains 300 such models, each with its unique scrambling

order, independently on a class- and covariate-balanced subset of the whole dataset, then

combines votes for datapoints appearing in overlapping test sets into a final ensemble vote.

Training

The data were separated into training, validation, and test sets, with an approximate ratio of

4:1:1. I trained 300 CNN models on random class-balanced subsamples of the whole dataset.

Each model was trained for 100 epochs (cycles through the training set), and the epoch with

the highest validation accuracy was selected. CNN performance was reported on the test

set. These 300 models with their respective test set classifications were then unified in an

ensemble model. The output classification of a dataset appearing in n
300

models was averaged

across n models. Thus, datasets were not counted more than once when measuring the final

accuracy of the ensemble models, reported as AUROCs. In total, 14,683 datasets were used

at least once in the test sets, comprising 86.5% of the overall dataset.

7.2.2 Visualization of machine learning results

I used two different ML visualization methods to assess the role of three different, a priori

brain networks in the sex classification of resting-state and task data.
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Figure 7.2: (Top) The averaged class activation maps (CAMs) across all subjects for the

complete graph classification, with the three studied networks highlighted. Area names in

the AAL atlas are given. (Bottom) Histograms of all inner and connecting CAM values of the

three networks, both in resting-state and task subjects, compared to the overall distribution

of CAM values. Because the large number of samples, we display the effect size (measured

by Cohen’s d) of both inner and connecting edges compared to the CAM values of the rest

of the edges.

Figure 7.3: A 3d display of the three networks analyzed in this paper, in the AAL parcella-

tion. Green: default mode network; blue: salience network; red: central executive network.

Each network is comprised of ten distinct brain regions.

Brain network encoding
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To assess the role of the DMN, CEN, and salience network in classification, I selected rep-

resentative nodes from the AAL parcellation (named in Figure 7.2), referring to prior net-

work descriptions (Mulders et al., 2015). Each network comprised 10 distinct nodes. The

DMN was characterized by a combination of the medial frontal gyrus, posterior cingulum,

parahippocampus, precuneus, subgenual anterior cingulate cortex, and inferior parietal lobe,

the CEN by the bilateral middle frontal lobe, frontal interior triangularis, frontal superior

medial, and the superior and inferior parietal lobe, and the salience network by the bilateral

insula, anterior cingulum, amygdala, and the middle and superior temporal pole (Figure

7.3).

For both of the analysis methods described below, I isolated edges making up these networks

in two different ways: first, by exclusively selecting edges within the network; i.e. edges

connecting two nodes of a given network (comprising 10×(10−1)
2

= 45 unique edges); and

second, all edges within, and connecting to a network, by selecting those edges that connect

to at least one other node (comprising 10×(116−1)− 10×(10−1)
2

= 1105 unique edges). Thus,

for each analysis method, two sets of results are presented: one for the sets of edges within

a network, and the other for all edges connected to a network.

Gradient class activation maps

I applied the Grad-CAM algorithm (Erhan et al., 2009; Selvaraju et al., 2017; Kotikalapudi

and contributors, 2017) to find class activation maps (CAMs) for each dataset in each CNN

model. Grad-CAM is an extension of the general salience algorithm (Simonyan et al., 2014).

In its simplest form, salience is obtained by taking the derivative (approximated as a first-

order Taylor expansion) of a particular deep learning model with respect to a particular input

image. In studies of 2D images, CAMs are able to distinguish between different objects

within a single image belonging to different classes (Selvaraju et al., 2017); for example,

in a multiclass classifier of a picture of a cat and a dog, taking an image with respect to

class 0 would highlight the cat, while taking the same image with respect to class 1 would

highlight the dog. Grad-CAM extends this by making CAMs applicable to a variety of

CNNs, including those that use fully-connected deep layers, as used here.

I first show the need for stochastic encoding when applying Grad-CAM. To do so, I refer back

to the results for autism, sex, and rest/task classification from Chapter 4, briefly displaying

those results. In this case, CAMs were averaged for each output in the dataset with respect

to its measured classification accuracy.
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I then derived CAMs from each independent stochastic CNN with respect to both class 0

(females) and class 1 (males) across three wavelet bands and averaged these across the 300

models, producing a single 116 × 116 CAM for each fMRI dataset in the ensemble models.

The total distribution for CAM values within and connecting to each particular brain network

was then compared to every other CAM value. Due to the extremely large number of values,

distributional differences were measured by Cohen’s d (effect size), rather than statistical

significance.

Occlusion

In separate sex classification models, I occluded half of the edges for each model in the en-

semble and trained on the occluded data. This was inspired by photographic image occlusion

(Zeiler and Fergus, 2013) which deliberately excludes portions of data and measures relative

classification accuracy with the occluded data as a means of detecting salient areas. The

importance of the three brain networks to the classification was tested by comparing the av-

erage AUROC of 300 models whose occluded edges were the edges making up the particular

brain network, and 300 models for which brain networks were not occluded. I trained on

each set using the same 300 model/ensemble scheme detailed above (see Figure 7.9, top).

The relative accuracies of these independent models, both on the complete dataset and for

the resting-state and task fMRI data, were compared to understand the contributions of

different networks to sex classification in both resting-state and task fMRI. In particular,

I applied a nonparametric statistical test on the two sets of 300 AUROCs including and

excluding a particular brain network, then reported the p-value of this test, corrected for

multiple comparisons.

I trained, for each of the three networks, 300 models that included the given network and

300 excluding it, each with the two different encoding schemes (i.e. considering the edges

only within a network and all edges connected to a network), for each of the three networks

(DMN, CEN, and salience network). In total, I trained 2 × 2 × 3 × 300 = 3600 models for

these occlusion tests.
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7.3 Results

7.3.1 Machine learning

Model accuracy

I initially classified by sex-balanced datasets with both resting-state and task fMRI. I used

300 independent CNNs that took as input randomly scrambled unique values of the in-

put wavelet correlation matrices (Figure 7.1) in a stratified cross-validation (Kohavi, 1995)

scheme. The final results for the 300 models are given in Table 7.1 (top row) with an average

AUROC of 0.8010 when assessing the CNNs independently. However, when all 300 models

were aggregated into a single classification such that predictions for a particular dataset ap-

pearing across multiple independent models were averaged into a single value (Figure 7.1),

the AUROC was 0.8459.

The ensemble model also classified sex in resting-state fMRI with an ensemble AUROC of

0.8923 and task fMRI with an AUROC of 0.7683, a difference of 0.1240. Full results are

given in Table 7.1.

Projection of ensemble upper limit

The upper predicted limit of AUROC in the limit of a large number of datasets, based on a

logarithmic model, is shown in Figure 7.4, and was found to be 0.8477.

7.3.2 Visualization of machine learning results

Grad-CAM results for vertical filters (Chapter 4)

This phenomenon of dilution of CAMs with vertical filters, which justifies the use of stochas-

tic encoding, may be demonstrated visually by showing the results of averaged class activa-

tion maps on the output of the vertical-filtered CNNs from Chapter 4, which are shown in

Figure 7.5. A brief explanation of the findings in sex, autism, and rest/task classification

from Chapter 4 are as follows:
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Figure 7.4: Gender classification AUROC across 1 - 300 independent CNNs included in the

ensemble model. The raw data is plotted, as well as the projection of this trend using a

logistics growth model (y = a
1+be−kx , k > 0), which assumes a hard upper limit (a) to the

classification accuracy that can be achieved by simply increasing the number of models in

the ensemble. The model predicts that simply adding more models to the ensemble beyond

300 achieves limited returns. The upper limit is 0.8477, with 95% confidence bounds between

0.8473 and 0.8481.

Autism vs TD Controls

Class activation was strongest for autism in the limbic system, cerebellum, temporal lobe,

and frontal middle orbital lobe, but overwhelmingly emphasized in the right caudate nucleus

and paracentral lobule (Figure 7.6). Findings of the caudate nucleus are consistent with

historical findings in developmental autism (Qiu et al., 2015), with both aberrant functional

connectivity frequently associated with that area and the presence of volume differences

(Sears et al., 1999; McAlonan et al., 2002; Brambilla et al., 2003; Hollander et al., 2005;



7.3. RESULTS 123

Figure 7.5: Comparison of the encoding classification tasks from Chapter 4 between vertical

filters and stochastic encoding, as displayed in averaged class activation maps. This displays

visually the bias of vertical filters in the classification, whereas stochastic encoding allowed

for finer resolution of the salience of particular edges.

O’Dwyer et al., 2016; Rojas et al., 2006; Turner et al., 2006; Qiu et al., 2016).

Sex

On average, CAMs in sex classifications showed more differences around areas in the corpus

callosum and the frontal lobe (especially the medial left frontal lobe), as well as parietal

areas, with very few subcortical differences (Figure 7.7). Note that this includes the full

dataset and not just the UK BioBank data.

