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Abstract Clathrin-mediated endocytosis is an essential process that forms vesicles from the

plasma membrane. Although most of the protein components of the endocytic protein machinery

have been thoroughly characterized, their organization at the endocytic site is poorly understood.

We developed a fluorescence microscopy method to track the average positions of yeast endocytic

proteins in relation to each other with a time precision below 1 s and with a spatial precision of ∼10 nm.

With these data, integrated with shapes of endocytic membrane intermediates and with

superresolution imaging, we could visualize the dynamic architecture of the endocytic machinery.

We showed how different coat proteins are distributed within the coat structure and how the assembly

dynamics of N-BAR proteins relate to membrane shape changes. Moreover, we found that the region

of actin polymerization is located at the base of the endocytic invagination, with the growing ends of

filaments pointing toward the plasma membrane.

DOI: 10.7554/eLife.04535.001

Introduction
Clathrin-mediated endocytosis is a key membrane trafficking process for the uptake of cargo molecules

from the cell surface. It is involved in numerous different biological contexts from the generation of

cellular polarization, to virus uptake and the regulation of neural signaling. The formation of clathrin-

coated endocytic vesicles is driven by a complex molecular machinery composed of more than 50

different proteins (Doherty andMcMahon, 2009; Boettner et al., 2012;Weinberg and Drubin, 2012).

These proteins recruit cargo molecules and reshape the plasma membrane to generate the endocytic

vesicle. The assembly dynamics of the endocytic protein machinery has been described in detail by live-

cell imaging (Gaidarov et al., 1999; Merrifield et al., 2002; Kaksonen et al., 2003, 2005; Newpher

et al., 2005; Sirotkin et al., 2010; Loerke et al., 2011; Taylor et al., 2011; Cocucci et al., 2012; Berro

and Pollard, 2014). However, the spatial organization of the endocytic proteins during vesicle budding

remains poorly understood. The complexity and the size of the endocytic machinery, below the

resolution limit of light microscopy, have made it challenging to reveal how the endocytic proteins are

organized during vesicle budding.

Budding yeast Saccharomyces cerevisiae has been used extensively as a model organism to study

endocytosis. The protein machinery of clathrin-mediated endocytosis is largely conserved between

mammals and yeast (Conibear, 2010). In yeast, endocytosis starts with the recruitment of clathrin and

several clathrin adaptors and accessory proteins to the plasma membrane to initiate the assembly of

the vesicle coat (Carroll et al., 2012; Godlee and Kaksonen, 2013). During this initial early phase,

which can last between 40 and 90 s, the coat assembles on a flat plasma membrane and cargo

molecules are recruited to the endocytic site. Later, additional coat proteins and actin interactors are

recruited. The actin interactors include Las17 (homolog of mammalian N-WASP) and type I myosins

Myo3 and Myo5, which both activate the actin filament nucleating Arp2/3 complex (Winter et al.,

1999; Evangelista et al., 2000; Lechler et al., 2000). In yeast, the invagination of the plasma

membrane, and the consequent inward movement of the coat, is concomitant with the appearance of
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actin at the endocytic site (Kukulski et al., 2012). A functional dependence on actin polymerization is

possibly due to high turgor pressure (Aghamohammadzadeh and Ayscough, 2009). In mammals,

actin is similarly critical under conditions of high membrane tension (Boulant et al., 2011). Two of the

coat-associated proteins, Sla2 (homolog of mammalian Hip1R) and the epsin Ent1, interact directly

with lipids, clathrin and actin, and are essential for mediating the forces from the actin cytoskeleton to

deform the membrane (Baggett et al., 2003; Sun et al., 2005; Skruzny et al., 2012). The shape of

the endocytic invagination is regulated by proteins containing BAR domains, such as the Rvs161/167

heterodimer, which are localized at the neck region of the membrane invagination (Idrissi et al., 2008;

Youn et al., 2010; Kishimoto et al., 2011). After vesicle scission the endocytic machinery quickly

disassembles and the free vesicle is trafficked further into the cell.

The exact molecular mechanisms of endocytosis remain unknown, largely due to lack of knowledge

about the functional organization of the protein components of the endocytic machinery. Here, we

developed a novel imaging approach to characterize the spatial and temporal relationship between the

different protein components of the endocytic machinery during vesicle budding. Furthermore, we

integrated this data with time-resolved membrane shapes that were obtained previously by correlated

light and electron microscopy (Kukulski et al., 2012). With this approach, we determined several key

features of the dynamic architecture of the endocytic machinery during vesicle budding (Figure 1A).

Results

High-precision tracking of endocytic protein dynamics in living cells
To understand how the endocytic machinery is organized during vesicle budding, we developed an

imaging approach to track the movements of different fluorescently labeled endocytic proteins in relation

to each other in living cells. We used a two-step procedure: in the first step, we analyzed different

endocytic proteins individually to measure their average dynamic behavior and abundance. In the second

step, we aligned the resulting data from these different proteins relative to each other in space and time

using simultaneous two color imaging. This two-step procedure allowed us to separately optimize the

acquisition rate and the alignment precision for single and double channel imaging respectively.

eLife digest Cells take up proteins and other useful material (called cargo) from their external

environment through a process known as endocytosis. To start with, the cargo accumulates in

a patch on the surface of the cell. On the inner side of the cell’s membrane, a protein called clathrin

gathers around the patch of cargo. Clathrin molecules and many other proteins bind together to

make a lattice-like coat that causes the membrane to curve inwards and form a pocket that contains

the cargo. This continues until the cargo is completely surrounded by membrane and eventually

forms a bubble-like structure, or ‘vesicle’, that moves into the cell.

More than 50 other proteins are involved in the endocytosis. These proteins arrive at the site of

endocytosis in a particular order, complete their tasks and then move away to be used in further

rounds of endocytosis. It is not clear how these proteins are organized to complete these steps

because it is technically difficult to track the movements of many proteins at the same time.

Here, Picco et al. developed a new fluorescence microscopy method that enabled them to track

the positions of many of the proteins involved in endocytosis in yeast cells in real time. The

experiments revealed when the proteins arrived at the site of endocytosis and how they assembled

in relation to the membrane. For example, a group of proteins called N-BAR proteins formed an

extended lattice covering the sides of the pocket that forms as the membrane curves inwards.

To transform the flat membrane into a vesicle, a network of filaments made of a protein called

actin needs to form at the site of endocytosis. The new method shows that the actin filaments grow

in a small region at the base of the developing vesicle. By combining different types of microscopy

data, Picco et al. were able to build a comprehensive model describing when the proteins involved in

endocytosis move and assemble.

The next challenge will be to understand the physics behind the molecular machine composed of

these many proteins and the cell membrane.

DOI: 10.7554/eLife.04535.002
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Figure 1. Tracking procedure. (A) The rational behind our approach. The centroid positions of endocytic proteins were correlated with the plasma

membrane intermediates derived from CLEM (Kukulski et al., 2012). We could thus position the protein complexes along the plasma membrane

invagination to reconstruct the molecular architecture of the endocytic machinery. (B) A yeast cell expressing the coat protein Sla2 tagged N-

terminally (GFP-Sla2) and a collection of trajectories of GFP-Sla2 centroid in different endocytic events. The trajectories are oriented so that the

plasma membrane lies horizontally at the bottom and the inward movement axis is vertical. The triangle and the square mark the start and the

end of each trajectory, respectively. (C) The information content of the GFP-Sla2 average trajectory: The average trajectory movement on the

focal plane. The trajectory is aligned so that the Y-axis represents the inward movement along the invagination and the X-axis represents the

movement along the plasma membrane (left panel). The inward movement of the trajectories over time (right panel). The number of molecules

recruited at the endocytic site over time (bottom panel). The 53 individual trajectories that were used to generate this average are plotted (gray)

together with the average (blue). The contour lines highlight point densities. (D) A yeast cell expressing GFP-Sla2 and the reference protein

Abp1-mCherry and a collection of trajectories derived from the simultaneous acquisition of the target and reference proteins. (E) A diagram

summarizing the steps that led to the spatial and temporal alignment of the average trajectories. Abp1 is used as the spatial and temporal

reference. The average trajectory of the target protein (GFP-Sla2 in this example) is aligned to the average trajectory of Abp1-GFP (the reference

protein) by aligning each of them to the respective trajectories acquired simultaneously in cells expressing GFP-Sla2 and Abp1-mCherry. More

than 50 endocytic events are used to derive the average spatial and temporal transformation that aligns the average trajectories together. The

Figure 1. continued on next page
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We used wide-field epifluorescence microscopy to image GFP-tagged endocytic proteins

expressed from their endogenous genomic loci in haploid cells of yeast S cerevisiae. We acquired

videos at the equatorial plane of the yeast cells, where the average direction of endocytic vesicle

budding is planar with the focal plane (Kaksonen et al., 2003; Kukulski et al., 2012). We thus directly

visualized the movements of the endocytic proteins along the axis of membrane invagination

(Kaksonen et al., 2003; Galletta et al., 2008).

For each GFP-tagged target protein we tracked the centroid position and measured the

fluorescence intensity during 50–80 individual endocytic events (Figure 1B, Table 1). In yeast, the

dynamic behavior of the endocytic proteins during vesicle budding is highly stereotypical (Kaksonen

et al., 2003; Mooren et al., 2012). We could therefore align the individual centroid trajectories in

time and space to calculate average trajectories (Figure 1C, Figure 1—figure supplement 1). For this

purpose we developed an algorithm that finds the translation, rotation and temporal shift minimizing

the weighted mean square displacement between the time points of all pairs of trajectories, where the

weights are the fluorescence intensities at each time point (see ‘Materials and methods’). The centroid

gives an estimate of the position of the center of mass of the protein distribution; therefore the

Figure 1. Continued

shading represents the confidence interval (See ‘Materials and methods’). Scale bars in images are 1 μm long. See also Figure 1—figure

supplements 1,2,3,4,5.

DOI: 10.7554/eLife.04535.003

The following figure supplements are available for figure 1:

Figure supplement 1. Average trajectories of endocytic events.

DOI: 10.7554/eLife.04535.004

Figure supplement 2. Experimental controls for the alignment procedure.

DOI: 10.7554/eLife.04535.005

Figure supplement 3. Simulation of the accuracy of the two color alignment procedure.

DOI: 10.7554/eLife.04535.006

Figure supplement 4. Simulation of the robustness to systematic shifts between the two channels during two color acquisition.

DOI: 10.7554/eLife.04535.007

Figure supplement 5. Simulation of the accuracy of the trajectory averaging.

