A TWO-SOLITON WITH TRANSIENT TURBULENT REGIME

FOR THE CUBIC HALF-WAVE EQUATION ON THE REAL LINE

PATRICK GERARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAEL

1.

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
2.

2.1.
2.2.
2.3.
2.4.
3.

3.1.
3.2.
3.3.
3.4.
3.5.
4.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

ABSTRACT. We consider the focusing cubic half-wave equation on the real line
idcu+ |Dlu = [u|*u, |Dlu(§) = [¢a(§), (t,z) € Ry xR.

We construct an asymptotic global-in-time compact two-soliton solution with
arbitrarily small L?-norm which exhibits the following two regimes: (i) a tran-
sient turbulent regime characterized by a dramatic and explicit growth of its
H'-norm on a finite time interval, followed by (ii) a saturation regime in which

the H'-norm remains stationary large forever in time.
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1. Introduction
In this paper we consider the L?-critical focusing half-wave equation on R:
i0pu + |D|u = |ul*u

, (t,x) e Ry xR, wu(t,z) € C, 1.1
iy ¢ BPER xR utneC (L

(Half-wave) {

where we use the pseudo—differential operators

D = —idy, |D[f(&) = [€]f(S).
Evolution problems with nonlocal dispersion such as (1.1) naturally arise in var-
ious physical settings, including continuum limits of lattice systems [25], models
for wave turbulence [0, 30|, and gravitational collapse [10, 12]. The phenomenon
that we study in this paper is the growth of high Sobolev norms in infinite di-
mensional Hamiltonian systems, which has attracted considerable attention over
the past twenty years [2, 19, 30, 4, 53, 6, 7, 13, 43, 21, 19, 22, 23, 20, 17] . The
aim of this paper is to develop a robust approach for constructing solutions whose
high Sobolev norms grow over time, based on multisolitary wave interactions. In
particular, we construct an asymptotic two-soliton solution of (1.1) that exhibits
the following two regimes: (i) a transient turbulent regime characterized by a dra-
matic and explicit growth of its H'-norm on a finite time interval, followed by (ii)
a saturation regime in which the H'-norm remains stationary large forever in time.

1.1. The focusing cubic half-wave equation. Let us recall the main qualitative
features of the half-wave model (1.1). The Cauchy problem is locally well-posed in
H%, see [15, 26], and for all ug € H%, there exists a unique solution u € C([0,7), H%)
with the blow up alternative

H?2

T < 400 implies ltlTI%I |lu(®)] ., 1 = 4o0. (1.2)
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Moreover, additional H*-regularity on the data, s > %, is propagated by the flow.
The Hamiltonian model (1.1) admits three conservation laws:

Mass / u(t, 2)[2dz = / o () 2da
Momentum : Re ( / Duu(t,:v)dx) = Re ( / Duouo(x)d:c>

Energy :  E(u(t)) == ;/]\D|zl>u|2(t,:c)dx —i/yuﬁ(t,x)dx — B(ug).

The scaling symmetry
— N\ ()\2
ux(t,x) = A2u(A*t, Az)

leaves the L2-norm invariant

2
lux(t, )Lz = [luw(At, )| 2
and hence the problem is L2-critical.
By a standard variational argument, the best constant in the Gagliardo-Nirenberg
inequality
1 1

lullzs S NDI2ulZallullZ:, Vue HE,

is attained on the unique positive even ground state solution to
IDIQ+Q - @Q*=0.

Note that the uniqueness of @ is a nontrivial claim, recently obtained in [11|. This
implies the lower bound

1 ul|?

E(u) > = {1— H HgQ] / |D|2uf*dw, Vue Hz. (1.3)
2 HQHL2 R

Using the conservation of mass and energy, it then follows for ug € H 3 with

[uol[z2 < [[@| L2 that

[u@®)] ;3 < Cllluollz2, E(uo)), VE€R. (1.4)
Combining this with (1.2), one obtains the global existence criterion:
up € H? and lluollz2 < [|@Q]lf2 imply T = +o0. (1.5)

This criterion is sharp as there exist minimal mass finite energy finite time blow up
solutions, see [26]. In this paper we will only consider solutions with ug € H' of
arbitrarily small mass, which are hence global-in-time u € C(R, H?).