Rest vs task

The CAM (Figure 7.8) focused on the default mode network, largely in the left hemisphere,

and its connection to the right frontal medial orbital area. The highly emphasized areas

include the supplementary motor area, the left parietal lobe, the bilateral middle and inferior

occipital lobe, the left precentral gyrus, and the bilateral thalamus representing the wide

range of areas activated in task fMRI.
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Figure 7.6: The 100 strongest connections of the mean class activation maps in autism

classification for the vertical-filter model, with the maximum value taken across wavelet

correlations.
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Figure 7.7: A histogram showing the 100 strongest connections of the mean class activation

maps in sex classification for the vertical-filter model, with the maximum value taken across

wavelet correlations.
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Figure 7.8: The 100 strongest connections of the mean class activation maps in resting-

state/class classification for the vertical-filter model, with the maximum value taken across

wavelet correlations.
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While these results are still scientifically valid when analyzing whole nodes (Leming and

Suckling, 2020a), it clearly affects the resolution of individual edges, which becomes prob-

lematic for fine-grained analyses.

Grad-CAM results for stochastic encoding

In total, 14,683 unique connectomes (comprising both resting-state and task data) were

classified by sex across 300 ensemble models. For each connectome, a single, 116 × 116

gradient class activation map (with 115× 58 unique values) was derived that indicated the

general importance each particular edge played into the classification of that participant.

The distribution of edge values from CAMs, both from edges within, and edges connected

to the respective networks, are shown for task and resting-state data in Figure 7.2. These

distributions were compared to the relative distribution of all edges with aggregated values of

115× 58 CAM values inside and outside of a priori networks, across 14,683 unique subjects,

totalling just under 100 million values. Effect size were reported (as Cohen’s d; see Figure

7.2).

The differences in CAM values of edges inside and outside the CEN were non-significant,

while some effects were observed for the inner, but not connecting edges of the DMN. The

largest effect was seen in the salience network, having an effect size of d > 0.57 for task-

and resting-state data separately. In CAMs overall, there were no significant differences

between task- and resting-state edge values. This likely indicates that CAMs, while useful

for showing which networks are important to the overall task of sex classification, are not

useful for showing whether these networks were more or less important for resting-state or

task data.

Occlusion

Using the same dataset for the sex classification task, I compared the AUROCs of 300 in-

dependent models that classified a random half of the network’s edges. One set of 300

deliberately included the set of edges that constituted a network, and the other set of 300

excluded the same edges (Figure 7.9, top). By comparing the AUROCs and finding a sta-

tistically significant difference, I could assess the influence of a particular network on the

classification.
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The relative classification (measured as AUROC) from the groupings of edges that included

edges both inside and connecting to the DMN, CEN, and salience networks, as well as models

completely excluding them, are shown in Table 7.1, while Figure 7.9 shows the distribution

of AUROCs on 300 models including and excluding each network, for resting-state and task

data.

When considering only the edges within a network (consisting of 45
58∗115

= 0.67% of total

edges), modest losses in accuracy were observed (Figure 7.9), but the only one that achieved

statistical significance in a Mann-Whitney U-test after Bonferroni correction was the salience

network classification in resting-state data. However, when excluding all edges connected to

a network (consisting of 1105
58∗115

= 16.57% of total edges), a difference between resting-state

and task data was observed: exclusion of all three networks led to statistically significant

(p < 0.05) decrease in AUROC for the classification of resting-state data, while the exclusion

of the central executive and default mode, but not the salience networks, led to a statistically

significant drop in AUROC.

7.4 Discussion

7.4.1 Deep learning model

Because it is able to capture nonlinear patterns across complex datasets, deep learning is a

powerful tool for characterizing biological data. However, because of interest in identifying

patterns discovered by deep learning models, the interpretability of the model is just as

important as performance, though it is far more difficult to quantify or even define (Doshi-

Velez and Kim, 2017). The primary methodological contribution of this study is a model

that captures the contributions of individual functional connections to fMRI deep learning

classification, while the results of my data show that utilisation of this model in the context

of network neuroscience can shed light on between-sex differences in task- and resting-state

brain networks.

My model addresses an important problem unique to the issue of classifying graphs in CNNs,

which is bias inherent in its encoding. There is no universal consensus on a method of

encoding graphs for ML, though others have been proposed (Jie et al., 2013; Kawahara

et al., 2017; Nikolentzos et al., 2017; Kriege et al., 2019; Tixier et al., 2017; Leming and

Suckling, 2020a). Whether encoding them randomly is the optimal method for classification
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accuracy is up for debate, though random encoding does avoid the problem of overfitting that

is present in fully-connected neural networks, and it avoids bias in the output CAMs that

results from using filters with a consistent shape. In other words, the use of linear filters

results in whole rows or columns of a functional connectivity matrix being emphasized,

rather than particular edges. Additionally, the training scheme helped to eliminate bias

from the output CAMs. Simple averaging over a large number of models and stratified

cross-validation (Kohavi, 1995) is just as important as the model architecture itself, because

this allows for reduced bias from both confounding factors and natural variations in the

output of nondeterministic deep learning models.

Respectively, the average AUROC for sex classification across all 300 models was 0.8010;

when aggregated as an ensemble, the combined AUROC was 0.8459. This represents an

improvement over my previous sex classification in Chapter 4, which achieved an AUROC of

0.8295 on BioBank data (0.7683 across all datasets used) with a vertical-filter CNN balancing

by only age and site. Nonetheless, due to the different balancing schemes, these two studies

likely used a moderately different subset of the overall data, and so a direct comparison

between the present stochastic and the previous vertical filter models in terms of accuracy

is not strictly valid. Comparisons to other state-of-the-art ML studies are also not possible,

since there is high variation in classification accuracy depending on how data was collected

and processed (Leming and Suckling, 2020a), and few imaging studies have attempted a sex

ML task on a dataset of this size.

The training and multivariate class balancing schema, when combined, offered another

uniquely important contribution. By only inputting to smaller, independent models sub-

sets of data in which measurable confounding factors were balanced beyond any detectable

statistical significance, I was able to effectively regress out any confounding factors that I was

able to measure. However, by combining these subsets over a large number of independent

models that were then combined in an ensemble, I was able to utilize the majority of the

overall data in the end result without losing the effects of balancing. This allows us to be

sure that the ML model utilized the majority of an imbalanced dataset, without achieving

higher accuracy due to any confounding factors, particularly head motion and intracranial

volume.

Although the balancing techniques employed prevented the model from gaining higher accu-

racy due to confounding factors such as age, head size, and motion, this does not necessarily

mean that such differences had no influence. Class balancing does not prevent the model

from internally separating data based on such factors and considering them (wholly or par-
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tially) independently. To illustrate this issue, I briefly present an analogy: consider a ML

task in which pictures of different species of cat must be separated from pictures of different

species of dog; such a model would likely identify generalized differences between each (e.g.,

the ear shape), while also containing internal representations of each type of cat and dog con-

tained in the training set, relying on features unique to each individual species (e.g., stripes

on a tiger). For instance, black fur color may be considered salient, even though it doesn’t

necessarily help to separate cats from dogs, because it helps the dataset to subclassify both

black panthers and black Labrador retrievers.

Nonetheless, it is likely that class balancing within a cross-validation scheme reduced the

influence of differences in confounding factors. I emphasize the importance of each particular

step in the ML classification to achieve the output CAMs. These are: (1) random encoding,

rather than encoding based on rows or columns; (2) averaging the output of many ML

models, as individual outputs have a stochastic element; and (3) stratified cross-validation

using balanced subsets of the data across these models.

7.4.2 Neuroscientific findings of CAMs from vertical filters (from

Chapter 4)

When classifying sex, the model was influenced by diffuse areas connected to the frontal lobe

(Figure 7.7). This is consistent with previous findings in sex comparisons of functional imag-

ing, which did not find differences in brain activity in specific areas, but rather differences

in local functional connectivity over large areas of the cortex (Tomasi and Volkow, 2011b).

Task vs rest functional connectivity classifications, as expected, identified the major com-

ponents of the well-known default mode network (Raichle et al., 2001) (Figure 7.8), a set of

bilateral and symmetric regions that is suppressed during exogenous stimulation (Greicius

et al., 2003), as well as visual processing areas (the occipital lobe) and the supplementary

motor area. Together with the comparison of sex, the confirmation of the results with those

expected from the extant literature give confidence for accurate classification by the CNN

as well as the specificity of the visualization method used.

The paracentral lobule and right caudate nucleus, as well as connections to the cerebellum

and vermis, were identified as salient to the comparison of the autism vs TD (Figure 7.6).

This finding is largely substantiated by previous studies that have found both functional

connectivity and volume differences between autistic and healthy individuals in the caudate
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nucleus (Sears et al., 1999; McAlonan et al., 2002; Brambilla et al., 2003; Hollander et al.,

2005; O’Dwyer et al., 2016; Rojas et al., 2006; Turner et al., 2006), though these studies

disagree on the exact nature of those differences (Qiu et al., 2016). Much of the literature on

functional connectivity in autism, however, concerns network-wide differences (Hull et al.,

2017) rather than localized differences captured by the CAMs.

The classification of autism, on average, pointed overwhelmingly to two key areas (the right

caudate nucleus and the right paracentral lobule), which is consistent with many previous

studies of autism. A major caveat in interpreting these results, however, is (1) their use of

vertical filters, which led to bias, and (2) the use of datasets that may have been influenced

by head size and motion. However, this issue is not present in the UK BioBank analysis.