DOI: 10.7554/eLife.04535.008

Table 1. Number of trajectories used in this study

Number of single color

trajectories to generate the

average trajectory

Number of trajectory pairs used

for spatial and temporal

alignment

GFP-Sla2 53 271

Sla2-GFP 55 158

Sla1-GFP 66 58

End3-GFP 75 57

Abp1-GFP 65 NA

GFP-Act1 83 92

Arc18-GFP 69 90

Rvs167-GFP 58 340

Las17-GFP NA 49

Myo5-GFP NA 50

TOTAL 524 1165

The number of events that were tracked and used to compute the average trajectories and to align those average

trajectories together.

DOI: 10.7554/eLife.04535.009
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average trajectory describes the stereotypic dynamic behavior of the center of mass of the target

protein molecules during endocytosis.

We estimated the average number of molecules present at the endocytic site by calibrating the

fluorescence signal using a kinetochore protein of known abundance (Joglekar et al., 2006; Lawrimore

et al., 2011). For each protein, we used the average number of molecules to calibrate its fluorescence

intensity profile with the absolute numbers of molecules (Figure 1C; see ‘Materials and methods’).

To control that the GFP-tagging did not impair the functionality of the tagged protein we monitored the

lifetime of Abp1 patches, which is very sensitive to defects in the endocytic function (Kaksonen et al., 2005).

We analyzed the lifetime of Abp1-mCherry patches, when Abp1-mCherry was coexpressed with each of the

GFP-tagged proteins (see ‘Materials and methods’). The Abp1-mCherry lifetimes were unaffected by all the

GFP-tagged proteins except Las17-GFP, for which Abp1-mCherry lifetime was slightly longer

(Figure 1—figure supplement 2A). Las17-GFP, however, must be mostly functional because it does not

lead to the strong block of endocytosis observed with LAS17 deletion (Sun et al., 2006).

In the second step, we aligned the average trajectories of all proteins in space and time to

a common reference. We chose Abp1 as a reference protein because of its abundance at the endocytic

site, which leads to a strong fluorescence signal, and its highly regular dynamic behavior, which is

directed perpendicular to the cell surface thereby defining the direction of the invagination movement

(Figure 1—figure supplement 2B,C). We imaged strains coexpressing each GFP-tagged protein of

interest together with Abp1-mCherry. The two colors were imaged simultaneously. Chromatic

aberration was measured using multicolored fluorescent microbeads and corrected for. For each

protein pair we recorded 50–350 endocytic events from which we extracted the centroid positions and

fluorescence intensities of the two proteins as paired trajectories (Figure 1D, Table 1). From these

paired trajectories we estimated the rotation, translation and time shift that optimally align the average

trajectory of the protein of interest to the average trajectory of Abp1 (Figure 1E; see ‘Materials and

methods’). We thus produced a dataset in which all average trajectories are aligned to Abp1.

The axis of the invagination might not be perfectly aligned with the focal plane and would therefore

be imaged as a projection, which leads to an underestimate of the true centroid movement along the

invagination axis. Considering the distribution of the angles of Abp1 trajectories (Figure 1—figure

supplement 2C), the spherical geometry of the cells and the depth of field (Figure 1—figure

supplement 2D) we estimated that these projection effects would lead maximally to about 10%

underestimation of the true movement along the invagination axis.

To measure the reproducibility of the alignment procedure we repeated multiple times the

acquisition of paired trajectories for GFP-Sla2 and Rvs167-GFP expressed together with Abp1-mCherry.

We also used paired trajectories of Abp1 derived from a strain expressing Abp1 tagged C-terminally

with both mCherry and GFP (see ‘Materials and methods’). The standard deviations in space and time of

the repeated alignments were 2.8 nm and 0.1 s for Abp1, 5.5 nm and 0.3 s for Rvs167 and 12.9 nm and

0.6 s for Sla2 (Figure 1—figure supplement 2E). The accuracies of the alignments correlate with the

signal intensities of these different proteins.

To further test the alignment procedure we created virtual ‘ground truth trajectories’ from

which we generated sets of virtual trajectories by adding different levels of random noise. We first

tested the accuracy of the two color alignment procedure using sets of virtual paired trajectories.

With experimentally relevant noise levels the trajectories aligned within 3 nm from the ground

truth trajectory (Figure 1—figure supplement 3).

To test the effect of misalignment between the color channels we took paired trajectories and

shifted them artificially in relation to each other to different extents. Due to random orientations of the

trajectories the color shifts average out and the increase in the shift is only manifested as increased

uncertainty of track positions. With realistic color shifts (up to 50 nm) the average trajectories are only

about 3 nm from the ground truth trajectory (Figure 1—figure supplement 4).

Finally, we tested the full two-step alignment procedure using virtual trajectories. This test

demonstrated that the alignment procedure robustly generates representative average trajectories

from noisy data (Figure 1—figure supplement 5).

In summary, with the average trajectories we can resolve the position and movement of different

endocytic components in relation to each other along the direction of invagination with a temporal

precision below 1 s and with a spatial precision of ∼10 nm. In addition, we could complement the

tracking data with time-resolved estimates of the numbers of molecules present at the endocytic site.
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Correlating the tracking data with the changing membrane shape
The endocytic protein machinery progressively changes the shape of the plasma membrane,

ultimately leading to vesicle budding. To provide a framework for interpreting the tracking data, we

aligned the trajectories with time-resolved average membrane shapes obtained previously by CLEM

(Kukulski et al., 2012), starting from a flat membrane and ending with a vesicle (Figure 2).

We used Sla2, Rvs167 and Abp1 proteins as spatial and temporal landmarks to align the membrane

shapes from the CLEM study to our tracking data. These three proteins represent different endocytic

substructures: the coat (Sla2), the invagination neck (Rvs167) and the actin cytoskeleton (Abp1)

(Kaksonen et al., 2005; Idrissi et al., 2008). We generated aligned average trajectories and measured

the average number of molecules for the proteins tagged N-terminally (GFP-Sla2) or C-terminally

(Rvs167-GFP and Abp1-GFP; Figure 2A,B). We first defined a common frame by setting the initial

position of the Sla2 centroid to coincide with the position of the flat plasma membrane. In GFP-Sla2 the

GFP molecule is adjacent to Sla2’s lipid-binding ANTH domain. The binding of Sla2’s ANTH domain to

PIP2 at the plasma membrane is essential for productive endocytosis (Sun et al., 2005). We could

therefore assume that before membrane bending starts (first time point in Figure 2A,C) the centroid of

GFP-Sla2 is likely to be within few nm from the plasma membrane surface, whose position we took as

the origin of the position axis. We then calculated the positions of the center of mass of Sla2 molecules

on the shapes of the different membrane intermediates taking into account that Sla2 molecules cover

a ∼30–40 nm long region at the tip of the invagination (Idrissi et al., 2012). We used these positions to

shift the membrane intermediates in time so that they coincided with the centroids in the average

trajectory of GFP-Sla2 (Figure 2A,C).

Our alignment agreed well with the time resolved data from CLEM study: the start of Abp1

assembly coincides with initial membrane bending, and the assembly of Rvs167 starts when the

invaginations are ∼50 nm long (Kukulski et al., 2012) (Figure 2C). The CLEM data also indicated that

Figure 2. Alignment of trajectories and interpretation. (A) Abp1-GFP, GFP-Sla2 and Rvs167-GFP average trajectories

aligned with each other. (B) The average number of molecules recruited at the endocytic locus varies from protein to

protein, ranging from ∼40 molecules at the peak of GFP-Sla2 to ∼410 molecules at the peak of Abp1-GFP. (C) The

lifetime of Abp1-GFP and Rvs167-GFP, as well as the centroid position of GFP-Sla2 are used to align in space and

time the average plasma membrane profiles obtained by correlative light and electron microscopy (Kukulski et al.,

2012). The centers of mass of the Sla2 model are marked by an ‘X’. The grey vertical bar represents the estimated

time window during which scission happens (Kukulski et al., 2012). The shading represents the confidence interval.

The trajectories plotted are listed in Supplementary file 1.

DOI: 10.7554/eLife.04535.010
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on average the vesicle scission takes place when ∼59% of the Rvs167-GFP patch lifetime has passed

(Kukulski et al., 2012). This time point coincides with the peak number of Rvs167-GFP molecules

(Figure 2B). We therefore used the time at which the number of Rvs167-GFP molecules peaks as an

estimate of the scission time and we defined it as the origin of the time axis (Figure 2A,B).

Organization of coat associated proteins
To gain insights into the organization of the endocytic coat we focused on three coat-associated

proteins: Sla2, Sla1 and End3. Sla2 is critical for membrane-actin coupling during vesicle budding

(Sun et al., 2005; Boettner et al., 2011; Skruzny et al., 2012), whereas Sla1 and End3 are

involved in the regulation of the initiation of actin polymerization (Tang et al., 2000; Rodal et al.,

2003; Kaksonen et al., 2005).

Sla2 is composed of the N-terminal lipid-binding ANTH domain and a C-terminal actin-binding

domain, which are separated by a long coiled-coil region. In Hip1R, the mammalian homolog of Sla2,

the coiled-coil region has been measured to be ∼40 nm long (Engqvist-Goldstein et al., 2001). We

imaged cells expressing C-terminally GFP-tagged Sla2 (Sla2-GFP). Both GFP-Sla2 and Sla2-GFP

average trajectories exhibited an initial motionless phase followed by inward movement. However,

the Sla2-GFP trajectory was 29 ± 5 nm (mean ± SE) distant from the GFP-Sla2 trajectory during the

initial non-motile phase (Figure 3A).

To confirm the spatial separation between GFP-Sla2 and Sla2-GFP we used a different imaging

strategy based on double labeling: we tagged the Sla2 molecule at its N-terminus with GFP and at its

C-terminus with mCherry (GFP-Sla2-mCherry; Figure 3—figure supplement 1A). We immobilized the

Sla2 patches by treating the cells with latrunculin A, which inhibits actin polymerization and prevents

membrane invagination at endocytic sites (Kukulski et al., 2012), and acquired still images of both GFP

and mCherry signals at equatorial planes of the cells. The GFP-Sla2-mCherry molecules were oriented

perpendicularly to the plasma membrane (Figure 3—figure supplement 1B) and the distance between

the centroids of the GFP and mCherry tags was 33 ± 3.4 nm (mean ± SE) (Figure 3—figure supplement

1C–F, ‘Materials and methods’). This compares well with the average distance between GFP-Sla2 and

Sla2-GFP average trajectories during the initial motionless phase. These results indicate that Sla2

molecules are oriented within the coat so that the PIP2 binding N-terminal domain is at the membrane

and the actin-binding C-terminal domain projects into the cytoplasm.

When the membrane invagination starts, the GFP-Sla2 and Sla2-GFP centroids start moving inward

and the distance between them becomes shorter (Figure 3A, Figure 3—figure supplement 1G).