1.2. Growth of high Sobolev norms. One of the main topics in the study of
nonlinear Hamiltonian PDEs is the long time behaviour of global-in-time solutions.
A possible type of behavior, that attracted significant attention over the last twenty
years, is the so called forward energy cascade phenomenon. This phenomenon refers
to the conserved energy of global-in-time solutions moving from low-frequency con-
centration zones to high-frequency ones over time. One way to illustrate it is the
growth of high Sobolev norms:

[u(®)]| s = </<£>251ﬁ(t,§)2d£)é.

Indeed, for sufficiently large s > 0, above the level of regularity of the conserved
Hamiltonian, the growth over time of ||u(t)| g indicates that the Fourier trans-
form u(t, €) is supported on higher and higher frequencies £ as the time ¢ increases.
To the best of the authors’ knowledge, all the rigorous mathematical analysis that
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has been done on the forward energy cascade focuses on finding infinite dimen-
sional Hamiltonian PDEs that admit examples of solutions exhibiting growth of
high Sobolev norms. A lot of the results available are in the context of nonlin-
ear Schrodinger equations (NLS). In particular, for the defocusing cubic nonlinear
Schrédinger equation on T2, Bourgain [5] asked whether there exist solutions u with
initial condition uy € H*(T?), s > 1, such that

lim sup ||u(t)|| gs = oo.
t—o0

Despite attracting considerable attention, this question remains unanswered.

The forward energy cascade phenomenon also appears in the physical theory
of wave (weak) turbulence. This is a theory in plasma physics and water waves,
based on pioneering work of Zakharov from the 1960s, with many similarities to
Kolmogorov’s theory of hydrodynamical turbulence. It can be loosely defined as the
“out-of-equilibrium statistics of random nonlinear waves" (see [21]). Even though
wave turbulence refers to a statistical description of solutions and not to single
solutions, and even though this theory does not yet have a rigorous mathematical
justification, it is believed that exhibiting examples of solutions whose high Sobolev
norms grow over time is a first step and a minimal necessary condition for wave
turbulence. As far as the authors are aware, all mathematically rigorous results
that are available are in this spirit, and so is the main result of this paper.

In the following, we briefly mention some of the references in the literature re-
garding the growth of high Sobolev norms for nonlinear Hamiltonian PDEs. First,
in the context of NLS, polynomial-in-time upper bounds on the growth of ||u(t)| ms,

(@) s S (Y, s> 1,

were obtained; see Bourgain [2, 5|, Staffilani [19], Sohinger [17, 18], Colliander,
Kwon, and Oh [3].

The first examples of Hamiltonian PDEs (nonlinear Schrodinger equations and
nonlinear wave equations) that admit solutions with energy transfer were con-
structed by Bourgain [, 2, 3]. However, these examples do not deal with standard
NLS or NLW, but with modifications of these specifically designed to exhibit infi-
nite growth of high Sobolev norms (these are PDEs involving, instead of the Laplace
operator, a perturbation of it, or PDEs with a suitably chosen nonlocal nonlinear-
ity). In [29], Kuksin considered small dispersion cubic NLS and proved that generic
solutions grow larger than a negative power of the dispersion. A seminal result is
that by Colliander, Keel, Staffilani, Takaoka, and Tao [7] who proved arbitrarily
large growth of high Sobolev norms in finite time for the defocusing cubic NLS on
T?2. More precisely, given s > 1, ¢ < 1, and K > 1, they constructed a solution u
such that

|u(O)|| g2 <& and  |Ju(T)|ns > K,

for some finite time 7" > 0. The influential result in |7], especially their intricate
combinatorial construction, was extended to various other settings [21, 19, 18, 22
, 23]. Furthermore, in [22], combining this result with some modified scattering

method, an example of infinite growth of high Sobolev norms was obtained for the
defocusing cubic NLS on R x T4, d > 2. For the cubic NLS on T?, however, the fate
of the solution u after the growth time 7" remains unknown.

For the cubic half-wave equation, due to mass and energy conservation, the H 3-
norm of solutions with initial data in H3 is uniformly bounded in time, both for
the defocusing equation, as well as for the focusing equation with initial data of
sufficiently small mass ||u(0)|/z2 < [|@]/z2 (see (1.4) above). However, in the spirit
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of 7], arbitrarily large growth in finite time of higher Sobolev norms — H*-norms
with s > 1/2 — was proved on R in [44]' and on T in [15]. As in [7], the behaviour
of the solutions that exhibit growth remains unknown after some finite time, which
is what motivated our work in the present paper. The results in [15, 11| are based
on information on the totally resonant model associated with the cubic half-wave
equation, namely the Szegs equation. Infinite growth of high Sobolev norms for

solutions of the Szegd equation was obtained on R in [13] and on T in [17]. Moreover,
on T, this was shown [17] to be a generic phenomenon, displaying infinitely many

forward and backward energy cascades. Also notice that long time divergence of high
Sobolev norms was also obtained for a perturbation of the cubic Szegs equation on
T in [51], and that the method of [22] was recently adapted in [52] to this context,
providing infinite growth of high Sobolev norms for a mixed Schrédinger—halfwave
equation on R x T. We present below the key features of the Szegs equation and
its relation to the cubic half-wave equation.