7.4.3 Neuroscientific interpretations of CAMs from sex classifica-

tion in UK BioBank

Four main neuroscientific findings stand out in my results: (1) when classifying sex, the

relative AUROC for resting-state data was consistently higher than that for task data by a

margin of around 0.12 (Table 7.1); (2) the within-network edges of the salience network were

considered important for characterizing resting-state data (as indicated by both occlusion

and CAM results), but not task data (as indicated by occlusion results); (3) edges connect-

ing to all three networks were important in characterizing resting-state fMRI, and notably,

even when only considering edges within the networks the p-values for differences between

occlusion runs were hardly above 0.05 (Figure 7.9); (4) edges connected to the CEN were

the only ones that proved important to the classification of both task- and resting-state data

together (Figure 7.9), even though there was little difference in the distribution of CAM

values between them (Figure 7.2).

The significantly lower classification accuracy of task data overall compared to resting-state

data was consistent both when using complete input data and using partial input data (Table

7.1). The most straightforward interpretation of this result is that, in task processing, female

and male brain function is more similar than it is in the resting-state. Because resting-state

brain connectivity varies more than task connectivity (Elton and Gao, 2015), this disparity

may also be due to a lower number of distinguishing features.

Explaining the apparent contradiction between my two methods regarding the status of the

CEN is complex. Judging from the occlusion results, the CEN is an important network when
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classifying resting-state data and the only network important in classifying task data, though

this is not reflected in the CAMs. Given that these two methods are established visualization

methods in ML and a methodical error is unlikely, the takeaway of this contradiction is

that these methods are not interchangeable and must be interpreted in their own right.

The contradiction could possibly be due to a relatively small number of very salient edges

connecting to the CEN, which can be seen in the right tail of the histogram in Figure 7.2,

though this is a very minor effect. This also shows that the interpretation of specifics in

these results ought to be approached cautiously, given how novel these methods are in their

application to neuroscience. Put informally, CAMs show which components of input data the

deep learning model pays attention to, while occlusion shows how important a component

is to the classification of a specific datapoint. With this in mind, the similar distribution of

CAM values over spatially invariant task- and resting-state input data (see the histograms

in Figure 7.2) is not surprising since a ML model may find a particular edge salient because

it might help it to internally subclassify the datapoint by resting-state or task. Thus, CAMs

may illustrate that a particular edge is important in the overall classification of the model,

though not whether it helps in classifying a specific datapoint.

With regards to the salience network, however, the two methods paint a more straightforward

picture, since the inner edges of the salience network were clearly the most significant,

according to CAMs (Figure 7.2). Furthermore, it was the only network with inner edges

that proved to be statistically significant to the classification of resting-state data (Figure

7.9). This effect may be due, in part, to the particularly salient connection between the left

and right amygdala (Figure 7.2) which yielded the highest CAM value by far. The difference

between men and women in amygdala response has been controversial (Andreano et al.,

2014), with studies disagreeing over whether there is greater activity in men (Schienle et al.,

2005; Goldstein et al., 2010; Sergerie et al., 2008) or women (Klein et al., 2003; McClure

et al., 2004; Hofer et al., 2006; Domes et al., 2010) in response to affective scenes. While

CAMs cannot comment on this issue, other studies have found no difference in function at all

(Wrase et al., 2003; Caseras et al., 2007; Aleman and Swart, 2008), which my results refute.

While I can conclude from these results that the salience network is engaged differently

between males and females in, at least, the resting-state, a disproportionately high value of

one of its edges may drive this classification, and thus the robustness of this results requires

independent verification.

The DMN is also engaged in sex differences. As can be seen from the middle histogram in

Figure 7.2, many of its inner edges have a higher class activation than other edges, while
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excluding it and all edges connected with it had a uniquely negative effect on classification

(Figure 7.9). What is surprising, however, is that the DMN, which is commonly cited as the

marker of resting-state functional connectivity (Raichle et al., 2001) and has previously been

implicated in big data sex difference studies (Ritchie et al., 2018) as an area of particular

interest, does not stand out from the other two networks studied. While it is not surprising

that, in the occlusion tests, the CEN had a greater effect than the DMN in task classification,

both tests show that, as stated above, the salience network appears to be more important and

have a greater effect on classification accuracy of the resting state. This may be due to the

use of a priori tests in other studies that specifically account for the DMN, the non-inclusion

of subcortical areas in other studies, or the inclusion of the critical amygdala connections in

the salience network, or other unknown reasons.

7.5 Conclusion

The results of this chapter show that the distinction of males and females in resting-state

takes into account all of the major brain networks, particularly the salience network, which

may be as a result of increased variance in resting-state networks than task-based networks,

potentially offering the model a larger set of distinguishing markers. When only considering

task or, more specifically, the emotional faces recognition task of the UK Biobank, areas

connecting to the DMN and, more so, the CEN showed significantly altered function, while

function of the the salience network was not different enough to significantly aid in single-

subject classification (Figure 7.9). Methodologically, I have also shown the applicability and

limitations of two different ML visualization methods to brain network data, as well as ML’s

applicability to big data in a scientific field.
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Figure 7.9: The effects of selective network occlusion on model accuracy. (Top) the process

by which occlusion AUROCs are estimated; either all inner edges of a given network, or all

edges connecting to a network, are selected. The network edges are then scrambled (see

Figure 7.1), and the selected edges are placed among one half of the scrambled edges, and

in the other half left out. These two sets are then trained on 2 × 300 independent neural

networks, and the resulting AUROCs are compared. (Bottom) The results. Considering

only inner edges, the only statistically significant effect, after Bonferroni-Holmes correction,

was the salience networks on resting-state data. Considering all connecting edges, all three

networks had a significant effect on the classification of sex in resting-state data, while both

the default mode network and, more strongly, the central executive network, appeared to

have an effect in classification of task data. The nonparametric Mann-Whitney U-test was

used to test for statistical significance. Final model means and ensemble results are shown

in Table 7.1.



Chapter 8

Structure/function encoding in autism

This final analysis combines the class-balancing, stochastic encoding, and visualization frame-

works from Chapters 6 and 7, with the structural connectivity metric introduced in Chapter

3, for the analysis of developmental autism. I compare this method to similar classifications

of the same participants using fMRI connectivity matrices as well as univariate estimates of

grey-matter volumes. Further building on general themes from Chapter 3, I further applied

graph-theoretical metrics on output class activation maps to identify areas that the CNN

preferentially used to make the classification, focusing particularly on hubs. The results

gave AUROCs of 0.7298 (69.71% accuracy) when classifying by only structural connectiv-

ity, 0.6964 (67.72% accuracy) when classifying by only functional connectivity, and 0.7037

(66.43% accuracy) when classifying by univariate grey matter volumes. Combining struc-

tural and functional connectivities gave an AUROC of 0.7354 (69.40% accuracy). Graph

analysis of class activation maps revealed no distinguishable network patterns for functional

inputs, but did reveal localized differences between groups in bilateral Heschl’s gyrus and

upper vermis for structural connectivity.

8.1 Introduction

Voxel-based morphometry (VBM) (Whitwell, 2009) is a means of detecting structural differ-

ences in brain anatomy from T1-weighted MRI across groups. In VBM, images are registered

to the same coordinate space and segmented into grey matter, white matter, and CSF vol-

umes, before comparisons are made across voxels or groups of voxels using standard statistical

135
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tests. Due to its robustness and effectiveness, VBM has enjoyed significant popularity since

it was first introduced (Wright et al., 1995; Ashburner and Friston, 2000). Structural covari-

ance networks (Mechelli et al., 2005) correlate tissue volumes estimated by VBM in regions

across groups of participants to describe relationships that are interpreted as measures of

structural integrity or developmental coherence of the brain.

While there have been several cross-sectional findings of structural brain differences in autism

(Redcay and Courchesne, 2005; Stanfield et al., 2008; Nickl-Jockschat et al., 2012a), these

have not been substantiated by a larger-scale analysis (Haar et al., 2016). Indeed, charac-

terizations of brain structure in autism have been inconsistent across studies of small sample

sizes, although differences at different ages may explain some of this variation (Chen et al.,

2011); for instance, increased amygdala volumes have been reported in children with autism

(Sparks et al., 2002; Schumann et al., 2004), but not adults (Stanfield et al., 2008). A

meta-analysis of VBM studies in autism found disturbance of brain structure in the lat-

eral occipital lobe, the pericentral region, the right medial temporal lobe, the basal ganglia,

and proximate to the right parietal operculum (Nickl-Jockschat et al., 2012b). Small-scale

studies in children with autism have found altered structural covariance in areas associ-

ated with sensory, language, and social development. Altered structural covariance has been

found between sensory networks, the cerebellum, and the amygdala in autism (Cardon et al.,

2017). In children, (McAlonan et al., 2005) found that structural covariance indicated lo-

calized reductions within fronto-striatal and parietal networks and decreases in ventral and

superior temporal grey matter, suggesting abnormalities in the anatomy and connectivity

of limbic–striatal (i.e., social) brain system. Language ability correlated with cortical struc-

ture and covariance (Sharda et al., 2017), and associations with language development are

further supported by studies showing abnormal development of the Heschl’s gyrus (Prigge

et al., 2013), an area where functional activation has been associated with development of

‘inner speech” (Hurlburt et al., 2016). In adults with autism, structural covariance has shown

decreased centrality in cortical volume networks (Balardin et al., 2015).