A simple explanation for this convergence is that the Sla2 molecules maintain a constant orientation

with respect to the membrane. Therefore, during invagination the Sla2 molecules would reorient to

accommodate membrane bending and the center of mass positions of their N and C-termini would

move closer to each other (Figure 3A, right panel, time points −7, −6 and −4 s). Alternatively, a

conformational change of Sla2 could also contribute to the convergence of the trajectories by

bringing the N- and C-termini closer to each other.

We studied Sla1 and End3 proteins with C-terminal GFP-tags. Sla1 and End3 are multi-domain

proteins but the locations of their N- and C-termini in the tertiary structure are less well characterized

than in Sla2. The average trajectories of Sla1-GFP and End3-GFP had very similar shapes, but were

separated by about ∼10 nm or more (Figure 3B and Figure 3—figure supplement 1G).

The number of Sla2 molecules remained relatively constant at ∼40 molecules during vesicle budding

and started to drop ∼2–3 s before scission (Figure 3C). Sla1 and End3 molecules peaked at ∼90
and ∼60 molecules respectively and started disassembling already during invagination (Figure 3C).

The overall dynamic behaviors of the Sla1 and End3 centroids appeared similar to that of Sla2.

However, the Sla2 centroid started moving ∼2 s before the Sla1 and End3 centroids and moved past

the Sla1 centroid during invagination (Figure 3B, left panel). This suggests that Sla2, Sla1 and End3

are not distributed similarly within the coat. The observed trajectories could result from Sla2 being

located on the invagination tip and Sla1 and End3 being located at the rim of the coat (Figure 3B,

right panel). With such distributions, when the membrane starts bending, Sla2 molecules would start

moving first, followed slightly later by Sla1 and End3 molecules.

The average trajectories describe the center of mass position of the tagged protein molecules, but

the individual proteins could be distributed in various ways around the center of mass. We used

superresolution microscopy (Betzig et al., 2006; Hess et al., 2006; Rust et al., 2006) to resolve the

distribution of individual Sla1 proteins at the endocytic site: We fixed cells expressing Sla1 fused to
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a C-terminal SNAP tag and imaged structures on the bottom membrane of the cell close to the

coverslip surface. With an average localization precision of approximately 10 nm, we could directly

observe that Sla1 was localized in ring shapes (Figure 3D and Figure 3—figure supplement 2A,B,E).

We also observed some less defined shapes, which likely correspond to states either during coat

assembly or disassembly (Figure 3—figure supplement 2C,D,F,G). To exclude the possibility that

a ring was observed because we were imaging a curved membrane, we treated Sla1-SNAP expressing

Figure 3. Coat dynamics and organization. (A) Left panel: the inward movement of Sla2 coat protein, tagged at its N- or C-terminus (GFP-Sla2 and Sla2-

GFP respectively). Right panel: our model of Sla2 organization at the tip of the plasma membrane invagination. The centers of mass of the Sla2 model are

marked by an ‘X’ (N-terminus) and an open circle (C-terminus). (B) Left panel: the inward movement of Sla1-GFP and End3-GFP. GFP-Sla2 (dashed line) is

plotted for comparison. Right panel: our model of Sla1 and End3 organization at the outer rim of the coat. An open circle and an open diamond mark the

centers of mass of the Sla1 and End3 models respectively. The center of mass of Sla2 N-terminus is marked by an ‘X’ and it is plotted for comparison.

(C) The average number of molecules for GFP-Sla2, Sla2-GFP, Sla1-GFP and End3-GFP. (D) Sla1 ring structures imaged at endocytic sites, using

superresolution microscopy. (E) Sla1 ring structures imaged at endocytic sites, using superresolution microscopy, in yeast cells treated with LatA. The

shading of the trajectories represents the confidence interval. The plotted trajectories are listed in Supplementary file 1. Scale bar is 100 nm long. See

also Figure 3—figure supplement 1 and Figure 3—figure supplement 2.

DOI: 10.7554/eLife.04535.011

The following figure supplements are available for figure 3:

Figure supplement 1. Organization of the coat and experimental control for the two color alignment.

DOI: 10.7554/eLife.04535.012

Figure supplement 2. Imaging of Sla1 assemblies by localization microscopy.

DOI: 10.7554/eLife.04535.013
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cells with Latrunculin A, which inhibits actin polymerization and prevents membrane bending

(Kukulski et al., 2012). Again, we observed ring-shaped Sla1 structures (Figure 3E) even though the

plasma membrane remained flat (Figure 3—figure supplement 2H). These results show that Sla1 is

organized in a circular pattern at the endocytic site prior to membrane invagination.

Assembly of Rvs proteins at the neck of the invagination
The BAR domain proteins Rvs161 and Rvs167 form stable heterodimers, which localize transiently to

the neck region of the endocytic invagination where they are thought to regulate vesicle scission

(Kaksonen et al., 2005; Ren et al., 2006; Idrissi et al., 2008; Youn et al., 2010; Kishimoto et al.,

2011; Kukulski et al., 2012). We thus aimed to better characterize the dynamics of the Rvs proteins

during vesicle budding.

The average trajectory of Rvs167-GFP showed three different phases (Figure 4A). During the first

phase the centroid moved inward linearly less than 15 nm while the Rvs167-GFP molecules assembled

at a constant rate of ∼40 molecules/s (Figure 4A,B). In the next phase the centroid moved rapidly for

∼100 nm (Figure 4A) in less than a second. This rapid centroid movement coincided with a transition

to disassembly and with the scission of the vesicle (Figure 4B). In the last phase the centroid continues

to move inward, but with a reduced rate (Figure 4A). The fast centroid movement of the Rvs proteins

has been described before, but its mechanism remained unknown (Kaksonen et al., 2005).

To understand better how the Rvs molecules are assembled on the membrane we supplemented

our tracking data with data from structural studies of BAR domain proteins homologous to Rvs (Peter

et al., 2004; Mizuno et al., 2010; Mim et al., 2012). These studies have shown that BAR domains can

form regular oligomeric structures on membrane tubules of varying diameters, giving us an estimate

of the density of dimers on the membrane. With our estimate of the numbers of Rvs167 molecules

(Figure 4B), such density yields the possible membrane area covered by the Rvs dimers, assuming

that all dimers are membrane bound. We then used the Rvs167 average trajectory to locate the area

of the membrane profiles covered by Rvs. These simple assumptions allowed us to generate

a dynamic model of the membrane area covered by the Rvs molecules (Figure 4C; see ‘Materials and

methods’; see also Arasada and Pollard, 2011 for a similar approach). To obtain an estimate of Rvs

Figure 4. BAR protein dynamics. (A) The inward movement of Rvs167-GFP. (B) The average number of molecules of

Rvs167-GFP. (C) Our model of Rvs coverage of the plasma membrane invagination during the invagination growth.

When scission happens, Rvs molecules are released rapidly and remain in proximity of the vesicle only. The centers

of mass of the Rvs model are marked by an ‘X’. The grey vertical bar represents the estimated time window during

which scission happens (Kukulski et al., 2012). The shading represents the confidence interval. The plotted

trajectories are listed in Supplementary file 1. See also Figure 4—figure supplement 1.

DOI: 10.7554/eLife.04535.014

The following figure supplement is available for figure 4:

Figure supplement 1. The variability in the BAR protein coverage of the plasma membrane.

DOI: 10.7554/eLife.04535.015
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coverage immediately prior to scission we ex-

trapolated the coordinates of the invagination

profile at time 0 from the available membrane

profiles.

This reconstruction of Rvs localization revealed

the dynamics of Rvs assembly and disassembly in

relation to membrane invagination and scission

(Figure 4C). Rvs proteins start assembling at the

midpoint of the endocytic invagination and the Rvs

covered membrane area increases linearly and

reaches its maximum at about the time of scission.

Immediately prior to scission there are enough Rvs

molecules to cover the whole tubular part of the

invagination from the base of the invagination to

the coated tip (Figure 4C; time point 0). After

reaching their peak number, the Rvs molecules

disassemble rapidly (Figure 4B) and their center of

mass moves quickly inward toward the region

where the newly formed vesicle is located. Our

reconstruction suggests that the rapid movement

of the centroid is the result of a rapid disassembly

of the Rvs molecules at the neck of the invagina-

tion, where scission occurs (Kukulski et al., 2012),

while some of the Rvs molecules are kept at the

vesicle surface where they stay ∼2 s longer.

Assembly of the actin cytoskeleton
Polymerization of actin filaments at the endocytic

site is critical for membrane invagination and vesicle

budding (Merrifield et al., 2002; Kaksonen et al.,

2003; Boulant et al., 2011; Idrissi et al., 2012;

Kukulski et al., 2012). The endocytic actin fila-

ments are nucleated by the Arp2/3 complex, which

binds to existing filaments and nucleates new

filaments in a branched configuration. Thus, actin

filaments are organized as a dense, branched

network, which surrounds the endocytic site and

the newly formed vesicle (Mulholland et al., 1994;

Idrissi et al., 2012; Kukulski et al., 2012).

To gain further insight into the assembly of the

endocytic actin patches we tracked Act1, the

yeast actin protein, and Arc18, a component of

the Arp2/3 complex. Arc18 was GFP-tagged

C-terminally at its genomic locus. As the GFP

fusion of actin is not fully functional we expressed GFP-Act1 in addition to the endogenously

expressed untagged Act1 (Doyle and Botstein, 1996). In actin patches the GFP-Act1 localization was

comparable to general actin staining (Kaksonen et al., 2003) and the lifetime of Abp1-mCherry

patches was unaffected (Figure 1—figure supplement 2A). GFP-Act1 is thus likely to be a good

marker for actin localization and assembly at the endocytic site. We also tracked Las17, the yeast

homolog of mammalian N-WASP, and Myo5, a type I myosin, which were both C-terminally GFP-

tagged at their genomic loci. Las17 and Myo5 can activate the Arp2/3 complex and are critical for the

initiation of actin polymerization and for membrane invagination (Sun et al., 2006).

The average trajectories of both Act1 and Arc18 followed closely the trajectory of Abp1

(Figure 5A). All three average trajectories started at 30–40 nm above the level of the plasma

membrane when Sla2 movement began. Their centroids moved for ∼100 nm until the scission time

(Figure 5A). The tight colocalization of the centroids of Act1, Arc18 and Abp1 suggests that they are

Figure 5. Actin cytoskeleton dynamics. (A) The inward

movement of the actin cytoskeleton components GFP-

Act1, Arc18-GFP and Abp1-GFP, together with the

nucleation factors Las17-GFP and Myo5-GFP. GFP-Sla2

(dashed line) is plotted for comparison. (B–C) The

average number of molecules of Las17-GFP, GFP-Act1,

Myo5-GFP, Abp1-GFP and Arc18-GFP. The grey vertical

bar represents the estimated time window during which

scission happens (Kukulski et al., 2012). The shading

represents the confidence interval. The plotted trajec-

tories are listed in Supplementary file 1.

