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Abstract

Mechanising and evolving the formal semantics of WebAssembly:
the Web’s new low-level language

Conrad Watt

WebAssembly is the first new programming language to be supported natively by all
major Web browsers since JavaScript. It is designed to be a natural low-level compilation
target for languages such as C, C++, and Rust, enabling programs written in these
languages to be compiled and executed efficiently on the Web. WebAssembly’s specification
is managed by the W3C WebAssembly Working Group (made up of representatives from
a number of major tech companies). Uniquely, the language is specified by way of a full
pen-and-paper formal semantics.

This thesis describes a number of ways in which I have both helped to shape the
specification of WebAssembly, and built upon it. By mechanising the WebAssembly formal
semantics in Isabelle/HOL while it was being drafted, I discovered a number of errors in
the specification, drove the adoption of official corrections, and provided the first type
soundness proof for the corrected language. This thesis also details a verified type checker
and interpreter, and a security type system extension for cryptography primitives, all of
which have been mechanised as extensions of my initial WebAssembly mechanisation.

A major component of the thesis is my work on the specification of shared memory
concurrency in Web languages: correcting and verifying properties of JavaScript’s existing
relaxed memory model, and defining the WebAssembly-specific extensions to the corrected
model which have been adopted as the basis of WebAssembly’s official threads specification.
A number of deficiencies in the original JavaScript model are detailed. Some errors have
been corrected, with the verified fixes officially adopted into subsequent editions of the
language specification. However one discovered deficiency is fundamental to the model,
an instance of the well-known “thin-air problem”.

My work demonstrates the value of formalisation and mechanisation in industrial
programming language design, not only in discovering and correcting specification errors,
but also in building confidence both in the correctness of the language’s design and in the

design of proposed extensions.
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Chapter 1
Introduction

WebAssembly (abbreviated Wasm) is a low-level bytecode language, designed to be a
natural low-level compilation target for languages such as C, C++, and Rust, thereby
enabling programs written in these languages to be compiled and executed efficiently on
the Web. It is the first language since JavaScript to be implemented across all major Web
browsers. JavaScript was first developed in 1995 in the early years of the World Wide
Web [1], at which time Web pages were almost entirely static and consisted primarily
of text. In a 1996 interview, JavaScript’s creator Brendan Eich expressed his hope that
the language would “become ubiquitous on the Web as the favored way of gluing HTML
elements and actions on them together” [2].

In the years since JavaScript’s creation, the Web has evolved significantly. Developers
have continued to push the envelope on computationally intensive Web site content, such
as video, image processing, and 3D games. JavaScript was not created with these use-cases
in mind [1]. HTML and JavaScript initially lacked many desired multimedia features,
and JavaScript, as a high-level dynamic scripting language, suffered from fundamental
performance deficiencies. For years, many Web sites relied on third party plugin-based
technologies such as Flash, Java, Shockwave, and Silverlight in order to add functionality.
This approach had significant limitations, as Web developers needed to rely on users
actually installing and updating the required plugins, which were often buggy and contained
security vulnerabilities.

Web browsers have shifted towards providing more functionality natively, but various
proposed alternatives to JavaScript geared towards large, computationally intensive
programs have struggled with a lack of cross-browser support. As a recent example,
Google’s Native Client (NaCl) [3]| allowed Web developers to directly embed optimised
platform assembly in their Web sites; this code would be sandboxed and executed in a
site visitor’s browser with no plugins required. However, other browser developers were
unwilling to support the technology, and so such sites would only function in Google’s
Chrome browser.

Mozilla, another browser developer, focussed on hyper-optimising a small subset of
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JavaScript, christened asm.js, which threw away most of the language’s object model and
dynamic behaviour, so that asm.js could in principle be compiled efficiently ahead-of-time
in-browser. Web developers generated asm.js through compilation from other languages,
most notably C/C++ using the Emscripten compiler [4]. A key selling point of asm.js was
that, because it was a pure syntactic subset of JavaScript, in theory any browser could
run the generated code, even if the browser’s developers were not specifically invested
in supporting the asm.js project. This was attractive to Web developers who did not
wish to limit their market reach by relying on a single-browser technology such as Native
Client. In practice, however, the asm.js code generated by Emscripten was so different
from hand-written JavaScript that browser JavaScript engines which did not implement
asm.js-specific optimisations sometimes struggled to provide acceptable performance.
Chrome’s V8 JavaScript engine in particular could be very memory-hungry during the
parsing and compilation of regular JavaScript, and as more ambitious generated asm.js
made its way onto the Web, often hundreds of thousands of lines long, V8 needed to
implement new heuristics to avoid running out of memory [5].

In general, the text-based nature of JavaScript proved to be a limitation for asm.js. The
time needed to parse large asm.js files was significant, even for optimised implementations.
Another issue with asm.js was that it began to place pressure on the wider JavaScript
specification. Adding a feature to improve the performance of asm.js without compromising
its position as a subset of JavaScript could only be done by adding the feature to the
JavaScript language as a whole. A key flashpoint was the “SIMD.js” proposal [6], which
would have added a low-level API for CPU vector instructions to JavaScript, primarily
motivated by performance wins for asm.js code. This proposed feature caused significant
complications to the specification and implementations; at the time, JavaScript had seven
fundamental types of values (Undefined, Null, Boolean, Number, Symbol, String, and
Object), while the SIMD.js proposal would have added ten more, each representing a
particular size and kind of vector value. Even a barebones prototype implementation of
the SIMD.js API was reported as representing ~10% of V8’s code size |7]. The popularity
of asm.js, despite these limitations, made it increasingly clear to many parties that there
was a need for a new Web language, designed from the ground up as a compact, low-level

compilation target.

1.1 WebAssembly

As previous efforts such as Native Client had shown, a new Web language would need
the unanimous support of major industry players in order to succeed and gain adoption.
The WebAssembly project was first made public on the 17th of June 2015, in a series
of announcements coordinated between representatives from all major browser vendors

(Google, Mozilla, Microsoft, and Apple), and several key figures in the JavaScript specifi-
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cation community [8]. This commitment by the browser vendors to collaboratively design
and unanimously implement WebAssembly represented an exceptional political success.
Today, WebAssembly is available in all major browsers, and its specification is managed
by the WebAssembly Working Group and the wider WebAssembly Community Group,
both W3C standards committees which contains representatives from all major browser
vendors and a number of other tech companies. WebAssembly is distinguished from the
vast majority of industry languages in that its normative specification was developed from
the outset as a formal semantics.

This thesis describes my research into, and contributions to, the WebAssembly lan-
guage. My work demonstrates the value of formalisation and mechanisation in industrial
programming language design, not only in discovering and correcting specification errors,
but also in building confidence both in the correctness of the language’s design and in the

design of proposed extensions.

Mechanisation In Chapter 3 I describe my mechanisation of WebAssembly’s formal
semantics, including a proof of soundness for the WebAssembly type system. This work
was carried out during the drafting of the WebAssembly specification, and I identified and
corrected several errors which originally caused the type system to be unsound. I also
detail an executable verified interpreter and type checker which were built on top of the
mechanisation. The chapter draws from a previously published paper Mechanising and
Verifying the WebAssembly Specification (CPP 2018) [9], of which I was the sole author.

CT-Wasm In Chapter 4 I describe the mechanisation and verification of a proposed
extension to WebAssembly’s type system which is designed to improve the resistance
of cryptographic algorithms to timing attacks. The chapter draws from a previously
published paper CT-Wasm: Type-Driven Secure Cryptography for the Web Ecosystem
(POPL 2019) [10], authored by myself, John Renner, Natalie Popescu, Sunjay Cauligi,
and Deian Stefan. My co-authors developed the initial unformalised design for the type
system which was the basis for my formalisation and mechanised proof, and created a

number of related concrete implementations and tools.

Relaxed memory In Chapter 5 I describe my work on the relaxed memory models
(concurrent semantics) of JavaScript and WebAssembly. WebAssembly’s memory model
is heavily based on an existing feature of JavaScript: the SharedArrayBuffer. I discovered
and corrected a number of errors in JavaScript’s memory model, including a failure of
the model to support an intended compilation scheme to Armv8-A, and a violation of
the model’s stated correctness condition — a variant of Sequential Consistency for Data
Race Free programs (SC-DRF). My proposed fixes to the model are supported by finite
model checking in Alloy [11] and mechanised proof in Coq [12]. Other outstanding issues
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with the model are identified and placed in the context of known problems in the field of
relaxed memory. Then, the WebAssembly-specific extensions to the model are described.
The described relaxed memory model has been officially adopted as part of the in-progress
WebAssembly threads specification.

This work was carried out with a number of collaborators. Christopher Pulte developed
a model and tooling for Armv8-A executions which were used in verifying that the relevant
changes to the JavaScript model were correct. This model is included as Appendix A.
Anton Podkopaev developed a compilation scheme correctness proof in Coq for a subset of
the model to a number of other architectures, to improve confidence in our model changes.
Guillaume Barbier assisted with the execution of Alloy searches and some exploratory
mechanisation of the JavaScript model, as part of a student internship with me. Stephen
Dolan participated in initial discussions around proposed fixes for the JavaScript model,
and suggested the first concrete example which demonstrated the Armv8-A compilation
failure. Shaked Flur assisted with tooling for the Armv8-A model. Shu-yu Guo is a
member of ECMA TC39 (JavaScript’s standards body) who helped to present and ratify
our proposals for changes to the JavaScript model. Jean Pichon-Pharabod participated in
discussions on both the JavaScript and WebAssembly models throughout the work, and
implemented some exploratory SMT-based tooling for the WebAssembly model. Andreas
Rossberg, the WebAssembly specification editor, assisted in formalising the WebAssembly
model in a way which fit the conventions of the specification.

Several others contributed to the work. Lars T Hansen, another member of ECMA
TC39, shared with us important historical context on the development of the relaxed
memory model. Hans Boehm and Ori Lahav both independently made us aware of an
example which demonstrated a weakness in JavaScript’s statement of SC-DRF beyond
the violation mentioned above.

The chapter draws from two previously published papers: Weakening WebAssembly
(OOPSLA 2019) [13, 14|, authored by myself, Jean Pichon-Pharabod, and Andreas
Rossberg, and Repairing and Mechanising the JavaScript Relaxed Memory Model (PLDI
2020) [15], authored by myself, Christopher Pulte, Anton Podkopaev, Guillaume Barbier,
Stephen Dolan, Shaked Flur, Jean Pichon-Pharabod, and Shu-yu Guo.

Supplemental materials The Isabelle/HOL, Coq, and Alloy code associated with this

thesis can be found at https://github.com/conrad-watt/wasm-thesis-aux [16].
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Chapter 2

Background

2.1 WebAssembly design

WebAssembly is a bytecode language supported by all major Web browsers (at the time
of writing, Chromium, Firefox, and Safari). Its initial feature set aims to be a natural
and efficient compilation target for low-level languages with manual memory management
such as C/C++ and Rust. This chapter will introduce the key concepts and definitions
of the WebAssembly language and its official formal semantics. WebAssembly’s formal
semantics was originally presented as an academic paper by Haas et al. [17], who list four

core design principles of WebAssembly:

Safety The modern Web is inherently a platform for running untrusted code on a user’s
computer. In pursuing efficiency, WebAssembly cannot compromise the Web’s existing
security model; the language is designed to give no more capabilities to an attacker than
were already available through JavaScript. While this does mean that WebAssembly must
incur some overhead in additional dynamic checks, often these checks can be avoided
either through static type system restrictions, or clever implementation strategies (§5.8.1

will later discuss one such strategy in a concurrent context).

Speed WebAssembly has been developed in response to the growth of heavy-duty,
low-level client-side computation on the Web. Its operations are kept as close as possible
to the real behaviour of platform assembly languages. Because it is intended for use
within Web sites, the time taken to decode and compile the bytecode is also of significant
concern — metrics such as overall “time to interactive” (the total time required for a user’s
Web browser to render a Web site and compile its associated scripts) are in many cases
considered more important than the runtime performance of the compiled code. Because
it is a bytecode language, it can be decoded more quickly than a text-based language
such as asm.js can be parsed. WebAssembly is carefully structured so that decoding and

compilation can be carried out in a single, combined linear pass, which can begin in a
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streaming fashion while the tail of the WebAssembly code is still downloading, at a speed

such that the user’s internet connection can become the main bottleneck [18].

Portability Because a Web site containing WebAssembly code may be accessed by
many different combinations of Web browser, operating system, and architecture, platform-
specific behaviour must be avoided in WebAssembly’s design wherever possible. It is
generally assumed that, because of the huge number of developers and toolchains producing
WebAssembly programs, even the most minor inter-platform discrepancy will be exposed
by some piece of real-world code. For this reason, WebAssembly takes great pains to
guarantee deterministic behaviour, with only a few small caveats related to floating-point

bit patterns and resource exhaustion.

Compactness One of the key deficiencies of asm.js was the text-based nature of
JavaScript, which placed fundamental limits on download and parsing speed in a setting
where bandwidth use and start-up time are crucial [19]. WebAssembly’s bytecode for-
mat aims to significantly reduce code file sizes compared to a text-based representation,
resulting in benefits for Web hosts, users, and developers. Like the Java bytecode, it is
stack-based. This means that common operations such as addition do not need to explicitly

name their operands, resulting in a more compact representation.

Throughout Haas et al. [17], another design principle is pursued, beyond the four explicitly
listed.

Formalisation WebAssembly was designed from the start using a formal semantics
(albeit one that was purely pen-and-paper). Moreover, it is an official policy of the
WebAssembly Working Group that new features must be fully formalised as extensions
of this semantics before they can be adopted [20]. This is an great step forward for
industry languages, which habitually rely on prose specifications. The unambiguous
nature of WebAssembly’s formal semantics helps to avoid inadvertent divergence between
implementations, and facilitates the identification of edge-cases in new features during
the design phase. This is especially important on the Web: the “WebCompat” principle is
a broad convention that evolving Web standards must never introduce a change which
“breaks the Web” (i.e. causes a previously functioning Web site/application to behave
differently) [21]. Given the immeasurable amount of Web content online, it is generally
assumed, and borne out by previous experience, that even the most convoluted edge-case
may be relied upon somewhere, meaning that backwards-incompatible changes to fix

language design mistakes are often impossible.
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2.2 WebAssembly features

The following sections will explain the basic principles of WebAssembly before going into
more detail about the specifics of the formal semantics.

WebAssembly is a low-level imperative language with first-order fully-applied functions,
and a simple mechanism for dynamic dispatch based on dynamically checked function
tables. Its operations are stack-based, meaning they produce and consume values from
a function-local value stack rather than being explicitly applied to their operands. The
language allows primitive values to be loaded from and stored in declared global variables,
and serialised to and deserialised from a linear buffer of bytes called a memory.

WebAssembly’s current design is often referred to as an MVP (Minimum Viable
Product). The priority was getting a robustly designed feature-set that all browser
vendors could agree to implement. The language described in this chapter is purely single-
threaded, although we will discuss formalism issues related to a concurrent extension in
Chapter 5. It is expected that more features will be added in the coming years, such as
first-class function references.

WebAssembly code is distributed as modules. A module is a collection of functions,
together with declarations of global state. Modules may be composed together, sharing
state through a system of imports and exports. The precise formal structure of the
module will be later explained in §2.5. The WebAssembly specification defines a bytecode
representation for modules and their associated functions, but this thesis will only deal
with WebAssembly’s abstract syntax.

WebAssembly code must be wvalidated before execution. Validation is a linear type-
checking pass (broadly similar to the Java bytecode verifier [22|) which checks the bounds
of any static indices and ensures that, at every program point, the shape of the stack will
allow the current instruction to successfully execute (see §2.6). Validation can be done
while decoding, as part of the language’s streaming compilation model.

At a high level, a WebAssembly program will be delivered (for example, as part of a
Web site) as a collection of modules, together with a host script which defines the order
in which the modules should be validated and initialised, and how their imports and
exports should be wired up. On the Web, the host script must be written in JavaScript,
but WebAssembly is also finding use in non-Web and server-side contexts where the host

script may be written in a different language.

2.2.1 Security model

WebAssembly modules explicitly declare their imports and exports, and a module cannot
interfere with the execution of any other part of the system unless the host specifically
passes in an import which gives that capability. This design is chiefly concerned with

protecting the wider system, and other WebAssembly modules, from rogue behaviour.
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However, within a group of WebAssembly modules which are coupled through imports,
there are few security protections. For example, WebAssembly modules may declare or
import a memory (see §2.2.4.3), which is a simple linear buffer of bytes. Accesses to this
memory are through integer indices which are bounds-checked against the length of the
buffer, and the memory can only be accessed by a module which explicitly declares or
imports it. This ensures that accesses cannot overflow into other areas of system memory.
However, if multiple modules import the same memory, there is no mechanism for one
module to protect data it writes into memory from the others (i.e. no structured objects or
checked pointers exist in the memory). This all-or-nothing model gives rise to some classic
binary security vulnerabilities (albeit limited to within the group of coupled modules), as
discussed by Lehmann et al. [23].

2.2.2 Value types

WebAssembly values are incredibly simple. There are only four fundamental types of
value: 32- and 64-bit integers, and 32- and 64-bit floats.

(value types) t == i32|i64 | f32 | f64

As mentioned, WebAssembly is a stack-based language, like the Java bytecode. However
it differs from Java in several important ways. WebAssembly’s stack contains only value
types, as defined above. The MVP has no object references or first-class function references.
Objects in a higher-level language compiled to WebAssembly must be explicitly laid out
in WebAssembly’s memory as a series of bytes, with pointers to those objects becoming
bare i32 indices into the linear memory (see §2.2.4.3). Source-language function pointers
are not representable directly in memory, but must be represented through an indirection

as indices into a table of function closures (see §2.2.4.2).

2.2.3 Control flow

WebAssembly’s intra-function control flow is structured. Instead of goto, WebAssembly
has explicit block, loop, and if bytecodes. Any instruction in the bytecode stream
that occurs between one of these opcodes and a matching end opcode is considered
to be part of the body of that control construct (there is also an else opcode for if).
These constructs can be targetted by the br instruction, which functions like a labelled
break /continue statement from a higher-level language. The block, loop, and if opcodes
are type-annotated to ensure that the structure of the stack remains predictable during
validation, no matter what control flow occurs during execution. Their precise formal
semantics will be explained in §2.4.4.

The choice to only support structured control flow was made to maintain the simplicity

of WebAssembly’s semantics, and because of concerns about the ability of some Web
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engines to optimise irreducible control flow [24|. Languages with more general unstructured
control flow such as C/C++ must transform their code into a structured form during
compilation to WebAssembly. Since compiling these languages to asm.js already required
this transformation (as JavaScript also lacks arbitrary goto), much of the necessary
engineering work had already been done. It is likely that more complex control flow, such

as exceptions, will be introduced to WebAssembly through future features.

2.2.4 Global state

Aside from pushing and popping values to/from the stack, some WebAssembly instructions
may interact with “global” state, declared at the top-level of the enclosing module. A
WebAssembly module can declare four main kinds of module-scoped object: functions,
tables, memories, and global variables, described in turn below. A module can declare
some subset of these to be exported into the environment, and may declare imports which
must be satisfied by the exports of other modules.

As a general rule, WebAssembly objects are not accessed using explicit names, but
through indices. For example, the instruction (global.get i) will get the value of the i-th
declared global variable of the module. As a convention, objects imported from other
modules occur first in the index space (such imports are statically declared), followed by

the module’s own declarations.

2.2.4.1 Functions

A WebAssembly module declares a list of functions, and a list of function imports that
can be satisfied by the exports of other modules. Each function consists of a type
annotation, a number of function-scoped statically typed local variable declarations, and
the function body (containing WebAssembly instructions). As an implementation detail,
WebAssembly modules statically declare a list of allowed function types, and then each
function pre-declares an index into this list which denotes its type signature. Therefore,
functions’ bodies may contain arbitrary direct calls to each other, with no declaration
order restrictions, while still allowing validation to be conducted as a single linear pass.

Local variables are statically declared to hold values of one of the four fundamental
value types. They are statically accessed in the function body using indices. All local
variables are function-scoped and their lifetime is restricted to the duration of the function
call.

Functions may additionally be imported from the host environment. In a Web site
script, for example, a JavaScript function may be passed into a WebAssembly module as an
import. Such a function is automatically wrapped in the necessary type checking/casting

code to convert JavaScript values into one of the four WebAssembly value types.
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One function may be uniquely distinguished as the start function, which will execute

immediately after the module is decoded, compiled, and initialised.

2.2.4.2 Tables

In order to support indirect calls without needing to handle arbitrary first-class func-
tions, WebAssembly modules may declare a mutable table of function references/closures.
WebAssembly code may indirectly call a function stored in the table at a dynamically-
determined index. Moreover, the host environment is permitted to mutate the table
during runtime, by inserting references to exported WebAssembly functions, or its own
host functions. It is through this mechanism that function pointers/references may be
implemented using an indirection in WebAssembly: the reference becomes an index into
the table. The table may contain multiple functions with different types, so making an
indirect call through the table is the one of the few areas of WebAssembly where a runtime
type check is required.

Note that function closures cannot currently be pushed onto WebAssembly’s stack, or
stored in ordinary variables. The WebAssembly module can declare a list of indices into
its function list which pre-populate the module’s table. These are known as the element
segments. To mutate the table during runtime, WebAssembly must rely on the host (for
example, by importing and calling a JavaScript function). First-class function references
for WebAssembly, and references carrying a precise function type which do not need to be

dynamically checked, are planned as future features [25].

2.2.4.3 Memories

A WebAssembly module may declare a memory: an integer-indexed linear buffer of
raw bytes. Typed WebAssembly stack values can be serialised to and deserialised from
this memory. In order to ensure portability, there is almost no non-determinism in this
process. Memory is zero-initialised, and WebAssembly has no trap representations; every
combination of bytes of the appropriate length can be deserialised into a typed value.
Moreover, almost every WebAssembly value has a single defined bit representation, with
the unfortunate exception of NaN floating-point values, which are allowed a limited space
of representations due to divergence between platforms.

The module’s memory may be accessed by load and store instructions which take integer
indexes, representing an offset in the memory — there is no integer-pointer distinction.
All accesses are bounds checked to the length of the memory, and an out-of-bounds access
immediately terminates execution. There are also operations to dynamically grow the
memory at runtime. While some WebAssembly implementations must explicitly compare
the memory access index with the memory’s current length, many modern implementations

use a strategy based on OS-level trap handlers to support a bounds-checking semantics
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with minimal runtime cost (see §5.8.1).
Currently, a WebAssembly module can only declare a single table and a single memory.
However, an imminent extension to the language allows modules to declare multiple tables

and multiple memories.

2.2.4.4 Globals

Finally, a module may declare a number of global variables with statically-associated
WebAssembly value types. These behave similarly to function-local variables, except they
are accessible to all code in the module, and have their own distinguished index space.

Moreover, global variables may be declared immutable.

2.3 WebAssembly semantics — conventions

As previously mentioned, the semantics of WebAssembly is fully formalised, initially
by Haas et al. [17], and later as part of the official W3C specification [26]. Throughout
this thesis, this formal specification will be referred to as the paper semantics/specification
(in the sense of “pen-and-paper”). The relevant core of this specification is introduced and
discussed over the next few sections. As we will see, the paper specification makes use of
several syntactic tricks to appear more concise or aesthetically pleasing, which must be
disambiguated in the mechanisation (see §3.2). The WebAssembly Community Group
also maintains a “living specification”, which contains candidate specification text and
formal semantics for upcoming features [27]. The formalism presented below does not
contain these additions, as they may be subject to further iteration.

The execution of WebAssembly code is specified using a small-step reduction relation.

The top-level form of this relation is as follows:

S;F;e* — S, F;e*

where:
(store) S = {funcs: ..., tabs: ..., mems: ..., globs:... }
(frame) F = {locs: ..., insti=...}

(instruction) e =

S is the store; a record containing all global state declared and used across any
executing module. This state consists of functions, tables, memories, and global variables.
F' is the function-local frame, which contains the current values of declared local variables
(including the function arguments), and the instance, which keeps track of which elements
of the global store are in scope for the currently executing code. The e* component is the

list of instructions/expressions currently being executed. The tuple S; F'; e* is the runtime
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state, and is referred to as a configuration. The full internal details of these components,
including the types of the store and frame record fields, will be described later in this

chapter.

2.3.1 The value stack

WebAssembly is a stack-based language. Stack values have one of four value types: the
(32- and 64-bit) integer types i32 and i64, and the (32- and 64-bit) floating-point types
32 and f64. WebAssembly’s stack is much simpler than conventional ISAs such as x86
assembly. It does not hold return addresses or function pointers, only pure values of one
of the four mentioned types. A “stack” in the context of WebAssembly always refers to

the value stack. There is no explicit control stack or function call stack.
(value types) t == i32|i64 | f32 | f64

Sometimes, |t| is written to represent the size of a given type in bytes. For example,
i32| = 4.

To show how WebAssembly’s formalism represents the stack, we introduce two simple
WebAssembly instructions: (i32.const k), which pushes a constant i32 value k onto the
stack, and (i32.add), which pops two i32 values, and pushes the result of their addition.
Here is a reduction rule for (i32.add) in the style of the specification (by convention, the

store and frame are elided, as they are unaltered).

(i32.const j)(i32.const k)(i32.add) — (i32.const (j +i, k))

The (i32.const k) instruction has no defined reduction rule on its own. Instead,
reduction rules are directly defined on a leading list of (i32.const k) instructions together
with the operation to be executed. This list of const instructions represents the current
state of the stack. Reduction rules are defined over the just the relevant const list being
manipulated by the currently executing instruction. Later, we will introduce congruence
rules and evaluation contexts defined by the formalism which enable these reduction rules

to be generalised to larger stacks and program contexts.

2.3.1.1 Notation convention: lists and options

Given a metatheoretic type typ, typ* represents the type of a list of typ values, while typ™
represents the type of a non-empty list.

Given a list [st, [st[x] represents the element at index x of the list. Moreover, Ist[x..y)
denotes the sublist of Ist in the range = (inclusive) to y (exclusive). Implicitly, when such
list operations are part of a premise or side-condition of an inference rule, the rule cannot
be applied if any index is out of bounds. The length of the list is represented by |lst|.

The empty list is written as e.
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Because of their prevalence, list construction, concatenation, and append are often
represented without explicit symbols, merely using juxtaposition. For example, the
previously shown code fragment (i32.const j)(i32.const £)(i32.add) is treated as a list
of instructions with three elements.

An option type is represented as typ’. In the paper specification, when an option is
not present, it is usually omitted entirely instead of explicitly writing none or similar. To

be less ambiguous, this thesis will use the symbol “—” to represent none.

2.3.2 Function types

WebAssembly code fragments can be assigned a type of the form
(function type) ft = t* — t*

This type decribes how the (implicit) value stack is transformed by the execution of
the instruction. The left component of the type is a list of value types representing the
shape of the stack before execution, while the right component represents the resulting
shape of the stack after execution.

For example, the (i32.const j) instruction can be given the type € — [i32], and also
the type [i32] — [i32,i32], in both cases representing the pushing of one value to the
stack. The (i32.add) instruction can be given the type [i32,i32] — [i32], and the code
fragment (i32.const j) (i32.const k) (i32.add) can be given the type € — [i32]. Some
control constructs that we will see later are explicitly type-annotated to ensure that the
shape of the stack remains predictable, regardless of control flow. We will see below how
these types are used to define WebAssembly’s type system. First, we will introduce the

AST definitions and runtime semantics of WebAssembly’s instructions.

2.3.3 Further conventions of the WebAssembly formalism
2.3.3.1 Types and terms

The paper semantics makes a habit of punning metavariables for types with their instances.

For example, consider the following (simplified) congruence rule:

S, F;e* — S F'; e'*
S; F’ 6* e//>z< [N S/;F/; 6/* e//*

The premise of the rule shows a configuration reducing one step. The symbol e*
represents some arbitrary list of expressions, while ¢’* represents some other list of
expressions which may be entirely distinct, including having a different length. The first

* LM%
€

configuration S; F';e in the conclusion of the rule has the same components as the

initial configuration in the premise, except that another arbitrary list of expressions e”*
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has been concatenated on the right of the initial expression list. In sum, this rule says that
if a configuration can run one step, an otherwise identical configuration with additional
trailing instructions can run the same step, and the trailing instructions will remain
unchanged.

Sometimes a rule must explicitly refer to the length of a list. The symbol Ist" represents

a list term of length n.

2.3.3.2 Values

As mentioned, the type-annotated const instruction, a term of metatheoretic type e, is
also used to represent values on the stack during reduction. The metavariable v is used to
refer to some const instruction. For example, consider the following congruence rule:
S, Fie* — S F'; e
S, F; vt e* — S F'; v* el*

This says that if a configuration can run one step, the same configuration with a

“deeper” stack can run the same step, with that part of the stack remaining unchanged.

2.3.3.3 Records

Some parts of WebAssembly’s state are represented using records. For example, global

variables are defined as follows:

(mutability) mut == mut | immut

(global) glob == { mut :: mut, val:wv }
This also shows an example of punning between types and terms occurring in the
other direction: the val field is restricted to e terms of the form t.const.

The notation for a record term is similar:

my_ glob = {mut mut, val (f64.const 0) }

This represents a mutable f64 global variable with current value 0.

Given a record rec, rec.fld represents the value of the relevant field. The term
rec[fld := wval] represents the functional update of the record rec, with the relevant field
updated to the stated value. Finally, {fld val*} @ rec, where fld is a field of rec with a list
type, represents a record with the same fields as rec, except fld has val* concatenated on
the left.

2.4 Instruction semantics

In this section we will explain each WebAssembly instruction in turn, describing each

instruction’s associated reduction rules and relevant formal definitions.
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2.4.1 Stack operations

2.4.1.1 Basic operations

(instructions) e == t.const k | nop | drop | select | unreachabile | ...

(administrative instructions) e == ... | trap | ...
(values) v := t.const k

(constants) 7, k,[ == ...
(value types) t == i32 | i64 | 32 | 64

(nop) — €
v (drop) — €
v1 vg (i32.const b)(select) — wv; where b # 0
vy vy (i32.const b)(select) — v, where b = 0
(unreachable) — (trap)

The const instruction has no reduction rule. As noted already, the reduction rules
directly produce and consume const instructions, instead of explicitly modelling a separate
value stack. The WebAssembly specification simply defines values using const instructions,
and makes use of the two interchangeably, effectively punning between the type of “values”,
and the instructions restricted to const. By convention, the metavariable v denotes not
only the type of values, but also indicates a const instruction in a reduction rule.

The nop instruction does nothing.

The drop instruction discards the top value on the stack. Note that this is the
first example of the metavariable v being used to represent a const instruction of some
(unimportant) type.

The select instruction functions as a ternary operator, taking three arguments from
the stack. The first two arguments are values which will be selected between, while the
third value is the condition. WebAssembly uses i32 types as its booleans, with a non-zero
value indicating true and a zero value indicating false. If the condition value is non-zero,
the first argument is returned. If the condition value is zero, the second argument is
returned. The type system (see §2.6) enforces statically that both values will be of the
same type.