Functional connectivity in autism has previously been discussed in Sections 1.6.3 and 4.1 of

this thesis. Briefly summarizing, autism has been consistently associated with differences

in brain function (Simas et al., 2015a; Müller et al., 2008). Efforts to find differences in

functional connectivity relative to neurotypical control groups have characterized autism as

exhibiting under-connectivity, and thus greater segregation of functional areas (Just et al.,

2004; Cherkassky et al., 2006; Kennedy and Courchesne, 2008; Assaf et al., 2010; Jones

et al., 2010; Weng et al., 2010). Other studies, mostly of children and adolescents, found
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evidence of over-connectivity in specific areas of the brains of those with autism (Cerliani

et al., 2015; Chien et al., 2015; Delmonte et al., 2013; Di Martino et al., 2011; Nebel et al.,

2014a,b), locating hyperconnectivity to the posterior right temporo-parietal junction (Chien

et al., 2015) and in striatal areas and the pons (Delmonte et al., 2013; Di Martino et al.,

2011). Hull et al. (2017) posited that autism is likely characterized by a mix of hyper- and

hypo-connectivity traits.

Section 1.6.3 also covers previous efforts in machine learning at whole-brain classification in

autism, though the most relevant to the present study is Eill et al. (2019), which compared

autism classification from brain structure and brain function by performing a classification

on individuals with autism and neurotypical controls using structural MRI, DWI, and fMRI

data, finding that features derived from fMRI provided the highest accuracies with an SVM

classifier. They did, however, encounter the issue of fMRI feature extraction simply pro-

ducing more variables than its structural counterparts, offering the machine learning model

more information to work with, although attempts were made to mitigate this issue.

8.1.1 Studies of the structure-function relationship in the brain

The relationship between brain structure and function has long been of general interest and

study in neuroscience, encompassing several decades of research in itself . In the context of

MRI specifically, it is generally approached in one of three different ways: computational

modeling, correlating structural and functional measurements, and studies of brain lesions.

The first comparison of structure and function in MRI was Koch et al. (2002), which found

little evidence of correlation within the one axial slice of the brain examined. Later, fol-

lowing the emergence of interest in resting-state fMRI, Greicius et al. (2009) utilized DTI

tractography to study resting-state functional connectivity, that structural connectivity did

not always predict resting-state. Hagmann et al. (2008); Honey et al. (2009) identified a

structural core in the parietal lobe around the area of the default mode network that was

found to strongly predict the presence of functional connectivity; Horn et al. (2013) found

that voxel-by-voxel structural-functional coupling was particularly high in the default mode

network. While systems with high structural connectivity produce more reproducible pat-

terns in functional connectivity (Honey et al., 2009; Damoiseaux et al., 2012), Greicius et al.

(2009) established that functional connectivity does not necessarily imply structural connec-

tivity, and there have been a number of highly connected areas of the brain with no apparent

linking white matter tracts, which has been a driving question behind the structural-function
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relationship (Vincent et al., 2007; Skudlarski et al., 2008; Honey et al., 2009; Adachi et al.,

2012).

Comparison of the structural and functional connectomes has found many of the same topo-

logical organizations, such as rich-club, modularity, and small-world properties (Wang et al.,

2015) (though it is unknown whether these properties are unique to brain networks or present

generally in real-world graphs). Direct correlation of structural connectivity strength and

resting-state functional connectivity have reported R-values between 0.48 and 0.78 (Hag-

mann et al., 2008; Honey et al., 2009; Wang et al., 2015), with variation depending on

subjects and the selection and method of parcellation. Correlations between structural and

functional connectivity are further complicated by the natural variation in brain function.

While it is known that people have distinct, individual functional patterns (Finn et al., 2015),

functional connectivity changes based on attentional demands (Hermundstad et al., 2013),

in response to learning (Bassett et al., 2011), and dynamically just in response to time spent

in an MRI scanner (Chang and Glover, 2010; Hutchison et al., 2013; Allen et al., 2014).

The study of structural-functional relationships is also rooted in theoretical neuroscience,

particularly simulation or prediction of brain function based on a structural underpinning.

Models of both human brain networks (Kaiser and Hilgetag, 2004; Kaiser et al., 2007) and

functional human brain dynamics (Alstott et al., 2009) that have simulated lesions in the

structural connectome, have found that damage to high-centrality structural nodes disrupts

functional connectivity the most, both in the direct vicinity of the lesion and in remote

brain regions. Nonlinear simulations of fMRI data, such as the use of Kuramoto oscillators

(Schmidt et al., 2015) with an input structural substrate, shed light on the role of local and

global neural dynamics in spontaneous brain function (Ghosh et al., 2008; Deco et al., 2009,

2011, 2013; H utt et al., 2014).

Real-world results on human patients with lesions have supported these results; Johnston

et al. (2008) found inter-hemispheric functional connectivity to have disappeared in a young

patient following a callosotomy, while intra-hemispheric functional connectivity was unal-

tered, though this result is more ambiguous in other studies that have found inter-hemispheric

connectivity can widely be preserved following callosal agenesis or surgical lesions of the cor-

pus callosum (Uddin et al., 2008; Pizoli et al., 2011; Tyszka et al., 2011). He et al. (2007)

studied patients with a stroke in their right hemisphere, correlating impairment of attention

with disruptions in the attentional network outside of the stroke area.

Questions of the relationship between structure and function has been applied to specific
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phenotypic differences as well; a review by Batista-Garćıa-Ramó and Ivette Fernández-

Verdecia (2018) noted that the four major areas of interest in this regard are aging, epilepsy,

schizophrenia, and autism. Early childhood studies of autism have reported increased struc-

tural connectivity in young children and adolescents (Ben Bashat et al., 2007; Chang and

Glover, 2010), which may be related to decreased inter-hemispheric anatomic (Lo et al.,

2011; Weinstein et al., 2011) and functional (Anderson et al., 2011a) connectivity; however,

this may also be a symptom of other reported differences in functional networks in autism,

such as average path length and modularity (Rudie et al., 2013; Simas et al., 2015a).

8.1.2 Experiments

In the present work, I applied the structural connectivity matrix estimation method from

Chapter 3 to the deep learning methods developed throughout this thesis. While the struc-

tural connectivity metric has no hypothesized physiological interpretation, it acted as an

effective means of dimensionality reduction that allowed for T1-weighted MRIs to be en-

coded into a machine learning model. I then compared this to classification using only

functional connectivities, as well as univariate gray matter volume estimations. I then de-

rived class activation maps (CAMs) from all of these data. I used the output class activation

maps (CAMs), combined with graph theoretical techniques, to understand which parts of

the brain the model focused on, and whether simple linear regression models could spot the

same qualities in these data. To study the structure-function relationship, I further describe

a means of combining the structural connectivity matrices with functional connectivity ma-

trices in the same machine learning model to yield improved accuracy. Last, I show how the

classification results differ across different age groups.

8.2 Methods

8.2.1 Dataset

As stated in Chapter 3, I used a dataset comprised of 29,288 total instances each with a

structural MRI and a functional MRI in both task-activated and task-absent (rest) condi-

tions. (Note that in many instances, data were acquired from the same participant.) In

total, 1555 data points were from participants with autism. These data were drawn from
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Age Sex

Collection # Subj. # Conn. Rest Task Min Max Mean Stdev Female Male Autism

ABCD 1049 5142 2296 2846 0.42 11.08 10.12 0.69 2474 2668 61

ABIDE 412 412 412 0 6.00 45.00 17.00 7.16 45 367 181

ABIDE II 682 717 717 0 5.22 55.00 14.39 7.39 169 548 350

BioBank 9791 9791 9791 0 40.00 70.00 55.00 7.51 5178 4613 4

NDAR 1050 7958 5531 2427 0.58 55.83 18.71 7.80 3816 4142 930

Open fMRI 1194 5268 820 4448 5.89 78.00 27.12 10.24 2346 2479 29

Total 14178 29288 19567 9721 0.42 78.00 30.72 – 14028 14817 1555

Table 8.1: Statistics for each dataset used.

six different databases: OPEN fMRI, the UK BioBank, ABIDE I, ABIDE II, NDAR (minus

ABCD), and ABCD (Table 8.1). Covariates of age, sex, task were also compiled.

8.2.2 Pre-processing and feature extraction

The full pre-processing pipeline for functional data is described in Chapter 2. To re-iterate:

functional data were preprocessed using SpeedyPP. Data were first skull stripped. Motion

was regressed from time series using wavelet despiking (Patel et al., 2014). Data were

then registered to the stereotatic space of the Montreal Neurological Institute (MNI), after

which they were overlaid on the 116-area AAL parcellation. Datasets with greater than

10% regional dropout, or which otherwise failed the SpeedyPP stage, were excluded. The

remaining datasets are presented in Table 8.2. 116 × 116 functional connectivity matrices

were estimated using Pearson correlation on the averaged timeseries within a region.

To estimate grey matter volumes of each area in the AAL parcellation, structural MRI

were first skull stripped using tools from the Analysis of Functional Neuroimages (AFNI)

toolbox, then registered to MNI space and grey matter values estimated using FSL VBM.

Grey matter volume estimations at each voxel were then averaged within the areas of the

AAL parcellation, producing a 116× 1 array.