1.3. The Szegs program. Applying the Szegs projector I, of L? onto nonnega-
tive Fourier modes:

It u(§) = 1eou(8),
the half-wave equation (1.1) becomes

i(atU+ — aqur) H+(‘u|2 )
i(Opu— + Bpu_) = (I = II7)(Jul*u)
uy =1 u, u_ = -1 )u .

For small data in the range of I and of norm € < 1 in a sufficiently regular Sobolev
space one can show [15, 14] that, for times of order ¢~2|loge|, an approximation of
the half-wave flow is given by the cubic Szegd equation

{ i0pu = I (|u|?u)

1.6
U|t:0:UOEH§. ( )

The Szegé equation can be understood as the totally resonant model associated
1
o (1.1). It is still a nonlinear Hamiltonian model, well-posed in H2, and the

conservation of mass and momentum implies that all H 3-solutions are global-in-
time and

(@l 3 = [u(0)l,p3, V€ R,

A spectacular feature of the cubic Szeg equation discovered in [13] is its complete
integrability in the sense of the existence of a Lax pair, which in particular allows for
the derivation of explicit families of special solutions of either multisolitary waves
or breather-type, both on the line and on the torus, see |12, 43, 13, 14, 16, 17]. The
complete integrability implies the conservation of infinitely many conservation laws
which, however, roughly speaking, all live at the H 3-level of regularity only.

In [13], Pocovnicu exhibits for the flow on the line, one of the very first ex-
plicit examples of growth of high Sobolev norms for a nonlinear infinite dimensional
Hamiltonian model:

< = S
lu(®)ll,y 1, Jim [u(®)m = +o0 as t - +oo.

llw(Te) |l s
ECIES
some T >> 1. However, this readily yields arbitrary large growth in finite time via an L?-invariant
scaling argument. Secondly, the result in [14] is stated for the defocusing half-wave equation, but

essentially the same proof works for the focusing half-wave equation with initial data of small mass.

n [44], only a relative growth of high Sobolev norms was obtained — oo ase — 0 for
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The analysis in [13] is based on the explicit computation of a two-soliton solution
for the cubic Szegs flow, relying on complete integrability.? Indeed, as observed in
[12], (1.6) admits a traveling wave solution

T 2
u(t,z) = Q1 (x —t)e ™ with Q*(x):= S (1.7)
Using complete integrability formulas, an exact two-soliton can be computed:
o) =on 00 (58 ) et (SR )
with the asymptotic behavior on the manifold of solitary waves,
a1(t) ~1, ki(t)~1—mn, z1(t) ~(1—m)t, 0<n<<1
{ ag(t) ~ 1, ka(t) ~ 3, wa(t) ~t.

(1.8)

In particular, this two-soliton exhibits growth of high Sobolev norms over time
|u()||gs ~ 271, s > %, and the mechanism of growth is the concentration of the
second bubble ky(t) ~ t%

The full dynamical system underlying two-solitons for the Szegé equation and
the associated codimension one set of turbulent initial data is revisited in details in
Appendix B.

Combining the growth of high Sobolev norms for a two-soliton of the Szegd equa-
tion on R [43] discussed above, with a long time approximation theorem relating
the Szegd model and the half-wave equation, yields the following arbitrarily large
growth in finite time result for the half-wave equation:

Theorem 1.1 ([11]). Let 0 < ¢ < 1. There exists a solution of the (focus-
ing/defocusing) cubic half-wave equation on R and there exists T ~ e=* such that

1
luO)l[m = and [Ju(T)l|gm = - > 1.

As in [7], the behaviour of the turbulent solution in the above theorem after the
time 7' remains unknown. In this paper, we construct a turbulent solution of (1.1)
that we can control for all future times. Furthermore, our aim in this paper is
to develop a robust approach to compute turbulent regimes based on multisolitary
wave interactions, avoiding on purpose complete integrability tools.