The unreachable instruction is WebAssembly’s version of assert(false). Executing
it immediately terminates execution with an error. This is represented by a special
trap result, our first example of an administrative instruction. In the WebAssembly
formalisation, administrative instructions represent intermediate expressions which are
needed to specify reduction, but do not occur in the concrete syntax of the language. The
trap administrative instruction represents an unrecoverable error which will immediately

stop execution. We will see other examples later.
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2.4.1.2 Unary operations
(instructions) e == ... | t.unop, | t.testop, | ...

unop;y =~ clz | ctz | popent
unopgy == neg | abs | ceil | floor |
trunc | nearest | sqrt

testop;y == eqz
(t.const j)(t.unop,) — (t.const k) where unop,(j) = k

(t.const j)(t.testop,) — (i32.const 1) where testop,(j) = true
(

(t.const j)(t.testop,) — (i32.const 0) where testop,(j) = false

The (type-annotated) unary instructions t.unop, consume one value, apply their
operation, and return the result, which is always of the same type. Note that the allowed
operations are different for float and integer types, and the slight (standard) abuse of
notation where a syntactic component of the operation is identified with the semantic
function carrying out the operation (e.g. the unop, of (t.unop,)). There is some mild
dependent typing in the definitions, since for an instruction (¢.unop,) the value of ¢ will
determine whether unop, refers to the integer unops unop;y or the float unops unopsy-.
The effects of the operations are exhaustively formalised in the official WebAssembly
specification, but none of the results presented in this thesis will rely on their precise
definitions, which will be omitted here. In brief, the integer operations are the bit
operations “count leading zeroes”, “count trailing zeroes”, and “set bit/population count”,
while the floating point operations are standard negation, absolute value, rounding with
different modes, and square root.

The test operations consume one value, and perform a boolean test, returning an
i32 representing the result of the test (1 for true, 0 for false). For now, only a single test

operation is defined, that being “is equal to zero” for integer types.

2.4.1.3 Arithmetic and binary operations

(instructions) e == ... | t.binop, | t.relop, | ...

(signedness) sz = s|u

binop,y == add | sub | mul | div_ sz | rem sz | or |
and | xor | shl | shr sz | rotl | rotr
binopgy == add | sub | mul | div |

min | max | copysign

relopy ==eq | ne|lt sv|gt sz
le sz|ge sz

relopgy =—eq | ne | It | gt|le| ge
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(t.const j)(t.const k)(t.binop,) t.const [) where binop,(j,k) 31
(t.const j)(t.const k)(t.binop,)
(t.const j)(t.const k)(t.relop,)

)

(t.const j)(t.const k)(t.relop,

trap) where binop,(j,k) = L

>
— (i32.const 1) where relop,(j, k) = true

—>

o~ o~~~

i32.const 0) where relop,(j, k) = false

The binary instructions consume two values of type t, apply their operation, and
produce a value of the same type. Unlike unary instructions, binary instructions may fail
irrecoverably (for example, dividing by zero). This is represented by the case where the
instruction reduces to trap. Moreover, some floating point operations, when returning
NaN results, are specified as non-deterministically returning one of a number of permitted
NaN bit representations, over-approximating the divergent behaviour of real hardware.
This is modelled by the side-condition binop,(j, k) 3 [, treating the possible results as a
set which is arbitrarily picked from.

The relation instructions consume two values of the same type and perform a compari-
son, returning an i32-encoded boolean representing the result.

Some operations are annotated with a signedness, to denote that the operation has
a signed (s) and unsigned (u) variant. WebAssembly integers are treated mostly in an
unsigned fashion, but operations marked as signed will instead transiently interpret their
bit representation as two’s complement. This choice was made to avoid requiring two
integer types for each bit-width. Signed 32-bit integers in a source language such as C are
compiled to Wasm’s i32 type, and arithmetic operators annotated with s where necessary

to preserve the source semantics.

2.4.1.4 Type conversion
(instructions) e u:= ... | t.cvtopg gy | - -
cutop == convert | reinterpret

(tl.COI"ISt j)(tg.CUtOp(tl’sz?)) — (tQ-conSt k) where Cvtop(tl,tg,sx?)(j) =k
(ti.const j)(ta.cvtopy, o)) — trap where cvtop, 4, o7y (J) = L

This group of instructions deals with casting. The convert operation denotes casts
which change representation. For example, i32.converts ) converts a 64-bit float
value to a 32-bit integer by (value) truncation. The operation will fail with a trap if
the truncated integer value is not representable in 32 bits. Similarly, i32.convert e )
converts a 32-bit integer to a 64-bit one. The sign parameter s means that the value
will be sign-extended (two’s complement representation). With parameter u, the most
significant bits are set to 0. Nonsensical combinations of type and sign parameter (e.g. a
sign extension parameter when converting to float) are forbidden at decode-time.

The reinterpret operation denotes casts which change the type of the value while
leaving the binary representation identical. The operation is only (syntactically) permitted
to cast between values of the same size (i.e. between i32 and f32; or i64 and f64). This is

enforced at decode-time.
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2.4.2 Local and global variables

(immediates) @ == int32

(instructions) e == ... | local.get i | local.set i | local.tee i |

global.get i | global.set i | ...

(mutability) mut == mut | immut

(global)  glob := { mut :: mut, val: v}

(store) Su={funcs:: ..., tabs: ..., mems: ..., globs: glob* }
(instance) inst == { types :: ft*, ifuncs ::¢*, itabs:¢*, imems:: i*, iglobs::i* }
(frame) F :={locs :: v*, insti=inst }

S; F; (local.get k
S; F;v (local.set k

) S; F; (Flocs)[k]
)
S; F;v (local.tee k)
)
)

S;F'se where F' = F with (locs[k]) = v
S; F;v v (local.set k)
S; F; (S.globs)[j].val where j = (F.inst.iglobs)[k]
S Fie where j = (F.inst.iglobs)|[k]
S" = S with S".globs[j] = v

S; F'; (global.get k
S; F;v (global.set k

oo

These instructions deal with manipulating WebAssembly’s local and global variables.
The reduction rules for these instructions deal with new parts of WebAssembly’s formalism.

To recap, the store S holds the global state of all WebAssembly code in the environment.
The frame F' holds local state related to the current function call. The instance inst, a
component of the frame, keeps track of which elements of the global store are in scope
for the currently executing code. As previously mentioned, a module is currently only
permitted to reference at most one memory and one table, but the formal definition of
the instance is future-proofed to support multiples of each, represented as lists.

Local variables are declared on a per-function granularity (see §2.4.5). Global variables
are declared on a per-program/module granularity (see §2.5). Therefore, the current
values of local variables are held in the frame, while the current values of global variables
are held in the store, with an indirection through the current instance (see below).

Local variable accesses are performed using a static index. The instruction (local.get 3)
will return the value of the third local variable in the current frame. Similarly, the
instruction (local.set 2) will remove one value from the stack, and set it as the value of
the second local variable in the frame. The local.tee instruction acts as local.set, except
the value from the stack is not removed, but left on the stack (effectively copied). It is
equivalent to the sequence (local.set k)(local.get k), and is provided to reduce the code

size of this common pattern.
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Global variable accesses are also performed using a static index. Because multiple
modules may share access to the same global variables (through importing and exporting),
the store holds a canonical list all global variables declared across all programs. The index
k in a (global.get k) access refers to the k-th local variable accessible by the currently
executing module. The iglobs field of the instance links this index to the position of that
global variable in the store’s list.

The static index parameters of all local and global variable accesses are bounds checked
during type checking to ensure that they are in-bounds of their respective variable index

spaces (see §2.6).

2.4.3 Memory operations

(packed types) pt:= pi8 | pil6 | pi32

mstructions €= ... Jload (pt, sx)" a o | t.store pt" a o
i i t.load (pt, sz)* t t

memory.size | memory.grow | ...

(memory) mem = { buffer :: byte, max :: nat }

(store) S o= {funcs: ..., tabs: ..., mems: mem*, globs:: glob* }

These operations deal with accesses to a WebAssembly memory, which is a simple
linear buffer of bytes. Each module may declare a single (possibly imported) memory,
which all memory operations within the module implicitly reference through the current
instance. In WebAssembly, every typed value can be linearised to a sequence of bytes
of the appropriate length, and stored into a dynamically-indexed location in memory
through the store instruction. Note that in WebAssembly, indices into memory are always
of type i32. Every access to WebAssembly’s linear memory is bounds-checked: both load
and store will trap if the accessed index is out-of-bounds. Moreover, every appropriately
sized sequence of bytes can be deserialised into a valid typed value through the load
instruction; unlike in C/C++, there are no “trap representations”. These operations
implicitly target the first memory that is in-scope according to the instance. The type
system guarantees that these operations are only well-typed if at least one memory is
in-scope, while the language currently restricts module declarations and imports such that
at most one memory is in-scope. When this latter restriction is relaxed, the instructions
will be extended with an additional static index to allow other in-scope memories to be

targetted.
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S; F; (i32.const j) (t.load (pt, s7)’ a 0) — S;F;(t.const k)
where ¢ = (F.inst.imems)[0]
mem = (S.mems)[:].buffer
ind=7+o0
size = |pt| or |t| if pt not present
|mem| = ind + size

from _bytes,, .2 ( mem[ind..ind + size) ) = k

S; F; (i32.const j) (t.load (pt, s7)’ a 0) — S; F;trap
where i = (F.inst.imems)[0]
mem = (S.mems)[:].buffer
md=7j+o
size = |pt| or |t| if pt not present

|mem| < ind + size

The type-annotated (t.load (pt, sx)” a o) instruction takes a single i32 stack argument
representing an offset in memory. The type annotation ¢ determines the type of the
value to be read. The optional (pt, sz)’ component of the instruction (only permitted at
decode-time when reading an int type) specifies that the only some number of lower-order
bytes should be read from memory, with the result sign-extended (as specified by sx)
to obtain the desired value. For example, the instruction (i32.load (pil6,u)...) would
push a 4-byte i32 value onto the stack obtained by reading two lower-order bytes (pil6)
and zero-extending the result. The a (alignment) component of the instruction has no
semantic effect, and is purely an alignment hint to the compiler. The o (offset) component
of the instruction is an additional static offset which is added to the stack argument.
This allows efficient encoding of struct field accesses. Note the line ¢ = (F.inst.imems)|[0]
which causes the instruction to load from the first (and for now, only) memory in-scope

according to the instance.

S; F; (i32.const j) (t.const ¢) (t.store pt’ a 0) — S';F;e
where ¢ = (F.inst.imems)[0]
mem = (S.mems)[:].buffer
md=7+o0
size = |pt| or |t| if pt not present
|mem| = ind + size
S" = 8 with (mems[i])[ind..ind + size) := to_bytes ,, 4 (c)
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S; F; (i32.const j) (t.const ¢) (t.store pt’ a o) — S;F;trap
where ¢ = (F.inst.imems)[0]
mem = (S.mems)[:].buffer
ind=7+o0
size = |pt| or |t| if pt not present

|mem| < ind + size

The store instruction takes two stack arguments: the memory index to store into, and
the value to store into that location. Its components have the same behaviour as those of

load, although it lacks a sign-extension parameter.

S; F'; memory.size — S; F’; (i32.const k)
where 4 = (F.inst.imems)[0]
mem = (S.mems)|7].buffer

|mem)|/2'0 = k

S; F'; (i32.const j) memory.grow — S; F; (i32.const k)
where i = (F.inst.imems)[0]
mem = (S.mems)[:].buffer
|mem)|/2'6 = k
k + j < (S.mems)[i].max
S’ = S with (mems[i]) ++= 07%2"

S; F; (i32.const j) memory.grow — S; F'; trap

A WebAssembly linear memory can be dynamically grown in size. The memory.size
instruction returns the current size of the memory, measured in units of “pages” (each
216 bytes in size). The memory.grow instruction takes one argument, and grows the size
of memory by that many pages, up to a statically specified maximum. WebAssembly
allows this instruction to non-deterministically fail, to capture the possibility of allocation
failures due to memory pressures in the host environment.

While WebAssembly’s AST allows an instance to hold indices for multiple memories,
currently only up to one memory can be created per-module instantiation, so operations
which interact with the WebAssembly memory always access the memory at the instance’s

first entry.
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2.4.4 Control flow

(instructions) e == ... | block ft e* end | loop ft e* end | if ft ¢* else e¢* end |
bri|br_if i| br_ tablei" | ...

To explain the semantics of these instructions, we must first recall WebAssembly’s
concept of “administrative instructions”. These are expressions which are not part of
the WebAssembly program syntax, but may be produced as an intermediate step of
reduction. We have already seen trap as an example of this. WebAssembly has two main
control structures, block and loop. Their semantics are defined in terms of the label

administrative instruction.

(administrative instructions) e == ... | label, {¢*} e* end | ...

The label instruction is the basic specification building block for intra-function control
flow constructions. Its behaviour is almost identical to the label construct proposed by
Clint and Hoare 28] to model jumps out of blocks. It has three components: an arity n,
a continuation {e*}, and a body e*. The body executes in the context of the label. If a
br k instruction is executed, the k-th nested label (counting from the inside outwards in
the style of de Bruijn indexing) is described as being targetted. Control is transferred to
the continuation component of the targetted label, with the label arity determining how
many stack values from the execution of the body are preserved.

Here are the formal rules for the label evaluation contexts L, and the related reduction

rules for label and br:
(label context)  Lo[e*] == v* e* *
Lile*] == v* (label, {e}..} Li[e*]) €*

S; F; 6* [N S/;F/; e/*
S; F; Li|e*| < S’; F'; Li|e™]

S; F; Lo[trap] — S; F'; trap if Lo[trap] # trap
S; I; (label,, {e*} trap) < S; F';trap
S; F'; (label,, {e*} Li[v" (br k)]) < S; F;0" e*
S; F; (label,, {e*} v*) — S; F;v*

A label evaluation contexts Lj represents a program fragment of k£ nested label
administrative instructions, with a context “hole” in the body of the innermost label. The
first reduction rule is the congruence rule for label contexts. The second and third rules
describe trap propagating through label contexts (representing an inner error bubbling

up to the top level and halting execution). The fourth rule shows the br instruction being
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used to perform a control flow jump. As described above, the (br k) instruction acts
as an indexed break. Counting outwards from the instruction, control is transferred to
the continuation of the k-th label. Beware of off-by-one errors! Consider that a (br 0)
instruction targets the O-th (innermost) label. The arity of the targetted label determines
the number of (stack) values which are kept and transferred to the continuation. All other
values from intervening labels are discarded. The final rule represents the exiting of a
label context after its body has been fully executed without breaking or trapping.

As mentioned, block and loop are defined in terms of label. These reduction rules
are given below. In the block case, the continuation is empty, and the label arity is set
to the arity of the block’s output type. Therefore, when the block is targetted by a br,
control jumps to the end of the block, and values are brought out of the block body to
match the block’s type signature.

" (block (" — t™) ¢*) < (label,, {e} (v" ¢*))

v" (loop (t" — t™) e*) — (label,, {(loop (t" — t™) e*)} (v" €*))

In the loop case, the continuation is the loop itself, and the label arity is set to the
arity of the loop’s input type. Therefore, when the loop is targetted by a br, control
jumps back to the start of the loop, and values are brought out of the body to match the
input arity of the loop. A loop will terminate when its body runs to completion without
the loop being targetted by a br.

The br__if and br_table instructions are forms of conditional control flow. Their

reduction rules are below.

(i32..const k) (br__if i) < (br 1) where k # 0

(i32..const k) (br_if i)<—>¢  where k=0

The br__if instruction takes a single i32 argument, which is interpreted as a boolean.

If the argument is non-zero, the instruction acts like br. Otherwise, it is a no-op.

(t.const k) br _table i* — br (i*[k])  where k < length(i")

(t.const k) br_table i* — br (last(¢*))  where k > length(i")

The br__table instruction carries a static non-empty list of branch targets, which is
indexed by the instruction’s stack argument. In the case that the index is too large, the

last value of the list is used, as a default.
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2.4.5 Call/return
(instructions) e := ... | call i | call _indirect i | return

(function closure) ¢l == native { inst :: inst, type :: ft,locals :: t* body :: e*} |
host { type :: ft, host :: hostfunc}

(table) tab == { elems :: ¢* max :: nat}
(store) s funcs :: c¢l*, tabs :: tab®,
store p—

mems :: mem*, globs :: glob*

(administrative instructions) e := ... | invoke i | frame, {F'} e*end | ...

S; F; (call k) — S; F; (invoke 1)

where ¢ = (F.inst.ifuncs)[k]

Each WebAssembly module contains a list of declared and imported functions. The
call i instruction calls the i-th function in this list. The administrative instruction
invoke is used to give a unified semantics for function invocation; all other function call
instructions are defined in terms of reduction to invoke. When a function is invoked, a
new frame is created to execute the function body. This is represented using the frame
administrative instruction, which keeps track of the called function’s scope information,

and otherwise behaves similarly to label.

S; F;o" (invoke i) — S; F; (frame,, {F} e*)

where (S.funcs)[i] = native {inst inst, type " — ¢, locals t?, body e*}
F = {locs (v™)(0P),inst inst}

Note that when a function is invoked, its arguments become available as local variables
within the function body, along with its explicitly declared local variables which are
zero-initialised.

The return instruction transfers control to the end of the function, breaking out of
the frame in the same way that br breaks from a label. Reduction rules for frame and

return:

S; F; (frame, {F} e*) — S'; F; (frame, {F'} e’*)

S; F; (frame,, {F} trap) — S; F;trap
S: F; (frame,, {F} v*) — S; F; v*

S; F; (frame,, {F} L[v" return]) — S; F’;o"
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WebAssembly modules are also allowed to declare and import a mutable table of
function references. The call _indirect instruction dynamically calls an indexed function
in the table. It carries an index which references a type annotation which must be matched

at runtime, else a trap occurs. This is WebAssembly’s mechanism for dynamic dispatch.

S; F'; (i32.const k) (call _indirect j) — S; F; (invoke 1)
where i, = (F.inst.itabs)[0]
tab = S.tabs[i]
i = tab|k]
(S.funcs)[i].type = S.types|j]

S; F'; (i32.const k) (call _indirect j) — S; F'; trap
otherwise

WebAssembly currently offers no instructions to mutate the table. This capability will
be introduced in a future feature [25|. However, the WebAssembly program may also call
host functions. These functions are provided by the environment, and their semantics are
outside the scope of WebAssembly’s specification. Among other things, a host function
may be used to mutate a program’s table, if it is exported. On the Web, the canonical
host is JavaScript.

To specify host functions, WebAssembly simply axiomatises the existence of a relation
describing the behaviour of the host. When a host function is executed, this relation

explicitly describes whether the function runs forever or terminates.

S: F;0" (invoke i) — S'; F; o™
where (S.funcs)[i] = host {type t" — t™ host hostfunc}
hostfunc(S,t™,v™) 3 (S",v"™)

S; F;o" (invoke i) — S; F;v"™ (invoke i)
where (S.funcs)[i] = host {type t" — ¢ host hostfunc}
hostfunc(S,t™,v") 3 L

The execution of the host function is subject to some axiomatic constraints which

ensure that the integrity of the WebAssembly state is preserved.

hostfunc(S,t™,v") 3 (S",v™) == ™ = map typeof v™ A
S <S5 A
(s S:ok = 45 :0k)
These relations are defined in §2.7. The conditions on hostfunc essentially amount to
an axiomatisation of the minimal guarantees that all instructions must satisfy to ensure

type soundness. As discussed in §3.1.4, in the course of mechanising the specification,

some issues with an earlier version of this condition were found and corrected.
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2.5 WebAssembly modules

WebAssembly programs are organised using modules. A module consists of a collection of
declarations for global state objects: global variables, tables, memories, and functions,
together with some initialization information. Before the code of a module can be executed,
the module must be instantiated. This is a linking and allocation phase which inserts
objects corresponding to the module’s declarations into the current global store S. Parts
of the module state can be declared as “imports”. At instantiation time, these imports
must be satisfied by objects of the appropriate type which were allocated by previous
instantiations. The formal structure of a module is given in Fig. 2.1.

Before a module can be instantiated, it must be wvalidated. This is a type checking
procedure which ensures that the module is well-formed, and that the code of its functions
obeys certain restrictions. We will first describe the type checking procedure for instruction
sequences, and the associated type soundness theorem, before describing the top-level
lifecycle of the WebAssembly module (§2.8).

(limits) limit, mt, tt := {min :: i, max :: i}
(global type) gt == {mut :: mut, type :: t}
(functions) funcdecl == func i (local t*) e*
(globals) globdecl :— global gt ¢*
(tables) tabdecl == table tt
(memories) memdecl :== memory mt
(elem segments)  elemdecl := {addr :: i, off :: e*,init :: ¢*}
(data segments) datadecl == {addr :: i, off :: * init :: byte™}
(import descriptor) idesc == ifunc i | imem mt | itab ¢ | iglob gt
namespace :: string,
(imports) imp = import < name :: string,
desc :: idesc
(export descriptor) edesc == efunc i | emem i | etab ¢ | eglob i
(exports) exp =~ export {name :: string, desc :: edesc}

types :; ft*, funcs :: funcdecl®, globs :: globdecl®,
tabs :: tabdecl*, mems :: memdecl”,
elem :: elemdecl®, data :: datadecl”,
start :: ¢, imports :: imp*, exports :: exp

(modules) module ==

*

Figure 2.1: WebAssembly module abstract syntax.
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2.6 Type System

Some of the WebAssembly instructions described previously have their reduction rules
defined only when the state is a certain shape. For example, a t.binop instruction can
only execute if two values of type t lie at the top of the stack. All WebAssembly programs
undergo validation (type checking) to ensure that attempting to execute such an instruction
will never result in a stuck state (i.e. that the shape of the stack always satisfies the
necessary conditions for reduction). The guarantees of the type system are strong enough
that implementations do not need to simulate/check the shape of the stack while executing,
and can instead compile operations on the stack to a Single Static Assignment (SSA) form

on registers [29]. At a high level, the type system needs to check the following things:

e An instruction is only allowed at a certain program point if there are guaranteed to
be the necessary consumable values on the top of the stack (with the appropriate

types) for it to execute.

e When an instruction uses a static index to reference part of the state (e.g. local and
global variables, or the call instruction), that index must be in bounds. The type of
the instruction is dependent on the type of the referenced state (e.g. local.get i has
type € — t, where t is the statically-declared type of the local variable indexed by ).

e A (br k) instruction is only allowed in a context with at least k enclosing labels,
and there must be enough values on the stack to satisfy the required type associated
with that label (see Fig. 2.6).

Each WebAssembly function is explicitly type-annotated with the expected type of its
body. Similarly, every control flow join (e.g. block, loop) is explicitly type-annotated.
These type annotations mean that full type inference is unnecessary: when typing the
body of a function or block, the expected input and output types are always known
ahead of time. Typing of a code fragment in WebAssembly uses a typing context C'
(see Fig. 2.2) to represent the global, function-local, and block-local type annotations
which are currently in scope. This is determined statically by the declarations of the
enclosing module, function, and evaluation context. The func, global, table, and memory
components of the typing context hold the types of the globally scoped object declarations
of the module. We will formally describe the details of how C' is related to the module
definition in §2.8. The local component holds the types of the function-scoped local
variables. The label and return components hold the target types of the br-targetted
(block and loop) and return-targetted (func) contexts respectively.
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Typing context
. type: ft*,func = ft*, table :: ¢, memory :: mt*, global :: gt*, }
(contexts) € := { local :: t*, label :: (¢*)*, return :: (t*)"

Instruction sequences typing judgement

Cre*:ft

Figure 2.2: Typing context and top-level shape of instruction sequences typing.

We will now describe the typing rules for each individual WebAssembly instruction.

Chtconstc:e—t C+ t.unop, : t — t C+ t.binop, :tt —t

C - t.testop : t — i32 C + t.relop, : t t — i32 C b ty.cvtopy, o t1 — to

Crnop:e—>e Chrdrop:t—e¢ Crselect:tti32 >t

C F unreachable : tf — 3 ChHee—e

Cref:ti -t Crey:ty -1t}
Chefey:t] =13

C e th—t3
Crer trtf -t t

[ comp] [weaken)]

Figure 2.3: Basic typing.

The rules of Fig. 2.3 deal with instructions that only interact with WebAssembly’s
stack. The instruction typing rules have no premises, and simply ensure that the correct
types are produced and consumed by straight-line code. The composition rule allows
types to be sequentially composed in the intuitive way, while the weakening rule allows

types to be extended, representing an untouched “stack base”.

Clocalli] =t Clocal[i] =t Clocal[i] =t
C+ local.geti:e—t C'+ local.seti:t— ¢ C+ local.teei:t —t
C'.globalli].type =t C.global[i] = {mut mut, type t}
C + global.get i : ¢ —t C + global.seti:t — ¢

Figure 2.4: Context typing 1.

The rules of Fig. 2.4 check that statically-indexed variable accesses are in-bounds.
Recall that in the metatheory of the WebAssembly specification, array accesses in premises
must be in-bounds for a derivation to succeed. The global component of the context
represents the top-level module global variable declarations, while the local component of
the context represents the function-scope argument and scratch (zero-initialised) local

variable declarations (see §2.4.5).
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C.memory[0] = mt 2% < |t C.memory[0] = mt 2 < |pt]| < [{] t=in

Cttload — ao0:i32 >t C + t.doad (pt, sx) a 0:i32 —> ¢
C.memory[0] = mt 2% < || C.memory[0] = mt 2% < |pt| < |t t=im
CHtstore — ao0:i32t— ¢ CHtstoreptao:i32t— ¢

C.memory|0] = mt C.memory|0] = mt
C' + memory.size : € — i32 C - memory.grow : i32 — i32

Figure 2.5: Context typing 2.

The instructions of Fig 2.5 are only allowed to occur in the program if the module
has declared or imported a memory. Currently, a module may only have a single memory
in scope (which may have been imported from another module), which all of these
instructions implicitly index. However, the specification is designed with the expectation
that a module may include multiple memories in future, which will require extended
instructions to access. The checks on the alignment hint a in the rules for load and store
simply ensure that an instruction cannot be hinted to have an alignment greater than the

natural alignment of its type annotation.

fo=tr >t {label P} @C He* ft ft=t" >t {label "} @ C 1 e* : ft
C + block ft e* end : ft C + loop ft e* end : ft

ft=1t7 — 3 {label t"} @ C i - ft  {label t3'} D C - e} : ft
CHif fte} else e} end : 7 i32 — ¢

Clabel|i] = t* Clabel[i] = t* (Clabel[z] = t*)*
Crbri:tit 15 Crbr ifi:t*i32—>t* CFbr_tableit :t} t* 32 — £}

Figure 2.6: Control typing 1.

The typing rules of Fig. 2.6 ensure that br instructions have valid indices, and that the
stack will be in the correct state when they execute. Recall that br transfers control to
either the end of a block, or the start of a loop. When control is transferred by br to the
end of a block, the top of the stack must match the output type of the block. Similarly,
when control is transferred to the start of a loop, the top of the stack must match the
input type of the loop.

This is enforced by the label component of C. The body of a block or loop must
be typed to match the construct’s type annotation. The if instruction acts like a block,
and both possibly executed bodies must have the same type. While typing the body,
the context C is extended with a label which keeps track of the required type if a br is
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executed which targets that construct. The rules for various flavours of br then check
this context to determine what their input type should be. Note a syntactic convention
used in the typing rule for br _table, where the use of + as a superscript in the premise
indicates that the premise is repeated over every element of i* (with the ¢ of C'label[i] in
the premise binding to each element). This convention is common in future rules.

There are subtle differences in the types of each br. When executing br or br _table,
any sequentially subsequent code is syntactically dead. However, it is a (contentious)
design decision of WebAssembly that even dead code should be well-typed (see §3.3.1).
An arbitrary type can be picked as the output type of br and br_table, but it is still
possible for subsequent code to be ill-typed. The rationale behind this will be discussed in
more detail in §3.3.1. The br _if instruction is conditional, so it is possible for execution
to continue without a control transfer occurring. Therefore, subsequent code must be

typed as though the stack is unchanged, aside from the i32 argument consumed by br__if.

C'.return = t* C.func[i] = ft C.typeli] =t} — t3 C.table[0] = ¢t
C + return : t} t* — t3 Crcalli:ft C + call _indirect i: t} i32 — t3

Figure 2.7: Control typing 2.

Finally, the rules of Fig. 2.7 deal with function calls. The return component of C' is
only set at the top level when beginning to type a function. Because all functions are typed
to obey their explicit type annotation, the type of call is simply the type annotation of
the statically indexed function being called. The call _indirect instruction, which is only
well-typed if the module declares or imports a table, is given an explicit type annotation
to use as its type (that must be dynamically checked during execution), using the same

index space as the function type annotations.

2.7 The type soundness statement

The correctness condition of WebAssembly’s type system is a textbook example of syntactic
type soundness [30]. The official specification states the desired type soundness property,

but does not provide a full proof. Syntactic type soundness consists of two properties:

Preservation If a WebAssembly configuration is well-typed, then if it reduces (executes)

one step, the resulting configuration will be well-typed.

Progress If a WebAssembly configuration is well-typed, then either it represents a
terminated program (in the sense that it has reduced to a bare list of values or trap), or

there exists a reduction step it is allowed to make.
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In order to state these properties, WebAssembly’s type system must be augmented to
fully type the language’s runtime configurations, including the runtime-only administrative
instructions. This is done by extending the typing judgement to be parameterised by the
store, as some details of the types of the administrative instructions depend on values in
the store. For example, the type of (invoke i) depends on the type of the function in the
store that i indexes. As noted by Pierce [31], this extension of the typing relation with a
store parameter is a well-known naive approach to formulating type soundness, and is
often not sufficient for a real language since locations in the store may change their types
dynamically at runtime or contain cyclical references. However, because every object in
the WebAssembly store is associated with a statically known type (through its associated
module declaration), this naive approach is sufficient.

The judgement . S; F;e* : t* can be intuitively understood as typing a top-level
WebAssembly configuration which can execute without any additional context needed,
and if the configuration terminates without error it will produce a list of values of type t*.
The judgement is formalised in an appendix of the official WebAssembly specification [32],

and is defined as follows:
Table and memory validity These judgements associate a (possibly imprecise) limit

type with a given runtime table/memory. It is an invariant of the semantics that the limit

type of a memory will stay valid even if the memory grows in size.

min = min (min < maz)" (maz < maz’)’

Fimit {min min, max maz’} : {min min’, max maa’"}

Himit {min |t.elems|, max ¢.max} : lim

l_tab t . l/lm

Hiimie {min |m.buffer|/2'®, max m.max} : lim

Fmem M @ lim

Global validity This judgement associates a global variable with its global type.

g.mut = gt.mut typeof(g.val) = gt.type
|_glob g: gt
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Instance validity This judgement associates a runtime instance, containing references
to objects in the global store S, with a type context C' which has the same structure but

contains the types of each object instead.

