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Abstract 

Category-specificity has been demonstrated in the human posterior ventral temporal cortex for a 

variety of object categories. Although object representations within the ventral visual pathway must 

be sufficiently rich and complex to support the recognition of individual objects, little is known about 

how specific objects are represented. Here, we used representational similarity analysis to determine 

what different kinds of object information are reflected in fMRI activation patterns and uncover the 

relationship between categorical and object-specific semantic representations. Our results show a 

gradient of informational specificity along the ventral stream from representations of image-based 

visual properties in early visual cortex, to categorical representations in the posterior ventral stream. 

A key finding showed that object-specific semantic information is uniquely represented in the 

perirhinal cortex – which was also increasingly engaged for objects that are more semantically 

confusable. These findings suggest a key role for the perirhinal cortex in representing and processing 

object-specific semantic information that is more critical for highly confusable objects. Our findings 

extend current distributed models by showing coarse dissociations between objects in posterior 

ventral cortex, and fine-grained distinctions between objects supported by the anterior medial 

temporal lobes, including the perirhinal cortex, which serve to integrate complex object information. 
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 A large number of studies have shown category-specificity in the posterior ventral temporal cortex 

(pVTC) for variety of object categories such as faces, places, body parts, houses, tools and animals 

(Kanwisher et al., 1997; McCarthy et al., 1997; Chao and Martin, 1999; Epstein et al., 1999; Downing 

et al., 2001). However because this research focuses on similarities and differences between object 

categories, our understanding of how specific objects (e.g. cat, knife) are differentiated is limited. 

Although object representations within the ventral visual pathway must be sufficiently rich and 

complex to support the recognition of individual objects, there are few theories that specify how 

specific objects are represented and differentiated from their category neighbours. One structure that 

may be critical for object specific representations is the perirhinal cortex. This region is hypothesised 

to enable fine-grained distinctions between objects (Buckley et al., 2001; Bussey and Saksida, 2002; 

Moss et al., 2005; Taylor et al., 2006; Taylor et al., 2009; Barense et al., 2010; Mion et al., 2010; Barense 

et al., 2012; Kivisaari et al., 2012) and may code specific object relations in contrast to categorical 

representations in pVTC. 

 

Here we explore the extent to which individual objects can be differentiated from their category 

neighbours within the ventral stream. We use a large and diverse set of common objects, rather than 

object categories, and a specific form of MVPA - representational similarity analysis (RSA; Kriegeskorte 

et al., 2008a) - to analyse fMRI activation patterns evoked by single objects. Similar activation patterns 

are predicted for similar objects (Edelman et al., 1998; O'Toole et al., 2005; Kriegeskorte et al., 2008a), 

while the basis of object similarity can be defined by different properties of the stimuli; such as visual 

shape, object category and object-specific semantic information. Therefore, using RSA we can test 

where object representations along the ventral stream are organised by object category, or by object-

specific properties.  

 

To test for object-specific representations requires calculating specific measures for each object. One 

type of representational scheme is provided by models in which the semantic similarity between 
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objects is captured with semantic features (e.g. has legs, made of metal) (Tyler and Moss, 2001; Taylor 

et al., 2007; Taylor et al., 2011; Tyler et al., 2013; Devereux et al., in press). Object similarity defined 

by semantic features captures both category structure (as objects from the same category will have 

overlapping features) and additionally within-category individuation (as each member of a category 

will have a unique set of features). 

 

 

Figure 1. The 131 object images used in the current study. The order of images matches that of the 

representational dissimilarity matrices presented in Figure 2. 

 

In order to test for categorical and object-specific semantic representations in the ventral stream, 

participants were scanned with fMRI while they performed a basic-level naming task (e.g. dog, 

hammer) with 131 different objects from a variety of categories (Figure 1). We tested where different 

forms of visual, categorical and object-specific semantic information were expressed in the brain using 

a searchlight procedure (Kriegeskorte et al., 2006) that compared the observed similarity of local 

activation patterns to the predicted similarity defined by different theoretically derived similarity 

predictions (Figure 2). 
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Figure 2. Representational dissimilarity matrices. a) Dissimilarity predictions of the 9 theoretical models tested. 

An EVC model captured the low-level visual properties in the pictorial images. Categorical models were based on 

grouping objects into different categories (i.e. Animal-plant-nonbiological and object category) or single-

category models (e.g. Animals). The object-specific semantic model was based on similarity according to 

semantic feature information. Predicted similarity based on object category shown in large highlighting the 

categorical partitions of stimuli. b) Similarity of theoretical models. 

 

Materials & methods 

Participants 

Sixteen right-handed participants took part in the study (6 male, 10 female) whose ages ranged from 

19 to 29 (mean 23 years). All participants had normal or corrected to normal vision, and gave informed 

consent. The study was approved by the Cambridge Research Ethics Committee. 