DOI: 10.7554/eLife.04535.016
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homogeneously distributed within the actin network. After scission the centroid trajectories became

noisier (Figure 5A). The increased noise probably reflects the free diffusion of the actin-covered

vesicle in the cytoplasm (Berro and Pollard, 2014).

The trajectories of individual Las17-GFP and Myo5-GFP patches did not exhibit any clear inward

movement. To align these trajectories with respect to the invagination axis we thus used two-color

imaging of Las17-GFP or Myo5-GFP with Abp1-mCherry, and we aligned the Las17-GFP and Myo5-GFP

trajectories based on the alignment of the corresponding Abp1-mCherry trajectories to Abp1-GFP

average trajectory (see ‘Materials and methods’).

At the beginning of the membrane invagination Las17 and Myo5 average trajectories are close to

Act1, Arc18 and Abp1 (Figure 5A). The Myo5 trajectory remained almost stationary during the

invagination of the plasma membrane, whereas the Las17 trajectory moved inward, but much less

than Abp1, Arc18 and Act1 trajectories.

The amount of Las17 molecules reached a maximum of ∼45 molecules. At ∼2 s before scission the

amount of Las17 molecules started decreasing while the number of Act1 molecules reached a plateau

which was maintained until the scission event (Figure 5B). Also the amount of Arc18 and Myo5

molecules peaked at ∼2 s before scission. However, the amount of Myo5 molecules started decreasing

before scission, while Arc18, similarly to Act1, maintained a plateau level until scission. The amount of

Abp1 molecules peaked at the scission time and then rapidly declined (Figure 5C). We measured by

quantitative Western blotting that GFP-Act1 represented 9 ± 1% of the total cellular actin (See

‘Materials and methods’). If we assume that GFP-Act1 is recruited to endocytic sites with the same

efficiency as the untagged actin, we can estimate that the peak number of actin molecules at the

endocytic site is ∼3000.
These results document the coupling between the assembly dynamics of the actin cytoskeleton

and the changes in membrane shape. However, the homogeneous distribution of the actin

cytoskeleton components across the actin network did not allow us to resolve its organization. To

understand how actin polymerization is distributed over the network, we next combined centroid

tracking with local photobleaching.

Actin polymerizes at the base of the invagination
The mechanism by which the polymerizing actin filaments contribute to membrane invagination is

poorly understood. Different models have been suggested, but there is no conclusive data in favor of

any of them (Kaksonen et al., 2003; Merrifield, 2004; Takenawa and Suetsugu, 2007; Suetsugu,

2009; Collins et al., 2011; Idrissi et al., 2012; Mooren et al., 2012). Figure 6A summarizes three

possible models for the organization of actin filaments at the endocytic site. In the first model the

polymerizing ends of actin filaments are growing against the coat, thereby pushing it inward. In the

second model filaments are growing against the plasma membrane at the base of the invagination,

and the older filaments are connected to the coat to mediate the pushing force. In the third model

actin polymerization is not preferentially oriented. In all models, the centroid of labeled actin would

move similarly inward during endocytosis and thus could not be used to discriminate between the

models. However, the models can be distinguished if the centroid is tracked after local photobleaching,

because the location of the centroid is then determined by the fluorescence of the newly polymerized

filaments. Model 1 predicts that after photobleaching the centroid would jump inward, away from the

cell surface. Model 2 predicts a jump in the opposite direction, toward the cell surface, while model

3 predicts no jump. The centroid positions at later time points should be parallel to the reference

trajectory, and be shifted by the distance of the post-bleach jump (Figure 6A).

We used a laser beam focused on a ∼0.5 μm diameter spot to photobleach an individual

fluorescence patch at the cell equator (Figure 6B) and we tracked its centroid position before and

after photobleaching. Multiple trajectories were averaged and plotted with the average trajectory of

the unbleached patch, as a comparison. We first photobleached GFP-Act1 patches ∼3–4 s after their

appearance. After photobleaching the reappearing centroids were located closer to the plasma

membrane than the centroids at the corresponding time point in the unbleached average trajectory

(Figure 6C). Neighbor trajectories to the photobleaching site, which were only partially affected by

photobleaching, did not show any jump (Figure 6—figure supplement 1A). We next photobleached

Arc18-GFP and observed a similar, although slightly smaller, shift of the centroid position toward

the plasma membrane (Figure 6D). These results suggest that actin filament nucleation and

polymerization take place at the base of the invagination, in agreement with model 2. In addition, we
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Figure 6. Region of assembly of actin filaments. (A) A schematic cartoon to show how local photobleaching

would affect the centroid position of a fluorescent actin patch, given three possible scenarios for the nucleation

of new actin filaments (in red) at the endocytic locus: (1) New actin filaments are nucleated in the proximity of the

coat; photobleaching would shift the centroid away from the plasma membrane. (2) New filaments are

nucleated at the base of the plasma membrane invagination; photobleaching would shift the centroid toward

the plasma membrane. (3) There is no preferential direction for actin nucleation; photobleaching would not

affect the centroid position. (B) Local photobleaching of an endocytic event in a cell expressing GFP-Act1. Scale

bar: 1 μm. See also Video 1. (C–E) Centroid positions of endocytic patches in yeast cells expressing GFP-Act1

(C), Arc18-GFP (D) or Abp1-GFP (E) before and after photobleaching. Error bars represent the Standard

Deviation. Plots show the respective average trajectories for comparison. (F) Left panel: The locations of the first

post-bleach centroids of Act1-GFP (red triangles) and Arc18-GFP (green circles) aligned relative to the

unbleached average trajectories. Nucleation promoting factors, Myo5-GFP and Las17-GFP, localize to the same

region where actin monomers are added. Average trajectories of GFP-Act1 and Arc18-GFP are plotted for

comparison. Right panel: Our model for the region of actin polymerization. The dashed boxes highlight the

region where actin and Arp2/3 complexes are recruited. The centers and the heights of the boxes correspond

respectively to the average and to the standard deviation of the centroid positions of GFP-Act1 and Arc18-GFP

after photobleaching. The cartoon highlights the regions where the new Arp2/3 complexes and actin molecules

Figure 6. continued on next page
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photobleached Abp1-GFP, a proposed inhibitor of actin filament nucleation (D’Agostino and

Goode, 2005). However, the trajectories of the Abp1-GFP centroid with or without photobleaching

did not differ significantly (Figure 6E) suggesting that Abp1 molecules are recruited throughout the

actin network unlike actin and the Arp2/3 complex.

We next performed similar photobleaching experiments at different time points during endocytosis,

and recorded the centroid position right after local photobleaching (Figure 6F). At all time, GFP-Act1 and

Arc18-GFP were added at the base of the invagination, but the exact localizations of the two

proteins differed: Act1 was added on average at 27 ± 18 nm (mean ± SD, n = 19) and Arc18 at 41 ± 15 nm

(mean ± SD, n = 17) above the plasma membrane surface (p value = 0.02). We note that this is also where

the Arp2/3 activators Las17 and Myo5 are located, according to the average centroid trajectories

(Figure 6F). The post bleach centroid position of Abp1 followed closely the Abp1 reference trajectory

(Figure 6—figure supplement 1B).

These results suggest that both actin filament nucleation and polymerization take place at the base

of the endocytic invagination. The Arp2/3 complex is assembled slightly higher above the membrane

plane compared to actin, which is consistent with the dendritic nucleation model (Pollard and Borisy,

2003) where the actin plus ends are oriented toward the plasma membrane (Figure 6F). The putative

inhibitor of actin nucleation, Abp1, would be distributed uniformly within the network.

Discussion
We developed an approach based on centroid tracking and averaging to characterize the movement

and assembly dynamics of proteins in the endocytic machinery during vesicle budding. We applied this

approach to endocytic proteins representing different functional modules to generate a comprehensive

model of the dynamic behavior of the endocytic machinery (Figure 7A,B). We combined the centroid

tracking data with time-resolved protein abundances, with EM data about membrane shapes and with

superresolution imaging of the protein distribution within the diffraction limited volume. This hybrid

approach allowed us to visualize the endocytic machinery with both high temporal and spatial

resolution. Conceptually similar approach for temporal alignment of endocytic patch dynamics has

recently been independently described by Berro and Pollard (2014).

The endocytic coat
The organization of clathrin molecules in the

endocytic coat is extensively documented

(Brodsky et al., 2001; Fotin et al., 2004;

Kirchhausen, 2009), but the organization of

the numerous coat-associated adaptor and

scaffold proteins is less well understood.

However, several studies indicate that many of

these proteins have distinct distributions within

the coat (Tebar et al., 1996; Saffarian and

Kirchhausen, 2008; Boettner et al., 2011). We

showed that three coat-associated proteins

exhibit specific orientation and distribution

within the endocytic coat (Figure 3).

Sla2 molecules are oriented so that the

N-terminal membrane binding-domain is at the

plasma membrane, while the C-terminal actin-

binding domain is ∼30 nm away from the plasma

Figure 6. Continued

are recruited. The shading of the trajectories represents the confidence interval. The plotted trajectories are

listed in Supplementary file 1. See also Figure 6—figure supplement 1.

DOI: 10.7554/eLife.04535.017

The following figure supplement is available for figure 6:

Figure supplement 1. The position of Abp1 fluorescence recovery after photobleaching.

DOI: 10.7554/eLife.04535.018

Video 1. Photobleaching experiment. Local photo-

bleaching of an endocytic event in a cell expressing

GFP-Act1. The video plays in real time. Scale bar is 2 μm.

DOI: 10.7554/eLife.04535.019
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membrane. The coiled-coil region separating the terminal domains contains a clathrin-binding motif

(Engqvist-Goldstein et al., 2001; Boettner et al., 2011). Therefore, Sla2 molecules could span the clathrin

lattice, which is about 22 nm from the membrane surface (Vigers et al., 1986), and interact simultaneously

with the membrane, with clathrin, and with actin filaments on the cytoplasmic side of the clathrin lattice.

Sla1 and End3, together with a third protein Pan1, form a complex, which is implicated in the

regulation of actin assembly (Holtzman et al., 1993; Bénédetti et al., 1994; Tang et al., 2000). Sla1 is

localized in a ring of ∼50 nm in diameter, which can fit well around the tip of the endocytic membrane

invagination of ∼30 nm in diameter (Idrissi et al., 2008; Kukulski et al., 2012). As Sla1 and End3 are

late-assembling coat proteins (Kaksonen et al., 2005; Newpher et al., 2005), they could assemble at

Figure 7. The dynamic architecture of the endocytic machinery. (A) Summary of the average dynamics and number

of molecules for Sla2-GFP, GFP-Sla2, Sla1-GFP, End3-GFP, Rvs167-GFP, Arc18-GFP, Myo5-GFP, Las17-GFP and

GFP-Act1. The plotted trajectories are listed in Supplementary file 1. Las17 and Myo5 were smoothened using

a moving average filter of length 5; the remaining data were smoothed using a Savitzky-Golay filter over 11 time

points. (B) The protein symbols are positioned, according to the average trajectories of the corresponding proteins

(Figure 7A), along the plasma membrane invagination profiles derived from CLEM. The actin filament network is

drawn schematically to illustrate the average direction of actin polymerization and does not represent the true

organization of the actin filaments and branches. Time ≤ −8 s: coat assembly; Sla2 exposes its actin binding domain

outside of the clathrin cage. Time ≈ −8 s: actin polymerization starts and drives the initiation of the plasma

membrane invagination. −8 s ≤ time ≤ −3 s: the invagination grows and the coat accommodates the changes in

curvature imposed by the plasma membrane invagination growth. −3 s ≤ time < 0 s: Rvs proteins are recruited to the

invagination, which is growing longer, and stabilize it. Time ≥ 0: the scission of the invagination releases the vesicle.