(S.funcs[if]).type = ¢)’ (b (S-tabs[it]) : tt)"
(Fmem (S-mems[im]) : tm)™  (gob (S-globs[ig]) : tg)"
inst = {types ft?,ifuncs if?,itabs it™, imems m™,iglobs ig'}
C = {type ft? func tf?, table tm™, memory tg', global tg"}
S i inst: C

Administrative instruction validity This judgement is defined as a “generalisation”
of the instruction typing judgement C' |- e* : ft, adding an additional store component S
(a standard approach described by Pierce [31]). The premise of frame refers to the local
validity judgement below, which itself depends on administrative instruction validity, so

these definitions are mutually recursive.

S;C + trap : ft

S;Cref ">t S;{label t"} @ C' - e*: e — &
S;C + label,, {ef} e* : e — ¢

(S.funcs|i]).type = ft
S;C + invoke i : ft

S; (t") Froc Fye* @ t*
S;C + frame, {F} e*: e — t*

Frame validity This judgement lifts instance validity to frames, additionally populating
the type context C' with the types of the frame’s local variables.

( t, = typeof(v) )" Flocs = o™ S+ Finst : C
St F: Cllocal := t7]

Local validity This judgement defines the typing of an instruction sequence under
a given frame. The typing context under which the instruction sequence is typed is
determined by the frame validity judgement above. Note that this definition is mutually

recursive with the definition of administrative instruction validity.

SteF:C S; Clreturn := ()] - e* 1 € — t*
S5 (t2) Fioc Fie* o t*
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Function closure validity A native function closure consists of an instruction sequence
together with an associated instance, local type declarations, and type signature. This
judgement lifts validity of instruction sequences to validity of function closures. Note that
it is guaranteed by construction that the function body will contain no administrative

instructions.

S +;anst: C
Cllocals := t*tf, labels := t"* return := t"*] - e* : € — t"*

S - native{inst :: inst, type :: t* — t’* locals :: ', body :: e*} : t* — t/*

S o host{type :: ft, host :: hostfunc} : ft
Store validity This judgement checks that all components of the store are well-formed.

(Skac:f)* (Fabt:t)* (Fmemm: mt)*
S = {funcs c[*, tabs t*, mems m*, globs ¢*}
.S :ok

Configuration validity This is the top-level judgement used to define type soundness.

o S :ok Siebioc Fie* i t*
o S, Fe* o t*

Store extension This judgement defines a relation which expresses a bound on how
the store is allowed to change over time. In particular, the types of existing components
of the store may never change (although more components may be appended).

Store extension does not inherently preserve store validity, since it does not describe
whether newly-appended store components are well-formed, but it does preserve the
well-formedness of existing components. Similarly, preservation of store validity alone

does not imply store extension.

|t.elems| < |t.elems| t.max = t’.max
t <tab t,
|m.buffer| < |m . buffer| m.max = m’.max

M <mem M

g.mut = ¢'.mut typeof(g.val) = typeof(g’.val) gmut = g.val = ¢’.val
g <g|ob g/

( <tab t/)b (M <mem mM')° (g <glob gl)d
S = {funcs cl*, tabs t° mems m¢, globs g%}

S" = {funcs cl®cl™ tabs t°t"* mems m/*m”*, globs g’"¢g"*}

S <5
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Now, the top-level progress and preservation properties can be fully formalised:

Progress If . S; F;e* : t*, then
e* = [trap] v (Fv*. e* = v*) v IS'F'e’. S; F;e* — S, F'; e'*.

This property states that a well-typed configuration that is not terminal (a bare list of
values, or an exceptional trap) will always be able to reduce a further step. Among other
things, this implies that operations which pop from the value stack are guaranteed by the

type system to only execute if enough values are on the stack for the pop to be successful.

Preservation If . S;F;e*:t* and S; F;e* — S'; F';e’*, then
e S B e o t* and S < S

This property states that if a well-typed WebAssembly configuration reduces one step,

the resulting reduct is typeable with the same type, and respects store extension.

2.8 WebAssembly module lifecycle

As previously mentioned, WebAssembly code is distributed and compiled as one or more
“modules”. Each module represents a single WebAssembly compilation unit. At a high-
level, WebAssembly code goes through a number of distinct phases in order: decoding,

validation, compilation, instantiation, and execution.

1. Decoding. The WebAssembly module, as a stream of bytes, is decoded/parsed
into the structured definition of Fig. 2.1. Decoding of WebAssembly is formalised
in its own section of the official specification, but we will not deal with this step

explicitly in any of the work described in this thesis.

2. Validation. The declarations and code of the decoded module are checked for type
safety. As one part of this, the body of each declared function is checked according
to the rules defined in §2.6. The formal details of top-level module validation will

be described below (§2.8.1).

3. Compilation. The code of the module is compiled to platform machine code.
No modification of the WebAssembly abstract state takes place in this phase and
exported functions cannot yet be accessed or called. The definitions of decoding and
validation are arranged so that an efficient implementation can perform decoding,
validation, and compilation all at once on a partially downloaded module definition,

in a streaming fashion.

4. Instantiation. A runtime instance of the WebAssembly module is created. This
involves the allocation of function closures, global variables, tables, memory etc, as

defined in the declarations of the module. References to existing allocations must
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be provided to satisfy the module’s imports. The new instance holds references
to all created and imported state. A module may be instantiated multiple times,
and separate global state will be created for each instance. For example, a module
declaring a memory, instantiated twice, will allocate separate new memories for
each instance to reference. The compiled code of the previous step usually contains
indirections so that it may be closed over by the current instance, allowing multiple
instances to share the same compiled code (without requiring recompilation) but

access different state.

5. Execution. The instance allows access to exported definitions. An exported
function closure (containing a reference to the instance, and the compiled code

associated with it) may be executed, according to the semantics described in §2.4.

The most esoteric aspect of the module lifecycle is the instantiation stage. The
intention of this arrangement is that compilation is performed once per module, and is
relatively expensive, but can be performed (along with decoding and validation) in a
streaming manner as the module is still being downloaded. While a module may import
additional state from the environment, or other modules, a well-typed module contains
enough type information to be compiled before any imports are satisfied. Instantiation is
then a relatively cheap operation which satisfies imports and creates the necessary runtime
state for the code to execute. It is expected that a compiled module may be instantiated
multiple times, and therefore a typical WebAssembly implementation will compile the
module to be parameterised over a given instance, meaning no additional code generation
is necessary at the instantiation step. This does mean that memory accesses contain an
additional indirection: the compiled code must first retrieve the memory address from
the instance before applying the given offset. Surprisingly, this additional indirection
apparently caused minimal performance loss, reported as less than 1% in V8 [33].

The formal details of instantiation can be found in [34] but do not need to be
discussed here in detail. While the definition of instantiation is mechanised as part of the
implementation of the verified interpreter described in §3.3.2, no proofs are performed
against it as part of this thesis. At a high level, instantiation is defined for a module
together with a list of imports. The provided imports are type checked to ensure they
match the import declarations of the module. If successful, each declaration of the provided
module is allocated and appended to the global store S. The instance inst used during

reduction is the collection of references to these allocations.

2.8.1 Validation formally

Module validation, and auxiliary definitions, are defined below. Most definitions are

concerned with building the context C' in order to validate each function body.
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Declarations

These relations assign types to declarations of global state made in the top level of the
module (see §2.1).

ft=tr —t; Cllocals := titf, labels := 5, return := ] - e* : ¢ — 3
C Ffune, func ft (local tf) e* : ft

gt = mut’ t Clconst €61
C' Fgiob, global gt e* : gt

232 232

tt = {min min, max maz’} min < (maz < min < maz)’

tab,, table tt: tt

. . 2 . . 2
mt = {min min, max maz’} min < 216 (max < 2'° min < max)’

Fmem,, Memory mt: mt

Initialisation segments

These relations check the validity of segment declarations, which declare initial values

with which to populate the module’s memory and table.

C.memory|i,,| = mt C Feonst €F 1€ —i32 (C.func|i] = ft)*
C' Felemy, {addr i,,, off e* init i*} : ok

C.table[i;] = tt C Feonst €F 1€ — 132
C' Fdata, {addr iy, off e*,init byte™} : ok

Imports and exports

These definitions associate module imports and exports with types, allowing the module

to be given a type signature in terms of the imports it expects and the exports it produces.
(external types) ext == func, ft | mem; mt | tab, ¢t | glob, gt

Cotypeli] = ft
C' Fimp ifunc i : func, ft C' imp imem mt : mem, mt

C' imp itab tt : tab, ¢t C' imp iglob gt : glob, gt

C.func[i] = ft C.memory|[i] = mt
C' Fexp efunc i : func, ft C Fexp €Mmem 7 : mem, mt
C.table[i] = tt C.globalli] = gt

C' Fexp etab i : tab, #t C' Fexp eglob i : glob, gt
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Module
D (C Func,, fdecl: fO)*  (C' giob,, gdecl: gt)*  (Ftab,, tdecl: tt)*  (Fmem,, mdecl: mt)*

®) (C Felem,, edecl: ok)* (C Fdata,, ddecl: ok)* is < length(C.func)

®) (C' Fimp imp : impt)* (C Fexp €xp : expt)® (exp.name)* distinct

@ ft,, = funcs(imp*)  gth = globs(impt*) ttf = = tabs(impt*) mt} = mems(impt*)

® o { type tf*, func ftj,,, ft*, global gt} gt*, tablett}  tt*, memory mtj,  mt*, }
local e, labele, returne

© C' = {typee, funce, global 9glinp: table e, memory €, local €, label ¢, return €}

types tf*, funcs fdecl*, globs gdecl*, tabs tdecl*, mems mdecl*,

l_module { } . impt* i e:zpt*

elem edecl®, data ddecl*, start iz, imports imp*, exports exp*

Line (1) of the premises in the module validation rule describes the four main globally
declared module components (functions, globals, tables, and memories) being checked for
well-formedness and given a type which is later used to define the corresponding component
of the type context C. Line (2) shows the element and data segments (initialising the
table and memory respectively) being checked for well-formedness. The start function
index is also checked to ensure it lies within the range of imported/declared functions.
Line (@) shows the modules’ declared imports and exports being associated with types.
Line (4) shows the imports being filtered according to their type in order to build to type
context C. Line (5) shows the import types and the types of declared module components
are used to define C'. By convention, imported definitions appear first in the index space
of each component, followed by the declarations of the module itself. The use of the
partial context C’ in line (6) is to ensure that the initial values of global variables may
not refer to each other circularly. Note that the definition given for C' is circular (but still
inductive), since the function types derived from validating the function bodies in the first
line are themselves components of C'. This is merely a stylistic choice of the specification;
real implementations break the circularity by building C' from just the function type

annotation before validating the body to check that the annotation matches.
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Chapter 3

Soundness Proof and Mechanisation

This chapter describes my mechanisation of WebAssembly’s semantics in Isabelle/HOL [35],
a proof of the type soundness property as stated in §2.7, and the issues that my mechanisa-
tion revealed in an earlier draft of the specification. This is the first full proof, mechanised
or otherwise, of the soundness of the WebAssembly type system. A verified type checker
and runtime interpreter built on top of the mechanisation are also described.

The current mechanisation is available under the name WasmCert-Isabelle [36] and
is based on the W3C-published “WebAssembly 1.0” specification [26]. I have previously
presented an earlier version of the mechanisation, proof, and verified executable artefacts [9].
This was based on a pre-print of the WebAssembly formal semantics, originally circulated
in December 2016 [17]. This mechanisation found and corrected some errors in the draft
semantics, which are also described below. These corrections were adopted into subsequent
drafts.

3.1 Key lemmas of the type soundness proof

Many cases in the soundness proof fall out directly from unfolding and refolding of
definitions. Below, I explain some of the representative and interesting cases by giving
hand-proof analogues of the mechanised proofs, going through a few initial examples in
particular detail. Each lemma is named according to its analogous mechanised lemma in

WasmCert-Isabelle, proven as part of the overall type soundness proof.
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3.1.1 Basic Lemmas

Lemma 3.1 (e_type_consts)
Assuming (1) S;C +v* @ tf
we have Jt*tE. % = (map typeof v*) A (tf=t* > t*t}) A S C" 0" e -t}

Proof. By induction on the definition of typing.

This is an inversion lemma which is used to recover facts about how a given typing
judgement of the form S;C - v* : tf must have been derived. In particular, because v* is
a list of values, it is typeable with € — (map typeof v*) under any context, and ¢f must
be some weakening of this type (representing an unaltered stack base). The lemma allows
the type tf to be “pulled apart”, so that we can refer to the separate components of the
type. A version of this lemma is proven for each instruction in the WebAssembly language
before proceeding with further proofs. Isabelle automatically derives inversion lemmas,
but those are not sophisticated enough for our purposes, since we are effectively inverting

two rules at once (the base typing rule, and possible applications of weakening).
Lemma 3.2 (store_extension_refl)

S <5 S

Proof. Follows straightforwardly from the definitions.

During the type soundness proof, there are some points where we need to prove that
reduction respects store extension. In many cases, reduction does not alter the store, and

this lemma allows such cases to be immediately discharged.

3.1.2 Preservation

We first establish two related auxiliary lemmas.

Lemma 3.3 (inst_typing_store_extension_inv)
Assuming (1) S tjinst: C
(2) S<s98
we have S iinst: C

Proof. Follows straightforwardly from the definitions. Intuitively, since S’ is an extension

of S, all elements of S pointed to by inst will have counterparts in .S” with the same types.

Lemma 3.4 (frame_typing_store_extension_inv)
Assuming (1) SH¢F :C
(2) S<s98
we have S'+—¢F: C
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Proof. This follows from the definitions and inst_typing_store_extension_inv.

This lemma proves that frame typing is preserved by store extension. We later prove
that reduction respects store extension, which implies (thanks to this lemma) that frame
typing is preserved by reduction. This is a stepping stone towards the preservation
property.

The bulk of the work in proving the preservation property for top-level configurations is
carried out in first establishing a stronger lemma over program fragments. In this lemma,
the configuration itself is not necessarily well-typed according to the configuration typing
relation ., but is well-typed in some arbitrary enclosing label /frame context according

to the instruction sequence typing relation .

Lemma 3.5 (types_preserved_e2)
Assuming (1) S;F;e* — S F';¢e*

(2) FsS:ok
3) SrHeF:C
(4) S;Cllabel := 1y, return 1= ryp| - €* : tf
we have S <8
s S’ : ok
S ' F' : C

S’ Cllabel := 14, return := rg] - ™ : tf

This lemma is proven by induction on the definition of reduction, taking C, tf, l,,
and 7,4 as arbitrary. The inductive hypothesis is only necessary to prove the cases
corresponding to the congruence rules, since other rules are not inductively defined. We
examine a few cases of the induction in detail. Note that in the mechanisation the induction
is split between two sublemmas reduce_store_extension and types_preserved_el, but
for brevity each case is presented in a combined form here.

Recall the congruence rule for frame:

S; Fye* — S F'; e
S; F; (frame, {F} e*) — S'; F; (frame, {F'} %)

Here is the corresponding inductive case:
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Lemma 3.6 (types_preserved_e2 [frame case])
Assuming (1) S; F;(frame, {F} e*) — S'; F'; (frame,, {F'} ¢*)
2) FsS:ok
3) S I—,cF :C
4)  S;Cllabel := [, return := rq| - (frame, {F} e*) : tf
5)  S;F;e* — S Fe*
IH) VO tf 1y T
(S; Fye* — S F'ye™ A
s S ok A
SkE¢F:C' A
S; C'[label := 1/,
(S <58 A
¢S ok A
S'HeF':C A
S’ C'[label := 14y, return := rq] = € : tf)

N N N /N /N

return := 1/, |+ e* . tf) =

we have S <5
.S : ok
S’ I—fﬁ :C
S’ C[label := Iy, return := 4] - (frame,, {F'} ™) : tf

Proof.

taking existential witnesses t*,t*, t" we have
(6) tf = (t* — t* t'*)

(7) S; (t") Fioc Fye* 1

all by inverting (4) (note the inversion lemma must be proven manually by induction)

taking existential witness C’ we have
(8) SkHeF:C
(9) S; C'[return := t"] - €* 1 € > t*
all by inverting (7)
(10) S < 5
(11) 55" : ok
( ) S e F Y
(13) S’; C'[return := t"] - "™ : € — t'*
all by (IH) using (5), (2), (8), and (9)
(14) S ¢ F : C

by frame_typing_store_extension_inv using (3) and (10)

(15) 5”5 (™) Frioc F'5 €™ ™
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by introduction using (12) and (13)

(16) S’; C[label := I, return := rq| - (frame, {F'} €*) : tf
by introduction using (16) and weakening using (6)
QED by (10), (11), (14), and (16).

Here is the case corresponding to Wasm’s reduction rule for br.
S; F; (label,, {e*} Li[v" (br k)]) — S; F;0" €*

Note that, because the rule has no premise, this case has no inductive hypothesis. An

inner induction on the definition of L, is required to determine the type of v™.

Lemma 3.7 (types_preserved_e2 [br case]|)
Assuming (1) S; F;(label,, {e*} Ly[v™ (br k)]) — S; F;v™ e*

(2) FsS:ok
(3) SkHeF:C
(4) S;C[label := ly, return := 74| - (label,, {e*} Ly[v™ (br k)]) : tf
we have S < S
S : ok
SkHeF:C

S; C[label := [y, return := 74] = 0™ €* : tf

Proof.

taking existential witnesses t*,t*,t" we have

(5) tf = (t* —> t* t'*)

(6) S; C[label := l 4, return 1= ry] - e* 1 " — t'*

(7) S; C[label := (™) Lo, return := 14| = Lg[v™ (br k)] : e — t"*

all by inverting (4) (again, inversion lemma must be proven by induction)

(8) S; Cllabel := Iy, return := 74| = 0™ : € — "

by rule induction on L using (7) and e_type_consts

(9) S; C[label := g, return ;= 7] = 0™ e* @ tf
by introduction using (5), (6), and (8)
QED by store_extension_refl, (2), (3), and (9).
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After proving each case of types_preserved_e2 we have everything we need to prove

the top-level preservation property.

Lemma 3.8 (preservation)
Assuming (1) FcS;F;e*:t*
(2) S;Fie* — S Fe
we have e S B el ot

Proof
(3) s S :ok
(4) S;€ o Fie* o t*.
all by inverting (1)

(5) SkeF:C
(6) S; C[return := €| - e* : € — t*
all by inverting (4)

(7) 55" :ok
(8) 8" F': C
(9) §'; Clreturn := €] - €™ : € — t*
as a special case of types_preserved_e2, using (2), (3), (5), and (6).

(10) S'; € brioc F'5 €™+ t*
by introduction with (8) and (9).

(11) - S F' e o t*
by introduction with (7) and (10).
QED.

3.1.3 Progress

We can now turn our attention to the progress property. Just as with preservation, we
must first prove a stronger lemma over program fragments, which are well-typed according

to the instruction typing relation in some arbitrary label/frame context.

60



Lemma 3.9 (progress_e)
Assuming (1) S;C[label := [, return := 7y - e* : t* — t'*

(2) Crov*:ie—t*
(3) VL. e* # L*[return]
(4) Vi L*. e* = LElbri]l| =i <k
(5) Yo't e* £
(6) e* # trap
(7)  FsS:ok
8) SkHfF:C

we have 38" F' e*. S, Fyv* e* < S F'; e

and
assuming (9)  S;r’ b v* e* ot

(10) VL*. e* # L*[return]
(11) Vi L*. e* = LE[bri] =i < k
(12) Yo', e* # v*
(13) e* # trap
(14) 58 :0k

we have 35" F' e*. S; Fyv* e* — S/ F'ye*

The definition of (administrative) instruction typing is mutually recursive with local
validity. Therefore we must prove this lemma using simultaneous multi-predicate induc-
tion over the definitions of instruction typing and local validity. Thankfully, Isabelle
handles most of the book-keeping for this automatically. The top level typing judgement
e S; Fse* : t* does imply that the configuration S; F'; e* can execute one step, but this
judgement is not general enough for us to successfully perform induction, so we cannot
prove this directly. Instead we must perform induction on the more general typing judge-
ment S;C + e*: ft. A key complication of the proof is that sequences of instructions
which are well-typed with S;C'  e* : ft cannot necessarily execute by themselves, but can
execute when embedded in a larger context represented by the type context C. I chose to
deal with this by adding more assumptions to the induction to disallow these cases, and
then handling them separately. There are three main reasons why a configuration S; F'; e*
may not reduce even if it is associated with a typing judgement S;C  e* : t* — t'*.

First, the configuration may be terminal (i.e. a list of values, or a bare trap). Such
configurations are well-typed, but are not expected to reduce, so these cases are discarded
by premises (5), (6), (12), and (13). The requirement that only non-terminal configurations
must progress is replicated in the top-level statement of the progress property.

Second, the input type of the judgement indicates the number of stack values that
must be provided in order for the configuration to execute. So if S; F';e* is associated

with the typing judgement S;C | e* : t" — t'*, this is really saying that S; F';v™ e* can
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execute, where C’ - v™ : € — t". This is handled by adding the additional stack values to
the conclusions of the induction, along with an assumption (2) about their well-typedness.
In the top-level statement of the progress property, the input type of the configuration is
required to be € as part of the definition of .

Finally, the typing judgement S; C[return := t*] - v* return : tf may hold, but the
code fragment v* return on its own has no applicable reduction rule unless embedded a
frame of arity k corresponding to return entry in the context C'. This applies similarly to
label and br. Such program fragments would form counter-examples to a naive inductive
proof, so they are explicitly excluded to keep the induction regular (through premises
(3), (4), (10), and (11)). These final cases are then handled by the following separate
proofs showing that such cases cannot be well-typed according to the .. typing definition
(which types whole function bodies rather than program fragments under a context), and

hence do not need to be considered when proving the top-level progress property:
Lemma 3.10 (progress_el)
Assuming (1) S;ebjoc Fye* i t*

we have VLE. e* # L*[return|

Proof. By induction on the definition of the L context.

Lemma 3.11 (progress_e2)
Assuming (1) S;ebjoc Fye* i t*
(2) e* = L*[br ]

we have 1<k
Proof. By induction on the definition of the L context.
We can now use these lemmas together to prove the top-level progress property.
Lemma 3.12 (progress)
Assuming (1) FcS;Fie*:t*
we have e* = [trap] v (Fv*. e* =v*) v IS'F'e. S, F;e* — S  F'; e*
Proof.
(2) e* # [trap]
(3) fo*. e* = v*

assumption (discharge first two disjuncts of goal)

(3) s S : ok
(4) S;€ boc Fie* ot
all by inverting (1)
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(5) SkteF:C
(6) S; C[return := €| - e* : € — t*
all by inverting (4)

(7) 3S" F' &™*. S, F;e* — S F'; e’
as a special case of progress_e, progress_el, progress_e2
QED.

3.1.4 Issues with the draft specification

When this proof was first attempted, it was against an early draft of the semantics and
type system. Both in attempting to mechanise the draft specification, and in proving type
soundness, a number of errors in the draft specification were discovered. Many of these
errors were typos or other obvious definitional errors. Aside from these, three main issues

were discovered which caused the original statement of type soundness to be false.

3.1.4.1 Trap propagation

Originally, the semantics omitted a rule to allow trap errors to propagate through straight-
line code. This led to a trivial violation of the progress property, and was corrected by

adding the rule
S; F'; Lo[trap] — S; F'; trap if Lo[trap] # trap

3.1.4.2 Return typing

The return instruction was originally typed in a different way. The return element of the

typing context C' did not exist, and return was typed using the following rule:

last(C'label) = ¢*
C + return : t} t* — 13

This was considered acceptable because entering a function introduces a label context
(see the reduction rule for call in §2.4.5), so a “maximal br” will always terminate the
current function. However, the reduction rule for return cannot locally determine how

many enclosing label contexts it is situated inside, and is therefore specified as follows

~

S; F; (frame, {F} Ly[v" return]) — S; F’;o"

Together, this meant that the judgement . S; F'; (labely {} return) : e could be suc-
cessfully typed, but the configuration could not reduce, creating a violation of the progress
property. To fix this, it was necessary to add a distinguished return component to the

typing context C', which is set when typing the body of a function or frame context. Note
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that the the administrative instruction (labely {} return) cannot appear as the top-level
reduct of a real program execution (since all real WebAssembly programs must begin with
a function call, creating at least one frame) so the error was in spuriously allowing such a
malformed intermediate reduct to be well-typed.

If this error had gone undiscovered, it would have become more of a practical issue
if some future feature were to allow WebAssembly code with local control flow to be
executed outside the context of a function call; for example if the initialising expressions

of global variables were extended to allow block.

3.1.4.3 Host functions

The WebAssembly specification allows external host functions to be imported and called.
The behaviour of these functions is outside the scope of WebAssembly’s core semantics.
However, they must still behave in a way which preserves the integrity of the WebAssembly
state. For example, an invoked host function should not be permitted to dynamically
change the type and value of a global variable from an i32 to an f64.

The draft WebAssembly semantics [17] originally did not formalise host function
calls. A later draft of the specification made an attempt, but was missing the necessary
axiomatic constraints as described in §2.4.5. In order to complete the type soundness
proof, I formalised the correct constraints, and the official specification of host functions

was later rewritten by Andreas Rossberg to incorporate these [26].

-- <instances>
record inst = .
. -- <function closures>
types :: "tf list"
- datatype cl =
funcs :: "i list" ) . . .
o Func_native inst tf "t list" "b_e list"
tabs :: "i list"
Wi 15 e | Func_host tf host
mems :: "i list
globs :: "i list"
type_synonym tabinst = "(i option) list x nat option"

typedef meminst = "UNIV :: ((byte list) x nat option) set"

-- <store>
record s = -- <frame>
record global = .
mutg-- nut funcs :: "cl list" record f =
9- o tabs :: "tabinst list" f_locs :: "v list"
g_val :: v . . . .
mems :: "meminst list" f_inst :: inst
globs :: "global list"

Figure 3.1: Core definitions from the Isabelle model’s runtime state.
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-- <value types>
datatype t =
T_i32 | T_i64
| T_-f32 | T_f64

-- <values>
datatype v =
ConstInt32 i32
| ConstInt64 i64
| ConstFloat32 f32
| ConstFloat64 f64

-- <function types>
datatype tf =
Tf "t list" "t list"

(Ili I7> 7" 60) . | |
-- <basic instructions>
-- <immediate> datatype b_e =
type_synonym i = nat Unreachable
ype_synony Nop
Drop
-- <packed types
X e Select

datatype tp =

Block tf "b_e list"
Tp_i8 | Tp_ilé | Tp_i32 ¢ € s

Loop tf "b_e list"

. If tf "b_e list" "b_e list"
-- <signedness flag>

Br i
datat sx =S U
atatype sx | Broif i
. . Br_table "i list" i
-- <arithmetic ops>
Return
Call i

datatype unop_1i

Call_indirect i
datatype unop_f

Get_local i

Set_local i

Tee_local i

Get_global i

Set_global i

Load t "(tp X sx) option" a off
Store t "tp option" a off
Current_memory

Grow_memory

EConst v ("C _" 60)

Unop t unop

Binop t binop

Testop t testop

Relop t relop

Cvtop t cvtop t "sx option"

datatype unop =
Unop_i unop_i
| Unop_f unop_f

datatype binop_i
datatype binop_f

datatype binop =
Binop_i binop_1i
| Binop_f binop_f

datatype testop = Eqz

datatype relop_i
datatype relop_f

-- <administrative instructions>

datatype e =
datat 1 =
atatype retop = Basic b_e ("$_" 60)
Relop_i relop_1i
| Relop_f relop_f Trap
B B Invoke 1

Label nat "e list" "e list"

datatype cvtop = .
yp P Frame nat f "e list"

Convert | Reinterpret

Figure 3.2: Core definitions from the Isabelle model’s AST.
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3.2 Details of the Mechanisation

The mechanisation of the WebAssembly semantics consists of ~700 lines of non-comment,
non-whitespace Isabelle/HOL, with the mechanisation of the type soundness proof con-
sisting of ~4900 further lines, and definitions and proofs related to the executable type
checker and interpreter (see §3.3) consisting of ~6600 further lines, not counting code
handling the extraction to OCaml.

The core of the WebAssembly AST, typeset directly from the Isabelle mechanisation,
is given in Fig. 3.2. The full enumerations of some numeric operations (such as binop_i)
are elided for space. The mechanisation is broadly identical to the paper specification
previously presented. However, as part of the process of mechanisation it was inevitable
that some small changes to the definitions were needed, due to mismatches between the
metatheory of Isabelle/HOL and the (implicit) metatheory of the paper specification; we

discuss these below.

3.2.1 Reduction

The paper specification makes no distinction between administrative instructions and
instructions, grouping both under the metavariable e. However, some expressions such
as loop may not contain administrative instructions such as invoke in their body, and it
is useful to make this distinction at the type level. The mechanisation declares regular
instructions as the “basic instruction” datatype b_e, and then defines the instructions in-
cluding the administrative instructions as the datatype e, with an explicit type constructor
Basic :: b_e = e (abbreviated as $).

Recall that the paper specification puns values with const instructions. In the Isabelle
mechanisation, values are defined with their own datatype v, while the const instruction
is represented as EConst v, an instance of the b_e datatype. An abbreviation C is defined
for the EConst type constructor, which is useful in concisely defining formal rules (see
below).

The Isabelle mechanisation defines reduction using the inductive predicates
inductive reduce_simple :: e list = e list = bool

and

inductive reduce::s=f=1¢e list=s = f = e list = bool

abbreviated to

fes) < (es’)

and

(s;f;es) — (s’;f’";es’)
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respectively. The types s and f refer to the store and the frame. They are defined as
Isabelle records, with structures identical to those of the paper semantics (see Fig. 3.1).
It is an Isabelle convention that types and variables should be in lowercase, in contrast to
the WebAssembly paper specification.

The two levels of reduction in the mechanisation mirror a division in the paper
specification, where the (unchanged) store and frame are elided in some reduction rules. In
the paper specification, this is purely a syntactic shorthand. The mechanisation, however,

must explicitly introduce the following rule relating reduce_simple and reduce.

e* s el*
S, Fie* — S F;e*

This split approach is chosen both because it allows the “simple” rules to be more

syntactically similar to those of the paper specification, and also because Isabelle/ HOL
can take a long time to process a single inductive predicate (such as reduce) with a large
number of definitions.

As a concrete example, consider a paper reduction rule for select.

v1 v9 (i32.const [)(select) — v where [ # 0

In the mechanisation, this rule is represented as a case of reduce_simple.
C # 0 =

([$(C v1), $(C v2), $(C ConstInt32 c), $(Select)]) — ([$(C v1)])

Note the explicit use of C to disambiguate values from other instructions, and the use
of $ to disambiguate “basic” instructions from administrative instructions.

As another example, consider the paper reduction rule for global.set.
S; F;v (global.set k) — S';F;e where j = (F.inst.iglobs)[k]
S" = S with S’.globs[j] = v

This is a good example of the specification’s punning. Here, the metavariable v is used
both as an instruction (in the redex) and as a value (when setting S’.globs|[j]).

