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ABSTRACT 21 

Surface meltwater is becoming increasingly widespread on Antarctic ice shelves. It is 22 

stored within surface ponds and streams, or within firn pore spaces, which may 23 

saturate to form slush. Slush can reduce firn air content, increasing an ice-shelf’s 24 

vulnerability to break-up. To date, no study has mapped the changing extent of slush 25 

across ice shelves. Here, we use Google Earth Engine and Landsat 8 images from six 26 

ice shelves to generate training classes using a k-means clustering algorithm, which 27 

are used to train a Random Forest Classifier to identify both slush and ponded water. 28 

Validation using expert elicitation gives accuracies of 84% and 82% for the ponded 29 

water and slush classes respectively. Errors result from subjectivity in identifying the 30 

ponded water/slush boundary, and from inclusion of cloud and shadows. We apply our 31 

classifier to the Roi Baudouin Ice Shelf for the entire 2013 to 2020 Landsat 8 record. 32 

On average, 64% of all surface meltwater is classified as slush and 36% as ponded 33 

water. Total meltwater areal extent is greatest between late January and mid-34 

February. This highlights the importance of mapping slush when studying surface 35 

meltwater on ice shelves. Future work will apply the classifier across all Antarctic ice 36 

shelves. 37 

1 INTRODUCTION 38 

Surface meltwater is present on the majority of Antarctica’s ice shelves (e.g., Langley 39 

and others, 2016; Kingslake and others, 2017; Macdonald and others, 2019; Stokes 40 

and others, 2019; Arthur and others, 2020a; Dell and others, 2020; Banwell and 41 

others, 2021). It can act as a key control on ice-shelf stability (Lai and others, 2020) 42 

and thus the contribution of Antarctica’s grounded ice to global sea level rise (Rignot 43 

and others, 2004; Berthier and others, 2012; Furst and others, 2016). Surface 44 

meltwater is stored either in ponds within topographic depressions on top of 45 

impermeable ice surfaces (Bell and others, 2018; Banwell and others,  2019) or in firn 46 

pore spaces (Dunmire and others,  2020; Montgomery and others, 2020). When firn 47 

pore spaces become saturated, slush is formed and this may be particularly likely 48 

where firn overlies former blue ice areas or refrozen lakes, or where refreezing of 49 

infiltrated water has formed extensive ice layers at depth within the firn. Melting and 50 

refreezing of slush promotes firn air content depletion, thereby increasing its density 51 



and increasing an ice shelf’s vulnerability to fracture (Hubbard and others, 2014; 52 

Kuipers Munneke and others, 2014; Alley and others, 2018). Ponded water has been 53 

shown to drive ice-shelf collapse events through hydrofracture (Banwell and others, 54 

2013; Banwell and MacAyeal, 2015; Robel and Banwell, 2019; Scambos and others, 55 

2003, 2004) and therefore several studies have mapped the changing extent of 56 

ponded water on ice shelves (e.g. Arthur and others, 2020; Dell and others, 2020; 57 

Spergel and others, 2021). Despite the potential role of water as slush in driving 58 

hydrofracture, there has been very little work investigating the changing extent of slush 59 

on ice shelves. This means that previous work will not only have underestimated total 60 

surface meltwater areas on Antarctic ice shelves, but also underestimated their 61 

potential vulnerability to hydrofracture and collapse.  62 

 63 

Across Antarctic ice shelves, areas of ponded water and slush are more commonly 64 

observed near to grounding lines (Kingslake and others, 2017; Lenaerts and others, 65 

2017). Here, katabatic and/or foehn winds facilitate snow erosion, exposing 66 

widespread areas of blue ice and lowering the surface albedo, which in turn amplifies 67 

surface melting (Kingslake and others, 2017; Lenaerts and others, 2017). The extent 68 

of surface melting is expected to increase as air temperatures rise throughout the 21st 69 

Century (Trusel and others, 2015; IPCC, 2019), as demonstrated across the northern 70 

George VI Ice Shelf during the 2019/2020 melt season, when sustained periods of 71 

warm air temperatures above 0oC led to 32-year record-high melting (Banwell and 72 

others, 2021). It is therefore crucial to quantify the area and volume of surface 73 

meltwater on the surface of ice shelves, and to evaluate the potential impacts of this 74 

surface meltwater, including slush, on ice-shelf stability. Furthermore, producing time 75 

series of surface meltwater across ice shelves will allow current surface mass balance 76 

models to be validated, potentially leading to improved projections of future meltwater 77 

evolution.  78 

 79 

Remotely-sensed data can be used to track surface water bodies (i.e. ponds and 80 

streams) across space and over time. At present, two key methodologies are used to 81 

map water bodies on Antarctic ice shelves: threshold-based mapping (e.g. Banwell 82 

and others, 2014; Dell and others, 2020; Moussavi and others, 2020) and machine 83 



learning (ML) (e.g. Dirscherl and others, 2020, 2021; Halberstadt and others, 2020). 84 

The former identifies water bodies where pixels exceed a reflectance threshold in 85 

specific bands or band combinations. Whilst most threshold-based approaches rely 86 

solely on an Normalized Difference Water Index of ice (NDWIice) threshold (e.g. Dell 87 

and others, 2020; Williamson and others, 2018), Moussavi and others (2020) employs 88 

a multiple threshold approach to map surface lakes more accurately on a pan-Antarctic 89 

scale, achieving accuracies of > 95% and > 97% for Landsat 8 and Sentinel-2 90 

respectively.  91 

 92 

Despite the significance of slush for firn-air depletion and as a possible precursor to 93 

the formation of surface water bodies, little is known about its spatial-temporal trends 94 

across Antarctic ice shelves on intra-seasonal and inter-annual timescales. Previous 95 

research on the Nansen Ice Shelf utilised a threshold-based approach on cloud-free 96 

imagery to identify areas of slush as those with an NDWIice between 0.12 and 0.14 97 

(Bell and others, 2017). This approach built upon the work of Yang and Smith (2013), 98 

who used NDWIice thresholds to map surface streams on the southwestern Greenland 99 

Ice Sheet. Yang and Smith (2013) commented on the difficulties of using remote 100 

sensing to distinguish between water and slush on the ice sheet surface, as the high 101 

liquid water content of slush results in similar spectral reflectance values to water. 102 

However, Yang and Smith (2013) found that a low NDWIice threshold of 0.12 identified 103 

all water pixels, and a moderate NDWIice threshold of 0.14 helped to eliminate slush. 104 