8.2.3 Machine learning model and training

I classified individuals with autism and neurotypical controls using, separately, structural

connectivity, grey-matter volume, and functional connectivity measurements, as well as a
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model that combined structural and functional connectivities. I employed the model and

training scheme described in Chapters 6 and 7. This used an ensemble of 300 convolutional

neural networks that each scrambled the unique values of input connectivity matrices, losing

some spatial encoding information while avoiding biases in output class activation maps

(described below).

In building training, test, and validation sets for the models, the multivariate class balancing

scheme was used. Equal ratios of autism and neurotypical control participants were enforced,

and equal distributions of age, collection, and intracranial volume were maintained in each

class. To account for motion, equal distributions of mean framewise displacement of fMRI

data were also maintained, but, unlike in Chapter 7, DVARS and mean spike percentage

were excluded from the class balancing scheme, as a way to increase training set sizes. The

class balancing scheme divided data into test, training, and validation sets for each model in

the ensemble, ensuring participants with multiple functional connectomes were in the same

group. Each model was trained on an Adam optimizer for 100 epochs, after which the epoch

with the highest accuracy on the validation set was used. This model then made a prediction

on each instance in its test set.

An ensemble of 300 independent CNN models was used to make predictions on the same

test set, and an AUROC derived by averaging across instances. When adding models to

the ensemble, the AUROC from the aggregated models increased in a predictable way. The

AUROCs from between 20 and 300 models were fit to a logarithmic curve with a hard limit

in order to predict the projected highest AUROC possible in the limit of a large number of

models.

As a result of forced class balancing, each model in the ensemble used an independent subset

of approximately 1600 instances. As an effect of this balancing scheme, data from Open

fMRI and the UK BioBank, having few participants overall with a diagnosis of autism,

were included only infrequently, while data from ABIDE I and II, ABCD, and NDAR were

frequently represented.

In total, four cross-sectional classification tasks were undertaken (Table 8.2), specifically:

with structural connectivity; with grey matter volumes; with functional encoding; and by

combining structural and functional connectivities.
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Modality AUROC Accuracy

Structural conn., Function 0.7354 69.3980

Structural conn. 0.7298 69.7062

Function 0.6964 67.7180

Structure (GM vols) 0.7037 66.4228

Table 8.2: Respective AUROCs and accuracies of ensemble models on different combinations

of data.

8.2.4 Class activation map analysis

Using the Guided Gradient Class Activation Map (Grad-CAM) algorithm (Selvaraju et al.,

2017), which displays areas of the input data most salient in classification, I measured the

class activation of each data point in each model proposed, and then averaged these maps

generating a 116 × 116 CAM for both structural and functional connectivity, as well as

a 116 × 1 map for grey matter volume. I correlated the structural and functional CAMs

to the measured effect size of differences between autism and neurotypical controls for the

connectivity data, as a way to determine the similarity of CAMs to conventional statistics.

Next, I isolated hubs in the 116×116 CAMs. To do so, I first measured the edge betweenness

centrality of each edge in the CAMs. I then grouped these values into different communities

by maximizing modularity of the edge betweenness values (Brain Networks Toolbox (Rubinov

and Sporns, 2010)). This procedure identified which hubs were most focused on by the

classifier.

8.3 Results

8.3.1 Training

Training accuracies and AUROCs are given in Table 8.2.

Classification resulted in a higher AUROC for structural than functional connectivities:

0.7298 and 0.6964, respectively. Classification on univariate grey matter volumes resulted in

an AUROC of 0.7037, outperforming functional classification while underperforming struc-

tural connectivity classification, although this might be expected considering its lower di-
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Figure 8.1: Overall AUROCs of each dataset included in the analysis for the struc-

ture/function ensemble.

Figure 8.2: Relative classification error in the structure/function/age ensemble model, plot-

ted against age. Each point in the graph represents the averaged classification error of the

datapoint across each model in which it was included in the test set. Thus, more controls are

represented which were each used individually in fewer models, while the autism datasets

are fewer but were generally used in more models. Thus represents that accuracy was gener-

ally higher in the developmental age groups, likely because more data was present for those

groups.

mensionality. Combining structure and function resulted in an AUROC of 0.7354 (Figure

8.1, left), with a projected upper limit of the AUROC of 0.745 (Figure 8.1, right).
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Figure 8.3: A comparison of the effect size of differences between raw matrix values between

groups and the averaged class activation maps. Most of the edge differences passed a non-

parametric statistical significance test. When comparing the CAM matrix and the effect

size matrices using either linear or nonparametric correlation, neither had any statistically

significant associations with one another.

Figure 8.2 shows the classification results across different age groups, reflecting the large

disparities in age ranges present in the accumulated dataset, as well as the heightened model

performance for those age ranges for which the most data was present. This reflects both

the disparities in autism characterization across development as well as the likelihood of

increased accuracy with more heterogeneous datasets.

8.3.2 Class activation map analysis

When comparing the output CAMs to their respective functional and structural effect sizes,

no statistically significant correlation was observed, and thus the machine learning model

relied very little, if at all, on differences detectable by conventional statistics (Figure 8.3).

CAMs for structural and functional connectivities, sorted by different detected communities

after edge betweenness centrality was measured, are shown in Figures 8.4 and 8.5. Structural

CAMs showed five distinct groupings, each with distinct hubs that each centered on one

or two localized areas, including the left and right Heschl’s gyrus, the upper vermis, the

right frontal-medial orbital gyrus, the right pallidum, and the left putamen. The strongest

activations were found in left Heshcl’s gyrus.

Localisation was also found, though less distinctly, in functional hubs, notably the left inferior

parietal lobe, the left middle temporal lobe, the left olfactory bulb, and the upper vermis.

However, focus on particular hubs was not a distinctive feature.

CAMs for grey matter volumes are shown in Figure 8.6. These results had very little in
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Figure 8.4: The structural hubs targeted by the structure/function/age encoding. Shown

here are the class activation maps (upper left) as well as the edge betweenness centralities

of the map (upper right), after it as been sorted into six different hubs via modularity

maximization. The hubs, with labeled areas, are shown in the bottom half. (Middle) The

three most distinct hubs revolve around the left Heschl’s gyrus; the right Heschl’s gyrus (and,

to an extent, the left Putamen); and the upper vermis. The largest hub, in the bottom left,

shows scattered-but-weak emphasis on connections to the right frontal medial orbital gyrus.

These connections likely reflect the machine learning model’s use of comparisons of certain

areas to others in order to assess the developmental difference of such areas in autism.
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common with the structural connectivity results, with the strongest five activated areas in

the right supplementary motor area, the right middle frontal lobe, the right precentral sulcus,

the left insula, and the inferior frontal gyrus triangularis.

8.4 Discussion

In the univariate grey matter volume results, the CAMs highlighted the right supplementary

motor area, right mid frontal lobe, right precentral sulcus, left insula, right frontal inferior

triangularis, left frontal inferior orbital lobe, and the right superior temporal lobe (the top 20

areas are shown in Figure 8.6). Comparing the CAM emphasis of the grey matter volumes to

the meta-analysis of autism VBM studies in Nickl-Jockschat et al. (2012b), which found six

areas with consistently altered grey matter volumes, some similarities can be seen, notably

in the right superior temporal lobe where grey- and white-matter volume differences in the

right medial temporal lobe and the left post central gyrus.

Functional analysis did not reveal a pattern of local hubness characterizing structural connec-

tivity differences, but rather focused on specific connections. However, a number of general

functional communities were identified (Figure 8.5). Meta-analyses of studies in functional

connectivity differences associated wtih autism have not found consistent differences in the

brain, but rather in network-wide measures (Hull et al., 2017). The lack of hub emphasis in

functional results may be additional evidence of network-wide, rather than localized differ-

ences between autism and neurotypical control groups seen in other recent findings (Suckling

et al., 2015).

In structural connectivity, three definitive hubs were identified: left Heschl’s gyrus, right

Heschl’s gyrus, and the upper vermis. The right pallidum and fronto-medial orbital region

also showed relatively strong local hubs, though to a lesser degree. Emphasis of the Heschl’s

gyrus is in agreement with recent studies in developmental autism, having been implicated

previously as an area that develops atypically in autistic children (Prigge et al., 2013).

Function of the area has been associated with development of “inner speech” (Hurlburt et al.,

2016), indicating a difference in development of language capabilities. My findings differ in

that they found this emphasis in structure and not function, but this may be reflective of

the lower variability of differences across a single area in the development of grey matter

as opposed to function, which likely varies far more across participants, and age groups.

The cerebellum, meanwhile, has consistently been cited as an area of difference between
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individuals with autism and neurotypical controls during development (Chen et al., 2011),

as well as an area of difference in structural covariance associated with autism (Cardon et al.,

2017).

The structural connectivity CAMs resulting from this study revealed an emphasis on a num-

ber of distinct and localized areas, and these areas were clarified by use of an edge centrality

measurement combined with modularity maximization to isolate hubs. The edge between-

ness step was added by necessity to place extreme emphasis on a smaller number of more

central edges, and only then could modularity maximisation isolate hubs in a meaningful

way (see Figure 8.4).

The structural connectivity method’s efficacy with the machine learning model suggests

that it encoded practically useful information about brain structure, but the interpretation

of what these structural hubs indicate physiologically is more complicated. While some

correlation is present (Figure 3.14) the functional and structural connectivities show largely

different patterns. Furthermore, considering that the method used to estimate structural

connectivity was a similarity metric, the emphasis on these hubs was less likely an indication

that they were centers of a physiological brain network characterizing autism. Because the

strength of connections was a comparison of grey matter distributions, it is more likely that

connections to the identified hubs were used by the machine learning algorithm as a proxy

for detecting subtle changes in the morphology of grey matter within those specific regions.