Here is the reduction rule for global.set as it appears in the Isabelle mechanisation.
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definition supdate_glob :: "s = inst = nat = v = s" where
"supdate_glob s i k v =
(let j = (inst.globs i)!k in
s(globs := (globs s)[j:=((globs s)!j)(g_val := v)I))"

- <reduction rule for global.get>
"supdate_glob s (f_inst f) kv =5s' =
(s;f;[$(C v), $(Set_global k)1) — (s’;f;[1)"

The supdate_glob predicate in the premise replicates the side-condition of the original
paper rule. Note that Isabelle’s record update syntax is much more verbose than that of

the paper semantics.

3.2.1.1 The label context

The largest divergence in the mechanised specification compared to the paper specification
comes from Isabelle/HOL’s inability to precisely type the paper specification’s label
evaluation contexts. Recall the definition of these contexts, together with a reduction rule
for br.

(label context)  Lo[e*] == v* e* *
Lyle*] == v* (label, {..} Li[e*]) ”*

S; F; (label,, {e*} Lg[v" (br k)]) — S; F;0" *

An L, context contains precisely k nested labels. The value of k is used in a first-class
manner when deciding whether a (br k) instruction can reduce. However, this constraint
cannot be faithfully encoded in Isabelle/HOL’s datatypes, because the system does not
support dependent types.

Instead, the mechanisation defines a datatype for an arbitrary “context with hole”, and

uses a well-formedness predicate parameterised by k to express the nesting constraint.
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datatype Lholed =
-- <LO case>
LBase "v list" "e list"
-- <L(k+1) case>

| LRec "v list" nat "e list" Lholed "e list"

inductive Lfilled :: "nat = Lholed = e list = e list = bool" where
-- <LO case>
LO:"lhole = (LBase vs es’) —
Lfilled 0 lholed es (($Cx vs) @ es @ es’)"
-- <L(k+1) case>
| LN:"lhole = (LRec vs n es’ 1 es”) A Lfilled k 1 es lfillk =
Lfilled (k+1) lhole es (($Cx vs) @ [Label n es’ 1fillk] @ es”)"

-- <reduction rule for br>
"length vs = n A Lfilled k lholed (($Cx vs) @ [$(Br k)]) LI =
([Label n es LI]) < (($Cx vs) @ es)"

The inductive predicate Lfilled is defined to mirror the L context, representing the
specification’s type-level structure as an explicit predicate. Note that the Isabelle syntax
P = () defines an inductive rule with P as the premise and () as the conclusion. The
Lfilled definition needs two rules, each corresponding to a case of the L, definition.

The length vs = n A Lfilled k lholed (($Cx vs) @ [$(Br k)]) LI precondition
represents Li[v" (br k)] in the paper reduction rule. The lholed parameter has the same
structure as Ly, while the k parameter denotes the structure’s depth (which is a type-level
number in the implicit metatheory of the paper specification). In the paper-rule-based
proofs described in §3.1, some steps involve induction on the definition of L. In the
mechanisation, these same steps are accomplished by induction on the definition of Lfilled
with no additional complication. This is a standard approach in Isabelle/HOL when
reasoning about structures which would otherwise naturally be dependently typed [37].

This reduction rule also highlights other small quirks of the mechanisation. Since
Label is an administrative instruction, it is not lifted by $. List concatenation must be
explicitly represented with the Isabelle concatenation operator @ (we cannot replicate the
paper specification’s use of juxtaposition). The numbered superscript v™ in the paper
rule, restricting the length of the value list, is represented as an explicit side-condition
length vs = n. To lift the list of values vs to a list of instructions, the abbreviation ($Cx

vs) is used, which simply maps (Av. $C v) over the list.
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record limit_t = -- <table type> -- <memory type>

1l_min :: nat type_synonym tab_t = type_synonym mem_t =
l_max :: "nat option" "limit_t" "limit_t"
-- <global type> -- <C context>
record tg = record t_context =
tg_mut :: mut types_t :: "tf list"
tg_t :: t func_t :: "tf list"
global :: "tg list"
table :: "tab_t list"
memory :: "mem_t list"
local :: "t list"
label :: "(t list) list"
return :: "(t list) option"

Figure 3.3: The Isabelle model’s definition of the typing context C.

3.2.2 Type system

The basic instructions are typed using the inductive predicate:
inductive b_e_typing :: t_context = b_e list = tf = bool

abbreviated to

CH b_es : ftf

The definitions here match those given in §2.6 with the following exceptions.
WebAssembly’s paper specification introduces some syntactic conventions which Is-
abelle/HOL has trouble representing. For example, consider the definition of binary

operations:

binop,y =
binopey == ...

(instructions) e == ... | t.binop, | ...

The choice of which binop is allowed in the instruction is dependent on the value of
the type annotation ¢. Isabelle/HOL does not support dependent types, and so we must

unify the definitions under a single type as follows:
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datatype binop_i

datatype binop_f

datatype binop =
Binop_i binop_i

| Binop_f binop_f

-- <basic instructions>

datatype b_e =

| Binop t binop

When reasoning about well-typed WebAssembly programs, we include a well-formedness
condition as part of the “well-typed” predicate, which enforces that an integer type-
annotated binop may only contain integer operators. In concrete WebAssembly imple-
mentations, mismatching binary operators are prevented from occurring at the decoding

stage. As a concrete example, here is the paper typing rule for binop.

C+ t.binop, :tt —t

Here are the associated definitions in the mechanisation.

definition binop_t_agree :: "binop = t = bool" where
"binop_t_agree binop t =
(case binop of
Binop_i _ = is_int_t t

| Binop_f _ = is_float_t t)"

binop_t_agree op t =—
CF [Binop t op] : ([t,t] —> [t])

The metatheory of Isabelle/HOL also treats out-of-bounds list accesses differently,
compared to that of the paper specification. For example, consider the following paper

typing rule.

C.global[i] =t
C I global.get i : e —t
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It is considered a type error if the static parameter of global.get is out-of-bounds of
the list of declared global variables. The premise C.global[i] = ¢ enforces this implicitly;
the typing derivation cannot be completed if the list access C.global[i] is out-of-bounds.

In Isabelle/HOL, list access is a total function of type 'a list = nat = 'a. If the
provided index is out-of-bounds, an unspecified element of type ’a is returned. This is
possible because types in Isabelle/HOL are modelled as non-empty sets; every Isabelle/HOL
type is inhabited.

However, this means that naively translating the typing rule into Isabelle/HOL would
not be correct, because the rule would not bounds-check the static parameter of global.get.

Instead, the bounds check must be explicitly added as a premise.
i < length (global C) A (global C)!i = t =
C I get_global i : ([]1 > [t])

As described in §2.7, the definition of typing must be extended to type the administra-
tive instructions. The metatheory of the official specification is ambiguous as to precisely
how this extension is defined. For the mechanisation, I explicitly introduce a separate

inductive predicate, e_typing:

inductive e_typing :: s = t_context = b_e list = tf = bool

abbreviated to

S; CH es : tf
combined with the following introduction rule (where $x abbreviates map Basic):

CF b_es : tf
S; CH $x b_es : tf

3.2.3 Areas of the specification not mechanised

The WebAssembly formalism also includes a specification (not described within this thesis)
of how the bytecode format is decoded into the WebAssembly module AST (Fig. 2.1).
The mechanisation does not include this decoding step, instead beginning with the already
decoded AST. The decoding step is well-separated from the rest of the specification:
executing WebAssembly code cannot introspect its own representation.

In addition, the behaviours of WebAssembly’s fundamental numeric operations (e.g.
add, div) are not fully mechanised, with most operations (especially those dealing with
[EEE 754 floating-point) left as uninterpreted functions. Since none of the type soundness
proofs depend on these definitions, it would be trivial for them to be replaced with concrete

formalisations of the relevant numeric operations as necessary.
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3.3 Verified executable definitions

Isabelle/HOL allows inductive definitions to be extracted as executable OCaml code, if
it is possible to automatically infer an executable definition [38]. However, the above
definitions of the Wasm type system, and configuration reduction do not work well with
this process, as some definitions are not obviously syntax-directed. For example, the
typing rule for br (Fig. 2.6), due to its arbitrary output type. Instead, I define a separate
type checker and interpreter for WebAssembly, in order to validate my mechanised model.
The type checker is proven equivalent to the inductive typing relation. The interpreter is
proven sound with respect to the definition of reduction.

The WebAssembly Community Group maintains an official reference implementation
of WebAssembly in OCaml. My executable definitions were deliberately designed to
be compatible with this implementation, so that portions of their implementation can
be replaced with the verified extracted definitions. I provide a fork of the reference
implementation which can freely switch between the official implementation, and my

verified implementation [36].

3.3.1 Verified type checker

This section describes a type checker for WebAssembly implemented in Isabelle/HOL
and proven equivalent to the previously described mechanisation of the language’s type
system. It is an explicit design goal of WebAssembly that code can be type checked
in a single linear pass. However, the type system of §2.6 is not trivially executable in
this manner. This is because of the type system’s approach to typing dead code which
follows sequentially after a br, return, br _table, or unreachable instruction. The proof
of correctness of the type checker, once defined, is uncomplicated, but the definition itself
is subject to several complications because of the above.
Consider the typing rule for return.

C.return = t*
C - return : ] t* — 3

The result type t; is picked arbitrarily. However, the type system effectively assumes
that the choice is made angelically [39], since it is still possible for subsequent, syntactically
dead code to cause a type error, depending on the type picked. Consider the type derivation

for the following code fragment, assuming C.return = i64

C.return = i64 *angelically pick result type here
C I (i64.const 5) : € — i64 C  (return) : i64 — 32 {32

C - (i64.const 5) (return) : ¢ — 32 {32 C + f32.add : {32 f32 — {32

C I (i64.const 5) (return) (f32.add) : € — 32
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Imagine writing an algorithm that, given the context C, linearly walks this list of
instructions, determining whether it is well-typed by typing a progressively longer prefix
of the list. When typing the prefix (i64.const 5) (return), the algorithm must choose the
right output type to ensure that the suffix of the list is typeable. In this case it must pick
32 £32. However it does not have the knowledge necessary to do this without looking
ahead in a potentially unbounded way. Consider that if the suffix was (f32.add)(f32.add),
then the output type of the prefix would need to be f32 32 {32, and so on.

Now consider the following code fragment.
(i64.const 5) (return) (f32.add) (i64.add)

This fragment is ill-typed, because the prefix (i64.const 5) (return) (f32.add) must
have a output type with f32 at the head, which conflicts with the input type required by
(i64.add).

A related complication comes from the select instruction. Consider the following

typing derivation.

C.return = i64 *angelically pick result type here
C  (i64.const 5) : € — i64 C'+ (return) : 64 — ¢ ¢ i32
C + (i64.const 5) (return) : € — ¢ ¢ i32 CHselect:tti32 >t
C - (i64.const 5) (return) (select) : ¢ — ¢

Here, the ultimate output type is arbitrary but guaranteed to be non-empty. The
select instruction is the only (unfortunate) example in WebAssembly where the output

type of the instruction is not precisely determined. Consider the following code.

block (e — ¢)
(br 0) select

end

This code is ill-typed, because the body of the block has a non-empty type.

Writing a linear type checking algorithm which types prefixes of the instruction list
purely with WebAssembly types is not possible. Instead, the algorithm must type the
stack using an extended syntax which incorporates polymorphic symbols, essentially a
simple constraint system which defers concretisation of the output type.

The extended types used by the type checker are as follows.
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datatype ct =
TAny
| TSome t

datatype checker_type =
TopType "ct list"
| Type "t list"
| Bot

The type checker checks a list of instructions by iterating over them, keeping track
of the state of the stack at each program point as a checker_type. The regular case is
Type "t list", which denotes a regular list of Wasm types (¢*), with no polymorphism.
The case TopType "ct list" represents a stack type with an unconstrained base, and a
head of potentially polymorphic types. After processing an unconditional control flow
operation such as return, which the Wasm type system gives an arbitrary result type, the
current checker_type is instead set to the polymorphic type TopType [1. This represents
a stack with entirely unconstrained size and contents. Subsequent operations may append
precise types in the form TSome t. As shown above, the select instruction, when applied
to a polymorphic stack, will produce a stack which is known to be non-empty, but the
type of the top element is not precisely determined. This is represented using the TAny
type. Finally, the Bot type represents an ill-typed stack.

The type checker mirrors the form of the typing judgement C' | e* : t" — t™. At
the top level, the function b_e_type_checker is given a typing context C representing the
current scope information, a list of instructions to type (es), and an expected function
type tn _> tm. Starting with the input type tn as the current state of the stack, each
instruction is processed in turn by the recursive function check. Once all instructions
are processed, the result type (which may be a polymorphic type of the extended syntax
above) is checked for compatibility with the desired return type. An essentially identical
strategy (and extended type syntax) is used by the official reference implementation.

Before the code for the type checker is shown, it is necessary to discuss some auxiliary

definitions.
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fun ct_compat :: "ct = ct = bool" where
"ct_eq (TSome t) (TSome t') = (t =1t")"

| "ct_eq TAny _ = True"

| "ct_eq _ TAny = True"

definition ct_list_compat :: "ct list = ct list = bool" where

"ct_list_compat ctls ct2s = list_all2 ct_compat ctls ct2s"

definition ct_suffix :: "ct list = ct list = bool" where

"ct_suffix xs ys = (d as bs. ys = as@bs A ct_list_compat bs xs)"

This defines a way of comparing ct values in terms of the underlying stack types they
represent. The ct_compat predicate returns true if the two types are compatible. That is,
if they are equal, or if one is more general than the other (TAny).

This is generalised to compatibility of ct_list by ct_list_compat, and then to
compatibility of suffixes by ct_suffix, which is true iff its first argument is compatible

with a suffix of its second argument.

fun consume :: "checker_type = ct list = checker_type" where
"consume (Type ts) cons = (if ct_suffix cons (to_ct_list ts)
then Type (take (length ts - length cons) ts)
else Bot)"
"consume (TopType cts) cons = (if ct_suffix cons cts
then TopType (take (length cts - length cons) cts)
else (if ct_suffix cts cons
then TopType []
else Bot))"
| "consume _ _ = Bot"

fun produce :: "checker_type = checker_type = checker_type" where
"produce (TopType ts) (Type ts’') = TopType (ts@(to_ct_list ts’'))"

| "produce (Type ts) (Type ts’') = Type (ts@ts’)"

| "produce (Type ts’) (TopType ts) = TopType ts"

| "produce (TopType ts') (TopType ts) = TopType ts"

| "produce _ _ = Bot"

fun type_update :: "checker_type = ct list = checker_type = checker_type" where
"type_update curr_type cons prods = produce (consume curr_type cons) prods"
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These definitions form the core of the type checking procedure. Most instructions
simply produce and consume values to/from the stack type according to their typing rule.
Thus, typing the instruction amounts to checking the premises of its typing rule, then
calling type_update with the appropriate arguments, which uses consume and produce
to update the stack. The consume function behaves differently depending on whether
the current stack type is a precise Type, or a TopType (representing the unconstrained
base caused by typing dead code). A precise Type must provide all the types being
consumed. However, a TopType only needs to provide a suffix of the types being consumed;
its unconstrained base indicates that dead code can be validated as though the type
stack base contains the required concrete types, mirroring the angelic choice previously
described. If the required types cannot be consumed, Bot is returned. Otherwise, the
updated stack type is returned.

The produce function appends types to the head of the stack type. However, it
must also handle the case of an instruction such as unreachable producing a TopType
(representing its arbitrary output type), in which case the current stack type is entirely

replaced. We can now consider the top-level type checking functions.

fun b_e_type_checker :: "t_context = b_e list = tf = bool"
and check :: "t_context => b_e list = checker_type = checker_type"
and check_single :: "t_context = b_e = checker_type = checker_type" where

"b_e_type_checker C es (tn _> tm) = c_types_agree (check C es (Type tn)) tm"
| "check C es ts =
(case es of
[1 => ts
| (e#es) => (case ts of
Bot => Bot

| - => check C es (check_single C e ts)))"

- <num ops>
| "check_single C_ (C v) ts = type_update ts [] (Type [typeof v])"
| "check_single C (Unop t op) ts =
(if unop_t_agree op t
then type_update ts [TSome t] (Type [t])
else Bot)"
- <block>
| "check_single C (Block (tn _> tm) es) ts =
(if (b_e_type_checker (C(label := ([tm] @ (label C)))) es (tn _> tm))
then type_update ts (to_ct_list tn) (Type tm)
else Bot)"

- <other cases ...>
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The check_single function contains the main logic for typing individual instructions.
Given a typing context, an instruction to be typed, and a current stack type (in the
extended syntax), the function returns the output stack type. If the instruction would
make the stack ill-typed, the stack type Bot is returned. This can happen either because
a pre-condition of the typing rule is violated, or because the input stack type is of the
wrong shape. The type_update function handles this latter case. Given a stack type, and
a number of types to consume and produce, it will either return the updated stack, or
Bot if the provided stack does not have the right types to consume. If the provided stack
type is a TopType, consuming values from the unconstrained base will always succeed.

The check function contains the iterative logic. It acts on a list of instructions. If the
current stack type is Bot, type checking returns immediately with that result. Otherwise,
it processes each instruction in turn with check_single until a final result is reached.

The b_e_type_checker function contains the top level type checking procedure. Given
a typing context, a list of instructions, and a type annotation to be checked, the check
function is called, using the input type of the type annotation as the initial stack type. Once
this call has produced an output stack type in the extended syntax, the c_types_agree
function checks to see whether this stack type is compatible with the output type of
the provided type annotation (tm). When the check_single function is typing a nested
instruction such as block, it will recursively call b_e_type_checker in order to check the
instruction’s body.

Here are some examples of how the type checker operates:

Type []
(i32.const 1) Type [T_i32]
(i32.const 2) Type [T_i32, T_i32]
(i32.add) Type [T_i32]

In this example, the code fragment has been successfully typed with ¢ — i32.

Type []
return TopType [] (if return C = [])
(i32.const 2) TopType [T_i32]
(i32.add) TopType [T_1i32]

In this example, the result type has a polymorphic base, and is guaranteed to have i32
at its head. The code fragment has been typed € — t* i32, where t* can be arbitrarily
picked.

As hinted earlier, the select case must be handled specially. Unfortunately, it cannot

be expressed in terms of type_update. Here is how the select case of check_single must
be defined.
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fun select_return_top :: "[ct list] => ct => ct => checker_type" where
"select_return_top ts ctl TAny = TopType ((take (length ts - 3) ts) @ [ctl])"
| "select_return_top ts TAny ct2 = TopType ((take (length ts - 3) ts) @ [ct2])"
| "select_return_top ts (TSome tl1l) (TSome t2) =
(if (tl = t2)
then (TopType ((take (length ts - 3) ts) @ [TSome t1]))
else Bot)"

fun type_update_select :: "checker_type => checker_type" where
"type_update_select (Type ts) =
(if (length ts >= 3 A (ts!(length ts-2)) = (ts!(length ts-3)))
then consume (Type ts) [TAny, TSome T_i32]
else Bot)"
| "type_update_select (TopType ts) =
(case length ts of
0 => TopType [TAny]
| Suc @ => type_update (TopType ts) [TSome T_i32] (TopType [TAnyl)
| Suc (Suc 0) => consume (TopType ts) [TSome T_i32]
| - => type_update (TopType ts) [TAny, TAny, TSome T_i32]
(select_return_top ts (ts!(length ts-2)) (ts!(length ts-3))))"

| "type_update_select _ = Bot"
- <... cases of check_single>
- <select>

| "check_single C (Select) ts = type_update_select ts"

At a high level, the typing of select proceeds by peeking backwards in the type stack.
Recall that the typing rule for select is:

Crselect:tti32 >t

In the case that the current stack type is Type ts, the algorithm must ensure that the
suffix of ts contains two types which are the same, and a T_i32, and that the output
type matches the input types. In addition, if the current stack type is a TopType, we must
carefully ensure that the resulting type is correct if unconstrained types are consumed. It
is convenient to split this case into subcases, depending on the length of the head of the

TopType, in order to simplify the proof of correctness.

e If the stack type is of the form TopType [], then the result is TopType [TAny].

e If the stack type is of the form TopType [ct], then if ct is compatible with T_i32,
then the result is TopType [TAny], otherwise the result is Bot.

e If the stack type is of the form TopType [ctl, ct2], then if ct2 is compatible with
T_i32, then the result is TopType [ctl], otherwise the result is Bot.
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e The final case is defined in a helper function select_return_top, and is the most
complicated. If the stack type is of the form TopType cts@[ctl, ct2, ct3], then
if ctl and ct2 are compatible with each other, and if ct3 is compatible with T_i32,
then the result is TopType cts@[ct], where ct is the most precise type out of ctl
and ct2 (i.e, if ctl is TAny. then ct = ct2). Otherwise, the result is Bot.

Having carefully set up all the definitions, the proof of correctness of the type checker
is straightforwardly accomplished by exhaustively case-splitting everything, with a simple
induction to handle recursive cases like block. The following equivalence is proven in

Isabelle/HOL.

Lemma 3.13 (Type Checker Correctness)

"(C - es : tf) = (b_e_type_checker C es tf)"

It is notable that the vast majority of engineering and proof effort in defining and
verifying this type checker comes from cases which arise purely when typing dead code.
The choice to allow dead code in WebAssembly was made to support naive streaming
producers which may not wish to track properties such as syntactic deadness. If dead code
was not validated, then the type checker would be far simpler, as the entire constraint
system approach could be discarded, and the intermediate stack types could be faithfully
stated using WebAssembly’s core type syntax. The implementation strategy needed
to validate dead code as currently required by the spec has been highlighted by some
tool maintainers as a source of bugs [40]. I have presented a potential relaxing of the

WebAssembly type system to the Community Group based on the following typing rules:

Clabel[i] = t* (Clabel[i] = t*)* C'.return = t*
Crbri:titr— L C + br_table it : ¢} t*i32 — L CFreturn:tf t* — L

C I unreachable : t* — | Cre*:l —t*

The addition of an explicit | stack type would effectively mean that validation of
dead code is skipped, removing the need for the more complicated type stack when type
checking. This proposal has currently reached standardisation phase 2 of 4 [41], and

further discussions are ongoing.

3.3.1.1 Module validation

The executable type checker defined above is used as the basis for an executable module
validator, implementing the judgement defined in §2.8.1. As mentioned, the original
judgement defines a circular definition of C', and the executable definition breaks the
circularity by collecting all the function type annotations as a separate pre-pass. We prove

(simply) that this executable definition is equivalent to the judgement of §2.8.1.
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3.3.2 Verified interpreter

I also define an executable interpreter, which is proven sound with respect to the mechanised
definition of reduction. Here, the main complication is the Wasm specification’s definition

of control flow operations such as br. Consider these reduction rules involving label.

(label context)  Lg[e*] == v* e* *
Li1le*] == v* (label, {..} Li[e*]) ”*

S; F; 6* [N S/;F/; e/*
S; F; Li|e*] < S'; F'; LF[e'*]

S; F; (label,, {e*} v*) — S; F;v*

These rules naturally lend themselves to a straightforward, recursive definition of
execution. When a label construct is executed one step, this is defined in terms of
executing its body (which may itself contain a label) one step, unless its body has already
reduced to a list of values, in which case the values are propagated out of the label.

However, consider the rule for the reduction of br.
S; F; (label,, {e*} Li[v" (br k)]) — S; F;0" *

This breaks the regular recursive structure. By blindly recursing into the body, the
outer label which determines where the inner br will jump to is discarded. In order to
allow a regular recursive definition of execution, it is necessary to introduce intermediate
computation results which represent a br instruction in the process of breaking out of its
enclosing labels.

Reduction in the mechanisation is defined as
inductive reduce::s=f =e list=s=f = e list = bool

Recall that the e 1ist components represent both the current value stack, and the
instructions to be executed. In the interpreter, a single runtime state is represented as
follows:

type_synonym config_tuple = "s x f x v list x e list"

In this definition, the value stack is explicitly kept separate to reduce unnecessary list
processing during execution. A single step of execution in the interpreter is defined as

returning a res_tuple.

type_synonym res_tuple = "s x f X res_step"
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datatype res_step =
RSCrash

| RSBreak nat "v list"

| RSReturn "v list"

| RSNormal "v list" "e list"

The result of a single step of execution may correspond either to a regular reduction
step (denoted by RNormal, the value stack is again kept separate), or alternatively the
result may indicate that this execution step contains a br or return instruction which is
targetting an outer context (RSBreak and RSReturn respectively), or finally, the result may
indicate an unexpected error through RSCrash (which should never occur in a well-typed

program).

abbreviation vs_to_es :: " v list = e list" where
"vs_to_es v = $Cx (rev v)"

function (sequential)
run_step :: "depth = config_tuple = res_tuple" where
"run_step d (s,f,(ves, es)) =
(case es of
[1 = (s,f, crash_error)
| e#tes’ = if e_is_trap e then

if (es’ =[] v ves !=[]) then
(s, f, RSNormal [] [Trapl)
else
(s, f, crash_error)
else
case e of

-- <unops>
$(Unop t op) =
(case ves of
v#ves’' = (s, f, RSNormal ((app_unop op v)#ves') es')
| - = (s, f, crash_error))
-- <more cases...>

Figure 3.4: Top-level definition for a single step of the interpreter
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The run_step function of Fig. 3.4 performs a single step of execution. The depth
parameter places a limit on the number of nested function calls that are permitted, as
the official Wasm test suite includes a test that requires concrete implementations to
terminate with an error if the call depth goes over an implementation-defined limit. Recall
that in the formal definition of reduction, the value stack is left implicit as the list of
leading v instructions. In the interpreter, the value stack is explicitly split off as ves so
that it can be handled more efficiently. The following relationship holds (we will discuss
its proof later). Note that the value stack is reversed, compared to its treatment in the

relational reduction rules; vs_to_es ves is defined as $Cx (rev ves).

run_step d (s,f,(ves,es)) = (s’,f’,RSNormal ves’ es’') —

(s;f;(vs_to_es ves)@es) — (s’';f’;(vs_to_es ves’)@es’)

Considering the cases of run_step, there should always be at least one non-value
instruction in the reduct (otherwise no reduction should be performed), so if the list of
remaining non-value instructions es is empty, the result is a crash error. If the instruction
to be executed is a trap, the value stack and all subsequent instructions are discarded; the
overall result of the reduction is a bare trap. To maintain equivalence with the reduction
rules, an already bare trap with no value stack or instructions to discard crashes rather
than reducing to itself. If there is at least one non-trap instruction to execute, then
a case split occurs to identify the instruction and carry out the relevant reduction. In
most cases, this corresponds precisely to the behaviour of the relational reduction rule.
For example, the listing above depicts the execution of the unop instruction. the result
(s, f, RSNormal ((app_unop op Vv)#ves’) es’) depicts the value stack updated with
the result of the unop, with es’ representing the remaining instructions to be executed.

The interpreter must be more complicated in cases involving the results RSBreak or
RSReturn, which indicate that the current invocation of run_step is part of a recursion,
and the result must be dealt with by an outer call. Here are some relevant cases of

run_step illustrating this.
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- <br>
| $Br j =
(s, f, RSBreak j ves)
- <.,..>
- <label>
| Label 1n les es =
if es_is_trap es
then
(s, f, res_trap ves es’)
else
(case (split_vals_e es) of
(lsves, []1) = (s, f, RSNormal ((rev lsves)@ves) es’)
| (lsves, lses) =
let (s’', f', res) = run_step d (s, f, (rev lsves, lses)) in
(case res of
RSBreak 0 bvs =
if (length bvs >= 1n)
then (s’, f’, RSNormal ((take ln bvs)@ves) (les@es’))
else (s’, f', crash_error)
| RSBreak (Suc n) bvs =
(s’, ', RSBreak n bvs)
| RSReturn rvs =
(s'", f', RSReturn rvs)
| RSNormal 1lsves’ lses’ =
(s, ',
RSNormal ves ((Label 1n les ((vs_to_es lsves’)@lses’))#es'))

| RSCrash ¢ = (s’, f’, RSCrash c)))

The br case simply returns an RSBreak result which records the size of the break, and
the current stack values. An RSBreak j ves result represents a br instruction that is
breaking out of the j-th enclosing label. The ves component will be needed to satisfy the
arity of that label (see below).

The label case must handle multiple reduction rules. If the body of the label is a trap
or pure list of values, the label is discarded and the body is returned. In the case that
the body of the label must be executed a step, a recursive call to run_step is performed.
If the result of that call is a regular RSNormal, the result of the label reduction is simply
the same label with the reduced body. However, if the result is an RSBreak, it must be
handled specially. A RSBreak (Suc n) bvs result indicates that an outer label is being
targetted. Therefore the result of the current call is RSBreak n bvs, reflecting the fact
that one more label has been passed through. If the result is RSBreak @ bvs, then this
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result came from an inner br that targetted the current label. If the length of bvs is large
enough to satisfy the arity of the label (guaranteed for well-typed programs), then that
sublist of bvs is appended to head of the value stack, and the label is discarded, replaced
by its continuation component les.

The case for frame handles the RSReturn result in the same way that the label case
must handle an RSBreak 0 result.

3.3.2.1 Proving the interpreter sound

Cases such as unop where the interpreter simply performs the appropriate calculation
and returns an RSNormal can be trivially discharged, since they correspond precisely to
the relevant reduction rule. However, some auxilliary lemmas must be proven in order to
relate RSBreak result to reduction of the enclosing label.

As a first step, it is necessary to define a modified version of the Lfilled context in

order to state some auxilliary results.

inductive Lfilled_exact :: "nat = Lholed =’ e list = e list = bool" where
- <LO case>
LO:"lhole = (LBase [] []) =
Lfilled_exact 0 lholed es es"
- <L(k+1) case>
| LN:"lhole = (LRec vs n es’ 1 es”) A Lfilled_exact k 1 es lfillk =—
Lfilled_exact (k+1) lhole es (($Cx vs) @ [Label n es’ 1fillk] @ es”)"

This is an Isabelle definition of an inductive predicate Lfilled_exact, with an inductive
case identical to that of Lfilled, but a different base case, which exposes the entire
contents of the innermost label. Contrast this with the definition of Lfilled previously
shown (§3.2.1.1) where the hole may occur as part of a larger sequence of instructions

within the innermost label.

Lemma 3.14 (run_step_return_imp_1filled)
Assuming (1) “run_step d (s,f,ves,es) = (s’, f’, RSReturn res)"

’

we have "s = s
f=Ff A
(3 n 1filled es_c.
Lfilled_exact
n
1filled

((vs_to_es res) @ [$Return] @ es_c)

A

((vs_to_es ves)@es))"

Proof. By induction on the definition of run_step.
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This lemma shows that, if an invocation of run_step results in RSReturn res, then
the executed code es must be made up of nested label constructs such that the body
of the innermost label is precisely ((vs_to_es res) @ [$Return] @ es_c), for some
existentially quantified es_c. Note that this lemma is stronger than a hypothetical
version of the same lemma with Lfilled in the conclusion, which could only state that
((vs_to_es res) @ [$Return] @ es_c) is part of the innermost label body.

A slightly more complicated version of this lemma exists for RSBreak.