Whilst this approach may perform well in particular locations, it cannot necessarily be 105 

applied across all Antarctic ice shelves given the spectral similarities of slush to 106 

surface water, blue ice and shaded snow (Moussavi and others, 2020). As such, 107 

thresholds that are suitable in one scene may not be suitable in other scenes, and 108 

variable thresholds would be needed if this approach were to be applied across many 109 

scenes. 110 

 111 

ML offers an alternative to the threshold-based approach, and typically utilises more 112 

spectral information than single or multi-band methodologies as ML methods can 113 

automatically determine which spectral information is valuable for making 114 

classification decisions. Whilst ML is more computationally expensive, cloud-based 115 



geoprocessing platforms such as Google Earth Engine (GEE) have made possible its 116 

application on a pan-Antarctic scale, without the need for local, high-performance 117 

computing clusters. Overall, ML has been shown to produce similar results to the 118 

threshold method when mapping surface water bodies on Antarctic ice shelves 119 

(Halberstadt and others, 2020). However, it has not been applied to the mapping of 120 

slush, and therefore the total area of all surface meltwater across Antarctic ice shelves 121 

remains underestimated.  122 

  123 

This study, therefore, aims to use a machine learning (ML) methodology to develop a 124 

supervised classifier within GEE capable of detecting, and differentiating between 125 

slush and ponded surface water across all Antarctic ice shelves. To do this, we: (1) 126 

Train a supervised classifier capable of lake and slush identification on six different 127 

Antarctic ice shelves; (2) Validate the classifier by investigating the agreement with 128 

manual classification by a set of experts; and (3) apply the final classifier to the Roi 129 

Baudouin Ice Shelf (RBIS) for the period 2013 to 2020 to identify spatial patterns and 130 

temporal variability in slush and ponded surface water. 131 

2 MATERIALS AND METHODS 132 

Here we introduce the study areas used to train and validate the classifier. We also 133 

describe the steps taken to select and pre-process the Landsat 8 Level 1 images used 134 

by the classifier. We then describe the methods used to build the classifier, before 135 

explaining how we validate it. Finally, we discuss how we apply the validated classifier 136 

to the RBIS. 137 

 138 

2.1 Study areas 139 

We trained and validated our methods on six individual ice shelves (Figure 1); (i) 140 

Nivlisen, (ii) Roi Baudouin, (iii) Amery, (iv) Shackleton, (v) Nansen, and (vi) George VI 141 

(Figure 1, Table S.1). These ice shelves are characterised by a range of surface melt 142 

conditions and features, resulting in a wide variety of surface spectral characteristics. 143 

Additionally, all six ice shelves experience snow erosion driven by katabatic winds, 144 

which leads to the formation of extensive areas of blue ice at their grounding lines. 145 

The key information for each of these ice shelves is presented in Table 1.  146 



 147 

 148 
 149 

Figure 1: Study area figure showing the six ice shelves selected for use in the 150 

unsupervised k-means clustering algorithm. Dashed coloured boxes indicate the 151 

location of the surrounding Landsat-8 images for a) Nivlisen, b) Roi Baudouin, c) 152 

Amery, d) Shackleton, e) Nansen, f) George VI. The different coloured boxes indicate 153 

different path/rows used for each study site. Ice-shelf boundaries (from the SCAR 154 

Antarctic Digital Database (Gerrish and others, 2021) are marked by a solid black line 155 

on both the main and subset images. The central map of Antarctica is the Centre-156 

Filled LIMA Mosaic (Bindschadler and others, 2008).  157 

 158 

 159 

 160 

 161 

 162 

 163 



Table 1: Study area details for the six ice shelves used in the unsupervised k-means 164 

clustering algorithm.  165 

 166 

Ice Shelf Latitude Longitude Ice-sheet 
Region 

Area (km2) General Surface 
Water Characteristics 

Key Citations 

Nivlisen 70.7° S 11.7° E Dronning 
Maud Land, 
East 
Antarctica 

7380 Elongate surface 
lakes expand  
towards ice shelf’s 
calving front as melt 
season progresses  

Dell and 
others (2020) 

Roi 
Baudouin  

69.9° S 
 
 

32.6° E 
 
 

Dronning 
Maud Land, 
East 
Antarctica 

33,200 Extensive melt near  
the grounding line in 
addition to buried 
lakes 

Dunmire and 
others  (2020); 
Lenaerts and 
others  (2017) 

Amery 73.1°S 67.3° E 
 
 

East 
Antarctica, 
Pyrdz Bay, 
East 
Antarctica 

61,800 Surface drainage 
system comprised of 
surface channels and 
lakes 

Fricker and 
others  (2020); 
Spergel and 
others  (2021) 

Shackleton 66.4°S 100° E 
 
 

Queen Mary 
Land, East 
Antarctica 

 Surface lakes near 
the grounding line 

Arthur and 
others  
(2020b) 

Nansen 74.9°S 162.8° E 
 
 
 

Victoria 
Land, East 
Antarctica 

2270 Large surface river 
exports surface 
meltwater into ocean 
via a 130 m wide 
waterfall  

Bell and 
others  (2017); 
Frezzotti 
(1993) 

George VI 70.7°S 68.2° W 
 
 

South-west 
Antarctic 
Peninsula 

30,300 Extensive ponding in 
northern region since 
early 1940s 

Banwell and 
others  (2021); 
Reynolds 
(1981); 
Wagner 
(1972) 

 167 

2.2 Scene selection and pre-processing 168 

Identical criteria and methods were used to select and pre-process suitable Landsat 8 169 

scenes across both the training and validation steps of this methodology (Figure 2). 170 

We first identified suitable image scenes for each study site by searching the Landsat 171 

8 Level 1 image collection from 2013 to 2020, filtering for images with < 40% cloud 172 

cover and > 20° solar elevation (Halberstadt and others, 2020). Solar elevations > 20° 173 

only were used to reduce the impact of shadowing (Halberstadt and others, 2020). 14 174 

training images (two for each ice shelf, and an extra two for Nansen; see section 2.3 175 

for further explanation), and six separate validation images (one for each ice shelf) 176 



were then selected for the purpose of training and validating the classifier respectively 177 

(Table S1). When choosing suitable training and validation images, we aimed to select 178 

a range of images that spanned the full austral melt season (1 November to 31 March) 179 

and were acquired at a range of solar elevations (20.9° to 36.6°) (Table S1). This 180 

approach ensured that we were training and validating the classifier using images with 181 

a wide range of spectral characteristics. 182 

 183 

Scenes were pre-processed by converting to per-pixel top-of-atmosphere (TOA) 184 

values (Dell and others, 2020), and by clipping to the ice shelf-boundaries (from the 185 

