
Iterative and directed exploration of
self-structuring embodied agents

Toby Ralphs Howison

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

St Catharine’s College May 2021





Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the Preface and specified in the text. I further state
that no substantial part of my thesis has already been submitted, or, is being concurrently
submitted for any such degree, diploma or other qualification at the University of Cambridge
or any other University or similar institution except as declared in the Preface and specified
in the text. It does not exceed the prescribed word limit for the relevant Degree Committee.

Toby Ralphs Howison
May 2021





Abstract

Title: Iterative and directed exploration of self-structuring embodied agents
Author: Toby Ralphs Howison
Abstract: Roboticists increasingly look to biological systems for inspiration when designing
and improving robotic systems. Simultaneously, building bio-inspired robotic systems can
aid in the understanding of fundamental biological principles. In this context, the concept
of embodied intelligence hypothesises that intelligent behaviours are the result of complex
interactions between the brain, body (or morphology) and environment, rather than being
driven purely by computational power in the brain. At the most basic level, embodied
intelligence is driven by real-world physical interactions. By harnessing these interactions,
unconventional ‘brainless’ robotic systems have demonstrated complex behaviours driven
purely by passive interactions.

This thesis explores how complex behaviours emerge from interactions in two different
low-level physical systems: falling paper and Bernoulli-balls. In falling paper systems,
different paper shapes exhibit a range of behaviours when released into free fall. By altering
morphological properties such as shape and weight, different behavioural modes can be trig-
gered. In Bernoulli-ball systems, a ball is placed into a vertical airflow. If the morphological
properties of the ball, for example size and density, and the environmental properties of the
airflow, for example speed and width, are combined appropriately, the ball exhibits self-stable
hovering within the airflow.

In Part I, I investigate falling paper systems. I introduce the novel V-shaped falling
paper system. The relationship between morphology and system behaviours is explored
and a data-driven modelling approach is developed to understand this. I explore the na-
ture of behaviour transitions in the system. Certain behaviour transitions appear random,
while others are more deterministic, and this variability is linked to morphology. Different
methods are developed to represent this. I investigate generalised falling paper systems via
the development of an automatic experimental platform capable of fabricating, dropping,
observing and modelling hundreds of different paper shapes. Since falling paper systems are
challenging to model using conventional methods, combining a data-driven approach with
automatic experimentation is powerful.
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In Part II, I investigate Bernoulli-ball systems. I explore the behaviour of a single
Bernoulli-ball. A reduced-order model is derived to represent the main dynamics, and a
minimalistic control policy is developed to modulate the ball hovering height by changing
the airflow properties. I introduce the novel concept of a collective Bernoulli-ball: multiple
hovering balls in a single airflow. This collective system exhibits a range of agent- and
population-level behaviours, and these are investigated. The stability of, and relationship
between, different behaviours is shown to be dependent on the balloon morphology and the
environmental properties of the airflow.

In summary, the work in this thesis relates to the emergence of non-trivial behaviours
from low-level embodied physical systems. The main contributions are the investigation
of novel dynamics in these systems and the development of methods for understanding,
representation and design. Ultimately, the work represents a small step toward the goal of
creating artificial lifeforms with increasingly complex behaviours.
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Throughout this thesis I try, as far as is practicable, to use the following pronoun conven-
tion. For work carried out solely by me, discussion that is my own, and general structural
prose I use the pronoun ‘I’. For work and analysis completed in collaboration with my
publication co-authors I use the pronoun ‘we’. I also use ‘we’ when discussing results with
the reader.
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Chapter 1

Introduction

From simple cellular organisms to the most complex lifeforms, biological systems exhibit
extraordinary levels of diversity and adaptability. In contrast, state-of-the-art robotic systems
are generally considered to be significantly limited in the scope of their behavioural diversity
(Moravec, 1988). Roboticists are increasingly looking to biological systems as a source of
inspiration for designing better robotic systems (Iida and Ijspeert, 2016). In parallel, building
robots inspired by biological principles can help us to understand some of the fundamental
forces that govern natural living systems (Taylor and Jefferson, 1993).

An increasingly popular framework for understanding and characterising the complex
behavioural diversity seen in biological systems is that of embodied intelligence (Clark, 2008;
Pfeifer and Bongard, 2006; Pfeifer et al., 2007). Simply put, the perspective hypothesises
that biological intelligence can only be fully understood, and replicated, by acknowledging
the fact that an agent is always embodied within a physical body and embedded within
an environment. Hence, rather than being driven purely by computational power in the
brain, intelligent behaviours are the result of the complex coupling between the brain, body
and environment. This surprisingly simple concept offers an elegant explanation for the
limitations of many modern robotics technologies. A popular example is legged locomotion.
On the one hand, the well known ASIMO humanoid robot (Sakagami et al., 2002; Shigemi
et al., 2018) uses a complex control system and a range of actuated joints to achieve a range
of walking behaviours. Yet, its walking appears unnatural and inefficient (of course, the
ASIMO has many other functionalities on top of locomotion). On the other hand is the
so-called passive dynamic walker (PDW) (Collins et al., 2005; McGeer et al., 1990), a bipedal
robot with a specific configuration of passive joints and rigid links, but no power source or
controller. When placed on an inclined surface the robot proceeds to walk downhill with an
incredibly life-like gait. Of course, this behaviour is reliant on a very specific environmental
configuration. If the PDW is placed on a flat surface it will show no locomotion behaviours,
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and will do nothing. Nevertheless, by using a well designed morphology and carefully
structured environmental interactions, the PDW demonstrates that behaviours commonly
associated with brain computation can actually emerge from a purely physical system.

Current research into embodied intelligence is rooted in a long history of exploring the
fundamental principles of biological and man-made systems over the last century. In the
mid 1900s, the field of cybernetics (Heylighen and Joslyn, 2001; Wiener, 1965) arose at the
intersection between disciplines such as mathematics, neuroscience, and engineering. Driven
in part by the accelerating development of computer science, cybernetics focuses primarily on
understanding regulatory feedback in living and man-made systems. A particularly relevant
concept is the idea of ultrastability (Ashby, 1961), a property of a system that allows it
to change its internal structure in response to environmental stimuli. Natural systems are
ultrastable both at the individual level, e.g. agents can adapt to their environment, and at the
evolutionary level, e.g. species evolve as the evolutionary pressures change. The concept
of ultrastability is analogous with the idea of embodied physical interactions being used
as a stabilising property in man-made systems. Cybernetics researchers demonstrated the
idea of ultrastability in practice with the homeostat (Ashby, 1960), a mechanical device
built with the single purpose of regaining stability when perturbed by the environment. The
homeostat was one of the first demonstrations of how a relatively simple set of physical
components and electrical circuits could be configured to exhibit feedback mechanisms that
reliably drove the system toward equilibrium. More recently, the work of Rodney Brookes
in the 1980’s and 90’s was highly influential (Brooks, 1990). In contrast to the prevailing
view of classical AI at the time that increasingly complex computational power was the most
effective approach for designing intelligent systems, Brooks proposed a simpler behaviour-
based approach. A key concept was that high-level intelligence emerges from the interactions
and behaviours of smaller elements in a system, which are, in their own right, intelligent. In
parallel, the physical grounding hypothesis was proposed, stating that intelligent systems
must be embedded in a physical environment and learn, in a bottom-up manner, the causal
relationships between perception and action (Brooks, 1991).

Embodied intelligence is particularly relevant to the fields of artificial life (Steels and
Brooks, 2018) and soft robotics (Iida and Laschi, 2011). Motivated by the goal of investigat-
ing, understanding and ultimately creating life-like systems, artificial life research is often
characterised by a rejection of conventional approaches to robot design and control. Instead,
concepts such as self-organisation (Pfeifer et al., 2007), emergence and open-ended evolution
(Eiben et al., 2012) are used to explain and design for the complexity we see in the natural
world. Meanwhile, research into soft robotics focuses on how soft materials can be used
to improve the performance of robotic systems. Unlike conventional robots, whose basis
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lies in rigid body mechanics (Angeles, 2002), soft robots are defined by highly deformable
materials and sustained environmental interaction. By embracing this non-linearity, soft
roboticists often aim to outsource computational and control tasks to the intrinsic properties
of soft materials and their environmental interactions. The research in this thesis lies at the
intersection of these two fields.

1.1 Research framework
In this thesis I propose a framework of iterative and directed exploration of self-structuring

embodied agents (see Figure 1.1) to investigate aspects of embodied intelligence in physical
systems.

1.1.1 Self-structuring embodied agents
As discussed, the concept of embodied intelligence is based on the coupling of the brain,

body and environment. We can conclude that, at the most basic level, embodied intelligence
is driven by real-world physical interactions. Hence, by exploring how structure emerges

Figure 1.1: Thesis framework: iterative and directed exploration of self-structuring embod-
ied agents. Through morphology–environment interaction, embodied agents self-structure
their continuous interaction-driven dynamics into an attractor space from which discrete
behaviours emerge. From the system we can observe a limited amount of state measure-
ments, but typically much of the dynamics are hidden from observation. We can also assign
behaviours to different patterns in the system. System behaviours capture the full dynamics
in a reduced-order symbolic representation. System parameters have an effect on these
observations. Morphological and environmental parameters can be altered to change how the
discretised attractor space is structured. Initial conditions are also important in determining
short- and long-term behaviours. We can influence the emergence of different behaviour
mechanisms via iterative (i.e. repeating toward more complex behaviours) and directed (i.e.
with some goal in mind) exploration).
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from low-level physical systems we can build up our understanding of embodied intelligence
from the bottom up.

I focus on the low-level interactions of self-structuring embodied agents, i.e. low-
level physical systems that exhibit complex and seemingly structured behaviours. Such
systems are initially characterised in terms of the continuous dynamics generated via the
interaction between morphology and the environment. These continuous dynamics may
contain a structured attractor space from which discrete behaviours emerge. A system can
exhibit multiple behaviours, and can transition between them predictably (deterministic) or
unpredictably (apparently stochastic). The concept of self-structuring, therefore, refers to the
phenomena that the continuous dynamics of a system are structured into discrete behaviours
through a discretised attractor space, purely via morphology–environment interactions. It is,
of course, also possible that agents are not structured, and the system remains in a random
or chaotic state. The existence of a structured attractor space in which basins of attraction
correspond to stable behaviours is thought to be a key requirement for embodied intelligence
(Pfeifer and Bongard, 2006).

An elegant example of a system with these properties is that of chemical oil droplets
(Horibe et al., 2011). In this, system a single oil droplet is placed floating on a base liquid.
Driven by the chemical reaction with the surrounding fluid, the droplet moves over time. This
self-movement is driven purely by the interaction between morphology and environment,
i.e., there is no external inputs. Four distinct behavioural modes emerge from the continuous
dynamics of the droplet self-movement (fluctuating, circular, direction and vibrating). The
system exhibits stochastic switching between the basic behaviour modalities. Hence, from
the seemingly simple system of a floating oil droplet, continuous dynamics and discrete
behaviours and transitions emerge. It can even be argued that these behaviours form the basis
for minimal perception cognition (Hanczyc and Ikegami, 2010).

1.1.2 System parameters
We may induce different behaviours in an embodied agent by manipulating the parameters

that define it. Morphological properties such as shape, mass and constituent materials can
be varied. Alternatively, and just as importantly, the environmental conditions in which the
morphology is embedded can be manipulated. When describing the environment, we need
to clearly delineate where the environment of interest begins and ends, and what features
this environment includes. For example, in the case the PDW the environment extends to
the incline on which it walks and the surface properties of the ground, but not necessarily to
the fluid properties of the air in which it moves. Initial conditions can also be varied, and
this may have a significant impact over the evolution of observed behaviours. For example,



1.1 Research framework 11

a system could be initialised such that it is likely to converge to a certain attractor state, or
with initial states that lead to stochastic switching between attractors.

In general, the number of available system parameters is far lower than the degrees-of-
freedom in the realised dynamics, making the parameters-to-dynamics mapping severely
underdetermined. Further still, for many systems we may only partially understand the
mechanisms driving behaviour. From a negative perspective this means that we are only in
control, or even aware, of a small fraction of the total degrees-of-freedom in the system. From
a positive perspective, however, we see that by selecting appropriate system parameters we
can modulate highly complex dynamics with a minimal set of input variables. For example,
the behaviours of interacting oil droplets are driven by a complex set of chemical reactions
that would require a huge number of states to be described. However, by varying a single
parameter, such as droplet size, the structure and emergence of discrete patterns in the system
can be modulated easily.

1.1.3 System observations
The observation of self-structuring embodied agents is challenging. As described in 1.1.2,

much of the dynamics can be highly non-linear, can have large degrees of freedom or are
completely unknown. Hence, full state measurement can be difficult and we can only rely on
a limited amount of state measurement. For example, the only states easily measurable in the
interacting oil droplet system are the position, velocity and size of each droplet over time.
There are multiple hidden states driving the underlying dynamics that cause these measurable
states to change.

While direct state observation can be limited, we also have the option of observing the
behaviours that emerge through the discretised attractor space. In doing so, the full system
dynamics can be abstracted to the level of a small number of behavioural modes, offering a
symbolic representation of the system that is intrinsically driven by its dynamics, but does
not require a full observation or understanding of these dynamics. However, observing
behaviours involves an element of subjectivity insofar that behaviours must be defined.
Different behavioural definitions may have a significant influence on the quality of analysis
and interpretations of the system.

1.1.4 Iterative and directed exploration
Understanding, exploring and ultimately designing self-structuring embodied agents

requires iterative and directed feedback mechanisms to link system parameters and system
observations. A key component of this feedback is representation of the design landscape.
In many cases, the dynamics cannot be effectively captured in a simulation environment so
we must rely on representations generated from real-world observations. As discussed in
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1.1.3, we cannot rely on complete state measurements. Hence, representation methods that
make use of output behaviours are useful, for example behavioural clustering to categorise
and interpret the different behaviours in the system. Self-structuring embodied agents may
be stochastic or deterministic in their behaviours, so different approaches for modelling
and understanding are required. Representation may also take the form of a fitness metric
that allows us to compare different agents with each other. A second key component is
manipulation of the morphology and environment. By changing certain system parameters
we can capture diverse dynamics that aid in our understanding of the system. Morphology is
the conventional target for design-space exploration, for example evolving morphologies for
locomotion (Rieffel et al., 2014; Vujovic et al., 2017). Since self-structuring embodied agents
are driven by their interactions, it is also vital to explore how environmental manipulation
influences the system (Auerbach and Bongard, 2012). Representations can be iteratively
updated as more real-world evaluations are carried out.

1.2 Target systems
In this thesis, I investigate two low-level physical systems that can be characterised as

self-structuring embodied agents, and that require iterative and directed exploration in order
to understand their behaviours: falling paper and Bernoulli-balls. This section introduces
these systems and explains their relevance to the research framework (Figure 1.1).

1.2.1 Falling paper
The first target system in this thesis is falling paper. First proposed by James Clerk

Maxwell in the 1800s (Maxwell, 1854), the ‘falling-paper problem’ is to understand the rich
variety of behaviours exhibited by simple laminar shapes (made of paper or other materials)
as they fall freely through a fluid. Though conceptually a very simple system, falling paper
manifests a range of interesting properties. Paper as a material is easily defined by its
mechanical properties such as density, elasticity and shape. However, when released into the
environment, highly complex fluid-mechanics interactions are induced between the paper
and air. Depending on morphological and environmental factors, the style in which paper
falls varies considerably. The stochastic nature of this behavioural emergence means that
we cannot guarantee certain behaviours. Instead, we see certain attractor states to which
shapes are highly likely to converge. We can introduce almost infinite richness into the
environment by simply adding various airflows. Hence, we can explore the relationship
between environmental attractor states and behavioural emergence. Paper shapes can be
fabricated, dropped and observed with minimal equipment. Synthetic methodologies are not
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only feasible, but preferable due to the difficulty in modelling Pfeifer and Bongard (2006).
This makes it an ideal system for studying real-world robot development and evolution.

In the well-studied case of falling disks four behaviours (steady falling, periodic oscilla-
tion, tumbling and chaotic falling) are observed as system properties such as diameter, density
and fluid viscosity are varied (Field et al., 1997; Lee et al., 2013; Stringham et al., 1969;
Willmarth et al., 1964; Zhong et al., 2011, 2013). Other simple shapes have been studied, in-
cluding rectangles (Mahadevan et al., 1999; Skews, 1990; Wang et al., 2013), annuli (Vincent
et al., 2016) and parallelograms (Varshney et al., 2013); behavioural transitions have also been
studied (Andersen et al., 2005; Belmonte et al., 1998; Fernandes et al., 2005). A number of
heavily simplified numerical solutions have also been presented (Jin and Xu, 2008; Pesavento
and Wang, 2004); however, the problem has evaded a comprehensive solution. As a result,
many studies focus on using experimental behavioural observations to understand the driving
physical phenomena. These approaches tend to characterise behaviours using dimensionless
quantities such as Reynolds number Re or dimensionless moment of inertia I∗ (Belmonte
et al., 1998; Chrust et al., 2013; Field et al., 1997; Mahadevan et al., 1999; Mittal et al., 2004).
Using these quantities allows the construction of a dimensionless parameter space in which
different regions correspond to different falling behaviours. Similar approaches using other
dimensionless quantities such as the Froude Fr or Strouhal St numbers have been used in the
analysis of behavioural diversity in other systems (Goto and Tanaka, 2015; Iversen, 1979;
Lauga and Nadal, 2017; Smith, 1971; Willmarth et al., 1964).

1.2.2 Bernoulli-balls
The second target system is the so-called Bernoulli-ball system, an elegant fluid dynamics

phenomena in which spherical objects self-stabilise and hover in an airflow. The process,
which works for many shaped objects, is driven by fluidic interactions between the ball and
its environment (Anderson and Eberhardt, 2001; Kamela, 2007; Waltham et al., 2003). The
Bernoulli-ball exhibits two forms of self-stabilising behaviours. First, it is self-stable in
the horizontal plane: when perturbed horizontally the ball returns to its original position.
This is commonly explained using Bernoulli’s principle, which states that as the speed of a
fluid increases, the fluid pressure decreases. Hence, the pressure within an airflow is lower
than the surrounding environment, creating a self-stabilising force about the jet centerline.
Second, it is self-stable in the vertical direction: when released into the airflow, the ball
will eventually settle around a nominal height. This is due to the balance between drag
forces and the ball mass, and the dissipative effect of moving in the airflow. Bernoulli-ball
systems have a number of interesting features in the context of self-structuring embodied
agents. We can scale up complexity in the system with ease. For example, properties such as
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ball mass and surface properties can be changed. Similarly, the environmental conditions
can be modulated easily by changing the type of airflow in which the balls hover to create
complex and anisotropic conditions. Multiple balls can be added to the same system, creating
a collective Bernoulli-ball system with complex population-level behaviours that are driven
by the basic dynamics of agents interacting with the environment and each other.

There has been surprisingly little research into Bernoulli-ball systems (Nudehi et al.,
2017). However, there is a rich history of investigating behavioural diversity in similar
systems. For example, significant research has looked at the bouncing behaviours of balls,
for example on a sinusoidally vibrating table (Holmes, 1982). Similar work has been carried
out into the ‘blind-juggler’, a platform that uses a parabolic dish to indefinitely bounce a ball
without any feedback control (hence, blind) (Reist and D’Andrea, 2012; Ronsse et al., 2007).
A key feature of these studies is that, depending on the conditions of the environment and
the ball, different behaviours could be induced such as stability, period doubling and chaotic
modalities. Collective systems have also been researched. Simulations of hard spheres
have shown how mixtures of large and small spheres will usually exhibit spatial clustering
based on morphology (Dickman et al., 1997). Similar results have been shown in systems of
floating objects (Nakajima et al., 2012).

1.2.3 Underlying principles
At the basic level, these systems are interesting to us because their behaviours are driven

by their underlying Newtonian physics. This is also a key feature of the PDW, which is
driven by gravitational potential coupled with a well constrained leg morphology. The
falling paper and Bernoulli-ball system are similarly driven by gravitational forces, yet have
behaviours that are far less constrained than PDWs. Falling paper behaviours are driven
by morphological-environment interactions that we can primarily modulate by changing
morphology, e.g. the paper shape. The amount of complexity we can easily add to the system
via environmental changes is minimal before the system behaviours become too chaotic
to systematically study. On the other hand, behaviours in the Bernoulli-ball are primarily
modulated by changing environmental conditions, since the complexity we can easily add to
the morphological structure is fairly limited. Hence, these two systems allow us to explore
morphology-environment interactions from two different perspectives.

1.3 Thesis objectives
In this thesis I use a bottom-up approach to explore the behaviours of falling paper and

Bernoulli-ball systems. There are two main objectives that this work aims to achieve:
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1. Systematic exploration of dynamics in novel self-structuring embodied agents.
To systematically explore dynamics in the falling paper and Bernoulli-ball systems
from the perspective of self-structuring embodied agents.

2. Development of methods for iterative and directed exploration. To develop method-
ologies for the iterative and directed exploration of the behaviours in falling paper
and Bernoulli-ball systems, including behavioural representation and design-space
exploration.

1.4 Thesis contributions and structure
The main contributions of this thesis can be categorised as conceptual (new frameworks

and ideas), novel dynamics (new examples of self-structuring embodied agents) and method-
ological (new methods, tools and hardware). Each contribution is linked to one or more
chapters in which the bulk of the contribution can be found.

1.4.1 Conceptual

Reality-assisted evolution of soft robots through large-scale physical experimentation
(Chapter 2)

Key contribution: literature review summarising developments in the design of
physically embodied soft robots under the unifying framework of reality-assisted
evolution.

Design approaches for robotic systems have long been dominated by two opposing ide-
ologies. Model-based approaches that utilise simulation tools to evaluate system behaviours
in silico, and model-free approaches in which physical experiments are conducted in reality.
A key problem with model-based approaches is overcoming the so-called ‘reality-gap’: the
disparity between simulated and realised behaviours (Mouret and Chatzilygeroudis, 2017).
A key problem with model-free approaches is the time and cost constraints involved when
constructing physical systems. These challenges have become particularly apparent in the
design of soft robotic systems, which are highly challenging to simulate and generally costly
to fabricate (Laschi et al., 2016).

In Chapter 2, I introduce the framework of reality-assisted evolution to summarise a
growing trend towards combining in silico model-based and in reality model-free approaches
to improve the design of physically embodied soft robots. In silico, data-driven models build,
adapt and improve representations of the target system using real-world experimental data.
By simulating huge numbers of virtual robots using these data-driven models, optimisation
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algorithms can illuminate multiple design candidates for transference to the real world. In
reality, large-scale physical experimentation facilitates the fabrication, testing and analysis
of multiple candidate designs. Automated assembly and reconfigurable modular systems
enable significantly higher numbers of real-world design evaluations than previously possible.
Large volumes of ground-truth data gathered via physical experimentation can be returned to
the virtual environment to improve data-driven models and guide optimisation. Grounding
the design process in physical experimentation ensures that the complexity of virtual robot
designs does not outpace the model limitations or available fabrication technologies.

1.4.2 Novel dynamics

V-shaped falling paper system (Chapters 3, 4 and 5)

Key contribution: analysis of behaviours in the V-shaped falling paper system. Dom-
inant behaviours in the design-space are explored through systematic experiments.
Stochastic and deterministic behavioural transitions are investigated and analysed.

As discussed in 1.2.1, falling paper systems exhibit a range of discrete behavioural
modes driven by morphology-environment interaction. The range of systems found in the
literature is generally limited to simple shapes with low levels of deformation. In this thesis I
present the novel V-shaped falling-paper (VSFP) system, which contains a more complex
morphology and exhibits large levels of deformation. It is a paper V-shape defined by two
morphological parameters: wing angle θ and wing length l. It exhibits four distinct falling
behaviours (plummeting, undulating, helicopter rotation and asymmetric rotation) whose
emergence is strongly dependent on morphology. In Chapter 3, I introduce the system and
demonstrate how dominant behaviours vary across the design space. In Chapter 4, I analyse
the nature of behavioural transitions in the VSFP system. I investigate stochastic behaviour
transitions, showing how morphology influences the likelihood of different transitions, with
certain morphologies leading to a wide range of possible paths through the attractor space.
Deterministic transitions are also investigated using a second experimental platform. I
demonstrate how behaviour transitions can be induced by modulating the energy input to
the system, and that the system has a basic form of memory. In Chapter 5, I demonstrate
how morphology in the system can be optimised to minimise falling speed and compare the
biological equivalent of the VSFP system, flying seeds.
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Single Bernoulli-ball system (Chapter 7)

Key contribution: analysis of dynamics in a single Bernoulli-ball system. A reduced
order model is developed and the system stability is analysed. A low-bandwidth bang-
bang controller is used to demonstrate how height can be controlled in the system by
altering the airflow characteristics.

Self-structuring embodied agents exhibit natural and reliable behaviours based on their
environmental and morphological properties. In Chapter 7, I analyse the dynamics of a
single Bernoulli-ball system and present a strategy for height control that utilises the system
self-stability. In the single Bernoulli-ball system, once active we can only influence behaviour
by altering the environment, e.g., the airflow properties. There is a significant amount of
latency between a change in control input and the airflow settling to a new power. Additional
latency is introduced during system observation, which in this case uses computer vision to
detect the ball height. Given that, conventional feedback control is a poor choice for height
control. Instead, a low-bandwidth minimalistic approach to control strategy that utilises
model-based, feedforward bang-bang control at a global level and self-stabilising dynamics
at a local level is proposed. A reduced-order model of the system is presented, the control
algorithm is developed and hardware validation is performed.

Collective Bernoulli-ball system (Chapter 8)

Key contribution: analysis of the collective Bernoulli-ball system, showing how
environmental and morphological factors influence behaviour in the system and drive
stochastic behaviours at the agent and population level.

As discussed in 1.2.2, the complexity of Bernoulli-ball systems can be increased by adding
additional balls to the airflow. In Chapter 8, I focus on the behaviour of these collective
Bernoulli-ball systems. I demonstrate how behavioural diversity can be induced in the case of
a single ball via modulation of the environment. I then show how more diverse behaviours are
triggered in the collective system. I discuss this in the context of embodied intelligence and
open-ended evolution, suggesting that the system exhibits a rudimentary form of evolutionary
dynamics in which balls compete for favourable regions of the environment and exhibit
intrinsic ‘alive’ and ‘dead’ states based on their position in or outside of the airflow.
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1.4.3 Methodological

Physics-driven behavioural clustering (Chapter 3)

Key contribution: development of the physics-driven behavioural clustering algo-
rithm. The algorithm generates a set of symbolic equations that define a parameter
space to represent the design landscape of system parameters, state measurements and
system behaviours.

As discussed in 1.1.4, a key challenge when exploring self-structuring embodied agents
is representing the system dynamics, especially when these are highly non-linear and cannot
be fully captured in simulation. There is a growing trend for using machine learning methods
to generate symbolic equations based on real-world experimental data of dynamical systems.
One of the most well known approaches (Schmidt and Lipson, 2009) can, for example,
generate equations of motion for simple dynamical systems (e.g., a pendulum) and use this
learnt knowledge to find equations for more complex systems. While highly effective, in
many systems (including falling paper) the number of measurable states can be too low for
effective equation generation.

In Chapter 3, I present physics-driven behavioural clustering (PDBC), a novel algorithm
for generating physically meaningful equations for systems with discrete behavioural modes
and limited state measurements. The method transforms the system inputs, (e.g., morpho-
logical parameters) and measurable system states (e.g., falling speed) into a set of equations
that describe a parameter space in which the different system behaviours are represented
by distinct regions. By testing large numbers of candidate equations, the method finds an
optimal set of equations to represent the behavioural diversity in the system most distinctly.
The PDBC algorithm is demonstrated on the V-shaped falling paper system, which exhibits
four distinct behavioural modes that depend on a few morphological parameters. Using 49
experimental observations, the method discovered a set of candidate functions that distinguish
behaviours with an error of 2.04%, while also aiding insight into the physical phenomena
driving each behaviour.

Large-scale physical experimentation on falling paper (Chapter 6)

Key contribution: development of a hardware and software platform for large-scale
physical experimentation on generalised falling paper systems, with validation against
preexisting data on falling disks, and extension to other morphologies.
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As discussed in 1.1.4, exploring the design space of self-structuring embodied agents is
key for understanding how physical interactions shape behaviour, and for discovering new
behaviours and features of the system. Exploration in simulation is easy, for example evalu-
ating millions of soft robotic morphologies as part of an evolutionary algorithm. However,
if the underlying real-world dynamics cannot be modelled and effectively simulated then
we must rely on physical experimentation, i.e., a model-free or reality-assisted approach. In
this context, a powerful approach is to utilise technologies such as robotic arm automation
and 3D printing to scale up the number of real-world evaluations. Large-scale experimental
investigations have been demonstrated a number of times, such as for the real-world evo-
lution of modular robots (Brodbeck et al., 2015), and in other settings such as automated
experimentation on fluid dynamics problems (Fan et al., 2019).

In Chapter 6, I present a hardware and software platform for large-scale physical experi-
mentation on generalised falling paper systems. The platform combines robotic automation,
computer vision and machine learning to autonomously fabricate, drop, analyse and classify
the behaviours of hundreds of shapes. The system is validated by reproducing results for
falling discs, which exhibit four falling styles: tumbling, chaotic, steady and periodic. A
previously determined mapping from a non-dimensional parameter space to behaviour groups
is shown to be consistent with these new experiments for tumbling and chaotic behaviours.
However, steady or periodic behaviours are observed in previously unseen areas of the
parameter space. More complex hexagon, square and cross shapes are investigated, showing
that the non-dimensional parameter space generalises to these shapes. The system highlights
the potential of robotics for the investigation of complex physical systems, of which falling
paper is one example, and provides a template for future investigation of such systems.





Chapter 2

Reality-assisted evolution for embodied
intelligence1

From simple cellular organisms to the most complex lifeforms, biological systems exhibit
extraordinary levels of diversity over a large spatio-temporal scale. The apparently coherent
behavioural repertoires observed in nature are increasingly explained using an embodied view
of intelligence that focuses on the closely coupled interactions between the brain, body and
environment (Clark, 2008; Pfeifer et al., 2007). Understanding and harnessing these embodied
interactions, therefore, is a key step in building truly lifelike artificial systems. In this context
the field of soft robotics is particularly interesting. Soft robots can generally be defined as
having highly deformable bodies or elements, often constructed using unconventional (in the
robotics sense) materials with highly non-linear properties (Laschi et al., 2016; Nurzaman
et al., 2014; Pfeifer et al., 2012; Rus and Tolley, 2015). They can be further characterised by
their uniquely complex and sustained environmental interactions, for example in terrestrial
or aquatic environments (Corucci et al., 2018). Given this, the methodologies on which
conventional robotics science was developed – e.g., rigid-body kinematics and dynamics –
are often inapplicable when applied to soft robots. Instead, significant research has focused
on how to utilise the characteristics of soft robots in an embodied framework. By harnessing

1This chapter is based on the following peer-reviewed publication:

• Howison, T., Hauser, S., Hughes, J., & Iida, F. (2021). Reality-assisted evolution of soft robots through
large-scale physical experimentation: a review. Artificial Life, 26(4), 484–506.

Contributions
T. Howison – devised the main conceptual ideas, wrote the bulk of the paper and created the figures.
S. Hauser – contributed to writing of 2.3.5, general discussions and proofreading.
J. Hughes – contributed to writing of 2.2.2 and 2.3.1.
F. Iida – contributed to general discussions and proofreading.
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the mechanical intelligence of soft bodies, researchers hope to develop robotic systems with
comparable performance to biological systems (Kim et al., 2013).