Lemma 3.15 (run_step_break_imp_1filled)
Assuming (1) "run_step d (s,f,ves,es) = (s’, f’, RSBreak n res)"

we have "s =5’ A
f=f A
(3 n' 1filled es_c.
n" < nAa

Lfilled_exact
(n’
1filled

((vs_to_es res) @ [$br n'] @ es_c)

-n)

((vs_to_es ves)@es))"

Proof. By induction on the definition of run_step.

If an invocation of run_step results in RSBreak n res, then the executed code es must
be made up of (n” - n) nested label constructs such that the body of the innermost label
is precisely ((vs_to_es res) @ [$break n’] @ es_c), for some existentially quantified
n’ and es_c. This lemma is analogous to the previous one for RSReturn, while additionally
relating the depth of the current context of nested labels to the index of the br instruction

which must have caused the RSBreak result.

Lemma 3.16 (run_step_sound)

Assuming (1) "run_step d (s,f,(ves,es)) = (s’,f’,RSNormal ves’ es’)"
we have (s;f;(vs_to_es ves)@es) — (s’;f’;(vs_to_es ves’)@es’)
As discussed above, the vast majority of cases can be discharged trivially. Cases where
the result of a recursive run_step call is not RSNormal are proven by applying the lemmas

detailed above, which show that the program fragment being executed must be embedded

within a larger context for which reduction according to the relational rules is possible.
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3.4 Experimental validation and testing

The official reference implementation of WebAssembly, written in OCaml, comes with an
extensive test suite, written in a bespoke scripting language that is an extension of the
WebAssembly text format. This section describes the work necessary to take the previously
described verified type checker and interpreter, and build an end-to-end WebAssembly
implementation capable of running these tests. Using Isabelle’s extraction feature [42], we
obtain OCaml versions of the Isabelle definitions of the type checker and interpreter. The
official reference implementation is then used to fill in missing corners as detailed below,

to allow end-to-end execution.

3.4.1 Numerics

As mentioned earlier, the WebAssembly mechanisation does not attempt to specify the
semantic details of WebAssembly’s numeric operations (e.g. add, div), since none of the
previously described correctness proofs depend on them. Instead numeric operations are
specified as uninterpreted functions, which can be replaced with concrete implementations
when extraction to OCaml is performed. It would be trivial to swap in any alternative
Isabelle-level definition of numerics, but this is left for future work. Instead, extraction is

configured to use the official OCaml reference interpreter’s numeric definitions.

3.4.2 Decoding

We do not specify the decoding of WebAssembly programs in Isabelle — all definitions
manipulate an already-decoded AST. Beyond this, to run the official test suite, it would
not be enough to reproduce the WebAssembly specification’s syntax rules in Isabelle,
we would also need to implement the testing-specific extensions used by the reference

implementation. Instead, we use the existing reference implementation’s decoder.

3.4.3 Testing

Once all of this has been done, we are able to run the official WebAssembly test suite, exer-
cising the extracted verified definitions. Running these tests initially revealed a handful of
typo-level bugs in the “shim code” which connected the Isabelle definitions to the decoding
code of the OCaml reference implementation. Once these had been corrected, a number
of tests which involved heavy manipulation of the WebAssembly heap were found to ter-
minate with an OCaml stack overflow. On closer inspection, this was due to some Isabelle
list-manipulation functions being defined in a way that was not tail-recursive. For example,

the Isabelle function for producing a list containing n copies of a given element is as follows:
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primrec replicate :: "nat = 'a = 'a list" where
replicate_0: "replicate 0 x = []1" |

replicate_Suc: "replicate (Suc n) x = x # replicate n x"

To create a new section of zero-initialised WebAssembly memory (represented as a
byte list), the Isabelle mechanisation calls replicate (nx(2°16)) (0::byte), where n
is the desired number of pages. Since each element of the list requires a further-nested
call to replicate, the extracted code quickly overflows the OCaml call stack.

This problem can be solved by telling Isabelle to use an alternative implementation
of replicate when extracting to OCaml. Unlike the previously described unverified
substitution of numerics for their OCaml implementations, this can be done in a fully
verified way, by defining the alternative tail-recursive function replicate_tr in Isabelle,
proving it equivalent to replicate, and commanding Isabelle to replace instances of

replicate with replicate_tr during extraction.

primrec replicate_tr :: "nat = 'a = ‘a list = 'a list" where
"replicate_tr 0 x acc = acc" |

"replicate_tr (Suc n) x acc = replicate_tr n x (x#acc)"

Once this final issue had been solved, the extracted Isabelle code (combined with
the OCaml reference implementation’s decoder and numeric definitions) passes all tests.
Although memory manipulation tests no longer overflow the stack, our list-based rep-
resentation of memory is still very inefficient: each memory access essentially traverses
the entire list in linear time, and takes a copy of the list if some part of the memory
must be mutated. Some tests which run instantaneously on the reference implementation
take several minutes to run when switching to the Isabelle-extracted definitions. A more
efficient monadic implementation of memory [43] would avoid these issues, which we leave

for future work.

3.5 Related work

I have mechanised a simple program logic, including a proof of soundness, on top of the
WebAssembly mechanisation described in this chapter. The program logic was designed
in collaboration with Petar Maksimovié¢, Neel Krishnaswami, and Philippa Gardner, and
more details can be found in A Program Logic for First-Order Encapsulated WebAssembly
(ECOOP 2019) [15].

The direct mechanisation of a full programming language semantics within a theorem

prover is almost never attempted, due to the effort involved, not only in mechanising
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the definitions, but in building any meaningful proof on top. Because WebAssembly was
deliberately designed to be small, simple, and amenable to formalisation, mechanising
the full semantics (with the above caveats about numerics and decoding) is more easily
achievable.

It is usual for works handling a more complicated language to identify and mechanise
a large interesting language core. Often, compromises are made in a mechanised semantics
where some corner of the original language semantics is ambiguously defined, or complicated
enough (and irrelevant to how the model will be used) that it is not worth the effort to
reproduce faithfully.

JSCert [44] mechanises a semantics, and verifies an interpreter, for a large subset
of JavaScript in Coq, handling all core constructs but leaving out so-called “library
objects” such as Array and Number which define collections of standard library functions
for their respective types. Another JavaScript semantics, A g [45], is defined by translating
JavaScript to a core calculus for which a formal semantics is specified in Coq, a process
called elaboration.

Norrish [46] presents a mechanisation of a fragment of C in HOL. Jinja [47] is a “Java-
like” mechanised semantics in Isabelle described as a “compromise between the realism
of the language and the tractability and clarity of its formal semantics”. Lee et al. [48|
present a mechanisation in Twelf [49] of an “internal language” with “equivalent expressive
power” to Standard ML, and define the semantics of Standard ML via elaboration.
CakeML [50, 51] is a verified compiler for the CakeML language, which is based on a large
fragment of Standard ML (minus functors), and is given a mechanised formal semantics
written in HOL4. OCaml Light [52] is a mechanised semantics in HOL4 of a core subset
of OCaml. The type systems of these languages are significantly more complicated than
that of WebAssembly, and each of these works provide a proof of type safety for their
respective models.

CompCert [53, 54|, a compiler written in Coq, pre-processes a provided C source
program into a core “CompCert C” language. The semantics of CompCert C itself is
mechanised, as are subsequent compilation steps and associated correctness proofs, but
the elaboration from C to CompCert C is unverified. Importantly, CompCert makes some
narrowing assumptions about undefined behaviour in C and does not attempt to capture
all outcomes allowed by the specification. This is acceptable for verifying compilation
correctness, but means the model cannot be used for some other purposes.

Cerberus [55] is a model of (a fragment of) C defined purely by elaboration into a core
calculus, an implementation of which is written in the Lem specification language [56]. It
has been used for investigating corners of the language which are specified so ambiguously
that any precise semantics would be a step forward, and for bounded model checking of

small concurrent programs [57|.
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A way of making mechanisation and verification more tractable is to use a lightweight
tool which does not have the full capabilities of a theorem prover. Such models often
straddle the line between mechanisation and reference implementation since they cannot
easily be used for general purpose proof.

The K framework [58], in which all semantics must be expressed as a term rewriting
system, has been used to create a number of “lightweight models” for (fragments of)
languages such as C [59], Java [60], JavaScript |61], and PHP [62]. An executable
interpreter and limited program verification tools [63] can be automatically generated
from a defined model. However, proofs over the language semantics itself (such as type
soundness) are not directly expressible.

Santos et al. [64] present a symbolic evaluation tool for JavaScript programs, where
the semantics of JavaScript is defined in terms of an elaboration to a simpler intermediate
language (“JSIL”). The tool is later generalised to support a more generic framework for
multiple languages [65]. Again, this approach is geared towards program verification and

does not aim to support proofs of arbitrary language-level properties.

3.6 Evaluation and future work

The fact that the mechanisation of the draft paper semantics could be performed almost
frictionlessly speaks to the precision of WebAssembly’s official formalisation. Areas where
the mechanisation and paper semantics needed to diverge arose exclusively from small
mismatches between the metatheory of Isabelle/HOL and the implicit metatheory of the
paper specification. Often, mechanisations of an existing language specification explicitly
or implicitly strive for “eyeball closeness” [44], where lines of mechanisation can be closely
related to lines of text in the original specification. This serves to build confidence that
the mechanisation is really equivalent to the original informal specification. Because
the WebAssembly specification is already fully formalised, it is easy to see where the
mechanised definitions correspond to definitions in the paper semantics. However, the
order of definitions in the mechanisation diverge in some ways from their equivalents in
the paper semantics. Some of this divergence could in principle be rectified: the bulk
of the mechanisation was performed while the paper semantics was still going through
heavy reformatting in preparation for an official release through the W3C, and the paper
specification underwent several purely editorial reorderings of sections which have not
yet been fully replicated in the mechanisation. Other divergences are unavoidable due to
metatheoretical differences. For example, definitions in Isabelle/HOL must be defined
before they are used, and mutually recursive definitions must be explicitly defined in a
single compound declaration. However in the paper specification such definitions may
be split up and referenced out-of-order. An example would be the mutually recursive

definitions of administrative instruction validity and local validity (§2.7).
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Because the mechanisation was carried out while the specification was still in draft
form, several errors were discovered and fixed before the first official release of the
W3C specification (§3.1.4). Seeing this success, some members of the WebAssembly
Working Group have expressed an interest in having future extensions to the language
mechanised as they are developed. This is more feasible for WebAssembly than with
many other languages, as Web language standardisation moves at a notoriously slow pace.
Moreover, since the final stage of feature standardisation already involves writing a paper
formalisation, mechanisation can both directly inform and be informed by this process.
Keeping the mechanisation up to date would still be a significant commitment of time
and effort, especially if associated proofs and artefacts such as the type soundness proof
and verified interpreter are also to be kept updated. The mechanisation of individual
post-MVP proposals would be an interesting source of small projects, and it would be
worthwhile to investigate whether the mechanisation could keep pace with the evolving

standard through a system of open-source contributions.
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Chapter 4

CT-Wasm

CT-Wasm is a proposed type system extension to WebAssembly, designed to support
the dissemination of cryptographic code that verifiably follows information flow and
constant-time best practices.

CT-Wasm was originally developed and informally described by John Renner, Sunjay
Cauligi, and Deian Stefan [66]. I later formalised the proposal as an extension of the
existing WebAssembly semantics, mechanised the CT-Wasm extension on top of my
existing mechanisation (Chapter 3), and proved a number of key security properties. The
text and figures of this section are drawn partially from our previously published paper

describing these contributions [10].

4.1 Background

4.1.1 Side channels and constant time

When implementing a cryptographic algorithm, functional correctness alone is not sufficient.
It is also important to ensure properties about information flow that take into account
the existence of side channels—ways in which information can be leaked as side-effects
of the computation process. For example, the duration of the computation itself can
be a side channel, since an attacker could compare different executions to infer which
program paths were exercised, and work backwards to determine information about secret
keys and messages. Naive implementations of cryptographic algorithms often leak the
very information they are designed to protect via timing side channels. Kocher [67], for
example, shows how a textbook implementation of RSA can be abused by an attacker
to leak secret key bits. Similar key-recovery attacks were later demonstrated on real
implementations (e.g., RSA [68] and AES [69, 70]). As a result, crypto-engineering best
practices have shifted to mitigate such timing vulnerabilities. Many modern cryptographic
algorithms are even designed with such concerns from the start [71, 72, 73].

The prevailing approach for protecting crypto implementations against timing attacks
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is to attempt to ensure that the code runs in “constant time”. An implementation is said
to be constant-time if its execution time is not dependent on sensitive data, referred to as
secret values (e.g., secret keys or messages). Constant-time implementations ensure that
an attacker observing their execution behaviours cannot deduce any secret values. Though
the precise capabilities of attackers vary—e.g., an attacker co-located with a victim has
more capabilities than a remote attacker—most secure crypto implementations follow a
conservative constant-time programming paradigm that altogether avoids variable-time
operations, control flow, and memory access patterns that depend on secrets |74, 75].

Verifying the constant-time property (or detecting its absence) for a given imple-
mentation is considered one of the most important verification problems in cryptogra-
phy (76, 77, 78, 79, 80, 81, 82, 83]. To facilitate formal reasoning, verification of the
constant-time property is typically abstracted to verifying invariance of attacker knowledge
under a chosen leakage model [84], defined over a small-step semantics for a given language.
This is the approach we will be using to verify properties about CT-Wasm. A leakage
model associates either a program state, or a program reduction step, with an observation,
an abstract representation of an attacker’s knowledge. For each construct of the language,
the leakage model encodes what information is revealed (to an attacker) by its execution.
For example, the leakage model for branching operations such as if or while leaks all
values associated with the branch condition, to represent that an attacker may use timing
knowledge to reason about which branch was taken [76|. Proving that a given program
enjoys the constant-time property can then be abstracted as a proof that the leakage
accumulated over the course of the program’s execution is invariant with respect to the
values of secret inputs. In general, the leakage model of a system must encompass the
behaviour of hardware and compiler optimizations across all different platforms. For ex-
ample, for C, operators such as division and modulus, on some architectures, are compiled
to instruction sequences that have value-dependent timing. A conservative leakage model
must accordingly encode these operators as leaking the values of their operands [76].

There is an unavoidable disconnect between the abstraction of a leakage model and
the concrete actions of real-world compilers and architectures. Even the stringent leakage
models described above are unlikely to capture all concrete timing side channels. For
example, most leakage models do not take into account the timing effects of speculative
execution (e.g. Spectre [85]). Still, code formally proven to satisfy a leakage-model
based constant-time property is significantly more secure than unverified code, and
implementations designed with such models in mind have proven useful in practice. For
example, the HACL* library [80] has been adopted by Firefox [86], while Fiat [83] has
been adopted by Chrome.
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4.1.2 Crypto on the Web

Writing code that does not leak information via side channels is daunting even with
complete control over the execution environment, but in recent years an even more chal-
lenging environment has emerged—that of in-browser cryptography—the implementation
of cryptographic algorithms in a user’s browser using JavaScript. As discussed, for decades
JavaScript was the only programming language natively supported on the Web. This
has created many scenarios where JavaScript was the only frictionless option for a Web
developer looking to implement some behaviour or feature directly in a Web page, and
in many cases it is also the convenient choice for any accompanying server-side develop-
ment. Modern JavaScript runtimes are extremely complex software systems, incorporating
caching, multi-tiered just-in-time (JIT) compilation, speculative optimisation, and garbage
collection (GC) techniques that almost inherently expose timing side-channels [87, 88, 89].
Even worse, much of the JavaScript cryptography used in the wild is implemented by
“unskilled cryptographers” [90] who do not account for even the most basic timing side
channels.

Existing research on cryptography verification is difficult to apply to JavaScript.
Defining a leakage model for JavaScript is extremely difficult, due to the complexity of the
language. Even if we restrict ourselves to semantically more simple subsets of JavaScript
(e.g., asm.js [4] or defensive JavaScript [91]), the leakage model is still dependent on the
behaviour of the complex JavaScript runtime.

Despite these theoretical shortcomings, JavaScript crypto libraries remain overwhelm-
ingly popular [92, 93, 94, 95, 96, 97|. JavaScript APIs for native crypto libraries have
been standardised with the specific goal of reducing the prevalence of bespoke JavaScript
cryptography [98|, but unfortunately have suffered from significant divergence between
platforms. For example the Web Crypto [98] and the Node.js crypto [99] APIs (available
to browser and server-side JavaScript respectively) barely overlap, undercutting a major
motivation for using JavaScript in the first place—its cross-platform nature. Moreover,
these libraries did not keep up with new trends, with slow support for primitives such
as Poly1305 [72] which are widely used in modern crypto applications [3|. Due to these
issues, even “secure” applications such as Signal [92] and Cryptocat [93| routinely default

to JavaScript cryptography.

4.1.3 WebAssembly

WebAssembly is designed to be compiled directly to machine code without the need
for speculative JIT-style optimisations. This alone provides a firmer foundation for
cryptography than JavaScript: WebAssembly’s close-to-the-metal instructions give us
more confidence in its timing characteristics than is possible when dealing with JavaScript’s

unpredictable optimisations. Just as importantly, WebAssembly is designed to appeal to
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the same Web ecosystem-adjacent communities that currently use JavaScript. An explicit
goal was to make migration from JavaScript to WebAssembly as seamless as possible,
through tooling and engine support.

With CT-Wasm, we show how WebAssembly can be extended with with crypto-
graphically meaningful types, which provide verifiable security guarantees. CT-Wasm’s
type system draws from previous assembly language type systems that enforce constant-
time [100]. Our system, however, is explicitly designed and validated for the in-browser
crypto use case. We ensure that our type system extensions maintain WebAssembly’s
extremely fast type checking, so that our properties can be checked as part of the single
linear type checking pass. In a similar way to Safe Haskell [101], we extend WebAssembly’s
module system to further allow developers to specify if a particular import is trusted or
untrusted. In combination with our other type system extensions, this allows developers
to safely delineate the boundary between their own code and third-party, untrusted code.
We also show that popular algorithms such as Poly1305, among many other cryptographic

algorithms, can be securely implemented and typed in CT-Wasm.

4.2 CT-Wasm overview

Constant-Time WebAssembly pursues four main design goals. First, CT-Wasm must
identify and reject programs which exhibit information flow or constant-time violations.
This is the most fundamental aim of the extension: certain data will be designated by the
programmer as sensitive, and CT-Wasm must enforce that this data is not used in a way
which compromises our leakage model.

Second, CT-Wasm should be expressive enough to implement real-world crypto algo-
rithms. This requirement is self-explanatory; there is no point in defining a system which
is too restrictive to be used by real programs.

Third, since WebAssembly and most crypto algorithms are designed with performance
in mind, CT-Wasm must not incur significant overhead, either from validation or execution.
Overall page load time is considered one of—if not the—key Web site performance
metrics [102, 103], so requiring the Web client to conduct expensive analyses of loaded
code before execution would be infeasible.

Fourth, CT-Wasm should maintain backwards compatibility (and, as far as possible,
interoperability) with legacy WebAssembly code. This property is necessary to allow
CT-Wasm to be proposed for adoption by the language standard.

CT-Wasm’s restrictions are implemented through extensions to WebAssembly’s type
system. We create a type-level distinction between secret and public data. We augment
WebAssembly’s four base types with explicit types for secret integers s32 and s64.
Floating-point types are always considered public, since the vast majority of floating-point

operations are variable-time and therefore vulnerable to timing attacks [104, 105, 106].
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We also extend type checking to ensure that such secret data cannot be leaked either
directly (e.g., by writing secret values to public memory) or indirectly (e.g., via control
flow and memory access patterns), by imposing secure information flow and constant-time
disciplines on code that handles secrets (see §4.3). Finally, we make a distinction between
untrusted code, which must obey these information flow restrictions, and trusted code
which may break them by explicitly “declassifying” secret data to public. Consider, for
example, a function which takes a secret message and encrypts it, returning the encrypted
data. In this example, this function is untrusted, and can only (transitively) call other
untrusted functions. Our type system forces the encrypted data to be typed as secret due
to an information flow dependency on the value of the original message. At the top level,
however, the program must make the deliberate decision to declassify the encrypted data
in order to send it, relying on the mathematical /computational security of the encryption
algorithm rather than an information flow property. This code will be marked as trusted,
to explicitly record a place where the properties of CT-Wasm can be broken. It is up to
the programmer to ensure that such code correctly manipulates the results of untrusted
functions in a way that keeps secret data secure.

CT-Wasm’s restrictions are enforced statically in a single pass, as an extension to
WebAssembly’s regular validation procedure. This means that the restrictions on the flow
of secret data must be very coarse-grained. Our type system is more restrictive than more
traditional low-level information flow control type systems (e.g., JIF’s [107, 108, 100, 76|
or that of FlowCaml [109]). We are still able to successfully implement a wide selection of
cryptographic algorithms under these restrictions, however. As it turns out, cryptography
developers already impose these restrictions upon their code as “best practice” |74, 75|: our
type checker effectively ensures that untrusted code respects these (previously) self-imposed

limitations.

4.2.1 Attacker model

We assume that the attacker can (1) supply arbitrary untrusted CT-Wasm functions and
manipulate the target into executing them on secret data, and (2) observe the runtime

behaviour of the target according to the leakage model we define below.

4.2.1.1 Leakage model

Each step of program execution is associated with an observation, which represents the
information revealed to an attacker by that execution step. We assume the following

leakage:

e The attacker knows which operation is being executed (e.g. the attacker can
distinguish between a multiplication and a division, even if the operands are the

same).
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e Operands to conditional control flow (i.e. if, br_if, br_table, call indirect) are
leaked, which over-approximates observable timing differences between different

execution paths.

e Memory access operations (i.e. load/store) leak their index operands, to represent
that these operands can be revealed by cache timing. The current memory length is
also leaked by all memory operations (including size/grow), over-approximating
not only the conditional bounds-checking behaviour which may reveal the size, but

also any OS-level timing behaviour which may be assocated with memory allocation.

e Some binary operations are explicitly marked as unsafe, representing that their
execution time may be input-dependent. Such operations leak the values of their
operands. The typing rules (Fig. 4.2) use this list to decide whether an arithmetic
operation can be carried out on secret operands. All floating point operations are
assumed unsafe. It is common to assume that integer division and modulus are
unsafe, and these operations are rarely used in cryptographic algorithms. However
even multiplication and bitshift can have timing vulnerabilities on certain CPUs [75].
The specific choice of safe binary operations must be made pragmatically. In
practical implementations of CT-Wasm, we forbid division and modulus and allow
multiplication and bitshift, in line with the assumptions made by Zinzindohoué et al.
[80]. The type system, proofs, and leakage model described in this chapter can in
principle be adjusted to allow/forbid different operations (with knock-on effects to
the practicality of using the system).

e When a trusted host function is called, it is assumed that the entire runtime state

is leaked.

Note that, as discussed, this leakage model does not cover speculative execution attacks.
Leakage models which cover these attacks would be too leaky for any coarse-grained type
system to offer meaningful protection [110]. It is assumed that vulnerabilities due to
speculative execution must be mitigated through some orthogonal mechanism such as

process isolation [111]. We discuss the limitations of our approach in more detail in §4.3.4.

4.2.2 CT-Wasm formally

CT-Wasm requires only small changes to the language’s AST and reduction rules. These
are shown in Fig. 4.1. The integer types are augmented with a secrecy parameter, and
the existing i32 and i64 types are defined to represent public integers specifically, with
the new types s32 and s64 representing secret integers. The definitions of most existing
type-annotated instructions such as t.binop are not altered, but they will inherit this

extended type definition in their annotations. The select operator is extended with an
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explicit secrecy annotation to simplify the typing rules. Two new conversion operators
are added between secret and public types. Their dynamic behaviours are trivial, and
their presence does not imply any concrete runtime overhead, but the use of declassify
will be restricted by the type system, as seen shortly. Functions are annotated with a
trust parameter, which will determine whether they are allowed to declassify or call
another trusted function. Memories are annotated with a secrecy parameter. We keep
track of secrecy on a coarse-grained memory-by-memory basis because a more fine-grained
approach would require dynamic checks to ensure that a secret value is not stored in
a public “location”. With our approach, a store may only target a public memory if its
argument can be statically typed as public.

The only place where a trust/secrecy annotation must be dynamically checked is
with the call _indirect instruction. Although the reduction rule for call _indirect does
not change (see §2.4.5), the addition of a trust component to each function type means
the rule’s dynamic type check is the one place in the semantics where the trust/secrecy

annotation must be dynamically checked.

(value types) t == i32" sec | 164’ sec | 32 | f64

sec (IN' sec) = sec iN = iN' public
sec N = public sN = iN' secret
(trust)  tr = trusted | untrusted cutops == .. .classify | declassify
(secrecy) sec == public | secret e = ...select sec | ...
(instance) inst == { types :: (tr, ft)*, ifuncs :: ¢*, itabs :: 4%, imems :: ¢*, iglobs :: ¢* }

(function closure) ¢l == native { inst :: inst, type :: (tr, ft), locals :: t*, body :: e*} |
host { type :: (tr, ft), host :: hostfunc}

(memory) mem = { sec :: sec, buffer :: byte, max :: nat }

)

S; F'; (sN.const k) ty.declassify t; — S;F; (iN.const k)
S; F; (iN.const k) ty.classify t;, — S; F; (sN.const k)

Figure 4.1: CT-Wasm modifications to the runtime AST and reduction rules (highlighted)

4.2.2.1 Type system

The type system of CT-Wasm, defined in Fig. 4.2, is where the vast majority of CT-Wasm’s
new restrictions are defined. Essentially it is a very naive, coarse-grained information flow
type system (a variant of the Volpano-Irvine-Smith system [112]) with a declassify escape

hatch allowed only in functions marked trusted. To enforce a constant-time discipline,
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secret values may not be used as arguments to expressions with timing-sensitive behaviour.
A secret value may not be used as the argument to a conditional (if, br__if, br _table,
call indirect), or as an index into memory (load, store). Note that while the typing
rules for if, br_if, and br_table are syntactically unchanged and thus not included in
Fig. 4.2, they are implicitly restricted by our redefinition of the i32 type to refer specifically
to public integers, as shown in Fig. 4.1. Only a restricted subset of binary operations are
allowed on secret values, enforced by the is_safe condition, as some operations such as
division are known to be variable-time on common architectures. The precise definition of
is_safe will be discussed as part of the leakage model (§4.3).

There is no subtyping between secret and public value types. Instead, explicit con-
version instructions must be inserted. This means that the typing rule for (e.g.) binop
automatically enforces our information flow requirements. If the input type is secret, the
output type must be as well. In addition, secret and public arguments cannot be mixed.
Instead, the public input must be explicitly classified, ensuring the output is correctly
marked as secret.

It is a type error for declassify to occur in an untrusted function, and the rule for
call statically ensures that untrusted functions can only transitively call other untrusted
functions. The call _indirect instruction cannot be fully checked as part of the initial
type checking pass. Instead, as noted earlier, it must perform a runtime check that the
called function respects its type annotation. The annotation may only denote a trusted
function if the current function is also trusted.

Finally, there are the restrictions on secret and public memory. As mentioned above,
the index used to access memory is always considered public, even if the accessed memory
is secret. This is because of cache timing effects which we assume will reveal any memory
access patterns. Note that this does not model Spectre, since our model only leaks
addresses which are actually accessed as part of the execution trace, while Spectre allows
loads and stores which are only speculatively executed to cause leakage. A loaded value
will be considered secret if the memory it is loaded from is secret, and a secret value can
only be stored into secret memory. The size of memory is also always considered public

(since an attacker could observe bounds checking errors).

4.3 Security property formalisation

The definitions above were mechanised as an extension to the original Isabelle mecha-
nisations of the type system and reduction rules (§3). The verified type checker was
also updated to check CT-Wasm programs. All code can be found in the supplemental

material [16].
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(memory type) mt ::= (limit, sec)

trust tr, func (tr, ft)*, global gt*, table ¢t*, }
?

(contexts) C' = { memory mt*, local t*, label ()%, return (£*)

tr >¢ tr' = (tr = tr') v (tr = trusted A tr’ = untrusted)

sec t = secret = is_safe(binop,)
C+ t.binop, :tt —t

sec t = sec sec t = sec
C - t.testop : t — (i32" sec) C+ t.relop : t t — (i32' sec)

sec t; = sec ty sec t; = sec ty
C F ta.convert(; o)t — lo C I ta.reinterpret(;, o) : t1 — {2
(t1 = in’ secret A ta = in’ public) C.trust = trusted  (t; = in/ public A to = in’ secret)
C I ty.classify to : to — 1 C | t1.declassify t5 : to — t1
sec = secret —> sec t = secret Cltrust = tr C.func[i] = (tr', ft) tr >4 tr/
C + select sec: tt (132" sec) —> t Chrcalli:ft

ft=tr -5 C.trust = tr  tr >¢ tr' Ciable = 1
C + call _indirect (tr', ft) : t} 132 — 3

C.memory[0] = (lim, sec)  sec t = sec 2% < [t
Crtload — ao0:i32 >t

C.memory|[0] = (lim, sec)  sec t= sec 2% < |t
CHtstore — ao0:i32t— ¢

C.memory[0] = (lim, sec)  sec t = sec  2° < |pt] < (m/8)  t=im/ sec
C  t.load (pt,sx) a 0:i32 —> ¢

C.memory[0] = (lim, sec)  sect= sec  2°<|pt| <|t| t=im' sec
Ct+tstoreptao:i32t — ¢

Figure 4.2: Typing rules of CT-Wasm where they differ (highlighted) from the rules
of §2.6.
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4.3.1 Soundness

Before conducting the constant-time proof, the preservation property (§2.7) must be
updated to also prove that the trust level of the code is preserved by execution. That is, if
a code fragment reduces in an untrusted context, the reduct will only contain instructions
which are allowed in an untrusted context.

The top-level configuration typing relation is updated to also assign a trust level ¢r to
typed code. Local validity is then updated to require that the code must be typed at that
trust level.

s S ok Sitrie o Fie* o (tr, t*)
o Sy Fye s (tr, t*)

SteF:C S; Cltrust := tr, return := (£*)°] - e* : € — t*
Sitr; (t5)" Fioe Fye* ot

This new preservation property is proven by extending the rule induction of §3.1.2 to
also prove that the trust level is either preserved, or, in the case of function call, respects

the simple trust lattice >, defined in Fig. 4.2.

4.3.2 Leakage model

Formally, there are a number of equivalent ways to represent attacker observations due to
leakage. We choose to augment the WebAssembly reduction rule with actions (a) which
record the relevant inputs to the executed instruction. The execution of a WebAssembly
program gives rise to an associated trace of events. Then, an observational equivalence
relation (~,) is defined between actions, which captures the observational power of the
attacker as discussed above.

