
J. Neural Eng. 19 (2022) 016016 https://doi.org/10.1088/1741-2552/ac42b6

Journal of Neural Engineering

RECEIVED

30 July 2021

REVISED

7 December 2021

ACCEPTED FOR PUBLICATION

13 December 2021

PUBLISHED

2 February 2022

PAPER

Handling EEG artifacts and searching individually optimal
experimental parameter in real time: a system development
and demonstration
Guang Ouyang1,∗, Joseph Dien2 and Romy Lorenz3,4,5

1 Faculty of Education, The University of Hong Kong, Hong Kong, People’s Republic of China
2 Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD,
United States of America

3 MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
4 Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
5 Department of Psychology, Stanford University, Stanford, CA, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: ouyangg@hku.hk

Keywords: bayesian optimization, neuroadaptive research, EEG artifacts, event-related potentials

Abstract
Objective. Neuroadaptive paradigms that systematically assess event-related potential (ERP)
features across many different experimental parameters have the potential to improve the
generalizability of ERP findings and may help to accelerate ERP-based biomarker discovery by
identifying the exact experimental conditions for which ERPs differ most for a certain clinical
population. Obtaining robust and reliable ERPs online is a prerequisite for ERP-based
neuroadaptive research. One of the key steps involved is to correctly isolate electroencephalography
artifacts in real time because they contribute a large amount of variance that, if not removed, will
greatly distort the ERP obtained. Another key factor of concern is the computational cost of the
online artifact handling method. This work aims to develop and validate a cost-efficient system to
support ERP-based neuroadaptive research. Approach.We developed a simple online artifact
handling method, single trial PCA-based artifact removal (SPA), based on variance distribution
dichotomies to distinguish between artifacts and neural activity. We then applied this method in an
ERP-based neuroadaptive paradigm in which Bayesian optimization was used to search
individually optimal inter-stimulus-interval (ISI) that generates ERP with the highest
signal-to-noise ratio.Main results. SPA was compared to other offline and online algorithms. The
results showed that SPA exhibited good performance in both computational efficiency and
preservation of ERP pattern. Based on SPA, the Bayesian optimization procedure was able to
quickly find individually optimal ISI. Significance. The current work presents a simple yet highly
cost-efficient method that has been validated in its ability to extract ERP, preserve ERP effects, and
better support ERP-based neuroadaptive paradigm.

1. Introduction

Event-related potentials (ERPs) are one of the
most studied phenomena in cognitive neuroscience
research with electroencephalography (EEG). Many
different ERPs components have been studied (e.g.
P300, MMN, ERN etc) and linked to various cog-
nitive processes and states. Moreover, ERPs have
gained traction in the clinical field as they differ in
patients suffering from neurological and psychiatric

conditions as well as from disorders of consciousness
(e.g. Näätänen et al 2012, Morlet and Fischer 2014);
and thus, they may yield clinically relevant biomark-
ers in the future.

However, at the same time, it has been poin-
ted out that the scalability of research into mind-
brain relationships is hindered by the gap between
the enormous complexity of neurocognitive sys-
tems and the simplicity of laboratory-based
controlled experimentation (Nastase et al 2020,
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Chen and Pesaran 2021). This is also the case for
ERP-based research that is often conducted in strictly
controlled lab environments by using often lab- or
study-specific experimental paradigms and settings.
Many decisions about the experimental paradigm
(e.g. type of stimuli, number of stimuli, number of
distractors, stimulus duration, inter-stimulus interval
etc) have been made relatively ad hoc by the experi-
menters (following some heuristics) without system-
atically assessing their effect on ERP characteristics.
Consequently, it is not well understood how replic-
able ERP findings are in general, how generalizable
ERP-based findings are to a much broader class of
experimental stimuli or experimental setting (for a
more general discussion of this problem in cognit-
ive neuroscience, see Yarkoni 2019), or under which
experimental condition certain ERP characteristics
emerge or break down. That this is a timely issue
is reflected in the recent ‘#EEGManyLabs’ initiative
(Pavlov et al 2021) where many different labs are try-
ing to replicate influential ERP findings by using the
originally reported experimental paradigms across
all replication attempts. While this is a very import-
ant step forward for the field, this initiative cannot
address questions about the generalizability of ERP
findings more broadly.

A conceptual solution is to develop closed-loop
experimental systems that are capable of updating
experimental parameters, formulate and test hypo-
theses in real-time (Lorenz et al 2017, Krol et al
2020, Chen and Pesaran 2021). From a broader per-
spective, closed-loop experimental systems have a
long tradition not just in different fields of neur-
oscience (DiMattina and Zhang 2013, Chen and
Pesaran 2021), but also in other disciplines in gen-
eral (Watson and Pelli 1983, Settles 2009, Sutton
and Barto 2018). Equally, neuroadaptive research
paradigms involving real-time EEG have a long his-
tory (Vidal 1977), particularly in the field of brain-
computer interfacing (BCI; Zander et al 2016, Lotte
et al 2018a, 2018b, Roc et al 2020). However, in
neuroadaptive BCI research, the primary goal has
been on optimizing the control ability of users (Lotte
et al 2018a, 2018b) or enriching human-machine
interactionmore broadly (Zander et al 2016, Krol et al
2018). Applying neuroadaptive paradigms in the con-
text of automatically searching for optimal experi-
mental parameters for addressing basic neurocognit-
ive research questions involving human participants
(e.g. which inter-stimulus-interval (ISI) is optimal for
hosting a specific neural effect) has been rare to date
(but see Da Costa et al 2021).

To be more specific, by leveraging online EEG
data analysis in combinationwith intelligent optimiz-
ation algorithms (e.g. Bayesian Optimization), many
more experimental parameters can be explored in a
single experimental session with the aim to systemic-
ally investigate which experimental parameters drive
specific ERP effects. In principle, this methodology

would boost the efficiency of basic research in neural
and cognitive mechanisms and reduce experimenter
bias at the same time (Lorenz et al 2017). The
implementation of this concept has been carried out
recently, with predominant focus on studies involving
functional magnetic resonance imaging (Lorenz et al
2016, 2018). Recent studies also highlighted the
potential of the approach for accelerating biomarker
discovery in stroke patients and for tailoring non-
invasive brain stimulation parameters to the indi-
vidual (Lorenz et al 2019, 2021).