1.4. Mass-subcritical traveling waves. As observed in [20] following [I1], the
half-wave problem (1.1) admits mass-subcritical small speed traveling waves’

ug(t,x) = Qp (xl__%t> e, MQ/& +Qp — |Qs1*Qs = 0, (1.9)

1-p
with

i = .
ﬁlg%Q,B Q, [1Qsllz2 <@ L2

An elementary but spectacular observation is that these traveling waves in fact exist
for all |5] < 1 and converge in the singular relativistic limit 3 — 1 to the soliton of

2The key property that triggers growth of high Sobolev norms ||u(t)|ms ~ t**7*, s > %, is that
the Hankel operator H, in the Lax pair of the Szeg6 equation has a multiple (double) eigenvalue.

3Note that this phenomenon does not exist for the mass-critical focusing nonlinear Schrodinger
equation on R due to the degeneracy induced by the Galilean symmetry ug(t, z) = Qg(x—3t)e78®
with Qs(x) = Q(z)e*®® and hence ||Qgl|z2 = ||Q||z2 for all B € R, and indeed solutions with mass
below that of the ground state scatter [9].
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the limiting Szegs equation given by (1.7):

. o + —
lim |5 — Q7 3 =0.
See Section 2. Note from (1.9) that this is fundamentally a singular elliptic limit,
and the associated almost relativistic traveling waves are arbitrarily small in the
critical space:

i s (¢, 12 = 0.

Hence, another link is made between the half-wave problem and its totally resonant
limit given by the Szegs equation through the sole consideration of the full family
of nonlinear traveling waves.

1.5. Statement of the result. In Theorem 1.1, the turbulent solution of (1.1)
was constructed as a long time approximation of the turbulent two-soliton of the
Szegd equation. The approximation theorem used is valid for any solution of the
Szegl equation (respectively of the half-wave equation) with small regular data, not
only for two-solitons. In this paper, we take a more efficient approach. Instead
of approximating a large class of solutions of (1.1) by their Szegd counterparts,
we concentrate on constructing a single solution of (1.1) that mimics the growth
mechanism of the turbulent two-soliton of the Szegd equation. Of course, complete
integrability is lost, but the analysis initiated by Martel in [31] and revisited in
[27] for the nonlocal Hartree problem paves the way to the construction of compact
two-bubble elements. More precisely, one can in principle extract from the equa-
tion the approximate dynamical system driving each solitary wave of an asymptotic
two-soliton, at least in a regime where the waves are separated in space, and the
robust energy method developed in [27] allows one to follow the flow all the way to
+00.

Theorem 1.2 (Solution with transient turbulent regime and saturated growth).
There exists a universal constant 0 < 6* < 1 and, for all § € (0,0%), there exists
0 < n*(0) < 1 such that the following holds. For every n € (0,n*), let the times

1 0
= el T = w’
then there exists a solution u € C([Tin, +00), H') to (1.1) which is H? -compact as
t — 400 with the following behavior:
1. Initial data: the initial data at time Ti, has size

T;

1

1
lu(Ti) 72 ~n. WIDI2u(Ti) |72 ~ 1, [1Du(Tiw)lI72 ~ R

2. Turbulent regime: on [Tin, T~], the solution experiences a turbulent interaction
with an explicit monotone growth of the H'-norm
2
a7 = —(
L

1+ 0(V9)). (1.10)

3. Saturation: the interaction ceases after T~ and there holds the saturation

1 1
(@)l = e Jor t>T".
The turbulent interaction behind (1.10) is an explicit energy transfer along the
singular branch of traveling waves (g, and the solution can more explicitly be
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described as follows. For all times t € [Tiy,, +00), the solution admits a two solitary
wave decomposition

= 1 z — (1) i ()
=2 (o)« e

with the following properties:
1. Structure of the first soliton: the first soliton remains nearly unchanged, i.e. for
all t > Tip,

M)~ 1, 1=5it) ~n, 21(t) ~ (1 =n)t, n(t) ~t

2. Concentration of the second soliton: the second soliton behaves like a solitary
wave

A2(75) ~ 17 $2(t) ~ /82t7 72(75) ~1

with a concentration of size in the transient turbulent regime:

1_52(15):17(1—:20(\/3)

which saturates after the interaction time 7 :

1—Ba(t) = 77360(%) for t >T".

for t € [Tin, T7],

3. Asymptotic compact behaviour: this solution is minimal near 400, i.e.

Jim (0l = 0.