To formalise the previously described leakage model (§4.2.1.1), each reduction rule (§2.4)
is associated with an action which records the operation executed, and relevant stack
operands, static parameters, and program state (such as memory length in the case of
load/store). For example, the reduction rules for binary operations are extended as

follows:

(t.const j)(t.const k)(t.binop,) —* (t.const [) where binop,(j,k) =1

a = act_binop_succ(y, k, binop,)
(t.const j)(t.const k)(t.binop,) —° (trap) where binop,(j, k) = L

a = act__binop _fail(j, k, binop,)

The ~, relation between these actions is defined as follows:
act_binop_succ(j, k, op) ~, act_binop _succ(j’, k', op’) =
op=op A (is_safe(op) v (j =7 Ak =Fk))

(act_binop _fail is analogous)
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Value, global, memory, and frame indistinguishability

ti.const ki ~, tg.const ky =

globy ~g glob, =
memy ~m memg &
Fi ~f By =

t1 =to A (k1 = ko v sec t; = sec ty = secret)

globy.mut = globy.mut A glob;.val ~, globy.val

(

mem;.sec = mema.sec = secret
A |memy .buffer| = |memgy.buffer|

) v (mem; = memy)

Fy.inst = Fy.inst A list_all2 (~,) Fj.locs Fy.locs

list _all2:: (a = b= bool) = a list = b list = bool

Expression indistinguishability

. e1 =

(eq ~v €p) if e; _

- n . e =

(eq ~e €p) if oy —

€] ~e €9 o < (Ca ~e eb)n lf el =
A (ec ~e ed)m €2 =

m 1 —

A (eq ~e €p) ey =

Le1 = €2 otherwise

Store indistinguishability

S1 ~s Sy =

ti.const kp
to.const ko

block ft e end e; = loop ft e end
block ft e} end or ez = loop ft e} end

if ft e} else e" end o @= label, {¢]'} e end
if ft ey else €)' end ex = label, {e}'} €' end

frame, {F,} e end
frame, {F}} €;" end

S7.funcs = Ss.funcs

A Sp.tabs = Sy.tabs

A list_all2 (~g) S1.globs Sy.globs
A list_all2 (~p) S1.mems Sy.mems

Configuration indistinguishability
SiFisel ~c Sa;Vi'ies £ (51 ~s S2) A (B~ F2) A (€1 ~e €2)"

Figure 4.3: Definition of secret indistinguishability.
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4.3.3 Constant-time

We formalise constant-timedness in the standard way, as the property that well-typed
untrusted configurations which vary only in their secret state must produce observationally
equivalent (according to ~,) traces. The first step is to define a secret indistinguishability
relation (~.) between configurations, which formalises what it means for a pair of configu-
rations to vary only in public state (Fig. 4.3). We can prove that two indistinguishable

configurations must have the same type.

Lemma 4.1 (config_indistinguishable_imp_config_ typing)
Assuming (1) . Cfg: (untrusted, t*)
(2) Cfg ~c Cff
we have (2) +. Cfd : (untrusted, t*)

Proof. Follows directly from the definitions.

We can now state and prove a one-step unwinding lemma that will imply our desired

constant-time property.

Lemma 4.2 (config_indistinguishable_imp_reduce)
Assuming (1) . Cfg: (untrusted, t*)

2) Cfg =" Cjy,

3) Cfg ~c Cfd

)

)
there exist Cfg,, a', such that (4) Cfy —* Cfd,

)

)

(
(
(
(5) Cfg, ~c Cfd,

(6) a ~, d

Proof. By induction on the definition of reduction.

This lemma states that, given a well-typed untrusted configuration which reduces one
step and emits an action a, any other indistinguishable configuration can also reduce one
step in a way that preserves indistinguishability, while emitting an action @’ which is
observationally equivalent to a. The lemma in fact implies a stronger property than just
constant-time, since (combined with the type preservation property), it guarantees that
all indistinguishable untrusted configurations reduce in precise lock-step with each other,
not just that they produce indistinguishable traces. This is the self-isomorphism property
of Popescu et al. [113], which is known to imply a number of weaker non-interference
properties.

In any case, we can formalise the constant-time property and show that it is implied

by this lemma. First, we formalise the notion of an action trace as the potentially infinite
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sequence of actions associated with a configuration according to the coinductive closure of

the reduction relation.

1Cfd a. Cfg—" Cfy

Ofg Ftrace €

Cfg —* Ofg, Cfg/ Ftrace I

Cfg ':trace (CL : tT)

Note that Eyace is defined coinductively rather than inductively, as indicated by the doubled
line. We then define observational equivalence between traces (a4,) via corecursive pairwise

comparison by ~,.

/

a~,a tr ~yq tr'

(a:tr) ~y (@ tr')

Finally, we can lift the ~, relation to a relation (~4s) between sets of traces in the

standard way, and define the constant-time property with respect to a given configuration

Cfg.

(Vtry € trsy. Itry € trsy. try ~y try)
A (Viry € trsy. At € trsy. try ~y try)

A

trs) Rgs trs; =

constant-time(Cfg) = VCOfd. Cfg ~c Off = { tr| Cfg Ewace 11} ~us { tr' | Cfd Etrace tr' }

We can now prove that well-typed untrusted configurations are constant time.

Lemma 4.3 (config_indistinguishable imp_reduce?2)
Assuming (1) . Cfg: (untrusted, t*)

(2)  Cfg Frace tr

(3) Cfg ~c Cfy

(4) 3tr. Cff Ewace tr' A tr gy tr'!

Proof. By coinduction on the definition of =y ace,

using config_indistinguishable_imp_reduce and preservation.
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Lemma 4.4 (config untrusted_constant_time)
Assuming (1) ¢ Cfg: (untrusted, t*)

we have (2) constant-time( Cfy)

Proof. Follows directly from the definitions,
using config_indistinguishable_imp_config_typing

and config_indistinguishable_imp_reduce?2.

4.3.4 Limitations

As previously mentioned, our formalisation of leakage fits the standard assumptions
of the constant-time programming discipline but is an imperfect abstraction over the
“real world”. The leakage model must make assumptions about which WebAssembly-
level operations have timing vulnerabilities. In a concrete implementation, the validity
of these assumptions will depend on both the particular WebAssembly compiler and
underlying target architecture. Our type system carries the necessary information to
the implementation regarding which operations are assumed to be constant-time, but
microarchitectural timing behaviour is complicated and often undocumented, so there is a
limit to how confident implementations can be in the safety of their platform instruction
selection. When concretely implementing CT-Wasm below, we assume multiplication is
constant-time, which is true on most CPUs but would require the implementation to use
inefficient workarounds during instruction selection when targetting the few CPUs for
which this is not the case [75]. This per-CPU mitigation is more feasible in a Web scenario
because compilation to platform assembly is performed by the Web engine directly running
on the executing machine, although it is still more onerous that most implementers are
likely to countenance.

Speculative execution attacks such as Spectre [85] are not modelled and must be
mitigated independently. We also do not model attacks based on observing power
consumption [114].

As is standard for an information flow type system, a wrapper of trusted code is
necessary in order to usefully manipulate data returned by untrusted code. For example,
an untrusted algorithm may be used to encrypt a message with a secret key, and the
resulting ciphertext will be tainted as secret. Is the responsibility of the trusted code
to choose to declassify the ciphertext (essentially, explicitly trusting in the functional
correctness and computational hardness of the encryption) so that it can be sent over the

wire, and the CT-Wasm type system gives no guarantees about the security of this choice.
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4.4 FEvaluation

The work described in this section was primarily performed by other collaborators. The
experiments are reported in more detail by Watt et al. [10] but some key results are
summarised here for context.

The type system of CT-Wasm is very simple and coarse-grained in comparison to
many other information flow type systems. The security level of data must be explicitly
fixed as either secret or public at every value use and control flow join. This coarse-
grained design allows for extremely fast validation, which is essential given our previously
mentioned concerns about startup time. However this approach is only acceptable if
common cryptography primitives are actually expressible within the type system. To
evaluate this, a variety of common cryptography primitives were successfully implemented
in CT-Wasm, including the previously mentioned Poly1305 algorithm. This success was
not surprising, as our type system aimed to match existing cryptographic implementation
best practices.

A fork of the V8 browser engine was experimentally modified to support CT-Wasm,
and the dudect fuzzing and statistical analysis tool [115] was used to confirm that no
timing vulnerabilities were detectable through fuzzing when our CT-Wasm code was
executed in this implementation. In contrast, when we implemented a textbook definition
of the Salsa20 primitive partially in JavaScript, dudect quickly detected a minor timing
leak: V8 would box any JavaScript integer outside a 31-bit signed range [116], leading to
reduced performance on some inputs even if all numbers were kept in a 32-bit range.

I extended my verified type checker (§3.3.1) to check CT-Wasm’s additional restrictions,
although this implementation was not used as part of the experimental evaluations except

to double-check the behaviour of the V8 implementation.

4.5 Related and future work

Low-level crypto DSLs Bernstein’s ghasm [117] is an assembly-level language used
to implement many cryptographic routines, including the core algorithms of the NaCl
library. The language does not enforce a particular secure programming discipline; this
remains the responsibility of the programmer.

Vale [81] and Jasmin [79] are structured assembly languages designed for high-
performance cryptography, and have verification systems to prove functional correctness in
addition to side-channel freedom. Vale and Jasmin both target native machine assembly;,
and rely upon the Dafny verification system [118]. Vale uses a flow-sensitive type system
to enforce non-interference, while Jasmin uses Boogie-based verification [119]. CT-Wasm
does not address functional correctness, and relies on a much simpler, but significantly

faster verification procedure.
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High-level crypto DSLs The HACL* [80] cryptographic library is written in con-
strained subsets of the F* verification language that can be compiled to C. HACL*
primitives are proven functionally correct and free of side-channels (making assumptions
similar to the leakage model of CT-Wasm) through individual proofs in the F* theorem
prover, with some automation through SMT. The HACL* authors are also investigating
WebAssembly as a compilation target [120]. FaCT [82] is a high-level language that
enforces a constant-time programming discipline and targets LLVM. CAO [121, 122| and
Cryptol [123| are high-level DSLs for crypto implementations which do not enforce a
secure programming discipline.

All these efforts are complementary to our lower-level approach, and could benefit

from targetting CT-Wasm.

Leakage models Our leakage model derives much of its legitimacy from existing work
on the side-channel characteristics of low-level languages, both practical [115, 74] and
theoretical [76, 100, 78]. We aim to express our top-level information flow and constant-
time properties in a way that is familiar to readers of these works. Our representation of
observations draws inspiration from the equivalence relation-based formalisations described
by Sabelfeld and Myers [124] for timing sensitive non-interference, and used elsewhere in
similar proofs [100, 125, 126].

Standardisation CT-Wasm has been proposed for official adoption into the Web-
Assembly specification, and is currently at an early stage of standardisation. Even if
CT-Wasm types are checked by implementations, subtle choices of compiler optimisation or
instruction selection may sabotage our security guarantees. A more thorough investigation
is needed to determine the feasibility of securely implementing CT-Wasm in existing Web

engines before further stages of standardisation can proceed.
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Chapter 5
Relaxed memory

This section describes my work on the relaxed memory models of JavaScript and Web-
Assembly. WebAssembly’s threads specification is still in progress, and I have been
responsible for defining the relaxed memory model which has been incorporated into the
draft specification. Many design decisions for WebAssembly’s behaviour are constrained by
the requirement that WebAssembly must seamlessly interoperate with JavaScript, which
has its own pre-existing concurrency semantics and relaxed memory model. Therefore,
WebAssembly’s memory model is primarily an extension of that JavaScript memory model.
The bulk of this chapter deals with the investigation and critique of JavaScript’s relaxed
memory model, followed by my work in extending the model to cover WebAssembly’s
unique features.

Several issues with the JavaScript model are discovered and corrected, with these
changes officially adopted by the JavaScript standards body, and incorporated into
WebAssembly’s memory model in its draft threads specification. An outstanding issue
regarding JavaScript’s compatibility with the C+-+11 memory model is reported on. Then,
the WebAssembly-specific extensions to JavaScript’s model are described. This work was
carried out in collaboration with a number of other academics and industry figures, as

detailed below. The chapter draws from two previously published papers [13, 15].

5.1 Contributions

In order to ensure the WebAssembly relaxed memory model is built on as solid a foundation
as possible, I worked with collaborators to identify and (where possible) correct several

issues with the existing JavaScript model.
Wait /notify synchronisation The JavaScript language provides the Atomics.wait

and Atomics.notify operations, which allow threads to be suspended and unsuspended.

I discovered that these operations were not properly modelled in the language’s formal
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memory model, leading to ambiguity about their intended synchronisation behaviour. I
developed a fix to the model, and members of ECMA TC39 (in particular Lars T Hansen
and Shu-yu Guo) investigated the synchronisation behaviours of current implementations
to build confidence in the fix, which was adopted [127]. Unlike two other fixes below, I did
not attempt formal verification of this model change, as Atomics.wait and Atomics.notify

are implemented using OS primitives which have not yet been formally modelled.

Armv8-A compilation scheme unsoundness This error, the failure of an intended
compilation scheme to Armv8-A which is used in practice, was discovered during conver-
sations between myself and Stephen Dolan. I developed a fix to the JavaScript model
which I proved correct in Coq with respect to a mixed-size Armv8-A model developed by
Christopher Pulte. The fix was adopted into the JavaScript standard [128].

SC condition violation The JavaScript specification explicitly states a correctness
condition for the model, that programs with enough synchronisation should provide
sequentially consistent (SC) semantics. I discovered that the model violated its stated
correctness condition and developed a fix, which was adopted into the standard alongside
the above Armv8-A fix [128|. I worked with Guillaume Barbier to verify the fix in
Coq. The designers of the model had intended their SC condition to be a realisation
of the well-known “Sequential Consistency for Data-Race-Free programs” (SC-DRF)
condition [129, 130], which many concurrent languages intend to provide [131, 132, 133].
However, as a consequence of the model’s thin-air behaviour detailed below, JavaScript’s

SC guarantees are weaker than true SC-DRF.

Thin-air I discovered that the JavaScript memory model admits undesirable thin-air
executions [134]. Hans Boehm and Ori Lahav independently observed that JavaScript’s
thin-air behaviour causes its stated SC condition to be weaker than the desired SC-DRF
condition. I then made the closely related observation that this implies that compilation
from C+-+11 to JavaScript, an explicit goal of the JavaScript model’s design, is unsound
for any reasonable compilation scheme. This deficiency of the model is closely related
to the thin-air problem in the C++11 memory model [135]; this issue is known to be
impossible to correct in current-generation models [134]. There is ongoing research in
the field regarding new iterations of relaxed memory models which avoid the thin-air
problem [136, 137, 138].

All of these issues were violations of previously stated explicit design goals for the
JavaScript model [129]. Our work developed corrections to the specification for all but the
last issue. These corrections have been adopted by the official JavaScript specification. As

part of this process, we developed mechanised proofs that the revised model supports the
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intended Armv8-A compilation scheme and stated SC property. The final issue cannot
be easily corrected, given the current JavaScript relaxed memory model [134]. This is
discussed in more detail in §5.7. For now, we make sure any WebAssembly extension
of the model does not make the problem worse, and ensure that the model as a whole
tracks the best practices of the field so we can benefit from any future developments in
the state-of-the-art.

WebAssembly extensions All JavaScript shared memory is created with a fixed size
that cannot change. In contrast, WebAssembly memory may be grown dynamically with
the memory.grow instruction. The informal design of WebAssembly threads intended for
memory growth to have sequentially consistent behaviour [139]. However, as I discuss
in §5.8, in real implementations, information about the current memory bound may propa-
gate between different WebAssembly threads in a way which is not sequentially consistent.
The WebAssembly model must describe this new dimension of relaxed behaviour. Bearing
in mind the above formal deficiencies, any extension of the JavaScript model can only be
best-effort, and carried out in the knowledge that the JavaScript model must one day be

modified to correct the thin-air problem.

5.2 Background

5.2.1 Concurrency on the Web

As discussed earlier, Web content continues to become more computationally demanding.
Concurrency has been a recurring proposal over the years to enhance browser-based
client-side computational capabilities. In JavaScript, basic support for shared-memory
concurrency has already been added, through the Shared ArrayBuffer feature. SharedAr-
rayBuffers are low-level buffers of bytes, which can be accessed concurrently in an array-like
fashion by “Web workers” (JavaScript’s version of threads). Other JavaScript objects
may only be accessed by a single thread. When SharedArrayBuffers were first specified,
WebAssembly was still under development, and contained no concurrency features. Still,
WebAssembly’s memory was designed with a future concurrency extension in mind. The
WebAssembly threads proposal aims to allow WebAssembly memories to be shared/ac-
cessed concurrently. When interoperating with JavaScript, a shared WebAssembly memory
will be accessed as a Shared ArrayBuffer. Therefore, WebAssembly’s concurrency semantics

is intrinsically linked to JavaScript’s existing concurrency semantics.

5.2.2 Concurrent JavaScript

Fig. 5.1 shows a simple concurrent program, often called the Message Passing (MP)

example, expressed as JavaScript, WebAssembly, and Armv8-A. Before discussing the
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concurrent behaviour of this example, we will use it to explain how JavaScript declares
and accesses concurrent objects. JavaScript’s object model has a reputation for complexity.
However, Shared ArrayBuffers are deliberately very simple objects: they represent a raw
zero-initialised memory allocation and provide no innate operations to manipulate the
allocated memory. To access a SharedArrayBuffer, it must be wrapped within special
“view” object. In the example of Fig. 5.1, the Shared ArrayBuffer is created with a size
of 8 bytes, and is then wrapped within a typed array (in this case an Int32Array). This
allows the SharedArrayBuffer to be accessed in an array-like fashion, with the type of the
typed array determining the width at which the Shared ArrayBuffer is accessed. The 32-bit
typed array wrapper means that each array index corresponds to 4 bytes of the underlying
Shared ArrayBuffer. For example, the access b|0] corresponds to bytes 0-3, while the
access b|1]| corresponds to bytes 4-7. Note that it is possible for a SharedArrayBuffer to
be wrapped by multiple different widths of typed array simultaneously. This can give rise

to mized-size accesses which partially overlap with each other.

b = new Int32Array(new SharedArrayBuffer(8));
Thread 1 Thread 2
bl0] =42 L0 = b[1];
bl1] = 42; L1 = bo];

<instantiation>

Thread 1 Thread 2
(i32.const 0) (i32.const 42) (i32.store) (i32.const 4) (i32.load) (local.set 0)
(i32.const 4) (i32.const 42) (i32.store) (i32.const 0) (i32.load) (local.set 1)

buffer address in X2

Thread 1 Thread 2

MOV W3, #1

STR W3,[X2, #0] LDR WO0,|X2, #4]
STR W3,[X2, #4] LDR W1,[X2, #0|

Figure 5.1: A simple concurrent program, expressed in JS, Wasm, and Armv8-a assembly,
known as the Message Passing (MP) example.

5.2.3 Relaxed memory

In many real languages and on a variety of hardware, if a program with multiple threads
execute loads and stores to memory concurrently, it is common to observe results which
cannot be explained by a sequential interleaving of the program’s operations. This is

known as “relaxed” or “weak” behaviour. As an example, the program of Fig. 5.1 consists
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of two threads. As mentioned above, the Int32Array-wrapped Shared ArrayBuffer b is
zero-initialised on creation. Thread 0 writes 42 to b[0] and b[1] in that order. Thread 1
first reads b[1], then b|0]. If thread 1’s read of b[1] assigns the value 1 to local variable
L0, in a naive sequentially-interleaved semantics, that must mean that both operations
of thread 0 must have already executed. Therefore, thread 1’s subsequent read of b|0]
would be guaranteed to also set L1 to 1. However, executing this pattern of accesses
in (for example) C will commonly result in the outcome LO = 1, L1 = 0. This could
occur for several reasons. First, a compiler could decide to swap the two operations in
either thread, which would be a valid single-thread optimisation. Secondly, even if this is
forbidden, the underlying behaviour of the hardware can cause this outcome. This could,
for example, be the result of thread-local caching of writes, or due to speculative execution
in the instruction pipeline causing either thread’s operations to take effect out-of-order.
When executing the Armv8-A assembly program of Fig. 5.1, this execution is concretely
observable. Since the JS and Wasm programs are expected to generate similar Armv8-A
code upon compilation, their semantics must allow this outcome. In order to do this, the
language must be augmented with a relaxed memory model, which describes the space of
outcomes which are allowed for a given concurrent program.

Relaxed memory models have been a subject of intense research in recent years 134,
140, 136, 130, 132, 133, 141, 142]. As discussed, a language’s relaxed memory model
must capture all relaxed outcomes that can result from a combination of compilation
optimisations and relaxed behaviours in an underlying architecture. Correctly defining
such a model has proven to be a significant challenge. The C++11 relaxed memory
model [141, 131]| was a seminal work which heavily influenced many subsequent models,
including JavaScript.

Like C-++11, JavaScript provides both non-atomic operations (the regular accesses of
Fig. 5.1), and atomic operations, which offer stronger ordering guarantees than regular
accesses. While C++11 provides a number of different kind of atomics with varying
characteristics, JavaScript only provides the strongest kind: sequentially consistent. When
the example of Fig. 5.1 has its memory accesses replaced with their sequentially consistent
atomic variants (see Fig 5.3), the relaxed outcome LO = 1, .1 = 0 is no longer permitted.
The modern JavaScript specification is admirably precise in its description of the language®,
and the specification of Shared ArrayBuffer was accompanied by a official formal relaxed
memory model based on a fragment of that of C++11. As hinted by Fig. 5.1 and 5.3, many
of the operations of the WebAssembly concurrency proposal mimic those of JavaScript.
Therefore, to understand how WebAssembly’s concurrency is specified, we must first

understand the JavaScript relaxed memory model.

1 JavaScript’s bad semantic reputation is mainly due to legacy behaviours which must be supported
for backwards compatibility reasons.
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Instructions

JavaScript WebAssembly Armv8-a x86
_ = blk] t.load ldr MOV
blk] = t.store str MOV
Atomics.load t.atomic.load ldar MOV
Atomics.store t.atomic.store stlr XCHG
Atomics.exchange t.atomic.exchange ...ldaxr/stlxr ... XCHG

Figure 5.2: Example compilation schemes for JavaScript, and equivalent WebAssembly
operations. Arm offers special load-acquire and store-release instructions for the imple-
mentation of atomics.

b = new Int32Array(new Shared ArrayBuffer(8));
Thread 1 Thread 2
bl0] =1 L0 = Atomics.load (b, 1);
Atomics.store(b, 1, 1); L1 = b0];

<instantiation>
Thread 1 Thread 2
(i32.const 0) (i32.const 1) (i32.store) (i32.const 4) (i32.atomic.load)
(local.set 0)
(i32.const 4) (i32.const 1) (i32.atomic.store) (i32.const 0) (i32.load)
(local.set 1)
buffer address in X2
Thread 1 Thread 2
MOV W3, #1
STR W3,[X2, #0] LDAR W0,[X2, #4]

STLR W3,[X2, #4]  LDR W1,[X2, #0]

Figure 5.3: The example of Fig. 5.1 using atomics. The relaxed outcome is now forbidden.
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5.2.4 JavaScript’s relaxed memory model

JavaScript’s relaxed memory model was designed with several high-level goals in mind [129].

e JavaScript’s model must support mized-size, partially overlapping accesses.

e Because of JavaScript’s security model (untrusted execution in a user’s browser), it
cannot treat data races as unconstrained undefined behaviour, as is done in C/C++.
The JavaScript model must give defined behaviour to data races, although this

behaviour may be extremely weak.

e JavaScript’s atomic operations must be compilable according to the existing compila-
tion schemes for C++11 Sequentially Consistent atomics (see Fig. 5.2). Moreover, to
support compilation from C/C-++ to the asm.js subset of JavaScript, a compilation
scheme mapping C++11 atomics to JavaScript atomics and C++11 non-atomics to

JavaScript non-atomics must be sound.

e Programs free of data races must have sequentially consistent behaviour. The
definition of “data race” ultimately used by the JavaScript model is discussed
in §5.3.3.

As mentioned, JavaScript’s relaxed memory model is based on a fragment of the
C++11 containing non-atomics and sequentially consistent atomics [131, 13]. Differences
between the models will be highlighted as appropriate. The style of model used by
JavaScript and C+-+11 is known as an axziomatic memory model. With this approach,
the semantics of the language is split into two layers: first, a space of pre-executions for
the given program is defined using an operational semantics, and the pre-executions are
then filtered by the axiomatic semantics of the relaxed memory model to obtain a space
of consistent pre-executions which define the program’s observable behaviour. We first
describe the pre-execution layer. The behaviour of most operations is specified in a familiar
operational manner. However, when executing a concurrent load, instead of determining
the value returned by the load from concrete state, the semantics picks an arbitrary value
to continue execution with, and emits a read event recording the load operation together
with the choice of value. Similarly, when executing a concurrent store, the semantics
emits a write event recording the stored value rather than directly mutating the memory
state. A single pre-execution consists of the events emitted throughout single execution
across all threads, together with basic ordering information derived from the thread-local
semantics. The axiomatic part of the relaxed memory model will later determine which
choices of loaded values should be permitted, by considering the pre-executions resulting

from every possible choice of read value.
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5.2.4.1 Pre-executions, formally

Pre-executions are defined formally in Fig. 5.4. The three ordering modes correspond to
the three strengths of access which are possible in JavaScript. The un ordering corresponds
to regular accesses, the sc ordering corresponds to the more strictly ordered sequentially
consistent atomic accesses, while the init ordering is a special ordering used only by the
write which zero-initialises a Shared ArrayBuffer. The components of an event, representing

a single memory access, are as follows:
e ord is the event’s ordering mode

e block is a symbol used to track which SharedArrayBuffer the event occurred on (a

program may create more than one buffer)
e index is the byte offset at which the Shared ArrayBuffer was accessed
e reads is the list of bytes observed by the event

e writes is the list of bytes written by the event — some events (such as the one

generated by Atomics.exchange) may perform both a read and a write

e tearfree is a special parameter which fixes whether an event may appear to split
into parts — for example a 64-bit access implemented on a platform with only 32-bit
width native accesses may need to be implemented as a pair of accesses, which may

be observed independently

We assign unique ids to events to ensure they are distinct. In the text of the JavaScript
specification, it is assumed that events created by different execution steps are a-priori

distinct from each other even if all of their fields are identical, so this field is not explicitly

included.
mode == Unordered // un | SeqCst // sc | Init // init

addr,id :— an infinite set of abstract names

event == {ord : mode, reads :: list byte,
block :: addr, writes :: list byte,
index :: nat,  tearfree :: bool Yid

exec = { evs ;o set event,
sequenced-before // sb i set (event x event),

additional-synchronizes-with // asw :: set (event x event) }

Figure 5.4: JavaScript Pre-execution. Abbreviations are marked by “//”.
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b = new Int32Array(new SharedArrayBuffer(8));
Thread 0 Thread 1
bl0] =1 L0 = b[1];
b[1] = 1; L1 = b|o];

Outcome: LO =1, L1 =1

Wi b[0..7]=0
Thread 0 asw asw Thread 1
Wun b[0..3]=1 Run b[4..7]=1
tsb \sb
Wy b[4..7]=1 Run b[0..3]=1

Outcome: LO =1, L1 =0

Wi b[0..7]=0
Thread 0 asw asw Thread 1
Wyn b[0..3]=1 Run b[4..7]=1
{sb \sb
Wy b[4..7]=1 Run b[0..3]=0

Figure 5.5: A simple JS concurrent program (MP), together with two pre-executions.

117



Aside from the set of events, a pre-execution consists of the sequenced-before relation,
which tracks intra-thread execution order, and additional-synchronized-with, which repre-
sents strong ordering constraints imposed by synchronous inter-thread communication
such as using the postMessage operation. Both of these are illustrated by example in
Fig. 5.5, which shows the JS program of Fig. 5.1 together with two pre-executions. The
pre-executions are depicted as graphs, with the events of each execution represented
as nodes. For example, the node Wun b[0-3]=1 is an Unordered event writing 1 as a 4
byte value, starting at index 0, to the Shared ArrayBuffer b. Note the sequenced-before
edges between consecutive events in the same thread. When the Shared ArrayBuffer is
transmitted to the two worker threads, the actions of these threads take place “after” the
transfer. The additional-synchronizes-with edges represent this ordering.

The second layer of semantics is the relaxed memory model, a series of axiomatic
constraints over the pre-executions. The constraints of the axiomatic memory model are
formally defined over a candidate execution, which is a combination of a pre-execution
with an existentially quantified execution witness. Intuitively, the execution witness is
a collection of relations between events of the pre-execution, which explains why each
concurrent read is allowed to take the value that it did. The formal structures of the
execution witness and candidate execution are given in Fig. 5.6.

The core of the execution witness is a reads-byte-from relation. Each byte of a read
event is linked to a write event on the same location, such that the written value matches
the read value. The permitted shapes of the reads-byte-from relation depend on various
ordering constraints that must be described by the memory model. In addition, the
execution witness must fix a total order (total-order) over all events, which is used to
constrain the possible behaviours of the stronger SC atomic operations. The reads-byte-
from relation is similar to the reads-from relation of C++11. The key difference is that the
C++11 relaxed memory model does not support mixed-size behaviours, and so its reads
and writes are simply paired according to matching abstract locations. In JavaScript,
each individual byte of the read and write must be separately related, since a single read
may observe individual bytes from multiple writes. JavaScript defines its own version
of reads-from, derived from reads-byte-from by projecting away the byte component
(Fig. 5.6). Note that by convention the reads-from relation relates writes (as the left
component) to reads (as the right component). The model also defines two other derived
relations. The synchronizes-with relation represents the strong ordering guarantees given
by an atomic read. If an atomic read gets its value from an atomic write of equal range,
or from an initializing write, then a synchronizes-with edge is created to represent that
there is an ordering constraint between prior events in the writing thread, and subsequent
events in the reading thread. The happens-before relation is the main definition used to
state the constraints of the model. It is the transitive closure of the intra-thread program

order, the synchronizes-with relation, combined with the requirement that all accesses
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must be ordered after any overlapping initial writes.

It is specified that an implementation may only exhibit behaviours for which there
exists a corresponding well-formed candidate execution in the semantics satisfying the
models’ consistency predicates. Well-formedness of a candidate execution enforces the
basic characteristics of the core witness relations — total-order must be a strict total order,
and reads-byte-from may only relate a write with a read if they access the same location.