Here, we argue that it would be beneficial to
develop neuroadaptive research paradigms that integ-
rate a functionalmodule of online experimental para-
meter optimization for basic neurocognitive research.
However, many fundamental questions about this
topic remain unclear. For example, are the usually
subtle variations in ERPs in basic research paradigms
obtained online able to drive an online optimization
module in a practical sense? The worst scenario is that
the ERPs obtained from a relatively short duration are
not a clearly structured function (e.g. too noisy) of
a factor of interest from which an optimum can be
reliably detected, thus it may not be practical to build
an online ERP-based optimization loop. The present
work was dedicated to investigating this issue.

A crucial step in developing an ERP-based
neuroadaptive research paradigm is to evaluate the
feasibility of obtaining high-quality ERPs with suffi-
cient signal-to-noise ratio (SNR) in real-time, which
entails an advanced procedure of handling online
noise and artifacts. As is well known, EEG data con-
tain a large amount of artifacts that can overwhelm
genuine neural activity. For instance, eye blink arti-
facts can generate an amplitude easily surpassing
200 µV, while a typical ERP component is less than
20 µV (Berg and Scherg 1994, Plochl et al 2012).
Neural effects, i.e. the difference between conditions
or groups, can be even smaller—commonly within
a few microvolts. Such an effect size would normally
require a couple dozen participants for adequate stat-
istical power even without the presence of major
artifacts; therefore, separating out large artifacts is
crucially important. To obtain the purest possible
neurophysiological data from the EEG, researchers
have identified various non-neural sources that con-
tribute to the variance of EEG data. They include
ocular artifacts, muscle activity, heartbeats, line
noise, electrode connectivity-related noise, and so
on. Although a perfect correction of all artifactual
components is theoretically impossible, and often-
times the application is context-specific (Urigüen
and Garcia-Zapirain 2015, Mannan et al 2018, Jiang
et al 2019), very advanced algorithms including
those incorporating deep-learning neural networks
(Pion-Tonachini et al 2019) have been developed to
effectively identify and isolate them with high gener-
alizability. However, in an neuroadaptive paradigm
that requires online extraction of relevant neural
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information, computational cost (or computational
simplicity) of artifact handling is an important factor
of concern. Many studies opted to apply a simple
amplitude threshold-basedmethod to discard epochs
with abnormally high amplitudes (e.g. Kangassalo
et al 2020, Da Costa et al 2021). This approach is
computationally low-cost, but it may sacrifice too
much information, and those retained data segments
may still contain artifactual components.

Artifacts caused by different sources may have
very different magnitudes. For example, heartbeat
artifacts generate much less variance than ocular
artifacts (Park and Blanke 2019). Most of the cur-
rent artifact-handling methods aim at capturing all
kinds of non-neural components, regardless of the
variance they contribute to the EEG data. A gen-
eral guidance would recommend removing all of
the detected artifacts as long as they are unam-
biguously identified as an artifact. To unambigu-
ously isolate and identify various artifacts, a high
degree of sophistication is involved in most cur-
rent methodologies. First, high-level statistical fea-
tures and relationships need to be modeled and
identified to differentiate and decompose different
sources (e.g. Delorme et al 2007). Second, sophistic-
ated multi-dimensional feature extraction and classi-
fication algorithms would then be applied (Winkler
et al 2011, 2014, Pion-Tonachini et al 2019). The
algorithms involved in these two steps are usu-
ally computationally demanding, so they are usually
applied offline.

Neuroadaptive research paradigms require online
handling of artifacts. In these paradigms, sophistic-
ated but time-intensive offline methods, especially
those relying on extracting long-period statistical fea-
tures, are not applicable. Conversely, online proced-
ures are optimized for speed over accuracy to a greater
degree. However, the majority of the current meth-
odologies for online artifact handling in the BCI field
is still based on feature extraction and classification
algorithms that are computationally costly. A con-
cise overview is given here: (a) The FORCe method
(Daly et al 2015) decomposes a short EEG segment
into the wavelet space and applies independent com-
ponents analysis (ICA) to decompose the wavelet
coefficients. Wavelet transformation is a computa-
tionally heavy procedure (heavier than Fourier trans-
form) in real time processing. The ICA algorithm
used in FORCe, second order blind identification
(SOBI) (Belouchrani et al 1997) is also computa-
tionally heavier than principal component analysis
(PCA) because SOBI conducts matrix diagonaliza-
tion over multiple time lags. The classification mod-
ule in FORCe is also computationally heavy as it cal-
culates many different aspects of statistical feature
for identification of artifact components. (b) Meth-
ods that are based on empirical mode decomposition
(Andrade et al 2006) rely on an iterative identifica-
tion of extrema in the data, which is computationally

heavier than analytic methods that can be implemen-
ted by matrix operation. (c) ICA can also be applied
in an online mode by applying a de-mixing matrix
derived from an existing dataset (training data) to
online data segments. The ICs identified as artifacts
from the training data are removed and the non-
artifact ICs are back-projected to the scalp EEG.How-
ever, the online data may contain novel artifact fea-
tures (e.g. channel noise) that were not present in
the training data and thus would not be captured
in online processing. (d) Some online methods were
particularly designed for removing ocular artifacts
based on a prior knowledge of ocular artifact fea-
tures (Nguyen et al 2012, Somers and Bertrand 2016,
Egambaram et al 2019, Kobler et al 2020); however,
only removing ocular artifacts would not be suffi-
cient for an ERP-based neurocognitive study because
there are many other high-amplitude artifacts (e.g.
due to drastic body movements). In sum, most of the
existing methods rely on two computational mod-
ules that are relatively costly. One is the characteriza-
tion of high-order or complex features of artifacts and
the other one is the online classification techniques
applied on those features.