Edges connecting to these structural hubs were probably an indirect indication of differences

in grey matter between two areas, and the individual connections themselves would not

indicate any special physiological relationship. However, this still means that the hubs

themselves were important in characterizing autism. This lack of an explicit physiological

interpretation of this metric, however, does not detract from its utility in the context of

machine learning. This structural connectivity metric may simply be viewed as a way of

encoding relative spatial information about the morphology of individual areas of the brain.

The univariate grey matter volume results further complicate interpretation because areas

different from the structural connectivity results were emphasized by the CAMs, even though

both univariate grey matter volumes and structural connectivities were derived from the

same imaging data. This brings up three key points. First, the method of encoding data is

important because it presents different types of information to the machine learning model.

Structural differences in autism (and likely other phenotypic differences) may vary in different

ways that are only apparent under specific methods of encoding, and thus the model may

have focused on different areas, depending on which method of encoding was performed. This



148 CHAPTER 8. STRUCTURE/FUNCTION ENCODING IN AUTISM

is important for both interpreting the results in the context of a specific machine learning

task and understanding the underlying physiological implications. Second, the emphases

presented by Grad-CAM were relative; that is, in analysing the distribution of Grad-CAM

values, I saw that the model took all areas into account (Figure 8.6), although with highest

focus on the few areas that seemed to hold more influence in the final classification task.

This does not, however, mean that other areas were ignored entirely. Third, because of

the higher dimensionality of structural connectivities over grey matter values, it may be

the case that the machine learning model assumed information about grey matter volumes

from a small number of edges, while information about differences in morphology of other

areas (e.g., the left and right Heschl’s gyrus), which were not present in the univariate

feature extractions, required emphasis by a greater number of edges; this may be crucial

to understanding differences in autism generally, or it may have simply helped the model

increase AUROC by a margin of 0.0891 between the univariate and connectivity classification

tasks. Stated informally, differences in morphology detected by the structural connectivity

matrices were more subtle, and so they required the emphasis of a larger number of edges.

The results in Figure 8.2 show that autism classification, even when structure and function

are considered, generalizes poorly across large age groups. This supports the findings in

recent longitudinal studies of autism (Ha et al., 2015; Lange et al., 2015; Wolff et al., 2018),

which found high inter-individual variability in brain volume growth trajectories in autism.

This suggests that autism is highly variable in its development and that information about

one age group with autism would not necessarily inform predictions of another age group.

It is notable that none of the classification accuracies presented in this paper approached

the success required for a clinical diagnosis, which would need to consistently exceed 95%

accuracy on a substantially large dataset. A likely reason for the comparatively low accuracy

in this study specifically is the large dataset size, which, in the context of whole-brain MRI

classification, has previously been associated with a drop in accuracy (Katuwal et al., 2015;

Arbabshirani et al., 2017). Nonetheless, deep learning models are useful in these contexts

both as statistical models in and of themselves to study autism, and as building blocks to

approach clinical-quality accuracy in the future.

Finally, I combined my structural connectivity metric with functional connectivity raising the

final AUROC. This shows that my method does not have to be considered as a replacement

for any previous methods, but may be used in combination with them in order to make

single-participant classifications more effective.
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8.5 Conclusion

The present work offers a means of encoding T1-weighted MRI for use in network-based ma-

chine learning models, and with a machine learning classification task I have demonstrated

an increase in accuracy in classifying individuals with autism when compared with both

functional connectivities and classification of univariate grey matter volumes. Furthermore

I presented methods of identified areas emphasized by the machine learning model, demon-

strating the importance of data encoding and highlighting complications with interpreting

results when the feature extractions have no specific physiological interpretation. While this

tradeoff, interpretability for higher accuracy, will likely continue to be an issue in machine

learning with scientific data, the effects of data encoding on accuracy point towards feature

extraction methods as a future direction of investigation.
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Figure 8.5: Averaged functional class activation maps and the associated edge betweenness

centralities, when divided into communities via modularity maximization. Function does not

show the same ultra-localized hubness within particular communities in the way that the

structural results do, but emphasis is given to several individual connections throughout.
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Figure 8.6: Top class activation map value results for the 116-area gray matter density

classification, showing the areas most focused on in that classification task. The minimum

CAM value (not shown) was 1.3622.
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Chapter 9

General discussion

9.1 Summary

While several chapters of this thesis presented their own contextual neuroscientific results,

the overarching contribution of this thesis is methodological. To summarize, the following

were analyzed:

• Chapter 2 described the acquisition and preprocessing of a large, mixed-site dataset,

as well as the practicalities and caveats of the presented deep learning schemes.

• Chapter 3 described two methods of analyzing brain connectomes: the first was a

method of finding average shortest pathways in a group of functional connectomes,

and the other was a method of deriving structural connectivity from T1 MRIs. This

was as an initial exploration in the use of graph theoretical metrics for analyzing mental

disorders.

• Chapter 4 described the first deep learning study, which used ensemble CNNs with

vertical filters to classify functional connectome data by sex, rest/task, and autism.

This was an initial foray in this territory; future chapters fixed issues with this study

and expanded on it in different ways.

• Chapter 5 described a method of analyzing the clustering of datasets throughout the

ensemble from Chapter 4.

153
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• Chapter 6 described a multivariate class balancing algorithm to apply to the ensemble

scheme and address some of the issues pointed out in Chapter 5.

• Chapter 7 described different techniques for determining the saliency of edges and

networks in functional connectomes, then applied these to sex classification in rest/task

data in the UK BioBank.

• Chapter 8 used the structural connectivity metric from Chapter 3, as well as functional

connectomes, to classify by data by autism. This also presented a more sophisticated

use of graph theoretical metrics to analyze salience in class activation maps.

Thus, throughout this thesis, I have developed a comprehensive machine learning paradigm

to study large numbers of structural and functional MRI datasets.

Differences between the setup of the studies in Chapters 3, 4, 7, and 8 were highly dependent

on the context of the studies themselves, as well as the new methodological innovations

presented throughout. For instance, the question of adolescent depression would have been

very interesting in a machine learning context, but the MR-IMPACT dataset from Chapter

3 was too small for application to a deep learning model. Likewise, the algorithm invented

for estimating normative pathways from the first study relied on combinatorics, making it

inapplicable to the substantially larger dataset used throughout. The choice to reduce from

four to three wavelet correlation frequency bands between Chapters 4 and Chapter 8 was

made to increase the number of autistic datasets included in the study, as too many were

eliminated by their TR rate. The choice to only analyze UK BioBank for sex classification in

Chapter 7 was made to reduce variation in the number of tasks considered in the task fMRI

data. And the choice in Chapter 8 to switch to Pearson correlation from wavelet bands was

done so that functional connectivity would not contribute more information as an input to

an ML model than structural connectivity, and their relative contributions to accuracy could

fairly be compared. Additionally, the innovations of Chapters 6 and 7 with class balancing

and stochastic encoding made the CAM results more reliable than those from the study in

Chapter 4, which employed vertical and filters with only age- and collection- and age-based

balancing.

Nonetheless, such changes do make the results of these studies more difficult to compare, as

any one of the discrepancies between the results may be explained by changes in methodology.

The study of normative pathways in Chapter 3 marked a departure from the rest of this

thesis, which is focused on deep learning. However, this study is included for three reasons:
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first, as an initial study in the analysis of group functional connectomics, which represents

my first year of work; second, it is tangentially related to the use of graph theoretical metrics

used in Chapter 8; third, it is possible that the advancement of machine learning models in

the future that are capable of whole-graph classification connectomes will rely on pathfinding

to some degree as an encoding or feature extraction method, and normative pathways may

well play a part in this (however, the development of such a new paradigm in deep learning

is beyond the scope of the present work); this idea is expanded upon in Section 9.9.

9.2 Big versus small datasets

A phenomenon that has been noted in literature on whole-brain classification is the disparity

between classification accuracies between small-sample-size studies (which routinely achieve

> 90% classification accuracies (Arbabshirani et al., 2017)) and larger datasets, such as

the one presented here, as well as the studies of databases such as ABIDE (Khosla et al.,

2018). This tendency has previously been noted in the context of structural MRI autism

classification (Katuwal et al., 2015), as well as SVM studies in medical imaging (Arbabshirani

et al., 2017). This phenomenon apparently contradicts the conventional wisdom of machine

learning, which is that larger training datasets lead to higher classification accuracy on

a test set. Given that such smaller datasets are often collected and analyzed internally by

individual groups, several factors may contribute to this phenomenon: poor motion regression

in the pre-processing stage, site differences or differences in MRI scanners, differences in

data quality, inconsistent diagnostic metrics, access to metadata, the ability to curate the

dataset during the recruitment stage, and group homogeneity within local geographic areas

in which recruitment takes place. However, some of these reasons are only applicable to

certain classification tasks (for instance, diagnosis of autism varies more than determination

of biological sex).