SCAR Antarctic Digital Database (Gerrish and others, 2021). A rock mask was then 186 

applied to each scene, following the method of Moussavi and others (2020). This mask 187 

was then buffered by 1 km to ensure full removal of rock and rock shadow from each 188 

scene (Halberstadt and others, 2020). Clouds (including cirrus) and cloud shadows 189 

were identified and masked using the Landsat 8 Quality Assessment Bands, with a 4 190 

km buffer applied to ensure full removal.  191 

  192 

Finally, all pixels with an NDWIice > 0.1 were selected for further analysis. We note that 193 

in previous studies, to identify slush in addition to shallow and deep water, a threshold 194 

of 0.12 has been used (Bell and others, 2017; Yang and Smith, 2013). However, in 195 

our study, we lowered the NDWIice threshold to 0.1 to include more potentially wet 196 

pixels, which were then categorised as ‘slush’, ‘water’ or ‘other’ by the classifier at a 197 

later stage. NDWIice was calculated using Landsat 8 bands 2 (blue) and 4 (red): 198 

  199 

NDWIice = (Blue Band – Red Band)/ (Blue Band + Red Band).      [1] 200 

 201 

2.3 Training data generation and supervised classification 202 

To generate training data and to train a supervised classifier, we followed the general 203 

methodology of Halberstadt and others (2020), which we briefly summarise here. 204 

Training data were generated by applying an unsupervised k-means clustering 205 

algorithm (Arthur and Vassilvitskii, 2007) in GEE, which identifies clusters of 206 

spectrally-distinct pixels across a set of 14 scenes from bands 1-7 (Figure 3c).   The 207 

k-means clustering algorithm, which is the only supervised classification algorithm 208 



available in GEE, is widely-used by the community and is robust, and for these 209 

reasons chosen for this study. Initial training data were generated using two image 210 

scenes per ice shelf. Our initial trained classifier produced significant misclassification 211 

errors over 'dirty ice' (i.e. ice that contains debris and/or sediment) regions; the 212 

inclusion of two additional Nansen Ice Shelf training scenes added 'dirty ice' training 213 

data and improved classifier performance. 214 

 215 

 216 

 217 
 218 

Figure 2: Workflow detailing the pre-processing, training, validation, and application 219 

steps for creating and using a supervised classifier to map slush and ponded water 220 

across Antarctic ice shelves using GEE 221 

 222 

The k-means clustering algorithm was executed by sampling 100,000 pixels from each 223 

image at the Landsat 8 native grid size of 30 m. We specified a minimum of 5 and a 224 

maximum of 70 clusters when running the k-means clustering algorithm. This 225 

maximum value was manually determined, and increasing the value further did not 226 

have an impact on the output of the clusterer, as the cluster typically returned no more 227 

than ~ 20 clusters. We then manually interpreted the resulting clusters and grouped 228 



them into interpreted classes: ponded water, slush, and other (including, but not limited 229 

to, blue ice, snow, and dirty ice). The boundary between slush and ponded water was 230 

determined by the developer of the classifier, however the transitional and subjective 231 

nature of this distinction should be noted, and this boundary is therefore imperfect. In 232 

some cases, clusters identified using the k-means algorithm overlapped two 233 

interpreted classes. These clusters were therefore further subdivided using k-means 234 

(sampling 10,000 pixels at a grid size of 30 m, and specifying a minimum of 8 and 235 

maximum of 12 clusters) and the sub-clusters were assigned to an interpreted class. 236 

Once the final interpreted classes were formed, areas of mis-classification error were 237 

manually masked from the training data. We then randomly sampled 1000 pixels from 238 

each interpreted class, to form the final training dataset for all ice shelves combined. 239 

These data were then used to train a Random Forest Classifier, implemented in 240 

Google Earth Engine. Random Forest Classifiers use numerous tree predictors to 241 

generate a most-likely outcome (Breiman, 2001). The number of trees for this classifier 242 

was set to 150. The relative importance of each band within the Random Forest 243 

Classifier was also determined within GEE. 244 

 245 

 246 
 247 

Figure 3: An example workflow for the k-means clustering algorithm over the Nivlisen 248 

Ice Shelf (Landsat 8, 2016-12-27). a) Base image of the Nivlisen Ice Shelf, the solid 249 

black line marks the ice-shelf area, the dashed box shows the zoomed area featured 250 

in b, c, and d. b) True colour composite, c) k-means clusters (shown as different 251 

colours), d) interpreted ponded water and slush classes, identified from the k-means 252 



clusters in (c). In total, 10 k-means clusters were combined to form the ponded water 253 

class, and 10 k-means clusters were combined to form the slush class.  254 

 255 

2.4 Validation 256 

The performance of the supervised classifier was validated using the validation 257 

dataset, which included one image scene for each of the six study areas. For each of 258 

the six validation scenes, the Random Forest Classifier was applied (Figure 4), and 259 

250 classified pixels were randomly sampled from each scene. We then used expert 260 

elicitation (Bamber and Aspinall, 2013), where four glaciologists, who we call ‘experts’, 261 

were each asked to manually interpret a total of 100 pixels for each image scene, 262 

classifying them as either ‘ponded water’, ‘slush’, or ‘other’. Experts viewed each pixel 263 

within its surrounding spatial context, and were permitted to zoom in and out of the 264 

image. Furthermore, the experts were all familiar with looking at ice sheet/shelf surface 265 

hydrology using medium-resolution optical data, and were not directly involved with 266 

training the classifier. Experts were not given direction for the interpretation of pixels, 267 

to ensure that their interpretations were not biased by the individual who developed 268 

the classifier. Of the 100 pixels per image interpreted by each expert, the first 50 pixels 269 

for each of the six images were identical. These 300 pixels (the ‘intercomparison 270 

dataset’) were used to compare expert opinions to highlight the subjectivity of manually 271 

identifying slush and ponded water in satellite imagery. The second 50 pixels per 272 

image were unique to each expert, and comprised the ‘main validation dataset’ (i.e. 273 

1200 pixels in total).  274 

 275 

For each pixel, in addition to providing an interpretation, each expert assigned a 276 

confidence score to reflect the certainty of their manual interpretation. The confidence 277 

score values were assigned as either: (1) low-confidence, (2) medium-confidence, or 278 

(3) high-confidence (Bamber and Aspinall, 2013). These confidence scores provided 279 

a way to identify pixels that were likely classified with less accuracy by the experts, 280 

due to their uncertainty.  281 

 282 

Finally, we present true positives and negatives, as well as false positives (errors of 283 

commission) and false negatives (errors of omission) as a confusion matrix  (Stehman, 284 