An exception is the method of artifact subspace
reconstruction (ASR) (Mullen et al 2015, Kothe and
Jung 2016, de Freitas et al 2020). ASR is an online
artifact handling method that is based on a relatively
simple but practical algorithm. ASR identifies arti-
facts in the subspace dimensions separately, which are
defined by the loadings of a single principal compon-
ent (PC) derived from a segment of online data. In
each subspace, if the component amplitude surpasses
a threshold, the component will be dropped, and the
cleaned data are reconstructed from the remaining
components. The thresholds for different PC sub-
spaces are different and are determined by calibration
data. Computationally, ASR is very low-cost as it is
based purely on simplematrix operations andnumer-
ical thresholding. The computational cost is substan-
tially lower than that of online extraction and clas-
sification of complex features. ASR has been shown
to be able to effectively isolate artifacts in real time
(Mullen et al 2015).

In this article, we present a new and simpler
approach that is more cost-efficient andmay be more
suitable for the specific application in ERP-based
neuroadaptive research. We propose that there is
room to further and substantially reduce the com-
putational cost and simplify the algorithm when the
application domain is ERP-based research. Similar
to ASR, the core computation is based on PCA, but
the algorithms for identifying artifact components
and online data processing in the following aspects
may be changed to further reduce computational
cost. First, the module of calibration data may be
removed. Second, in an ERP-based paradigm, only
segments encompassing events need to be processed,
thus the computational cost can be further reduced
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by processing less data and discarding the step of
smoothing adjacent segments. Third, the procedure
of thresholding may be further simplified by a simple
cut-off on the PCs obtained online, rather than cal-
culating a real-time threshold incorporating the PC
configurations from the calibration data.

We further propose a refinement that is specific to
ERP-based neuroadaptive studies. In such a research
paradigm, the ERPs are averaged from multiple trials
in a recent segment of online EEG. For example, one
could obtain the ERPs for rare and frequent trials in a
recent segment of online EEG in an oddball paradigm
and use the ERP difference as a neural indicator of
novelty response to assess mental states. Because an
average step is involved, it can be expected that small-
variance artifacts are effectively cancelled out if they
are not time-locked to the event of interest. Besides,
the effectively averaged-out small-variance artifact
affects ERP effects (e.g. amplitude difference between
conditions) only to a minor degree. Therefore, an
algorithm can be oriented to capture large-variance
artifacts, whichwould bear a substantially lower com-
putational complexity than those that are based on
high-level statistical features (see the review above).
The computational cost saved by simple algorithms
can then be used for other modules such as extrac-
tion of complex neural activity (ERP) features, data
visualization, optimization algorithms, and so on.

In sum, we propose that applying methods that
are oriented toward large-variance artifacts may be
sufficient, and may greatly improve computational
cost-efficiency for ERP-based neuroadaptive research;
however, a major remaining question is ‘how large
is large?’ It would require some qualitatively distin-
guishable features in the variance distribution pat-
tern of EEG constituent components for developing
a theoretically sound method of isolating artifacts
based on variance contributions. We propose that
it is highly likely to observe a bimodal pattern in
the variance distribution of EEG constituent com-
ponents based on the observation that most large-
amplitude artifacts are substantially larger than the
level of neural activity. Such a bimodal pattern could
serve as a basis for developing a simple and practical
procedure of fast artifact removal.

This article presents a simple method, single
trial PCA-based artifact removal (SPA), that utilizes
the difference in amplitude between major artifacts
and neurophysiological signals to clean EEG data
in an online mode. SPA is not intended to remove
all artifacts, but rather to efficiently remove major
large-variance artifacts in order to obtain a brain
response pattern with sufficient accuracy for ERP-
based neuroadaptive research paradigms; therefore, it
is crucially important to know if this onlinemethod is
able to preserve the pattern of ERP and subtle neural
effects as compared to the major offline method,
ICA (Jung et al 2000), while having a superior per-
formance in computational efficiency. We evaluate

the performance of this method in both computa-
tional efficiency and preservation of ERP patterns and
neural effects in a newly collected EEG dataset with
200 participants in a visual oddball task and an aud-
itory oddball task by comparing it with other off-
line and online methods. After the comparative eval-
uation, we set up an online ERP-based neuroadaptive
paradigm that aimed to find an individually optimal
ISI parameter that generates the largest SNR of ERP
for a face judgment task. The online optimization
was based on Bayesian optimization. SPA was applied
to this neuroadaptive paradigm to remove artifact
online before the optimization module.

2. Materials andmethods

2.1. Participants
A dataset of 200 participants (62 males, 138 females,
18–40 years old, mean: 25.1, SD: 4.5) performing
visual and auditory oddball tasks was used to eval-
uate the performance of the artifact handling meth-
ods. Five additional participants (4 males, 1 female,
21–34 years old, mean: 28.8, SD: 5.1) were recruited
for the neuroadaptive face judgement task. The par-
ticipants were all healthy adults with normal or
corrected-to-normal vision and without any neuro-
logical disorder. The study was approved by the ethics
committee in The University of Hong Kong (Ref no.:
EA1901017). The participants signed a written con-
sent form before the data recording. Each participant
received 100 Hong Kong dollars per hour as a com-
pensation for participating the experiment.

2.2. Tasks for evaluating the artifact handling
methods
The participants were instructed to perform a visual
oddball task and an auditory oddball task. During the
task, the participant sat on a chair with a visual dis-
tance of about 60 cm to the monitor. Chin rest was
not used. The participants were instructed to min-
imize their physical movement. In the visual oddball
task, the participants watched a sequence of 160 color
squares (blue: 135, red: 24, yellow: 1) presented one-
by-one on the screen with a duration of 200 ms. The
task was to count how many different colors were
in the sequence (the participants did not know how
many in advance). The blue and red were counter-
balanced across participants, i.e. for half of the parti-
cipants, it was: blue: 24, red: 135, yellow: 1. Only blue
and red squares were used in data analyses, serving
as frequent and rare conditions, respectively. The
ISI was uniformly distributed between 1700 ms and
2700 ms. In the auditory task, the parameters were
the same as for the visual oddball task except that the
three colors were replaced by three tones (400 Hz,
600 Hz, 650 Hz) and the ISI was uniformly distrib-
uted between 1200 ms and 1700 ms.
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2.3. EEG collection and basic pre-processing
EEG data were collected in a sound-attenuated room
using Brain Product’s actiCHamp amplifier with 32
channels referenced to a reference internal to the
amplifier. The following pre-processing steps were
conducted on the data: (a) down sampling to 150 Hz;
(b) bandpass filtering between 1 and 40 Hz; (c) re-
referencing to the average (Bertrand et al 1985, Dien
1998). After these basic preprocessing steps, the data
still contained a large amount of artifacts. The three
following methods were then applied to this prepro-
cessed dataset:

2.3.1. Independent component analysis
ICA is a well-established method for handling EEG
artifacts (Jung et al 2000). Here, ICA was applied on
the whole dataset covering the entire task because
the algorithm requires large number of sampling
points to model statistical independence (thus, it was
mostly used as an offline method). The results of the
ICA method served as a benchmark for the two fast
methods. The extended Infomax ICA algorithm in
the EEGLAB toolbox (Lee et al 1999, Delorme and
Makeig 2004) was used in the present work (The
scripts for this study are available online at https:/
/github.com/guangouyang/spa). This ICA algorithm
treats channels as variables and time points as obser-
vations. After ICA, the Multiple Artifact Rejection
Algorithm (MARA) toolbox (Winkler et al 2011) for
automatically identifying and removing artifacts was
applied (probability threshold was set to be 0.5).

2.3.2. Single trial PCA-based artifact removal
The SPA algorithm consists of the following pro-
cedure. First, varimax spatial PCA was applied on
each EEG segments surrounding each time marker
of stimulus onset. The time window was set as from
−200 ms to +800 ms with respect to the stimulus
onset. After applying PCA, the amplitude for each
PC was calculated as square root of the PC variance.
The PCs with an amplitude larger than T were trun-
cated and the rest of the PCs were back-projected to
the sensor space, such that a cleansed segment was
obtained. This cleansed segment is a single trial that is
used to generate the average ERP. The parameter T is
adjustable and was set as 30 in the present application
based on the observation of the data that the value 30
well covers the base cluster in the PC amplitude dis-
tribution. Given the stability in the magnitude range
of major artifacts (e.g. ocular), this threshold para-
meter is expected to be a fixed one that can be uni-
versally applied across experiments within the same
lab setting. In the neuroadaptive experiment later, we
applied the same threshold value.

2.4. Clustering of the artifact components removed
by SPA based on the scalp map pattern
To examine the scalp map pattern of the PC com-
ponents removed by SPA and validate their artifact

nature, we conducted a clustering of all the scalpmaps
of SPA-removed PCs according to the following pro-
cedure. (a) The scalpmaps of all PCs identified as arti-
fact from all single trials and participants were pooled
together. (b) The pair-wise correlations amongst all
the scalp maps were calculated. (c) The scalp map
that has the largest mean correlation with all others
were used as the first seed, and all the other maps that
have a correlation value higher than 0.2 with the seed
map were selected as the first cluster and the average
map of them was obtained. (d) The first cluster was
removed from the correlation matrix and (b) and (c)
were repeated to get the second cluster and the pro-
cedure goes on and on. The clustering was applied
to both of the two tasks and the average patterns of
the first ten clusters as well as their percentages were
shown.

2.4.1. ASR
ASR was developed for online artifact removal by
Mullen and colleagues (2015). ASR also uses a PCA
core to handle artifacts. First, a reference data seg-
ment that contained very few artifacts (e.g. from a
resting state recording without muchmovement) was
collected. Second, PCA was applied to the covari-
ance matrix obtained as the median of the covari-
ance matrices from separate segments in the refer-
ence data. The median was used because it is robust
to outliers; that is, even if the reference data contains a
few large-variance artifacts, it would not greatly affect
the resultant median covariance matrix. The calib-
ration data were then projected onto the PC space,
and ASR calculated the mean µi and standard devi-
ation σi of root mean square values of each PC across
all 0.5 s windows and defined rejection threshold
T i = µi + k·σi for each PC where k was a user-
defined cutoff parameter. Later, each experimental
data segment was again PCA decomposed and the
threshold values derived from the reference data were
used to determine whether the PCs would be kept or
not. The PC components that were kept were back-
projected to the sensor space, forming an artifact-
removed version. Although the ASRmethod also uses
magnitude as a criterion for removing artifacts, the
cut-off thresholdwas different across PCs, whichwere
dependent on the projection of the thresholds to the
actual PC dimension. This means that a low-variance
PC could be discarded if the threshold projected to
this PC dimension was too low. More discussion on
this point will be provided in the Discussion section.
The threshold parameter k used in the present applic-
ation was ten standard deviations, which is relatively
conservative (20). The reference data used here was
simply the artifact-free data cleaned by ICA.Note that
this will reduce the rank of the data by the number
of artifacts removed, resulting in the same number of
zero variance PC in the subsequent PCA decomposi-
tionwhich did not cause technical issue in subsequent
steps. Also, since the major signal variance is usually
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captured in the first few PCs, the reduced rank (caus-
ing zero variance PCs in the end) would not cause
substantial effect. The two key parameters in ASR are:
window length= 1 s; step size= 0.5 s.

2.5. Comparison of artifact handling methods
The comparison was conducted on two measures:
computational cost and neural effect. In compu-
tational cost, we compared the three methods by
reporting how much time (on average) they finish
processing a single participant and a single trial in
the visual oddball task. Each participant’s data con-
tains 160 trials of oddball stimulus, so the processing
time for a single trial was simply calculated by the
processing time for a participant divided by 160. The
sampling rate of the data for calculating the com-
putational cost is 150. The ICA algorithm used was
fromEEGLABusing the extended algorithm (Lee et al
1999). The computational costs for different stop cri-
teria were reported. The computational cost calcu-
lated for ICA does not include the MARA automatic
artifact detection. The key technical parameters of the
computer are as follows: System: Windows 10 Enter-
prise; Processor: Intel(R) Core(TM) i7-8700 CPU @
3.20 GHz; RAM: 16 G; Matlab version: R2020a. Two
neural effects were compared: the early mismatch
negativity (early effect) and the novelty-related P3
(late effect). The early neural effect was characterized
as the ERP amplitude difference from 200 to 300 ms
at O1 electrode for the visual oddball and at Cz elec-
trode for the auditory oddball. The late neural effect
was characterized by ERP amplitude difference from
400 to 500 ms at Pz electrode for visual oddball and
Cz electrode for auditory oddball. For testing whether
the neural effects derived from the three methods are
significantly different, we applied paired t-tests.