While the promise of soft embodied intelligence and soft robotics is well documented,
the design process by which to realise it is non-trivial (Howard et al., 2019). A classical
process for designing robotic systems is through the use of models and simulations. Model-
based approaches often demonstrate the design of virtual soft robots in silico via artificial
evolution. By mimicking the processes from which embodied intelligence emerged in
nature, these methods have successfully demonstrated complex, meaningful robot behaviours
(Cheney et al., 2013). However, evolved robot designs frequently do not perform as expected
when transferred into the real world: this is an aspect of the so-called reality gap (Mouret
and Chatzilygeroudis, 2017). Further still, available fabrication technologies may prevent
the realisation of virtually evolved robot body-plans altogether. Alternatively, model-free
approaches restrict design to the physical world, for example via top-down imitation of
biological systems such as octopus tentacles or elephant trunks (Nakajima et al., 2015) or
using real-world evolutionary approaches (Vujovic et al., 2017). By evaluating robots in
reality the problems associated with transference between models and the real world can
be avoided. However, physical experimentation is generally time-consuming and resource
intensive, restricting the effective exploration of large design spaces.

In this chapter I summarise recent developments in the design of soft robots from the
perspective of a rapidly growing direction I term reality-assisted evolution. There has
been a growing interest in design methodologies that combine model-based and model-free
approaches to improve the overall design of physically embodied robots (see Table 2.1).
Under this framework, as summarised in Figure 2.1, simulation-only and simulation-free
design methodologies are unified via large-scale physical experimentation and data-driven
modelling. In silico, data-driven modelling is used to build and improve representations of
the target system based on real-world experimental data. Physics engines, software-based
approximations of physical systems, can be tuned to maximise their predictive accuracy,
and auxiliary models can be built to estimate the transferability of virtual robots to the real
world (Koos et al., 2012). Alternatively, models can be built from scratch to estimate fitness
across the design parameter space (Saar et al., 2018). These data-driven models can be
used to simulate the behaviour of huge numbers of virtual robots and, in conjunction with
optimisation and illumination (Mouret and Clune, 2015) algorithms, to discover diverse and
highly performant designs that are likely to survive crossing the reality gap. In reality, large-
scale physical experimentation systems can fabricate and test multiple robot designs. Recent
developments in automated and scalable fabrication approaches facilitate an increasingly
large number of real-world evaluations, e.g., (Kriegman et al., 2020b). Similarly, modular
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and adaptive robots allow multiple morphologies and controllers to be tested on a single
reconfigurable platform (Nygaard et al., 2018; Veenstra et al., 2018). By situating physically
embodied robots within a task environment, significant amounts of useful experimental data
can be gathered. Grounding the design process in physical experimentation ensures the
complexity of simulated robot designs does not outpace the model accuracy or available
fabrication technologies. Further still, modulating complexity in the task environment in
reality can drive the heterogeneous improvement of data-driven models in silico from simple
to more challenging design representations.

This chapter is structured as follows. In 2.1 I outline the open problems in embodied
intelligence for soft robots. Three classes of soft robot that typify embodied intelligence
in soft robots and drive the need for a reality-assisted framework are highlighted. In 2.2 I
discuss advances in modelling and representation for soft robotics, starting from conventional
approaches and finishing with data-driven modelling and transferability methods. In 2.3 I
discuss advances in large-scale physical experimentation. It covers the range of possible
fabrication methods before exploring how these can be scaled up, for example via robotic
automation or modular and distributed systems. In 2.4 I discuss optimisation methods for
designing soft robots. It explores design encoding and typical optimisation algorithms,
then explore how novelty based search methods offer a more robust approach within the
reality-assisted framework. In 2.5 I conclude the chapter.
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Figure 2.1: The reality-assisted evolution framework for designing physically embodied
soft robots. In silico, data-driven models are constructed and adapted based on ground-
truth data. Physics engines, software-based approximations of physical systems, can be
tuned to maximise their predictive accuracy. Alternatively, machine learning can be used to
build models from scratch. Auxiliary models can also be built to estimate the performance
disparity of virtual robots after transference to the real world. By using data-driven models to
simulate huge numbers of possible robot designs, optimisation and illumination algorithms
can discover a range of diverse and highly performant designs across the parameter space. A
reduced-order design space of promising candidates can be established for transference to
the real-world. In reality, large-scale physical experimentation facilitates the fabrication and
analysis of multiple candidate designs. Increasingly automated experimental platforms can
fabricated and test large numbers of candidate designs without human input. Alternatively,
new modular and adaptive robotic systems facilitate the testing of multiple robot designs on
one reconfigurable platform. By placing physical robots in a task environment and observing
their behaviours, large volumes of useful experimental data can be gathered. This data can
inform the sampling procedure for physical experimentation in reality, and can be used to
update data-driven models and as an input to optimisation algorithms in silico. From the
bottom up, changes to the physical task environment drive the gradual complexification of
data-driven models and robot designs toward more complex embodiments and behaviours.
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Parameter Model / Search Realised Designs:
Author Reference Target System Space Simulation Method Morphologies Controllers

(a) Model-based
Hiller and Lipson (2011) Soft robot M + C Voxelyze EA 5 1
Caluwaerts et al. (2014) Tensegrity robot M + C NTRT EA 1 2
Cellucci et al. (2017) Recyclable robot M ODE MOEA 3 1
Peng et al. (2018) Robotic arm C MuJoCo DNN 1 1

(b) Model-free
Khazanov et al. (2014) Tensegrity robot C — EA 1 250
Brodbeck et al. (2015) Modular robot M + C — EA 500 500
Mouret and Clune (2015) Soft robotic arm C — MAP-Elites 1 640
Vujovic et al. (2017) Soft-legged robot M + C — Evo-devo 75 75
Nygaard et al. (2018) Quadruped M + C — MOEA 192 192
Veenstra et al. (2018) Soft fish robot C — EA 1 200

(a) Reality-assisted
Koos et al. (2012) Multiple C Bullet physics MOEA 2 2
Cully et al. (2015) Hexapod C ODE IT&E 10 10
Rosendo et al. (2017) Modular robot M + C GP BO 25 25
Saar et al. (2018) Hopping robot M + C GP BO 15 40
Rieffel and Mouret (2018) Tensegrity robot C GP BO 1 30
Rosser et al. (2019) Flapping robot M PYROSIM MOEA 16 1
Kwiatkowski and Lipson (2019) Robotic arm C DNN — 2 2
Howison et al. (2020a) Falling paper M KMC Random 500 —
Howison et al. (2020b) Falling paper M GP BO 40 —
Kriegman et al. (2020a) Living cell robots M Voxelyze EA 5 1
Kriegman et al. (2020b) Modular soft robot M Voxelyze Exhaustive 108 1

Key
M: Morphology DNN: Deep Neural Network
C: Control EA: Evolutionary Algorithm
GP: Gaussian Process MO: Multi-Objective
KMC: K-Means Clustering MO: Multi-Objective Evolutionary Algorithm
ODE: Open Dynamics Engine BO: Bayesian optimisation
NTRT: NASA Tensegrity Robotics Toolkit IT&E: Intelligent Trial and Error
MAP-Elites: Multi-Dimensional Archive of Phenotype Elites

Table 2.1: Highlighted literature for model-based, model-free and reality-assisted design of
physically embodied robots, showing the target system, design parameters, modelling and
simulation tools, design search method and the number of morphologies and/or controllers
that were realized in reality. Note that in many cases these publications reported significant
numbers of additional experiments, for example manual design comparisons. (a) Model-
based approaches. Designs are evaluated using modelling and simulation tools and are not
tested in the real-world until the end of the design process. (b) Model-free approaches.
Designs are exclusively evaluated in the real-world, without the use simulation or modelling
tools. (c) Reality-assisted approach. As categorized in this review chapter, designs are
evaluated using a combination of modelling tools and real-world experimentation.
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2.1 Embodied intelligence and soft robots
Conventional robotic systems can usually be described using a discrete architecture.

The exact position of actuation, sensing and other morphological elements is known and
can be relied upon not to change during deployment. Interaction with the environment
can be actively regulated, for example in pick-and-place robotic arms. The continuum
nature of soft robots means they cannot be described using this discrete architecture, but
rather as a set of loosely-coupled parallel processes and environmental interactions spanning
the microscopic to macroscopic scales. At the microscopic scale, molecular and material
interactions induce physical properties such as elasticity or durability, as well as active
behaviours such as those seen in electroactive polymers or shape memory alloys (Whitesides,
2018). At the organism level these properties manifest as distinct higher-order behaviours,
with environmental interactions inducing highly non-linear dynamics, for example sustained
contact forces or turbulent fluid dynamics (Katzschmann et al., 2016). Further still, at the
population level soft robots can be placed in the context of modular and distributed robotics,
with interaction between agents driving complexity. In terms of embodied intelligence,
therefore, the structure and interdependence of these interactions is key for the emergence
of useful, non-trivial behaviours. Given this, three classes of soft robot are particularly
interesting:

1. Soft robots with complex interactions. A key area of interest is soft robots with
a simple embodiment but complex environmental interactions. For example, a soft
extendable tube that exhibits complex behaviours via contact with the environment
(Hawkes et al., 2017), a simple water-immersed silicon tentacle whose dynamics
can be utilised for real-time information processing (Nakajima et al., 2015) or liquid
droplets whose properties drive sensing and motility functionalities (Cira et al., 2015).
These non-trivial behaviours that emerge via interaction between morphology and the
environment represent a fundamental basis on which more complex behaviours can be
built built.

2. Soft robots with complex hybrid structures Another key area of interest is so-called
soft-rigid robots. The rapid progression in additive manufacturing has enabled the
construction of heterogeneous continuum structures with anisotropic elasticity profiles.
For example, an anthropomorphic hand with rigid bones but soft ligaments utilises its
hybrid structure to achieve complex dexterity tasks (Hughes et al., 2018). Complex
soft structures can also be built using rigid components with soft connections, for
example a tensegrity robot that combines the robustness of rigid components with the
versatility of a deformable body (Rieffel and Mouret, 2018). Robots constructed using
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living tissues have also shown the potential of hybrid structures for encoding functional
behaviours (Kriegman et al., 2020a). Similar to biological systems, hybrid robots can
diversify their behaviours by complexifying their morphology.

3. Soft robots that can change their own embodiment The final class concerns one
of the most fascinating aspects of soft robots, growth and adaptation. One of the
key properties separating biological systems from robots is an ability to change ones
own embodiment, over the course of a lifetime or in response to the environment.
Adaptation has been shown to improve soft robot evolution in real-world (Vujovic
et al., 2017) and simulated robots (Kriegman et al., 2018). Morphogenesis has been
demonstrated on modular robotic platforms (Vergara et al., 2017). Understanding how
to harness the power of developmental processes is a key step for progressing from
simple soft robots to complex and intelligent machines that manifest behaviours driven
by seemingly conscious action.

2.2 Modelling and representation
Models (mathematical or otherwise logical representations) and simulations (evaluated

models) of soft robotic systems facilitate in silico experimentation on a scale many orders of
magnitude higher than can be achieved in reality. This is beneficial for discovering and test-
ing candidate designs before transference to the real world, and for the systematic testing of
different design methodologies, e.g., evolutionary algorithms. However, all model represen-
tations of the real world have some form of reality gap (Mouret and Chatzilygeroudis, 2017).
While it may be possible to construct models of physical phenomena, it may not always be
possible to evaluate these models in simulation to a sufficient granularity for the purposes
of design. This section discusses approaches for modelling soft robots, from conventional
methodologies to the latest physics engines and data-driven modelling techniques.

2.2.1 Conventional modelling
Popular modelling approaches for soft robots are at the level of kinematics or second-order

full dynamics (Lipson, 2014). Such methods involve deriving precise geometric and dynamic
expressions, which are in turn used to derive Jacobian kinematics or equations of motion.
For example, elastic systems can be modelled as mass-spring lattices or arrays, providing
a simple estimation of deformation. Similar approaches include traditional beam-bending
and constant-curvature approximations, which often have analytical solutions. Bespoke
models can combine these approaches for different modalities of soft body deformation, for
example continuum structures with constant-curvature models (Della Santina and Rus, 2019;
Runge et al., 2017; Webster III and Jones, 2010). Finite element methods (FEM) are also
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used for modelling soft systems (Zhang et al., 2017), and have seen particular usage for
exploring the design parameter spaces of soft pneumatic actuators (Connolly et al., 2015;
Drotman et al., 2017) and controller verification (Zheng et al., 2019). FEM models are
generally computationally expensive, requiring a trade-off between simulation time and
accuracy (Pozzi et al., 2018). However, work on real-time FEM has shown some promise for
the control of soft robots (Duriez, 2013; Zhang et al., 2016).

2.2.2 Physics engines and simulators
Generalised physics engines that can simulate soft robots as they interact with their envi-

ronment are growing in popularity. A number of physics engines offer soft body simulators,
including Bullet Physics2, CryEngine3, MuJoCo4, Open Dynamics Engine5 and the NASA
Tensegrity Robotics Toolkit6. Perhaps the best known physics engine for deformable bodies
is Voxelyze7, a voxel-based representation that has been used for a large number of soft
robotics studies (Cheney et al., 2013; Hiller and Lipson, 2014; Kriegman et al., 2017, 2020b)
and has become a benchmark on which different design optimisation methods are tested.
A recent gpu-accelerated re-implementation of Voxelyze, voxcraft-sim8, has recently been
released.

There have also been recent advances in differentiable soft-simulators, which have the
advantage of solvability using gradient-based optimisation algorithms. These are particularly
efficient for solving optimal control and motion planing problems. However, implementation
for soft systems is challenging and currently highly computationally expensive. Examples of
soft-body differentiable systems include Chain Queen (Hu et al., 2019) and the differentiable
cloth simulator (Liang et al., 2019). The ability to use gradient-based optimisation methods
could allow for far more computationally efficient optimisation and exploration of design.

Despite developments in soft-body modelling there are still many limitations. Rigid
body approximations, FEM and constant curvature models can be effective at predicting
the behaviour of specific problems, but do not generalise well. Physics engines such as
Voxelyze certainly offer a more generalised simulation environment. Additionally, many
physics engines are developed by the video game industry, so come with certain technical and
financial weight behind them. However, with generality can come a loss of accuracy when
compared to problem specific modelling methods. In general, different physics engines offer

2https://pybullet.org/
3https://www.cryengine.com/
4http://www.mujoco.org/
5https://www.ode.org/
6https://github.com/NASA-Tensegrity-Robotics-Toolkit
7https://github.com/jonhiller/Voxelyze
8https://voxcraft.github.io/

https://pybullet.org/
https://www.cryengine.com/
http://www.mujoco.org/
https://www.ode.org/
https://github.com/NASA-Tensegrity-Robotics-Toolkit
https://github.com/jonhiller/Voxelyze
https://voxcraft.github.io/
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different trade-offs and capabilities, each suited to different elements of soft robot simulation
(Silva and Maciel, 2012).

2.2.3 Data-driven modelling
Significant research has been carried out into data-driven modelling techniques that update

their representation based on ground-truth data. Data-driven approaches offer the ability
to incrementally improve predictions as more data becomes available. Some approaches
construct models directly from ground-truth data, for example deriving symbolic equations to
describe real-world phenomena (Brunton et al., 2016; Rudy et al., 2017). Learnt knowledge
of fundamental concepts can be gradually combined for understanding more complex systems
(Schmidt and Lipson, 2009). Other methods detect underlying structure in large data-sets,
for example dynamic mode decomposition (Schmid, 2010).

Alternatively, increasingly black-box approaches can be used to estimate the behaviours
of soft systems without explicitly discovering the underlying dynamics. Neural networks,
for example, have been used for soft robot pose reconstruction (Scimeca et al., 2019),
inverse kinematics (Giorelli et al., 2015) or control strategies (Choi et al., 2018), and are
effective without having to explicitly model the mechanisms behind soft deformation. The
rapidly growing field of neural ordinary differential equations could see particular usage in
data-driven modelling for soft robots (Rubanova et al., 2019).

More abstracted methods bypass direct modelling of the underlying dynamics completely,
instead learning surrogate models to map between the design space and fitness landscape.
Gaussian process (GP) modelling, for example, is a supervised learning technique for solving
regression problems (Snoek et al., 2012). The power of GP models lie in their leveraging of
Bayesian inference to estimate black-box function behaviours in relatively few samples. GP
models have been used to estimate design fitness in the reality-assisted design of a hopping
(Saar et al., 2018) robot, mapping morphological and control parameters to locomotion speed,
and a tensegrity robot (Rieffel and Mouret, 2018), mapping motor speeds to locomotion
speeds.

2.2.4 Transferability, robustness and sim2Real
Related to data-driven modelling is the idea of transferability. Simulation-to-real (sim2real)

performance can be improved by learning the disparity between robot behaviours observed
in silico and in reality (e.g., their transferability). The transferability approach augments
existing system models with supervised learning to understand the limits of the model and
simulator (Koos et al., 2012). This so-called robot-in-the-loop method uses a minimal num-
ber of physical experiments to build a surrogate model of the sim2real disparity across the
design space. By including this disparity measure within a multi-objective optimisation
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framework, the design fitness landscape can be adjusted to reward designs that are likely to
cross the reality gap with a low disparity. Incremental testing in the real world improves the
sim2real disparity surrogate model accuracy, driving the design process towards performant
and transferable solutions. A recent study on a flapping robot, whose dynamics are notori-
ously challenging to model, used incremental simulated and real-world experimentation to
explicitly measure the sim2real disparity across the design space (Rosser et al., 2019).

Robustness filters can be also used to assess how well simulated designs perform under
perturbations (Jakobi, 1997), for example in their morphology, controller or environment. If
the reality-gap is viewed as a large perturbation to the design space, then designs that can
withstand high perturbations in simulation and still exhibit the same behaviours are likely to
also perform well in the real-world. These methods have been used for the design of living
tissue robots (Kriegman et al., 2020a), in which simulated robot designs were passed through
a robustness filter that injected noise into their control systems, and a transferability filter
that measured their performance once transferred to reality and returned this to the model
environment in the form of constraints. Transferability and robustness methods are useful
tools because they maximise the utility of existing simulation tools, allowing generalised
physics engines to be used in many different design contexts. However, the design process is
still fundamentally limited by the accuracy of the model tool. Areas of the design space that
cannot be simulated accurately may still provide useful data, but cannot be realized in the
form of a physically embodied robot.

2.3 Large-scale physical experimentation
Those implementing reality-assisted evolution rely on carrying out a sufficient number

of physical experiments. This section discusses methods and challenges for fabricating
and testing physical soft robots on a large scale. First it discusses fabrication, sensing and
actuation approaches for soft robots, drawing attention to the difficulty in realising simulated
designs in the physical world. Next it discusses approaches for scaling up experimentation
to enable more design evaluations in the real world, including automated fabrication and
modular robotic systems.

2.3.1 Materials and fabrication
One of the great opportunities offered by soft robotics is the large pool of potential

materials and fabrication technologies available to the designer (Schmitt et al., 2018). Many
soft robots are fabricated using casting and moulding, typically with silicon elastomers or
expanding foam (Ilievski et al., 2011; Polygerinos et al., 2017). These approaches offer a
flexible and potentially scalable approach for fabrication, but can be a highly labour inten-



2.3 Large-scale physical experimentation 31

sive. Additive manufacturing has also recently seen widespread adoption, with 3D printing
shown to be especially useful for multi-material soft-rigid robots, e.g., an anthropomorphic
hand (Hughes et al., 2018), and for seamless incorporation of sensing and actuation mech-
anisms (Wehner et al., 2016). 3D printing can also be exploited with flexure-based rigid
techniques (Hughes and Iida, 2017), with increasingly high-quality flexible filaments and
stereolithography techniques offering significantly more capabilities (Gul et al., 2018).

There are a number of alternative materials and approaches which potentially offer more
scalable approaches. This includes hot melt adhesives, which have seen widespread usage
for soft robots (Nurzaman et al., 2013; Vujovic et al., 2017), and offer the advantage of
being cheap, accessible and quick to form. Reconfigurable soft robots are another approach,
and can be fabricated using cutting and folding inspired by origami (Onal et al., 2011; Rus
and Tolley, 2018; Zhakypov and Paik, 2018). Similarly, laser cutting is a rapid method for
fabricating simple robots (Chapter 6), or creating 3D flexure based actuators (Lipton et al.,
2018). In addition to these well established techniques there are a number of exciting novel
fabrication approaches emerging, including knitted or balloon-structure robots (Maziz et al.,
2017; Yarbasi and Samur, 2018).

2.3.2 Sensing and actuation
Another key challenge in the development of soft robots is sensing and actuation (Pfeifer

et al., 2012). Actuation methods such as pneumatically-driven systems are popular, however
these often require tethers or large external compressors (Sun et al., 2013). Tendon-driven
systems are also common and allow for use of motors as an actuation source, providing
a higher controllability and power density (Camarillo et al., 2008). While these can be
efficient, their size and rigidity makes them hard to integrate into continuum bodies. More
unconventional approaches use smart materials, for example dielectric actuators or shape
memory alloys (Li et al., 2019; Motzki et al., 2019). These methods have the clear advantage
that actuation can be seamlessly integrated into a robot morphology and are especially
useful from the perspective of embodied intelligence. However, it is currently challenging to
generate large forces with these technologies (Gu et al., 2017).

Sensing is challenging due to the large deformations and potentially infinite degrees
of freedom of deformation that soft-body systems exhibit (Shih et al., 2020). A number
of different sensing approaches have been proposed including piezeoresistive materials
(Firouzeh et al., 2015), capacitive sensors (Frutiger et al., 2015), ionic metal soft sensors
(Chossat et al., 2013), and also sensors which use cameras (Gilday et al., 2020) or exploit
physical structures (Scimeca et al., 2019). Again, more novel methods have been presented,
for example harnessing the sensing properties of liquid droplets (Cira et al., 2015).
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A growing trend in soft robotic sensing and actuation is the use of bio-hybrid materials.
The boundaries between biological and artificial systems can be blurred with the development
of bio-hybrid robots (Romano et al., 2019). Some of the capabilities, structures and materials
from biological systems can be incorporated to interact with robots (Alapan et al., 2019). For
example, a bio-hybrid system could incorporate biological muscles, where the muscles are
controlled artificially (Morimoto et al., 2018). This approach could allow the functional gap
between current soft-robotics systems and biological systems to be closed.

2.3.3 The fabrication gap
The fabrication approaches discussed in 2.3.2 have a complex set of limitations dictating

what types of design can and can’t be built to a sufficient level of accuracy. Hence, if the
fabrication process is not properly included in the design process we may see a fabrication gap
(Rieffel and Pollack, 2005), i.e. the difference between the prescribed design and physically
fabricated end product. The fabrication gap problem can be addressed by considering
available fabrication methodologies early in the design process.

One approach is to use fabrication rules to filter designs at the simulation stage, for
example using a build filter to rule out designs that cannot be physically fabricated (Kriegman
et al., 2020a). Alternatively, designers can use fabrication rules – 3D printing commands, for
example – as a means to describe designs (e.g., in (Rieffel and Pollack, 2005)). Grammar-
based approaches such as this allows designs to be described via vocabulary of parts and
fabrication methods (Lau et al., 2011). These ideas have recently been advanced with the
concept of a robot compiler, e.g., a process for converting a robot design into parts, structures
and fabrication instructions. Robot compilers have been used to convert simulated designs to
origami robots whose fabrication is guaranteed (Mehta et al., 2014; Mehta and Rus, 2014;
Schulz et al., 2017).

Each fabrication technology introduces its own characteristic to the final designs, which
in turn affects their embodiment and thus their behaviour. Selecting the correct fabrication
approach could vastly increase the performance of soft robots. Indeed, if fabrication is
viewed as a filter between the virtual and physical environments then this could improve
the design process by automatically ruling out designs that could not cross the fabrication
gap. The recent work on robot compilers and grammars demonstrates, to some extent, that
including fabrication at the representation stage can allow us to harness limited fabrication
technologies to our advantage in the design process.

2.3.4 Scaling up physical experimentation
There is a growing trend for testing large numbers of robot designs in reality, and

significant research is being carried out to enable more scalable physical experimentation
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methodologies. Indeed, this is one of the driving factors in presenting the reality-assisted
framework as a feasible option for unifying model-based and model-free design methodolo-
gies.

Online controller learning is relatively easy to implement with physical experimentation as
the morphology remains fixed, and has been applied successfully for locomotion (Khazanov
et al., 2014; Nygaard et al., 2018) and a soft fish robot (Veenstra et al., 2018). Other
studies have co-optimised control and morphology in the real world. One platform uses
a ‘mother robot’ to automatically construct different robot designs and test them for their
locomotive behaviours (Brodbeck et al., 2015; Rosendo et al., 2017; Vujovic et al., 2017). By
automating the fabrication process, large numbers of real-world robots can be evaluated with
minimal human intervention. These studies reveal the effectiveness of scaling up physical
experimentation, but are still fundamentally limited to orders of magnitude fewer design
evaluations than is achievable in silico.

To address this, methods of rapidly fabricating soft robots have been developed, and
robotic automation has been used to partially or fully automate the fabrication process. A
number of soft robotic fabrication techniques are particular suited, or can be adapted for
rapid fabrication. Additive manufacturing using flexible thermoplastic elastomers (Gul
et al., 2018; Wallin et al., 2018) is one example, as is ‘1-D’ printing techniques that can
fold a single string of recyclable material into a target morphology (Cellucci et al., 2017).
In this approach thermoplasters can be extruded using high precision robot arms to create
structures, or to connect existing components together. This approach offers a high level of
accuracy and design complexity in a relatively short time. New printing technologies are
also developing where complex 3D structures can be fabricated in one step (Wehner et al.,
2016), improving the speed at which robot designs can be fabricated. Alternatively, low cost
soft robot construction kits (voxcraft) have been presented along with appropriate simulation
tools to design and test many physical robots (Kriegman et al., 2020b).

2.3.5 Modular and distributed systems
Modular robotic systems allow significant physical experimentation without the need

to continually fabricate new robots. Instead, modules can be reconfigured to make use
of existing fabricated components. Not only does this speed up experimentation, but it
allows investigation into bio-inspired topics such as morphogenesis. For example, emergent
self-assembly approaches inspired by nature have been replicated in a number of distributed
robotic systems (Rubenstein et al., 2014; Werfel et al., 2014). Here, global strategies are
converted to local assembly rules via a compiler. Modular robot systems such as these are
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forced to consider fabrication early in the design process, as modules can only be connected
in certain configurations. In doing so, users can create an implicitly ‘buildable’ design space.

Systems where either the assembly or disassembly process is manually performed include
for example the programmable-matter systems Robot Pebbles (Gilpin et al., 2010) and Miche
(Gilpin et al., 2008). Even more interestingly, there is a special type of modular robots
which can autonomously self-assemble and self-disassemble, i.e. self-reconfigurable modular
robots. In theory, these systems could perform experiments autonomously (limited by their
operation time), as they would assemble into a design, test it, and re-assemble into the next
design by themselves. Within the domain of rigid robots there have been a large number of
different such modular robotic technologies. Recent examples of these include M-blocks
(Romanishin et al., 2013), SMORES (Davey et al., 2012), Soldercubes (Neubert and Lipson,
2016), Roombots (Hauser et al., 2020). Realising soft modular or self-assembling robots is
less common, largely due to the inherent difficulties in fabricating and controlling continuum
bodies. However, modular soft robots are seeing increasing use (Kriegman et al., 2020b), for
example tensegrity systems (Zappetti et al., 2017), tendon-driven structures (Malley et al.,
2017), and soft modular cubes for investigating morphogenetic movements of the embryo
(Vergara et al., 2017).

A key related field is self-replicating robotics. Introduced half a century ago by John
von Neumann, self-replication has long been a dream of roboticists. Requiring futuristic
technologies, it would allow a self-sustaining pipeline of robots to be fabricated autonomously.
A number of examples have been developed (Suthakorn et al., 2003), and 3D printers have
provided an imperfect replicator (Bowyer, 2014). However, there has not yet been significant
progress towards soft self-replicating systems.

2.4 The search for novelty
Key to the success of any design optimisation process are the methods used to search for

favourable designs and the metrics by which designs are compared. As discussed in 2.3, a
key process in reality-assisted evolution is discovering designs in simulation that are likely
to transfer well to reality. This section summarises advances in optimisation techniques for
soft-robot design.

2.4.1 Bio-inspired encoding
Robot designs are typically described via an encoding which systematically maps input

parameters to design features. The design space of all possible designs is, therefore, defined
by the encoding along with the valid range of input parameter values. There is a range of
desirable encoding features. Encoding schemes should output feasible designs for a given
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task environment, but ideally generalise to many task-environments. They should be receptive
to the influence of optimisation algorithms searching for favourable designs within the design
space, i.e. they should be evolvable. Finally, as mentioned previously, having a grounding to
the available fabrication technology is advantageous.

Direct encodings map input parameters directly to design features. This can be a powerful
approach as it allows a human designer to specify the key features of the output design, hence
ensuring the design space is feasible and can be fabricated. For example, robot foot and
leg parameters have been optimised with direct encodings (Saar et al., 2018). However, the
approach performs poorly in terms of scalability and generality. Since every node in the
discretised design space needs a separate, exact description, the total amount of information
stored in the direct encoding is as large as the design itself. This can be problematic, especially
for soft robots where a fine design discretisation can quickly make the optimisation process
intractable. Furthermore, a direct encoding scheme suitable for a given task may not transfer
to another.

Instead, research has focused on indirect or generative encoding systems that can de-
scribe a complex design space with relatively few parameters (Hornby and Pollack, 2001;
McCormack et al., 2004). The idea is inspired by biological systems, where phenotypic
expression often occurs in repeating patterns that can be described by a singular part of the
encoding, in this case a genome. Lindenmayer systems (L-systems) and their variations
(Jacob, 1994; von Mammen and Jacob, 2007) are generative encodings that incorporate
bio-inspired aspects of morphogenesis, the development of morphological characteristics.
Their particular properties make them effective for modelling natural plant systems, with
directed growth and branching. However, they have not yet found a clear application in the
design of soft robots.

Another more promising indirect encoding is compositional pattern-producing networks
(CPPNs) (Clune et al., 2011). CPPNs mimic the natural ontogenetic process without the
need to directly simulate the chemical mechanisms involved. Instead, describing morphology
in terms of a network where each node is a mathematical function (e.g., a Gaussian or cosine
function), and the final design is the result of design coordinates queried through this network.
By including regularity in the encoding (Clune et al., 2011), design information can be
compressed significantly while maintaining diversity within the design space. CPPNs have
been combined with a various optimisation algorithms that evolve their underlying network
to design soft robots in a simulation environment (Cheney et al., 2013), with some having
been transferred to the real world. Growing evidence has supported the idea that generative
encoding schemes using CPPNs or similar outperform other approaches (Richards and Amos,
2014; Tarapore and Mouret, 2014).
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2.4.2 Optimisation algorithms
Single objective optimisation (SOO) strategies aim to maximise performance in a specific

behavioural feature or task (Trianni and López-Ibáñez, 2015), for example locomotion speed.
Evolutionary algorithms (EAs) mimic natural selection and offer an effective approach to
searching for favourable designs, providing the desired phenotypic behaviours can be encoded
within a fitness function. In simulation they have been shown to effectively optimise a range
virtual agents (Sims, 1994) including for locomotion (Cheney et al., 2013; Duarte et al.,
2017) or navigating confined space (Cheney et al., 2015). EAs have also been demonstrated
in the real world, evolving modular robots for locomotion (Brodbeck et al., 2015; Vujovic
et al., 2017) and for controlling a soft fish robot (Veenstra et al., 2018).