A formal definition of well-formedness is given in Fig. 5.7.

witness = { reads-byte-from // rbf :: set (nat x event x event),
total-order // ;0 set (event x event) }

candidate _exec = exec ++ witness

range,(E : event) = | Eindex ... FE.index + |E.reads| )
range, (F : event) = | E.index ... E.index + |E.writes| )
range(F : event) = range,(FE) urange,(F)
write(E : event) = (E.writes # [])
overlap(Ey, Ey : event) =  Ej.block = Ep.block A range(E;) nrange(Es) # &

Derived relations (w.r.t. a candidate execution)

reads-from // rf =
{(A, B) | 3k.{k, A, B) € reads-byte-from}

synchronizes-with // sw =
(A, B) € reads-from A B.ord = SeqCst A
(A, B) (range, (A) = range,(B) A A.ord = SeqCst) v
<(VC. {C, B) € reads-from = C.ord = Init) )
v additional-synchronizes-with

happens-before // hb =

sequenced-before U synchronizes-with U *
{ (A, B) | A.ord = Init A overlap(A4, B) }

Figure 5.6: JavaScript candidate execution definition and derived relations. We introduce
short names for some relations after the “//”.
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well-formed(k : nat, E,, : event, E, : event) =
k € range, (E,) A k € range, (E,.) A E,.block = E,.block A
(Ey.writes)[k — E,.index| = (E,.reads)[k — E,..index] A E,, # E,

well-formed(rbf : set (nat x event x event), Es: set event) =
(VE, € Es, k e range,(E,). 3 E,.{k, E,, E.) € rbf ) A
(VE, € Es, k ¢ range,(E,). 1E,. (k, E,, E.) € rbf ) A
V{k, By, E,.) € rbf. well-formed(k, £, E,)

well-formed(CE : candidate_ ezvec) =
CE.total-order is a strict total order on CE.evs A
well-formed ( CE.reads-byte-from, CE.evs)

Figure 5.7: Candidate execution well-formedness

Happens-Before Consistency (1):
happens-before < total-order

Happens-Before Consistency (2):
VE,E..{E,, E.) € reads-from = —(E, happens-before E,)

Happens-Before Consistency (3):
V(k, E,, E,) € reads-byte-from.
1E,. (E, happens-before E,) A
(E,, happens-before E,) A k € range, (E,)

Tear-Free Reads:
VE.. B, .tearfree =

‘{ 5 (Ey, E.) € reads-from A E, tearfree A }

range, (B, — range, (E,)
Sequentially Consistent Atomics (first attempt):
VE,E,. B, synchronizes-with F, =—
AE, . (E, total-order E,) A (E, total-order E,) A range, (E,) = range,(E,)

w

<1

Figure 5.8: Candidate execution consistency as originally defined by the JavaScript
specification.
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The axiomatic constraints defining consistency of a given candidate execution are given
in Fig. 5.8. First, the happens-before order must be consistent with the total-order. Second,
it is not permitted for a read to get its value from a write if the read is ordered before the
write according to happens-before. Finally, it is not permitted to read from a “stale” write,
where a newer write to the same range exists according to happens-before. The Tear-Free
Reads condition ensures that a read which has been marked tearfree will not combine the
individual bytes of same-range tearfree writes. The Sequentially Consistent Atomics
condition further constrains the permitted orderings of atomic accesses. The informal
intention is that atomic accesses should appear sequentially consistent unless they race
with a non-atomic access, or an atomic access with a different range. This latter relaxation
allows 64-bit atomic accesses to be implemented with locks on 32-bit machines without
requiring smaller possibly overlapping atomic accesses to take the same locks. However,

as we will discuss, the condition as stated is flawed in several ways and must be corrected.

b = new Int32Array(new Shared ArrayBuffer(8));
Thread 0 Thread 1
bl0] =1 L0 = b[1];
b[l] = 1; L1 = b|0];

Outcome: LO =1, L1 =1

a: Wi b[0..7]=0
Thread 0 asw asw Thread 1
b: WUn b[03]=1 l’bf[O'?)] d: RUn b[47]=1

lsb jsb
rbf[4-7]

¢ Wun b[4.7]=1 e: Run b[0..3]=1

=a—>b—oc—>d—e

Outcome: LO =1, L1 =0
a: Wy b[0..7]=0

Thread 0
b: Wy, b[0..3]=1

Thread 1
d: Ry, b[4..7]=1

sb sb

¢: Wun b[a.7]=1_ "Pf[4-7] e: Ryn b[0..3]=0
=a—>b—-c—>d—e

Figure 5.9: A simple JS concurrent program (MP), together with two consistent candidate
executions.
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As an illustrative example, the pre-executions of Fig. 5.5 are extended to candidate
executions in Fig. 5.9. Both of these candidate executions are consistent according to
the model. As discussed earlier, the second execution demonstrates a relaxed behaviour,
which must be allowed as it is concretely observable when compiling to Arm. Going
forward, when depicting candidate executions graphically in this way, edges not relevant

to the example under discussion will be elided.

5.2.4.2 JS vs C++11

As discussed, many of JavaScript’s definitions are based on those of C+-+11. JavaScript’s
key generalisation is that its fundamental witnessing relation, reads-byte-from, is bytewise
instead of relating reads and writes one-to-one. Because C++411 accesses can never
partially overlap, its SC atomics always synchronise if they are related by reads-from. In
contrast, JavaScript’s atomics only synchronise if their ranges are identical.

Aside from this, JavaScript’s model is mainly notable for what it leaves out from
C++11, with subtle consequences. Unlike C++11, there is no stipulation that programs
with data races exhibit undefined behaviour; such programs in JavaScript simply exhibit
the behaviours allowed by the core model. As mentioned, this was a deliberate decision
made with the intent of ensuring that a malicious website could not compromise a visitor
by tricking them into executing JavaScript code containing a data race. This means that
JavaScript’s model must be sure to correctly describe many behaviours only observable in
racy programs which are not considered to have defined behaviour in C+-+11. In particular,
an issue with the JavaScript model’s intended Armv8-A compilation scheme (§5.3.2) is
the result of a racy behaviour which was not correctly modelled. Moreover, JavaScript
does not include a C++11 constraint on non-atomics known as Last Visible Side-Effect,
since this condition is only correct if data races are undefined behaviour. This leads to an
incompatibility with the C++11 model which we describe in §5.7.

We now discuss the issues found in the JavaScript model, and, where possible, their

assoclated corrections.

5.3 Correcting the JavaScript memory model

In the course of attempting to extend JavaScript’s memory model to WebAssembly, we
discovered several deficiencies in the model. Wherever possible, we corrected these errors,
and helped get them adopted as changes to JavaScript’s official specification. First, we
will discuss errors found in JavaScript’s model that were corrected, and the subsequent
verification which took place. Then, we will conclude by describing an outstanding issue

in the model which is related to the notorious out-of-thin-air problem [134].

122



X = new Int32Array(new SharedArrayBuffer[4]);
Thread 0 Thread 1
a: Atomics.wait(x, 0, 0); c: Atomics.store(x, 0, 42);
b: ro = Atomics.load(x, @); d: r1 = Atomics.notify(x, 0);

(a) wait/notify

Wi x[0-3]=0 Wi x[0-3]=0
Thread 0'""2A_hb  Thread 1 rf,hb /\_hb
al:Rsc x[0.31=0 | .f ¢ Wsc x[0..3]=42 Thread 0 Thread 1
a2: Eyake X 0 <% L d: Epoyify X 0=1 al:Rsc x[0-3]=0 e Wsc x[0-3]=42
b: Rsc x[0..3]=0 R ¢ Enotify x 0=0
(b) the interleaving a > b —-d — b (c) the interleaving ¢ — d — a (gets stuck)

Figure 5.10: These two candidate executions for are forbidden if the model adds the grey
edges.

5.3.1 Omission of wait/notify synchronisation

In addition to the memory operations previously described, JavaScript defines the thread
synchronization operations Atomics.wait and Atomics.notify. We explain these opera-
tions by way of an example program (Fig. 5.10a). All operations are to the same location
on the Shared ArrayBuffer in x. The Atomics.wait operation reads memory location 0,
and compares the result to an expected value, 0. If the expected value does not match the
read value, execution continues as normal. If the expected value matches the read value,
the thread suspends execution, placing itself in a wait queue associated with the read
location. The Atomics.notify operation of Thread 1, to the same location, will wake all
threads in the wait queue for that location. The return value of Atomics.notify is the
number of threads woken.

Intuitively, this program should always terminate, with the load of line (b) guaranteed to
read 42. If Thread 0 executes Atomics.wait first, it will suspend until both (c) and (d) have
executed, meaning (b) will not execute until 42 has been written. Alternatively, if Thread
1 executes Atomics.notify first, then it will already have executed line (c¢) and written
42 in location 0. Therefore Thread 0’s Atomics.wait should continue execution as it does
not observe its expected value. However, this intuition relies on the operations providing
ordering guarantees, through synchronization, which are not explicitly represented in the
axiomatic memory model.

Interactions with the wait queue are specified purely using an interleaving of the thread-
local semantics. The specification informally describes threads updating the wait queue
as entering and leaving a lock-like “critical section”. However, it does not describe how the
interleaved order of critical section entries affects the candidate executions permitted by
the axiomatic memory model. We correct this so that entering the critical section creates
synchronization edges in the candidate execution to all previous exits. This is in line with

the treatment of locks in C/C++11 and the monitor lock of the Java memory model.
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It also fits the informal understanding of JavaScript implementers, who reported that
they currently implement lock-like synchronization for Atomics.wait/notify [143].
These additional synchronization edges are necessary to ensure that the axiomatic
model correctly forbids intuitively disallowed executions. Fig. 5.10b shows an undesirable
execution where (b) reads 0 even though it cannot have executed until (d) notifies (a).
Similarly, in Fig. 5.10c, (a) reads 0, suspending, even if (d) records that there were
no threads notified, meaning (¢) must have already executed. We modify JavaScript’s
construction of pre-executions to ensure that the the critical section entry ordering
guarantees are explicitly represented as additional-synchronizes-with edges (given by the

dashed grey lines), ensuring that these executions are forbidden.

5.3.2 Armv8-A compilation

Shared ArrayBuffer accesses in a JavaScript program are ultimately compiled to the native
assembly accesses of the user’s architecture. These assembly languages have their own
relaxed memory models, and it is important that the compilation scheme converting
JavaScript accesses to plaform assembly accesses respects the semantics of JavaScript’s
relaxed memory model. That is, it should not be possible to write a JavaScript program
which, when compiled to platform assembly, is permitted by the assembly language’s
memory model to exhibit a behaviour which the JavaScript model forbids.

The intended compilation schemes from JavaScript accesses to x86 and Armv8-A
accesses are given in Fig. 5.2. Note that these schemes do not take into account any
compiler optimisations which may also be applied. It was an explicit goal of the memory
model’s original design that these compilation schemes should be supported, as they
are already supported by C+-+11. Stephen Dolan and I discovered that the JavaScript
model as originally specified exhibits a clear counter-example to the Armv8-A compilation
scheme. A refined version of the counterexample, found automatically through model-
checking (see §5.5) is shown in Fig. 5.11. The outcome r1 = 1, r2 = 1 is forbidden by
the JavaScript memory model, but is concretely observable in Armv8-A given the desired
compilation scheme.

The core issue with the JavaScript model that enables this counter-example is the
SC atomics condition. While intuitively it was intended to restrict the behaviour of SC
atomics, it also ends up over-constraining the behaviour of non-atomics. Consider the

following shape, which is forbidden by the SC atomics rule of Fig. 5.8.

Wsc b[i..j] Wun bli..j] Rsc b[i..j]
\/

sw!

In particular, note that the shape is forbidden even though the middle W is non-atomic.
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Thread 0 Thread 1 Thread 0 Thread 1

Atomics.st b,0,1); Atomics.st b,1,1);
OTICS s.ore( 8,15 om}cs store(b,1,1); a:Wsc b[0..3]=1 (f c: Wsc b[4..7]=1
r1 = Atomics.load(b,1); Atomics.store(b,1,2); -—
/7l = 1 b[o] = 2 b: Rsc b[4..7]=1 d: Wsc b[4..7]=2
r2 = Atomics.load(b,0); ef WU”bb[O"3]=2
/)2 =1 Swi],rfil : Rsc b[0..3]=1

(a) an outcome forbidden by JavaScript

Thread 0 Thread 1

stlr Wo,[X1] stlr We,[X3] \;hr;‘do] \;hrzfldl]
ldar W2,[X3] stlr W2,[X3] a: Wye b[0..3 =14rf/C: rel b[4..7]=1 o
// W2 =1 str W2,[X1] b: Racq b[47]z(1) d: Wil b[4..7]=2)
ldar W4,[X1] e: W b[0..3]=2
// W4 =1 prs f: Racq b[0..3]=1

(a) when the program is compiled to Armv8-A, the outcome is allowed

Figure 5.11: A JavaScript program which violates the memory model when compiled to
Armv8-A.

This shape occurs between events a, e, and f of the JavaScript execution shown
in Fig. 5.11a, and therefore the execution is forbidden. Note that no other candidate
execution can make this output observable, since alternative configurations of edges are
also forbidden by the memory model. In particular, because the event (b) reads 1, there
must be a total-order edge from (b) to the write (d). If the edge were the other way
around, (b) would not be allowed to read 1, and could only read 2 from (d), since reading
from (c) would be forbidden by the Sequentially Consistent Atomics rule. Therefore
the total-order edge from (a) to (e) is also fixed, because of total-order’s transitivity and
the fact that happens-before is a subset of total-order.

Without getting into the details of the Armv8-A memory model, the accesses corre-
sponding to events (d) and (e) are allowed by Armv8-A to occur out-of-order. If these
events are swapped in program order, then the execution is allowed as a simple sequential
interleaving of the accesses.

The fix is simple: the condition must be weakened to only apply when the middle

write is atomic. This leads to the following revised condition:

Sequentially Consistent Atomics (first revision):
VE,FE,. E, synchronizes-with F, —
1E,. E .ord = sc A (E, total-order E,) A (E,, total-order E,) A
range, (F,) = range, (E,)

w

It is possible this issue arose by uncritically importing a similar condition from a draft
version of the C++11 model [131]. In C++11, non-atomic writes are more restricted in
where they can occur: an analogous program to our Armv8-A counter-example in C++11
would have undefined behaviour (due to the presence of a data race) and therefore the

axiomatic rules do not need to explicitly forbid this shape.
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5.3.3 SC-DRF

Sequential Consistency for Data-Race-Free programs (SC-DRF) is a well-known correctness
condition for relaxed memory models, which is designed to allow programmers to reason
about a restricted subset of programs as if the memory model contains no relaxed
behaviours. It states that if a program has no “data races”, then it will only exhibit
behaviours which are consistent with a naive sequential interleaving of its operations (a
“sequentially consistent execution”). In the classic statement of the property by Adve
and Hill [130], a program is considered to have a data race if it admits a sequentially
consistent execution such that there are two accesses to the same location in different
threads, at least one of which is a write, without some explicit synchronization or strong
ordering between them (as embodied by a relation such as happens-before). If a program
can be determined data-race-free, a programmer can reason about its behaviour using the
naive sequential interleaving semantics, without needing to understand the full underlying
relaxed memory model of the language. SC-DRF is considered by many to be the desirable
correctness condition for a relaxed memory model, and has received considerable research
attention [144, 130, 132, 145|.

5.3.4 SC-DRF in C++411

C-++11 specifies its own version of “data race”, and declares any program exhibiting one
to have undefined behaviour. Its definition of data race is based on finding a race in the
consistent (according to the relaxed memory model) candidate executions of the program.
A program is considered to exhibit a data race if it admits a valid candidate execution
which contains two memory model events accessing the same location, at least one of
which is a write, and at least one of which is non-atomic, with no happens-before relation
between them. Using this definition undercuts much of the SC-DRF property’s usefulness
for abstracting away the full memory model, since a program cannot be determined
data-race-free in the C++11 sense without reasoning about its consistent executions,
according the memory model itself.

The circumstances under which a “C++11-style” definition of SC-DRF coincides with
the classic statement are subtle. C++11’s data race definition only applies when the race
involves a non-atomic, however the language also provides a number of “low-level atomics”
which do not have SC behaviours, but do not trigger data-race-based undefined behaviour.
Batty et al. [134] show that for a subset of C-++11 containing only non-atomics and SC
atomics, the two definitions of SC-DRF coincide. For a larger fragment of C+-+11, its
SC-DRF definition is known to be weaker than the classic statement [144], as a deliberate

design decision.
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5.3.5 SC-DRF in JavaScript

The JavaScript specification explicitly states its own SC-DRF correctness condition as
part of its memory model. JavaScript’s statement of SC-DRF is closely based on that of
C+-+11. As we will discuss in §5.7, we now know that JavaScript’s statement of SC-DRF
is weaker than that of C+-+11. For now, we discuss the definition of JavaScript’s stated
SC-DRF property, and the discovery and correction of errors in the model which led to a

violation of even JavaScript’s weaker property.

Two events A and B in a given candidate execution exhibit a Data Race iff:

(A.ord = un v B.ord = un v range(A) # range(B)) A
overlap(A, B) A (write(A4) v write(B)) A A # B A
—(A happens-before B v B happens-before A)

Figure 5.12: Definition of a JavaScript data race according to the standard.

5.3.5.1 JavaScript data race

The JavaScript specification formalises the property of a candidate execution having a
data race as shown in Fig. 5.12. An execution is said to contain a data race if it contains
two events where their locations overlap, at least one event is a write, and also either at
least one event is a non-atomic access, or both events are atomics which only partially
overlap. Most of this definition is identical to the data race condition defined in C++11
memory model. However, there are two main differences.

First, the C+-+11 model does not define the behaviour of mixed-size accesses. A
data race is never allowed to occur between two SC atomic accesses to the same location.
JavaScript however explicitly allows data races to occur between atomic accesses if they
only partially overlap. This is consistent with the general principle of the JavaScript
model that atomics only “act like” atomics in situations which do not involve mixed-size
behaviour. For example, matched read-write atomics create a synchronizes-with edge only
if their footprints precisely match.

Second, in C++11 the presence of a data race immediately means that the entire
program has undefined behaviour. In JavaScript, programs with data races still have
the defined behaviour ascribed to them by the axiomatic memory model, although this
behaviour may be very weak. The SC-DRF condition simply describes the “good behaviour”

of programs without these data races.
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Thread 0 Thread 1
Atomics.store(b, 0, 1); Atomics.store(b, 0, 2);
if (Atomics.load(b, 0) == 1) {
r=>b[0]; //r=2
}

Thread 0 Thread 1

a: Wsc b[0..3]=1 b: Wsc b[0..3]=2
%c; RSC b[03]=1 D 1 1
w_,d; Run b[0.3]=2—" P rf

Figure 5.13: SC-DRF violation by a JavaScript program

5.3.5.2 The SC-DRF property

The SC-DRF property as given in the JavaScript specification states that if the pro-
gram is data-race-free (that is, none of its executions contain a data race according to
Fig. 5.12), then every consistent execution of the program will be sequentially consistent
(that is, explainable as a naive sequential interleaving of the program’s accesses). In the
JavaScript model as given above, we found a simple counter-example to this property,
shown in Fig, 5.13. No sequential interleaving of the program’s accesses can explain the
model-allowed behaviour where the non-atomic access of Thread 1 reads the value 2. The
issue is that the SC' Atomics consistency condition is not strong enough. The constraint
only applies when the read-write pair of events are both atomics. However, an additional
constraint is needed where one part of the read-write pair is a non-atomic which is fully
synchronized through other means (in this case, an intervening atomic read-write pair).
Interestingly, a similar issue was discovered and corrected in an early draft of the C+-+11
model, caused by mixing non-atomic writes (caused by initialisation) with SC atomic
reads on the same location, as documented by Batty et al. [141]. We can fix the JavaScript

model in a similar way, by disallowing the following shapes:

Wsc b[i..j] Wsc bli..j] —2> Rypy b[i’..j7]
Wany bli".7] 22> Wse bli-g] 2> Rsc bli. ]
rf,hb™

Note that the former of these shapes occurs in the spuriously allowed execution of Fig. 5.13.
Combining this with the previous Armv8-A compilation fix, we arrive at the version of
the SC Atomics condition I proposed (Fig. 5.14), which was adopted by the JavaScript

standards committee.
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Sequentially Consistent Atomics (final):
VEyE,.{Ey, E.) € reads-from A E,, happens-before E, =
3E,,. E, .ord = SeqCst A E, total-order E, A E, total-order E, A
(range,, (E,,) = range,.(E,.) A E, synchronizes-with E,)

w
v (range,,(E,) = range,, (E.,) A Ey.ord = SeqCst A E!, happens-before E.)

Ew)
v (range,, (E,,) = range,(E,) A E, happens-before E,, A E,.ord = SeqCst)

Figure 5.14: Corrected SC Atomics rule as adopted into the standard.

5.4 Verifying the corrected model
We have two main verification aims.

e Prove that the revised JS model supports the desired compilation scheme to Armv8-A

e Prove that the revised JS model satisfies the stated SC-DRF correctness condition

In both cases, as our proposed changes to the JavaScript model were iterated on, these
properties were checked up to a finite bound using the Alloy model checker, before being
given a full proof in Coq once we had confidence in a final version of the proposed changes.
This process will be described below.

It is worth clarifying some limiting assumptions which were made during this section,
which mirror assumptions made by similar state-of-the-art proofs in existing work. First, all
JavaScript candidate executions were assumed to access only a single Shared ArrayBuffer,
created ahead of time. JavaScript makes strong ordering assumptions about the initial
writes performed during creation of a SharedArrayBuffer, and we cannot verify these
assumptions without a richer concurrent model of the OS than is available in existing
work. By assuming that all accesses are to the same Shared ArrayBuffer, we remove the
case where a SharedArrayBuffer is initialised concurrently with an access to another
Shared ArrayBuffer. This is somewhat analogous to the assumptions in many existing
works on platform assembly memory models that do not handle executions which alter
the virtual memory mapping or raise an exception.

Second, a minor modification is made to the way atomic Read-Modify-Write (RMW)
accesses are modelled in JavaScript. Instead of being a single event that both reads
and writes, an RMW access is modelled as a pair of separate read and write events,
which are forced to occur adjacent to each other in all relevant orderings. A single
JavaScript RMW is concretely compiled to a pair of Armv8-A load/store exclusives, and
this transformation of the JavaScript model allows the execution events associated with
the RMW to be mapped one-to-one with the events of the load/store exclusive pair. This
RMW transformation is often used when conducting proofs about the C++11 model for
the same reasons [144, 146].

Third, all JavaScript accesses are assumed to be aligned. This is guaranteed by the

commonly-used TypedArray API, but a lower-level DataView API exists which permits
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unaligned accesses to an underlying Shared ArrayBuffer. Therefore these proofs should be
understood as concerning the compilation of TypedArray accesses, rather than the more
complex DataView accesses. This assumption, combined with the RMW transformation
above, simplifies the Armv8-A proof, as regular JavaScript memory access events can
be mapped one-to-one with Armv8-A memory access events. In the case that a single
JavaScript access is not aligned, the corresponding access in Armv8-A would have to be

represented in its model by multiple bytewise events.

5.4.1 Armv8-A mixed-size model

At the time the work was carried out, no official mixed-size axiomatic model for Armv8-A
relaxed memory existed. In order to make the compilation scheme correctness proof
more tractable, Christopher Pulte developed an mixed-size axiomatic model for Armv8-A.
Below, I describe the validation of this model, which I carried out in collaboration with
Christopher. The model is given in full in Appendix A.

The two starting points for developing the mixed-size axiomatic model are the existing
Flat model [147, 148|, an operational model with mixed-size support that is part of the
rmem tool [149], and Arm’s reference model [150, 147, 151, an axiomatic specification
defined in herd [152|, without mixed-size support. The two models are based on extensive
past research on architectural concurrency for Armv8-a (and related Power), discussion
with architects, and experimental hardware testing [147, 148, 153, 154, 152, 155, 156,
157, 158, 149, 159, 160, 161, 162, 163]. Our mixed-size axiomatic model generalises the
reference axiomatic model to mixed-size programs in a way that aims to follow the Flat
model’s behaviour — Flat has been developed in collaboration with Arm and is extensively
experimentally validated, although it is beyond the scope of this work to further investigate
the correctness of Flat itself. In particular, see Alglave et al. [164] for a critique of Flat in
the context of more recent work in defining a mixed-size Armv8-A model.

In cases where Flat’s mixed-size semantics is still potentially subject to change, our
axiomatic Armv8-A model attempts to over-approximate, so that it is possible that our
model allows some mixed-size behaviours which are not currently allowed by Flat. As long
as our model is no stronger than Flat, however, any compilation scheme our Armv8-A
model supports will also be supported by the Flat model. Since we aim to use our model
primarily to investigate the compilation scheme correctness of JavaScript, this “no stronger
than Flat” property is what we focus on experimentally validating, using an extensive
corpus of tests.

In Pulte et al. [147], the uni-size axiomatic and Flat operational model were hand-
proved equivalent (for uni-size input programs). Formally proving a correspondence
between mixed-size Flat and our mixed-size axiomatic model would be a substantial

effort in its own right: extending the axiomatic model to mixed-size accesses breaks some
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assumptions made by the existing proof. Extending the proof is beyond the scope of
this thesis, and further work still needs to be done in order to find axiomatic rules that
are precisely equivalent to Flat. However, we believe that our approach of generalising
an existing uni-size axiomatic model, combined with extensive validation, represents an
important first step in solving this more general problem.

The experimental validation is based on the corpus of litmus tests from prior work
on Armv8-A (the majority systematically generated with diy [163|, and including hand-
written tests used in Flur et al. [148, 153|). We run the Flat model on this test suite and
enumerate, for each test, the set of all behaviours allowed by Flat. We instrument the Flat
model to generate, for each such possible outcome, the candidate execution corresponding
to the operational model’s trace. We log the candidate executions, and feed them into our
Alloy implementation of the Armv8-A axiomatic model (see §5.5) to ensure the soundness
of the axiomatic model: that it allows each such Flat-allowed execution.

The litmus test suite we rely on contains 11,587 litmus tests. We run the tests on a
Ubuntu 18.04.2 POWERY9 machine (160 CPUs at 2.9GHz, 125GB ram) with no memory
limit and a 168 hour time limit. Of the 11,587 tests, 11,578 successfully run to completion
in Flat (2635 mixed-size and 8943 non-mixed-size). For the 9 tests where Flat does
not complete, 3 are due to instructions currently unsupported by Flat, 4 running out
of memory, 1 running out of time, and a final test crashing with an unspecified error.
The 11,578 tests where Flat successfully completes generate a total of 167,014 candidate
executions. We run the mixed-size Alloy-based Armv8-A axiomatic model (§5.5) on these

and confirm that it allows every such Flat-allowed execution.

5.5 Alloy verification

For the SC-DRF and Armv8-A compilation issues described in §5.3.3 and §5.3.2, we define
the JavaScript and mixed-size Armv8-A models in the Alloy model checker [11], allowing
us to compare the two models and investigate whether individual litmus tests are allowed
by the models. This approach was first used by Wickerson et al. [165]. While they took
existing uni-size models, written in herd [152], and automatically converted them to Alloy,
we directly transcribe the JavaScript (corrected and uncorrected) and Armv8-A models
into Alloy by hand. Alloy’s syntax supports arbitrary first-order predicates, so the models
can be faithfully reproduced.

5.5.1 Armv8-A search

We are able to use these Alloy models to test that our hand-found counter-examples are
real (i.e. that the execution is disallowed in JavaScript but the related execution is allowed

in our Armv8-A model). In addition, following the approach of Wickerson et al. [165], we

131



are able to use Alloy to automatically find smaller counter-examples than we were able to
find manually. Our smallest hand-discovered counter-example for the Armv8-A violation
required 8 events and 3 byte locations; Alloy finds a counter-example with 6 events, 2
byte locations (Fig. 5.11).

In this search, we are looking for counter-examples to the Armv8-A compilation scheme.
Such a counter-example is an execution Ezecjs of a JavaScript program Prog;s that is
invalid according to the JavaScript memory model, but which corresponds to an execution
FExecarn of a program Progagy obtained by compiling Prog;s to Armv8-A, and where
FExecary is allowed by the Armv8-A concurrency model.

To this end, as is done by Wickerson et al. [165], we define a translation relation on
candidate executions. Intuitively this should relate a JavaScript execution Fzecyg with an
Arm execution Ezecary if Frecys and Execary are executions of the programs Prog ;s and
Prog arm, respectively, such that Progj;s compiles to Progarwm, and FErecys and Erecarum

have the same observable behaviour. We define a translation relation, that:

e is compatible with the compilation scheme:
events in Ezecjg arising from JavaScript accesses are related to events in Frecarw

arising from the compiled Armv8-A accesses;

e is compatible with the program structure:
it preserves sequenced-before edges (maps JavaScript sequenced-before edges to the

matching program-order edges in Armv8-A);

e preserves the observable behaviour:

preserves reads-byte-from between Erecjs and Erecarwu.

We give the event-to-event mapping of this translation below; we omit the (unsurprising)
details of the mappings on relations of the candidate executions here, but give the full
definition in the supplemental material [16]. The event mapping is one-to-one, bearing in

mind the transformation discussed above, where the JavaScript RMW event is split in

two.

Instructions Events
JavaScript Armv8-A JavaScript ArmvS8-A
A-load ldar Rsc Racq
A-store stlr Wse Wiel
= blk] ldr Run R
blk] = str Win W
A-.exchange ...ldaxr/stlxr ... RMWg Re-a sb W,

Our Alloy counter-example search looks for a JavaScript candidate execution Ezec;s
and an Armv8-A candidate execution Ezecary, both well-formed, such that they are
related by the translation relation, and Ezecary is valid in Armv8-A, but Ezecjs invalid

in JavaScript.
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5.5.2 Finding counter-examples

For the uncorrected JavaScript model, we would like our search to produce counter-
examples similar to Fig 5.11. However, naively searching as described above yields
spurious counter-examples. An example is shown in Fig 5.15. This pair of executions
satisfies the constraints of our search as specified so far: an invalid JavaScript execution,
translation-related to a valid Armv8-A execution. The uncorrected JavaScript here forbids
the execution, because it exhibits the forbidden shape of §5.3.2. However, this counter-
example is spurious, as a different choice of total-order would make the execution allowed
by flipping the edge from (a) to (b). Any program exhibiting this candidate execution
will not be a real counter-example, because it will also exhibit the candidate execution

with the correct total-order, which is observably equivalent.

Thread 0 Thread 1

a: Wgc b[0..3]=n b: Wyn b[0..3]=m
:fH\C: Rsc b[0..3]=n

Thread 0 Thread 1

a: Wyl b[0..3]=n <£2—b: W b[0..3]=m
rf! ¢ Racq b[0..3]=n

Figure 5.15: False counter-example from naive search.

The problem illustrated by this example is due to the mismatch in the data of Armv8-
A and JavaScript candidate executions: assuming a particular Armv8-A execution, the
translation relation together with the well-formedness conditions constrains the relations
of a corresponding (translation-related) JavaScript execution, except for its (existentially
quantified) total-order component. Hence the naive counter-example search will simply
pick a “bad” total-order, that is inconsistent with other relations of the JavaScript execution.
We are only interested in counter-examples where the JavaScript execution cannot be made
valid simply by permuting total-order. Wickerson et al. [165] describe counter-example
executions satisfying this requirement as having the deadness property.?

A way of guaranteeing “good” counter-examples (that are dead) would be specifying
the search as the question: “does there exist a valid Armv8-A execution Fzrecary, such
that there exists a JavaScript execution Fzecjs, that is translation-related to Frecary and
such that Fzxecjs is invalid in JavaScript for all choices of total-order?” Since this Alloy
search is computationally infeasible, we use the syntactic deadness criterion of Wickerson
et al. [165]. This is a syntactic condition on candidate executions that approximates
execution deadness in a way that is computationally feasible to check, but which may

discard some legitimate counter-examples.