2.6. ERP-based neuroadaptive task for real-time
experiment parameter optimization
After evaluating the SPA method in the perform-
ance of online artifact handling, we developed a real
ERP-based neuroadaptive experiment and applied
SPA to it. The main purpose of the experiment was
to determine individually optimal ISI parameters
that generated an ERP with the highest SNR in an
online mode. Since ISI directly affects cognitive pro-
cesses related to adaptation, learning, memory, men-
tal effort and fatigue, which would in turn influence
the generation of ERP, it is reasonable to assume that
the optimal parameter differs across individuals. The
task was a face processing task in which the parti-
cipants were required to observe the facial pictures
(from a public database: https://github.com/NVlabs/
ffhq-dataset) presented serially and judge if the face
was younger than 30 years old or not (by pressing
a button for yes). The facial pictures were randomly
presented in one square of a 2-by-2 lattice to avoid the
adverse feeling when the faces are refreshed rapidly in
a same location. No repetition of square position in

the sequence was allowed. Each face stimulus stayed
on the monitor until the next stimulus was shown.
The duration of each face’s presentation depended
on the ISI which was manipulated (see below). The
size of a single square in the 2-by-2 lattice was 540
pixels× 540 pixels. The screen resolution of themon-
itor was 1920 × 1080 pixels and the physical size
was 52.6 × 29.5 cm. The visual distance was about
60 cm to the monitor. Thus, the square forms a
visual angle of 14◦. The EEGdata were collected using
mBrainTrain’s Smarting amplifier (wireless) and was
online broadcasted to Matlab via labstreaminglayer.
The online EEG stream was processed in Matlab and
the ERP was extracted based on the presentation time
of the face stimuli. SPA was used to remove the arti-
fact and a Bayesian optimization module was applied
to search the optimal ISI that leads to an ERPwith the
highest SNR. Here, every segment from −300 ms to
+700 ms after the presentation of the face image was
sent to the SPAmodule for processing. Therefore, the
online processing was actually with a temporal delay
of more than 700 ms.

2.7. Bayesian optimization of ISI
During the serial presentation of facial pictures, the
ISI was randomly changed every 10 s, ranging from
0.5 s to 5 s (corresponding to the 19 values of 10 s
being divided by integers from 2 to 20). The Bayesian
optimization approach was used to find individually
optimal ISI that leads to the highest SNR of ERP
averaged from a ten-second segment. The Bayesian
optimization method has the advantage of finding
the optimal parameter that lead to the minimum cost
function with less samples (Mockus 1989). The ERP
derived from each 10 s block was obtained online
and the SNR was defined and calculated as the ratio
between the mean standard deviation (across elec-
trodes) averaged from 200 ms to 500 ms and from
the baseline period (−300 ms to 0 ms). Here, the
sign-inversed SNR is the cost (objective) function
to be minimized by Bayesian optimization, and the
ISI is the parameter to optimize upon. Here, we
used the Bayesian optimization implementation from
the Matlab (R2020a) function ‘bayesopt’. Briefly, the
Bayesian optimization first estimates the Gaussian
process model (based on ARD Matérn 5/2 kernel,
Snoek et al 2012) of the objective function using the
initial four samples of ISI as the burn-in phase for fit-
ting the kernel. The kernel parameters to be estim-
ated are length scale and signal standard deviation.
The default initial values were used here. Specifically,
the initial length scale was set to be themean of stand-
ard deviations of the predictor (here, ISI), and the ini-
tial signal standard deviation was set to be the stand-
ard deviation of the responses (here, SNR) divided by
square root of 2. After the real-time updating phase
starts, the probability of improvement acquisition
functionwas used to identify the next ISI to be presen-
ted to the subject, and the Gaussian process model

6
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Figure 1. Bimodal distribution of PC amplitudes. (A) The PC amplitude for all PCs from all single trials (left panel) and the
probability distribution (right panel) from the first 15 participants from the visual oddball task. (B) The results assembled from
all participants.

was updated incorporating newly acquired samples at
each single iteration step.

3. Results

3.1. The bimodal distribution of PC amplitude
from the raw EEG data
Figure 1 shows the amplitude distribution of all
PCs from all single trials for the first 15 parti-
cipants (figure 1(A)) and the result assembled from
all 200 participants (figures 1(B) and (C)) from
the visual oddball task. From the individual results,
we can see that the bimodal distribution pattern
exists in most of the participants. Around 90% of
all individuals exhibit this bimodal distribution pat-
tern, i.e. a clearly differentiable bimodality, indicating
the dichotomy between large-variance artifacts and
other components. The upper boundary of the small-
variance cluster for the present dataset is at around
30 µV. In the grand average pattern (figure 1(C)), the

upper peak in the bimodal distribution was blurred
(figure 1(C)) due to considerable individual differ-
ences (figure 1(B)).

To examine whether the bimodal patterns as
shown in figure 1 differentiate large-variance arti-
facts and other components, we calculated the dis-
tribution of PC amplitudes from the same dataset
but after being cleaned by ICA and MARA. The new
distribution patterns are plotted in figure 2, which
shows that the bimodal pattern of the distribution
of PC amplitude is completely gone after ICA-based
artifact removal with the upper mode appearing to
be truncated. This result suggests that these large-
variance PCs were mostly identified as artifacts by
ICA decomposition and the machine learning-based
artifact identification algorithm MARA.