1.6. Comments on the result. Theorem 1.2 exhibits, for a canonical dispersive
model, an explicit mechanism of growth of high Sobolev norms. To the best of the
authors’ knowledge, this is one of the first results in which one can control for all
times a turbulent solution of a nonlinear Hamiltonian PDE.

1. The two regimes. The key element behind Theorem 1.2 is the derivation of
the leading order ODEs driving the geometrical parameters as in [26]. There are
two main new pieces of information. First, we can compute explicitly the rate of
concentration which is given by the t-growth as in [13]. This rate is very sensitive
to the phase shift between the waves in the transient regime, and another phase
shift would generate another speed. Note that the growth can be computed for any

H?-Sobolev norm above the energy, i.e. s > %, and the data can also be taken

27
arbitrarily small in H! by a fixed rescaling. Secondly and unlike in the case of
the Szegé equation, there is no infinite growth of the H'-norm for the solution
we construct. Here we encountered an essential feature in the structure of the Qg
solitary wave. The limiting solitary wave of the Szegs equation has according to

(1.7) a far out decay

while for ()g there is a transition regime
1

Qsl®) ~ AT A=A’

In particular, when the waves forming the two-soliton separate and their relative
distance becomes large

B<1. (1.11)

1
|xe — 1| > ——

1-53’
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their interaction weakens from é to ﬁ, and this explains why the concentration
mechanism stops in the far out two-soliton dynamics.

2. Compact bubbles with energy transfer. Theorem 1.2 lies within the construction
of compact elements which has attracted a considerable attention for the past ten
years both for global problems since the pioneering breakthrough work [31] and
[32, 27, 36] and blow up problems [39, 16, 37, 26]. It is in particular shown in
[26] how the presence of polynomially decaying interactions can lead to dramatic
deformations of the soliton dynamics, for example from the straight line motion for
each wave to the hyperbolic two body problem of gravitation for the two-soliton
of the gravitational Hartree model on R3. The energy transfer mechanism between
KdV waves [11, 35] or the recent multibubble infinite time blow up mechanism of
[38] are deeply connected to Theorem 1.2. This is the first instance, however, when
modulation analysis used in all the above cited works, is employed to find solutions
that exhibit growth of high Sobolev norms. Let us insist that the growth (1.10) does
not excite the L2-scaling instability of the problem as in [26], but the B-instability

which according to (1.9) is H 3-critical and hence compatible with the small data
coercive conservation laws. More generally, there is little understanding of the long
time asymptotics of wave equations in small dimensions due to the lack of disper-
sion, see for example [28], and it is essential for the construction to consider compact
nondispersive flows.

3. Specificity of the analysis. The following two problems are simpler than the
result in Theorem 1.2: (i) the construction of an asymptotic two-soliton without
turbulent interaction in the continuation of [27], and (ii) exhibiting a growth mech-
anism of the H'-norm on some sufficiently large time interval as in [11], using the
limiting singular Szegd regime (see Theorem 1.1 above). The aim of Theorem 1.2 is
to perform both the above in the same time and, in particular, to capture the asso-
ciated saturation of the H'-norm which we expect displays some universality, and
hence describes the long time dynamical bifurcation of (1.1) from the Szegé singular
regime (1.8) beyond usual Ehrenfest-like times. We then face two essential difficul-
ties. First, the nonlocal nature of the problem in the presence of slowly decaying
solitary waves makes interactions very large and hard to decouple as in |24, 30]. In
particular, we need to control the logarithmic instability of the phase shift between
the waves, which is central for the derivation of the growth mechanism. This forces
us to develop both the complete description of the bifurcation QT — Qg and a
new strategy for the derivation of sharp modulation equations for geometrical pa-
rameters, see Proposition 4.12. Secondly, the need for high order approximations of
the solution required to capture the leading order mechanism is reminiscent of the
pioneering two-soliton interaction computations in [34, 35]. But the main difficulty
here is the fact that the traveling wave equation (1.9) is a singular elliptic problem
which degenerates as § — 1. Hence one looses the control of natural energy norms
in the concentration process, which a priori should ruin the approach developed in
[24]. The wave-like structure of the equation is essential to overcome this difficulty.
We also need to develop various new estimates involving the II™ projection operator
onto positive frequencies since in the concentration process, this projection and the
Szegd-like regimes are essential for the analysis.