 

Stimuli 

A total of 145 objects were used (73 living, 72 nonliving), where 131 of these were from one of six 

object categories (34 animals, 15 fruit, 21 vegetables, 27 tools, 18 vehicles, 16 musical instruments) 
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and 14 additional objects that did not adhere to a clear category (and were not included in our 

analyses). Isolated coloured objects were shown in the centre of a white background, and normalised 

to a maximum visual angle of 7.5°. All objects were chosen to depict concepts from an anglicised 

version of the McRae production norms (McRae et al., 2005; Taylor et al., 2012) in order to calculate 

object-specific semantic similarity measures. 

 

Procedure 

Participants performed an overt basic-level naming task (e.g. dog, hammer). Each trial consisted of a 

fixation cross lasting 500 ms, before an object for 500 ms followed by a blank screen lasting between 

3 and 11 seconds. All objects were repeated 6 times across 6 different blocks. The object presentation 

order for each block was randomised for each participant, although a constant category order was 

maintained ensuring an even distribution of object category across the block. This category ordering 

ensures objects from the six different categories do not cluster in time, avoiding potential category 

clustering as a consequence of temporal proximity. On average there were 145 objects between 

subsequent presentations of the same image (standard deviation was 60 objects) with the range of 

distances approximating a normal distribution. The presentation and timing of stimuli were controlled 

with Eprime version 1 (Psychology Software Tools, Pittsburgh, PA, USA), and naming accuracy was 

recorded by the experimenter during acquisition. 

 

fMRI acquisition 

Participants were scanned at the MRC Cognition and Brain Sciences Unit, Cambridge, in a Siemens 3-

T Tim Trio MRI scanner (Siemens Medical Solutions, Camberley, UK). There were 3 functional scanning 

sessions using gradient-echo echoplanar imaging (EPI) sequences collecting 32 slices in descending 

order of 3 mm thickness and between slice gap of 0.75 mm and a resolution of 3 x 3 mm. The field-of-

view was 192 x 192 mm, matrix size 64 x 64 with a TR of 2 seconds, TE of 30 ms and a flip angle of 78⁰. 

Each functional session lasted approximately 9-10 minutes, containing two object blocks. Prior to 
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functional scanning, a high-resolution structural MRI image was collected using an MPRAGE sequence 

with 1 mm isotropic resolution. 

 

fMRI RSA preprocessing 

Preprocessing consisted of slice-time correction and the spatial realignment of the functional images 

only using SPM8 (Wellcome Institute of Cognitive Neurology, London, UK). The resulting unsmoothed, 

unnormalised data for each participant were analysed using the general linear model to create a single 

beta image for each object based on all 6 repetitions that were used to create single object t-statistic 

maps. In addition to the 145 object predictors, predictors were included to capture slow trends using 

18 regressors for each session based on the basis functions of a discrete cosine transform (minimum 

frequency = 1/128 Hz), six head motion regressors for each session and a global mean predictor for 

each scanning session. 

 

Prior to fMRI scanning, participants received instructions and practise of how to name objects during 

the scanning session to reduce any potential motion artefacts. Further we examined the realignment 

parameters to ensure head motion was not in excess of 3 mm in any direction during a session with 

was the case for 13 of the participants. The remaining 3 participants had motion not in excess of 4 mm 

in any direction. Only objects named correctly on all six repetitions (86%, SE = 1.53%) were included 

in further analyses. 

 

RSA searchlight mapping: Theoretical model predictions 

Representational similarity analysis (RSA) was used to determine the kinds of information reflected in 

spatial fMRI patterns throughout the brain. An RSA searchlight mapping procedure (Kriegeskorte et 

al., 2006) was implemented using the RSA toolbox (Nili et al. under review) and custom Matlab 

functions to determine if object dissimilarity predicted by theoretical models was significantly related 

to dissimilarity defined by local fMRI activity patterns. A number of theoretical representational 
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dissimilarity matrices (RDMs) were created from the predicted dissimilarity according to visual, 

categorical and object-specific semantic models (Figure 2). Each RDM was constructed by creating a 

vector for each object and calculating the distance between all pairs of vectors (objects). 

 

The early visual cortex (EVC) RDM was based on the C1 responses extracted from the HMax package 

of the Cortical Network Simulator framework (Mutch et al., 2010; downloaded from 

http://cbcl.mit.edu/jmutch/cns/) using the parameters of the full model described in Mutch and Lowe 

(2006). The C1 responses of the HMax model are proposed to reflect properties of early visual cortex 

(V1/V2) (Riesenhuber and Poggio, 1999; Serre et al., 2007). Response vectors from the C1 layer were 

computed for gray-scale versions of each image and dissimilarity values were calculated as 1 - 

Pearson’s correlation between object vectors. 