Bayesian optimisation (BO) (Frazier, 2018) is an alternative strategy for the global
optimisation of expensive-to-evaluate black box functions, and has seen significant usage
in SOO problems for robotics. BO methods sequentially build and improve a surrogate GP
model of the underlying function and use this to efficiently sample the parameter space.
Significantly, BO allows users to choose a range of acquisition functions to decide the next
sample point, some of which include a penalty for evaluation time. The algorithm, therefore,
can search for designs that maximise the predictive accuracy of the GP model and design
fitness while also minimising time spent doing physical experimentation.

BO has been used for a range of physical robot design optimisation tasks including mod-
ular robots (Rosendo et al., 2017), locomotion control strategies (Rieffel and Mouret, 2018),
falling paper shape morphologies (Chapter 5) and for the co-optimisation of morphology
and control (Saar et al., 2018), where it was shown to outperform a human designer. In
this study, physical robots were iteratively fabricated and tested. After each test, the design
fitness was used to update the GP model which, in this case, mapped leg parameters to
predicted locomotion distance. BO has also been used in Intelligent Trial and Error (IT&E),
designed to quickly adapt robot controllers to morphological damage by using real-world
experimentation to learn optimal control policies (Cully et al., 2015).

There is a growing trend for implementing multi-objective optimisation (MOO) ap-
proaches in the evolution of robotic systems. Since intelligent behaviours can rarely be
characterised by a single fitness function, MOO offers a framework for characterising more
complex behavioural fitness functions into the design process (Trianni and López-Ibáñez,
2015). Multi-objective evolutionary algorithms (MOEAs) use multiple objectives to drive
the evolutionary process, offering the designer a set of solutions with trade-offs between the
various objectives (Mouret and Doncieux, 2008, 2012). MOEAs are effective for evolving
simulated soft robot behaviours, for example in aquatic environments (Corucci et al., 2018).
Transferability approaches also use the MOO framework, finding Pareto optimal solutions
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that balance design fitness and with an estimation of transferability (Koos et al., 2012). MOO
frameworks are effective for finding a range of possible design candidates, however will
not return solutions in areas of the design space that are not Pareto optimal. Hence, many
potential candidate designs can be missed, especially in the case of poorly defined objectives.

2.4.3 Quality-diversity and illumination algorithms
Designers can incorporate solution novelty within the optimisation objectives. Such

algorithms aim to actively create divergence in the solution space, rather than converging to
one global maxima, for example by formulating the optimisation problem to search only for
behavioural novelty, i.e. novelty search (NS) (Doncieux et al., 2019; Lehman and Stanley,
2011a). The formulation has been shown to outperform traditional objective based searches
for solving task-based problems such as maze solving or obstacle avoidance (Mouret and
Doncieux, 2012), and for the online morphological adaptation of a simulated underwater
robot (Corucci et al., 2015). In the context of design optimisation, this offer an alternative
way of evaluating designs based on their behaviour, rather than directly on an fitness function.
Because many points in the design space may map to the similarly performant behaviours,
this approach could significantly improve search efficiency. However, without any direct
measure of solution fitness, searches based on novelty can be too divergent to ever present an
optimal solution candidate.

To address this, so-called illumination or quality diversity (QD) algorithms have been
presented which hybridise the concept of novelty searching and direct fitness optimisation
(Pugh et al., 2016). QD algorithms aim to discover the range of behavioural niches in the
system, as well as the associated optimal solution of each niche. One example, Novelty
Search with Local Competition (NS+LC) (Lehman and Stanley, 2011b), lets similarly
behaved solutions compete based on a fitness function. When evolving virtual agents for
locomotion, NS+LC found more functional morphological diversity than a global fitness
function. Similarly, the Multi-Objective Landscape Exploration algorithm (MOLE) (Clune
et al., 2013) searches for diverse solutions that are as far away from each other as possible
in a user-defined feature space. One of the most popular QD implementations is the Multi-
Dimensional Archive of Phenotype Elites (MAP-Elites) (Mouret and Clune, 2015) algorithm.
Here, a set of highly performant solutions are discovered across a discretised feature space
defined by the user. The holistic nature of MAP-Elites allows the human designer to define
interesting robot behaviours and use these to structure the evolutionary search, and has been
reported to outperform traditional EAs in a range of tasks.

The QD approach may be particularly effective for the design of soft robots because it is
more accommodating to unknown system behaviours. In the case of soft robotics, we often
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do not know how a particular soft system will behave. optimising a range of solutions with
different behaviours makes it more likely some of these solutions will be effective when
transferred into the real world.

2.4.4 Developmental robotics
Taking inspiration from nature, there is growing evidence that mimicking ontogensis

and allowing a developmental phase, where a robot can alter its morphology or controller,
can be highly beneficial (Doursat and Sánchez, 2014; Eiben et al., 2013; Rieffel et al.,
2014). Incorporating a developmental process into the design optimisation framework adds
a number of benefits. First, the design-space complexity can be reduced and offloaded to
the developmental interaction between the robot and its environment. Second, performance
disparities introduced by the reality gap can be corrected via developmental processes in the
real world. Including developmental processes also means a robot can adapt to a changing
task environment, or repair itself if damaged. Similarly, controller development allows robots
to correct for damage or an unexpected change in task (Cully et al., 2015). Third, it could
allow the design space of embodied robots to be explored more efficiently and effectively.
It has been demonstrated that implementing a developmental framework combined with a
novelty search is more effective for evolving simulated soft robots than using a traditional
fitness driven approach (Joachimczak et al., 2015). A key study (Kriegman et al., 2018)
demonstrated how phenotypic plasticity can guide and improve evolution, so-called evo-devo,
and increase the overall evolvability across the design space. Large-scale developmental
processes have seen limited implementation for real-world embodied soft robots, but the
preliminary results indicate the potential (Vujovic et al., 2017).

2.5 Discussion and conclusion
This review chapter is written in the context of two key problems in the design of

soft robots. First, although model-based methods are effective for searching large design
spaces, we are currently unable to sufficiently model many physical processes within soft
robots, and are also unable to physically fabricate many virtual soft-robot designs. These
reality and fabrication gaps severely limited the scope of designing physically embodied
soft robots with a model-based approach. If we subscribe to the view that intelligent
behaviours result from complex embodied interaction within the environment, then there is
a clear need for significant physical experimentation in lieu of highly accurate modelling
and simulation. Second, while model-free physical experimentation does fully capture the
embodied behaviours of soft robots, the approach is not scalable to the size achievable with a
model-based approach. Designers cannot, for example, explore the evolutionary design of
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complex soft robots since exploration of these design spaces requires a significant numbers
of evaluations.

The challenges associated with designing soft robots combined with the potential bene-
fits of utilising soft robots in the context of embodied intelligence are forcing robotiscists
to rethink their design methodologies and philosophies. The literature presented here (as
highlighted in Table 2.1) demonstrates that an effective strategy is a reality-assisted evolution
framework in which model-based and model-free physical experimentation methods are
unified to improve the design of physically embodied soft robots that exhibit useful, mean-
ingful behaviours.In silico, data-driven modelling can be used to build and update models of
real-world systems. Tuning physics simulations (Kriegman et al., 2020a), building models
from scratch (Saar et al., 2018) and learning auxiliary transferability models (Koos et al.,
2012) are all data-driven methods for reducing the reality-gap disparity. In reality, large-
scale physical experimentation methods are facilitating significant numbers of real-world
evaluations. Automated (Chapter 6) and scalable (Kriegman et al., 2020b) methods show
promise, as do modular and reconfigurable systems (Nygaard et al., 2018; Vergara et al.,
2017). At a high-level, novel optimisation techniques can guide design exploration in silico
and in reality. QD and illumination algorithms such as MAP-Elites (Mouret and Clune, 2015)
seem particularly suited to modulating the design process by discovering multiple diverse
candidate designs to be tested in the real world. Bayesian optimisation (Rieffel and Mouret,
2018) methods also show promise since they allow designers to include the cost of physical
experimentation directly in the objective function.





Part I

Falling paper





Chapter 3

Physics-driven behavioural clustering of
free-falling paper shapes1

Complex physical phenomena are often governed by highly non-linear, multidimensional
dynamics. Hence, it can be challenging to understand these systems using traditional
modelling tools, as we lack knowledge of the underlying physical phenomena required to
implement these. The obvious course of action, then, is to infer these phenomena via physical
experimentation. Automating this inference process, in other words automating the discovery
of system physics from experimental data, has been the focus of intensive study.

Schmidt and Lipson (Schmidt and Lipson, 2009) developed an algorithm to automatically
discover analytical relationships in dynamical systems, ranging from simple harmonic oscil-
lators to more complex chaotic double pendulum systems. This was preceded by a method
of non-linear model synthesis from directly observed data using co-evolution (Bongard and
Lipson, 2005). Meanwhile, in the fluid dynamics community sparse regression has been used
to determine the fewest terms in the dynamic governing equations required to accurately
represent the data (Brunton et al., 2016). Data-driven approaches to modelling have also
shown the ability to predict behaviours of dynamic systems (Kutz et al., 2016; Schmid, 2010).

1This chapter is based on the following peer-reviewed publication:

• Howison, T., Hughes, J., Giardina, F., & Iida, F. (2019). Physics driven behavioural clustering of
free-falling paper shapes. PLoS One, 14(6), e0217997.

• Data availability: https://doi.org/10.1371/journal.pone.0217997
Contributions
T. Howison – devised the PDBC algorithm and VSFP system, planned and carried out experiments, wrote the
bulk of the paper and created the figures.
J. Hughes – assisted with experiments, helped write initial paper draft, proofreading and general discussions.
F. Giardina – contributed to early exploratory work and general discussions.
F. Iida – contributed to general discussions and proofreading.

https://doi.org/10.1371/journal.pone.0217997
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Similarly, big-data has been utilised for the prediction and physical understanding of complex
systems include (Gandomi and Haider, 2015; Goza and Colonius, 2018; Quiroz et al., 2018;
Strogatz, 2018; Yang et al., 2015). Other studies used evolutionary algorithms with feedback
from environmental interaction to optimise robotic morphologies without any system model
(Brodbeck et al., 2015; Nurzaman et al., 2013; Rosendo et al., 2017).

These approaches present a few problems. First is the reliance on large data-sets. Sam-
pling through physical experimentation typically involves searching high dimensional land-
scapes (Kutz, 2017). This makes data generation difficult, especially for expensive-to-
evaluate functions. Second, although highly effective at identifying the inherent physical
relationships of non-linear systems, they have not shown the ability to predict the boundaries
of these non-linear behaviours. This is of particular importance in systems with a diverse
range of discrete behavioural modes over their parameter space. In such systems, the dy-
namics of different behaviours may be significantly different, and the driving factors causing
behavioural switches unclear. Such discrete behaviour systems are seen widely throughout
nature including laminar-turbulent behaviours in fluid dynamics (Sano and Tamai, 2016),
gait patterns in locomotion (Alexander, 1989; Corucci et al., 2018) or even the behaviour of
flocking systems (Toner et al., 2005).

In this chapter I present Physics-driven behavioural clustering (PDBC), a novel method
that automates the process of discovering functions that enable behavioural clustering and
physical understanding of systems with discrete behavioural modes. The PDBC method has
the potential to discover physically insightful clustering functions based on relatively few
experimental observations, thus enabling breakthroughs in the understanding of expensive-
to-evaluate and behaviourally diverse systems. In the PDBC method, observational data
is organised and transformed into the parameter space of a set of generic functions. We
hypothesise that there exists a set of functions whose parameter space is divided into distinct
regions corresponding to different behavioural modes. Furthermore, we hypothesise that
more physically relevant functions – such as Re and I∗ in the case of falling disks (Field
et al., 1997) – will cluster similar behaviours together more effectively. We propose that the
predictive accuracy and clustering strength of a standard unsupervised clustering algorithm
in this parameter space can be used as a direct metric for physical significance, with strongly
clustered solutions with low predictive errors being more physically relevant.

We address the challenging problem of clustering and understanding the falling be-
haviours in the V-shaped falling paper (VSFP) system, which is a new contribution to the
falling paper system class. This is inspired by the falling and fluttering behaviours observed
by helicopter seeds (Lentink et al., 2009). The VSFP system is an interesting challenge
because although the design parameter space is limited, it exhibits rich behavioural diversity.
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Therefore it is an ideal system to demonstrate the PDBC method. We demonstrate the PDBC
method can effectively cluster and help explain the VSFP behaviours.

This chapter is structured as follows. In 3.2 I describe the PDBC algorithm for a general
system. In 3.3 I describe the VSFP system. In 3.4 I present experimental results of the VSFP
system. In 3.5 I demonstrate the effectiveness of the PDBC method on the VSFP system. In
3.6 I conclude the chapter.

3.1 Falling paper and related problems
In this section I briefly outline the key literature relating to falling paper and other similar

systems. The study of how paper, or more generally plate and disk shaped objects, fall in air
and other liquids has been studied extensively from many different points of view. Maxwell
(1854) presented the first explanation for the falling dynamics of such objects, famously
observing that ’Everyone must have observed that when a slip of paper falls through the air,
its motion, though undecided and wavering at first, sometimes becomes regular’. Maxwell
proposed that this regular motion is the result of rotation— termed autorotation—induced
by a pressure differential between the leading and trailing paper edge. Furthermore, he
suggested that the exact behaviour is highly dependent on the initial conditions and paper
shape, with symmetrical shapes exhibiting a more pronounced rotation. The mathematical,
fluid mechanics, and computational methods of the time meant that Maxwell was unable to
quantitatively test any of his hypotheses. Techniques have developed since then, allowing a
more in depth analysis of the problem.

Willmarth et al. (1964) conducted a large scale study on the steady and unsteady motions
of falling disks, showing that behaviour exhibited a systematic dependence on the Reynolds
number (Re) and dimensionless moment of inertia (I∗). The boundary between steady and
unsteady disk oscillation was identified. Smith (1971) presented an experimental investigation
into the autorotation of wings, showing that freely falling wings either autorated, rocked
or remained stable. Again, the type of motion observed was highly dependent on the wing
Re and I∗. Iversen (1979) presented similar findings for the autorotation of flat plates.
Hans Lugt David W Taylor (1983) contributed a comprehensive review of autorotation for
various objects and described the theoretical difficulties of modelling this. Skews (1990)
studied the autoratation of rectangular plates with different thickness to chord ratios in
a wind tunnel, showing that autorotation can be achieved for square cylinders. Tanabe
and Kaneko (1994) presented a phenonemological model (one describing the empirical
relationship of phenomena to each other without derivation from first principles) of a rigid
and two-dimensional falling paper problem. Five distinct falling patterns—periodic rotation,
chaotic rotation, chaotic fluttering, periodic fluttering, and simple perpendicular fall— were
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identified. However, Mahadevan et al. (1995) commented that this model is not physically
rigorous and doesn’t improve upon simpler models. Field et al. (1997) found a similar set
of behaviours predicted by Tanabe and Kaneko (1994) for disks falling water, showing a
clear relationship between falling behaviour, Re and I∗. Belmonte et al. (1998) observed and
modelled thin rectangular strips of paper, showing that falling motion can be divided into a
fluttering and a tumbling phase, and that the transition between phases occurs at a relatively
consistent Froude Number. Mahadevan et al. (1999) showed that, for rectangular cards, the
frequency of tumbling scales with the square root of thickness over width.

Mittal et al. (2004) numerically investigated the flutter-tumble transition for falling
objects, showing a higher tendency to tumble with a higher Re and lower thickness ratio.
Pesavento and Wang (2004) presented the first “solution" to the problem, solving the Navier-
Stokes equation for a two-dimensional rigid plate. Their model helps to further understand
the transition from flutter to tumble, and has the potential for generalisation to flapping
flight. Fonseca and Herrmann (2005) presented a three dimensional numerical study on the
dynamics of a falling ellipsoid, identifying three falling behaviours: steady-falling, periodic
oscillations and chaotic oscillations. Meanwhile, Fernandes et al. (2007) studied the motion
of disks rising in water, showing that at a certain Re and body aspect ratio, velocity and
position oscillation is induced. Similar work can be found in Fernandes et al. (2005). Jin
and Xu (2008) developed a numerical model of elliptic and rectangular plates, showing that
translation velocity between the two shapes is similar but rotational motion depends strongly
on shape.

Chrust et al. (2013) numerically simulated the dynamics of freely falling disks, presenting
an state-diagram of behaviours based on two independent parameters (Different to Re− I∗

described previously): the Galileo number—ratio between effects of gravity and viscosity—
and nondimensionalized mass. Wang et al. (2013) investigate the influence of aspect ratio on
the falling behaviour of rectangular plates. Varshney et al. (2013) reported one of the few
studies investigating non circular/rectangular shapes, showing that falling parallelograms
exhibit both autorotation and autogyration when falling. Huang et al. (2013) studied the
influence of mass distribution on fluttering plates, finding that the symmetry of oscillation is
lost when the centre of mass (COM) is shifted, resulting in more horizontal motion. At a
critical COM, the plate falls vertically down with the COM leading. Auguste et al. (2013)
numerically showed that disk aspect ratio has a large effect on the falling path and falling
regime boundaries.

Heisinger et al. (2014) investigated coins falling in water, computing a probability density
function for the landing point at different Re regimes e.g. steady, fluttering, chaotic. Each
regime pdf exhibit a different distribution, for instance when tumbling, the pdf resembles



3.1 Falling paper and related problems 47

a ring around the centre point. V Vincent et al. (2016) showed that falling coins that poses
holes are more stable, because of inner vortex ring formation. The findings have implications
for robotic systems in free flight and more generally stability of gliding animals.

3.1.1 Flight, insects, wings
Ellington et al. (1996) studied airflow over a moth wing, showing that lift forces disagree

with the conventional aerodynamic theories of the time. Dickinson et al. (1999) identified
three mechanisms during insect flight: delayed stall, rotational circulation, and wake capture.
Berman and Wang (2007) studied insect wing kinematics using a rigid model, finding the
optimal kinematics for hovering. An interesting question is what morphology is optimal, and
how does it affect kinematics - falling paper is passive flight. Bergou et al. (2007) studied a
similar topic, finding that the pitching motion of insect wings during flight can be passive,
and that fluid forces assist rather than resist pitching. Bomphrey et al. (2010) found that
bumblebees exploit a leading-edge vortices for flight.

3.1.2 Seeds
Norberg (1973) presented a wide scale investigation of Samaras—winged fruit or seed

that autorotates when falling—noting that their functional significance is to reduce falling
speed to allow seed dispersal. The similarity between Samaras and insect wings is described.
McCutchen (1977) investigated a range of Ash and Tulip Samaras. He suggests the stability
and slow descent time of Zanonia Samaras when falling contributes to their evolutionary
success. Lentink et al. (2009) measured three dimensional flow around Samaras, showing
that lift is the result of a stable leading-edge vortex. This conclusion is generalised for the lift
generated by hovering insects and bats. Varshney et al. (2013) studied the helical motion of
falling maple seeds using high speed video, finding three distinct phases: tumbling, tilting
toward vertical axis, gyration and settling. Furthermore, seeds with torn wings gyrate like full
winged seeds. Lee and Choi (2018) presented a scaling law relating lift force, seed geometry
and terminal rotational and linear velocities.

3.1.3 Snowflakes
Magono and Nakamura (1965) studied the fall velocity of snowflakes, showing a depen-

dence on density and size. An empirical equation was derived to estimate falling velocity
based on snowflake density. List and Schemenauer (1971) furthered this work, looking
at the falling behaviour of different shaped snow crystals and hail. Drag coefficients and
Best numbers–relating drag and Reynolds number–were calculated experimentally and used
to estimate terminal velocities of different shaped particles. Jayaweera and Cottis (1969)
presented similar work on the relationship between length, diameter and the falling velocities
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of falling ice discs and cylinders. Finally, Christiansen and Barker (1965) showed that the
terminal velocities of prisms, disks, cylinders and spheres are related to object density, fluid
density and characteristic length ratios.

3.2 Physics-driven behavioural clustering
The PDBC method is inspired by the idea of dynamic similarity, which uses dimension-

less quantities to assess the similarity between different systems whose properties are not
necessarily the same. For example, the flow of two fluids with different densities in pipes of
differing diameters are said be similar if a dimensionless quantities – the Reynolds Number
(Re) – is the same for each flow (Gerhart et al., 2016). Furthermore, the value of Re indicates
the flow behaviour, e.g., laminar or turbulent. Hence, dimensionless quantities can be used
both for clustering and physical insight.

We hypothesise that for dynamic systems with discrete behavioural modes there exists
a set of functions whose parameter space is divided into distinct regions – separated by
transitional zones – corresponding to different behavioural modes. Although not strictly
dimensionless, we expect these functions to represent the underlying structure of dimension-
less quantities, and hence term them pseudo-dimensionless quantities (PDQs). We further
hypothesise that the more effectively PDQs cluster similar behaviours together, the greater
physical insight they contains.

PDBC is a formalised approach for searching through and evaluating different PDQs.
Figure 3.1 shows a schematic of the process, which I explain individually in detail below.

3.2.1 Data acquisition and processing
The PDBC method is intended for use with systems that that exhibit discrete and dis-

tinctive behavioural patterns as certain system variables are changed. The input of PDBC is
experimental data of such systems, containing a range of variables, behavioural patterns and
outputs. These behavioural patterns should be distinguished during the data acquisition phase
by the user, either visually or otherwise. Table 3.1 summarises each input of the process in
detail.
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Figure 3.1: Flow chart of generalised physics-driven behavioural clustering method. Ex-
perimental observations with different system parameters along with there corresponding
behaviours are the input. (1) A set of general functions called PDQs are formulated for the
system. (2) Using a heuristic physics based approach, define a range of plausible values for
the PDQ exponents. (3) Evaluate the PDQs with different combinations of exponents. (4–5)
For each exponent combination, run a clustering algorithm in the PDQ parameter space and
evaluate the predicted error of system behaviours, and the clustering strength. (6–7) Choose
the exponent combination with the best trade off between minimising predictive error and
maximising clustering strength.
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Input Symbol Size Description
System Parameters pa a = 1, . . . ,A System parameters

that can be varied,
leading to different
behavioural modes.

System Outputs ob b = 1, . . . ,B System outputs than
can be measured
for all behavioural
modes.

Behavioural
Category

µ µ ∈ {1, . . . ,N} Numeric identifiers
for each of the N be-
havioural modes ob-
served in the system.

Experimental
System Parameters

P =

p1
1,...,A

...
pI

1,...,A

 I ×A Array of system
parameter combina-
tions tested over I
experiments.

Experimental
System Outputs

O =

o1
1,...,B

...
oI

1,...,B

 I ×B Array of system out-
puts measured over
I experiments.

Experimental
System Behaviours

µµµ =

µ1

...
µ I

 I ×1 Matrix of observed
behavioural modes
observed over I ex-
periments

Table 3.1: PDBC algorithm input parameters.

3.2.2 Formulation of generic PDQs (1)
The first step in the PDBC process is to formulate a set of generic PDQs. As previ-

ously stated PDQs are representations of dimensionless quantities, so should describe some
relationship between the system parameters and outputs. A review of many common dimen-
sionless quantities shows this relationship is usually characterised by the product of system
parameters and outputs, raised to some exponent. Hence, the generic PDQs should facilitate
the testing of many different combinations of the system inputs, outputs and exponents.

To satisfy this requirement, we formulate generic PDQs as exponential equations in-
cluding the system parameters, outputs and generic exponents βc for c = 1,2, . . . ,C, with
βββ = (β1,β2, . . . ,βC) being the exponent vector. Each PDQ includes all system parameters
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but only one output, with each term having one exponent. This allows us to specifically
explore the relationship between the system parameters and each output. The total number of
generic exponents, then, is C = AB+B and the PDQs are formulated as follows

fb(βββ , p1, . . . , pA,ob) =

( A

∏
a=1

p
βa+(A+1)b−A−1
a

)
o

βa+(A+1)b−A
b (3.1)

where as described in Table 3.1 a = 1, . . . ,A and b = 1, . . . ,B. Using this formulation
we can generate any number, say K, of exponent combinations βββ k = (β k

1 ,β
k
2 , . . . ,β

k
C) for

k = 1,2, . . . ,K.

3.2.3 Exponent search policy (2)
Given the generic PDQs, we next define a policy to search through the possible exponent

values previously described. The goal of this policy is to evaluate the physically plausible
exponents for a particular parameter or output, while ignoring those which are physically
unlikely. Hence, for each parameter and output the user should define an exponent range
and discretisation increment that give rise to a set of plausible exponents. we denote this
algebraically as follows. The ath parameter has an exponent range

β
k
a+(b−1)A+(b−1) ∈ {−Πa,−Πa +∆a, . . . ,Πa −∆a,Πa} (3.2)

and the bth output has an exponent range

β
k
A+(b−1)A+(b−1) ∈ {−Πb,−Πb +∆b, . . . ,Πb −∆b,Πb} (3.3)

where Πa and Πb define the minimum and maximum values for each parameter or output,
and ∆a and ∆b the corresponding discretisation increment. The total number of exponent
combinations K is therefore

K =
A

∏
a=1

(
2Πa

∆a
+1

) B

∏
b=1

(
2Πb

∆b
+1

)
(3.4)

Clearly, setting Πa, Πb, ∆a and ∆b requires a heuristic approach. For example, parameters
with units of length may relate to inertial terms or their inverses, so Π = 4, and could be
discretised with ∆ = 0.5. Limiting the range or using a large increment may lead to useful
PDQs being lost. However, increasing the range or using a low increment vastly increases
the computational cost of the PDBC process.

The authors present Table 3.2 as a suggested guide for choosing reasonable exponent
ranges for certain parameter and outputs types.
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Term Units Π ∆ Reasoning
Length L 4 0.5 Includes inertial terms
Angle — 4 0.5 Includes Inertial Terms

Linear Velocity L·T−1 2 0.5 Includes Energy Terms
Angular Velocity T−1 2 0.5 Includes Energy Terms

Table 3.2: Suggested exponent ranges and increments for PDBC algorithm.

3.2.4 PDQ clustering (3–4)
We seek to determine how, given an exponent vector βββ k, the PDQs cluster similar

behaviours together. To achieve this we apply the K-Means unsupervised clustering al-
gorithm (Hartigan and Wong, 1979) on the PDQ parameter space. This partitions the
experimental observations into N clusters – corresponding to the number of system be-
haviours – which can be evaluated for their predictive accuracy and clustering strength. As
previously mentioned, we hypothesise that more physically meaningful PDQs will yield
stronger and more accurate clustering.

We evaluate the experimental parameters and outputs P and O into the PDQ parameter
space Xk

Xk =

 f1(βββ ,P1
1 , . . . ,P

1
A ,O

1
1) . . . fB(βββ ,P1

1 , . . . ,P
1
A ,O

1
B)

...
...

...
f1(βββ ,PI

1, . . . ,P
I
A,O

I
1) . . . fB(βββ ,PI

1, . . . ,P
I
A,O

I
B)

 (3.5)

The K-Means clustering algorithm is applied to X, yielding

vk = KMCN(Xk) (3.6)

where N is the number of clusters to form, in this case the number of system behaviours, and
vk is an I dimensional array of cluster assignments, with vk

i ∈ {1,2, . . . ,N}. As is standard
practice, the algorithm is run multiple times, three in this case, to avoid clustering anomalies.

3.2.5 Evaluation of clustering performance (5)
We introduce two measures of clustering performance; predictive error ε and clustering

strength s̄.
Predictive error: K-Means is an unsupervised method, so the cluster assignments in vk

do not correspond to the behavioural labels in µµµ . In order to associate clusters assignments
with behavioural labels we define v̂k, in which we uniquely reassign cluster assignments such
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that the fraction of misclassified behaviours – the predictive error εk – is minimised

(v̂k
i ̸= vk

i )∧ (∃! v̂k
i ∈ {1,2, . . . ,N})⇐⇒ min

v̂k
ε

k (3.7)

where

ε
k =

1
I

I

∑
i=1

ek
i (3.8)

and

ek
i

1 v̂k
i ̸= µi

0 v̂k
i = µi

(3.9)

Clustering Strength: We use the silhouette criterion (Rousseeuw, 1987) sk
i ∈ [−1,1]

to quantify the clustering strength. sk
i is a measure of data consistency within clusters,

representing how similar the ith observation is to its own cluster, relative to other clusters.
The higher s, the stronger the clustering assignment for a particular observation is. We define
the clustering strength as the mean of sk

i for all observations, e.g.,

s̄k =
1
I

I

∑
i=1

sk
i (3.10)

3.2.6 Optimal exponent vector selection (6-7)
At this point in the PDBC process, all candidate exponent vectors have been evaluated

for their predictive error εk and clustering strength s̄k. Hence, we must define a measure of
optimality by which we sort the PDQs from the most to the least physically insightful. We
denote the optimal PDQ exponent vector as βββ k∗ .

Solutions with a low predictive error are desirable, as under our hypothesis these PDQs
are likely to be more physically insightful. However, if the exponent search space is large
there may be multiple solutions with a low predictive error; some arising from physically
significance and some arising coincidentally. Hence, we must also consider the clustering
strength of the solution, with stronger clustering also indicating more physical insight.

To achieve this we introduce the exponent ranking factor rk, that rewards strongly
classified solutions with low predictive error. It is simple the sum of −εk and s̄k.

rk = s̄k − ε
k (3.11)

Hence, the optimal exponent vector βββ k∗corresponds to the highest rank rk∗ , and represents
the PDQs with the best trade-off between predictive error and clustering strength. To ease
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the interpretation of the rankings we can sort the solutions in descending order in terms of rk,
defining the solution rank number k̂(rk) such that

rk̂(rk)−1 ≤ rk̂(rk) ≤ rk̂(rk)+1 (3.12)

for k̂(r) ∈ {1, . . . ,K}. Hence, the optimal solution rk∗ corresponds to k̂(rk∗) = 1, with
solutions k̂(rk) = 2, . . . ,K decreasing in their optimality.

3.3 V-shaped falling paper system
To test the PDBC method we created the V-shaped falling paper (VSFP) system, in which

the passive falling behaviours of a V-shaped paper structure with an affixed mass are studied.
The VSFP is a novel addition to the falling paper class of systems, and is to our knowledge
unstudied. Here, we describe the VSFP system and experimental procedure, in the context of
the PDBC method.

3.3.1 System morphology
Consider the passive falling behaviours of a V-shaped piece of paper with an affixed

mass; together termed a structure. The morphology of a structure is fully defined by the four
parameters shown in Figure 3.2: the wing length l, wing angle θ , wing width w and affixed
mass m. l and θ may vary, while w and m are fixed at 10 mm and 5 g. Hence, the two system
parameters to be used in the PDBC method are p1 = l and p2 = θ .

3.3.2 System behaviours
As the morphological parameters l and θ are varied, the passive falling behaviours change.

During free-fall, structures exhibit a transient and steady state phase; when falling they may
rapidly pass through more than one behaviour before settling on a single behaviour. In this
study, we neglect the transient phase as we found it to be highly unpredictable. Hence, the
output of each drop test is the steady state behaviour. Four behavioural modes are directly
observable; plummeting, undulating, helicopter rotation and asymmetric rotation. Figure
3.3 shows example snapshots of each of these while Table 3.3 outlines the characteristics
of each behaviour; see also supplementary video2. The rotative behaviours (c,d) are easily
distinguishable from each other and the non-rotative behaviours (a,b).

3.3.3 System outputs
There are many possible outputs, such as falling speed, rotation speed, rotation angle,

oscillatory frequency or horizontal speed; some of these are only measurable in certain

2https://doi.org/10.1371/journal.pone.0217997

https://doi.org/10.1371/journal.pone.0217997 
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Figure 3.2: A Parameterised paper V shape with an affixed mass. The variable parameters
are wing length l and wing angle θ . The fixed parameters are wing width w = 10 mm and
affixed mass m = 5g.