Concomitantly, the Rvs structure starts to disassemble very rapidly. See also Video 2.

DOI: 10.7554/eLife.04535.020
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the rim of a pre-existing early coat. The disassembly

of Sla1 and End3 begins after membrane

invagination has started, but several seconds

before scission, suggesting that these proteins

may be important during early stages of

vesicle budding. Interestingly, Sla2 and Pan1,

have been suggested to capture short cytosolic

actin filaments that could serve as ‘mother

filaments’ to recruit the Arp2/3 complex and to

initiate the assembly of the actin network (Chen

and Pollard, 2013).

Taken together, our data demonstrate that

the endocytic coat exhibits a highly organized

and dynamic molecular architecture during

vesicle budding.

Rvs BAR-domain proteins
BAR domain proteins can sense membrane

curvature and they can actively induce membrane

curvature at high concentration (Peter et al.,

2004; Mizuno et al., 2010; Mim et al., 2012). In

yeast, the heterodimeric BAR domain proteins

Rvs161/167 assemble transiently at the endocytic

site during the formation of the membrane

invagination (Kaksonen et al., 2005; Idrissi

et al., 2008; Kukulski et al., 2012) to regulate

the invagination or scission steps (Kaksonen

et al., 2005; Youn et al., 2010; Kishimoto et al., 2011; Boucrot et al., 2012; Kukulski et al.,

2012). However, the exact mechanism of action of Rvs is unknown. Our results suggest that there are

enough Rvs molecules to form a dense BAR domain lattice covering the whole tubular part of the

invagination below the coated tip (Figure 4). At this density the Rvs proteins could exert significant

bending forces on the membrane (Sorre et al., 2012). This Rvs lattice could therefore support the

membrane tubule and prevent premature fission (Kukulski et al., 2012). In addition, an Rvs lattice

could act as a lipid diffusion barrier that could form a lipid phase boundary to promote vesicle scission

(Liu et al., 2006; Zhao et al., 2013). Furthermore, our model explains the rapid movement of the

Rvs167-GFP centroid upon scission: due to their affinity for curved membranes, the Rvs molecules are

likely to first disassemble at the tubular part of the invagination that collapses after scission, while

some of the Rvs molecules may remain bound to the membrane that forms the vesicle. Therefore, the

center of mass of Rvs molecules would rapidly shift due to localized disassembly without actual

movement of the Rvs lattice. The exact timing of the Rvs disassembly, in respect to the scission event,

remains an interesting open question. Currently, our data does not have the time resolution to discern

whether the initiation of Rvs disassembly precedes scission or follows it. If Rvs disassembly follows

scission it could be a passive response to the collapse of the membrane tubule. Alternatively, if Rvs

disassembly precedes scission it might destabilize the membrane tubule and thereby regulate the

timing of scission. In either case, the extensive Rvs lattice could support the membrane tubule and

thereby promote its extension until the scission.

Endocytic actin network
Actin nucleation and polymerization are precisely coordinated with membrane shape changes. Our

previous CLEM results suggested that the initiation of membrane bending coincides with actin

polymerization (Kukulski et al., 2012). Another EM study, however, suggested that the membrane

bending begins already ∼15 s prior to actin polymerization (Idrissi et al., 2012). The average

trajectory of the coat proteins Sla2 shows directed inward movement only after actin polymerization

has started (Figure 1) supporting the idea that the main membrane bending phase starts only after

actin polymerization. However, a very shallow initial membrane curvature might be unresolvable by

the tracking approach.

Video 2. The dynamic architecture of the endocytic

machinery. The reconstruction of the dynamic architec-

ture of the endocytic machinery obtained by combining

the centroid positions of the proteins over time, the

plasma membrane invagination profiles derived from

CLEM (Kukulski et al., 2012) and the structural

properties of the proteins. See also Figure 7 for the

legend of the protein symbols.

DOI: 10.7554/eLife.04535.021
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The data about numbers of molecules allow us to estimate some key parameters of the endocytic

actin network. If each Arp2/3 complex nucleates an actin filament, new filaments are generated at a

rate of ∼30 filaments per second, reaching a maximum number of ∼200 filaments. With the estimated

maximum of ∼3000 actin molecules the average filament length would be ∼40 nm. The actin polymer,

the Arp2/3 complex, and the Arp2/3 activators, Myo5 and Las17, reach the maximum level of

molecules about 2 s before vesicle scission. Actin and the Arp2/3 complex maintain their levels of

molecules until scission, whereas Las17 and Myo5 start to disassemble right after reaching their peak

levels. These data suggest that the rate of nucleation of new actin filaments decreases before vesicle

scission occurs. The initiation of actin filament nucleation has been studied extensively (Mooren et al.,

2012), but the mechanisms that terminate nucleation are not well understood. The termination of

nucleation could involve feedback from membrane shape or tension.

Different models have been proposed for the organization of actin filaments at the endocytic site

(Takenawa and Suetsugu, 2007; Mooren et al., 2012). However, conclusive data about the location

of nucleation and polymerization during endocytosis has not been available. We showed here that

actin filaments are nucleated and polymerize at the base of the invagination, where the Arp2/3

activators Las17 and Myo5 are also localized (Figure 6). Capping proteins, which bind to the growing

ends of actin filaments and stop polymerization (Mooren et al., 2012), are likely important for

restricting actin polymerization to the base of the invagination.

The functional organization of the endocytic machinery
By combining all our data we built a comprehensive model that reveals the dynamic interplay of the

functional modules of the endocytic machinery during the final ∼10 s of endocytosis (Figure 7). During

this time window the flat plasma membrane is reshaped into an endocytic vesicle. The coat, which is

initially assembled on flat membrane, starts internalizing and reorganizing when actin polymerization

begins. Actin polymerization is initiated close to the plasma membrane where Las17 is located and

the region of polymerization remains at the base of the invagination throughout vesicle budding.

When the invagination has formed, actin is likely polymerizing in a circular region surrounding the

invagination. Initially, actin polymerization might also be triggered in a circular region at the rim of the

coat, where Sla1, a regulator of actin nucleation, is also located. Continued filament nucleation and

polymerization at the plasma membrane would push the older filaments into the cell generating a flow

of actin filaments. The organization of the endocytic actin network bears striking similarity to the

organization of actin at the leading edge of migrating animal cells where actin filaments nucleated by

the Arp2/3 complex polymerize and push against the plasma membrane (Pollard and Borisy, 2003).

This polymerization pushes the leading edge of the cell forward, but also results in a retrograde flow

of actin filaments into the cell. The actin binding domains of Sla2 are ideally positioned at the surface

of the endocytic coat to capture the actin filaments that are moving away from the plasma membrane.

We suggest that the actin scaffold is rigid enough to transmit the forces produced by the

polymerization at the plasma membrane so that Sla2 can, together with Ent1 (Skruzny et al., 2012),

transmit the force from the actin polymerization to the membrane.

Detailed quantitative analyses of assembly and disassembly of the endocytic machinery, especially

the actin cytoskeletal proteins, have been previously performed on fission yeast Schizosaccharomyces

pombe (Wu and Pollard, 2005; Berro et al., 2010; Sirotkin et al., 2010; Arasada and Pollard, 2011;

Chen and Pollard, 2013). Comparing the S. pombe and S. cerevisiae data shows that the overall

assembly dynamics and the stoichiometries of the endocytic proteins are highly similar in these very

distantly related fungal species. For example, the numbers of the S. pombe homologs of Las17 and

Myo3/5 also peak briefly before the peak of actin molecules (Berro et al., 2010; Sirotkin et al., 2010),

suggesting that the assembly dynamics of the actin cytoskeleton are functionally optimized. However,

there are also some clear differences: in S. pombe the Las17 homolog Wsp1 is recruited together with

myosin just prior to actin polymerization (Berro et al., 2010; Sirotkin et al., 2010; Arasada and

Pollard, 2011) whereas in S. cerevisiae Las17 localizes >10 s before myosins are recruited and actin

polymerization starts (Kaksonen et al., 2003; Figure 5). Analyzing these evolutionary differences in

detail could reveal mechanistic insights into the regulation of the endocytic assembly.

Rvs assembly and disassembly are tightly coupled to the membrane shape changes (Figure 4).

Rvs molecules may get recruited by a specific membrane curvature at the invagination, but

protein–protein interactions may also have a role in the recruitment (Ren et al., 2006). Just before

scission, the membrane invagination is densely covered by Rvs molecules. Scission occurs within the
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Rvs covered region at ∼1/3 of the invagination

length (Kukulski et al., 2012). However, the

exact molecular mechanism of vesicle scission is

still not understood. Neither Rvs, nor the yeast

homolog of dynamin Vps1, are essential for

scission, but they may regulate its timing or

location (Kishimoto et al., 2011; Kukulski et al.,

2012; Smaczynska-de Rooij et al., 2012).

Interestingly, the location of actin polymerization

and Myo5 corresponds closely to the site of

scission, therefore polymerization and motor

activities could have a role in scission (Jonsdottir

and Li, 2004). After scission the Rvs molecules

that remain on the newly formed vesicle might

have additional roles, for example, in uncoating

as shown for the mammalian homolog endophilin

(Milosevic et al., 2011).

Materials and methods

Strains and plasmids
Yeast strains (Table 2) were generated by

homologous recombination of the target genes

with PCR cassettes. C-terminal tagging was per-

formed using plasmids pFA6a-EGFP-His3MX6,

pFA6a-mCherry-KanMX4 and pYM12-PKS134 for

monomeric GFP (myEGFP). pMaM17 (Khmelin-

skii et al., 2012) was used for the tandem tag

of mCherry and sfGFP. pMK03-SNAP-His3MX6

was generated by replacing EGFP with SNAPf

(Sun et al., 2011) in pFA6a-EGFP-His3MX6.