 

Binary categorical RDMs were constructed based on combinations of the 6 object categories included 

in the study. Two classes of categorical RDMs were defined. Single-category RDMs predict that the 

response patterns to all objects from a single object category will cluster together relative to objects 

for all other categories (that will not cluster). An RDM of this type was created for each category 

separately. Multi-category RDMs predict that the activation patterns to objects will cluster together 

according to a categorical scheme, so that the members of each category will cluster together while 

between-category distances are predicted to be uniformly greater than within category distances (see 

Figure 2). 

 

The object-specific semantic feature RDM was based on data from the anglicised McRae feature 

norms (McRae et al., 2005; Taylor et al., 2012). The feature norms contain lists of features associated 

with a large range of objects (e.g. has 4 legs, has stripes and lives in Africa are features of a zebra - see 

Table 1 for examples) and were collected by presenting participants with a written concept name and 

asking them to produce properties of the concept. As the features were originally collected from North 
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American English speakers, the data were modified to be relevant to native British English speakers 

(e.g. concepts like ‘gopher’ were removed while other names were changed; see Taylor et al., 2012 

for full details). Based on the feature norms, each object can be represented by a binary vector 

indicating whether each feature is associated with the object or not. The 131 objects used in this study 

were associated with 794 features in total and an average of 12.9 features per object. The semantic 

feature RDM reflects the semantic (dis)similarity of individual objects, where dissimilarity values were 

calculated as 1 - the cosine angle between feature vectors of each pair of objects (using a Jaccard 

distance also gives equivalent results). Moreover, this semantic-feature model captures both 

categorical similarity between objects (as objects from similar categories have similar features) and 

within-category object individuation (as objects are composed of a unique set of features). 

 

RSA searchlight mapping: Procedure 

At each voxel, object activation values from grey matter voxels within a spherical searchlight (radius 7 

mm, maximum dimensions 5 x 5 x 3 voxels) were extracted to calculate distances between all objects 

(using 1 - Pearson correlation) creating an object dissimilarity matrix based on that searchlight. This 

fMRI RDM is then compared to each theoretical model RDM (using Spearman’s rank correlation) and 

the resulting similarity values were Fisher transformed and mapped back to the voxel at the centre of 

the searchlight. In an additional analysis each fMRI RDM was also compared to each theoretical model 

RDM while controlling for effects of all other theoretical model RDMs (using partial Spearman’s rank 

correlations). 

 

The similarity map for each theoretical predictor and each participant was normalised to the MNI 

template space and spatially smoothed using an 6 mm FWHM Gaussian kernel. The similarity maps 

for each participant were entered into a group-level random effects analysis (RFX) and permutation-

based statistical nonparametric mapping (SnPM; http://go.warwick.ac.uk/tenichols/snpm) was used 

to test for significant positive similarities between theoretical and fMRI RDMs, correcting for multiple 

http://go.warwick.ac.uk/tenichols/snpm
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comparisons across voxels and the number of theoretical model RDMs tested. In the follow-up partial 

Spearman’s correlation analysis we corrected for multiple comparisons across voxels. Variance 

smoothing of 6 mm FWHM and 10,000 permutations were used in all analyses. All results are 

presented on an inflated representation of the cortex using Caret 

(http://www.nitrc.org/projects/caret/), or the normalized structural image averaged over 

participants. We also note that our main results were conserved across a range of searchlight sizes 

ranging from 3 to 10 mm spheres. 

 

Parametric analysis of semantic confusability 

We also tested if voxel-wise activation was related to the confusability of an object with all other 

objects. Our measure of semantic confusability was calculated from the semantic similarity matrix 

constructed by finding the cosine between all concept-feature vectors. Each row of this matrix 

contains how similar an object is to all other objects. To generate a semantic confusability score for 

each object we calculated a weighted mean across this row of the matrix, where the weights were 

defined as the exponential of the ranked similarities along the row of the matrix. The measure was 

calculated in this manner so that semantic confusability scores would most closely reflect the similarity 

of an object to its closest semantic neighbours. As the measure gives stronger weights to more 

semantically similar objects, high confusability scores will be generated for objects that are similar to 

many other objects (those objects that shared lots of semantic features with many other things and 

occupy a dense area of semantic space, e.g. a lion) and those that are highly similar to a small set of 

objects but not similar to objects in general (e.g. an orange, lemon, grapefruit, lime). Further, the 

measure has a low correlation with object familiarity (r = 0.17), although we note that our measure 

may share some properties with an objects’ conceptual typicality (defined as the extent to which an 

object shares features with other members of its category (Patterson, 2007). Under this definition, 

some highly confusable objects will also be highly typical members of a category due to a high 

proportion of shared features, while some less confusable objects would be rated less typical (and 

http://www.nitrc.org/projects/caret/
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more distinctive). However, typicality alone does not account for highly confusable objects that are 

not highly typical members of a category or capture confusability of sub-category clusters. Further it 

does not take into account semantic similarities across categories. These qualities are additionally 

captured with the measure of semantic confusability define above. 