Figure 3.3: Snapshot images of the four directly observable behaviours in the VSFP system.
(a) Plummeting (b) Undulating (c) Helicopter rotation (d) Asymmetric rotation. These
snapshots show the structures falling height of 3 m.
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Behavioural Mode Characteristics
Plummeting Shape falls directly to the ground with no wing movement.
Undulating Shape falls directly to the ground, wings oscillate.

Helicopter Rotation Wings splay in either direction, shape rotates to the ground.
Asymmetric Rotation Shape rotates around mass.

Table 3.3: Qualitative description of behavioural modes in VSFP system

Figure 3.4: Diagrammatic representation of the four different behaviours, showing the
measured outputs ż and γ̇ . For the non-rotative behaviours (a,b) γ̇ = 0.

behavioural modes. The PDBC method is designed to be used with universally measurable
outputs, which we define as being observable in all behavioural modes. In the case of the
VSFP system, this limits the outputs to falling speed ż and rotation speed3 γ̇ . Figure 3.4
shows a schematic of the different behaviours and universally measurable outputs.

3.3.4 Manufacturing
Figure 3.6 shows the experimental procedure. An Endurance MakeBlock XY engrav-

ing/cutting machine – as shown in Figure 3.5a – was to cut the shape out of Silvine A4 Graph
Refill paper. The paper has a weight of 80 gsm (grams per square metre). The mass – for
which 2 standard M4 steel washers were used – was affixed to the tip using superglue, with
one washer on either side of the shape.

3.3.5 Testing
Each structure was manually dropped from a height of 3 m into still air and using a tip up

initial condition, as shown in Figure 3.5c. Structures fell against a black backdrop, and were

3The rotational speed of the plummeting and undulating behavioural modes being negligible, but measurable.
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Figure 3.5: The experimental set-up, showing (a) Endurance MakeBlock XY engrav-
ing/cutting machine (b) Structure comprising of paper shape and affixed mass (c) Camera
view of experimental drop zone

recorded using a Logitech BRIO camera recording at 120 fps. The system outputs γ̇ and ż
were manually extracted from the video data. Each structure was dropped J = 5 times, and
the average outputs ¯̇γ and ¯̇z were calculated

[ ¯̇γi ¯̇zi] =
1
J

J

∑
j=1

[γ̇
j

i ż j
i ] (3.13)

3.4 VSFP experimental results
A series of structures were manufactured and their behaviours recorded, as previously

described. The PDBC method was applied to these results with the aim of clustering the
system behaviours and gaining physical insight into the system. In this section I describe the
VSFP results, including the type of behaviours observed, their outputs and any relationship
to l and θ .

The l–θ parameter search space was discretised such that

l ∈ {75,95,115,135,155,175,195} ( mm) (3.14a)

θ ∈ {30,37.5,45,52.5,60,67.5,75} (deg) (3.14b)
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Figure 3.6: Flow chart of the experimental procedure. Structures are manufactured using
the laser cutter. Structures are dropped and recorded J = 5 times. The dominant falling
behaviour is extracted across these trials. The measured outputs are extracted and average
over these trials, yielding ¯̇z and ˙̄γ . The process is repeated for every combination of l and θ

in the search space.
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Hence, a total of I = 49 structures were tested, some of which are shown in Figure 3.7.

Figure 3.7: Example of manufactured and tested structures.

First, I describe the results of these experiments.

3.4.1 Behavioural diversity and structure
There are four observable behavioural modes, as described in Table 3.3. Figure 3.8

shows the observed dominant behaviour as a function of l and θ , which were also stored
in the behavioural ground-truth vector µµµ . There are five distinct behavioural regions; lines
have been added by hand to indicate their approximate boundaries. Despite this apparent
structure, there is no obvious rule to differentiate between behaviours based solely on l and
θ . Morphologies with l ≥ 155 mm are dominated by undulating behaviour across all angles
except 30o. These morphologies have long wings with a range of angles. Morphologies
with l ≤ 95 mm are dominated by asymmetric rotation, except at the limits of θ ≤ 37.5o and
θ = 75o. These morphologies have short wings with a smaller range of angles. Plummeting
behaviours can be observed in morphologies with l ≤ 115 mm and θ ≤ 37.5o, and also
morphologies with 95 mm ≤ l ≤ 135 mm and θ ≥ 67.5o. Plummeting is the only behaviour
observed in two distinct regions of the morphological search space, with the morphologies
having either short wings with a low angle or mid-length wings with a high angle. The
helicopter rotation region spans a range of l and θ . At the lower boundary l increases as
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Figure 3.8: Dominant system behaviours across the morphological search space. Each
behaviour is marked with a symbol, as shown in the legend. Lines have been added to
estimate where the boundary between behaviours lies.

θ decreases. The upper boundary is less well defined, with a general transition from to
plummeting behaviours.

3.4.2 Behavioural outputs
The behavioural outputs ¯̇z and ¯̇γγγ were extracted. Figure 3.9a shows these outputs plotted

against each other, as well a clustering regions which demonstrate the need for the PDBC
method. There is a clear distinction between the rotating and non-rotating behaviours. The
plummeting and undulating observations are non-rotating, i.e. ¯̇γ = 0 rad·s−1 so the output
space is one-dimensional. The helicopter and asymmetric rotation behaviours have non-zero
¯̇γ and ¯̇z components. Plummeting behaviours range from 2.4 m·s−1 to 3.5 m·s−1 in ¯̇z and 0
rad·s−1 in ¯̇γ . Undulating behaviours range from 2.1 m·s−1 to 3.9 m·s−1 in ¯̇z and 0 rad·s−1 in
¯̇γ . Helicopter rotation behaviours range from 0.9 m·s−1 to 2.1 m·s−1 in ¯̇z and 3 rad·s−1 to 20
rad·s−1 in ¯̇γ . Asymmetric rotation behaviours range from 0.9 m·s−1 to 2.1 m·s−1 in ¯̇z and 5
rad·s−1 to 9 rad·s−1 in ¯̇γ .

In general, non-rotative behaviours almost exclusively fall faster than rotative behaviours.
Within this, plummeting behaviours tend to fall faster than undulating behaviours. For
rotative behaviours there is no clear behaviour that falls fastest or slowest. Nor is there an
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obvious relationship between falling speed and rotation speed, with the range in ¯̇z being
similar for both behaviours. However, the ¯̇γ in helicopter rotation is around four times that of
asymmetric rotation.

3.5 PDBC results
We applied to PDBC method to the VSFP system with the aim of discovering a set of

functions to classify the N = 4 observed behaviours and infer physical significance from this
clustering. The VSFP has two input variables, the length l and angle θ . It has two outputs,
the mean falling speed ¯̇z and mean rotation speed ¯̇γ . Hence, A = 2 and B = 2 so we formulate
two PDQs with a total of C = 6 exponent, yielding

f1(βββ
k, l,θ , ¯̇z) = lβ k

1 θ
β k

2 ¯̇γβ k
3 (3.15a)

f2(βββ
k, l,θ , ¯̇γ) = lβ k

4 θ
β k

5 ¯̇zβ k
6 (3.15b)

where the exponent vector ranges were set following those described in Table 3.2

β
k
1,2,4,5 ∈ {−4,−3.5,−3,−2.5,−2,−1.5,−1,−0.5,0,0.5,1,1.5,2,2.5,3,3.5,4} (3.16a)

β
k
3,6 ∈ {−2,−1.5,−1,−0.5,0,0.5,1,1.5,2} (3.16b)

Hence, the total number of exponent vectors to test was K = 6765201.

3.5.1 Optimal exponent vector
After examining all exponent vectors, we ranked the solutions with respect to the criterion

specified by (3.11). While most of these solutions do not cluster the experimental data well as
shown in Figure 3.9b and (c), the highly ranked solutions show a clear structures in the output
space, the best of which is shown in Figure 3.9d. The highest ranked solution has a predictive
error ε = 0.0204 – corresponding to one miss-classified behaviour – and a clustering strength
s̄ = 0.8581. The optimal exponent vector was

βββ
∗ = (1.5,0.5,0.5,3,1,0) (3.17)

which corresponds to optimal PDQs of the form

f ∗1 = l1.5
θ

0.5 ¯̇γ0.5 (3.18a)

f ∗2 = l3
θ (3.18b)



62 Physics-driven behavioural clustering of free-falling paper shapes

The plummeting and undulating behaviours both have f ∗1 = 0. Hence, they can be
distinguished using only f ∗2 , with the region f ∗2 < 0.24 being characterised by plummeting
behaviours and f ∗1 > 0.24 characterised by undulating behaviours. The single misclassified
behaviour is a plummeting behaviour that has been incorrectly clustered with the undulating
behaviours at f ∗2 = 0.275. The asymmetric rotation behaviours are tightly clustered together
with 0.4 < f ∗1 < 0.575 and f ∗2 < 0.075. The helicopter rotation behaviours are more scattered,
with 0.79 < f ∗1 < 1.25 and f ∗2 < 0.35. f ∗1 can be used to distinguish between the helicopter
rotation, asymmetric rotation and plummeting/undulating behaviours combined. Only when
combined with f ∗2 can all four behaviours be distinguished in the PDQ parameter space.

3.5.2 Solution landscape
As well as the optimal solution, we examined the landscape of all K exponent vectors.

Figure 3.10 shows the rk, εk, s̄k and β1,...,6 for all tested solutions, sorted in decreasing rank
order. The main characteristics of the solution landscape a presented here.

rk, εk and s̄k: The top-ten highest ranked solutions all have εk ≤ 0.0612, with six
solutions having the minimum εk = 0.0204. Correspondingly, for these ten solutions s̄k ≈
0.75. Beyond this, the predictive error increases to a maximum of εk = 0.5510, while the
clustering strength decreases to a minimum of s̄k = 0.2959. Across this trend, there are many
solutions with a high s̄k, indicating strong clustering. However, they correspond to low ε

values, so are not ranked highly. This shows that strong clustering can be achieved regardless
of ε , reinforcing the need to consider both ε and s̄k. As ε increases and s̄ decreases, the rk

decreases to zero, as these solutions are neither distinguish between behaviours or exhibit
strong clustering.

β1, β2 and β3: These are the exponents corresponding to the first PDQ (3.15a). Over
the top 1000 solutions, 55% of β1, 52% of β2 and 98% of β3 values remain with ±0.5 of the
optimum values of 1.5, 0.5 and 0.5 respectively. After this point, they begin to vary more. β2

is limited to the range [0 2], since negative values were unable to computed as they resulted
in a division by zero.

β4, β5 and β6: These are the exponents corresponding to the second PDQ (3.15b). Over
the top 1000 solutions, 5% of β4, 7% of β5 and 5% of β6 values remain with ±0.5 of the
optimum values of 1.5, 0.5 and 0.5 respectively.

Figure 3.9b-c shows representative clustering solutions for the 100th and 1000th highest
ranked exponent vectors. We can see that as the solution rank increases, the grouping of
behavioural groups increases, while the separation between groups decreases. The exponent
vector βββ k = (0,0,1,0,0,1) corresponds to PDQs using just the raw measured outputs ¯. . .γ
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Figure 3.9: Clustering solutions for (a) raw system outputs, (b) 1000th ranked, (c) 100th
ranked and (d) optimal exponent vector.
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and ¯̇z. This is an interesting solution to examine as the PDBC method is predicated on the
notion that the raw outputs alone are not enough to distinguish between system behaviours.
This was confirmed, as the solution had a ranking number of k̂(r) = 35568 with εk = 0.5102
and s̄k = 0.8550. Figure 3.9a shows this clustering solution.

3.5.3 Physical significance
Inferring physical significance from the PDBC results is challenging, but some general

statements can be made. We consider the optimal PDQs f ∗1 and f ∗2 separately.
f ∗1 = l1.5θ 0.5 ¯̇γ0.5: The analysis of the solution landscape showed that the performance

ranking was highly sensitive to exponent changes in this PDQ. This is particularly the case
for ¯̇γ , which is strongly dependent on an exponent of 0.5. Hence, we can infer that this term
is key in understanding each behaviour. Furthermore, we can show that f ∗1 may represent
some form of the Reynolds number Re. First, observe that the term lγ̇ can represent the wing
tip velocity of the rotative structures. Defining this as Vtip = lγ̇ , we can recast f ∗1 as

f ∗1 = (lθ)0.5(lVtip)
0.5 (3.19)

The Reynolds number is the ratio of a velocity and length term to the kinematic viscosity ν

of the liquid under study. In the VSFP system ν is the kinematic viscosity of the air in which
the structures fall, and remains unchanged between all experimental observations. Hence,
lVtip = νRe, and we can recast (3.19) as

f ∗1 = (lθ)0.5(νRe)0.5 (3.20)

Hence, following the physical meaning of Re, the rotative behaviours may be characterised
by the ratio of inertial to viscous forces at their wing tip, relative to lθ , which is a shape
parameter representing the wing length and angle. For the non-rotative behaviours, this
analysis doesn’t apply as the rotation speed is zero.

f ∗2 = l3θ : The analysis of the solution landscape showed that the performance ranking is
less sensitive to exponent changes in this PDQ. Interestingly, the optimal PDQ doesn’t rely
on ¯̇z at all. The terms in the PDQ are harder to interpret, but they tell us that the transition
between the plummeting and undulating behaviours is governed by the wing length cubed
multiplied the wing angle. This term is very similar to a moment of inertia term, indicating
that this transition is related to the ease with which the structure can rotate or oscillate relative
to the airflow.
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Figure 3.10: Solution landscape for all tested exponent vectors, showing the rank rk, predic-
tive error ε , clustering strength s̄k and exponent values β1,...,6.
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3.6 Discussion and conclusion
This chapter presented the PDBC method as an algorithm for clustering and aiding

understanding of systems with discrete behavioural modes. Furthermore, I presented the
VSFP problem, a new category of falling paper systems, and applied the PDBC method to
it. The results indicate that the PDBC method is an effective way of finding a parameter
space in which behaviours can be clustered together with a high degree of accuracy, with the
optimal exponent vector having a predictive error of just ε = 0.0204. In terms of physical
significance, the optimal PDQs showed that behaviours can be clustered and categorised
using a variant of the rotative Reynolds number on one axis, and a shape factor similar to the
moment of inertia on the other. Interestingly, this is a relationship that is common among
falling paper problems with (Chrust et al., 2013; Field et al., 1997), for example, reporting
a similar behavioural relationship. Hence, this reinforces the hypothesis that choosing the
most accurate and strongest clustered solutions reveals physically significant PDQs.

As described in the introduction, there are a range of data-driven algorithms for system
understanding. Dynamic Mode Decomposition (DMD) (Kutz et al., 2016) can be used to
discovers physically meaningful modes and governing equations (Brunton et al., 2016) from
high dimensional time series datasets. Meanwhile, the work of Schmidt and Lipson (Schmidt
and Lipson, 2009) can distil free-form natural laws directly from time series data. PDBC
is conceptually similar to these in that it aids in understanding complex systems, but also
fundamentally different in its application.

PDBC is designed to give global insight into systems whose behaviours change across
their parameter space. The intended usage is for systems with significantly different be-
haviours, such as those demonstrated in the VSFP system. In their current forms, the
aforementioned alternatives are not well suited to this application. Rather, they would be
effective in understanding the dynamics driving a particular behavioural mode. This is highly
valuable, but does not provide the same global snapshot as PDBC. Indeed, the comparison is
in some ways redundant as the two methods are in fact complimentary; PDBC provides the
global picture, while alternative methods provide more specific insight of each behaviour.

More direct comparisons can be made with other approaches from the machine learning
community. Support-vector machine (SVM) can be used to classify behaviours in real world
systems via feature extraction. Gait analysis is one such example, with (Begg et al., 2005)
using SVM for the automated classification of gait in young versus elderly human subjects.
The extracted features and decision boundaries are similar to PDQs in that they define a
behavioural parameter space. However, the physical relevance of these features is hard to
interpret. In this type of application, PDBC would perform the classification while also



3.6 Discussion and conclusion 67

outputting physically interpretative PDQs. This would also be the case for other machine
learning classifiers such as neural networks.

As previously discussed, in PDBC the user must initially assign behaviours to experi-
mental observations. In the VSFP system this was a relatively simple task, as the observed
behaviour were clearly different from each other, allowing a completely unambiguous classifi-
cation. However, in general the users role in behavioural classification is significant. The user
must decide what constitutes a behaviour, then apply this to the system observations. Hence,
in the case of behavioural ambiguity, there may be no consensus among users regarding the
total number of behaviours in the system.

As a short term solution, there are a few options. Firstly, to use a panel of observers
to classify behaviours and reach consensus together. Alternatively, the PDBC algorithm
can be run multiple times for each consensus. The solutions can be compared in terms of
their solution landscape and physical significance. In the long term, however, the automated
interpretation of behaviours presents an interesting challenge. In the case of the VSFP system,
motion capture systems could provide a wealth of trajectory data for such a system. The
authors hope to implement this into PDBC in the future.





Chapter 4

Transition behaviours in the V-shaped
falling paper system1

Morphological computation is another key area of research for self-structuring embodied
agents (Müller and Hoffmann, 2017). Early examples showed the implementation of discrete
computation, e.g., XOR gates, via morphology and control (Paul, 2006). Octopus-like
tentacles have been shown to function as computation devices when integrated into the
framework of reservoir computing (Nakajima et al., 2013). Soft matter computers have
also been developed with the purpose of exploiting morphology for useful computation
(Garrad et al., 2019). ‘Hot ice’ (sodium acetate) has even been proposed as a mechanism for
large-scale parallel computation (Adamatzky, 2009).

In this chapter I present a sensitivity analysis investigating the relationship between
morphology and behaviour in the VSFP system. The system can be characterised in terms of
its steady behaviours, e.g., the system is in a single attractor state, and behaviour transitions,
in which the system switches attractor states (Figure 4.1). Chapter 3 focused on steady
behaviours in the system, showing a mapping between morphology and dominant behaviour.

1This chapter is based on a peer-reviewed publication and a publication currently under review:

• Howison, T., Hughes, J., & Iida, F. (2020). Morphologically programming the interactions of V-shaped
falling papers. In Artificial Life Conference Proceedings, pages 359–366.

• Howison, T., Hughes, J., & Iida, F. (2021). Morphological sensitivity and falling behaviours of paper
V-shapes. Artificial Life [Forthcoming: accepted May 2021].

Contributions
T. Howison – devised the main conceptual ideas, carried out experiments, wrote the bulk of the paper and
created the figures.
J. Hughes – assisted with carrying out experiments and data analysis, general discussions and proofreading.
F. Iida – contributed to general discussions and proofreading.
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I describe the nature of stochastic and deterministic behavioural transitions in the system,
and how morphology influences these.

This chapter is structured as follows. In 4.1 I explore how the stochastic nature of
behavioural transitions in the system can be represented using switching diagrams. In 4.2 I
introduce a new experimental setup that demonstrates deterministic behaviour switching and
shows how paper shapes can behave as simple sequential logic circuits. In 4.3 I summarise
and conclude how these different analysis approaches relate to each other in terms of the
larger VSFP framework.

Figure 4.1: The discrete behavioural landscape in the VSFP system can be characterised in
terms of steady behaviours and behavioural transitions.

4.1 Stochastic behaviour transitions
The ‘lifetime’ of a paper can be defined as that of when it is released to when it hits

the ground, reaching its ‘dead’ state. In the VSFP system we have observed that during its
lifetime a falling paper can transition between multiple behaviours. Figure 4.2a shows an
example of the a transition from helicopter rotation to plummeting, while Figure 4.2b shows
transition from undulating to helicopter rotation.

We draw a loose parallel between the transient behaviours of falling paper and develop-
mental processes seen in nature. The physical interaction with the environment can induce
a change in the dynamics of the falling paper, allowing it to switch to a new behavioural
attractor state. This switching is completely self-induced since the only energy input is the
initial potential energy, and there is only space for a certain number of switches before the
shape reaches its dead state. For certain shapes, this switching appears to be highly unsta-
ble. For others, there seem to be attractor states from which the behaviour rarely deviates.
In this section we investigate the nature of this stochastic behavioural switching and how
morphology influences this.
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Figure 4.2: Examples of behavioural transitions in the VSFP system, showing (a) switching
from helicopter rotation to plummeting and (b) undulating to helicopter rotation.

4.1.1 Stochastic transition sequences
We investigated the complexity of behaviour switching processes across the morpho-

logical parameter space. Each falling experiments is characterised by a sequence of states,
starting from the initial condition and ending with the dead state on the ground. We can assign
each possible state a label, e.g., 00 = initial condition, XX = dead state, AS = asymmetric
rotation, HE = helicopter rotation, PL = plummeting, UN = undulating. Some experiments
have a simple behavioural sequence, e.g., 00 → HE → XX , while others can be more com-
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plex, e.g., 00 →UL → AS →UL → XX . When observing the system we see that a particular
morphology does not always exhibit a repeatable sequence of behaviours, sometimes instead
showing stochasticity in terms of which behaviours emerge in what sequence. For each of
the 245 experiments in our dataset of experiments across the morphological parameter space
we constructed a behavioural switching sequence, e.g., 00 → HE → XX . This was achieved
using visual behaviour classification by a human observer. These were grouped in terms of
morphology, allowing us to visualise the possible paths of a particular morphology through
the behaviour space.

Figure 4.3a shows how the number of unique switching paths observed in the system
changes based on morphology. Regions on the upper bounds of both l and θ generally
exhibit far fewer switching paths than those elsewhere in the parameter space. These regions
of the parameter space correspond to plummeting and undulating behaviours. Figure 4.3b
shows the mean number of behaviour switches a particular shape is likely to exhibit based
on the observed data. Again we see that morphologies on the extremes, corresponding to
plummeting and undulating behaviours, generally exhibit simpler transitions with a low
average number of behaviour switches. These diagrams show there is a loose relationship
between the dominant behaviour regions identified in Figure 4.1c and the characterisation
of transition events, suggesting that dominant behavioural analysis only offers a limited
snapshot of the system dynamics.

To extend this analysis we diagrammatically visualised the different switching sequences
across the morphological parameter space. The system can be represented as a graph in
which nodes represent behaviours and edges represent behaviour transitions. The graphs are
characterised by a path between nodes, starting at the initial state 00 and terminating at the
dead state XX. Figure 4.4 shows some highlighted examples of these diagrams demonstrating
morphologies with one, two three and five switches respectively: each unique transition
sequence is indicated with a different colour. The diagrams do not indicate the relative
probability of each path occurring: the sample size of five for each morphology is too low to
assign confident probabilities. Figure 4.5 shows switching diagrams for each morphology
in the tested parameter space. Some morphologies exhibit simple switching, showing only
a single behaviour, e.g., helicopter. Other behaviours show far more complex switching
sequences with many possible paths between initial condition and dead state. In most cases
morphologies corresponding to dominant behaviours of plummeting and undulating exhibit
less switching, in many cases showing no behaviours other than their dominant behaviour
as indicated in Figure 4.1c. The exception to this trend is plummeting behaviours from
morphologies with a low l and θ value, which seem to exhibit many switches.
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(a) Number of unique switching paths.

(b) Mean number of switches.

Figure 4.3: (a) Number of unique switching paths across parameter space. (b) Mean number
of behaviour switches across parameter space.

By counting all transitions across the parameter space we can assess stochastic nature
of each behavioural attractor. Table 4.1 shows the likelihood of of behaviour transitions
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Figure 4.4: Highlighted transition sequence diagrams showing the possible behaviour transi-
tions observe in the VSFP system. 00 = initial condition, XX = dead state, AS = asymmetric
rotation, HE = helicopter rotation, PL = plummeting, UN = undulating. Each unique path
through the behaviour-space is indicated by a different coloured line. A diagram with one
line indicates all experiments for that morphology followed the same behavioural transition
sequence. A diagram with more than one line indicates the range of possible paths taken
across all experiments for that morphology.

from different initial states. Helicopter and asymmetric behaviours are the most likely to
not transition (e.g., they go to the terminal state XX), while undulating behaviours are the
least likely to reach the terminal state. We can infer from this that rotational behaviours are
far stronger attractors than non-rotational. We can also see that helicopter behaviours are
the most likely transition behaviours for undulating and asymmetric behaviours, indicating
that overall helicopter behaviours are dominant in the system. We can also represent this
stochastic switching across the population in the form of a probabilistic switching diagram,
e.g., Figure 4.6. Here, we analyse all behaviour switches across the morphological parameter
space and indicate the likelihood of moving from one state to any other (e.g., the probabilities
from each state sum to 1). The graph representation is similar to Figure 4.4, but differs
in that probabilities are explicitly shown and it represents a population of morphologies
(rather than a single morphology). Switching probability is indicated by edge colour, visu-
ally demonstrating the probabilities outlined in Table 4.1. There are similarities with this
representation and Markov chains (Norris and Norris, 1998). Both represent the system
as a set of discrete states with associated transition probabilities. However, the switching
diagram here does not include a concept of time-horizon that Markov chains rely on, and
also represents a population of morphologies rather than a single agent. Markov models also
make the assumption that future states are dependent only on current states, a proposition
that would need further investigation to prove in our system. While this may be the case
with the VSFP system, more work would be needed to prove this. It may be the case that
the system could be represented with a higher-order Markov model that takes a number of
previous states into account.
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Figure 4.5: Transition diagrams across full morphological parameter space.

Initial state UN PL AS HE
Transition likelihood XX (0.48) XX (0.61) XX (0.86) XX (0.92)

HE (0.38) AS (0.30) HE (0.10) UN (0.06)
AS (0.14) UN (0.06) PL (0.02) AS (0.01)

— HE (0.03) UN (0.02) PL (0.01)

Table 4.1: Transition likelihood from each state, averaged across all experiments and mor-
phologies.
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In general, the framework here allows us to identify global trends for behaviour transitions
and to identify attractor states that have a high probability of emergence, and may therefore
be more energetically favourable or stable. The abstraction of passive transient behaviours
to a probabilistic interpretation is similar to approaches in other systems. For example, the
‘conditional model’ describing passive hand behaviours that can be achieved only through
conditional actions (Hughes et al., 2018).

Figure 4.6: Stochastic switching diagram for all designs across the morphological parameter
space in the VSFP system. Switching probabilities are indicated by colour. 00 = initial
condition, XX = dead state, AS = asymmetric rotation, HE = helicopter rotation, PL =
plummeting, UN = undulating.

4.2 Deterministic behaviour switching
Another aspect of transitional behaviours is deterministic switching, e.g., behaviour

transitions that are completely predictable. In this section I describe a new experimental
platform to investigate these transitions and demonstrate how morphology can perform
simplistic sequential logic operations.
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4.2.1 Rotational experimental setup
Observation of falling behaviours is limited by the available height in the experimental

setup. Given that experiments should ideally be conducted in quiescent air (e.g., not outdoors),
this means in many cases it is hard to investigate steady settled behaviours for long periods of
time. To overcome this problem we developed a new experimental setup (Figure 4.7) which
consists of a platform capable of towing shapes along a circular path in a horizontal plane.

The setup functions as follows. A DC motor is securely attached to a wooden base
and rotates a lightweight thin wooden rod. On the end of this rod a paper V-shape can be
affixed using thin wire and a rotational coupling that allows the shape to rotate freely with
minimal friction. When the motor rotates the shape is towed in a circular path, from which
we can calculate the equivalent linear speed, e.g., radius×angular velocity. Shapes in this
approximated falling system exhibit the same fundamental behavioural modes as those in
the original system. From the system one can measure the rotational speed ω of the motor
(using an optical encoder) and the current behaviour of the shape (by visual classification).
Hence, we can explore how behaviours change as the system input is varied.

The system can be controlled by altering a PWM signal into the DC motor, mapping to
voltage inputs between 0VDC and 6VDC, and is connected to a workbench power supply
capable of supplying up to 3A. The equation for the rotational speed ω of an idealised DC
motor is

ω =
V
k
− T

k2 R (4.1)

where R is the motor windings resistance, k is the motor constant, V is the input voltage and
T is the load torque. R and k are constants. Hence, for a constant voltage V input, increasing
load torque T decreases the rotation speed ω . In our system the load torque is dictated by the
behaviour of the V-shape. For example, a helicopter behaviour is likely to induce a higher
drag, and hence a higher torque than an undulating behaviour. Note, we ignore the torque
effect of the rotating rod since this remains constant and the aerodynamic dynamics around
the rod itself are likely to be minimal. It follows that ω will be lower for a fixed input voltage
with a helicopter behaviour than an undulating behaviour.

This experimental setup allows us to roughly approximate the conditions of a paper shape
falling over long periods of time. By changing the voltage, the effective load on the shape
is changed, similar to the mass on the shape in true falling experiments. Hence, we can
systematically test the behaviours of many shapes over extended time periods. Of course,
the system is also subjected to centrifugal forces induced from the rotation. Further still, the
loading in the new setup is via a thin wire, which influences how the shape rotates and adds
a horizontal dimension to the loading (e.g., it is not purely unidirectional as in the falling
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experiments). As such, we cannot claim this setup to be a comprehensive approximation of
the falling experiments, and the following analysis is presented independently of the falling
experiments.

(a) Plan view of setup.

(b) Photo of setup.

Figure 4.7: (a) Plan view of experimental setup for rotational experiments. Shapes are towed
in a circular path, attached to a rigid rod with a rotational coupling. (b) Photo of experimental
setup with shaped attached.
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4.2.2 Behavioural hysteresis
In the first experiment we sought to induce behavioural transitions by incrementally

increasing the input voltage to the system. Recalling (4.1), this increases the speed of
rotation, given the torque remains constant. we fabricated ten paper V-shapes with θ fixed at
30o and l varying from 70 mm to 115 mm For each shape, the motor voltage V was increased
from 1.5VDC to 6VDC over 11 equally spaced increments. For each motor voltage the
system was allowed to settle for 15 seconds before the rotational (and by extension linear)
speed (averaged over 10 seconds) and visually identified behaviour was recorded. we found
that 15 seconds was sufficient time for behaviours and speeds to settle. After the highest
voltage was tested, the system was subjected to a decreasing voltage input from 6VDC back
to 1.5VDC, following the same increments. Again, the rotation speed and behaviour were
recorded. As such we were able to observe where behavioural transitions occur, and whether
these points were the same for the ‘loading’ (increasing voltage) and ‘unloading’ decreasing
voltage phases.

Figure 4.8a shows the results of this experiment. For each morphology we plotted the
motor voltage V against the linear speed of the shape v. The behavioural modes have been
indicated along with the points at which behaviour transitions occurred. The red lines indicate
the loading phase and the blue lines indicate the unloading phase. Three distinct cases were
observed:

Case one: purely asymmetric rotation. For morphologies with l = 70–85 mm we see that
the only exhibited behaviour is asymmetric rotation. All morphologies exhibit an increase in
linear speed with motor voltage, and show similar linear speeds during loading an unloading.

Case two: purely helicopter rotation. For morphologies with l = 115 mm we see that
the only exhibited behaviour is helicopter rotation. Again their is increases with voltage,
however the speeds are lower than in the purely asymmetric rotation cases, indicating the
drag forces induced by helicopter behaviours are larger than those from asymmetric.

Case three: transitional behaviours. For morphologies with l = 90–110 mm we see the
most interesting response. In all these cases ht behaviours are initially asymmetric rotation.
As the voltage increases we see a behavioural transition to helicopter rotation. The point
at which this transition occurs is dependent on morphology, with the transition happening
earlier at higher l values. After the behaviour transition we see helicopter behaviour for
all voltages during the loading phase. During the unloading phase we see that rather than
switching back to asymmetric rotation at the transition voltage, the shapes exhibit helicopter
rotation all the way to the minimum voltage. Helicopter and asymmetric behaviours have
different linear speeds for the corresponding voltage input. We can infer that helicopter
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behaviours induce a higher aerodynamic drag than asymmetric behaviours, hence slowing the
rotation speed. The system exhibits a form of hysteresis in the speed measurements whereby
the system output mapping depends on current and previous input. The strength of helicopter
rotation behaviours reinforces our findings in 4.1 in which we showed falling shapes that
entered a helicopter rotation attractor were most likely to exhibit this for the full experiment.