2Such executions are “dead” in the sense that they “cannot move around”.
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For JavaScript, any condition that guarantees that candidate executions differing only in
their total-order are required to preserve Wj. total-order W,,,, and W,,, total-order Ry edges,
is sufficient to guarantee deadness (we verify this in Coq, based on the model in §5.6).
Note in particular that the “counter-example” of Fig. 5.15 does not satisfy this condition,
as the total-order edge from (a) to (b) can be inverted to create a valid execution. Defining

such a search, we successfully find the counter-example in Fig. 5.11.

5.5.3 Bounded compilation scheme correctness

With the JavaScript model fixed as detailed in §5.3, we use Alloy to confirm that no
counter-examples exist up to a bound (8 distinct events, 20 locations). This also gives us
the opportunity to test proof strategies in preparation for our Coq proof of compilation
scheme correctness (§5.6). In that proof, we must show that for any Armv8-A-allowed
execution a valid related JavaScript execution exists, which requires constructing a
witnessing total-order relation. We model checked our idea for this construction: making
total-order some linear extension [166] of sb U (obs N (L U A)?), where obs N (L U A)?
is Armv8-a’s observed-before relation restricted to release-acquire atomics (see the model
definition in Appendix A). With total-order constrained in this way, model checking even
without the syntactic deadness approximation shows the absence of compilation scheme

counter examples up to the search bound.

5.5.4 SC-DRF search

We are also able to automatically find counter-examples for (the JavaScript model’s version
of) SC-DRF in the uncorrected model. We use the same search bound, and again we must
use our syntactic deadness condition to remove spurious counter-examples. We find the

counter-example of Fig. 5.13.

5.6 Coq verification

We mechanise the JavaScript model, as shown in Figs. 5.6 and 5.8, in Coq. See the
supplemental material [16] for the precise mechanisation.

The mechanisation is built on top of the existing Intermediate Memory Model (IMM)
framework [146], which carries out a number of compilation scheme correctness proofs
between different relaxed memory models. Since this work was not carried out in Is-
abelle/HOL, it is incompatible with our existing mechanisation of sequential WebAssembly
(Chapter 3). This is unfortunate, but without the IMM the proofs described below would

have been far more challenging and time-consuming to accomplish.
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5.6.1 SC-DRF

We first prove that our corrected model is SC-DRF in the sense defined in §5.3.3, mecha-
nising a previous hand-proof by Watt et al. [13]:

Lemma 5.1 (internal_sc_drf) All well-formed, valid, data-race-free executions in the

revised JavaScript model are sequentially consistent (taking the model’s own definition).

5.6.2 Compilation scheme correctness

We now prove compilation scheme correctness, from the revised JavaScript model to our
Armv8-a model. As mentioned in §5.4, a limitation of this proof is the assumption that
all accesses have been generated by typed arrays (i.e. are aligned). This simplifies the
proof, since unaligned Arm accesses must be split into separate bytewise events [148].
We build our proof following the style of other proofs in the IMM framework [146]. As in
this work, the proof proceeds by defining a “base execution” that is shared between the two
models (i.e, intra-thread program order and reads-byte-from), and then showing that, for
any such execution, validity in the Armv8-a model implies validity in the JavaScript model.
As an intermediate lemma, we must prove that, given an allowed Armv8-A execution, it is
possible to construct a witnessing total-order relation for an allowed JavaScript execution.
We achieve this proof using the construction we model-checked as part of §5.5.3. The
initial model-checking allowed us to rapidly validate possible constructions; it would have

been far more time-consuming to come up with a correct construction from scratch.

Lemma 5.2 (jsmm_compilation) The compilation scheme from the revised JavaScript

model to (mized-size) Armuv8-A preserves execution validity.

5.7 Outstanding issues in JavaScript

The JavaScript memory model was explicitly designed to support the compilation of
C/C++ to the asm.js subset of JavaScript. It is therefore expected that C/C++'s
concurrency primitives map soundly to those of JavaScript. However, there is a counter-
example, which highlights an issue in the JavaScript model with the following three

inter-related consequences, which will be explained below in further detail:

e Thin-air behaviour
e Invalidity of C++11 compilation scheme

o Weakness of SC-DRF definition

135



Wha x=0 T Wha y=0

sb,hb
x=0; y=0; Thread 0  asw.hb asw,hb  Thread 1
Thread 1 Thread 2 R xel Ro. vei
if (x == 1) if (y == 1) na ¥ na ¥
y =1 x =1 tsb,hb \sb,hb
rf rf
Wna y=1 Wna x=1

Figure 5.16: A simple C program made up of non-atomic accesses, together with an
inconsistent candidate execution in which the program terminates with the outcome x==1,

y:: .

atomic_init(x, 0);  atomic_init(y, 0);

Thread 1 Thread 2
if (x.load(memory order relaxed) == 1) if (y.load(memory order relaxed) == 1)
y.store(1, memory order relaxed); x.store(1, memory order relaxed);

Wna x=0 —_— Wna y=0

sb,hb
Thread 0 asw,hb asw,hb Thread 1
Rrix x=1 Rrix y=]
{sb,hb Jsb,hb
rf rf
erx y:‘l erx x=1

Figure 5.17: The program of Fig. 5.16, except with relaxed atomic accesses. In this
example, the execution is consistent.
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To explain, we must first give more background on the behaviour of the C++11
memory model. Consider the simple C program of Fig. 5.16, which has been previously
discussed by Boehm and Adve [131], and its associated execution exhibiting a self-
satisfying conditional [134]. Under the classic statement of SC-DRF (see §5.3.3), this
program contains no data races, and should therefore exhibit only sequentially-consistent
behaviour. Intuitively, because x and y are initially set to 0, the program should terminate
without executing the body of either conditional, with the outcome x==0, y==0.

If the candidate execution of Fig. 5.16 were consistent, the program would be spuriously
considered to have a data race, based on the C++11 definition (see §5.3.3). To prevent
this, C++11 model requires that non-atomics may only read from the most recent write
to the same location which happens-before themselves. This is known as the Last Visible
Side-Effect rule. This renders the candidate execution of Fig. 5.16 inconsistent, as desired,
since for each read the only write which happens-before it is the initializing write of 0. The
program is therefore data-race-free under C++-11’s definition, and has defined behaviour.
The Last Visible Side-Effect rule can only be included in the C++11 model because any
otherwise consistent candidate execution containing a non-atomic read which reads from
a write which is not happens-before itself must necessarily contain a C++11 data race,
and therefore have undefined behaviour.

Unintuitively, if the non-initialisation accesses of Fig. 5.16 are instead relaxed atomics,
as depicted in Fig. 5.17, the candidate execution is allowed. Because the Last Visible Side-
Effect rule no longer applies, and the program is no longer considered to have a C++11
data race because no non-atomics are involved, this undesirable outcome becomes defined
behaviour. This deficiency in the model, the existence of so-called thin-air executions,
is known as Out-Of-Thin-Air (OOTA) problem and has received considerable research
attention [134, 136, 144, 137, 135]. The Last Visible Side-Effect rule cannot be extended
to also constrain relaxed atomics. This would incorrectly forbid a number of concretely
observable executions: the whole point of atomic accesses is that they can legitimately
occur concurrently in a program without explicit synchronization between them. In fact,
it has been shown that, for a model in the style of C++-11, expressed purely in terms of
axiomatic constraints applied separately to each candidate execution (a per-candidate-
ezecution model), there are no expressible constraints which discard all OOTA executions
while allowing legitimately observable ones, given the desired compilation schemes and
compiler optimisations when compiling C/C++ to platform assembly. This result has
been succinctly summarised as “the thin-air problem has no per-candidate-execution
solution” [134].

As discussed by Lahav et al. [144], the permitted execution of Fig. 5.17 violates an
interpretation of the classic SC-DRF property where C+-+11’s relaxed atomics as being
like any other non-synchronizing access for the purposes of causing a data race.

While the JavaScript model is heavily based on that of C+-+11, as discussed above, it
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cannot declare data races to be undefined behaviour. JavaScript is thus unable to adopt a
Last-Visible Side-Effect constraint like that of C++11. The language instead adopted a
“super-relaxed” semantics which straddles a line between C++11 non-atomics and relaxed
atomics. Like C++11 relaxed atomics, JavaScript non-atomics allow data races and do
not obey a Last Visible Side-Effect condition, although in contrast to C++11 relaxed
atomics they obey no per-location-coherency axioms [141]. When the C++11 program
of Fig. 5.16 is compiled to JavaScript according to the standard compilation scheme, as

depicted in Fig. 5.18, the thin-air execution is permitted.

b = new Int8Array(new SharedArrayBuffer(..));

Thread 1 Thread 2
if (bfx] —— 1) i (bly] —— 1)
bly| = 1; blx| = 1;
Wi b[..]=0
Thread 0 asw,hb asw,hb Thread 1
Run b[x]=1 Run b[y]=1
Jsb,hb lsb,hb
rf rf

Wun b[Y]=1 Wun b[X]=1

Figure 5.18: The program of Fig. 5.16, as it might be compiled to JavaScript. Variables
(assumed here to be chars) become indices into a SharedArrayBuffer. The execution is
consistent according to JavaScript’s relaxed memory model.

5.7.1 Consequences

Compilation from concurrent C/C-++ to JavaScript/WebAssembly is based on an unsound
compilation scheme, and due to the characteristics of the OOTA problem, any fix must
involve a revised JavaScript model which is not purely per-candidate-execution. This does
not imply that any errors will be concretely observable as a result of compilation: C/C++
accesses compiled through JavaScript will be ultimately compiled to platform assembly
which is at least as strict as platform assembly generated through direct compilation
from C/C++. It is also vanishingly unlikely that JavaScript toolchains implement any
re-ordering optimisations which are not already applied to C/C++ by GCC and Clang.

This puts the JavaScript model in the same position as C++11: waiting for a new
iteration of the model to be developed which is not purely per-candidate-execution. One
might reasonably hope that whatever solution is adopted by C++11 to rid relaxed atomics
of their OOTA behaviour can be adapted to describe JavaScript and WebAssembly’s
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non-atomics in a formally satisfying way. Such models are an active area of research [136,
137, 138, 167, 168|. The model of Paviotti et al. [168| in particular can be phrased as an
additional series of conditions on top of a fragment of the existing C+-+11 model, making
it an attractive candidate for fixing the JavaScript model with relatively few changes.
As a related point, this means that the JavaScript specification’s statement of SC-DRF
is weaker than it should be. Because the thin-air execution of Fig. 5.18 is permitted, the
program is considered to exhibit a data race according to the JavaScript definition, and
is therefore allowed to exhibit a non-SC behaviour without violating JavaScript’s stated
version of SC-DREF. For the JavaScript model to satisfy the classic statement of SC-DRF,
this program should not exhibit a data race, and should always be sequentially consistent.
Clearly in any real implementation, the non-SC execution is not allowed, but as discussed

above there is no way to correct this issue with the current per-candidate-execution model.

5.8 Extensions for WebAssembly

WebAssembly’s core concurrency primitives are identical to those of JavaScript (see
Fig. 5.2). This was a deliberate design decision made in order to ensure their seamless in-
teroperability. Given this, we have to be pragmatic when designing WebAssembly’s relaxed
memory model. Many of its behaviours are fixed by the existing JavaScript model. The
only delta between JavaScript and WebAssembly’s concurrency capabilities is the latter’s
addition of the memory.grow instruction, which allows the shared buffer to dynamically
grow in size. Therefore, the WebAssembly-specific parts of the model focus on defining
this behaviour. During the informal design of WebAssembly’s concurrency extension, it

was intended for memory growth to have a sequentially consistent semantics [139].

store x 42 || load y
grow 2 load x

Figure 5.19: Psuedocode representing a race caused by memory growth. Index y is
out-of-bounds before the grow, but in-bounds after.

However, we observe that real-world compilation schemes have a much weaker semantics.
In particular, consider the abstracted example of Fig. 5.19. This is a standard Message-
Passing (MP) test, except the “flag” indicating the message is ready to be read is replaced
with a memory growth and implicit bounds check. The memory location y is outside the
bounds of memory before the growth of the first thread, but in-bounds afterwards. In a
sequentially consistent model, if the read of y in the second thread succeeds without a

out-of-bounds trap, then the grow of the first thread must have executed, and therefore
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the previous write of 42 to x must have executed. Therefore, the subsequent read of x in
the second thread must read 42.

To determine WebAssembly’s model of concurrent memory growth, the question must
be asked: is a weaker outcome possible in a realistic implementation? For example, can
the read of x in the second thread read 0?7 To determine whether this is possible, we

examine two desirable compilation schemes for memory growth.

5.8.1 Implementation of memory.grow
5.8.1.1 Explicit

On mobile and 32-bit devices, a naive implementation is often used, where every access is
compiled with an explicit bounds check. The shared memory is initially allocated with
extra space beyond what is programmatically accessible. A “length” value is kept track of
(like a global variable). Regular WebAssembly memory accesses are implemented by first
explicitly bounds-checking against this length value using a regular platform assembly
load. The memory.grow instruction is implemented as an atomic increment of the length
value. If the length would be incremented beyond the pre-allocated memory size, the
operation fails (remember that WebAssembly’s semantics allows memory.grow to fail
non-deterministically).

Fig. 5.20 represents the program of Fig. 5.19 implemented in this way. Bounds checks
are performed as regular accesses. The Armv8-A memory model allows this program to
exhibit a relaxed behaviour, where the bounds check of y in the second thread succeeds,
but the read of x observes 0. This demonstrates that WebAssembly’s memory growth
semantics cannot be sequentially consistent. Moreover, it is currently possible to optimise
away such bound checks altogether. For example, if it were known that x <=y, then
the final bounds check of the second thread could be optimised away. This also provides
intuition that the bounds checks themselves cannot be relied on as a source of ordering

constraints /synchronisation.

len len+2x64K

if len <= x then trap if len <=y then trap

store x 42 F:af y i
atomic{| len := len + 2 |} 1 en <= x then trap
load x

Figure 5.20: Psudocode representing an explicit bounds checking implementation strategy
for Fig. 5.19.
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5.8.1.2 Trap handler

Clearly requiring each WebAssembly memory access to perform an explicit bounds check is
not ideal performance-wise. A more optimised implementation exists for 64-bit machines,
taking advantage of OS-level page protection. This approach is used by the Web engines V8
(Chrome) and SpiderMonkey (Firefox). WebAssembly memories are accessed using 32-bit
indices. When a shared memory is allocated on a 64-bit machine, it is possible for the
whole 32-bit virtual address space of the memory to be reserved®. Address ranges beyond
the bounds of the current programmatically-accessible memory are read/write-protected.
WebAssembly accesses are then implemented as bare assembly accesses. If an access
occurs beyond the current WebAssembly memory bound, a page protection fault occurs.
An installed trap handler catches this fault and converts it back into a WebAssembly-level
trap. This implementation has the advantage that no programmatic bounds checks are
required. However, this approach is only possible on 64-bit platforms.

Fig. 5.21 represents this implementation strategy. In contrast with Fig. 5.20, memory
accesses are not guarded by bounds checks. Instead, accesses beyond the bounds of the
memory will cause a page protection fault. We are currently not able to reason formally
about this implementation, as research on relaxed behaviours of the page table/excep-
tions/the OS has not yet reached the necessary level of sophistication. However, it does
provide further intuition that the “bounds checks” of memory accesses, even atomic ones,
cannot be expected to be implemented in a way that supports strong ordering constraints

in the model.

len len+2
X y
protected...
store x 42 load y
unprotect len..len+2 load x

protection_trap_handler:
clean up, create wasm-level trap

Figure 5.21: Psudocode representing a bounds checking implementation strategy for
Fig. 5.19 based on page protection.

3Note that reserving virtual memory is an inexpensive operation which does not commit the addresses
into main memory (RAM).
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5.8.2 The model

The initial informal design of WebAssembly threads intended for memory growth to have
sequentially consistent behaviour [139]. However, it quickly became clear to us when
writing the formal model that this would not be possible, given the desired implementation
schemes described above. Because memory access bounds checks are implemented either
using bare assembly accesses, or elided entirely in implementations, we are naturally led
to modelling them as non-atomic accesses. Loads and stores are modelled as carrying
out an additional Unordered access to a distinguished length location. The memory.grow
instruction is modelled as an SC atomic RMW on the location, while memory.size
is modelled as an SC atomic read. This means that explicitly checking/changing the
length of memory through memory.size/grow will still cause a synchronisation (with
the last grow), and implementations need to ensure they perform the correct barriers
to enforce this. This formalisation essentially blesses the explicit non-atomic bounds
checking approach of §5.8.1.1 within the formal model. As mentioned above, we cannot
currently formally verify the correctness of the trap handler approach, although the lack
of synchronisation on access bounds checks fits our expectations.

The execution of a memory instruction now involves multiple concurrent operations
in a single step. To model, this, we generalise JavaScript’s events so that a single event
can now contain multiple actions over separate locations (Fig. 5.22). For example, an
atomic.store will generate an event with two actions: one reading from the length location
with un consistency, and one reading from the buffer with sc consistency.

The execution witness must be similarly generalised so that reads-byte-from records
the loc on which a read is taking place; either a regular read of memory denoted by data,
or a read of the memory length denoted by len. The derived relations reads-from and

synchronizes-with are also parameterised in this way — definitions are given in Fig. 5.23.

loc = len | data

action == { ord 2 mode, reads :: list byte,
writes :: list byte, index :: nat,
tearfree :: bool }

event == { action :: loc — action }iq

Figure 5.22: WebAssembly events. Compare to the JavaScript events of Fig. 5.4.
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witness = { reads-byte-from // rbf :: set (loc x nat x event x event),
total-order // ;0 set (event x event) }

(E.action(l))  E.ord' = Eaction(l).ord  reads-from // rf =
I, A, By | 3k.{l,k, A, B) € rbf}

rangelrl »(E) = range

w
synchronizes-with // sw =
(I, A, By € tf A B.ord" = SeqCst A
{ {, A, B) ‘ <(rangeiU(A) = rangel.(B) A A.ord' = SeqCst) \/> }
(VC. (1, C, By e rf— Cord' = Init)

happens-before // hb =

sb U sw(len) U sw(data) U asw U +
{ (A,B)| A.ord" = Init A overlap'(4, B) }

Figure 5.23: WebAssembly execution witness and derived relations

5.9 Related work

5.9.1 Language-level relaxed memory

Many of the conventions used by modern source-language relaxed memory models are
drawn from the work of Adve and Hill [130], which first defined the SC-DRF correctness
condition. Subsequently, several attempts were made to define a memory model for
Java [169, 170, 171], but the ultimately adopted model was soon shown not to match im-
plementation reality [172]. The C+-+11 model [131, 141] aimed to avoid known deficiencies
in the Java model — by declaring all non-atomic data races as undefined behaviour, many
unfortunate corner-cases of the Java model could be avoided [173, 172|. However, such
data races are often necessary to implement efficient concurrent algorithms, so C++11
introduced a family of so-called low-level atomics with different ordering behaviours
which were allowed to race without causing undefined behaviour, but were intended to be
more strongly ordered than non-atomics. The semantics of some of these atomics caused
significant issues: the consume ordering was essentially abandoned due to implementation
difficulty [174], and the specification of the relaxed ordering led to the thin-air problem,
one of the most notorious issues still plaguing the field [134].

Nevertheless, the C++11 model was a seminal work, and has been adapted for several
other languages (including JavaScript, as detailed in this chapter). The OCaml memory
model [132| adapts C++11 but avoids its issues by committing to a more expensive
compilation scheme and fewer compiler optimisations for mutable state. This is a trade-off
that OCaml can make because such mutable state occurs comparatively rarely in its
programs. A new iteration of the Java model [133] is also based on C+-+11, although
like JavaScript it attempts to give defined behaviour to racing non-atomics, resulting in

thin-air issues analogous to those discussed in §5.7.
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Another strain of research has attempted to define a new model for the accesses
of C+-+11 which avoids thin-air behaviours. The RC11 model [144] prevents thin-air
behaviours in relaxed atomics at the cost of requiring the insertion of extra instructions after
each load (either a never-taken branch to create syntactic control dependencies, or a barrier)
on certain architectures. The promising semantics [136, 138] aims to avoid the issues with
axiomatic models by defining an operational one, although it has recently been discovered
to exhibit its own thin-air behaviours [167]. More recent work has proposed models
which compare semantic dependencies across multiple executions to permit “dependency
breaking” optimisations while disallowing thin-air behaviours [167, 168].

The (uncorrected) JavaScript model has been previously modelled in Alloy by Mattarei
et al. [175]. This work found definition-level errors in an earlier draft of the model (such
as the model allowing an RMW event to read from itself). Their EMME tool used this
Alloy model to generate the allowed executions for small provided programs. Their work
did not concentrate on a qualitative assessment of the model’s properties and therefore
did not identify the issues we discuss above. While we also use Alloy, we found it easier
to define our own model from scratch to fit the approach of MemAlloy [165], as opposed
to adapting their model for this purpose.

Based on our corrected model, some initial work has been done in verifying JavaScript
compiler optimisations [176].

Almost no existing work deals with mixed-size behaviours at the source-language-level.
Flur et al. [148] propose an extension to the C++11 model to handle mixed-size non-
atomics and give a sketch proof of compilation correctness to their mixed-size POWER

architecture model.

5.9.2 Architecture-level relaxed memory and compilation

Language-level relaxed memory models abstract both the action of the compiler, and the
underlying relaxed behaviour of the target architecture. The relaxed behaviour allowed at
the architecture level itself has been extensively studied [177, 178, 179, 180, 145, 181, 182,
183, 184, 185, 186, 187, 159, 188, 189, 190, 191, 192]

In particular, the especially relaxed models of the modern Armv8-A and POWER
architectures are recent subjects of active research and industry iteration [159, 153, 142,
151]. Some work has been done on the mixed-size behaviours of these architectures [148],
and of the instruction fetch semantics of Armv8-A [193]. Since the publication of our
Armv8-A axiomatic model, research on an Arm-official mixed-size axiomatic model has
been published [164| which includes specific comparisons to our work and Flat.

Hand-proofs of compilation scheme correctness between a language-level and architecture-
level relaxed memory model are often attempted, but sometimes stumble on edge-cases.

For example a purported proof of compilation scheme correctness from C-+-+11 to
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POWER [140] was later found to false [194, 144]. We ourselves originally claimed to pro-
vide a proof sketch of compilation scheme correctness from C++11 to WebAssembly [13],
despite the existence of a clear counter-example (§5.7). The paper has now been cor-
rected [14]). Mechanised verification of compilation scheme correctness is far less common.
CompCertTSO [195] builds on CompCert [54] to mechanise a proof of compilation cor-
rectness of a significant subset of the C language to a TSO model. The Intermediate
Memory Model (IMM) framework defines a unifying mechanised proof infrastructure which
connects multiple source-level memory models with underlying architectural models [146].
We build on it to prove various results about the JavaScript model, as discussed in §5.6.2.
The MemAlloy project [165] conducts exhaustive counter-example searches of compilation
schemes up to a bound for models expressible in the cat format [152|, and has succeeded
in automatically reproducing several compilation scheme correctness bugs which were

originally found by hand with great effort.

5.10 Future work

Clearly, as discussed in §5.7.1, the underlying thin-air issues of the JavaScript model need
to be fixed. The approach of Paviotti et al. [168| is under consideration for adoption into
the C++ specification. If successful, their treatment of C+-+ relaxed atomics will likely
provide a blueprint for a revised definition of JavaScript’s non-atomics, to address the
current issues discussed in §5.7.

We would also like to be able to verify the correctness of the trap-handler WebAssembly
bounds checking implementation (Fig. 5.21). As discussed above, this would require more
sophisticated models of exceptions, page tables, and related OS behaviour. Some initial
steps have been taken in these areas [193, 196].

We still lack a published mixed-size relaxed memory model of x86 accesses. This will be
a necessary step for proving compilation correctness from the full JavaScript/ WebAssembly
model to that platform.

It is likely that performance pressures will lead WebAssembly to specify additional
(more relaxed) low-level atomics in the style of C++11. It is crucial that any short-term
additions to the language still leave the door open for future improvements to the relaxed
memory model.

In future, it would be valuable to extend the Isabelle/HOL mechanisation of sequential

WebAssembly (Chapter 3) with our relaxed memory model.
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Chapter 6
Conclusion

The World Wide Web is a ubiquitous and essential part of modern-day life, and great
care must therefore be taken in designing the technologies underpinning it. The fact that
WebAssembly has been designed so closely around a formal specification demonstrates a
growing appreciation in industry of the value of this approach.

While it is admirable that WebAssembly’s designers were able to produce a pen-and-
paper formal semantics, my work shows that mechanisation offers a level of confidence
in the correctness of the specification which cannot be achieved through purely hand-
written definitions. Because I was able to offer my input during the drafting of the
published specification, a number of errors and omissions were discovered at an early
stage. My mechanised proof of WebAssembly’s type soundness property, in Isabelle/HOL,
is now cited by the official specification as evidence of the correctness of the language’s
design. WebAssembly continues to evolve, and my work on CT-Wasm shows that my
mechanisation can be used to motivate the correctness of proposed extensions to the
language.

The in-progress threads feature, which introduces relaxed memory behaviours to
WebAssembly, represents a major complication for the language. My work on the inter-
related JavaScript and WebAssembly relaxed memory models ultimately aims to provide
assurance that the formal specification of the WebAssembly threads feature is correct.
While significant progress has been made through correcting errors in the JavaScript
model, and pinning down the unique aspects of the WebAssembly model, there is still

much to be done before this goal is reached.
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Appendix A

Armv8-a relaxed memory model

This is the Armv8-a mixed-size axiomatic memory model defined by Christopher Pulte

(see §5.4.1).

mode 1=

ReadAcquire
ReadWeakAcquire
WriteRelease
DMB.SY
DMB.LD
DMB.ST

ISB

ReadAcquire and WriteRelease correspond roughly to sequentially consistent atomics.

DMB and ISB are barriers which are not used by JavaScript’s Armv8-a compilation scheme.

addr =

event =

erec =

« ... an infinite set of abstract names

{ ord : mode
index : nat
reads . list byte
writes . list byte

{ evs . set event
W . event

program-order // po
reads-byte-from // rbf

bytewise-coherence // cob

address-dependency-pre // addrP :

data-dependency-pre // dataP
control-dependency-pre // ctrlP

read-modify-write // rmw
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. set

. set

. set (nat x event x event)
. set (nat x event x event)

. set (nat x event x event)

set (event X event

event x event

(
(
(
(
(
(

)
)
event x event)
)

. set (event x event) }



The Armv8-a execution follows the JavaScript mixed-size approach of defining a
bytwise reads-byte-from relation between events. The unique components of the Armv8-a
execution are the syntactic dependencies address-dependency-pre, data-dependency-pre,
control-dependency-pre, and the read-modify-write relation. The address-dependency-pre
dependency relates a read event to a subsequent (program-order-later) memory access with
an address which is computed using the value of the read event. The data-dependency-pre
dependency relates a read event to a subsequent write event which writes a value computed
using the value of the read event. The control-dependency-pre dependency relates a read
event to a subsequent write event, where there is a conditional control flow instruction
program-order-before the write with a conditional which is computed using the value of the
read event. The read-modify-write relation relates pairs of successful load /store exclusives.
Note that JavaScript memory model does not track address, data, or control dependencies,
and therefore the compilation correctness proof does not rely on any contraints in the
Armv8-a model which depend on these relations.

Following herd [152], we define relational composition “;” and the identity relation “[A]”
on a set A:

R;S ={(A,B)| 3C.(A, C>e R A{C,B)e S}
[E] ={(E, E) | E€ A}

Then, [A]; R;[B] is the relation R restricted to elements from A on the left and elements
from B from the right:

[A]; R;[B] = {{a,b) | {a,b)e RAnae AAbe B}

Derived auxiliary relations (with respect to a candidate execution)

{(4,B) [ (A, B) e po v (B, A) € po}

{(A, B) | 3k.{k, A, B) € reads-byte-from}
{(A, By | 3k.{k, A, B) € bytewise-coherence}*

reads-from N same-thread

[

same-thread // sthd
reads-from // rf

coherence // co

II>

Il

II>

reads-from-internal // rfi

I

reads-from-external // rfe = reads-from\reads-from-internal

I

coherence-internal // coi coherence N same-thread

II>

coherence-external // coe = coherence\coherence-internal
bytewise-from-reads // frb =

{(k, A, B) | 3C.{(k, C, A) € reads-byte-from A {k, C, B) € bytewise-coherence}*
{(A, By | 3k.{k, A, B) € bytewise-from-reads} "

from-reads-internal // fri & from-reads N same-thread

Il

from-reads //

Il

from-reads-external // from-reads\from-reads-internal

Il

po-same-byte-location // polocb
{(k, A, B) | (A, By € po A k € range(A) A k € range(B)}
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R ={F| Ereads # [|}
W ={E| E.writes # [|}
A ={F| E.ord = ReadAcquire}
Q ={F| E.ord = ReadWeakAcquire}
2{F| E.ord = WriteRelease}
DMB.SY ={E| E.ord = DMB.SY}
DMB.LD ={E| E.ord = DMB.LD}
DMB.ST ={E| E.ord = DMB.ST}
ISB ={E| E.ord = ISB}
B =DMB.SY u DMB.LD u DMB.ST u ISB

address-dependency // addr =[R]; addrP
data-dependency // data =|[R];dataP
control-dependency // ctrl =[R]; ctrIP

coherence-after // ca =co u

observed // obs =rfe U fre U coe

dependency-ordered-before // dob =addru
datau
(ctrl; [W])u
((ctrl U addr; po); [ISB]; po; [R])u
(addr; po; [W])u
((ctrl U data); coi))u
((addr u data); rfi))

atomic-ordered-before // aob =rmw u (rmw; [W]; rfi; [A U Q])
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barrier-ordered-before // bob =po; [DMB.SY]; pou
([L]; po; [A])u
[R]; po; [DMB.LD]; po)u
[A v QJ;po)u
[W]; po; [DMB.ST]; po; [W])u

po; [L])u
po; [L]; coi)u

(
(
(
(
(

initial-ordered-before // iob ={(IW, E) | E € EV\IW}

ordered-before // ob =obs U dob U aob U bob

Well-formedness conditions

Let Ry, for some relation R : set (nat x event x event), denote the relation
{(A,B) | {k,A,B) € R} : set (event x event).

e The initial write is not a release write:

IW < W\L

In our fragment, reads and writes are disjoint, and reads, writes, and barriers are
disjoint:

RnWnDMB.SY n DMB.LD n DMB.ST nISB = &

Barriers don’t read or write memory:

{range(F) | £ € B} =

For all locations k, coby is a strict total order on {W | k € W.writes} ...

e ... and only includes writes that write to k:

Yk, W, W' (W, W' € cob, = k € W.writes n W' .writes

coherence is a strict partial order.
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e read-modify-write, address-dependency, data-dependency, and control-dependency

are subsets of program-order:

rmw U addr U data u ctrl < po

Candidate execution validity
Single-copy atomicity
(rf; fr) irreflexive

Coherence/internal

Vk.(polocb,, U frby U coby U rbfy) acyclic

External

ob acyclic

Exclusives/Atomic

rmw N (fre;coe) =
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