N-terminal tagging was performed using plasmid

pMaM173 which was transformed into yeast

strains with a Gal L - ISCE1 integration used to

loop out the URA marker and the TEF promoter

(Khmelinskii et al., 2011). pMaM175 was used to

tag Nuf2 C-terminally with sfGFP (Khmelinskii

et al., 2011). The strains used for protein abun-

dance measurements were confirmed by sequen-

cing of the integrated tags.

Live-cell imaging
Yeast cells were grown to logarithmic phase on

SC-Trp medium at 25˚C. They were adhered to

ConA coated coverslips. Cells were incubated for

10 min at room temperature on the ConA coated

coverslip and then washed with SC-Trp medium.

Cells were imaged on the coverslip in 40 μl of
SC-Trp medium. All samples were imaged at

room temperature using an Olympus IX81

wide-field epifluorescence microscope equip-

ped with a 100×/1.45 objective. For single

channel live cell imaging 488 nm laser light and

images were acquired with 80–100 ms expo-

sure time. Emission light was filtered using

the GFP-3035C-OMF single-band filter set

Table 2. Yeast strains

Strain # Genotype

MKY0216 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, NUF2-EGFP::HIS3MX6

MKY0217 MATα, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, NUF2-EGFP::HIS3MX6

MKY0711 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, MYO5-EGFP::HIS3MX6,
ABP1-mCherry::kanMX4

MKY0822 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, SLA1-EGFP::HIS3MX6,
ABP1-mCherry::kanMX

MKY1304 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, END3-EGFP::HIS3MX6,
ABP1-mCherry::kanMX4

MKY1318 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, RVS167-EGFP::HIS3MX6,
ABP1-mCherry::kanMX4

MKY1368 MATα, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, LAS17-EGFP::HIS3MX6,
ABP1-mCherry::kanMX4

MKY2119 MATα, his3-Δ200, leu2-3,112Δ::GalL-
ISce1-natNT2, ura3-52, lys2-801,
sfGFP-SLA2-mCherry::hphNT1

MKY2653 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801 with pMK0100[CEN, URA3
GFP-ACT1]

MKY2655 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, ABP1-mCherry::kanMX4 with
pMK0100[CEN, URA3 GFP-ACT1]

MKY2689 MATα, his3-Δ200, leu2-3,112Δ::GalL-
ISce1-natNT2, ura3-52, lys2-801,
sfGFP-SLA2

MKY2720 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, ARC18-myEGFP::natNT2,
ABP1-mCherry::kanMX

MKY2747 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, ARC18-myEGFP::natNT2

MKY2832 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, RVS167-EGFP::HIS3MX6

MKY2833 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, SLA1-EGFP::HIS3MX6

MKY2834 MATα, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, ABP1-EGFP::HIS3MX6

MKY2836 MATα, his3-Δ200, leu2-3,112Δ::GalL-
ISce1-natNT2, ura3-52, lys2-801,
sfGFP-SLA2, ABP1-mCherry::kanMX

MKY3135 MATα, his3-Δ200, leu2-3,112Δ::GalL-
ISce1-natNT2, ura3-52, lys2-801,
sfGFP-SLA2, ABP1-mCherry::kanMX,
Sla1-SNAP::HIS3MX6

MKY2859 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, SLA2-EGFP::HIS3MX6

MKY2863 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, CSE4-EGFP::HIS3MX6

MKY2864 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, LAS17-EGFP::HIS3MX6

MKY2876 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, MYO5-EGFP::HIS3MX6

Table 2. Continued on next page
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(Semrock, Rochester, NY). Fluorescence was

detected using the Hamamatsu ImagEM

EMCCD camera. For two color live cell imaging

the samples were excited simultaneously with 488

nm and 561 nm laser light for 250 ms exposure.

Excitation light was reflected with a OBS-U-M2TIR

488/561 (Semrock, Rochester, NY) dichroic mirror.

Emission light was split and filtered with the

DUAL-view (Optical Insights, LLC, Tucson, AZ) beam

splitter. The beam splitter created two separated

images, one for each channel, on the Hamamatsu

ImagEM EMCCD camera sensor. Photobleaching

was performed using a custom built setup with a

488 nm laser, focused on a ∼0.5 μm spot.

The wide-field epifluorescence microscope

setup was controlled by Metamorph 7.5 (Molecular

Devices, Sunnyvale, CA).

Image analysis
Before tracking the endocytic patches and the

photobleaching experiments, the extracellular

background was subtracted from the images

using the Background Subtraction function in ImageJ (with rolling ball radius equal to 90 pixels,

corresponding to 9 μm). To correct for photobleaching, each image was then scaled such that the

average fluorescence intensity within the cell remains constant in successive frames. To correct for the

uneven cytoplasmic background signal at the edge of the cell, we estimated the cytoplasmic

contribution by further processing the images with a median filter (of kernel 6 pixels, corresponding to

0.6 μm). We then subtracted the cytoplasmic background and tracked endocytic patches using the

Particle Tracker plugin in (Sbalzarini and Koumoutsakos, 2005).

Single channel trajectory alignment and averaging
Each protein trajectory p is a list of points,

pi =
n
px
i ;p

y
i ;p

f
i

o
;

defined from px
i and py

i , the centroid 2D coordinates in the focal plane, and pf
i , the corresponding

fluorescence intensity, where the index i denotes time. Trajectories were aligned in space and time by

a custom made software written in R (www.CRAN.org). An isometric transformation of space

T = fTx; Ty ;Tθg is defined as

T : fx; yg→�cos�Tθ
�
x− sin

�
Tθ
�
y +Tx ;  sin

�
Tθ
�
x + cos

�
Tθ
�
y +Ty

�
:

The best alignment between two trajectories, p and q, is computed by minimizing the sum of the

squared difference between all overlapping points:

fTbest ; τbestg= arg  min
T ;τ

0
B@∑

i

wi

��
qx
i+τ − ðTpiÞx

�2 + �qy
i+τ − ðTpiÞy

�2�
∑
i

wi

1
CA;  with wi =qf

i+τp
f
i :

In practice, we computed for each possible time shift τ, the best spatial transformation

(Horn, 1987), and selected the best overall result. The weights wi are the product of the fluorescence

intensities of the spot pairs at each time point. Being proportional to the cross-correlation in time of

the fluorescence intensities, they helped to refine the temporal alignment of the trajectories. To not

bias the alignment by the choice of a reference, each trajectory was separately used as a reference to

which all the remaining trajectories were aligned. Given n trajectories we thus computed n(n−1)
alignments. Each alignment gave us an estimate of the transformation that aligns a trajectory to its

reference. We thus estimated the average transformation that aligns all the trajectories together as

Table 2. Continued

Strain # Genotype

MKY2880 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, ABP1-mCherry-sfGFP::kanMX4

MKY2893 MATa, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, END3-EGFP::HIS3MX6

MKY2918 MATα, his3-Δ200, leu2-3,112, ura3-52,
lys2-801, SLA2-EGFP::HIS3MX6,
ABP1-mCherry::kanMX4

MKY2919 MATa, his3-Δ200, leu2-3,112Δ::GalL-
ISce1-natNT2, ura3-52, lys2-801,
NUF2-sfGFP::KIURA3

MKY2920 MATα, his3-Δ200, leu2-3,112Δ::GalL-
ISce1-natNT2, ura3-52, lys2-801,
NUF2-sfGFP::KIURA3

MKY3136 MATa, his3-Δ1, leu2-Δ0, ura3-Δ0, met15-
Δ0, LAS17-myEGFP::natNT2

MKY3137 MATa, his3-Δ1, leu2-Δ0, ura3-Δ0, met15-
Δ0, RVS167-myEGFP::natNT2

The yeast strains used in this study.

DOI: 10.7554/eLife.04535.022
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seen from a common reference point in the field of view. Once aligned, all trajectories were

averaged to obtain the average trajectory. The average trajectory of each protein was derived from

50 to 80 individual trajectories (Figure 1—figure supplement 1, Table 1). See Source code 1.

The alignment of the trajectories of Abp1, Arc18 and Act1 was computed using only the

trajectory data associated with the invagination dynamics, up to the trajectory peak in fluorescence

intensity.

The number of molecules over time was obtained after calibrating the fluorescence intensity curve

mean integral with the average number of molecules estimated at the endocytic spot (see ‘Materials

and Methods’: calibration of the fluorescence intensity curve of the trajectories with the number of

molecules).

All data presented in this work are listed in the Supplementary file 1. All the curves in Figure 7,

except Las17 and Myo5, were smoothened using a Savitzky-Golay filter over 11 time points. Las17 and

Myo5 were smoothened using a moving average filter of length 5.

Two color alignment procedure
The alignment is performed using pairs of trajectories acquired simultaneously with two labeled

proteins: Abp1-mCherry serving as a reference, and a protein of interest tagged with GFP.

Simultaneous acquisition of the two colors is made with the DUAL-view beam splitter (Optical Insights,

LLC, Tucson, AZ). Image un-splitting and correction of chromatic aberration are done following the

DUAL-view recommended procedures. A sample with TetraSpeck microsphere (0.1 μm, Invitrogen,

Carlsbad, CA) was imaged in both channels and the centroids were identified with Particle Tracker

(Sbalzarini and Koumoutsakos, 2005) in ImageJ and then processed in MATLAB (TheMathworks,

Natick, MA) to generate a spatial warping transformation that was applied on the raw coordinates.

The non-linear transformation was generated by the local weighted mean (lwm) method of cp2tform

(See Matlab help and references thereafter).

Definitions
The average trajectory of a protein, P, is represented by a temporal collection of 6-dimensional

vectors,

Pi =
n
Px
i ;P

y
i ;P

f
i ; δ

x
i ; δ

y
i ; δ

f
i

o
 with i = f1;…;Ng:

P contains Px and Py, the average position of the centroid of the fluorescence patch, and the

corresponding average fluorescence Pf, the standard error of the means δx and δy, associated with the

position coordinates, and δf, the standard error of the mean associated with the fluorescence intensity.

The average trajectory of the reference protein, that we name R, follows the same notation.

The trajectory pairs are not necessarily defined over the same time interval as the average

trajectories P and R. They were thus smoothed with a moving average, to reduce noise, and

interpolated with a cubic spline to estimate values at the missing time points. The resulting trajectory,

p is a temporal collection of 3-dimensional vectors

pi =
n
px
i ;p

y
i ;p

f
i

o
 with i = f1;…;Ng;

built from the positions, px and py, and the fluorescence intensities pf of each endocytic patch. The

notation is similar for the reference trajectory r. r and p are already aligned together because they

were acquired simultaneously.

Temporal alignment
First, individual trajectories are aligned to their corresponding average trajectory in time.