All experiments showed a range of linear speeds between 2 and 10 m·s−1. In our original
experiments on the VSFP system (Chapter 3) we observed speeds of between 1 and 2 m·s−1

for rotative behaviours and 2 and 4 m·s−1 for non-rotative behaviours. We attribute this
difference to the different loading on the shapes compared to the falling experiments, as well
as the influence of the other differences summarised earlier in this chapter. Additionally, it
was challenging to observe lower speeds in this experimental setup due to the inertial and
frictional factors in the motor.

4.2.3 Permanent behaviour changes
In our second experiment we subjected each morphology to a second cycle of voltage

loading-unloading. After the first cycle the system voltage was set to zero and all energy
allowed to dissipate. Following this we repeated the loading experiment. Figure 4.8b shows
the results of this experiment. For each morphology we plotted the motor voltage V against
the linear speed of the shape v. The behavioural modes have been indicated along with the
points at which behaviour transitions occurred. The red lines indicate the loading phase and
the blue lines indicate the unloading phase. Three distinct cases were observed:

Case one: purely asymmetric rotation. Similar to the first loading cycle, morphologies
with l = 70–85 mm only exhibited asymmetric rotation behaviour.

Case two: purely helicopter rotation. Unlike the first experiment, morphologies with l =
95–115 mm exhibit purely helicopter rotation behaviour. In loading cycling one morphologies
with l = 95–110 mm exhibited transitional behaviours.

Case three: transitional behaviours Just one morphology, l = 90 mm exhibits transitional
behaviours. The transition occurs at a far lower voltage than in the first loading cycle.

We can therefore see that during loading cycle one those morphologies that undergo a
switch to helicopter rotation exhibit a permanent behaviour transition. Upon inspection of
the shapes that exhibit this permanent behaviour change one sees that there is some form of
plastic deformation separating the two wings. If we flatten the wings back into place this
effect disappears.
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(a) Load cycle one.

(b) Load cycle two.

Figure 4.8: Deterministic behaviours transitions. Motor voltage input vs linear speed for
morphologies with θ fixed at 30o and l varying from 70 mm to 115 mm Behavioural
modes are annotated, as are transition points (HE = Helicopter behaviour, AS = Asymmetric
Behaviour). Red indicates the loading phase in which motor voltage increases, while blue
indicates the unloading phase, where motor voltage decreases. (a) shows the first loading
cycling (b) shows the second loading cycle.

4.2.4 Behaviour transitions without hysteresis
The transition between helicopter and asymmetric rotation is distinct and apparently irre-

versible in our experiments. We also investigated the nature of other behavioural transitions
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in our setup. Specifically, we investigated the transition between helicopter and undulating
behaviours. Figure 4.9 shows the results for these experiments. The first key result is that this
behavioural transition does not exhibit hysteresis. Behaviour transitions occur at the same
point during loading and unloading, and the voltage to behaviour mapping is one-to-one. We
also see unstable behavioural regions, marked as US in Figure 4.9. For l = 180–190 mm
for example, a range of input motor voltages induce unstable behaviours in which there is
random switching between helicopter and undulating behaviours. Recalling the stochastic
transition probabilities represented in Table 4.1 we see this random switching is consistent
with the most likely transitions of helicopter and undulating behaviours.

Figure 4.9: Deterministic and stochastic behaviour transitions. Motor voltage input vs
linear speed for morphologies with θ fixed at 30o and l varying from 170 mm to 210 mm
Behavioural modes are annotated, as are transition points (HE = Helicopter behaviour, US =
Unstable behaviour, UN = Undulating behaviour). Red indicates the loading phase in which
motor voltage increases, while blue indicates the unloading phase, where motor voltage
decreases.

4.2.5 Sequential logic representation
We now return to the behavioural hysteresis seen in 4.2.2. For some morphologies, a

single voltage input can map to more than one behavioural output. Unlike the transition
sequences presented in 4.1, these behaviour switches are predictable and deterministic.

The hysteresis effect in the system implies a form of memory. We can further qualify
this as rate-independent hysteresis, since the current behaviour is dependent on past states
but independent of any transient effects. Memory functionality forms one of the most basic
forms of higher-level computation and cognition, and we can demonstrate that the falling
V-shapes here can be represented as simplistic sequential logic circuits, aka memory cells.
Take, for example the case of l = 90mm, which shows the biggest memory hysteresis effect.
We can characterise the system voltage V input as either low (2VDC) or high (6VDC), or
alternatively logical TRUE or FALSE. The discrete nature of behavioural outputs allow us to
assign these as, for example, helicopter as logical TRUE and asymmetric as logical FALSE.
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Given this simple mapping we can tabulate all possible combinations of input power, previous
output B(t −1) and current output B(t), e.g., in Table 4.2a. We can see that this tabulation
represents the truth table of a looped OR gate (Figure 4.10), see Table 4.2b, which is one
of the simplest logic circuits that exhibits memory. Of course, we can arbitrary reassign
behavioural outputs, for example setting Asymmetric as high and helicopter as low, leading
to a looped NOR gate. Clearly this logical representation is hard to harness as a large-scale
computation device. However, it adds to an increasing body of work showing how logic
operations can be encoded into physical systems (Adamatzky, 2009; Adamatzky et al., 2017;
Safonov, 2018).

V (t) B(t −1) B(t)
Low Asymmetric Asymmetric
Low Helicopter Helicopter
High Asymmetric Helicopter
High Helicopter Helicopter

(a) Current behaviour B(t) as a function
of current voltage input V(t) and previ-
ous behaviour B(t-1).

V (t) B(t −1) B(t)
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

(b) Corresponding truth
table, showing system be-
haves as a looped logical
OR gate.

Table 4.2: Logical representation of behaviours in rotational experimental system.

Figure 4.10: Sequential logic circuit. Behaviours transitions in the rotational experiment can
be represented as a looped logical OR gate.

4.3 Discussion and conclusion
In this chapter I discussed the properties of behavioural transitions in the VSFP system.

The first key contribution is demonstrating the stochastic behavioural patterns based on
embodied interactions. Some shapes exhibit simple one-to-one mappings from morphology
to behaviour while others exhibit a complex set of possible switching events that can occur
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during the shapes lifetime. The number of behavioural switches a falling paper is likely to
exhibit depends strongly on its morphological parameters. I demonstrated this transition
structure by constructing switching sequence diagrams representing possible paths through
the behaviour space, and how these vary with morphology. I showed that across the population
of all morphologies we could infer probabilities for different behaviour switching events.
From this, the system was found to be less likely to transition out of rotational behaviours.
Assigning symbolic labels to system behaviours allows for this systematic analysis. Indeed,
it opens up a wide range of possible analysis tools, for example using regular expressions
(Thompson, 1968), which could be used to compare the relationship of many different
behaviour sequences. A fundamental limitation is the available drop height, in this case 3 m.
It is likely that increasing the available drop height for the VSFP system would induce more
predictable final behaviours, e.g., there would be more time for transient behaviours to die
out. However for multiple morphologies it seems that the behaviours are inherently unstable
and would likely continue switching during their descent. Increasing drop height is an area
for further study.

The second key contribution is investigating deterministic behavioural transitions. I
described a new experimental setup using a rotational platform to investigate approximated
falling behaviours over a longer distance. I showed that helicopter to asymmetric transitions
can be induced by increasing the energy available to the system, and that these transitions
are irreversible for certain morphologies, e.g., they exhibit hysteresis. I demonstrated that
these behaviour transitions can be represented using simple sequential logic, implying the
system has a memory effect whereby current behaviours are a known function of previous
behaviours. Such logical operations in physical systems have been demonstrated before
(Adamatzky, 2009; Adamatzky et al., 2017; Safonov, 2018), and while not necessarily
useful in a practical sense, this representation demonstrates how such systems can perform
rudimentary computation driven by environmental interaction.

The fact that the system can behave in either a stochastic or deterministic way seems to be
linked to the environmental conditions. In true free-fall we cannot control the environment,
so the paper shapes are unconstrained and small changes in initial conditions can lead to
large changes in output behaviours. On the other hand, in the rotational experiment the
environment is far more constrained, e.g. the tip of the shape is always connected to the
towing line. There is further scope to investigate the influence of these differences in the
context of singularity theory, a field of study first proposed in the late 1800’s (Maxwell,
1873). Singularity theory deals with, in simple terms, understanding how arbitrarily small
changes in a system can give rise to arbitrarily large effects, and is applicable to a wide
range scenarios, including dynamical systems. Singularity theory tools may offer ways to
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mathematically describe the variations in behaviour we see in the VSFP system (Bruce et al.,
1992). Similarly, it could be beneficial to analyse the system in terms of its controllability,
for example how easily can we induce switches between different behaviours. The fact
we are able to discretize the continuous dynamics into a network of possible behaviours
and transitions (e.g. in Figure 4.5) suggests that the system could be analysed from the
perspective of controlling complex networks Liu et al. (2011).





Chapter 5

Bayesian optimisation of falling paper1

The simplicity of falling paper systems allows us to explore the design of real-world be-
haviours. As we have discussed in Chapters 3 and 4, the VSFP system is highly complex,
with a range of behavioural hierarchies across the design parameter space. This stochastic
nature makes design challenging, as similar designs may appear to perform very differently
with repeated testing. In simulation we could overcome this by using evolutionary algo-
rithms with many thousands of iterations, e.g., (Cheney et al., 2014; Kriegman et al., 2017).
However, this isn’t feasible when relying on real-world experimentation. Testing designs
in the real-world is, however, very important. As we have discussed in previous chapters,
a reality-assisted approach is one possible route to designing agents that actively make use
of their physical interactions. Furthermore, returning to the work of Brooks (Brooks, 1990,
1991), we should recall the physical grounding hypothesis that focused on the idea that
robotic systems should be built in a bottom-up manner based upon a representation based
on the physical world. In the case of falling paper, we can only capture the richness of their
environmental interactions by testing them in the real-world: simulations are not yet detailed
enough. Given that, it’s important to explore the practical ways by which we can efficiently
explore the design space of the VSFP system.

A promising approach for the structured optimisation of real-world designs is the Bayesian
optimisation algorithm (BOA) (Frazier, 2018; Lizotte, 2008). This is a global black-box

1This chapter is extended from the following peer-reviewed publication:

• Howison, T., Hughes, J., & Iida, F. (2020, July). Morphologically programming the interactions of
V-shaped falling papers. In Artificial Life Conference Proceedings, (pp. 359–366).

Contributions
T. Howison – devised the main conceptual ideas, carried out experiments, wrote the bulk of the paper and
created the figures.
J. Hughes – assisted general discussions and proofreading.
F. Iida – contributed to general discussions and proofreading.
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optimisation approach for expensive-to-evaluate functions. BOA uses Gaussian process
regression (GPR) (Rasmussen, 2003) to build a data-driven probabilistic system model that
updates and improves with increasing function evaluations. This GPR model is in turn used
inform a sampling strategy to efficiently discover high-performing regions of the function
parameter space. It has seen usage for controller learning (Calandra et al., 2016; Rieffel and
Mouret, 2018), but its use as a morphology optimisation tool has been limited (Rosendo
et al., 2017; Saar et al., 2018).

In this chapter I demonstrate the use of Bayesian optimisation to minimise the falling
speed ż in the VSFP system. This problem is directly bio-inspired. Certain seeds in nature
have evolved to fall slowly, allowing them to travel away from the parent tree (Lentink
et al., 2009). Such behaviours rely heavily on the interaction between the seed and air. It
is interesting to see if our system, within this albeit simple design space, converges to the
similar behaviours.

This chapter is structured as follows. In 5.1 I briefly introduce the Bayesian optimisation
algorithm and how it applies to the VSFP system. In 5.2 I present the results of the optimi-
sation process. In 5.3 I discuss the results with a comparison to the performance of natural
seeds seen in nature.

5.1 Bayesian optimisation
We start by defining the minimisation problem

min
x∈A

f (x) (5.1)

where f is our objective function, x is our input and A is the feasible set of input values.
In this case, f corresponds to the falling speed ż of a particular morphology and x to the
morphological parameters x = [l θ ]. There are two key steps to each iteration of Bayesian
optimisation; Gaussian process modelling and the acquisition function. We describe these
here.

At any given stage in the optimisation, assume the objective function has been evaluated
n times at the points x1:n = [x1, . . . ,xn]

T and function values f1:n = [ f (x1), . . . , f (xn)]
T . These

points are used as training data to generate a Gaussian process model of the system, which
models the mean and variance of the objective function across the parameter space. This is
achieved by first calculating the covariance matrix K, for which we use the Matern kernel
with a smoothness parameter of 5/2,

k(xi,x j) = σ
2
f
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where i, j = 1, . . . ,n, r =
√

(xi − x j)T (xi − x j), σl is the characteristic length scale and σ f is
the signal standard deviation. The point-pair covariance matrix takes the form:

K =


k(x1,x1) k(x1,x2) . . . k(x1,xn)

k(x2,x1) k(x2,x2) . . . k(x2,xn)
...

... . . . ...
k(xn,x1) k(xn,x2) . . . k(xn,xn)

 (5.3)

The kernel hyperparameters – σl and σ f – are determined by maximising their marginal
likelihood, using local iterative gradient descent (Rasmussen, 2003). Following Bayes’
theorem, this is the same as maximising the marginal likelihood of the training data, given
the model parameters. Hence, the expected value µ(xk) and confidence σ(xk) of any point
xk in the parameter space can be determined:

µ(xk) = kT
k K−1 f1:n (5.4)

σ
2(xk) =−kT

k K−1kk (5.5)

where kk = [k(x1,xk), . . . ,k(xn,xk)]. During each iteration of Bayesian optimisation, the
Gaussian process model is updated to incorporate the new training data and better predict the
system behaviour.

The Gaussian process model provides information about the expected objective func-
tion along with the prediction confidence. The second step of Bayesian optimisation is
the acquisition function, which determines which data point to sample next. For this, an
acquisition function is used. In this study we use the expected improvement (EI) acquisition
function, which chooses sampling points based on the expected amount of objective function
improvement based on the currently available data points. For any point xk, the expected
improvement is defined as

EI(xk) = E[max(0,µ(xbest)− f (xk))

|xk ∼ N(µ(xk),σ
2(xk))]

(5.6)

The next point is therefore chosen by maximising the expected improvement, i.e.

xn+1 = argmaxEI(x) (5.7)

As the Bayesian optimisation algorithm progresses, more data points are gathered and
the Gaussian process model predictions become more accurate. Since we are optimising on a
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potentially unknown black-box function, we cannot know for sure when an optimal solution
has been found; this makes implementing a stopping condition somewhat challenging.

5.2 Optimisation results
We implemented the BOA using the MATLAB bayesopt function. The algorithm was

operated with a fixed budget of iterations, after which the optimal solution corresponds to the
best observed objective function. Following the experimental procedure set out previously,
shapes were manufactured using the morphological parameters suggested by the BOA and
a single drop test carried out. The falling speed ż was extracted from the video data and
supplied to the BOA.

The optimal solution has morphological parameters l = 82.9 mm and θ = 51.1o, a falling
speed of v = 0.933 m·s−1 and corresponded to an asymmetric falling behaviour. Figure 5.1
shows various results from the optimisation process. The best observed falling speed after
each iterations (the blue line in Figure 5.1) falls quickly from around 4 m·s−1 to around 1.5
m·s−1 , after which it slowly decreases to below 1 m·s−1. The GPR model estimated falling
speed at each iteration follows a similar trend; however, it tends to overestimate the minimum
falling speed. The regions in the behavioural landscape (Figure 3.8) corresponding to each
iteration are primarily helicopter and asymmetric rotation.

Figure 5.2 shows the fitness landscape as estimated by the GPR model, along with the
sampled points. The behavioural boundaries from (Figure 3.8) are also shown. We see
that the majority of sample evaluations occurred in the rotation behavioural regions of the
parameter space. We would expect this as these clearly have a lowed falling speed. The
optimal solution is central in the asymmetric behavioural region, roughly as far as possible
from the boundaries with adjacent behaviours. We speculate this is the most stable region of
the behavioural landscape. Referring back to Figure 4.4 we see that this area corresponds to
an average number of behavioural switches of around 1.5, generally lower than the helicopter
rotation behaviours.

5.3 Discussion and conclusion
Bayesian optimisation offers a structured framework in which to optimise morphologies

in the real-world. However, even with such a sophisticated search method we are unable to
explore the system at a lower level, e.g., behavioural switching. This is one of the limitations
of many design optimisation processes. In defining a fitness function and optimisation
algorithm we immediately limit the power of the system (Lehman and Stanley, 2011a).

As mentioned, there is a clear parallel between the VSFP and natural seed dispersal
systems in nature. Significant research has been carried out into analysing the dynamics of
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Figure 5.1: Bayesian optimisation results. The minimum observed and predicted falling
speed is shown in blue, the observed speed at each iteration is shown in red. The morphology
shape at each iteration is shown, as is the corresponding behaviour.

these natural systems (Nave et al., 2021). Here we compare the dynamics of the VSFP to
natural systems using a commonly used metric and compare the optimisation results to this.

Following (Lentink et al., 2009) we employ an equation previously used to described the
aerodynamic performance of rotating and gliding seeds in nature:

ż =

√
W/S

0.61DF
(5.8)

where ż is the falling velocity, W/S is the wing loading normalised over the area a, e.g.,
mg/a and DF is the descent factor, a dimensionless number representing the falling shapes
performance. We calculated W/S for each morphology tested in the dataset and combined
this with the average velocity measurements and known dominant behaviours to compare
how the morphologies tested in this chapter compare to natural seeds. Figure 5.3 shows the
results from our experiments alongside a summary of datapoints for natural seeds presented
in (Lentink et al., 2009). Also indicated are contours of equal descent factor. Note that in
the plot the y axis shows the inverse of ż, e.g., the time to fall 1 meter. We see that the
performance of the VSFP system in terms of falling time is factor of 2.5 worse than the best
seeds seen in nature. However, the majority of natural seeds have a similar falling speed as
the rotational behaviours in the VSFP system. Natural seeds are significantly lighter than
shapes in the VSFP system, 100–200 mg compared to 5 g. Hence, the descent factor is
significantly higher for the slowest falling papers. We see the Bayesian optimisation optimal
design has the highest descent factor, as expected as it minimises falling speed for the given
mass.
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Figure 5.2: Bayesian optimisation sampling strategy and modelling. The Gaussian process
regression (GPR) model shows the predicted falling speed at each point in the parameter
space. The white markers indicate where the BOA sampled within the parameter space.

Figure 5.3: Comparison of optimised performance to natural systems, showing the relation-
ship between falling time per meter and wing loading.



Chapter 6

Large-scale automated investigation of
free-falling paper shapes via iterative
physical experimentation1

Falling paper systems are very challenging to model. Of course, this is a more general
problem for embodied systems in which behaviours emerge from complex environmental
interactions. In the absence of any analytically tractable solution one must rely on physical
experimentation, which may be labour-intensive, time-consuming and highly sensitive to
changes in environmental and initial conditions. Additionally, the search space required to
observe an insightful range of behaviours can be extremely large. In this chapter I demonstrate
the use of robotic automation, computer vision and machine learning to investigate the
falling-paper problem. Robotic automation can be used to cheaply gather large volumes of
experimental data (Waltz and Buchanan, 2009), with the added benefit of having much greater
control over experimental initial conditions (Peplow, 2014). Meanwhile, machine learning
offers continual, online data analysis (Mjolsness and DeCoste, 2001) to interpret data and
suggest efficient sampling strategies (Bottou et al., 2018). The use of robotics in science

1This chapter is based on the following peer-reviewed publication:

• Howison, T., Hughes, J., & Iida, F. (2020). Large-scale automated investigation of free-falling paper
shapes via iterative physical experimentation. Nature Machine Intelligence, 2(1), 68–75.

• Data and code availability: https://github.com/th533/Falling-Paper
Contributions
T. Howison – devised the main concept, constructed the experimental platform, coded the software tools, wrote
the bulk of the paper and created the figures.
J. Hughes – assisted with early proof of concept experiments, monitored experimental platform, assisted with
carrying out experiments and data analysis, early paper drafts, general discussions and proofreading.
F. Iida – contributed to general discussions and proofreading.

https://github.com/th533/Falling-Paper
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research, the so-called ‘robot scientists’ (Fan et al., 2019; Soldatova et al., 2006; Sparkes et al.,
2010a), is well documented. In biology, robots have been used to automate lab processes
(Chapman, 2003) and carry out 1000s of experiments to efficiently identify gene functionality
(Kachel et al., 2006; Sparkes et al., 2010b). When combined with artificial intelligence these
systems can even automate hypothesis creation (King et al., 2004) and drive future discoveries
(Vasilevich and de Boer, 2018). Other methods for exploring high-dimensional spaces for
scientific purposes range from reinforcement learning to guiding exploration using intrinsic
motivation or entropy (Bellemare et al., 2016; Tang et al., 2017). Meanwhile, investigative
methods for understanding non-linear dynamics in complex systems using experimental
data (Frankel and Reid, 2008) and extracting physically meaningful expressions have been
presented (Bongard and Lipson, 2007; Brunton et al., 2016; Schmidt and Lipson, 2009).
However, there has been limited application of ‘robot scientists’ to the broader physical
sciences.

We propose an iterative physical experimentation system (IPES; Figure 6.1b), in which
paper shapes are fabricated, experiments are conducted, data is analysed, and a sampling
strategy is implemented, all without human input. In our illustration of this approach,
hundreds of different sized circular, square, hexagonal and cross shapes were fabricated,
dropped and their falling behaviours classified without human intervention. The number
of experiments was an order of magnitude greater than those typically seen in the field,
but with a greatly reduced effort. The behavioural classification approach was compared
to visual classification from a panel of human observers, showing an average agreement
of 86.2%. The system reproduced the original work on falling disks (Field et al., 1997),
showing the relationship between Re and I∗ holds true in a previously underexplored area
of the behavioural phase diagram. Furthermore, the IPES system showed that the Re–I∗

relationship generalises for the more complex cross, square and hexagon shapes, but that the
transitional boundaries shift.

This chapter is structured as follows. In 6.1 I describe the IPES hardware and software
platform. In 6.2 I present the results and discuss various aspects of the relationship between
morphological parameters and behaviours, and compare the results to know results from a
previous study. In 6.3 I discuss and conclude the chapter.

6.1 Methods
This study presents an automated approach to investigating the falling-paper problem. To

achieve near-continuous operation without human intervention, the experimental setup was
designed to be robust and autonomous.
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Figure 6.1: Schematic of iterative physical experimentation approach. (a) Overview of
complex physical systems such as the falling-paper problem. Mechanical design parameters
map to behaviours via the forward design problem. Behaviours map to design parameters via
the inverse design problem. (b) Flow chart of the iterative physical experimentation system,
where paper shapes are fabricated, tested, analysed and sampled automatically.

6.1.1 Iterative physical experimentation system
Investigating the falling-paper system is challenging due to the complex dynamics, their

sensitivity to initial and environmental conditions and the stochasticity in behaviours. The
IPES enables us to quickly gather large volumes of data and automatically analyse it to reveal
patterns in the underlying dynamics. Figure 6.2 shows the system, which can also be seen in
the supplementary video2.

6.1.2 Fabrication
The fabrication system was designed to reliably and autonomously cut paper shapes

for testing. Shapes were defined by a set of coordinates representing their vertices in
two dimensions. Smooth shapes such as circles were discretised along their perimeter; a
discretisation of 40 discrete points proved effective.

2https://doi.org/10.1038/s42256-019-0135-z

https://doi.org/10.1038/s42256-019-0135-z
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Figure 6.2: Diagram of the experimental setup. (a) Overview of the experimental system
showing a UR5 robot arm dropping a paper shape, and the co-ordinate system (x,y,z) used
to record the trajectory. (b) Plan view showing the camera setup used to capture 3D falling
trajectories. (c) Initial conditions for dropping shapes, chosen randomly in each experiment
as a binary choice between the horizontal or vertical case. (d) Time-lapse image of the UR5
robotic arm dropping a paper circle with a vertical initial condition. The shape is exhibiting a
chaotic behaviour. The shape outlines have been processed to maximise image quality.

A MakeBlock XY laser engraving and cutting machine was used to cut shapes out of
paper. Using laser-cutting technology is advantageous as shapes can be accurately cut to a
precision less than one millimetre. Furthermore, there is no degradation in cutting quality
over time. The laser cutter uses G-code, a numerical control programming language, to
control the laser cutting-head. To allow picking of the fabricated shapes, each shape must be
cut at a consistent point within the laser cutter coordinate system, centred at the cut-point
c = (0.1m 0.1m) into the bed of the laser cutter. Each shape was cut using a laser speed rate
of 200mm/min; a slower than required speed that minimises cutting failures.

Shapes were cut onto 5-Star branded 70gsm listing paper, which comes as a stream of
2000 continuous sheets. The advantage of using listing paper is that it can be continually
fed to the laser cutter and does not have preformed curvature as found in rolled paper. The
paper-feeding mechanism was developed such that a continuous stream of listing paper
passed under the laser cutter and then through a set of motor-controlled rollers. Once a shape
was cut and removed by the pneumatic end-effector, the rollers advanced fresh paper for the
next shape. An array of photoresistors was placed under the paper feed path. By detecting
changes in resistance as the hole left by the cut shape passed over them, the system could
guarantee the removal of used paper. This aided robustness of the setup. Figures 6.3, 6.4 and
6.5 show more details on the experimental set-up and methodology.
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Figure 6.3: Overview of experimental system. (a) Block diagram of the experimental set-up
(b) Labelled photograph of the experimental set-up.

Figure 6.4: Plan view schematic of the laser cutter and paper feed system. The coordinate
system of the UR5 robot arm (xr,yr,zr) and laser cutter (xl,yl) is shown.

The shape parameter ranges were chosen to explore a large design space without introduc-
ing manufacturing errors or very large deformations. Table 6.2 summarises the parameterised
paper shapes.

6.1.3 Experimentation and data capture
The experimentation and data capture system were designed to pick up, move and drop

fabricated shapes and then capture their falling behaviour. To achieve this a Universal Robots
UR5 robotic arm fitted with a custom suction gripper was used. Using a robotic arm allows
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Figure 6.5: Flow chart of system operation, showing the fabrication, experimentation, analysis
and sampling strategy steps.

easy automation and precise control over the picking and dropping pose. Additionally, using
suction and pneumatic control to pick and drop paper shapes minimises deformation and
damage of the paper shapes and allows for rapid experimentation. Figure 6.5 summarises the
experimental process.

Once a shape was fabricated, the UR5 arm was programmed to pick and drop the paper
using the end-effector, which used a 5 mm rubber suction cup connected to vacuum pump
to pick up each shape, and an actuated relief valve to drop each shape. The suction control
was operated by a relay system connected to a microcontroller. The pose of the tip of the
pneumatic gripper was defined by its position (x,y,z) and rotation (rx,ry,rz) in the robot
coordinate system. The picking pose was determined so the gripper was located at the cut
point c in the laser coordinate system, with an orientation of (90o,0o,0o).

The drop position was 1.1m off the ground and in the centre of the experimental area.
When selecting the drop height, a number of factors were considered. A higher drop height is
desirable, as it allows longer behavioural observation. However, a higher drop height can lead
to more lateral movement. The problem with lateral movement is that shapes can travel out of
the camera view, hit the surrounding curtains or land on the experimental apparatus e.g., laser
cutter, computer. We found such failures are difficult to detect automatically and required a
significant amount of manual intervention to flag and correct. In doing so, behaviours with a
high lateral travel distance would be under-represented. 1.1m was therefore chosen as the
highest drop height that still prevented excess lateral movement.

Two orientations were used at the drop position, horizontal and vertical, defined by the
orientation vectors (90o,0o,0o) and (0o,0o,0o) respectively. During each experiment, the
drop orientation was randomly chosen using a random number generator with two possible



6.1 Methods 99

values, each corresponding to an initial condition. Varying the drop angle is necessary as this
allows different behaviours to be observed, by randomly choosing the two ‘extreme’ options
in angle maximises the range of observed behaviours.

Falling behaviours were recorded using two Logitech BRIO cameras recording at 98
fps. A high frame rate was required to capture the rapidly changing behaviours of falling
paper. Each camera was positioned with a side-on view of the experimental platform, on
either side of the drop position such that the falling shape was always visible in both camera
views. Recording was triggered one second before the paper was dropped and continued for
ten seconds. This ensured the whole falling period was captured. To maximise the shape
visibility, walls and ground of the experimental area were black; this maximises the contrast
with the white paper shape.

The experimental area was situated in a large laboratory and was surrounded by a thick
ceiling to floor curtain, designed such that there were no gaps at the floor or ceiling. This
was sufficient to create still-air conditions within the curtain, for a range of lab conditions.
Experimentation was paused when laboratory conditions could affect this still-air, e.g., during
construction when the curtain was being moved.

6.1.4 Data analysis
The data analysis system extracted the three-dimensional trajectory of the falling shape,

as well as other physical measurements from the captured video data. Furthermore, it auto-
matically classifies the different falling behaviours in each experiment using a combination
of predefined rules and unsupervised clustering.

First, the location of the paper shape in each video frame was determined. Each video
frame is compared to a reference background image, taken just before the shape is dropped.
Image pixels that differ between images by more than a certain threshold are identified and
use to create a binary mask of possible moving objects in the image. The black colour of the
ground and walls maximise the contrasts of the white paper shape between the background
image and video frame. The MATLAB vision blob analyser is used to detect the largest
single connected region in the binary mask, and the centre of mass of this is used to estimate
the shape position in the frame. Providing there are no significant changes between frames,
this method is effective at locating the shape.

The two webcams were used to create a calibrated stereo-vision pair. Given the image
position and timestamps of the shape in each video, the three-dimensional trajectory could
be extracted. The first 0.1m of trajectory was discarded (Figure 6.2a), as shapes were
sometimes partially occluded by the robot end-effector here. The last 5% of the trajectories
was discarded as the trajectory is affected by the ground. Additionally, by identifying the size
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of the blob, the observable area of the paper shape visible to the cameras can be determined.
The rotational behaviour of the falling shape can be inferred from this parameter. Using
the 3D trajectory information and observable area, features which describe the falling can
be determined including falling velocity, rotation speed and falling location. A range of
parameters were calculated based on the 3D trajectory and observable area measurement.
These are shown in Table 6.1. The extracted parameters facilitated automated behavioural
classification.

Parameter Units Description
∆x m Horizontal x displacement
∆y m Horizontal y displacement
∆z m Vertical z displacement
d m Path length
t s Falling time
ω rev/s Oscillation frequency

Table 6.1: List and description of features extracted from the falling trajectory and observable
area.

Steady and periodic behaviours were identified first by using a simple algorithm to
segment trajectories into steady or non-steady. These behaviours were defined as those
which had a horizontal initial condition and whose position did not deviate horizontally
by more than a threshold value (20% of the radius) from the drop position, which was
empirically determined. Only horizontal initial conditions give rise to this condition, so only
these experiments needed to be considered. As previously documented (Andersen et al.,
2005), there are often different behaviours exhibited by the paper during different phases
of the falling trajectory. Mostly commonly there is some initial ‘transitory’ phase after
initially dropping the paper after which a steady-state phase is found. Hence, all qualifying
trajectories were segmented based on the aforementioned identification. In comparison to
other work this allows new phases of behaviour to be captured and analysed and allows for a
greater understanding of falling behaviours to be obtained.