 

Here, fMRI preprocessing consisted of slice-time correction, spatial realignment and normalisation to 

the MNI template space, and spatial smoothing using a 6 mm Gaussian kernal of the functional images 

using SPM8 (Wellcome Institute of Cognitive Neurology, London, UK). Data for each participant were 

analysed using the general linear model to show the parametric effects of semantic confusability of 

objects. The fMRI response to each stimulus was modelled as a single regressor with an additional 

modulating regressor based on the semantic confusability values. This parametric modulator captures 

the fMRI response to objects, modulated by how semantically confusable each object is. In addition, 

predictors were included to capture slow artefactual trends with a high-pass cut-off of 128 Hz, head 

motion and a global mean predictor for each scanning session. The parameter estimate images for the 

semantic confusability modulator were entered into an RFX analysis using a one-sampled t test against 

zero. Due to our a priori interest in the perirhinal cortex, we first restricted our analysis using a small 

volume correction based on a probabilistic perirhinal cortex mask thresholded at 10% (Holdstock et 

al., 2009), before also conducting a more exploratory whole-brain analysis. 

 

Results 

RSA Searchlight mapping 

RSA was used to determine if the similarity of activation patterns were significantly related to the 

predicted similarity of any of the 9 theoretical models tested which captured image-based visual, 

categorical and object-specific semantic properties (Figure 2). RSA searchlight mapping revealed that 

5 of the theoretical model predictions (subsequently referred to as models) showed significant 

similarity to patterns of fMRI activation (Figure 3a). Patterns of activity in early visual areas showed a 
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significant relationship with the EVC model (peak MNI coordinate in each hemisphere; -21,-91,14 and 

15,-94,2), replicating the known properties of primary visual cortex relating to retinotopy and local 

edge-orientations that have been previously shown in fMRI activity patterns (Kamitani and Tong, 

2005; Kay et al., 2008; Connolly et al., 2012). 

 

 

Figure 3. RSA searchlight results. a) Showing regions where activation patterns were significantly related to each 

model’s predicted similarity, thresholded at pFDR < 0.0056 (corrected for 9 model RDMs). b) Semantic-feature 

searchlight results (red) overlap with perirhinal cortex (blue; overlap in yellow). Shown at MNI slices x=38, y=-7. 

 

Both the object-specific semantic-feature and category models were significantly related to patterns 

of activation in the ventral and dorsal visual pathways. Specifically, similarity defined by semantic-

features (peak MNI coordinates; 30,-49,-12 and -27,-55,-9), category (peak MNI coordinates; 33,-55,-

16 and -48,-73,-5) and animal-plant-nonbiological dimensions (peak MNI coordinates; -45,-67,-5 and 

30,-52,-9) were significantly related to patterns in posterior parts of the ventral stream including the 

lateral occipital cortex (LOC) and pVTC (including both lateral and medial regions). In contrast, the only 
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single-category effects seen were where animal objects produced similar activity patterns in LOC and 

the right lateral fusiform (peak MNI coordinates; 48,-76,-5 and -45,-82,-1). The spatial extent of the 

effects for categorical models was largely restricted to posterior parts of the ventral stream, 

highlighting the coarse nature of object information represented in pVTC. Similarity based on the 

object-specific semantic-feature model showed the most extensive significant effects extending into 

the anterior medial temporal lobe, including the perirhinal cortex (Figure 3b).  

 

RSA searchlight mapping revealed overlapping and distinct representations throughout occipital and 

ventral temporal cortex. However as some of our model RDMs are correlated (see Figure 2) and show 

spatially overlapping effects, it is not possible to make strong assertions about the exact nature of 

representations along the ventral stream. For example, the semantic feature model encompasses 

both category structure and object-specific semantic individuation and showed effects in both 

posterior and anterior parts of the ventral stream, while categorical models only show effects in the 

posterior regions. While this suggests object representations in the ventral stream better reflect 

categorical groupings and representations in the anterior medial temporal lobe additionally reflect 

object-specific information, we require a more formal evaluation to fully test this. 