One study (Schulz et al., 2019) directly tested this phenomenon on sex classification in

the UK BioBank using a variety of machine learning models, finding, in that context, that

accuracy did rise with the size of a training set. Thus, this issue may just be limited to

large, mixed-site datasets. However, the ensemble projection results from Chapter 4 show a

much smoother increase in accuracy with sex classification with the other two classification

tasks, so differences in the stability of model performances may be related to the nature of

the classification task itself.
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9.3 Psychiatric diagnosis in machine learning

A clear limitation and area of expansion in the methodologies presented in this thesis con-

cerns the use of binary classification. For classification tasks such as biological sex, binary

classification is more-or-less appropriate, but the diagnosis of mental disorders (including

and especially autism) is most often defined in multiple subcategories or on a spectrum.

A more appropriate formal definition of autism for a machine learning problem would in-

clude both sub-categorizations and continuous variables indicating severity. In the context

of multi-site big data, I was limited by available data; while autism is most often defined on

a spectrum, available data only provided binary classifications between autism and controls.

This ill-defined machine learning problem may be a reason for the underperformance and

instability of autism classification compared to sex classification.

Furthermore, while brain function and structure has been associated with mental disorders,

such disorders are usually defined by their outward symptoms and may have no discernable

connection with brain function and structure at a macro level. For a set of mental disorders,

it is thus unlikely that a machine learning model, having knowledge only of physiological

measurements of the brain and not of outward symptoms, can achieve near-perfect classi-

fication accuracy (Borsboom and Cramer, 2013), even with stronger deep learning models

and higher-resolution data than that presented in this thesis. While deep learning for MRI

has a high potential for clinical diagnosis and prognosis, it is probable that it will only be

applicable to a certain number of mental conditions that have strong biomarkers. However,

further research is needed to know which mental conditions these are.

9.4 Class balancing techniques

This thesis presented a class balancing technique as a means of regressing confounding fac-

tors from data. I presented this as an optimization problem that seeks to find a subset of

data, such that the distributions with respect to any one particular component were not

detectable with any statistical significance, while maximizing the amount of data present

in the subsample. I reiterate the formalization of this problem described in Chapter 6: if

S is a nonparametric, two-sample test for statistical significance, such that S(A,B) = 1 if

the null model can be rejected with statistical significance and S(A,B) = 0 if it cannot;

A = a1, a2... and B = b1, b2... are datasets A and B, a
(j)
i , 0 < j < J and b

(j)
i , 0 < j < J one of
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J (continuous or discrete) measurable confounding factors of the datapoints, then the class

balancing problem seeks to optimize the following:

argmax
|A′|

(A′ ⊂ A,B′ ⊂ B | |A′| = |B′| ∧
∑
j∈J

S(A′(j), B′(j)) = 0)

Note that, for discrete variables, S would simply ensure that there are equal numbers of

either in A′ and B′.

Though a heuristic-based approach for this optimization was described in Chapter 7, this

thesis did not claim that the method presented offered the global maximum, but simply one

that could be practically computed; this is even more true of the quartile balancing used in

Chapter 7, which balanced between sexes and resting-state/task, and for which the method

was to simply apply the algorithm from Chapter 6 twice. Improvements in methods for

finding balanced subsets of two classes would be important not only because they would allow

individual deep learning models to use higher sample sizes, but, because more confounding

factors would inevitably shrink the size of the subsample (i.e., a higher J could only lead to

a smaller |A′|), it would allow for the inclusion of more confounding factors in the model.

Of particular interest would be balancing by subjects’ geographic location (though, if this

were encoded as a continuous variable, it would require a more sophisticated S), as well as

volumetric measurements of finer areas of the brain (e.g., for a functional connectivity study,

balancing by hemispheric or amygdala volume).

Since the experiments in Chapters 7 and 8 were undertaken, some of these problems have

since been addressed with three important innovations in the class balancing algorithm.

These are: (1) a recursive method by which the class balancing algorithm is repeatedly

applied on excluded data, then added back, as a means of maximizing the count of data in-

cluded; (2) different means of discretizing continuous covariates – notably, averaging between

the discretization values found by number of datapoints and those found with equidistant

points between the minimum and maximum of all continuous values; and (3) generalizing

the algorithm to multiple, rather than two, classes, avoiding the need to apply the algorithm

twice in quartile balancing.

A potential alternative to class balancing is regressing confounding factors from datapoints

directly. Regressing covariates from individual MRI data has been the subject of extensive

research, especially with regards to the effects of head movement (Kundu et al., 2013; Patel

and Bullmore, 2016), though properly modelling spin-echo effects that lasts several seconds
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after head movement is particularly challenging. In small datasets where removing any in-

dividual datapoint may adversely affect the statistical strength of the study, such regression

is necessary. Nonetheless, with data as high-dimensional and complex as MRI, such con-

founding factors are incredibly difficult to properly regress from individual datapoints, to the

extent that it is not detectable by a deep learning model. By comparison, class balancing is

trivial.

An interesting future use of deep learning may be to regress out these confounding factors

from individual datasets with the use of adversarial neural networks (Goodfellow et al., 2014),

which could be tasked with regressing out confounding factors (i.e., making it such that a

measurement such as motion were undetectable by a deep learning model, while altering the

data as minimally as possible). However, this is an entire research project in itself.

9.5 Comparison of machine learning encoding methods

This thesis presented the use of two different methods of encoding brain connectivity data in

convolutional neural networks: vertical convolutions (Chapter 4) and stochastic convolutions

(Chapters 7 and 8). This represented a transition from encoding edges in a network by their

natural groupings (i.e., edges they are attached to), which has a sounder theoretical basis, to

a method that grouped them randomly. However, in addition to outputting class activation

maps that did not have a spatial bias, these stochastic convolutions produced either similar

or higher classification accuracies than the vertical convolutions. While it is possible that

other factors may have played a role in these results, they nonetheless indicate that such

encoding may be an unnecessary prior.

These results were surprising, because it is established that analogous priors are very neces-

sary in photographic image classifications, from which the present methods are directly de-

rived (Krizhevsky et al., 2012). CNNs designed to classify such images employ square-shaped

convolutional filters, for two primary reasons. First, these convolutions encode information

about the relative spatial organization of features. Square-shaped convolutional filters group

pixels that are spatially close together, carrying the inherent (and well-founded) assumption

that adjacent pixels encode more useful information when considered as a group than as

independent components (which would be the case with fully-connected neural network).

Second, by repeatedly convolving many input features into a single output value, they act

as a means of regularization that prevent overfitting.
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I offer possible explanations for why each of these effects, which benefits CNNs for 2D image

classification, may not benefit brain connectome classification using vertical or cross-shaped

convolutions in exactly the same way, offering a reason for the superiority of stochastic

encoding. First, grouping edges together by nodes, while intuitive and simple, is likely not the

most ideal means of grouping edges together in the first place, since functional brain networks

are more often organized as networks distributed over a wide area. This prior assumes that

connections to common nodes matter more than other factors, such as spatial positions or

symmetric similarity; for instance, an edge strongly connecting the left amygdala to the left

hippocampus is more likely to have an interesting association with the edge connecting the

right amygdala to the right hippocampus, than to an edge connecting the left amygdala to

the right cerebellum. Another issue with encoding by nodes is scalability: more values are

convolved if the size of the adjacency matrix is scaled up (which can happen as the result

of a finer parcellation), which dilutes each individual values’ contribution. While different

parcellation sizes were not tested in this thesis, it is a theoretical issue worth noting.

Second, the regularization effect, while still preventing overfitting, could be counterproduc-

tive for connectomes. In effect, convolutions compress information into a single value; each

vertical convolution, for an input of edges, e1, e2, ...e116, is a function that compresses these

edges into a single value, C = e1w1 + e2w2... + e116w116. However, as shown in the various

class activation maps displayed throughout this thesis, each edge does not contribute equally

to the output decision of the deep learning model, as the values of some edges hold more

influence on the output decision than others. Furthermore, because different areas of the

brain play different roles in classification, these “important” edges are not distributed evenly

across nodes. Thus, grouping edges by node would inevitably compress a disproportionate

number of edges with higher influence on the output classification, thus contributing to an

unnecessary bottleneck of important information flowing through the network. Conversely,

in 2D image classification, it is usually not the case that fine variations in the values of

individual pixels have a large effect on the outcome, but rather the location and general

shape of objects detected. Stochastic encoding for brain networks would more evenly dis-

tribute important edges across each convolution used and minimize any such informational

bottlenecks, while still helping to prevent overfitting.

Notably, however, while stochastic models do away with spatial encoding, they maintain

depth, that is, the pairing of multiple measurements of an edge (multiple wavelet frequencies,

or functional and structural connectivities) in multi slice connectomes, which was essential

for studying the roles of different layers of the input connectome in a classification task.
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A future direction of interest would be to experiment with different ways of encoding graphs

in CNNs that use more sophisticated priors. Indeed, this is a potent potential application

of the work of Chapter 3: pathways of interest could be encoded and compared directly

in a deep learning model, much in the same way that objects are encoded in CNNs for

2D image classification. A practical constraint, however, is that one has to work with

the machine learning libraries developed within pure computer science, which may not be

easily generalizable to new forms of data found in different fields. This is discussed further

in Section 9.8, which notes my previous efforts in this direction, and Section 9.9, which

discusses limitations in current deep learning frameworks for encoding brain networks.