Tumbling and chaotic behaviours were classified using K-Means clustering (Hartigan
and Wong, 1979), an unsupervised machine learning algorithm. The K-Means algorithm is
not designed to classify trajectories directly, but can be used to classify trajectory features.
Under this approach, a set of scalar features can be extracted from each trajectory and
inputted into the K-Means algorithm. Two features were used to classify behaviours. First,
the mean rotation frequency, ω , which was extracted from the observable area of each
experiment. Peak detection was applied to the observable area time series, with fluctuation in
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area corresponding to shape rotation. The assumption is made that each peak corresponds
to one full rotation of the paper shape. The frequency ω is then calculated as the number
of rotations divided by the total falling time. ω was chosen as it tends to be higher in
tumbling behaviours. The second feature used was the standard deviation in vertical velocity
std(vz), which tends to be higher for chaotic behaviours as the motion is far more varied.
These features were chosen empirically by human observation of the different behavioural
patterns. Despite this, automating the classification using manually crafted features offers a
less subjective and more repeatable classification approach than previous visual approaches.

For each shape, the features for each experiment were stored in the matrix X= [ωk std(vzk)]

for k = 1, . . . ,K, where K was the total number of experiments for that shape. The K-Means
clustering algorithm was applied to X ,

b = KMCN(X) (6.1)

where N is the number of clusters, two in this case, reflecting the chaotic and tumbling
behaviours, and b is an array of cluster assignments. As is standard practice, the algorithm is
run multiple times, three in this case, to avoid clustering anomalies. Labelling behaviours is
challenging, even as a human observer. Hence, using automated clustering allows for less
subjective classification.

The classification results were compared with those obtained from two human observers.
The human observers had access to the same visual data, as well as the extracted 3D
trajectories. For each experiment, the observers discussed the features of the experimental
falling style and categorised it into one of the three possible behaviours. For experiments
where the automated system identified behavioural transitions, the observers classified each
behavioural segment independently. To calculate the agreement with the human observers,
we uniquely reassigned cluster assignments such that the fraction of misclassified behaviours
is minimised.

Previous work has identified that dimensionless quantities can be used to characterise
falling disk in fluid behaviours, namely the dimensionless moment of inertia I∗ and Reynolds
Number Re. Using the shape parameters and the features determined for each experiment
these can be calculated for each experiment.

The Reynolds Number is given by

Re =
vzL
ν

, (6.2)

where vz is the vertical falling velocity, L is a length scale and ν is the kinematic viscosity of
the liquid, in this case air. The diameter parameter d = 2r was used as the length scale. The
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non-dimensional moment of Inertia is

I∗disk =
Idisk

ρ f d5 (6.3)

where Idisk is the mass moment of inertia, ρ f is the fluid density. ρ f d5 is an inertial term
similar to the mass moment of inertia of an equivalent volume of fluid. For the other shapes
we have

I∗Hexagon =
5mr2

12ρ f d5 , (6.4)

I∗Square =
mr2

3ρ f d5 , (6.5)

I∗Cross =
m(4r2 +w2)

24ρ f d5 . (6.6)

6.1.5 Searching and exploration
In this study, morphological parameters were chosen randomly. Due to the number of

experiments undertaken this allowed for exploration of the full parameter-space. Figure 6.6
shows the distribution of sampled design parameters for each shape.

Of course, there is scope for implementing more intelligent and efficient search strategies.
These could include genetic algorithms (Goldberg and Holland, 1988) and their variants
MAP elites (Mouret and Clune, 2015), as we discussed in Chapter 2, or even Bayesian
optimisation as discussed in the Chapter 5. Other machine learning approaches, for example
Active Learning (Settles, 2009), could be beneficial. Active learning is an approach that
allows algorithms to choose the training data from which they learn, which in our case could
mean guiding the parameter search for more focused exploration on behavioural boundaries.
Similarly, tools form research into optimal and Bayesian experimental design Chaloner and
Verdinelli (1995) offer a structured approach to designing experimental procedures.

Figure 6.6: Distribution of randomly sampled design parameters for each shape.
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6.2 Results
Four parameterised shapes were investigated; circles, to validate the set-up against

previous studies (Field et al., 1997), and squares, hexagons and crosses to asses the effect
of morphology on falling behaviours for more complex shapes. Shapes were fabricated and
dropped from a height of 1.1m and with a randomly chosen initial condition (Figure 6.2c).
Experiments took around 90 seconds to complete, with shapes taking 1 to 5 seconds to fall to
the ground. Shapes were parameterised by their radius, r and width, w, as shown in Figure
6.1a and Figure 6.7. Table 6.3 shows the total number of experiments conducted for each
shape. In the exploratory work for this work, more than 1000 experiments were conducted
to validate the system and explore its limitations. Each shape was parameterised so a wide
range of morphologies could be observed. The lower and upper limits were set by a range of
factors. Smaller shapes were difficult to pick up and track, while larger shapes exhibit very
large deformations and took a long time to manufacture. The parameter ranges (Table 6.2)
reflects this.

Shape Parameter Range (mm)
Circle r 25 ≤ r ≤ 50
Hexagon r 25 ≤ r ≤ 50
Square r 25 ≤ r ≤ 50
Cross r 25 ≤ r ≤ 50

w 5 ≤ r ≤ 25

Table 6.2: List of shape parameters and their corresponding ranges.

Shape Number of Experiments
Circle 170
Hexagon 123
Square 92
Cross 59
Exploratory work (circle, square, rhombus, parallelogram) 1200

Table 6.3: Number of experiments carried out for each shape.

We used an adapted version of the behavioural groupings presented in for falling disks,
namely:

1. Steady and periodic falling – the disk falls steadily or oscillates back and forth with a
horizontal orientation.
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Figure 6.7: A representative sample of manufactured shapes, with design parameters r and w
shown. (a) Circles (b) Hexagons (c) Squares (d) Crosses.

2. Tumbling – the disk continuously turns end over end.

3. Chaotic motion – the disk switches between tumbling and swooping motions with no
apparent structure.

In other studies, steady and periodic behaviours are considered two separate groups. However,
periodic behaviours are typically observed with heavy disks falling in a liquid. In falling-
paper systems the fast dynamics make them difficult to differentiate. The main characteristic
of both behaviours is that the shape falls vertically down without tumbling or flipping. Figure
6.9 shows representative examples of these behaviours for each shape, which can also be
seen in the second supplementary video3.

Behaviour-characterising features such as vertical velocity, horizontal velocity and os-
cillation frequency were extracted from the 3D trajectory. The automated behavioural
classification system utilised these parameters to segment and classify trajectories into one
of the three possible behaviours, with an average agreement of 86.2% when compared with
human classification. Figure 6.8 shows confusion matrices for each shape and behaviour.
These show the percentage of agreement between the automated system and human observer
in each case. Generally, the confusion (represented by off-diagonal values) increases with
shape complexity. Table 6.4 summarises the agreement between the automated system and
human observers for each shape. We see that circles and hexagons show most agreement.
We suspect this is because the original behavioural groupings were based on falling disks,
and hence the circular shapes fitted these groupings better. The same classification scheme
was used for all four shapes. However, the classification agreement for the cross shapes

3https://doi.org/10.1038/s42256-019-0135-z

https://doi.org/10.1038/s42256-019-0135-z
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was significantly lower than for the other shapes, suggesting that alternative parameters may
better describe the behaviours of cross shapes.

Figure 6.8: Confusion matrices showing the agreement with human observers when classify-
ing behaviours.

Shape Classification Agreement
Circle 89.5%
Hexagon 86.4%
Square 88.2%
Cross 72.3%
Average 86.2%

Table 6.4: Classification agreement with human observers for each shape.

In some cases, two behaviours were observed in one falling trial, with an initial phase
of one behaviour followed by a steady state phase with a secondary behaviour. When this
occurred, the trajectories were split into the two different sections and analysed and classified
independently. This can be observed for the behaviour of the circular shape (Figure 6.9a)
where there is transition from steady falling to chaotic falling.

Figure 6.10 shows representative trajectories for each shape and behaviour. Chaotic
motions were characterised by abrupt changes in vertical velocity in the 3D trajectory and
apparently random rotation. Tumbling motions were characterised by smooth trajectories and
periodic rotation. Steady behaviours were characterised by vertical trajectories with no clear
periodic oscillation. In some cases, the steady behaviour was observed only the initial section
of the trajectory after which the behaviour transitioned, as can be seen in Figure 6.10a,b.
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Figure 6.9: Time-lapse images of the three falling behaviours observed in each shape. (a)
Falling circular shapes, showing a behavioural transition from steady and periodic to chaotic
(b) Falling hexagonal shapes (c) Falling square shapes (d) Falling cross shapes.

6.2.1 Effect of morphological parameters on observable characteris-
tics

The morphological parameters have a significant effect on the characteristics of falling
behaviours. Furthermore, a specific morphology can exhibit multiple behaviours depending
on initial conditions and environmental interactions. This is shown in Figure 6.11a, where
the vertical falling speed vz (the speed in the z-direction) is plotted against the morphological
parameters r and w. Falling speed is an interesting feature to examine, as understanding its
relationship with morphology and behaviour is relevant to designing and optimising complex
flying structures.

The circle, hexagon and square are all parameterised by one morphological parameter, r.
Tumbling motion generally occurs when r < 0.03m, after which chaotic behaviour occurs.
Steady and periodic falling behaviours are observed across the full range of r. The cross
exhibits a weaker pattern relative to r, however tumbling behaviours tend to occur at lower
values. Tumbling patterns generally occur when w > 0.015m, and steady patterns occur
across the whole range. This suggests that by introducing a secondary parameter it is possible
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Figure 6.10: Trajectories and observable area profiles of falling shapes for different automat-
ically classified behavioural groups. (a) Top panel shows typical trajectories for the three
different behaviours observed for falling circles. The steady trajectory is seen for only the
initial period of falling. The bottom figure shows the observable area as the shape falls for
the different behaviours, highlighting the rotation of the shape. (b) Trajectory and area plots
for hexagonal shapes of different behaviours. (c) Trajectory and area plots for square shapes
of different behaviours. (d) Trajectory and area plots for cross shapes.

to modulate falling behaviours. For all shapes, steady falling behaviours generally fall slower
than chaotic or tumbling behaviours. However, there is no clear relationship between vz and
tumbling or chaotic behaviours, with small tumbling shapes showing comparable speeds to
large chaotic shapes.

The relationship between vz and path speed v (rate of travel along the path of trajectory)
was also examined, as shown in Figure 6.11b. The closer the values of vz and v are to each
other, the more the shape follows a straight vertical trajectory. Hence, we see that steady
falling behaviours tend to lie close to the line v = vz. Conversely, chaotic behaviours are
spread out, showing that they travel further along their trajectory for the same vertical height
loss. Tumbling behaviours tend to lie closely together to the left of the line v = vz, indicating
most tumbling behaviours move consistently along their trajectories at constant velocities.

Figure 6.11c shows the horizontal displacement ∆x and ∆y during the trajectory. Steady
and periodic behaviours by definition show minimal horizontal displacement. However,
tumbling and chaotic behaviours show greater deviation. In general, chaotic behaviours
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appear to have greater horizontal movement from the starting position; however, there is
significant variation within the behaviours. The tumbling circle shapes appear to favour
travelling in the negative x direction; however, more experiments would be required to fully
explore this observed pattern. We speculate this is due to a slight systematic error in the
release orientation.

Figure 6.12 shows extended analysis of falling behaviours, specifically the effect of the
initial drop condition on distance travelled. Shapes dropped with a vertical initial condition
tend to travel further than those dropped with a horizontal initial condition. Even though most
shapes eventually transitioned to a chaotic or tumbling behaviour, those dropped horizontally
spend more time falling steadily down. Hence, the time available for horizontal displacement
was reduced. If we plot the radial distance travelled vs. the design parameter r and initial
condition, we see that initial condition dictates displacement more than design.

Although each of the features shown in Figure 6.11 show some ability to separate or
uniquely define behaviours, there is no single output which allows full classification.

6.2.2 Behavioural grouping
To understand how morphological and environmental parameters can influence falling

behaviours, non-dimensional parameters have been used to construct behavioural ‘phase-
diagrams’ (Field et al., 1997). Most commonly among these non-dimensional parameters are
the Reynolds number (Re) and dimensionless moment of inertia (I∗), which characterise the
effect of the fluid and disk morphology respectively.

When plotted against these quantities, a clear structure emerges that separates the three
falling styles of disks. To demonstrate the validity of the IPES in wider context of falling-
paper research the results of (Field et al., 1997) were replicated. Re and I∗ were calculated
for each experiment and overlaid onto the well-known phase diagram of falling disk styles
(reproduced manually by the authors), as shown in Figure 6.13a–b.

The automatically classified tumbling, chaotic and steady behaviours matched the original
phase diagram with and accuracy of 96%, 71% and 6% respectively. Tumbling behaviours
are easiest to classify, as their characteristics are distinct. It is often ambiguous whether a
behaviour is chaotic or tumbling. Steady falling has previously been observed at the lower
end of the Re and I∗ range (Stringham et al., 1969; Willmarth et al., 1964). The relative
effects of fluid forces and paper inertia in air in this study meant steady falling in the circle
was only observed for short periods of time, before transitioning to another behaviour. The
apparent transient existence of steady falling in this area of the phase diagram has not been
reported before.
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Figure 6.11: Variation in measured falling characteristics with respect to design parameters
and automatically classified behaviour groups. (a) Vertical falling speed vz vs. mechan-
ical design parameters r and w (b) Path velocity v vs. vertical velocity vz (c) Horizontal
displacement ∆x and ∆y between start and finish of trajectory.

Prior studies have used different materials and fluids, for example metal disks and high
viscosity fluids, to extend the range of I∗ and Re. Meanwhile, this experimental setup can
only cover a limited range of I∗ and Re. Previously, this range has been largely underexplored.
With the IPES it is possible to observe behavioural boundaries at a much higher resolution.

The Re–I∗ phase diagram provides a compact view of behavioural diversity. The applica-
bility of this phase diagram for the hexagonal, square and cross shapes was tested. Figure
6.13c–d shows the automatically classified behaviours plotted against Re and I∗, which
were reformulated for each shape. All shapes show a similar overall structure, with high-I∗

shapes more likely to exhibit tumbling behaviour, and steady falling shapes exhibiting lower
Re. The behavioural boundary line shifts between each shape. The variation relative to the
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Figure 6.12: Effect of initial condition on horizontal displacement. (a) Horizontal displace-
ment ∆x and ∆y for each shape and initial condition. We see that shapes with a vertical initial
condition tend to travel further. (b) Radial horizontal displacement (

√
∆x2 +∆y2) for the

same shapes and initial conditions, again showing how shapes with a vertical initial condition
tend to travel further.

circle results increases as the shapes deviate from circular. Hence, the hexagon behaves
most similarly, and the cross is least similar. The generalisation of the Re–I∗ phase space to
the hexagon and cross is a previously unreported finding. There may be more appropriate
dimensionless quantities to characterise the behaviour of the falling cross.

6.3 Discussion and conclusion
In this chapter I presented an approach for iterative physical experimentation to facilitate

the scientific investigation of the relationship between mechanical design parameters and
non-linear passive dynamics. I demonstrated this approach by autonomously investigating the
falling-paper problem. Understanding this problem requires large quantities of experimental
data coupled with intelligent data analysis.

Using computer vision, it was possible to extract the 3D trajectory and corresponding
oscillation. This data was processed and used to automatically segment and classify be-
haviours, then examine the relationship between morphology, behaviour and output variables
such as falling speed (Figure 6.11). The analysis aids and advances understanding of each
behaviour, and the corresponding behavioural boundaries. In addition, it provides practical
insight into designing structures to exhibit certain behaviours. This could, for example, assist
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Figure 6.13: Automatically classified falling behaviours in the Reynolds number Re and
non-dimensional moment of inertia I∗ parameter space. (a) Results for circular disks from
this study plotted against results obtained from previous studies, showing the behavioural
groups and transition lines. The transition lines indicate the approximate boundaries between
behaviours and are added by hand. (b) Close up of the circular disk results from this study
(c) Similar plot for Hexagon shapes, the dotted line indicating an approximated behavioural
boundary added by hand by the authors (d) Similar plot for square shapes (e) Similar plot for
cross shapes.

with optimising the design of flying robots with respect to certain parameters such as stability
or falling speed.

Previous studies (Field et al., 1997) have used the parameters Re and I∗ to group the
behaviours of falling disks, and were used here to validate the IPES. The results showed that
the IPES correctly classified tumbling and chaotic behaviours and grouped them in the correct
area of the behaviour phase diagram. However, unlike previous studies the system identified
steady-falling behaviours in previously unseen areas of the phase diagram. These behaviours
manifest for a short period of time in the transient stage of motion, something not analysed
in the context of the phase diagram. This suggests the boundaries in the Re–I∗ diagram are
not as fixed as once thought, and that ‘out-of-group’ behaviours can exist. Investigating
previously unexplored hexagons and crosses demonstrated that the Re–I∗ phase diagram
generalises to other shapes, although the behavioural transitional lines are shifted. However,
the behavioural distinctions became less distinct the less circular the shape was, indicating
different non-dimensional parameters may be useful.
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experimentation

A key aspect of the falling-paper problem has been the classification of behaviours, which
has been previously performed exclusively visually. This is, especially for fast-moving
behaviours, somewhat subjective. The human classifiers used in this study were frequently
unable to agree on what behaviour a certain shape was exhibiting. While no specific data is
available, this occurred in approximately 25% of experiments. Automating this process using
unsupervised clustering presents a more repeatable, less subjective classification approach.
This is especially true if behaviours are clustered based on well-thought-out parameters, in
this case the variation in vertical velocity and frequency of oscillation. The results here
showed that one unsupervised classification scheme could differentiate between chaotic and
tumbling motion accurately in all four shapes.

The average agreement over all experiments of the human and automated behavioural
classification system was 86.2%. As mentioned, in some cases the human observers found
visual classification challenging. Hence, we do not refer to this percentage agreement as an
accuracy, as this implies the human classified groups are the ground truth. Moving toward
semi or fully unsupervised behavioural classification produces behavioural groups based
on physically quantifiable differences, rather than visually informed groupings. In doing
so, a ground truth can be established based on the natural groupings of behaviours of the
parameter space.

As well as the positive results I have shown, the system has some limitations. As
discussed, behavioural classification is initially reliant on human supervision to craft features.
One of the key potential benefits of an automated system is that it allows us to create system
interpretations not based directly on human input. Hence, the system will be fundamentally
limited until classification can be decoupled from human input. There are also physical
constraints that limit the extent of experimentation. Robotic manipulation of delicate objects,
e.g. paper, is a research field in itself, and the range of possible shapes and experiments the
system can perform is limited by this. One can image that, as robotic technology advances,
we will be able to apply automatic experimentation to ever more complex and delicate
systems.



Part II

Bernoulli-balls





Chapter 7

Height control of a Bernoulli-ball via
bang-bang control1

There is a long-standing interest in the study of mechanical self-stability – henceforth termed
self-stability – for the purpose of dynamic motion control (Pfeifer et al., 2007). In biology, it
is known that many animals take advantage of mechanical dynamics to maintain stability
during walking and running locomotion, for example, in highly unstructured and uncertain
terrains (Ijspeert, 2014). Inspired by this, there were a large number of case studies on
legged robot locomotion investigating the principles of robust motion control in complex
tasks (Iida and Ijspeert, 2016). For example, Passive Dynamic Walkers (PDWs) showed
that a purely mechanical system can be designed to take advantage of the pendulum-like
dynamics of legs, allowing unaided walking down a shallow slope (McGeer et al., 1990).
The exploitation of such mechanical dynamics can be extended by injecting energy, allowing
improved operation and walking on flat ground as studied theoretically in (Goswami et al.,
1997; Spong et al., 2007) and in robot experiments (Collins et al., 2005). Aside from legged
locomotion, there are numerous other studies on self-stabilising systems. The ‘Blind Juggler’
(Reist and D’Andrea, 2012), for example, exploits the passive dynamics of a ball bouncing on

1This chapter is based on the following peer-reviewed publication:

• Howison, T., Giardina, F., & Iida, F. (2020). Augmenting self-Stability: height control of a Bernoulli-ball
via bang-bang control. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 3974–3980.

Contributions
T. Howison – devised the conceptual idea, developed models constructed hardware platform, carried out
experiments, developed the model and wrote the paper.
F. Giardina – contributed equally to model development and stability analysis, aided with experiments and
proofreading.
F. Iida – contributed to general discussions and proofreading.
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a parabolic surface to juggle multiple balls without any feedback. Self-stabilising properties
can even be observed in a bicycle (Kooijman et al., 2011).

Despite its advantages, self-stabilising systems are generally considered challenging
when designing active control mechanisms, because the system behaviours are dictated by
their intrinsic mechanical dynamics, which we cannot directly change (Burridge et al., 1999).
One problem is the non-linear relationship between the system dynamics and control input
making control influence hard to predict (Hunt et al., 2016). Another is latency after active
control is applied, because self-stabilisation around a new equilibrium point usually requires
long transient periods, making the design of active controllers challenging (Guenther and
Iida, 2017).

Various methods exist for the active control of self-stabilising systems. An approach
called the energy-shaping method was introduced in order to identify energy inputs for
self-stabilising systems (Spong, 1999). Here, the nominal mechanical self-stability is used
as a reference trajectory, on top of which the energy input is estimated to handle different
environmental conditions. This is an elegant approach to find the minimum energy required
to stabilised complex systems, but its applicability is limited to cases where precise system
models are available. A more general approach, called the linear quadratic regulator (LQR)
tree method, was proposed based on the LQR design methodology (Tedrake et al., 2010).
By linearising complex dynamics, the LQR-tree method estimates the energy input to guide
systems to target locations. While this approach is generally sound, the requirement of high
control bandwidth restrict the applicability in many real-world applications, especially those
which have fast dynamics beyond sensing and computational capabilities.

In this chapter, I propose a minimalistic control approach–termed augmented self-stability–
that utilises bang-bang control to improve the time-to-target of self-stabilising systems with-
out loss of stability. Utilising bang-bang control in self-stabilising systems is advantageous
for a number of reasons. First, the control is defined with few discrete parameters that
give rise to a certain trajectory. These types of control problems are efficiently optimised
using numerical solvers. Hence, systems are often controlled globally using bang-bang
before switching to a local feedback controller such as LQR, e.g., in the pendulum swing-up
problem (Park et al., 2011). In self-stabilising systems, we can ‘outsource’ the design of a sta-
bilising feedback controller to the intrinsic dynamics of the system. Second, self-stabilising
systems reliably follow certain trajectories under certain control inputs. Bang-bang control
harnesses these trajectories, which by nature are reliable, hence making the control policy
robust to disturbances. Third, the control bandwidth requirement is minimal – there is no
requirement for high-frequency sensing and computation of control inputs – meaning control
policies can be calculated a priori. Finally, It is worth noting that for linear control problems
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subject to bounded inputs bang-bang control is time-optimal (Jazar, 2010). Unfortunately,
time-optimality of bang-bang control in non-linear systems is not equally guaranteed.

As a case study of our proposed control approach, we study the height control problem
of a sphere hovering in a vertical airflow: the so-called Bernoulli-ball. Though this is an
interesting control challenge, it has not been studied intensively in the past. The only directly
related paper in our search (Nudehi et al., 2017) investigates the feedback control of a similar
system, however the self-stabilising properties are not considered or analysed. More broadly,
there is a rich literature on magnetic (El Hajjaji and Ouladsine, 2001; Mann and Sims, 2009)
and acoustic levitation (Trinh, 1985; Ueha et al., 2000; Xie and Wei, 2001).

This chapter is structured as follows. In 7.1 I introduce the model of the Bernoulli-ball
is introduced. In 7.2 I present Lyapunov stability analysis to verify self-stability. In 7.3 I
describe how the system self-stability can be augmented with a bang-bang control algorithm.
In 7.4 I present experimental results of hardware validation. In 7.5 I demonstrate how further
behaviours can be induced in the system with an oscillating airflow. Finally, in 7.6 I discuss
and conclude the chapter.

7.1 Model and control
Figure 7.1 shows a schematic of the set-up. A high power fan is used to propel air into

the expansion chamber and through a flow straightening nozzle. The airflow is changed by
using a pulse width modulation (PWM) signal – which can take an value in the range 0–1
– to alter the fan power. A ping-pong ball is used as the hovered object. A more detailed
description of the set-up is provided in 7.4.1.

7.1.1 Dynamics modelling
The Bernoulli-ball exhibits two forms of self-stability. Firstly, it is self-stable in the

horizontal plane; when perturbed horizontally the ball returns to its original position. This
is commonly explained using Bernoulli’s principle, which states that as the speed of a fluid
increases, the fluid pressure decreases. Hence, the pressure within an airflow is lower than the
surrounding environment, creating a self-stabilising force about the jet centerline (Gerhart
et al., 2016). Secondly, it is self-stable in the vertical direction; when released into the
airflow, the ball will eventually settle around a nominal height. This is due to the force
balance between drag and the ball mass, and the dissipative effect of moving in the airflow.
To simplify matters, we first assume that motion in the horizontal plane x–y and the vertical
direction z is decoupled. We make this assumption because the horizontal self-stability acts
as a feedback loop, keeping the ball centred in the flow.



118 Height control of a Bernoulli-ball via bang-bang control

Figure 7.1: Schematic of set-up for hovering a sphere in a vertical airflow. Air is propelled
by the fan into the expansion chamber then through the nozzle and flow straightener.

The vertical dynamics are the result of complex interactions between the ball, airflow
and environment, meaning the governing equations are highly non-linear. Here, we present a
simplified model of the system dynamics. We start by considering the force balance on the
ball in the vertical direction,

mz̈ = Fd(z, ż)+Fb −mg (7.1)

where z is the vertical distance between the nozzle outlet and ball centre of mass, Fd(z, ż)
is the drag force on the ball at a height z and velocity ż, Fb is the buoyant force due to the
weight of displaced air and mg is the ball weight. The buoyant force is minimal, so we have
Fb ≈ 0.

Assume that the air-jet flow expands conically from the nozzle with a cone angle θ and
that the velocity profile Vf (z) is approximately parabolic in the radial direction, as shown in
Figure 7.2. We define V̄f (z) as the mean flow velocity at a height z, with the mean velocity at
the nozzle outlet being denoted by V0 = V̄f (0). Applying flow continuity over z yields an
expression for V̄f (z),

V̄f (z) =
V0r2

n
(rn + z tanθ)2 (7.2)

where rn is the nozzle radius.
The mean nozzle outlet velocity changes in response to a change in fan power, which is

controlled using a PWM signal denoted by u. We define f (u) as the yet-to-be-determined



7.1 Model and control 119

mapping between u and V0. Therefore,

V̄f (z) =
f (u)r2

n
(rn + z tanθ)2 (7.3)

Figure 7.2: Schematic of the airflow model. The flow is assumed to expand conically with
a cone angle θ . The flow profile Vf (z) at a height z is modelled as parabolic in the radial
direction. The two forces acting on the ball are drag Fd and weight mg.

Next, define the relative airflow around the ball as

V (z, ż) = V̄f (z)− ż (7.4)

where ż is the ball velocity. Using the standard approach to drag modelling (e.g., (Gerhart
et al., 2016)) gives an expression for Fd(z)

Fd(z, ż) = sgn(V (z, ż))
1
2

Cdπr2
bρV 2(z, ż) (7.5)
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where Cd is the drag coefficient, rb is the ball radius and ρ is the density of air. We include
the signum function sgn(V (z, ż)) to ensure that the Fd always acts opposite to V (z, ż), e.g.,
when ż > V̄f (z).

The dynamics of the fan, expansion chamber and airflow, and lags in the control computer
and micro-controller introduce latency into the system, which manifests as a lag between
a change in control input and a change in the ball force balance. Modelling each of these
transient components is challenging, so we model all transience as a lag in u reaching a
demanded value, defined as u∗. We set a first-order constraint on the time derivative of u,
namely

du
dt

= kt(u∗−u) (7.6)

where kt is a time constant to be determined.
Therefore, we can reformulate (7.1) as

mz̈ = kS
1
2

Cdπr2
bρ

( f (u)r2
n

(rn + z tanθ)2 − ż
)2

−mg (7.7)

where ks = sgn(V̄f (z)− ż). We recast (7.7) in its state-space representation. There are three
states

x =

z
ż
u

=

x1

x2

x3

 (7.8)

Therefore, the state-space representation of the system is

dx
dt

=


x2

ks
1
2Cdπr2

bρ

(
f (x3)r2

n
(rn+x1 tanθ)2 − x2

)2
−mg

kt(u∗− x3)

 (7.9)

where rb, ρ , rn, m and g are known or easily measurable, as shown in Table 7.1, and Cd ,
f (µ), θ and kt are unknown parameters to be identified from the system. Equation (7.9) can
be easily integrated using the MATLAB ordinary differential equation solver ODE45, using
a non-negative constraint to keep the system in the range z ≥ 0.

7.1.2 Parameter identification
Table 7.2 shows the identified parameters.
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Parameter Value
rb 20 mm
rn 15 mm
ρ 1.22 kg·m−3

m 2.7 g
g 9.81 m·s−2

Table 7.1: Measured system parameters.

Parameter Value
θ 1o

Cd 0.185
Kt 3 s−1

f (u) −30.24u2 +47.91u+2.45

Table 7.2: Unknown system parameters.

Parameter identification: θ

θ , the velocity profile cone angle, dictates how V̄f decreases as z increases. A pitot tube
was used to measure V̄f over a range of z and u∗ values. A MATLAB nonlinear optimiser
(fminsearch) was used to minimise the error between the model velocity profile (7.2) and
experimental results, finding the optimum cone angle to be θ = 1o. Figure 7.3 shows the
experimental results and fitted velocity profile.

Parameter identification: f (u)

f (u) defines the mapping between the control parameter u and V0. A pitot tube was used
to measure V0 for a range of u values and a second order polynomial was fitted to the data,
yielding

f (u) =−30.24u2 +47.91u+2.45 (7.10)

Figure 7.4 shows the experimental measurements and the fitted model.

Parameter identification: Cd

Cd is an empirically determined parameter that describes the proportion of energy in the
flow converted to drag force. The relationship between Reynolds number Re and Cd is well
known for a sphere immersed in an infinite uniform flow. The Re regime in this system is of
order 104, implying Cd ≈ 0.5. The mean ball hovering height z̄ was recorded for a set of u∗

in the range 0.25–0.95 and compared to the model predicted hovering heights. The standard
immersed body model with Cd = 0.5 overestimated z̄ significantly, indicating the actual Cd

should be lower. Cd was hand tuned, finding the value that best predicted z̄ is Cd = 0.185. We
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Figure 7.3: Experimentally measured mean flow velocity V̄f as a function of height z and
converged control demand u∗ compared with the fitted model.

suggest that this discrepancy between Cd values is because the air-jet diameter is similar to
the ball diameter, thus invalidating the assumption of infinite uniform flow. A more rigorous
model could investigate how Cd changes as a function of z and V (z, ż); we did not deem this
necessary. Figure 7.5 shows the experimental results and model predictions using both Cd

values.

Parameter identification: kt

kt is used to represent all system latencies. kt was hand tuned, finding kt = 15, unless the
fan is initially of, in which case kt = 3.

7.2 Global asymptotic stability
We have stated that the system exhibits self-stabilising properties in the vertical direction.