 

An additional searchlight analysis was performed mapping the unique effects of each model RDM by 

controlling for effects of the other significant models (those in Figure 3) using partial correlation 

(Figure 4; Table 2). Therefore, this analysis determines the effects for each model that can not be 

accounted for by any other model. Patterns of activity in primary visual areas remained significantly 

related to the EVC model (this would be expected given the low correlation with other models; see 

Figure 2). Crucially, semantic feature effects remained significant in bilateral anterior medial temporal 

lobe and the perirhinal cortex after controlling for categorical and visual effects of objects. Finally, 

categorical effects were largely restricted to the pVTC and LOC. Object-category groupings were 

present in left LOC and overlapped with previously reported peak coordinates for the contrast of 



14 
 

animals greater than tools (Chao et al., 2002) and a lateral object-specific region (Andrews and 

Ewbank, 2004). Animal-plant-nonbiological distinctions were seen in bilateral medial pVTC and left 

lateral pVTC which overlapped with previously reported category-specific effects for animals and tools 

in lateral and medial pVTC respectively (Chao et al., 2002). Activation patterns for animals clustered 

in bilateral LOC and the right lateral pVTC and overlapped with the coordinates reported for the LOC 

(Malach et al., 1995; Andrews and Ewbank, 2004), and the mean location of the FFA (Kanwisher et al., 

1997) in addition to peak effects found for the contrast of animal and tool objects (Chao et al., 2002). 

Overall, these results show coarse, categorical representations are dominant in the posterior ventral 

stream, while the more fine-grained similarity patterns in the anterior medial temporal lobe reflect 

object-specific semantic similarity over and above that which is explained by categorical or visual 

similarity. 

 

Figure 4. Unique effects of each theoretical similarity model. RSA searchlight results using a partial correlation 

analysis showing regions where activation patterns were uniquely related to each model’s predicted similarity. 

Images presented at the same colour scale as Figure 3 and thresholded at pFDR < 0.05. 

 

Decomposing semantic feature effects in the perirhinal cortex 

The unique effects of the semantic feature model in bilateral perirhinal cortex show that activation 

patterns in these regions reflect semantic structure over that explained by category membership. 
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However, members of some object categories are more semantically similar to one another (e.g. 

musical instruments are in general dark blue in the semantic feature RDM in Figure 2) while other 

categories are on average less cohesive (e.g. tools are in general a lighter blue compared to other 

clusters in the semantic feature RDM). Further, the members of some object categories are more 

similar to some other object categories than others. As such, it is unclear if our semantic feature 

effects in the perirhinal cortex are underpinned by the differential mean semantic distances within 

each category (and mean between-category distances) or the object-specific semantic distances after 

accounting for differential category distances. To address this issue we further tested a category-mean 

semantic model by performing a partial correlation analysis to test for unique effects of either object-

specific variability or category-mean semantic distances within the bilateral perirhinal cortex region 

identified in the searchlight analysis above (Figure 4). We defined the category-mean semantic model 

where the distance between two objects from the same category was defined as the mean distance 

across all category members. The distance for objects from two different categories was defined as 

the mean distance between all cross-category pairs (resulting in a 131 x 131 matrix). 

 

Activation patterns in the perirhinal cortex were significantly related to the category-mean semantic 

model (t(15) = 3.40, p = 0.002) after controlling for categorical and visual models. Further, the results 

remained significant when additionally controlling for the effects of the semantic-feature model (t(15) 

= 3.14, p = 0.003), showing that activation patterns in the perirhinal cortex reflect broad semantic 

distances between categories in addition to the overall cohesiveness of each category. Crucially, the 

semantic feature model also showed a significant relationship to activation patterns in the perirhinal 

cortex (t(15) = 3.44, p = 0.002) after controlling for the category-mean semantic model, categorical 

and visual models. This suggests that object-specific semantic information forms part of complex 

object representations in the perirhinal cortex together with more general semantic category 

information. 
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Parametric effect of semantic confusability 

The object-specific RSA effects for semantic-features echoes studies showing the greater involvement 

of the anterior medial temporal lobes when more fine-grained semantic processes are required for 

object differentiation, especially for more semantically confusable objects (Tyler et al., 2004; Moss et 

al., 2005; Taylor et al., 2006; Barense et al., 2010; Tyler et al., 2013). This suggests that, in addition to 

the perirhinal cortex representing fine-grained semantic information about objects (captured by our 

semantic feature RDM), the region also becomes increasingly engaged for objects that require the 

most fine-grained differentiation, i.e. those that are most semantically confusable. This implies that 

for highly confusable objects, the object-specific coding needs to be fully instantiated leading to 

greater activation within the region (Patterson et al., 2007). To test whether the perirhinal cortex 

representations are increasingly engaged for more confusable objects we performed a parametric 

univariate analysis looking for effects of semantic confusability. Our metric of confusability was 

derived from the semantic-feature similarity model, where an object’s semantic confusability was 

defined as a weighted sum of the similarity an object has with all other objects (see Table 3 for example 

high and low confusable objects for each category). 