3.2. Removal of artifact using SPA
Based on the existence of the bimodality, a threshold
can be determined that separates the PCs in different

7
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Figure 2. Distribution of PC amplitudes after ICA-based artifact removal. (A) The PC amplitude for all PCs from all single trials
(left panel) and the probability distribution (right panel) from the first 15 participants from the visual oddball task. (B) The
results assembled from all participants.

modes (clusters) in the distribution. For illustration
purpose, figure 3 shows the effect of removing the
PCs in the upper peak in the variance distribution
in a single participant. The threshold used is 30 (PC
amplitude). Before the removal of PC components,
clear artifacts (mainly ocular) can be seen in the single
trials (figures 3(B) and (C)) which is confirmed by
the scalp maps mainly covering frontal and forehead
areas (figures 3(B) and (C)). After the removal of
large-variance PCs in the upper distribution peak
based on the threshold, the ERP patterns appear to
be more neural-like as shown by the scalp maps in
figures 3(D) and (E).

3.3. The scalp map patterns of the artifact PCs
remove by SPA
Based on the clustering algorithm, the average
scalp maps of the first ten clusters are shown in
figure 4 for both visual and auditory tasks. The
results demonstrate that the artifacts removed are

dominated by ocular movements and bad electrode
connections.

3.4. Comparison of SPA and other methods in real
data
Figure 5 shows the ERPwaveforms from the electrode
Pz from the raw data and from the data processed
by different methods. It is worth noting that the raw
data have been bandpass filtered between 1 and 40Hz,
and average referenced. The results for both indi-
viduals and grand average are shown. The raw data
contains a considerable amount of artifact mostly
due to ocular activity, which injects a large por-
tion of variance across participants (figures 5(A) and
(B)) and distorts the grand average ERP waveforms
(figure 5(C)) as well as the between-condition dif-
ference (neural effect). The distortion of the oddball
effect by the artifact can be clearly seen by the scalp
map of the neural effect which shows a dominant
ocular pattern (figure 5(C)). After ICA-based artifact
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Figure 3. Removal of major PCs components with a distinct artifact feature. (A) The distribution of PC amplitude of all PCs
derived from all single trials. (B)–(D) Single trials, average, and scalp map of ERP before (B)–(C) and after (D)–(E) the removal
of large-variance PCs by SPA. The scalp maps correspond to the time points on the time axis they vertically align to. For
comparison, we also show the results from ASR and ICA in (F)–(I), which show a consistent effect.

Figure 4. The scalp map patterns of the major PCs removed by SPA. Only the first ten clusters were shown. The occupation
percentages of different clusters (from the pool of all artifact PCs in all 200 participants) were marked above the scalp maps.

correction, the artifacts were effectively removed
and the neural effects were appropriately represen-
ted (figure 5(F)). Both the SPA and ASR methods
appear to also effectively remove the artifact while
preserving the major neural effects in a way that
highly resembles ICA’s results, indicating the feasib-
ility of applying fast algorithms for online removal of
major artifact while preserving the underlying neural
effects for the use of neuroadaptive task paradigms.
The computational cost for the three methods are
summarized in table 1. It is worth noting that the
ICA algorithm used here has to be used in the

entire data, thus reporting the average time used
for a single trial does not actually make sense, nev-
ertheless, it helps to provide a perspective on the
computational cost. On average, the SPA algorithm
only costs 0.8 millisecond for processing each single
trial.

3.5. Comparison of the preserved neural effects
across methods
We now examine how well SPA and ASR methods
preserve the neural effects of early mismatch negat-
ivity and late novelty-related positivity in the ERP

9
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Figure 5. Removal of artifacts by different methods. First column: the ERP waveforms for rare stimuli from Pz for all participants.
Second column: the ERP waveforms for frequent stimuli from Pz for all participants. Third column: The grand average ERPs
waveforms for the two conditions. The scalp maps are from 400 to 500 ms. The first row is from the raw data (bandpass filtered
and average-referenced). The second to last rows are for the results processed by different methods.

Table 1. The computational cost for different methods in removing the artifacts averaged across participants (sc: stopping criteria).

ICA (sc= .001) ICA (sc= .01) ICA (sc= .1) ASR SPA

Per participant (160 trials) 69.7 s 44.9 s 10.9 s 1030 ms 130 ms
Per trial 436 ms 280 ms 68 ms 6.4 ms 0.8 ms

data (will be termed as early and late neural effects
hereafter).

Descriptively, the purified ERPwaveforms, neural
effects, and scalps maps of the effects show a high
degree of consistency across the three methods
(figures 6(A)–(L)). Statistically, the neural effects, in
terms of mean level, are not differentiable between
ICA and SPA in three out of the four examined

effects, and are not differentiable between ICA
and ASR in two out of the four examined effects
(figures 6(N)–(P)). Although some systematic dif-
ferences between ICA and the two fast algorithms
exist, the general pattern and effect size are very close
across the methods. The systematic differences are
directly determined by various parameter settings of
the three methods and EEG preprocessing such as

10
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Figure 6. Comparison of neural effects across methods. (A)–(L) The ERP waveforms and scalp maps of the neural effects. Light
green bars on the ERP waveforms indicate the time windows used to generate the scalp maps of the neural effects (ERP
differences). (M)–(P) Statistical comparisons of the neural effects obtained by different methods. The star indicates that the
difference is significant (n.s.: not significant). (Q)–(R) The cross-subject correlation of neural effects obtained by different
methods.

thresholds, stopping criterion, filtering bands. There-
fore, it is important to note that these statistical results
are based on the current 200 participants, under the
current parameter setting, and they mainly serve to
reflect the degree of similarity and difference among
themethods but not to demonstrate the statistical dis-
tinguishability among them. Overall, the differences
between the two fast algorithms and ICA in the mag-
nitude of neural effects are relatively small. If we take
the ICA-based artifact removal as a benchmark, the
deviations of the two methods in terms of percentage
are as follows. For SPA, early effect in visual oddball:
5.6%, late effect in visual oddball: 4.0%, early effect
in auditory oddball: 16.0%, late effect in auditory
oddball: 3.8%. For ASR: early effect in visual oddball:
9.5%, late effect in visual oddball: 11.8%, early effect
in auditory oddball: 20.0%, late effect in auditory
oddball: 6.1%. A noticeable difference between ICA
and the other two fast algorithms was found in the
early effect of auditory oddball paradigm, which will
be discussed later.