1997) to calculate the classifier accuracy (compared to the expert interpretations) for 285 

all pixels, as well as just for the high-confidence pixels. The overall classifier accuracy 286 

was calculated by summing all correctly classified pixels (true positive and true 287 

negatives) and dividing this sum by the total number of pixels sampled.   288 

 289 

2.5 Application on the Roi Baudouin Ice Shelf 290 

Once validated, the classifier was applied to the entire RBIS for Landsat 8 images 291 

from 2013 to 2020 to test how well the method upscaled through space and time. We 292 

filtered only for images with a solar elevation > 20°, but accepted any level of cloud 293 

cover in order to utilise as much of the available imagery as possible, thereby 294 

increasing data coverage through space and time. These selected images were then 295 

pre-processed using the same steps that were applied in the training and validation 296 

phases (see section 2.2). However, rather than processing individual scenes as we 297 

did previously, we created 15-day (bi-monthly) mosaiced products from the available 298 

scenes to maximise spatial coverage prior to applying the NDWIice > 0.1 filter. Each 299 

15-day mosaiced product was produced using the ‘quality mosaic’ function in GEE, 300 

which used the pixel with the greatest NDWIice value for locations where pixels 301 

overlapped. For each melt season, the products start on 1 November, and continue in 302 

blocks of exactly 15 days until 31 March (or until 1 April for leap years). The supervised 303 

classifier was applied to each 15-day product, and the total areas of both slush and 304 

ponded water were calculated. For 15-day periods that did not have complete data 305 

coverage across the RBIS, we scaled slush and ponded water areas to the full ice-306 

shelf area by calculating the area of each 15-day product as a fraction of the full ice-307 

shelf area, and then multiplying this fraction by the full ice-shelf area (Williamson and 308 

others, 2018; Banwell and others, 2021). In addition to 15-day products, for each melt 309 

season, we compiled maximum melt extent products (Williamson and others, 2018) to 310 

show each pixel that was covered by either slush, ponded meltwater, or both slush 311 

and ponded meltwater.  312 

 313 

3 RESULTS 314 

3.1 Classification accuracy based on expert elicitation 315 



Table 2a shows the results from the intercomparison dataset for each scene in the 316 

validation dataset, which were interpreted by all four experts. The data shown include 317 

all interpreted pixels regardless of the associated confidence scores. Overall, the 318 

accuracy of the ponded water class is 78%, and the accuracy of the slush class is 319 

71%. For the ponded water class, the experts all produced similar accuracy scores for 320 

the RBIS (8% spread), and more dissimilar scores for the Nansen Ice Shelf (30% 321 

spread), with an mean spread across all 6 ice shelves of just 6%. For the slush class, 322 

the experts are in closest agreement over the George VI Ice Shelf (11% spread), and 323 

in least close agreement over the Nansen Ice Shelf (79% spread). As with the water 324 

class, these discrepancies tend to cancel out between experts giving an overall mean 325 

spread across all ice shelves of just 5%. Table 2b shows the same data as Table 2a, 326 

but only for the pixels for which the experts had ‘high-confidence’ in their 327 

interpretation.  328 



 329 

Table 2a: Accuracy scores for the intercomparison dataset (the 50 pixels shared by all experts for each ice-shelf validation image), 330 

listed by expert. 331 

 Ponded Water  Slush 

 Roi B Nansen Nivlisen Shackleton GVI Amery Mean Roi B Nansen Nivlisen Shackleton GVI Amery Mean 
Expert 1 88% 91% 71% 84% 65% 64% 77% 70% 85% 71% 65% 67% 63% 70% 
Expert 2 90% 80% 88% 88% 80% 69% 82% 76% 52% 92% 73% 76% 69% 73% 
Expert 3 96% 94% 80% 78% 65% 50% 77% 88% 94% 83% 60% 65% 37% 71% 
Expert 4 92% 64% 85% 88% 68% 58% 76% 68% 15% 82% 79% 70% 93% 68% 
Mean 91% 82% 81% 84% 70% 60% 78% 76% 61% 82% 69% 69% 65% 71% 

 332 

 333 

Table 2b: High-confidence accuracy scores for the intercomparison dataset (the 50 pixels shared by all experts for each ice-shelf 334 

validation image), listed by expert. 335 

 Ponded Water  Slush 

 Roi B Nansen Nivlisen Shackleton GVI Amery Mean Roi B Nansen Nivlisen Shackleton GVI Amery Mean 
Expert 1 83% 80% 83% 88% 89% 67% 82% 59% 86% 83% 64% 89% 67% 75% 
Expert 2 94% 50% 94% 89% 88% 75% 82% 76% 33% 100% 89% 88% 67% 76% 
Expert 3 100% 92% 83% 88% 91% 40% 82% 87% 92% 89% 70% 100% 40% 80% 
Expert 4 100% 100% 100% 100% 77% 62% 90% 50% 25% 100% 100% 91% 57% 71% 
Mean 94% 81% 90% 91% 86% 61% 84% 68% 59% 93% 81% 92% 58% 75% 

 336 

 337 



 338 



Figure 4: Preliminary outputs from the supervised classifier, as applied to six Landsat 339 

8 validation images for a) Nivlisen Ice Shelf, b) Roi Baudouin Ice Shelf, c) Amery Ice 340 

Shelf, d) Shackleton Ice Shelf, e) Nansen Ice Shelf, f) George VI Ice Shelf. Panels in 341 

column i) show the pre-processed Landsat 8 RGB images to be classified, with the 342 

red boxes delineating close-up areas shown in panels in columns ii) and iii). Panels in 343 

column ii) show the close up areas in RGB, and panels in column iii) show the results 344 

for these areas produced by the supervised classifier, with blue = ponded water and 345 

green = slush. 346 

 347 

Table 3a shows the accuracy results for the classifier over the main validation dataset 348 

(where each expert interpreted 50 different pixels per ice-shelf). The accuracy for the 349 

ponded water class is 78% and for the slush class is 70%; these values are very similar 350 

to those produced by the intercomparison data set. The classifier is most accurate at 351 

identifying ponded water for the Shackleton Ice Shelf (91%) and least accurate for the 352 

Amery Ice Shelf (61%). In contrast, the classifier is most accurate at identifying slush 353 

for the Nivlisen Ice Shelf (80%) and least accurate for the Nansen Ice Shelf (60%). 354 