 

We found increased semantic confusability was associated with increased activity in bilateral 

perirhinal cortex (Figure 5a; voxel-level p < 0.001, cluster-level p < 0.05 FWE after small volume 

correction using a perirhinal cortex mask), showing that in addition to semantic similarity being 

reflected in multi-voxel activity patterns, perirhinal cortex activity is sensitive to whether an object is 

highly semantically confusable with other objects, therefore requiring fine-grained differentiation 

processes and more complex integration of semantic information to uniquely recognise the object. 
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Figure 5. Parametric effect of semantic confusability where objects that are more semantically confusable show 

increased activation in the perirhinal cortex (shown in white; voxel-wise p < 0.001, cluster-level p < 0.05 FWE 

after small volume correction). Voxels outside the perirhinal cortex show increased activation with increasing 

semantic confusability in the whole-brain analysis (voxel-wise p < 0.001, cluster-level p < 0.05 using FWE). 

 

Finally, we performed a more exploratory whole-brain analysis that showed that effects of increased 

semantic confusability engaged a wider network beyond the perirhinal cortex including clusters in the 

middle cingulum and supplementary motor area, bilateral inferior parietal lobes, middle frontal and 

precentral gyrus, aspects of which are associated with the dorsal attention network (all voxel-level p 

< 0.001, cluster-level p < 0.05 FWE) (Corbetta and Shulman, 2002). This may further indicate that more 

semantically confusable objects require increased spatial attention for unique recognition. 

 

Discussion 

Despite a wealth of fMRI research aiming to understand how objects are represented there are few 

accounts that consider the representation of individual objects (also see Kriegeskorte et al., 2008b; 

Mur et al., 2012; Tyler et al., 2013 for other examples of research using a large and diverse set of 

objects). Instead, research has tended to focus on object categories. Here we asked how object-

specific information is represented in the ventral stream and how this relates to categorical 

information. We found distinct categorical and object-specific semantic representations in the brain 

predicted by the similarity of theoretically motivated measures. Using RSA we revealed object-specific 

semantic representations coded in the perirhinal cortex, while also showing a gradient of 

informational specificity along the ventral stream, from image-based visual properties in primary 
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visual cortex to coarse, categorical representations in posterior VTC (Figure 6). These results support 

distributed models of object semantics that claim a progression of object information along the ventral 

stream from category information in pVTC to more fine-grained semantic information in the anterior 

medial temporal lobe, which functions to integrate complex semantic information (Tyler and Moss, 

2001; Taylor et al., 2007; Taylor et al., 2011; Tyler et al., 2013). 

 

Figure 6. Summary of the main findings. Representational topographic map showing significant unique effects 

of each theoretical model RDM. If significant effects were seen for more than one model, the model with the 

highest partial Spearman’s correlation is shown. Regions that showed significant effects in the original analysis 

(Figure 3) that did not show effects in the partial correlation analysis are shown in white. These regions show 

shared effects across multiple models. 

 

Our central finding is that the perirhinal cortex represents object-specific semantic information and 

that such representations are modulated depending on how semantically confusable an object is. The 

perirhinal cortex sits at the most anterior aspect of the ventral visual pathway and is hypothesised to 

represent complex conjunctions of object features enabling fine-grained distinctions between objects 

(Buckley et al., 2001; Murray and Richmond, 2001; Bussey and Saksida, 2002; Tyler et al., 2004; Moss 

et al., 2005; Taylor et al., 2006; Barense et al., 2007; Taylor et al., 2009; Barense et al., 2010; Mion et 

al., 2010; Barense et al., 2012; Kivisaari et al., 2012; Tyler et al., 2013). Here, activation patterns within 
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the perirhinal cortex reflected semantic similarities between individual objects. Further, this effect 

was preserved when controlling for both categorical and low-level visual similarities between objects. 

This shows that while similar objects cluster in perirhinal cortex, the subtle distinctions in activation 

patterns between objects (and between objects within each category) co-vary with subtle semantic 

distinctions based on semantic feature information. This differentiation between objects is vital to the 

task of basic-level naming, as to name an object at the basic-level requires the differentiation between 

similar items in order to support lexical and phonological processes involved in naming. The unique 

object-specific semantic effects we see in the perirhinal cortex provide the necessary object 

differentiation for these processes.  