In terms of cross-individual variability, the effects
obtained by the three methods showed to be highly
correlated (figures 6(Q) and (R)) across participants
(correlation coefficients r are shown alongside the
scatter plots). No systematic bias was observed.

3.6. Online searching of individually optimal ISI
based on Bayesian optimization
The comparison analysis showed that SPA generated a
clean version of ERP close to the benchmark method
while having a superior computational efficiency.
In this section, we applied the SPA algorithm to a
real neuroadaptive experiment that requires online
acquisition of ERPs. Based on the set-up as illus-
trated by figure 7(A), the optimal ISI that led to the
highest SNR of ERP for each individual participant
was searched by Bayesian optimization. Figure 7(B)
(left) shows an example of the searching process
from the first participant. It has to be noted that
although 120 points were sampled in the experi-
ment, the optimal ISI for this participant had been
reached in the first few points. The convergence pro-
cess is certainly dependent on hyperparameters of the
search algorithm. For comparison, figure 7(B) (right)
shows the result from surrogate ERP data without ISI
dependence, from which the optimal solution can-
not be found. The surrogate ERP data were simply
generated by broadcasting an existing sample EEG
dataset (instead of real EEG stream collect from a
participant in real time) to the online optimization
module. Figure 7(C) shows that this online search-
ing scheme had successfully found optimal ISIs for all

11
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Figure 7. Bayesian optimization-based searching of individually optimal ISI that generates highest SNR of ERP. (A) Illustration of
the ERP-based neuroadaptive experimental paradigm. (B) Examples of the searching process from participant #1 (left) and from
surrogate ERP data without ISI dependence (right). (C) The estimated objective functions for all participants after the searching.
The line and shaded area represent the mean and uncertainty of the Gaussian process model. (D) The estimated optimal ISI as a
function of search steps.

of the five participants. As expected, there are slight
differences in the identified optimal ISI across par-
ticipants (The optimal ISIs were shown by the red
numbers in figure 7(D)). Figure 7(D) shows that the
searching process has arrived at points close to the
converged solution after sampling of certain amount
of data, which also differs across participants, ranging
from a few to dozens of points. Only 60 steps were
shown here (total searching step was 120).

4. Discussion

In this article, we developed the major modules and
investigated the feasibility of ERP-based neuroad-
aptive research paradigm in which the online ERP
is obtained and individually optimal experimental
parameters are identified in real time. As a major
component for this system,we first presented a simple
algorithm SPA for rapidly removing EEG artifacts in
an onlinemode and evaluated its performance in pre-
serving relevant neural activation components and
effects. By using SPA as the module for online arti-
fact removal, we further developed and demonstrated
an ERP-based neuroadaptive paradigm that applies
Bayesian optimization method to search individually
optimal experimental parameter online. This study is
the first time that demonstrates the feasibility of using
ERP for neuroadaptive research.

With its low computational cost and high per-
formance in preserving ERP pattern and effects, the
SPA method appears to be a suitable method for
online handling of artifacts for instantaneous acquis-
ition of brain response pattern as characterized by

ERP. Nevertheless, there are several open questions,
caveats and limitations that still remain, which is elu-
cidated below.

4.1. SPA cannot replace advanced offline methods
that isolates artifacts based on high order
statistical features
Although the current SPA results showed good per-
formance in preserving relevant neural effects in the
oddball tasks, it does not mean that it should be used
in offline analysis for artifact removal. It is solely
intended to provide fast rough artifact correction for
neuroadaptive paradigms where more accurate off-
line procedures are not feasible. Actually, it is not
necessary and not recommended to use SPA in offline
EEG preprocessing for a conventional basic neuro-
cognitive study in which computational cost is not
of major concern but precision and standardization
are (Desjardins et al 2021). Moreover, even in an
online application, SPA can be applied along with
other procedures that aim to more strictly clean the
data, including online problematic electrode detec-
tion, problematic temporal segment detection, con-
text specific band-pass filtering, etc.

4.2. Comparison of SPA and ASR
Regarding the differences between the two fast
algorithms SPA and ASR, there are three: (a) ASR
requires clean reference data to calculate the mean
and variance of activity in each PC axis, which is
used to determine the threshold for removing arti-
factual components in the online data. (b) ASR
treats each PC dimension (obtained from the online
data segment) separately, i.e. the thresholds for each
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dimension are different. The threshold in each PC
dimension is determined by the summed projection
of the thresholds from all PC dimensions from the
calibration data. This means that some PC compon-
ents could be removed even when they do not con-
tribute large variance to the signal at sensor level
because the projected threshold to those PCs are
small. This is a major difference from SPA because,
in SPA, the classification of artifacts is directly related
to variance contributed. This may explain why ASR
appears to attenuate the neural effects (figures 6(N)–
(P)) even when a relatively conservative threshold is
used. (c) Computationally, SPA is much less costly
than ASR. ASR does have an advantage as compared
to SPA when the feature to be obtained is not ERP
averaged from single trials, but the neural features
of continuous signals (e.g. spectral features, com-
monly used in BCI). In this case, ASR is more suitable
because it is designed to process continuous EEG sig-
nals with a smoothing operation to smooth the con-
nection between adjacent data segments.

4.3. Determination of the threshold
A bimodal distribution pattern of PC amplitudes was
found from themajority of participants in the present
data, thus supporting the application of a simple
threshold-based algorithm as adopted by SPA. The
PCs in the high amplitude cluster almost completely
disappear after a standard ICA-based artifact removal
procedure (figure 2), which supports their artifac-
tual nature. The threshold (upper boundary of the
small variance cluster) appears to be at around 30 µV
for the present data. However, due to potential vari-
ations from lab to lab, it is recommended that the
threshold should be determined based on the bimod-
ality pattern from the actual data in the users’ lab. The
threshold may even be determined on an individual
basis, which would incur more time and effort in pre-
paration but not in online applications.

4.4. Reference issue
Because PCA extracts its first component with the
largest variance, it should be best applied on average-
referenced data. In EEG data that is not average-
referenced, EEG activity that occurs at the reference
site will be magnified as it is redistributed to the
rest of the EEG channels, making it more likely that
it will be captured by large-variance PCs and be
discarded.