The resulting lag τp, that aligns in time p and P, is the one that maximizes the cross-correlation of

the fluorescence intensities:

τp = arg  max
τ

�
∑ip

f
i+τP

f
i

	
:

The same procedure is used to compute the lag τr between r and R.
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Spatial alignment
An isomeric transformation of space T = fTx;Ty ;Tθg is the combination of a translation and a rotation

T : fx; yg→�cos�Tθ
�
x− sin

�
Tθ
�
y +Tx ;  sin

�
Tθ
�
x + cos

�
Tθ
�
y +Ty

�
:

The optimal transformation Tp that aligns p to P is calculated as

Tp = arg  min
T

0
BB@
∑
i

wi

��
Px
i −
�
Tpi + τp

�x�2
+
�
Py
i −
�
Tpi + τp

�y�2	
∑
i

wi

1
CCA;  with wi =

Pf
i p

f
i+τp

δxi δ
y
i

:

The same procedure is used to compute Tr that aligns r to R. The spatial alignment of the trajectories

of Abp1, Arc18 and Act1 was computed using only the trajectory data associated with the

invagination dynamics, up to the trajectory peak in fluorescence intensity.

Estimate of the average transformations
Between 50 and 350 trajectory pairs were used to compute the average alignment (Table 1). For each

trajectory pair, we got an estimate of the transformations that align r to R and p to P. An estimate of

the transformation that aligns P to R is thus the combination of the inverse transformation that aligns p

to P and of the transformation that aligns r to R:

T =Tr

�
Tp

�−1
:

The average transformation is then the average of the estimates of the individual transformations that

align P to R, computed from each of the trajectory pairs. The average time alignment τ is computed as:

τ=median
�
τr − τp

�
and δτ is the estimate of the standard error for the median computed as:

δτ=
1:4826×MADτffiffiffiffiffi

M
p

MADτ is the median absolute deviation for τ andM is the number of trajectory paires used to compute

the average transformation.

Tx and Ty are computed as:

Tx =median
�
Tx
r − cos

�
Tθ
r −Tθ

p

�
Tx
p + sin

�
Tθ
r −Tθ

p

�
Ty
p

�
;

Ty =median
�
Ty
r − sin

�
Tθ
r −Tθ

p

�
Tx
p − cos

�
Tθ
r −Tθ

p

�
Ty
p

�
:

Tθ is computed as:

Tθ =median
�
Tθ
r −Tθ

p

�
:

δTx, δTy and δTθ are computed as δτ using their respective MAD. Note that the approximation used to

estimate Tθ is only valid if Tθ
r ≈Tθ

p. To ensure that this is the case, R and P are first aligned to their axis

of symmetry, which is the direction of the invagination that we defined as the X-axis. As r and p are

already aligned along the axis of invagination, because they were acquired simultaneously, the final

rotation that align P to R is close to the identity (Tθ ≈ 0). Centering P to its center of mass further

minimize any error that might be induced by the above approximation.

The trajectory of the protein of interest aligned to the reference trajectory is thus:

P′
i =
n
ðTPiÞx; ðTPiÞy ;Pf

i ; ζ
x
i ; ζ

y
i ; ζ

f
i

o
;

where ζxi and ζyi are the standard errors computed as:

ζxi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δxi
�2 + �Py

i δT
θ
�2 + ðδTxÞ2

q
;

ζyi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δyi
�2 + �Px

i δT
θ
�2 + ðδTyÞ2

q
:
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All plots describing the trajectories inward movement along the invagination direction report

the 95% confidence intervals, computed as 1:96× ζxi and 1.96 × δτ. See Source code 2.

Two color averaging procedure used for non-motile proteins
Trajectory pairs of Myo5-GFP or Las17-GFP and Abp1-mCherry were used to generate Myo5 and

Las17 average trajectories. The rotations and translations that aligned the Abp1-mCherry trajectories

and Abp1-GFP average trajectory together were used to align the corresponding Myo5-GFP or

Las17-GFP trajectories. Once aligned, the coordinates of the GFP trajectories were averaged together

at each time point.

Simulation of the accuracy of the two color alignment procedure
To control the accuracy of our alignment procedure we generated virtual trajectory pairs using two

trajectories that we generated as a template (ground truth trajectories): one ground truth trajectory

represents the reference protein while the other represents the target protein. The points of the

trajectory pairs were randomly generated and were normally distributed around the ground truth

trajectories with sigma σp for the trajectories of the target protein and σr for the trajectories of the

reference protein. All trajectories were generated with the same sampling rate as the real

trajectories. The virtual trajectory pairs were then processed with the same pipeline we used for the

real data to align the ground truth trajectories together. As the ground truth trajectories were

already aligned all transformations are expected to be 0 (Figure 1—figure supplement 4A–D).

When we arbitrarily increased the noise used to generate both the reference and the target

proteins we observed that the alignment procedure remains faithful up to ∼25 nm of noise. For

higher values a small systematic shift occurs (Figure 1—figure supplement 4C). We then tested the

robustness of the alignment procedure keeping σr fixed at 19 nm while we varied σp. A σr fixed

mimics the noise in the real trajectory pairs, as the reference protein was always imaged under the

same conditions. The alignment showed negligible errors (Figure 1—figure supplement 3E–L).

Note that in the real trajectory pairs σp span a range from 10 nm to 24 nm, however the algorithm

was stable also for higher errors. We observed a systematic shift, of maximally ∼3 nm, that occurs

when the trajectories are getting far from the reference (Figure 1—figure supplement 3K). This is

expected as any small error in the alignment of the trajectories leads to an underestimate of the

separation between the reference and the target protein. This underestimate grows larger the

bigger the separation is, resulting in the trajectory of the target protein being shifted little closer to

its reference than it should be. A shift of 3 nm is reached when the trajectories are 30 nm away far

from the reference protein, which is the maximal distance of a trajectory from its reference in our

model.

Simulation of the robustness to systematic shifts between the two
channels during two color acquisition
To test for the robustness against systematic shifts between the two channels, we shifted the

reference trajectories in the virtual trajectory pairs that we generated on the computer (see

‘Materials and Methods’: Simulation of the accuracy of the two color alignment procedure; σr =
16 nm and σr = 19 nm), by shifts up to 150 nm along one direction. These shifts simulate different

amounts of aberration between the two channels. On average, the alignment is not affected

(Figure 1—figure supplement 4A). In fact, the trajectory pairs, as well as the endocytic events

that they mimic, are oriented in all possible directions and once their average relative position is

calculated, the chromatic aberration contribution is averaged out. However, the incertitude in

the average position increases, as expected (Figure 1—figure supplement 4A). It is important

to note that our pixel size correspond to 100 nm, therefore any shift larger than 50–100 nm

would have been easily noticeable by eye. To assess how the alignment of the real data would be

affected by a systematic color shift we also shifted the real trajectory pairs we used to align Sla2-

GFP tp Abp1-GFP. Again, we induced shifts up to 150 nm to the trajectories of Abp1-mCherry to

simulate different amounts of aberration between the two channels. The average position of

Sla2-GFP does not significantly change but the incertitude in its average position increases

(Figure 1—figure supplement 4B–D).
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Simulation of the accuracy of the trajectory averaging
To test the accuracy of the trajectory averaging we generated 65 virtual trajectories starting from

a trajectory template (ground truth trajectory). The trajectories were generated adding noise that was

normally distributed around the points of the ground truth trajectory with a standard deviation σ.

We sampled values of σ covering the range of noise encountered experimentally (between 10 nm and

20 nm). The average trajectories where then aligned in time and in space to a reference trajectory that

was generated together with the ground truth trajectory. To compute the alignment we used virtual

trajectory pairs generated from the ground truth trajectory and the reference trajectory as described

in ‘Materials and Methods: simulation of the accuracy of the two color alignment procedure’, with

noises σp = 10 nm and σr = 19 nm respectively. The averaging procedure and the complete alignment

procedure are very robust: after the alignment the average trajectories were reproducing very closely

the ground truth trajectory (Figure 1—figure supplement 5). As expected, the average of very noisy

trajectories slightly underestimates the full length of the ground truth trajectory (Figure 1—figure

supplement 5D).

Quantification of the number of molecules
To quantify the protein amounts we imaged a sample containing cells from both a yeast strain

expressing a fluorescently tagged protein of interest and a yeast strain expressing fluorescently

tagged Nuf2, which was used as a reference to calibrate the fluorescence intensity (Joglekar et al.,

2006). Both strains expressed the same fluorescent tag and were imaged together. For the

quantification of the Nuf2 fluorescence intensity we used cells in anaphase-telophase only. Excitation

light and emission light were directed through the U-MGFPHQ (Olympus, Japan). Samples were

imaged as a z-stack of 21 frames, 200 nm spaced, using the Hamamatsu Orca-ER CCD camera. Each

frame was excited with X-Cite 120Q lamp for 400 ms. Frames were not processed for background

subtraction and the spots were quantified by quantifying the fluorescence intensity of the patches, in

the frame of the z-stack in which they were brighter, and subtracting their local background, as

described in Joglekar et al. (2006).

The intensities of the fluorescent patches of the target endocytic proteins where in general dimmer

than Nuf2, and their distribution was in general not symmetric. The intensities measured from the

patches of the target proteins were thus processed after a logarithmic transformation. The average

number of molecules of the target protein np was derived as:

np =
f

g
nr :

nr is the known number of molecules of the reference, f is the median of the fluorescence intensity

of the patches of the target protein and g is the median fluorescence intensity of the patches of the

reference protein. The uncertainty in the number of molecules was derived as:

δnp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nr
f

g
δl

	2

+
�
nr

f

g2
δg

	2

+
�
f

g
δnr

	2
s

: (1)

δl is the estimate of the standard error for the median of the fluorescence intensity of the target

protein after logarithmic transformation, l = log(f), and is computed as:

δl =
1:4826×MADlffiffiffiffi

N
p :

MADl is the median absolute deviation for l and N is the number of observations. The distribution

of the intensities of the target endocytic proteins where not symmetric, they were thus processed

after a logarithmic transformation of their intensities. δg is computed as δl, using MADg, the median

absolute deviation of the fluorescence intensity of the reference protein. δnr is the uncertainty in Nuf2

number of molecules. The average number of molecules np was then used to rescale fluoresce intensity

curves of the average trajectories (see ‘Materials and Methods’: calibration of the fluorescence intensity

curve of the trajectories with the number of molecules).

Nuf2 number of molecules was quantified using Cse4 as a reference. The number of Cse4 molecules

used for the calibration was 5 molecules/kinetochore (Lawrimore et al., 2011). The measured average

number of Nuf2 molecules, per fluorescent spot, was 280.6 ± 16.1 molecules. Its error was quantified as
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in Eq.(1) with δnr = 0. The quantification of Nuf2 molecules with Cse4 served as a control for our

procedure as there is no difference in the ratio between our number of Nuf2 molecules and the number

of Cse4 molecules, which is 3.5 ± 0.2 Nuf2 molecules each Cse4, and Joglekar’s ratio, which is 3.5.