 

Moreover, if a function of the perirhinal is to enable fine-grained differentiation, then it not only needs 

to code this information, but will also become increasingly activated when recognising objects that 

are highly confusable with other objects. For example, more confusable objects can be thought of as 

occupying a dense area of semantic space, and so to individuate a confusable object from similar 

concepts depends on fine-grained distinctions that rely on the integrative properties of the perirhinal 

cortex leading to increases in activation. Less confusable objects will have fewer semantic neighbours 

and are more easily differentiated resulting in less activation. This is indeed the result we found in our 

analysis of semantic confusability where activation in the perirhinal cortex parametrically increased 

for objects that were more semantically confusable. Both the RSA and univariate results support the 

regions’ critical involvement in object recognition when fine-grained semantic information is needed 

to individuate between similar objects. 

 

This is not to claim that the perirhinal cortex represents object-specific semantics per se, but that the 

region codes the computations necessary for object-specific representations to be formed. As in the 

representational-hierarchy theory (Bussey et al., 2005; Cowell et al., 2010; Barense et al., 2012), we 

claim the representation of individual objects in the perirhinal cortex are based on conjunctions of 
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coarser information represented in pVTC, and integrated through recurrent connectivity between 

posterior and anterior sites in the ventral stream (Clarke et al., 2011). This may occur by a similar 

mechanism to pair-coding responses in pVTC underpinned by backwards projections from the 

perirhinal cortex (Higuchi and Miyashita, 1996; Miyashita et al., 1996). Further, objects that are more 

semantically confusable with other objects have an increased dependence on the conjunctive 

properties of the perirhinal cortex. This is consistent with research showing the perirhinal cortex plays 

a critical role in visual processing for tasks that cannot solely rely on simple feature information, and 

supports these processes by enabling the conjunction of simpler object features into complex feature 

conjunctions (Buckley et al., 2001; Murray and Richmond, 2001; Bussey and Saksida, 2002; Bussey et 

al., 2005; Barense et al., 2007; Barense et al., 2012). This contribution of the perirhinal cortex to 

complex visual object processing is underpinned by its anatomical connections with occipito-temporal 

regions (Suzuki and Amaral, 1994) in addition to functional connections with other sensory areas 

(Libby et al., 2012), making it an important site for cross-modal binding of semantic information 

(Taylor et al., 2006; Taylor et al., 2009) and integrating more complex semantic information about 

objects (Tyler et al., 2004; Moss et al., 2005; Barense et al., 2010; Kivisaari et al., 2012; Tyler et al., 

2013). 

 

By isolating the unique effects of each theoretical model, we showed that activation patterns in the 

perirhinal cortex co-varied with the object-specific variability specified by the semantic feature model, 

but did not find evidence of object-specific semantic effects elsewhere in the ventral stream (in line 

with a previous report using human faces; Kriegeskorte et al., 2007). Some previous studies have 

reported that activation patterns in the posterior ventral stream correlate with measures of semantic 

similarity either based on behavioural semantic similarity judgements or semantic similarity based on 

word usage (Connolly et al., 2012; Carlson et al., 2013). Although we initially report semantic feature 

effects in pVTC, these effects were non-significant once we accounted for categorical and visual 

similarity, both of which may contribute to previously reported effects. However, it may also be that 
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our semantic feature model does not capture some aspects of semantic similarity as feature lists tend 

to under-represent the most highly shared information. Future work could assess to what extent 

semantic feature models capture perceived semantic similarity, and whether any divergence provides 

additional information that accounts for object representations in the ventral stream. 

 

Our results also replicated object category effects robustly seen in MVPA studies (e.g. Haxby et al., 

2001; Cox and Savoy, 2003; Pietrini et al., 2004; Kriegeskorte et al., 2008b; Reddy et al., 2010). Here 

activation patterns in pVTC were associated with categorical similarity models, however partial 

correlations showed unique category effects in different regions – object category in left lateral LOC, 

a category-specific representation of animals in right lateral pVTC and the animal-plant-nonbiological 

distinctions in bilateral medial VTC. Lateral VTC effects for animals is consistent with a category-

specific view based on previous univariate evidence that animals elicit greater activity in the lateral 

fusiform (Chao et al., 1999; Chao et al., 2002; Mahon et al., 2009), although we failed to find a medial 

pVTC effect for tools which has been previously reported (Chao et al., 1999; Chao et al., 2002; Mahon 

et al., 2009). 

 

Contrasting with animal effects in left lateral pVTC, distinctions of animate and inanimate objects 

according to domain (animal-plant-nonbiological) were seen in bilateral medial pVTC and right lateral 

pVTC. Previous studies have suggested that object animacy is a prominent factor in how activation 

patterns in VTC cluster (Kriegeskorte et al., 2008b), while animacy is further proposed as a principle of 

lateral-to-medial VTC organisation (Connolly et al., 2012). As such, previously reported category-

specific effects have been conceived as an emergent property of different underlying organising 

principles - one of which may relate to object animacy. An alternative, and complementary principle, 

is that categorical effects emerge because different object categories are associated with different 

statistical structures of the underlying property-based semantic representations (Tyler and Moss, 

2001; Tyler et al., 2013). As different categories of object tend to have different statistical properties 
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associated with their semantic features (e.g. animals have many frequently co-occurring features that 

are shared by other animals), categorical effects can emerge. One promising approach to untangling 

potential representational principles in posterior VTC is to represent activation patterns in a high-

dimensional space, that may be used to test whether categorical effects are emergent from a 

combination of non-category factors (Op de Beeck et al., 2008; Haxby et al., 2011). 