4.5. Demonstration of the feasibility of using ERP
as a neural feedback for optimizing
individual-specific experimental parameters in
real time
Conventionally, ERP studies are designed based
on pre-determined parameters and the results
from the entire participant cohort are analyzed
after data collection. This nature makes it infeas-
ible to systematically evaluate the suitability of the

experimental parameters, globally or individually.
This limitation is one of the reasons that sparked the
proposals of closed-loop neuroadaptive paradigms
that aim to search optimal parameters online (Lorenz
et al 2017, Chen and Pesaran 2021). However, it is still
unclear if online obtained ERP from a relatively short
time period is able to provide sufficiently accurate
information to drive a neuroadaptive study in a prac-
tical way or not. One concern is that the ERP effects
are usually too subtle to be detected online, especially
when the ERP is obtained from a short time session.
If the variation of ERP (associated with a factor of
interest) is too weak, it may not be able to effectively
drive an optimization algorithm as the samples of
the objective functions may be too ‘noisy’, that is, not
able to converge to a clearly structured pattern from
which an optimum is to be detected.

We applied the SPA online artifact handlingmod-
ule and, for the first time, demonstrated that online
acquisition of in-session ERP can serve to estab-
lish a neuroadaptive paradigm in which individu-
ally optimal experimental parameter is determined
online. For this proof-of-concept demonstration, the
parameter to be optimized here was ISI and the
objective function was SNR of ERP obtained from a
10 s session. Conventionally, the ISI parameter is usu-
ally heuristically determined in an ERP study. The
reason of choosing SNR is that it creates an inverse
U-shaped relationship (see reasons below) in which
the process of Bayesian-based optimization is better
visualized, whereas othermetrics (e.g. ERP amplitude
or effect) may not easily show an inverse U-shaped
relationship. We hypothesized the existence of an
individually specific ISI that leads to the largest SNR
based on the following simple rationales: (a) too long
ISIs lead to fewer trials within a unit amount of time,
thus reducing the SNR of ERP; (b) too short ISIs over-
load the cognitive resource, thus diminishing ERP
amplitude and consequently reducing the SNR of
ERP. Our application of Bayesian optimization suc-
cessfully identified individually optimal ISIs in all five
participants. The searching process converged to the
solution within only a few minutes. This application
demonstrated the feasibility of using online obtained
ERP as a neural feedback for optimizing experiment
parameters.Wewant to emphasize, that from our res-
ults, we do not infer that other methods are not cap-
able of implementing the online optimization, nor do
we want to convey that SPA achieved the best result.
Our study rather serves to demonstrate the ability of
SPA in supporting online optimization with a super-
ior computational efficiency. In addition, it should
be noted that the optimal ISIs that we identified for
each individual in the present study cannot yet to be
claimed as ‘ground truth’. What was demonstrated in
the present study is that an optimal value cannot be
obtained in surrogate ERP data where ERP’s depend-
ence on ISI did not exist (figure 7(B), right). To tackle
the ground truth issue, we would need to conduct
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multi-session experiments in the same participant
and examine the test-retest reliability in the future.

It is worth noting that our implementation of
an ERP-based neuroadaptive paradigm utilizes in-
session (i.e. within-block) trial-averaging to achieve
a better representation of neural response patterns
to provide online neural feedback at a time scale of
seconds. The trial-averaging has the advantage of can-
celling out spontaneous neural activity that is usu-
ally not recognized as artifacts by artifact handling
methods but still affect the neural response pattern
(ERP) concerned. Therefore, in principle, averaging
over a few trials improves neural response represent-
ation but lengthens the experiment duration, which
forms an inherent trade-off. This principle would
apply to any online artifact handling methods even
if they are able to handle single trial-based feedback.
The performance of handling single trials as well as
determining the optimal number of trials to aver-
age for neuroadaptive study would heavily depend
on individual studies and their respective contrast-to-
noise ratio.

4.6. Contribution to the generalizability issue in
ERP research
The ability to identify latent parameters seated in a
complex, individual neural system that are relevant to
a neural cognitive process of interest may improve the
generalizability of research findings about the pro-
cess. Individual brains substantially differ from each
other in various aspects. In neuroimaging research, a
common strategy is to use a localizer task to adjust for
individual variability in the location of a functional
area such as the visual word form area (e.g. Glezer
and Riesenhuber 2013). In this study, we showed
that individually optimal ISIs under certain object-
ive function (here, SNR of ERP) can be obtained in
real time. Importantly, the Gaussian process explicitly
models a subject’s brain response across many differ-
ent ISIs (i.e. we are not just obtaining a single optimal
solution). This allows drawing inference about the
range of ISIs for which certain ERP characteristics
can be studied within an individual subject, or also
across a cohort of subjects (for example by using
hierarchical GPs to combine observations across sub-
jects, Hensman et al 2013). In turn, this can give us
important insights about how generalizable an ERP
finding is to a range of different ISIs, and equally
informs us about the range of ISIs for which cer-
tain ERP characteristics break down (which in itself
could be an interesting topic of research). Taking into
consideration that the search space can be expan-
ded by far more dimensions of interest such as dif-
ferent experimental settings, stimuli, procedures (for
a discussion about this aspect, please see Yarkoni
2019) or even other cognitive tasks (e.g. Lorenz et al
2018, 2021), the approach shows potential in allowing
for far more principled generalization of the results
obtained.

5. Conclusion

The present work showed that the simple and
extremely fast algorithm SPA based on removing PCs
with distinctively large variance performs well in pre-
serving ERP patterns and relevant neural effects. Our
application of SPA in online extraction of ERPs also
demonstrated the feasibility of ERP-based neuroad-
aptive paradigms for optimizing experimental para-
meters within the online data collection session. We
hope that our findings motivate ERP researchers to
explore the exciting potential of ERP-based neuroad-
aptive paradigms for systematically investigating the
generalizability of ERP findings and leveraging it clin-
ically to accelerate ERP-based biomarker discovery.
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