The percentage of low confidence pixels ranges from 13% (Nivlisen and George VI 355 

ice shelves) to 28% (Shackleton Ice Shelf). 356 

  357 

Table 3b shows the accuracy results for the main validation dataset using high-358 

confidence pixels only. The mean accuracy for the lake class is 84% and for the slush 359 

class is 82%. Agreement between the experts and the classifier is greatest for ponded 360 

water over the Shackleton Ice Shelf (96%) and for slush over the Nivlisen Ice Shelf 361 

(92%). This agreement is lowest for ponded water over the Amery Ice Shelf (65%) and 362 

for slush over the RBIS (72%). 363 

 364 

For the ponded water class, Expert 2 had the lowest agreement with the classifier. 365 

This was due to the classifier designating certain pixels as ‘other’ (e.g. non-wet surface 366 

facies), whilst the expert interpreted the pixels to be ponded water. For the slush class, 367 

Expert 4 had the lowest agreement with the classifier, which classified certain pixels 368 

as ‘other’ that were interpreted to be slush by the expert. 369 

 370 



3.2 Relative importance of input bands 371 

The relative importance of each band within our supervised classifier was determined 372 

within GEE using the ‘.explain()’ function’, and the results show that all bands 373 

contribute towards the classification of slush and ponded water (Table 4). However, 374 

band 5 (near-infrared) is of greatest importance for the supervised classifier, with an 375 

importance score of 20% (Table 4). Bands 1-4 (visible) and 6-7 (short-wave infrared 1 376 

and 2) all have similar weightings, with importance scores ranging between 12% and 377 

15%.  378 

 379 

Table 3a: Accuracy scores for the main validation dataset (the 250 individual pixels 380 

(50 per expert) for each ice-shelf validation image) for the ponded water and slush 381 

classes separately. The percentage of pixel confidence scores for each ice shelf are 382 

also given.  383 

  Ponded Water 
Accuracy 

Slush 
Accuracy 

Low 
Confidence 

Pixels 

Medium 
Confidence 

Pixels 

High 
Confidence 

Pixels 

Nivlisen 80% 80% 13% 48% 40% 

Roi Baudouin 87% 65% 19% 32% 50% 

Amery 61% 64% 15% 59% 27% 

Shackleton 91% 75% 28% 46% 26% 

Nansen 81% 60% 22% 47% 31% 

George VI 70% 74% 13% 52% 36% 

Mean 78% 70% 18% 47% 35% 

 384 

Table 3b: High-confidence accuracy scores for the main validation dataset (the 250 385 

individual pixels (50 per expert) for each ice-shelf validation image) for the ponded 386 

water and slush classes separately. 387 

  388 

  Ponded Water Slush 

Nivlisen 92% 92% 

Roi Baudouin 86% 72% 

Amery 65% 73% 

Shackleton 96% 88% 

Nansen 80% 74% 

George VI 86% 91% 

Mean 84% 82% 

 389 



 390 

Table 4: Relative importance of each of the Landsat 8 bands used by the supervised 391 

classifier. 392 

 393 

B1 B2 B3 B4 B5 B6 B7 
14% 13% 14% 15% 20% 12% 12% 

 394 

3.3 Application to the Roi Baudouin Ice Shelf 395 

After applying the supervised classifier to the Roi Baudouin Ice Shelf, two key datasets 396 

are produced; a raw (unscaled) dataset, and a scaled dataset. The scaled dataset is 397 

produced to provide a better estimate of the total ice-shelf surface water area, as for 398 

many dates in this study, there is incomplete area-of-interest coverage (Figure 5). Of 399 

the 48 15-day periods presented In Figure 5, 14 have a percentage AOI coverage 400 

below 50 %. For the remainder of this paper, the scaled values only will be presented, 401 

however readers should remain aware of the potential for error when scaling up values 402 

across a full ice-shelf, because, for example, unscaled data with incomplete AOI 403 

coverage could already represent 100% of the total surface meltwater on the ice shelf 404 

surface. Unscaled data are presented in Figure S.1. 405 

 406 

The maximum areas of slush and ponded water are reached between 15 January - 29 407 

January 2016 (3.5 x 109 m2) and 30 January - 13 February 2017 (1.9 x 109 m2) 408 

respectively (Figure 5). In contrast, the lowest summer maximum areas of slush and 409 

ponded water occur between 15 January - 29 January 2019 (slush), and 14 February 410 

- 28 February 2019 (ponded water), reaching values of 5.7 x 108 m2 and 2.9 x 108 m2 411 

respectively. For all seven melt seasons, the total area of slush and ponded water is 412 

greatest in either January or February. Furthermore, for all melt seasons except 413 

2018/2019, the greatest areas of slush and ponded water are observed in the same 414 

15-day periods within each melt season. However, for the austral summer of 415 

2018/2019, the greatest total area of slush is recorded approximately a month prior to 416 

the greatest total area of ponded water (Figure 5).  417 

 418 

Overall, the absolute difference between the greatest areas of slush for each melt 419 

season is larger than the absolute difference between the greatest areas of ponded 420 



meltwater for each melt season, whilst the percentage change in ponded water is 421 

slightly greater than the percentage change in slush. Slush ranges from 5.7 x 108 m2 422 

between 15 January and 29 January 2019, to 3.5 x 109 m2 between 15 January and 423 

29 January 2016 (a 521% change in area), whereas ponded water  varies from 2.9 x 424 

108 m2 between 14 February 2019 and 28 February 2019, to 1.9 x 109 m2 between 30 425 

January 2017 and 13 February 2017 (a 559% change in area) (Table S.2). Overall, 426 

slush dominates the total melt area across the RBIS, making up over half of the total 427 

melt on 39 of the 48 15-day periods investigated, and on average accounts for 64% of 428 

the total meltwater area (Table S.2). From the 2014/2015 melt season onwards, the 429 

percentage slush on the RBIS is greatest between 16 November and 30 December, 430 

when it accounts for between 84% and 96% of the total meltwater area.  431 

  432 

Of the seven melt seasons investigated, the 2016/2017 melt season has the greatest 433 

recorded total meltwater area, reaching 5 x 109 m2 between 30 January and 13 434 

February 2017. Of this total area, 62% is slush, and 38% is ponded water (Table S.2). 435 

Conversely, the melt season that had the lowest total meltwater area is 2019/2020, 436 

with  7.5 x 108 m2 between 15 January and 29 January 2019. Of that total area, 76% 437 

is slush and 24% is ponded water (Table S.2).  438 

 439 

 440 

 441 
Figure 5: Time series data for slush and ponded water across the Roi Baudouin Ice 442 
Shelf. Grey bars show the % AOI coverage for each 15-day period plotted. Lines show 443 
scaled areas of slush (blue line) and ponded water (green line) on the RBIS from 444 