 

In conclusion we find a gradient of visual, to categorical, to object-specific semantic representations 

of objects along the ventral stream through occipital and temporal cortices culminating in the 

perirhinal cortex. Our results show distinct semantic feature effects in the perirhinal cortex that 

highlight a key role for the region in representing and processing object-specific semantic information. 

Further, the perirhinal cortex was increasingly activated during the recognition of more semantically 

confusable objects. These results suggest a fundamental role of the human perirhinal cortex in 

representing object-specific semantic information, and provide evidence for its role in integrating 

complex information from posterior regions in the ventral visual pathway. 
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Tables 

Table 1. Semantic feature lists for example objects 

Zebra Apple Mushroom Knife aeroplane saxophone 

travels in herds has a core has a cap has a blade flies has a mouthpiece 

eaten by lions has seeds has a stem has a handle crashes has keys 

has 4 legs has skin is small is shiny is fast has reeds 

has a mane is round is brown made of metal has a propeller is shiny 

has a tail is green is white is serrated has engines made of brass 

has hooves is red grows is sharp has wings made of metal 

has stripes tastes sweet eaten in salads used by butchers is large is gold 

is black and white is crunchy eaten on pizza used for cutting made of metal produces music 

hunted by people is juicy is edible found in kitchens used for passengers used for music 

lives in Africa eaten in pies used as drug is dangerous used for travel used for playing jazz 

lives in zoos used for cider grows in forests used with forks found in airports used in bands 

 grows on trees is poisonous  requires pilots requires air 
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Table 2. RSA results showing unique effect for each theoretical model RDM. 

 Regions 

Cluster 

extent 

Voxel-level 

p(FDR) pseudo-t x y z 

EVC model       

 L mid occip, R calcarine  2139    0.0001   8.55    −21    −91   14   

Semantic features       

 R PRc  128    0.0150   4.76    27   −4    −28   

 R calcarine  78    0.0290   4.44    15    −94   2   

 L lingual  25    0.0166   4.12    −24    −82    −12   

 L PRc  43    0.0248   3.63    −33   −7    −35   

Category       

 L IT  619    0.0024   7.10    −51    −67   −5   

 L/R calcarine  359    0.0077   4.27    15    −91   −1   

 R precuneus  23    0.0077   3.75    12    −52   14   

 L supramarginal  41    0.0107   3.59    −63    −25   32   

Animal-plant-nonbiological       

 L IT, lingual, mid occip  736    0.0069   5.71    −48    −64   −5   

 L sup occipital  135    0.0069   5.15    −21    −70   32   

 R lingual  124    0.0069   4.59    21    −61   −9   

 R mid occipital  81    0.0126   3.28    30    −82   29   

Animals       

 R mid temporal, fusiform  561    0.0002   7.89    51    −73   −1   

 R calcarine  121    0.0002   6.24    21    −97   2   

 L mid temporal, mid occip, lingual  324    0.0002   5.54    −54    −64   21   

MNI coordinates and significance levels shown for the peak voxel in each cluster. Anatomical labels 

are provided for up to 3 peak locations in each cluster. Effects in clusters smaller than 20 voxels not 
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shown. Abbreviations: mid = middle, occip = occipital, PRc = perirhinal cortex, IT = inferior temporal, 

sup = superior. 

 

 

Table 3. Examples of the most and least confusable objects in each category 

Animals 

(0.51)  

Fruits 

(1.00)  

Vegetables 

(0.81) 

Vehicles 

(0.43) 

Tools 

(0.25) 

Musical instr. 

(0.83) 

More confusable objects  

lamb  raspberry  broccoli  van  ladle  cello  

sheep  plum  cauliflower  lorry  knife  piano  

lion  peach peas car  spoon flute  

Less confusable objects  

snake  banana  pumpkin  tractor  crowbar  harmonica  

pig  pineapple  garlic  helicopter  corkscrew  drum  

camel  coconut  mushroom  submarine  thermometer bagpipes 

Examples of the most and least confusable objects in each category according to the semantic features 

in the McRae et al. (2005) production norms. The mean (relative) confusability score within each 

category is shown next to the category headings in brackets. 

 

 