This in intuitive when observing the system, as the ball seems to always settle around a fixed
height for each control input. To be thorough, we present an analysis that proves this self-
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Figure 7.4: Experimentally measured mean outlet nozzle velocity V0 as a function of con-
verged control demand u∗ compared with the fitted model.

stability analytically. Specifically, we show that for any constant and converged control input
u = u∗, the system will always converge to an equilibrium state x∗ = [z∗ 0 u∗]T , providing the
initial conditions xinitial lie on the domain Dx = {x|x1 >−rn/ tanθ}; this property is known
as global asymptotic stability. Note that Dx is a positive invariant set with respect to the
dynamics (7.9) for positive fan speeds due to the singularity at x1 =−rn/ tanθ . Of course,
in reality x1 ≥ 0 as the ball cannot travel below the nozzle, so any physically plausible state x
will by definition lie in Dx.

First, define y as the state variable measured around x∗, i.e.

y =

[
z− z∗

ż

]
=

[
y1

y2

]
(7.11)
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Figure 7.5: Mean steady state hovering height zmean as a function of converged control
demand u∗, compared with the model with Cd = 0.5 and the fitted model with Cd = 0.185.

Since we assume the airflow speed has converged to a constant positive value, we neglect
the third system state and assume u = u∗. Reformulating (7.9) in this form yields

ẏ =

 y2

ks
Cdρr2

bπ

2m

(
f (u∗)r2

n
(rn+(y1+z∗) tan(θ))2 − y2

)2
−g

 (7.12)

valid on the domain Dy = {y|y1 >−rn/tanθ − z∗}. For brevity, denote (7.12) as

ẏ =

[
y2

F(y1,y2)

]
(7.13)

We prove the equilibrium y∗ = [0 0]T is globally asymptotically stable by employing the
Lyapunov stability criterion, which requires that a Lyapunov candidate function L(y) exists
such that
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• L(0) = 0

• L(y)> 0 ∀ y ∈ Dy \{0}

• L̇(y)< 0 ∀ y ∈ Dy \{0}, i.e. L decreases along trajectories.

The Lyapunov function can be constructed as

L(y1,y2) =
1
2

my2
2 +W (y1) (7.14)

where dW/dy1 =−mF(y1,0). Hence, L(y1,y2) is the sum of kinetic and potential energy,
deriving the latter from the sum of gravitational and drag forces but neglecting the effect of
the ball velocity y2.

To find W , we integrate −mF(y1,0), defining the constant of integration such that
W (0) = 0, to give

W (y1) =−m
(

K1

tanθ(K2 + y1 tanθ)3 +
K1

tanθK3
2
−gy1

)
(7.15)

where K1 =Cdρr2
bπ f 2(u∗)r4

n/6m and K2 = rn + z∗ tanθ . Hence, L(0) = 0.
First, we show the state y = 0 is the unique minimum for L ∈ Dy. When in equilibrium,

F(0,0) = 0. Since dW/dy1 = −mF(y1,0), W is stationary at this point. Moreover, for
y1 < 0, dW/dy1 < 0 and for y1 > 0, dW/dy1 > 0. Hence, the origin is the unique minimum.
Similarly, the origin is a global minimum for the term 1

2my2
2. Hence, L is the unique minimum

for L ∈ Dy.
The time derivative of the Lyapunov function is

L̇ = my2ẏ2 +
dW
dy1

ẏ1 (7.16)

which, after substituting for y1, dW/dy1 and ẏ2 yields

L̇ = my2(F(y1,y2)−F(y1,0))

= y2K3(sgn(V̄f − y2)(V̄f − y2)
2 −V̄ 2

f ) (7.17)

where K3 =
Cdρr2

bπ

2m and V̄f = ( f (u∗)r2
n)/((rn +(y1 + z∗) tan(θ))2).

Now, we show that L decreases along trajectories, and in fact L̇< 0 except instantaneously
when y2 = 0. We prove this by considering four cases dictated by the signum function in
(7.17).
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Case 1: 0 < y2 ≤ V̄f → sgn(V̄f − y2) = 1 Since V̄ 2
f > (V̄f − y2)

2, the right hand term in
(7.17) dominates so L̇ < 0.

Case 2: 0 < V̄f < y2 → sgn(V̄f − y2) =−1 Both terms in (7.17) are negative so L̇ < 0.
Case 3: y2 < 0 → sgn(V̄f − y2) = 1 The left term is positive and dominates in (7.17),

but y2 is negative so L̇ < 0.
Case 4: y2 = 0 → L̇ = 0. This violates the Lyapunov criterion as clearly L̇ ≤ 0, i.e. not

strictly negative definite; however, we know from (7.13) that when y2 = 0, ẏ2 = F(y1,0) ̸= 0.
Hence, L̇ is only zero instantaneously and the dynamics always return to the provably stable
regions shown in cases 1–3. (In fact, this point indicates an inflection point for L). These
conditions still qualify for LaSalle’s theorem, which is a proof for global asymptotic stability
of the equilibrium y∗ in a positive invariant set Dy.

Hence, all conditions have been met (with the modification of L̇ requiring to be only
negative semidefinite on Dy to qualify for LaSalle’s theorem) and the equilibrium y∗ is
globally asymptotically stable on Dy which is equivalent to x∗ being globally asymptotically
stable on Dx for converged fan speeds. The stability properties of the system can be visualised
with a sample trajectory in a phase portrait, as shown in Figure 7.6.

7.3 Augmented self-stability
The Lyapunov analysis proves that the system is self-stable, so will asymptotically

converge to a target height when given a constant control demand u∗target, which we can
calculate using the dynamics model. However, this self-stability is slow in reaching the target
position as the speed of convergence is dictated by the system dynamics, which we cannot
change.

Augmenting the self-stable system with a bang-bang control is advantageous as it allows
us to alter the dynamics while being guaranteed stability of the system around the target
state. Indeed, it is important to note that by using bang-bang control, we are not able to
destabilise the system for fan speeds larger than zero. This is possible mainly because the set
of possible initial states is positive invariant with respect to the dynamics (7.9), as shown in
the Lyapunov analysis in 7.2.

In the next section, I present the bang-bang control policy and analyse it in simulation.

7.3.1 Bang-bang control algorithm
We seek to move the system from an initial state xinitial to a target state xtarget. In our

system, these states correspond to target hovering heights; for a target height ztarget which
corresponds to a control input of u∗target, xtarget = [ztarget 0 u∗target]

T . It is important to note here
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Figure 7.6: Phase portrait and sample trajectory of self-stable vertical dynamics (7.9) around
equilibrium zeq = 0.2 for converged fan speed u = u∗.

that because of the transient system dynamics, control demands are included in the target
state.

We implemented a numerical switching time computation method, similar to the method
outlined in (Kaya and Noakes, 1996). The proposed bang-bang controller switches between
the maximal, minimal and target control inputs u∗high, u∗low and u∗target at a set of three prede-
termined switching times. We denote the ith switching time as ti and the initial and final
times as t0 and t f , such that 0 = t0 ≤ t1 ≤ t2 ≤ t3 = t f . The system trajectory between each
switching time, denoted by xi(t), is called the ith bang arc, so the total trajectory x(t) for
0 ≤ t ≤ t f is the concatenation of xi(t) and ends at the final state xf. The arc time ξi is the
time spent on each bang arc, which together are stored in the arc time vector ξ = [ξ1 ξ2 ξ3]

T .
Arc times ξ1 and ξ2 represent the time spent at u∗high and u∗low, or vice versa, while ξ3 is a
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predefined time used to set a consistent point to measure control performance. Figure 7.7
shows an example of the bang-bang control policy.

Figure 7.7: Example of a bang-bang control policy showing the switching times [t1 t2 t3], arc
times [ξ1 ξ2 ξ3], control demands [u∗high u∗low u∗target] and initial conditions t0 and u∗initial.

We seek to determine ξ such that the error between xf and xtarget is minimised. We
formally define this using a control cost function g(ξ ), representing the absolute distance
between xf and xtarget,

g(ξ ) = ∥x f −xtarget∥ (7.18)

Hence, we seek to solve the minimisation problem

min
ξ

= g(ξ ) (7.19)

Due to the non-linearity of g(ξ ) an analytical solution to (7.19) is not necessarily tractable,
so the MATLAB fminsearch numerical optimisation function was used. Such numerical
solvers require an initial solution guess, which we find using a coarse search of g(ξ ) in the
range 0 ≤ ξi ≤ 1.

The bang-bang control method was analysed in simulation for an idealised system with
no latency and the full system including latency, allowing us to analyse the effect of latency
on the control policy.
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7.3.2 Simulation analysis of idealised system
First, consider an idealised system in which we ignore the transient dynamics described

in (7.6). This results in a system where control demands are immediately achieved, e.g.,
u = u∗ always.

By using the numerical optimisation method in 7.3.1, we are able to systemically analyse
the bang-bang control policy over the whole state-space of initial conditions. When we
consider ztarget = 0.1 m, for example, the fminsearch function provides an optimal [ξ1,ξ2]

for each initial condition zinitial.
By scanning through the parameter space of zinitial, a single switching curve can be

obtained, as shown in Figure 7.8a. This curve indicates the point in state-space to switch
control inputs in order to achieve time-optimised control.

The curve shows that for zinitial < ztarget, control is achieved by applying u∗high until the
trajectory meets the switching curve, at which point the control input switches to u∗low. The
controller stays on this trajectory until ztarget is reached, when it switches to u∗target. For
zinitial > ztarget, control is the same except that u∗low is applied before u∗high, which is intuitive
as change in z is negative. The two example trajectories in Figure 7.8a demonstrate the
aforementioned behaviour.

7.3.3 Simulation analysis of latency-included system
As discussed in 7.1.1, there are physical and computational latencies in the real system,

which we model as a lag in the control signal reaching the demanded signal. This complicates
the bang-bang control problem, as now the time taken to switch between u∗high, u∗low and
u∗target must be considered.

As in 7.3.2, we scanned through the zinitial parameter space and generated a switching
curve, as shown in Figure 7.8b. We first note that the switching curve exists in three-
dimensions, as switching is dependent not only on z and ż but also the current control signal
u. As a result, there are in fact two switching curves. The first indicates at what z, ż and
u we should switch our control demand between u∗high and u∗low, or vice versa. The second
indicates when to switch to the target control demand u∗target. Unlike in the idealised system
where switching occurs at the xtarget, here the final switch happens before the target, so the
ball arrives at the target height as the control signal converges to u∗target.

We can better visualise this switching behaviour by projecting the three-dimensional
curves in Figure 7.8b onto the z–ż plane, as shown in Figure 7.8c. Here, we can see that the
switching behaviour is generally similar, but that the curve corresponding to switch number
one is shallower. This means latency causes switching to happen at lower ż values, essentially
limiting the aggressiveness of the controller and acting as a form of natural system damping.
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(a) Switching curve for idealised system with no
latency.

(b) Three-dimensional switching curve for real-
world system with latency. (c) Two-dimensional switching curve projection

for real-world system with latency.

Figure 7.8: (a) Idealised and (b,c) real-world switching curves for ztarget = 0.1 m, with
example trajectories for zinitial = 0 and 0.2 m

7.4 Experimental results
An experimental rig was built to test and validate the dynamics model and control

approach described in 7.1.1 and 7.3 in the real-world system. This section describes the
experimental set-up, presents a comparison between the model and real-world system and
analysis discrepancies between the two.

7.4.1 Experimental set-up
A high-power brushless motor (Diatone M2205 2300KV) fitted with a 3-blade propeller

(Diatone 5045) and a constant input voltage of 15 VDC was used to propel air into an
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expansion chamber then through a circular nozzle positioned on top of the chamber. To
stabilise the outlet jet, a flow straightener was fitted under the nozzle. Control was achieved
using an electronic speed control (HobbyKing 20A ESC 3A UBEC) connected to an Arduino
UNO interfaced with MATLAB. A pulse width modulation (PWM) signal was used to vary
motor speed by changing the available current. The ball height was measured using a high
frame rate webcam (Logitech BRIO) capable of delivering 90–120 frames per second. In
each frame the ball was located using a simple thresholding algorithm, after which the height
was determined using the predetermined camera parameters.

Figure 7.9: Schematic of experimental architecture.

7.4.2 Dynamics model validation
The dynamics model is used to compute bang-bang switching times, described in 7.3. As

shown in Figure 7.7, bang-bang control is essentially a series of control step inputs. Each
step input leads to oscillatory transient dynamics as the ball moves toward a new equilibrium
position. Bang-bang control cancels out these oscillation by changing the control input at
an appropriate time. This period of transient dynamics can be characterised by the rise time
tr (the time for the ball to move from 10% to 90% of the steady-state value zp) and the
peak value (the maximum height attained by the ball). The accuracy of the dynamics model
during this period will influence the effectiveness of bang-bang control. For example, if
the dynamics model overestimates the rise time, then the switching times will be too long,
resulting in overshoot.

The parameter identification described in 7.1.2 ensured the dynamics model accurately
predicted the settled hovering height and system lags for any valid control input. However, the
transient dynamics could not be directly identified. Hence, we experimentally measured the
system response to 15 step inputs, from z = 0, in the range 0.25 ≤ u∗ ≤ 0.95 and compared
the rise time and peak value characteristics with the corresponding dynamics model trajectory.
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Table 7.3 shows the results, while Figure 7.10 shows one representative step response
from the experiment. First, we quantitatively discuss the step response characteristics. The
experimental time was on average 50 ms faster than the dynamics model prediction, with
the error increasing at lower u∗ values and decreasing with higher u∗ values. The average
error in peak value was 0.0262 m, which stayed relatively constant as a function of u∗. The
increase in rise time error at lower u∗ values is likely because this is where velocity is highest
and air-jet diameter is lowest. Under these conditions, our model assumptions about the drag
coefficient and flow nature may become invalid, for example, because of increased turbulence
around the ball. Anecdotally, we note that horizontal instability was at a maximum here.
Conversely, the increase in model accuracy at higher heights is to be expected as the flow is
wider and more uniform, as assumed in our model.

u∗ m OL tr m MD tr m OL zp m MD zp m
0.25 0.2791 0.1576 0.0194 0.0010
0.30 0.5272 0.1594 0.0360 0.0344
0.35 0.4027 0.1728 0.0733 0.0930
0.40 0.1996 0.1839 0.1407 0.1423
0.45 0.2642 0.1921 0.2080 0.1849
0.50 0.2390 0.1976 0.2599 0.2224
0.55 0.2050 0.2016 0.2974 0.2551
0.60 0.2387 0.2025 0.3333 0.2846
0.65 0.2165 0.2018 0.3574 0.3103
0.70 0.2144 0.1992 0.3901 0.3319
0.75 0.1700 0.1944 0.4044 0.3517
0.80 0.1750 0.1881 0.4157 0.3683
0.85 0.1448 0.1810 0.4124 0.3821

Table 7.3: Open-loop (OL) and Model (MD) rise time tR and peak value zp.

Qualitatively, we see from Figure 7.10 that the model and experimental trajectories are
broadly similar over the whole transient phase, with the period and amplitude of oscillations
generally matching. Furthermore, the parameter identification is clearly effective at predicting
the mean settled height. However, we note that our model does not include noise, so we
cannot predict the oscillation about the mean seen in the experimental results.

7.4.3 Control demonstration
The main purpose of the augmented self-stability approach outlined in 7.3 is to improve

the time-to-target as compared to fully open-loop control, while still making use of the
self-stabilising properties. We have demonstrated the approach works in simulation, and
here seek to demonstrate it also works in the real world system. The possible issues with
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Figure 7.10: Example trajectory of dynamics model and real-world system for control
demand u∗ = 0.8 and zinitial = 0 m, measured for 15 seconds.

implementing the algorithm is real life include model inaccuracies, disturbances and system
noise. However as described in 7.3, utilising self-stability should provide robustness to such
problems.

The control algorithm was applied for three different target heights ztarget = 0.1, 0.15, 0.2
m, all with the ball initially at rest. The system response was then recorded for a further
5 seconds. For each ztarget the corresponding open-loop response was also applied for 15
seconds, long enough for the ball to settle to steady state.

Figure 7.11 shows the state-space trajectory for each case. The open-loop response in
all cases is characterised by a spiralling trajectory ending in steady-state behaviour, which
manifests as an oscillation around the target height. Conversely, the controlled response –
additionally shown in snapshot form in Figure 7.12 – is characterised by a curved trajectory
directly to steady-state. We measured the time taken for the system to reach its steady
state behaviour – the settling time, ts – in the open-loop and controlled response. For
ztarget = 0.1, 0.15, 0.2 m, the settling time was a factor of 2.4, 3.6 and 4.4 faster in the
controlled response, as shown in Table 7.4. This difference in improvement based on ztarget
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can be attributed to a number of factors. As discussed in 7.4.2, the dynamics model is less
accurate at duty-cycles, meaning the bang-bang control policy is likely to be less effective
when ztarget is lower. Furthermore, because the system dynamics are highly non-linear we
expect the relationship between ztarget and ts to also exhibit non-linearity.
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(a) Open-loop response for ztarget = 0.1 m (b) Planned and achieved bang-bang response
for ztarget = 0.1 m

(c) Open-loop response for ztarget = 0.15 m (d) Planned and achieved bang-bang response
for ztarget = 0.15 m

(e) Open-loop response for ztarget = 0.2 m (f) Planned and achieved bang-bang response
for ztarget = 0.2 m

Figure 7.11: Open-loop response (a,c,e) and bang-bang planned and achieved response (b,d,f)
for ztarget = 0, 0.15, 0.2 m with zinitial = 0 m.
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Figure 7.12: Snapshot images recorded over five seconds of controlled response for ztarget =
0.1, 0.15, 0.2 m and zinitial = 0 m

These results show the control approach improves the time-to-target when moving the
ball from rest to different target heights. A more challenging task is controlling the ball from
a non-zero initial height, because the system noise adds uncertainty in xinitial. We tested the
control approach for consecutive trajectory following, where ztarget switched every 5 seconds
and applied open-loop control for comparison. Figure 7.13 shows the time-series trajectories.

Qualitatively, we note that the controlled trajectory is more effective than open-loop
at moving the ball between heights. As previously discussed, there also appears to be
a relationship between the direction and magnitude of height change and performance
difference.

7.4.4 Analysis
The results in 7.4.2 and 7.4.3 demonstrated the effectiveness of the control approach.

Here, we investigate the nature of the control cost function g(ξ ) and how the time-to-target
improvement in simulation translates to an improvement in real-world.



7.4 Experimental results 137

ztarget m Open-Loop ts m Controlled ts m Improv. Factor
0.1 2.3 0.98 2.4

0.15 4.1 1.12 3.6
0.2 5.2 1.20 4.4

Table 7.4: Open-loop and controlled settling time and improvement factor, for ztarget = 0.1,
0.15, 0.2 m and zinitial = 0 m.

Figure 7.13: Controlled and open-loop response to consecutive trajectory following.

First, we numerically calculated the value of the control cost function g(ξ ) in simulation
over the parameter space 0 < ξ2,ξ2 < 0.5. The function is represented as a two-dimensional
surface, as shown in Figure 7.14a. Assume g(ξ ) represents an analogue for time-optimality.

There is a clearly optimal ξ , marked on the figure. The control cost around this is
characterised by a curved area of similar control cost. In this area, the relationship between
a change in ξ1 or ξ2 and g(ξ ) is not clear. We suggest this is a manifestation of the highly
non-linear system dynamics.

We repeated the same analysis in the real world. The parameter space was discretised
into 121 equally spaced points. The resultant bang-bang control policy at each point was
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tested and the control cost measured. To account for system noise, g(ξ ) was averaged over
last 0.25 seconds of motion. A surface was fitted to the points, as shown in Figure 7.14b.

We can see that the general control cost landscape is similar to the simulation, although
the absolute g(ξ ) appear to be lower. Furthermore, we see that the optimal ξ in the simulation
([0.4 0.2]) and real-world system ([0.4 0.05]) matches in ξ1 but differs in ξ2. We suggest
this is due to modelling discrepancies in the system latency. However as shown in 7.4.3,
the optimal ξ as calculated from the dynamics model is effective when implemented in the
real-world system. One explanation is that since the dynamics model doesn’t account for
system noise, g(ξ ) is measured relative to the absolute target state xtarget. However, in reality
any bang-bang policy that deposits the ball within the range of system noise is very similar
in terms of optimality. Hence, any control policy that is at least close-to-optimal will be
effective when implemented in the real system.

(a) (b)

Figure 7.14: (a) Model and (b) experimental control cost g(ξ ) as a function of arc times ξ1
and ξ2.

7.5 Additional behaviours: bifurcations via environmental
modulation

Changing the mechanical properties, e.g., weight, in a single Bernoulli-ball system does
not fundamentally change the types of behaviour the system exhibits. For heavier or lighter
balls the two basic behaviour modes are stable hovering or falling. However, we are able to
change the system behaviours by modulating the environment, e.g., the airflow. I investigated
the effect of an oscillating airflow. Similar to the work on bouncing balls (Holmes, 1982) and
the blind juggler (Ronsse et al., 2007), I tested how the system behaves with a periodic input
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of varying frequency. The airflow power was set to an oscillating square wave, between a
high and low power value, with a frequency ω (rad·s−1).

By varying ω we can modulate how the trajectory of the ball relative to the environmental
conditions. I recorded the ball height trajectory for multiple forcing frequencies over the
range 10–18 rad·s−1. For each frequency the system was left to settle for 30 seconds, then
the trajectory was recorded for 12 periods of the forcing frequency. To measure how the ball
trajectory changes relative to the forcing frequency I measured the ball height, zcycle, and
velocity, vv-cycle at the mid-point of each forcing period. Figure 7.15a shows zcycle, measured
at the mid-point of the 12 forcing periods, for all tested ω values. Figure 7.15e shows vv-cycle

measured for the same locations. These plots demonstrate how the balls behaviour changes
relative to the environment. At lower frequencies, ω = 10–12 rad·s−1, the ball exhibits a
period one type behaviour where the trajectory is synchronised with the environment, moving
up and down at the same frequency. The ball height and velocity measured at the midpoint
of each forcing period are within a single continuous range, e.g., the ball reaches a similar
height and velocity at the mid point of each period, as shown in Figure 7.15b and f. At
intermediate frequencies, ω = 13–16.25 rad·s−1, the ball exhibits period 2 type behaviours.
Here, the ball oscillates at approximately half the environmental forcing frequency, moving
up and down once for every two forcing periods as shown in Figure 7.15c and g. We see
this Figure 7.15a, where for most frequency values the measured height at the mid-point of
forcing periods is either a high or low value. This effect is also seen in the measured velocity,
how the distinction is less clear since velocity measurements are inherently more noisy than
height measurements. We also see that for some frequency values, e.g., 13.75–14.1 rad·s−1

the system collapses back to a period one behaviour. For high frequencies, ω >16.5 rad·s−1

exhibits a range of frequencies, with a weak periodic relationship with the forcing frequency
Figure 7.15d and h. These results show the ball exhibits a bifurcation behaviour, similar to
that seen in pendulum or bouncing ball systems (Holmes, 1982). We are able to push the
system into more complex period two behaviours by manipulating the environment, before it
collapses back to period one and steady state behaviours. The frequency ranges in which
we can see clear period two behaviours are relatively narrow, implying the system relies on
precise environmental conditions to exhibit certain behaviours.

To further analyse the relationship between the environmental forcing frequency and ball
trajectory we performed a frequency analysis. By taking the fast Fourier transform (Brigham,
1988) for each trajectory I extracted the dominant frequencies of the ball vertical trajectory
and compare them to the know environmental forcing frequency ω . Figure 7.16 shows
the frequency power spectrum for the ball trajectory with three airflow forcing frequencies,
corresponding to the example trajectories shown in Figure 7.15 b–d and f–h. The higher
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Figure 7.15: Bifurcation behaviours of a hovering ping-pong ball in an airflow oscillating
between a high and low power with frequency ω . (a,e) Repeated measurements of vertical
height zcycle and velocity vz-cycle measured at the mid point of the airflow forcing period for
range of ω forcing frequencies. (b–d,f–h) vertical height z and velocity vz of the ping-pong
ball at different airflow forcing frequencies, showing period one (b,f), period (c,g) and period
one / random (d,h) behaviours.

the power spectrum value, the higher the dominance of the corresponding frequency is in
the ball motion For period one behaviour (Figure 7.16a) we see that for a forcing frequency
of ω = 10.30 rad·s−1 the frequency power spectrum of the ball peaks at a similar value of
10.05 rad·s−1. For period two behaviour (Figure 7.16b) we see that for a forcing frequency
ω = 15.46 the frequency power spectrum of the ball peaks at approximately half this value
7.54 rad·s−1. For high forcing frequencies (Figure 7.16c) such as ω = 17.10 rad·s−1 we see
weaker relationship with the frequency spectrum, which has peaks at values of 16.97 rad·s−1

and 6.91 rad·s−1.
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Figure 7.16: Fourier fast transform of hovering ping-pong ball vertical trajectory under three
airflow forcing frequencies, leading to period one (a), period two (b) and period one random
(c) behaviours.

7.6 Discussion and conclusion
I have shown that the augmented self-stability in the Bernoulli-ball can significantly

improve the time-to-target compared to the uncontrolled system while preserving stability.
This example demonstrates how fast dynamics can be controlled in a robotic system without
the need for high-bandwidth control. We have to be careful in generalising the results to
other robotic systems as this approach can technically only guarantee stability in the presence
of a globally asymptotically stable equilibrium in the uncontrolled system. However, in the
real world experiment we have achieved stable performance in spite of the ground restriction
to positive ball heights (the invariant set Dx should include also negative heights as explained
in 7.2 to prove stability), which shows that in practice the approach can work for locally
self-stable equilibria, allowing its applicability to a larger class of problems including passive
dynamic walking (McGeer et al., 1990) and bicycle stability (Kooijman et al., 2011).

An interesting aspect of the single Bernoulli-ball system is that of noise. As show in
Figure 7.10, steady-state hovering behaviour is characterised by low-level noise caused by
the unstable airflow interacting with the ball. In many ways, this makes the control problem
simpler, since all we must do when changing heights is move the ball to within the region
of noise that surrounds the target height in the state-space. In the context of embodied
intelligence, we see that certain morphology-environment interactions, such as between the
airflow and ball, allow an agent to converge to the same behaviour from multiple initial
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conditions and in the presence of unpredictable system inputs. We can draw a parallel with
the falling paper system, which we have seen can converge to the same behaviour type despite
changes in morphology and environment.

In conclusion, augmented self-stability is a simple yet effective approach to improve the
performance of self-stable robotic systems. It outsources the difficult tasks of stabilising
control to the mechanical feedback loop, leaving the trajectory planning via bang-bang
control to a numerical optimisation which can be solved offline. The high performance and
robustness of the presented results thus suggests that the focus on the mechanical design to
allow for self-stability can be key to overcoming the difficulties arising in control of systems
with fast dynamics.



Chapter 8

Stability and behavioural diversity of
collective Bernoulli-balls1

In this chapter I present a novel platform for studying the emergence of individual and
collective behaviours in a dynamical system. The platform is based on the so-called Bernoulli-
ball, an elegant fluid dynamics phenomena in which spherical objects self-stabilise and hover
in an airflow. The process, which actually works for many shaped objects, is driven by fluidic
interactions. The vertical dynamics of the ball are governed by a force balance between
drag and weight. The horizontal dynamics are commonly attributed to Bernoulli’s principle,
which describes how pressure at the center of the airflow is lower and hence the ball is drawn
in to the airflow. I build on the single Bernoulli-ball system by adding multiple balls to a
single airflow, creating a collective Bernoulli-ball system. Adding additional balls to the
airflow induces significantly more behavioural diversity since balls can exhibit agent and
population behaviours based on their interaction with the environment and other agents.

Collective Bernoulli-ball systems have a number of interesting properties in the context
of artificial life and embodied intelligence. The basic setup of the system involves generating
an airflow, using a fan for example, and pointing this vertically upward then hovering balls

1This chapter is based on the following publication, currently under review:

• Howison, T., Crisp, H., Hauser, S. & Iida, F. (2020). On the stability and behavioural diversity of single
and collective Bernoulli-balls. [under review as of 01/2022].

• Data availability: https://github.com/th533/Bernoulli-balls
Contributions
T. Howison – devised the conceptual idea, carried out experiments, analysed the data, wrote the paper and
made the figures.
H. Crisp – aided in carrying out experiments.
S. Hauser – contributed to general discussions and proofreading.
F. Iida – contributed to general discussions and proofreading.

https://github.com/th533/Bernoulli-balls
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within it. The first key property of the system is the fact that the environmental conditions
are controllable and non-linear. The airflow generates a clearly distinct regions in which
balls can exhibit hovering behaviours. Since the the properties of the airflow, e.g., speed,
width, can vary with height, the dynamics of the interaction between ball and airflow change
based on ball height. So, the dynamics governing the behaviour of balls hovering in the
airflow are different depending on their location in the environment, with areas of higher
and lower stability. Importantly, the environment is also significantly altered by the presence
of hovering balls. For example, a hovering ball disrupts the airflow above it, altering the
attractor space for other balls in the airflow. Environmental conditions are a key factor in
the design and behaviour of artificial agents (Miras et al., 2020). A second key property is
the fact we are able to alter the mechanical properties of balls to change how they interact
with the airflow and each other. For example, heavier balls will hover at lower heights
than lighter balls. Other mechanical properties such as ball size or surface properties can
also be altered to change interactions. By altering both morphological and environmental
properties we are able to build up the behavioural complexity from a single ball hovering in
the airflow to multiple balls with different behaviours. A third key property is the relevance of
Bernoulli-ball systems to evolutionary robotics and open ended evolution. One interpretation
of the dynamics in the system is that balls are either in an ‘alive’ state, in which energy from
the environment is converted into hovering behaviours, or in a ‘dead’ state, in which the ball
has fallen out of the airflow. Since hovering balls rely on a structured interaction with the
airflow to remain air-born, by adding additional balls we are able to force competition-like
behaviour in which the airflow cannot support all balls, and some inevitably fall from the
flow. We can interpret this as a the most basic form of evolutionary dynamics, in which
the dynamical system self-regulates and removes agents that cannot survive in the given
environment, a concept that has been introduced before e.g., (Taylor, 2004).

This chapter is structured as follows. In 8.1 I introduce our experimental setup used to
investigate the system. In 8.2 I investigate collective Bernoulli-ball systems with multiple
hovering balls. I characterise the basic behaviours different ball configurations exhibit, e.g.,
stable hovering, interaction or falling. These distinct behaviours within the system offer
a natural symbolic representation from which to build probabilistic models of dominant
behaviours and behavioural transitions. I investigate the behaviours in isotropic populations,
e.g., in which all balls have the same mechanical properties. I demonstrate how morphological
and environmental factors influence the nature of behavioural emergence in the system. Next
I apply a similar analysis to anisotropic populations, in which the mechanical properties of
balls vary across the population. I show how changing morphological properties within the
population facilitates further modulation of ball behaviours. In 8.3 I demonstrate how other



8.1 Experimental setup 145

more complex properties such as adhesion can induce additional behaviours in the collective
system. Finally, in 8.4 I discuss and conclude the chapter.

8.1 Experimental setup
The experiments for collective Bernoulli-balls were conducted by floating balloons in a

vertical airflow, as shown in Figure 8.1. The mass of each balloon was altered by affixing
small 1 g masses to create arbitrarily heavy or light balls. The airflow is generated by a PWM
controllable electric fan with a diameter of 180 mm connected to a constant 12VDC power
supply. By varying the control PWM signal we can change the airflow power. The air is
passed through a vertical tube of the same diameter and a height of 300 mm This creates a
more steady airflow than is ejected directly from the fan. One or more balloons can be placed
in this airflow. A shallow conical catching funnel, constructed of fabric, surrounds the airflow
outlet. When balloons fall out of the airflow they are caught by this funnel and are returned
via gravity to the airflow outlet. In this way we were able to carry out long experiments with
a range of balloon combinations without having to reset the system manually each time a
balloon falls from the airflow.