To quantify the protein abundance of Arc18, which was tagged with myEGFP, we compared the

fluorescence intensity of myEGFP and EGFP tags and we measured the myEGFP tags to be 68% ± 14%

of the fluorescence intensity of an EGFP tag. The uncertainty in Arc18 number of molecules was then

computed as:

δnp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c
f

g
nrδl

	2

+
�
c
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c is the estimate of the correction for the fluorescence intensity and δc is its uncertainty.

Calibration of the fluorescence intensity curve of the trajectories with
the number of molecules
We calibrated the fluorescence intensity curve Pf for each average trajectory,

Pi =
n
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o
 with i = f1;…;Ng;

to estimate of the number of molecules Pn over time. Pn is computed by rescaling the fluorescence

intensity curve of the protein of interest with the average number of molecules np at the endocytic site

(see ‘Materials and methods’: quantification of the number of molecules):
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where δnp is the standard error of the average number of molecules measured in the endocytic

fluorescent patches (see ‘Materials and Methods: quantification of the number of molecules). All plots

describing the number of molecules report the 95% confidence interval, computed as 1.96 × δni .

Quantification of the ratio between GFP-Act1 and the total actin
To quantify the ratio between GFP-Act1 and the total actin we run western blots with cell extract of yeast

cells expressing GFP-Act1 (MKY2653) (Wu and Pollard, 2005). MKY2653 cells where grown overnight in

SC-URA media. As primary antibody against actin we used Sigma A2066. The secondary antibody was

a AP-1000 Alkaline Phosphatase anti-rabbit igG (H + L) from Vector Laboratories. The quantification was

repeated 8 times. The ratio r̃ between GFP-Act1 and the total actin was computed as:

r̃ =
r

r +1

where r is the average ratio between the GFP-Act1 and the endogenous actin that we measured from

the 8 quantifications. The error was computed as:

σ r̃ =
σr

ðr + 1Þ2

where σr is the standard error of the mean of r.
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The direction of Abp1 trajectories with respect to the membrane
To determine the angle between Abp1 trajectories and the yeast cell surface, we determined the

closest membrane tangent for each Abp1 track, using a binary mask of the yeast cell in which

the trajectory was acquired. We then measured the angle between the vector tangent to the

membrane and the vector whose direction was determined by the interpolation of Abp1 trajectory

points on the focal plane (Figure 1—figure supplement 2B).

Alignment of photobleaching trajectories
Individual photobleaching experiments were tracked with the Particle Tracker (Sbalzarini and

Koumoutsakos, 2005) plugin in ImageJ after background subtraction, normalization and cytoplasmatic

background subtraction of the images (see ‘Materials and methods’: Image analysis). The tangent to the

plasma membrane was determined in ImageJ using a binary mask of the cell. A custom written software in

R was then used to extrapolate the trajectory along the direction orthogonal to the plasma membrane,

which represents the inward movement of the photobleached endocytic spot. The resulting trajectories

were aligned in time and in space to the average trajectory of the corresponding protein using the

fluorescence intensity curve and the inward movement of the average trajectory and of the photobleached

trajectory before the photobleaching. After alignment, the photobleached trajectories were thus aligned

in space and time with all the average trajectories and with the plasma membrane profiles (Figure 6C–F).

Measuring the displacement of N- and C-termini of Sla2
To check whether Sla2 was oriented on average perpendicularly to the plasma membrane, we

tagged simultaneously the N-terminus with sfGFP and the C-terminus with mCherry (GFP-Sla2-RFP,

Figure 3—figure supplement 1A). In cells treated with 2 μM LatA, we recorded the closest membrane

tangent to each GFP spot. We then measured the angle between the vector tangent to the membrane

and the vector whose direction was determined by the centroids of the corresponding GFP and

mCherry spots, for each GFP and mCherry pairs (Figure 3—figure supplement 1B).

In order to determine whether the displacement between the N- and C-terminal trajectories of Sla2

is a measure for Sla2 length we measured the distance between the N- and C-terminus of Sla2, by

tagging simultaneously the N- terminus with GFP and the C-terminus with mCherry (Figure 3—figure

supplement 1A). We arrested the membrane invagination by treating cells with 2 μM of LatrunculinA

(LatA) (Kukulski et al., 2012) and we imaged cells on the GFP and mCherry channels. Images were

corrected for chromatic aberration as for the two color trajectories (see ‘Materials and methods’: Two

color alignment procedure). The separations between the centroids of the GFP and mCherry pairs follow

a non-gaussian distribution (Stirling Churchman et al., 2006), which was used to compute the distance

between the fluorophores and thus estimate the displacement of the N- and C-terminal tags of Sla2

(Figure 3—figure supplement 1C). The distance is reported in the text together with the estimate of the

standard error of the mean obtained from the observed Fisher information matrix. As a control, we

performed the same analysis on a TetraSpeck sample (Figure 3—figure supplement 1D) and on Sla2

tandemly tagged at its C-terminus with both mCherry and sfGFP (Figure 3—figure supplement 1E,F).

Estimation of the membrane area covered by Rvs
To estimate the membrane area covered by the Rvs161/167 proteins, we assumed that all protein

molecules are membrane bound and homogeneously distributed on the surface of the endocytic

invagination. Their distribution was computed considering that BAR proteins form a dimer that is ∼13 nm

long (Peter et al., 2004) and tubulate in vitro forming spirals spaced by 50 Å (Mim et al., 2012). We used

those data, together with our estimate of the number of Rvs molecules and with the average membrane

shapes, to model all possible coverages of the invagination along the invagination length. We then

chose the coverage whose center of mass matched the position of the Rvs167-GFP average trajectory.

We extrapolated the plasma membrane profiles to estimate the plasma membrane shape at time 0 in

order to determine the Rvs coverage just prior to scission.

Estimation of Abp1 patch lifetime (Figure 1—figure supplement 2A)
Abp1 lifetimes were estimated from the lifetime of the trajectories (i.e. the time difference between the

first and the last time point in the trajectory). We considered only the trajectories that were complete

and, to minimize as much as possible the effect of photobleaching, we considered only the trajectories that

were recorded in a number of frames, at the beginning of the video, covering ∼3 times the known lifetime
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of the protein. Note that to achieve robust automatic patch detection the thresholding of the fluorescent

patches was stringent, resulting in Abp1 patch lifetimes that are an underestimate of the true patch lifetime.

Sample preparation for superresolution microscopy
ConA crosslinked glass coverslips were prepared as described previously (Mund et al., 2014). 24 mm

coverslips were cleaned for at least 12 hr in 1:1 methanol/hydrochloric acid, and washed in ddH2O

until the pH of the solution remained neutral. 20 μl of Bioconext (UCT, Bristol, PA) was spread out over

the coverslip and incubated for 30 min, followed by washing twice with ethanol, twice with H2O,

drying at 65˚C for 30 min and incubation for 60 min with 20 μl of 2% ConA. Coverslips were then rinsed

three times with H2O, air dried and stored until usage.

Sample preparation was performed as described previously (Mund et al., 2014). In summary, yeast

cells were grown in SC-Trp medium until reaching log phase, pelleted by centrifugation, resuspended

in a small volume of ddH2O and pipetted on the ConA crosslinked glass coverslips. After settling for

15 min, the supernatant was removed and the coverslips were submerged in a fixative containing 4%

formaldehyde, 2% sucrose in PBS for 15 min. Cells were then incubated two times for 15 min in PBS

containing 50 mM NH4Cl to stop the fixation.

Coverslips were subsequently put face down on a 100 μl drop of blocking solution consisting of

50% ImageIT FX (Invitrogen, Carlsbad, CA) to block background due to unspecific binding and 0.25%

Triton-100 in PBS for 60. Coverslips were briefly washed three times with PBS and put face down on

a 100 μl drop of SNAP labeling solution containing 1 μM SNAP-Surface Alexa Fluor 647, 1% BSA,

0.25% Triton X-100, 0.004% NaN3 in PBS and incubated for 120 min.

Finally, coverslips were washed three times by gentle shaking in PBS for at least 5 min.

Superresolution microscopy
Localization microscopy was performed on a custom-built microscope. Single-mode output from an

iChrome MLE-L laser box equipped with 405 nm, 488 nm, 561 nm and 640 nm laser lines (Toptica

Photonics, Germany) was focused onto the back–focal plane of a 60× NA 1.49 TIRF objective (Nikon,

Japan) and adjusted for epi illumination. Emission light was filtered using an ET 700/100 bandpass

filter (Chroma, Bellows Falls, VT) and a FF01-446/523/600/677 multi bandpass filter (Semrock,

Rochester, NY), and focused by a 400 mm tube lens onto the chip of an EMCCD camera (Ixon Ultra,

Andor, United Kingdom) that was air-cooled to −75˚C. Images were acquired using MicroManager

(Edelstein et al., 2010).

A piezo objective positioner (Physikinstrumente, Karlsruhe, Germany) was used to move the z-focus. The

focus was stabilized by an electronic feedback loop based on an infrared laser that was totally internally

reflected at the coverslip and detected by a quadrant photodiode. The z stability was better than ±10 nm

over several hours. Lateral drift, typically smaller than 50 nm/hr, was corrected for in the analysis software.

Image acquisition was performed as described (Mund et al., 2014). In brief, the samples were

mounted in a custom-made holder and covered with at least 200 μl of imaging buffer consisting of

150 mM Tris–HCl pH7.5, 2% glucose, 60 mM cysteamine, 40 μg/ml catalase and 0.5 mg/ml glucose

oxidase. We used an exposure time of 25 ms and an EM gain of 100. Imaging laser intensity at 640 nm

was 2.5 kW/cm2, the activation laser intensity was automatically adjusted to ensure a constant number

of localizations per frame. Typically 30,000–50,000 frames were recorded.

Localization analysis was performed as previously described (Ries et al., 2012). In summary, photon

counts were obtained by subtraction of the constant offset from the pixel count and multiplication with

the inverse gain. Initially, approximate positions of bright spots were determined by smoothing,

nonmaximum suppression and thresholding. Selected peaks were fitted by a pixelized Gaussian function

and a homogenous photonic background with a maximum likelihood estimator for Poisson distributed

data using a freely available, GPU based fitting routine (Smith et al., 2010) on a Geforce GTX670 (Nvidia,

Santa Clara, CA). Lateral drift correction was performed using image correlation as previously described.

Localizations with an uncertainty of >15 nm were discarded. The images in Figure 3 and

Figure 3—figure supplement 2 were rendered using a Gaussian with a width according to the

respective localization precision. All analysis software was written in Matlab (TheMathworks, Natick, MA).

The observed structures in Figure 3—figure supplement 2 were visually classified. ‘Clear ring

structures’ show both localizations in circular arrangement and a pore zone in the middle with virtually

no localizations, while for ‘Possible ring structures’ one of the two criteria was less striking. ‘No ring

structures’ exhibit other geometries.
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