2013/2014 to 2019/2020, derived from supervised classification of 15-day Landsat 8 445 
mosaic products created in GEE (see section 2.5). Data are only plotted where ≥ 20% 446 
coverage of the RBIS is met. X axis date labels indicate 1 January for each year.  447 
 448 

Figure 6 shows each of the 15-day data products that were produced within GEE for 449 

the 2016/2017 melt season over the RBIS. In these 15-day products, we manually 450 

inspected each image and ignored errors of commission (false positives) across the 451 

central and distal regions of the ice shelf. Therefore, the following results focus on the 452 

true positive results for the 2016/2017 season, which show meltwater in proximity to 453 

the ice shelf’s grounding line. Little meltwater is detected between 1 November and 454 

15 December 2016. However, from 16 December - 30 December 2016 onwards, areas 455 

of slush begin to develop near the grounding line in both the south-east and central 456 

southern parts. By early January (31 December 2016 - 14 January 2017) ponded 457 

water also begins to form amongst the areas of slush, and the areas of both classes 458 

increase until 30 January - 13 February 2017, after which the areas of both classes 459 

begin to decrease (Figures 5 and 6). A number of the 15-day products for this melt 460 

season have data gaps resulting from cloud masking, or a lack of image scenes 461 

covering the area of interest. The percentage ice-shelf area coverage by imagery for 462 

the 2016/2017 melt season ranges from 38% (30 January - 13 February 2017) to 99% 463 

(1 December - 15 December 2016) (Table S.2).  464 

  465 

Data were combined to produce maximum melt extent across the RBIS for each melt 466 

season (1 November - 31 March) from 2013/2014 to 2019/2020 (Figure 7). In every 467 

melt season, both slush and ponded water are present predominantly in the south-468 

east of the ice shelf, towards the grounding line. This area of slush and ponded water 469 

is the most spatially extensive in 2016/2017 and 2017/2018 (Figure 7d, e), when it 470 

extends approximately 47 km from the grounding line towards the ice-shelf front. In 471 

this region, slush is more spatially extensive than ponded water. Ponded water is 472 

typically observed towards the northern edge of the melt zone (i.e., closer to the ice 473 

front) each year, and is often surrounded by slush (Figure 7). Between 2013 and 2020, 474 

we find that 26% of all pixels that are covered by surface water are covered by both 475 

slush and ponded water at least once.  476 

 477 



 478 
Figure 6: 15-day melt products for the 2016/2017 melt season across the Roi 479 

Baudouin Ice Shelf. White areas are areas that have either been masked out or were 480 

not covered by imagery in the first instance. The red box in the 30 Jan 2017 – 13 Feb 481 

2017 panel roughly denotes the area where errors of commission due to cloud and 482 

cloud shadows are generally found.  483 

 484 



 485 
  486 

Figure 7: Maximum melt extent plots for each melt season, calculated by mosaicing 487 

all 15-day melt products for each melt season. Maximum areas of slush, ponded 488 

water, and both (where both slush and ponded water are identified within the melt 489 

season) are mapped. Red boxes roughly delineate areas affected by data gaps in 490 

the 2014/2015 and 2018/2019 melt seasons.  491 

 492 

 493 



4 DISCUSSION 494 

4.1 Classifier Accuracy  495 

The mean accuracies across all ice shelves of the ponded water and slush classes 496 

were 84% and 82% respectively when comparing the classifier’s outputs to high-497 

confidence expert interpretations (which comprised 35% of all pixels within the main 498 

validation dataset) (Table 3b). Over all ice shelves, the percentage of pixels that were 499 

classified with high confidence did not exceed 50% (Table 3a), highlighting that even 500 

‘experts’ are unable to classify all pixels with total confidence. Thus, although we use 501 

expert opinion to assess the accuracy of our classifier, each expert may be no more 502 

accurate than the classifier output itself. A solution to this would be to use ground 503 

based multi- or hyper-spectral data from ice shelves as ground truth data. However, 504 

to the authors’ knowledge, no such data currently exist.  505 

 506 

By collecting four expert interpretations, we aimed to minimise the effects of bias that 507 

each expert may have, and to get a more holistic set of expert interpretations for each 508 

ice shelf. The need for this approach was indicated by the spread between high-509 

confidence pixels classified by experts for each ice shelf in the intercomparison 510 

dataset (Table 2b). For example, on the Nansen Ice shelf, agreement between the 511 

experts and the classifier ranged from 50% to 100% for ponded water, and from 25% 512 

to 86% for slush. Whilst the accuracy assessment attempts to best mimic ground-513 

truthing through the use of multiple experts, it should be noted that the classifier is 514 

trained predominantly by a single person (separate to the experts used to validate the 515 

classifier), and so the classifier may reflect the biases of that individual. In addition, 516 

whilst experts are able to interpret a pixel within its surrounding spatial context, 517 

including both the immediate surrounding pixels as well as those elsewhere on the ice 518 

shelf, the classifier assesses the spectral characteristics of the pixel alone. This 519 

difference could be overcome by using object-based image analysis, however 520 

Halberstadt and others (2020) found such methods had a lower overall accuracy in 521 

comparison to pixel-based methods for the classification of ponded water. In the 522 

future, work should look to collect ground-based multi- or hyper-spectral data across 523 

ice shelves, which would facilitate a more robust assessment of this classifier’s 524 

accuracy.  525 



 526 

As previously mentioned, the main validation dataset for high-confidence pixels 527 

returned accuracy scores of 84% for ponded water and 82% for slush. Similar work 528 

for supervised classification of surface lakes only (i.e. not including slush) on Antarctic 529 

ice shelves achieved a mean pixel-based accuracy score of 93% (Halberstadt and 530 

others, 2020). Our slightly lower scores likely reflect the incorporation of slush into the 531 

classifier, in addition to the fact that we used a wider range of training sites. 532 

Furthermore, our validation techniques were different, as we validated the classifier 533 

against multiple expert opinions, as opposed to just one expert in Halberstadt and 534 

others (2020).  535 

 536 

In our study, agreement between the classifier and the expert interpretations for high-537 

confidence pixels was greatest for ponded water over Shackleton (96%) and for slush 538 

over Nivlisen (92%). However, the classifier accuracy was lowest over Amery, 539 

achieving 65% accuracy for ponded water and 73% for slush. The majority of the 540 

classification errors on the Amery Ice Shelf in particular appear to have resulted from 541 

topographic shadows being incorrectly classified as either slush or ponded water 542 