Figure 8.1: Setup for hovering one or more multiple balls in collective Bernoulli-ball system.
An electric fan generates a vertical airflow with a controllable power. balls are added to the
airflow. When balls fall from the airflow they are caught in the funnel and returned to the
airflow base.
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Two Logitech Brio webcams were set up to capture the ball trajectories. The position of
each ball in pixel coordinates for each camera view was found using a colour thresholding
algorithm. We had full control over the ball colour and room lighting, meaning we can
in theory track large numbers simultaneously. In some cases balls were partially or fully
occluded. If the detected colour region was smaller than a predefined threshold the detection
was discarded. Missing trajectories were predicted using Gaussian smoothing and state
estimation across the incomplete trajectory, using the MATLAB fillmissing function. The
two complete pixel trajectories were resolved into a single 3D real-world trajectory using
the MATLAB stereo camera tool. The final output of trajectory processing was a full 3D
trajectory, with units of mm, in a coordinate frame centered at the airflow outlet.

8.2 Behaviours of collective Bernoulli-balls
Our experiments with a single Bernoulli-ball (Chapter 7) demonstrate the most basic

dynamics in the Bernoulli-ball system, and show how more complex behaviours can be
induced via environmental manipulation. To increase behavioural complexity we can add
additional objects to the airflow, creating a collective Bernoulli-ball system. Hovering
multiple ping-pong balls is challenging to stabilise and sensitive to slight environmental
changes. Hence, for collective Bernoulli-ball investigations we utilised our experimental
setup for hovering balloons (Figure 8.1), which are far lighter, and hence require a less
powerful airflow. We conducted a large number of experiments hovering multiple balls
in a high and low power airflow. Video examples of these experiments can be seen in the
supplementary video2. In this section I describe the behavioural diversity observed in these
experiments.

8.2.1 Behavioural primitives
The behaviours of balls in the collective-system can be categorised into distinct classes,

for example interacting with another ball or falling from the flow. This natural symbolic
representation generated by multi-behaviour systems allows us to reduce complex dynamics
to a level that captures the diversity in the system but does not need a full analysis of the
underlying dynamics, e.g., as shown in (Horibe et al., 2011).

We defined a set of behavioural primitives for the collective Bernoulli-ball system. By
observing the system we found that the behaviour of a given ball can be characterised in
terms of four basic modalities:

1. Stable: a ball exists in a state of apparent stability in which it is not mechanically
interacting with any other ball in the system.

2https://youtu.be/lz5HbMwPap8

https://youtu.be/lz5HbMwPap8
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2. Interaction 1: a ball is mechanically interacting with one other ball, e.g., bouncing off
each other.

3. Interaction 2: a ball is mechanically interacting with one other ball, which is itself
interacting with another ball, e.g., there are three balls involved in simultaneous
interaction.

4. Falling: a ball falls out of the airflow.

Figure 8.2 shows examples of these behavioural modalities. Since behaviours are defined
at the agent level of individual balls, the system can exhibit multiple behaviours simulta-
neously. For example, the system can be in a fully stable configuration, a fully interacting
configuration or a configuration with two balls interacting and one stable.

Figure 8.2: Behavioural primitives in one, two and three ball collective Bernoulli-ball systems.
Behaviours are defined at the agent level, e.g., each ball as a behaviour. Hence, the collective
system can exhibit more than one behaviour (see mixed behaviour panel).

8.2.2 Automatic behavioural classification
Observer based characterisations are useful to quickly capture the basic modalities of

behaviour in the system in an intuitive framework. Systematic analysis and behaviour
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categorisation of the data requires more formal behaviour definitions. The 3D trajectory data
allows us to achieve this automatically determine the system behaviours at each time-step
using the following set of rules:

1. Interacting behaviours can be detected by comparing the linear distance between each
trajectory in 3D space. If this distance is below 110% of the ball diameters then
interaction is defined. If two interacting events are detected within a sliding one
second window then interaction is defined for this full time period. This window
was chosen as the authors found it to maximise the similarity between the human-
observed behaviours and the automatically detected behaviours. In doing so we capture
interacting behaviours of balls bouncing off one-another over a prolonged period.

2. A ball falling is detected when the a ball comes within close proximity of the catching
funnel. The falling behaviour is defined as the point at which the ball began falling
vertically downwards out of the flow, to the point at which the ball has fallen and the
re-entered the airflow.

3. Stable behaviour is assigned to all cases where a ball is not interacting or falling.

8.2.3 Behaviours in isotropic populations
We first investigated behaviours of isotropic ball populations, in which all balls are the

same size and mass. We tested populations of one, two and three balls for five minutes
in a low and high power airflow. The behaviours over the full five minute trajectory were
classified. These classifications were used to define the dominant behaviour for each ball
in each one second increment of the experiment. We tested two types of population, one
comprised of heavier balls weighing 6 g and one with lighter balls weighing 3 g. Figure 8.3a
shows a two minute trajectory snapshot of height (z) for populations of one, two and three
heavy balls in a low and high powered airflow. Figure 8.3b shows the same data for lighter
balls. Figure 8.4 shows a closeup of mean-adjusted trajectory for two heavy balls in a low
power airflow, showing the correlation in height. Figure 8.5a and b shows the proportion
of time balls in these experiments spent in each behaviour during the full experiment of 5
minutes. The bar charts show the proportions averaged over all balls in the population.
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(a) Heavy 6 g ball populations.

(b) Light 3 g ball populations.

Figure 8.3: Time series data and automatically classified behaviours for a two minute
snapshot of experimental data, showing ball populations of one, two and three, in a low and
high powered airflow, for (a) heavy balls weight 6 g and (b) light balls weighing 3 g.
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The time series trajectories and behavioural classifications in Figure 8.3 tell us a number
of things. Increasing the number of balls in the system increases the variety in behaviour,
and decreases the time spent in a stable behaviour. We expect this since when adding balls
we do not change the environment, so balls have to compete for the same airflow to stay in
the flow. Heavier balls occupy a smaller vertical range than lighter balls, and generally hover
lower than lighter balls. The simple balance between drag force and ball mass explains this
behaviour. There is a clear coupling between the heights z of balls in some configurations.
For example, a population of two 6 g balls in a low power airflow (Figure 8.3a middle left
panel) show a clear correlation between the two ball heights, which move up and down with
each other. Importantly we see that the balls are nearly always in a stable behaviour, so
this coupling is transmitted through the environment, not by mechanical interaction. Figure
8.4 shows the mean corrected heights of both balls in this configuration for a two minute
segment, demonstrating the tight coupling via the environment. The same population in
a high power airflow shows a similar, but less obvious, correlation. Lighter balls are not
obviously correlated in the same way. We also see that when some balls fall out they can
spend a significant time not in the airflow before re-entering, for example 3 g balls in a low
power airflow t=100—125 s. During this time balls are in the catching funnel.

Figure 8.5 shows us the average proportion of the five minute experiment balls spent
in each behaviour. The figure reinforces our observations from the time series data. In all
experiments we see that increasing the fan power, i.e., the energy available in the environment,
increases the variance and behavioural diversity of balls. The number of interactions and
falls seems to increase, while the time spend in a stable configuration decreases. Heavier
balls also appear to be more stable in their interactions, generally spending far longer in the
interacting 1 and interacting 2 behaviour modes than the lighter 3 g balls.

Figure 8.4: Mean corrected height for two heavy balls weighing 6 g in a low power airflow,
showing similarity in trajectories through environmental coupling.
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(a) Heavy 6 g balls.

(b) Light 3 g balls.

Figure 8.5: Average proportion of time spent in different behavioural modes across different
population sizes and airflows for (a) heavy balls weight 6 g and (b) light balls weighing 3 g.

8.2.4 Stochastic behaviour transitions
The basic analysis in Figure 8.3 and 8.5 demonstrates likely behaviours, but cannot

tell us about behavioural transitions, another important factor of the system. The discrete
representation of hovering behaviours allows us to analyse these transitions. One way of
quantifying how behaviours transition in the system is to represent system states in terms of
Markov chains, a mathematical system in which state transitions occur based on probabilistic
rules (Meyn and Tweedie, 2012). A discrete-time Markov chain (DTMC) represents the



152 Stability and behavioural diversity of collective Bernoulli-balls

probabilistic switching landscape for moving between states at a given sampling frequency,
e.g., every second. This is similar to the mode switching representation shown in (Horibe
et al., 2011). Using our segmented trajectory data we are able to record every behaviour
transition for each ball in the experimental data. From this we can construct a transition
matrix that indicates that probability of different behaviour switches occurring, e.g., stable to
interacting 1, interacting 1 to falling.

Figure 8.6 shows a graph representation of the DTMC for each experiment shown in
Figure 8.3. The nodes in the graph represent the four possible behaviours a ball can exhibit: S
= stable, F = falling, I1 = interacting 1, I2 = interacting 2. The edges between nodes represent
the probability of a behaviour transition occurring after the next 1 second increment, with
colours showing the likelihood value. The likelihood values have been annotated to show
only the likelihood of a ball remaining in the same behaviour, or the ball moving the the
falling state (otherwise, the diagram becomes hard to read). The absence of a connection
between any two nodes indicates no transition was observed in our experiments, and hence
that transition has a likelihood of zero. In our experiments the catching funnel was used to
reset the system when balls fell out. In these diagrams we treat falling as an absorbing state
from which a system cannot leave, as would be the case in the experimental setup without a
catching funnel. For example, when a ball in a three ball population enters the falling state,
the remaining two are defined by the behavioural transition diagram for a two ball system.
Hence, falling events permanently change the behaviour dynamics for balls remaining in the
airflow.

The figure demonstrates some key features of how behaviours change in the collective
Bernoulli-ball system. For both a low and high power airflow, increasing the number of balls
in the population decreases the likelihood of remaining in a stable behaviour after one second,
e.g., 99.77% to 45.58% when moving from one to three heavy 6 g balls in a low power
airflow. We expect this since the more balls in the population, the more likely interaction and
falling becomes because they are all occupying the same airflow. In general, heavier balls
are likely to interact for longer than the light balls. In three ball populations in high power
airflow, for example, heavier balls have a 47.87% likelihood of remaining in the interacting 1
behaviour after 1 second, whereas lighter balls have a 0% chance. An obvious conclusion is
that the number of available states and transitions increases as the population size increases.
A single ball can only exhibit stable or falling, whereas a three ball population exhibits four
states and seven possible transitions.



8.2 Behaviours of collective Bernoulli-balls 153

(a) Heavy 6 g balls.

(b) Light 3 g balls.

Figure 8.6: DTMC behavioural switching diagrams for ball populations of one, two and
three balls, in low and high power airflows, for (a) heavy balls weighing 6 g and (b) light
balls weighing 3 g.
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8.2.5 Behaviours in anisotropic populations
In isotropic populations all balls have the same mechanical properties, and so are governed

by the same underlying dynamics. Hence, our primary method to induce behaviour changes is
by changing the environment. To introduce more behavioural variation across the population
we can also alter the mechanical properties of balls individually to produce an anisotropic
population of balls with different properties. We created an anisotropic population of three
balls with weighing 4 g, 6 g and 8 g and recorded their behaviours in the same low and high
power airflow. The total mass of balls in the system was 18 g, the same as our experiments
with three equally weighted 6 g balls (Figure 8.3a). We recorded behaviours for five minutes
as with our isotropic population experiments.

Figure 8.7a shows a four minute snapshot of trajectories and segmented behaviours for
these experiments, with the associated behaviour classifications. The effect of a distributed
mass profile across the population is clear, with the a distinct vertical sorting based on the
heaviest ball (8 g, yellow line) at the bottom and lightest (4 g, blue line) at the top. This is
true for low and high power airflows, but is far more distinct in low power airflows. The
spatial structure for both airflows is more distinct than the isotropic population of the same
weight (Figure 8.3a) in which there is no vertical sorting. The main similarity between the
isotropic and anisotropic populations is the relationship between airflow power and stability.
We see that the system is more stable in the low power airflow, showing less interacting and
falling, and varying less in height. The time series trajectory show us that, as with our other
experiments, increasing the airflow power decreases overall stability. We see that heavier
balls are generally more stable. The heaviest balls exhibited fewer interactions and falling
behaviours for lower and higher power airflows.

We again constructed DTMC diagrams to represent the stochastic behaviour switches,
as shown in Figure 8.7b. In the case of anisotropic populations we constructed a switching
diagram for each different ball in the system, since the varying mass changes the intrinsic
dynamics, and hence behaviours, that a ball exhibits. The diagrams demonstrate this differ-
ence. For the low and high power airflow the heaviest ball is more likely than the lightest
ball to remain in a stable behaviour, 94.61% vs 89.63% and 82.84% vs 79.80% for low and
high power respectively. For both airflows, the middle ball is the least likely to remain in a
stable behaviour, with a probability of 88.68% and 72.51% for low and high power. This
is largely because it is frequently interacting with the balls above and below it. For the low
power airflow, the middle ball is the least likely to fall, exhibiting a 0% chance of falling
in our experiments. Hence, it remains in the airflow through frequent switching between
interaction and stable behaviour.
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(a) Time series and behaviours for low and high power airflows.

(b) DTMC for individual balls, with different masses, in high and low power airflow.

Figure 8.7: Results for an anisotropic population of balls weighing 4 g (blue line, balloon 1),
6 g (red line, balloon 2) and 8 g (yellow line, balloon 3), showing (a) Time series trajectories
and classified behaviours and (b) behaviour switching diagrams.

8.3 Altering other mechanical properties
We can also alter other mechanical and environmental properties to induce more complex

behaviours. To investigate possible ways to extend behavioural diversity in the system we ran
a set of experiments based around the idea of balls adhering together. The collective nature of
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the system naturally suggests this possibility of self-assembling structures, and the inherent
interactions that occur within the collective population act as the mechanism on which to
allow this process. The setup (Figure 8.8) consists of two vertical fans and four balls. balls
2–4 are standard balls with a mass of 3 g. ball 1 (green, in figure) has an additional layer of
adhesive tape wrapped around it circumference. Under the right conditions balls can adhere
to this.

Figure 8.9 shows the time series of the vertical z and horizontal x ball positions (as
measured from origin shown in Figure 8.8), divided into three phases. In phase 1 of our
experiment the system is in a state of dynamic stability, i.e. the balls do not fall out of the
airflow but are constantly interacting. At t = 60 s balls 1 and 2 (green and purple) adhere
together after mechanical interaction. When adhered, their vertical height increases since
the effective area under them increases and induces a greater drag force from the two fans.
Phase 2 lasts for 20s, after which another mechanical interaction induces adhesion between
ball 1 and 3 (green and yellow) and the system enters phase 3. At this stage the interaction
within the system has induced the self-assembly of a three-ball structure. This structure has a
larger surface area and hovers high up in the airflow. The single remaining ball hovers lower
in the airflow, and hence does not interact and adhere to the larger structure.

Unlike in our previous examples, where long-term stability can only be achieved by
balls falling out of the airflow, in this experiment long-term stability is achieved via ball
adhesion. Via environmental and mechanical interaction the balls adhere together in a
formation that allows them to remain stable in the airflow. If the adhesion was not stable,
the structure would immediately fall from the airflow. One can conceive that the format of
the adhered structured is also influenced by the type of environment. For example if there
were many airflows, adhesion may be rare since balls could hover further from each other.
Conversely, with only airflow adhesion may happen far quicker. In general, this extension
demonstrates the scalability of the collective Bernoulli-ball. We can add arbitrarily many
airflows to the environment. In parallel, we can add any number of balls. Finally, we can
alter the properties of these balls and airflows to induce different behaviours. We can also
frame this adhesion behaviour from the concept of ultrastability discussed in Chapter 1
(Ashby, 1961), which describes the behaviour of a system to change its internal structure
in response to environmental stimuli. Single Bernoulli-balls are ultrastable insofar that
they remain stable within an airflow subject to random perturbations (up to a limit). The
adhesion experiment shows how they can be ultrastable at the population level, since over
time the system re-configures to reach a steady-state behaviour. The collective Bernoulli-ball
experiments without adhesion are not stable in this way, since in most configurations the
stability is reached by ejecting one or more balls from the flow.
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Figure 8.8: Extending behaviours by increasing morphology and environmental complexity
using two fans and an adhesive balloon. Images show snapshots of different adhesion phases.
Middle panel shows x and z measurement axes.

Figure 8.9: Vertical z and horizontal x time series position of balls 1–4 in adhesion experi-
ments.
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8.4 Discussion and conclusion
In this chapter I introduced the single and collective Bernoulli-ball systems as a platform

on which to study types of behavioural diversity in dynamical systems. The key contribution
of the chapter is demonstrating the various ways in which behavioural diversity can be
triggered in the system, and how this can be analysed. The different behaviours observed,
such as stable, interacting, and falling, are all the result of the complex interaction between
agents and a complex environment.

As with much of the work in this thesis, a key feature of the analysis was based around
defining and analysing behavioural modalities. Unlike with the falling paper research
(Chapters 3-6), behavioural classification in the case of the collective Bernoulli-ball system
is far more subjective, and there are many ways of interpreting and labelling behaviours. The
rationale behind selecting behavioural modes was to choose a representation that was easily
observable at the agent-level, and that could be used to describe population-level behaviours.
For example, interacting and stable behaviours between two balloons can be used to describe
the population-level behavioural switching in a group of balloons. Other schemes were of
course possible, and an interesting avenue of further work would be understanding how to
choose the best behavioural representation for a given system.

The results in this chapter indicate a number of key features that make the system useful
in the context of self-structuring embodied agents. First is the idea of stochastic cumulative
self-organisation. We can describe the system using a set of primitive behaviours as described
in Figure 8.2, and this forms an intrinsic symbolic notation by which to describe the system.
The emergence of these behaviour states is stochastic insofar that we cannot sense all the
states required to predict it. By varying morphological or environmental parameters we can
induce different stochastic landscapes. In our experiments we changed the mass of the ball
and the power of the airflow. Even with this simple 2DOF design parameter space we can
significantly modulate the nature of behavioural emergence in the system. By representing
stochastic behaviour transitions in a DTMC (Figure 8.6) we see the likelihood of different
behaviour transitions. In doing so we are able to define higher order behaviours from our set
of primitives. For example, sequences of stable and interacting behaviour switches are a type
of oscillatory behaviour. Similarly, stable configurations followed by interaction followed by
stable configurations in a different order are switching behaviours. Hence, the self-organising
behaviours are cumulative. Depending on the time-horizon this cumulative property resolves
as different higher order behaviours.

Second is the idea of evolutionary dynamics in a dynamical system, an underexplored
area in the context of evolving robotic lifeforms (Pfeifer et al., 2005; Taylor, 2004). The
system has natural ‘alive’ (ball hovering in airflow) and ‘dead’ (ball fallen out of airflow)
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states, which are based on whether or not a ball is utilising the structured environmental
landscape to turn convert airflow energy into hovering behaviours. We can view this from the
perspective of evolutionary robotics and open ended evolution. The system is initialised with
a certain number of balls. If this configuration is stable then agents will remain in the airflow.
This stability could be in the form of stable fixed points or a dynamic, interacting equilibrium.
If the system is unstable then the system exists in a state of instability until it reaches a
critical level, at which time an agent falls from the system (or adheres to another ball). At this
stage the collective behaviours reconfigure based on the dynamics of the remaining agents
in the airflow. This process repeats until the system reaches a sustainable stable state. The
system has a form of intrinsic mortality such that unstable populations cannot survive without
ejecting individual agents. Furthermore, we are able to pressure this intrinsic behaviour by
structuring the environment and population such that interaction and competition over stable
airflow is inevitable

Finally, the system expresses rich complexity in its dynamics while being cheap and
easy to experiment with. One of the key features of many complex dynamical systems is the
difficulty in capturing their full dynamics in a simulation environment. The Bernoulli-ball
system is governed by complex fluid dynamic interactions between the airflow and floating
objects. However, all one needs to investigate the system is a minimal set of components,
e.g., an electric fan and some balls. More complex setups are of course beneficial, but the
fundamental dynamics of the system can be explored with just the simple setup.

Ultimately this system differs from other similar such dynamical systems, e.g., the blind
juggler (Reist and D’Andrea, 2012), moving oil droplets (Horibe et al., 2011), passive
dynamic walker (McGeer et al., 1990) or floating water elements (Nakajima et al., 2012) due
to the scalability and controllability of both morphology and environment. We can easily
create arbitrarily complex configurations in which behaviours are governed by the same
basic underlying principles that drive the emergence of complex, higher-order behaviour and
evolution over multiple time-scales.
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Chapter 9

Discussion and conclusion

I have presented a body of work relating to the emergence of non-trivial behaviours from
low-level embodied physical systems. The framework of iterative and directed exploration of
self-structuring embodied agents was used to structure the research. The contributions in
this thesis represent a small step toward the goal of creating increasingly complex artificial
life-forms. Paradoxically however, the systems studied in this thesis are apparently simplistic.
The rationale behind studying these simple systems is that, by investigating how low-level
physical interactions give rise to complex behaviours, we can build an understanding of
embodied interactions from the bottom up. In this chapter I summarise the key contributions
of the thesis and describe any related and future work.

9.1 Discussion of contributions
In this section I discuss the main contributions in terms of the research objectives set out

in 1.3.

9.1.1 Thesis objective one: systematic exploration of dynamics in novel
self-structuring embodied agents

In Part I I investigated Falling paper systems in the context of self-structuring embodied
agents. The VSFP system is a novel addition to this class of system. In Chapter 3, I
introduced the VSFP system, and with systematic exploration of the design space showed
how morphology dictates dominant behaviours. The population level perspective of the
morphology-behaviour mapping offers a compact snapshot of possible behaviours in the
system, and what influences them. The key property of these systems is that by varying
a small number of morphological parameters, a wide range of complex behaviours can
be modulated. As discussed in Chapter 4, some cases the mapping from morphology to
behaviour is deterministic, while in other cases it is stochastic. Again, the likelihood of
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transitions between different behavioural modes can be influenced with a minimal set of
morphological parameters. In Chapter 5, I demonstrated how morphological parameters can
be optimally selected based on a fitness function, in this case minimising falling speed. The
use of Bayesian optimisation for this task is not a novel innovation. However, demonstrating
its use on a system with highly distinct behavioural modes is important since the fitness
landscape in this case is non-smooth. Finally, I investigated more general falling paper
systems in Chapter 6. More complex morphologies such as hexagons or crosses were
investigated and their behaviours categorised. Ultimately, the primary focus of research into
falling paper relates to the relationship between morphology and behaviour. Although other
studies in fluid dynamics have included environmental factors, e.g., dropping metal plates in
oil (Field et al., 1997), this thesis dealt with the static environment of quiescent air.

In Part II I investigated Bernoulli-ball systems. Unlike with falling paper, in this class
of system we have far more control over the environment than we do the morphology.
In Chapter 7, I explored the case of a single hovering ping-pong ball. This setup used a
perfectly spherical ball to hover, and an an airflow designed to be as smooth and laminar
as possible. Hence, the morphology-environment interactions were as stable as possible,
facilitating reduced order modelling and height control. In Chapter 8, on the other hand,
I investigated an more unstable configuration. Multiple hovering balloons were placed in
an airflow. The balloons are not perfectly spherical and it is challenging to control their
exact size and properties. Similarly, the airflow was generated directly from a fan, without
any flow smoothing, making the environmental conditions in which the balloons hovered
more unstable. The range influence of environmental conditions (e.g., power and number of
airflows) and morphological parameters (e.g., ball weight) were systematically investigated
and shown to influence the behaviours and likelihood of transitions in the system.

9.1.2 Thesis objective two: development of methods for iterative and
directed exploration

This thesis developed two main methods for iterative and directed exploration. I pre-
sented the PDBC algorithm in Chapter 3 as a tool for design landscape representation. The
results indicated that the PDBC method is an effective way of finding a parameter space
in which behaviours can be clustered together with a high degree of accuracy. The PDBC
algorithm was designed with the aim providing physical insightful behavioural classification
for behaviourally diverse systems. There are many applications in which this is desirable.
Automated design optimisation, for example, often focuses on hard to model problems such
as the real-world evolution of locomotion (Brodbeck et al., 2015). Behaviourally diverse
systems could multiple solutions to such problems. PDBC could be used in conjunction with
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quality diversity algorithms such as MAP-Elites (Mouret and Clune, 2015) to optimises such
systems and provide a physically insightful snapshot of the solution landscape.

However, there are also systems for which the current PDBC algorithm is inapplicable.
Clearly, systems with no clear behavioural diversity are ruled out. More subtly, however, are
systems with non-discrete behavioural modes. Here, there may be a clear range of behaviours
separated by a continuous transitional zone, in which one behaviours blends into the next;
period doubling, for example. Within this transitional zone behavioural classification is
ambiguous, making the data acquisition step of PDBC challenging. One approach may be to
restrict sampling to areas within the parameter space with very clear behaviours.

In Chapter 6, I presented a platform for large-scale physical experimentation on general
falling paper systems. Hundreds of experiments were carried out on a range of paper shapes,
with the aim of clarifying the boundary between the various system behaviours. When
compared to previous studies (Field et al., 1997), the flexibility in morphology, experimental
quantity and analysis speed were vastly increased, with experiments and analysis taking
an average of just 90 seconds. One significant way in which robots can contribute to
the discovery, exploration and understanding of scientific principles is through large scale
automation of highly stochastic experiments, where many data points are needed to uncover
otherwise unobservable trends. Additionally, robotic systems offer a consistently high level
of accuracy, precision and repeatability in the experimental procedure. Despite this, the
application of robotics to exploring physical systems has been limited, especially in the
fields of fluid dynamics (Fan et al., 2019) and complex systems. This can be attributed
to the conceptual and practical challenges of automation, as well as the prohibitively high
cost of some robotic technologies like robotic arms. Nevertheless, the stochastic nature of
physical systems represents exactly the type of problem in which robotic automation can be
advantageous.

Despite the ability of the system to continuously fabricate, test and analyse falling shapes,
it was limited to the Re and I∗ values reachable by dropping paper in air. Most notably, in
this study only a single weight of paper was considered whereas previous studies have used a
range of materials and fluids to expand the search space. Testing alternative materials would
allow a greater range of the search space to be considered, and it could be confirmed that the
observed patterns hold over these material ranges. Investigating much larger shapes, which
would require a stiffer material, could provide interesting insights into the physical scalability
of the observed behaviours. Another limitation is the current drop height limitation of 1.1
m. Extending this would allow observation of longer trajectories or potential behavioural
switching. An improved exploration strategy could, for example, select morphological
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parameters around possible behavioural boundaries or in under-explored areas of the Re–I∗

parameter space.

9.2 Outlook and future work
A number of possible directions could be followed to extend the research framework

proposed in this thesis.
In Chapter 2, I introduced the framework of reality-assisted evolution for designing

embodied soft robots. A continuation of the trend toward a more unified approach to
designing soft robots is required. This will be partially driven by the further development of
fabrication, material, sensing and actuation technologies. As these become better understood,
so will our ability to include them within models and deploy them via large-scale physical
experimentation. In parallel, developments in data-driven modelling and transferability
approaches will improve the utility of simulation tools, facilitating better predictions of
robot behaviours and, crucially, more informed studies into optimal design methods. In
the long term, research on open ended evolution, e.g., (Huizinga et al., 2018; Lehman
and Miikkulainen, 2015), that aims to indefinitely evolve systems without converging to
a particular solution could be significant. Developments in these search and optimisation
methods are key for structuring the design process toward discovering diverse behaviours.
Finally, moving beyond soft robotics I expect to see a trend toward more complex hybrid
systems. Biological systems tend to be neither soft nor rigid, so understanding how the
combination of different materials improves embodied functionality is a key milestone toward
designing complex and intelligent machines that manifest behaviours driven by seemingly
conscious action.

In Chapter 3, I presented the PDBC method for generating equations that enable be-
havioural clustering. For systems which do exhibit discrete behavioural modes, this approach
opens up new avenues of analysis and understanding. However, further work is required
to apply the method to systems with ambiguous or continuous behavioural phases. Addi-
tionally, further work is required in the choice of system parameterisation, output selection
and behavioural interpretation. One of the main issues here is the human interpretation of
system behaviours. Although relatively clear in the VSFP system, more complex system may
exhibit a range of similar behaviours which are hard to distinguish. Hence, there is scope
to automate the process of deciding what constitutes a discrete behavioural mode. To fully
realise the impact of this approach a more generalised method of approaching and achieving
morphological range is required so it is not prescribed or influenced by initial human bias.

In Chapter 4, I investigated the nature of behavioural transitions in the VSFP system,
showing a range of empirical results and different representations of the system behaviours.
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Future work on this system includes investigating how behaviour switches can be actively
induced in falling experiments, either by environmental manipulation or simplistic on-board
control. Similarly, larger scale experiments could be carried out to determine transitional
probabilities for specific morphologies. In parallel, similar work needs to be extended to other
falling paper systems to understand the extent to which their behaviours and environmental
interactions can constitute computational processes, e.g., sequential logic.

In Chapter 6, I demonstrated the utility of large-scale physical experimentation on falling
paper systems. There is scope to investigate far more complex shapes and the role of
deformation or even folding during falling. The large-scale system could also be used to
optimise morphologies based on certain fitness functions, providing a practical and applied
usage in design optimisation. Indeed, the falling-paper problem is an ideal platform to test
optimisation strategies for noisy, real-world functions. Finally, further work could be done
investigating the transitory behaviour of falling paper. The work highlights the potential
use of robotics in the investigation of highly complex physical systems. Because of their
practicability and rich behavioural diversity, falling-paper systems are an ideal case study for
robotic intervention such as the IPES presented here. However, the philosophy and approach
presented in this study is intended as a template for the wider adoption of robotics and
machine learning for investigating complex physical systems, and for designing bio-inspired
robotic systems.

In Chapters 7 and 8, I introduced and analysed the single and collective Bernoulli-ball
system. The control strategy developed for the height control is a powerful approach for
the control of systems in which conventional feedback controllers are hard to implement.
To develop this further, alternative control problems should be addressed, for example
transferring a single Bernoulli-ball between airflows. This has clear practical applications for
non-contact object transportation. Additionally, further study on collective Bernoulli-ball
systems is required to investigate further mechanisms to induce behavioural diversity in the
system. These studies could help to establish whether the system demonstrates fundamental
aspects of how future life-like robotics systems can be built. These aspects include self-
organisation and regulation, evolutionary dynamics and collective behaviours. In parallel,
they can aid in the discourse relating to how we define life-like properties in man-made
systems (Bongard and Levin, 2021).

9.2.1 Final remarks
Ultimately, future work related this thesis should focus on the incremental progression

toward designing more complex robotic systems that make use of the fundamental principles
outlined. I highlight two key directions here:
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1. Robot scientists. One of the fundamental aspects of this thesis was the large-scale
experimentation system presented in Chapter 6. Future work should build on the system
and design philosophy to push the limits of what we can design and manufacture
automatically. As robotic manipulation and fabrication techniques progress, such
robot scientists will be able to design and interact with ever more complex systems.
Similarly, ever more creative and large machine learning systems should be utilised to
improve the robot scientist ‘brain’.

2. Controlling falling paper. A key direction is understanding to what extent we can
control and utilise the behaviours of falling paper. There is a clear use case in the fields
of flying robotics, for example passive delivery mechanisms such as parachutes. In
Chapter 3 I discussed the benefits of certain smart and active materials such as shape
memory alloys. Research into how these can be incorporated into falling paper shapes
to induce morphology, and hence behaviour, changes is a key direction for further
research. Similarly, understanding how falling paper dynamics fit into the broader
context of flapping and insect-like robots could prove interesting.
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