9.6 Interpretation of visualization methods

Three deep learning visualization methods were used in this thesis: activation maximization,

occlusion, and class activation mapping. The first of these was used to detect ways in which

the deep learning model clustered datasets, and so it is not directly comparable to the other

two methods, which both have outputs of the same dimension as the input data that indicate

which parts of an input dataset were salient. However, while both indicate salience, several

considerations must be made in their interpretation.

In their original conception, neither class activation mapping nor occlusion were used in a

quantitative way (Zeiler and Fergus, 2013; Simonyan et al., 2014; Selvaraju et al., 2017), but

rather as visual aids that informally validated the correctness of photographic classification

algorithms, so their quantification in the context of other scientific data deserves further

scrutiny. In Chapter 7, it was found that class activation map values actually did not vary

substantially by dataset input; this is perhaps because, unlike 2D images, connectivity input

data, having already been registered to the same space, has no spatial variation, and so the

model and visualization method simply focus on the same areas for every input dataset.

Thus, this method did show which areas were most crucial in classification, but not how

they were used, or for which subgroups.

This was not an issue, however, for occlusion outputs, which did show the ability to vary

across groups, shedding more light on which areas (in the context of Chapter 7, brain net-

works) were most crucial in phenotypic characterization. However, occlusion bore computing

power limits substantially higher than class activation maps required; moreover, most oc-

clusion applications in pure deep learning were applied to a single input dataset (i.e., one
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photo) with one CNN, and because I sought occlusion-based salience maps on several thou-

sand datasets, rather than a single dataset, on an ensemble of CNNs, many occlusion-based

methods from pure deep learning bore a prohibitively high computational cost for the pur-

poses of this work.

In summary, class activation mapping indicates which parts input data were most important

for classification, without indicating how or for which subgroups. Occlusion is capable of

this fine-tuned analysis, but computational costs limit it to testing only a-priori assumptions.

However, it is likely that future innovations can improve the applicability to occlusion to

brain data.

9.7 Shortcomings of salience detection methods

Class activation mapping and occlusion are both salience detection methods borrowed from

photographic image classification. In that context, the ways in which salient areas differ or

aid in classification may be self-evident to human interactors, but this is not the case for con-

nectivity. A major shortcoming of both these methods is that they do not indicate whether

a stronger or weaker connectivity between edges and networks drove the classification, or

whether it was driven by a complex interaction between different connectivity values that

would require more sophisticated means to characterize. It is likely that further work on

these methods would be required in order to enrich the explanations of salience detection in

brain connectivity.

9.8 Failed research directions

There were a number of experiments which, though they initially seemed promising, failed

to yield any results after several lines of inquiry. These are noted here.

In an attempt to add meaningful priors to the CNN stochastic encoding method, different

means of scrambling edge orders were experimented with. For instance, edges that were

spatially closer to one another were placed in the same rows, and edges belonging to the

same pathway were placed in the same row. However, multiple attempts at such encoding

methods yielded no discernible improvements in accuracy over purely random orderings.

Additionally, a single random ordering was tested over multiple training/test/validation set
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splits, but its distribution of AUROCs was not found to be any different from the use of

multiple random orderings, leading to the conclusion that no one random ordering bears any

notable advantages in accuracy over others. In general, lines of exploration that attempted

to find more favourable patterns in different stochastic orderings of edges ended in failure.

Classification tasks other than those noted in this thesis were attempted, specifically on the

functional connectivity of subclinical depression patients in the UK Biobank (of which there

were around five thousand, making it an ideal covariate to study in a big data context) and

patients with auditory or visual hallucinations in the BioBank. While a study of depression

would have not only been of general scientific interest, but also a means of comparing results

in Chapter 3 directly to our results, both depression and hallucination classification tests

yielded accuracies close to random.

In a contradiction with the normative pathway results in Chapter 3, which found partial

derivatives to be an effective means of functional connectivity estimation, this did not yield

favorable results when applied to deep learning. Attempts to classify partial correlation ma-

trices usually yielded much worse results than those that used Pearson or wavelet correlation.

This is perhaps a testament to contextual importance of different methodologies.

Further experiments with multi-modal methodologies from Chapter 8 were made to encode

covariates directly. In particular, layers were added that encoded both age and collection for

the classification of autism. However, this was found to not yield any notable differences in

model performance over the combined structure/function encoding alone. It is notable that

others have had success with encoding covariates directly (Jonsson et al., 2019), so possible

explanations for this may be that the encoding method used was wrong, or simply that the

deep learning model inferred the information already from the data.

Several alternative neural network frameworks were researched and attempted before the

convolutional neural network framework was settled on. These include variations of node

wise classification graphs (Bruna et al., 2014; Defferrard et al., 2016; Kipf and Welling,

2017); models that turned graphs into 2D images and sent them through a 2D image CNN

(Hechtlinger et al., 2017); adaptation of node wise graph classification models, in which

whole-graph classification could theoretically be achieved by maintaining the same label

across a whole graph (Hamilton et al., 2017); and a number of models that simply derived

unrelated global or nodewise measures from a graph and considered these independently

(Nikolentzos et al., 2017). These experiments failed or were deemed unsuitable for a number

of reasons, ranging from the purely theoretical to poor software design and documentation.
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9.9 Future directions

In this section, I discuss potential future directions to build on and improve the present body

of work.

Many improvements to the methods presented in this thesis may be found in scale, which

this thesis leaves plenty of room for. For instance, increasing the number of parcellations

used, the number of input channels, the depth and breadth of connectomes, the size of the

training dataset, or the use of techniques that require more computing power (either on

the preprocessing side, which would likely improve the quality of the registrations, or the

machine learning side, allowing for the use of more advanced models) – all would have a

strong chance of increasing the accuracy of the results.

Additionally, improvements in preprocessing techniques in general may offer up to an ap-

proximate 50% increase in datapoints, as the fully-automated techniques used in this thesis

had very high failure rates and required the elimination of an extraordinary amount of data

from consideration. Additionally, as explained in Chapter 2, computational limitations pre-

vented thorough grid searches for hyperparameter tuning, and in general those are likely to

offer at least modest improvements to classification accuracy. Early on in the research, some

informal grid searching was undertaken to improve hyperparameters for models, but a similar

search was not undertaken on the pre-processing techniques used (for instance, comparisons

of different parcellations), in which I simply used the best conventional methods available.

An increase in computing time and power could be utilized in many ways for the benefit of

machine learning on big data in MRI.

As a long-term research goal, fundamental advancements in deep learning architecture could

substantially improve results for the benefit of this research. This work attempted to un-

dertake this to some degree; I eliminated the spatial encoding biases introduced from 2D-

image-based deep learning models in order to improve the resolution of class activation

maps. However, my models fail to explicitly encode subnetworks and pathways that are

likely present in brain connectome data. In fact, as discussed above, my work departed from

using any spatial priors: previous attempts to fully encode graphs by edge-to-edge connec-

tions using deep learning libraries were undertaken by Kawahara et al. (2017) and replicated

in Leming and Suckling (2019), but I later posited that that architecture is flawed, since the

cross-shaped convolutions are created by adding independent vertical and horizontal filters,

and the backpropagation algorithm is not necessarily optimized to deal with convolutional
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filters being added together in this way; switching from cross-shaped to vertical filters, in the

form presented in Chapter 4, not only eliminated recurring problems of exploding/imploding

gradients present in the cross-shaped filters, but increased accuracy generally.

A basis of this problem is that modern deep learning implementations were specifically

designed and optimized for 2D images and, later, natural language understanding, and sci-

entists in non-computing-centered fields attempting to benefit from them must adapt these

models to their own data, rather than design models with priors befitting their own data

formats. Unfortunately, this not only requires extraordinary computational expertise, but

also extraordinary understanding of data formats in unrelated scientific fields. Pioneers in

computer vision benefit not only from greater understanding of their novel machine learning

techniques, but also greater understanding in the types of data they work with (i.e., the av-

erage human interactor intuitively understands photographic images and natural language

more than a neuroscientist understands MRIs).

Practically speaking, raw MRIs differ from photographic images because they are three- or

four-dimensional, spatially invariant, and contain many features which the machine learning

algorithm would preferably ignore, such as motion and head size (though this thesis has gone

to great lengths to address the last issue). Moreover, it is more often individual objects that

are of interest in photographic images, while in MRIs, just as often, interesting information

lies in the relationship of disparate objects; this is the heart of the interest in functional

connectivity and structural covariance. In 2D image recognition, this is analogous to “scene

understanding”, which is a far more difficult task than individual object classification, and

for which simple convolutional neural networks are not necessarily equipped to evaluate,

though much progress has been made on it in recent years.

Improvements in connectomic classification may come from graph-theory-based machine

learning models, which is currently an active area of research, but for which most inter-

est is presently in areas such as social networks — graphs that are different in form than

brain networks (i.e., without fixed nodes). Nonetheless, given interest in the field in gen-

eral, it is likely than an applicable model, capable of encoding pathways and communities

explicitly, will be produced in the near future.
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9.10 Conclusion

I have presented, in this thesis, a comprehensive framework for classifying large amounts of

MRI brain connectivity data, using novel methods on a large, accumulated dataset. I have

also presented methods adapted from computer science to analyze these brain connectomes,

providing novel insights into which features drive phenotypic differences across populations.
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