(Figure 4). Additionally on the validation image for the Amery Ice Shelf, there were 543 

examples of ponded water covered by a thin ice layer (Figure 4). The classifier tended 544 

to classify these areas as slush, as the thin ice layer adjusted the spectral properties 545 

of each pixel, whereas the experts differed in their interpretations and often interpreted 546 

them as ponded water or other.  547 

 548 

Another source of classifier error was subjectivity when defining the slush/ponded-549 

water boundary. Whilst the classifier utilised training data to determine the 550 

slush/ponded-water boundary, comparing classifier results with expert interpretations 551 

revealed some disagreement. However, we note that this disagreement is likely no 552 

greater than disagreement between the experts themselves, resulting from individual 553 

subjectivity, as neither the experts or the classifier were consistently more or less 554 

conservative when marking the slush/ponded-water boundary. Again, considering 555 

future work, without ground based multi- or hyper-spectral data it would be difficult to 556 

further improve such estimations of the slush/ponded-water boundary.  557 



 558 

A final source of classifier-error was errors of commission resulting from cloud and 559 

cloud shadows and this is discussed separately in section 4.4.  560 

 561 

4.2 Comparison to NDWIice 562 

Whilst threshold-based methods have been used for the identification of deep surface 563 

meltwater bodies (e.g. surface lakes and streams) on Antarctic ice shelves (e.g. 564 

Banwell and others, 2014; Bell and others, 2017; Kingslake and others, 2017; Stokes 565 

and others, 2019; Dell and others, 2020; Moussavi and others, 2020), no prior studies 566 

have also attempted to map slush across an entire ice shelf for multiple melt seasons. 567 

Upscaling slush identification through space and time using simple threshold-based 568 

mapping approaches would lead to significant errors of omission and commission, 569 

owing to the spectral similarities between slush and other surface facies (e.g. lakes, 570 

blue ice, dirty ice) (Figure 8). For example, we found that applying NDWIice thresholds 571 

of  > 0.12 and ≤ 0.14 for slush and > 0.14 for ponded water (following Yang and Smith, 572 

2013 and Bell and others, 2017) over the Shackleton Ice Shelf led to large errors of 573 

omission for slush when compared to the classifier output, due to confusion between 574 

water and slush (Figure 8). In contrast, applying these NDWIice thresholds over the 575 

Nansen Ice Shelf led to errors of commission for slush, due to confusion between blue 576 

ice and slush (Figure 8). On the George VI Ice Shelf, however, the differences between 577 

the threshold method and the classifier output were similar, although even here the 578 

threshold method tended to underestimate slush area compared to the classifier 579 

(Figure 8). 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 



 590 

 591 
 592 

Figure 8: Outputs from the supervised classifier and from NDWIice thresholding applied 593 

to sections of the validation images (as shown in Figure 4) for Shackleton, Nansen, 594 

and George VI ice shelves. Panels show the base RGB images, the area classified 595 

using the supervised classifier developed in this study, and the area classified using 596 

NDWIice thresholds, where slush is < 0.12 and ≤ 0.14 and ponded water is > 0.14.  597 

 598 

The limitations of the NDWIice method that we have described above were overcome 599 

through our supervised classifier, as it was trained using seven Landsat 8 bands 600 

(bands 1-7) as opposed to just two (bands 2 and 4) for NDWIice, and it was therefore 601 

better able to distinguish between surface classes using a broader range of spectral 602 



information. For our classifier, the near infrared band (band 5) was found to be the 603 

most important when distinguishing between classes (Table 4). This is likely related to 604 

the low reflectivity of water in near-infrared wavelengths (Work and Gilmer, 1976; Yang 605 

and others, 2011). Overall, whilst simple threshold-based methods seem capable of 606 

accurately classifying ponded meltwater on ice shelves, classifying surface facies 607 

such as slush, which have similar spectral properties to much of their surroundings, 608 

requires more spectral information. Whilst threshold-based approaches do not exclude 609 

the use of more spectral information, the manual selection of each threshold is 610 

arduous. ML overcomes this as it is able to determine which spectral information is of 611 

value for each classification based upon the training data.  612 

 613 

4.3 Evolution of slush and ponded water over the Roi Baudouin Ice Shelf 614 

To demonstrate the capability of our supervised classifier for pan-Antarctic 615 

identification of slush and ponded water over time, we applied it across the RBIS for 616 

the Landsat 8 images between 2013 and 2020. Of the seven melt seasons 617 

investigated (2013/2014 to 2019/2020), the greatest total meltwater extent (5.0 × 109 618 

m2) was recorded between 30 January and 13 February 2017. This observation is 619 

corroborated by Halberstadt and others (2020) who classified surface lakes on the 620 

RBIS over a number of image scenes between 2013 and 2018, and found peak melt 621 

area on the 25th February 2017. Furthermore, our findings align with studies on the 622 

Amery Ice Shelf, where threshold-based methods (Moussavi and others, 2020) and 623 

ML methods (Halberstadt and others, 2020) were used to calculate the area of surface 624 

lakes over a single path/row. Similarly to Moussavi and others (2020), whilst we 625 

identified marked inter-annual variability in both slush and ponded melt areas, we 626 

found the intra-seasonal trends for inferred meltwater storage to be fairly consistent.  627 

 628 

As slush (which may be saturated firn or saturated snow overlying blue ice or refrozen 629 

lakes or extensive ice layers of refrozen previously infiltrated water) accounted for an 630 

average of 64% of the total meltwater area on the RBIS over the full study period, our 631 

findings highlight the importance of accurately mapping slush extent in addition to 632 

ponded water extent when investigating surface meltwater on Antarctic ice shelves. 633 

Most work until this point has focussed on meltwater stored in surface lakes, owing to 634 



their significance for potential hydrofracture-induced ice-shelf collapse. For example, 635 

work by Stokes and others (2019) identified >1300 km2 of surface meltwater held in 636 

surface lakes across East Antarctica in January 2017. Based on our findings, in 637 

January 2017, the mean proportion of slush on the RBIS was 59%. Whilst the 638 

proportion of slush on other East Antarctic ice shelves has not yet been quantified, our 639 

observations of the proportion of slush across the RBIS highlight the need to account 640 

for slush when calculating total surface meltwater areas, and it is likely that the total 641 

area of meltwater across East Antarctica far exceeds the 1300 km2 of ponded 642 

meltwater that has been reported by Stokes and others (2019).  643 

 644 

We found that the proportion of slush relative to ponded meltwater across the RBIS 645 

was greatest between 16 November and 30 December each melt season (excluding 646 

2013/2014, when it was greatest between 15 January and 29 January 2014). Whilst 647 

no previous literature has mapped the extent of slush on an interannual timescale, Bell 648 

and others (2017) used a simple NDWIice threshold to identify slush on a small area of 649 

the Nansen Ice Shelf in the 2013/2014 melt season. They found the area of slush was 650 

greatest on 26th December 2013 and then gradually declined throughout early 651 

January 2014 (Bell and others, 2017). Whilst this trend contradicts our findings for the 652 

2013/2014 season on the RBIS, it corroborates the trends we identify through the 653 

remaining six melt seasons (2014/2015 to 2019/2020). Bell and others (2017) 654 

suggested that the expansive slush identified on the Nansen Ice Shelf in December 655 

coalesced to form ponded meltwater by early January. We propose that a similar 656 

transition occurred across the RBIS, as the percentage of the total meltwater on the 657 

ice shelf held in slush generally fell from the end of December and into early January, 658 

and an increasing amount of melt was therefore held in water bodies.  659 

 660 

For surface meltwater to pond, the underlying surface needs to be impermeable, and 661 

is likely, therefore, to be either blue ice or saturated firn (slush). Based on the results 662 

presented here (Figure 7) many pixels that are classified as ponded water are also 663 

classified as slush at least once in the melt season. Over the full study period (2013-664 

2020), 26% of all water-covered pixels are occupied by slush and ponded water at 665 

least once. In these locations, therefore, it is likely that as melt increases throughout 666 



the melt season, the firn layer becomes increasingly saturated and water can no longer 667 

percolate into the firn pack, which results in ponding at the surface, and lateral transfer 668 

of meltwater across the ice shelf surface. However, we also note that some pixels are 669 

classified as only ponded meltwater during a melt season, and were therefore not 670 

preceded by slush (Figure 7). Evidence for this is seen in all melt seasons and is 671 

particularly prominent towards the central grounding line. We postulate that these 672 

areas of ponded melt are filling depressions within blue ice surfaces or are forming on 673 

top of melt ponds which may have refrozen.  674 

 675 

Exposed blue ice surfaces have been identified previously in proximity to the Roi 676 

Baudouin grounding line, and result from katabatic winds which cause snow erosion 677 

and an increase in near-surface temperatures as winds cause mixing in the stable 678 

boundary layer and adiabatic warming (Vihma and others, 2011; Lenaerts and others, 679 

2017). Lenaerts and others (2017) attributed a doubling in summer surface melt at the 680 

grounding line to the katabatic winds, and they also noted that the exposed blue ice 681 

surfaces will contribute to further melt, as they have a lower surface albedo than snow-682 

covered surfaces. These processes help to explain the main patterns of ponded 683 

meltwater that we observe across the RBIS, as ponded meltwater is clustered near to 684 

the grounding line (Figures 6 and 7).  685 

  686 

4.4 Errors arising from cloud and cloud shadows  687 

In both the validation dataset and the larger Roi Baudouin dataset, errors of 688 

commission due to cloud and cloud shadows are evident (Figures 4-6), which 689 

highlights a limitation of our classifier. For example, from 31 December 2016 to 14 690 

January 2017, and through to the end of the melt season, errors of commission are 691 

identified over the central and distal regions of the RBIS (e.g. see red panel in Figure 692 

6). Similar errors are identified within the maximum melt extent products (Figure 7). 693 

This limitation has also been found in similar previous work (e.g. Halberstadt and 694 

others, 2020), with errors resulting from imperfect cloud masking methods. 695 

  696 

The transient nature of cloud and cloud shadows mean that these errors of 697 

commission will have a low persistence over an entire melt season. This is 698 



demonstrated by Figure 9, which shows the number of times over the full study period 699 

that a pixel is classified as either slush or ponded water over the RBIS. The errors of 700 

commission in the central and distal regions of the ice shelf have a persistence score 701 

of one (Figure 9, grey pixels), meaning that each pixel was classified as water at only 702 

a single point in time. In contrast, areas of extensive meltwater towards the southeast 703 

and central southern grounding line generally have higher persistence values (Figure 704 

9). Therefore, a potential solution to errors of commission resulting from cloud and 705 

cloud shadows when looking at maximum melt products for each melt season would 706 

be to filter out pixels with a persistence of one. However, this would lead to the removal 707 

of some true positives, where water has been correctly classified at its maximum 708 

extent for the melt season, but for only a single point in time. Future work is needed to 709 

develop methods to reduce the errors of commission introduced by clouds, either at 710 

the pre-processing stage prior to classifier development, or post classifier application. 711 

Meanwhile, our maximum melt extents (Figure 7) are likely to be overestimates.  712 

 713 

 714 

 715 



 716 
Figure 9: Heatmap showing the number of times (i.e. persistency scores) each pixel 717 

is classified as a) slush, b) ponded water and c) either slush or ponded water over all 718 

of the 15-day products produced for the full study period (2013 to 2020).  719 



5 CONCLUSIONS 720 

We have presented a ML method that is capable of accurately classifying slush and 721 

ponded water across Antarctic ice shelves using the Landsat 8 record from 2013 to 722 

2020. This is achieved by using a Random Forest Classifier, which is trained using 723 

spectral data from six different ice shelves around the continent. The classifier 724 

performs well across all ice shelves throughout multiple melt seasons, achieving mean 725 

accuracies of 84% for ponded water and 82% for slush. Whilst the classifier 726 

encounters errors when defining the slush/ponded-water boundary, we also find that 727 

experts disagree on where this boundary should lie, and it is therefore likely that the 728 

extent of slush cannot be more accurately mapped without the collection of ground-729 

truthed data. Errors of commission caused by cloud and cloud shadows are the main 730 

source of error associated with this method. Future work should look to improve cloud 731 

masking approaches before applying the classifier, or to develop a means of filtering 732 

out false positives caused by clouds after the classifier has been applied. In this way, 733 

it will be possible to produce accurate time series of slush and ponded meltwater 734 

extent across all Antarctic ice shelves. 735 

 736 

Finally, we applied the classifier to the RBIS for the 2013/2014 to 2019/2020 melt 737 

seasons in order to produce a time series of slush and ponded melt extent. For each 738 

melt season, many of the pixels classified as ponded water were also classified as 739 

slush; an observation that likely captures the saturation of firn and subsequent 740 

formation of surface ponds as the melt season progresses. The mean average of slush 741 

over time is about two thirds of the total meltwater extent (between 2013 and 2020). 742 

This highlights the need to map slush in addition to ponded water on ice shelves over 743 

a pan-Antarctic scale, to ensure we do not underestimate the area of surface 744 

meltwater. The accurate time series data produced by this method, which captures all 745 

surface meltwater across Antarctic ice shelves should be used to validate and improve 746 

surface mass balance models.  747 
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