4. Regularity shift in the growth of Sobolev norms. Compared to previous results on
the growth of high Sobolev norms for nonlinear Schrédinger equations, see [7, 19,
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, 22,23, 20], it is interesting to notice that Theorem 1.2 implies the existence of
small data in H' such that the H*-norm of the solution becomes large, not only for
s = 1, but also for s < 1 close to 1. Notice that this regularity shift also holds —
with unbounded solutions at infinity — for the cubic Szegd equation, see [11, 17],
where in [17] this phenomenon is established to be generic.

Having completed this work, let us mention a number of related open problems.

e The main one is probably the existence of a solution of (1.1) such that
lim sup,_, ()] = +00.

e What are the possible growth rates 7 From the recent paper [50], we know
that this rate cannot be bigger than eo(tz)), how optimal is it 7

e Are unbounded solutions in H' generic ? Is the behavior ||u(t)|| g 200

generic, or rather is it generic to have infinitely many forward and backward
energy cascades, as in the case of the cubic Szegd equation on the circle ?

To conclude, we hope that Theorem 1.2 is an important step towards a better
understanding of the role played by interactions of solitons in turbulent transfers of
energy.

1.7. Strategy of the proof. We outline in this subsection the main steps and
difficulties in the proof of Theorem 1.2.

Step 1: Description of the bifurcation QT — Qp. Our first task is to completely
describe the solutions to the singular elliptic traveling wave equation

D| - 8D

P00+ Qo - @ulal? =0
in the limit 3 — 1. The local existence and uniqueness of the profile ()3 for 3 close
to 1 in Proposition 2.2 relies on a classical Lyapunov-Schmidt argument, which itself
relies on the non degeneracy of the linearized operator close to QT for the Szegs
problem proved in [12]. The Lyapunov-Schmidt argument yields the non degeneracy
of the linearized operator close to Qg in Proposition 2.4. We then completely de-
scribe the profile in space of ()3 and, in particular, its long range asymptotics which
displays a nontrivial boundary layer at x ~ ﬁ7 see Section 3. Here we aimed at
avoiding logarithmic losses which would be dramatic for the forthcoming analysis,
and this requires the consideration of suitable norms and Fourier multipliers.

Step 2: Two-soliton ansatz. We now implement the strategy developed in [24] and
construct an approximate solution of the form

U= U] + u2

after reduction to the slow variables
ds; 1 x —x;(t)

, :i. et 224 — j =
uj(t, x) /\j;v](syy])e N N Y5 Ni(6)(1 = B;(t)’

j=1,2.

Here we proceed to an expansion of the profiles v; after separation of variables

N
Uj(sja yj) = Qﬂ](s])(y]) + Zz—j],n(y]ap(sj))a

n=1

where P encodes the geometrical parameters of the problem

P - (Aly )\27 ﬁ27527rv R)
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and (I, R) denote the phase shift and relative distance between the waves after
renormalization

Tro — I
'=vw—-—v, R=——F%=
2" M= B1)
which is always large R > 1. The laws for the parameters are adjusted
(N)s; (85)s,
= M,(P), I — B.(P 1.12
= MG(P), g2 = By(P) (112)

in order to ensure the solvability of the elliptic system defining 77 ,,; see Proposition
4.6. In order to keep control of the various terms produced by this procedure, we
need to define a notion of admissible function, see Definition 4.1, which is compati-
ble with the properties of Q3 and stable for this nonlinear procedure of construction
of the approximate solution. The strategy is conceptually similar to [27], but the
functional framework is considerably more challenging due to the slow decay of the
solitary wave Qg and to the singular nature of the bifurcation QT — Qg.

Step 3: Leading order dynamics. We now extract the leading order dynamics for
the ODEs predicted by (1.12). This step is more delicate than one would expect,
in particular because we need to keep track of a logarithmic instability of the phase
shift I" which is essential for the derivation of the turbulent growth. We observe in
Proposition 4.12 that mimicking the conservation laws of mass and kinetic momen-
tum for the approximate solution provides nonlinear cancellations and a high order
approximation of the dynamical system for P. Roughly speaking, this reads

(B1)e -0 (B2): 2cosT’
1—-p " 1—82 R(1+(1-p5)R)

which reflects the decay (1.11). Hence, 1 — f; ~ n and as long as I' ~ 0 and
t < % ~ T~ we have the decay

R~1

1
1 - /82 (t) ~ t727
which saturates for t > T~. Keeping the phase under control requires a high order
approximation of the modulation equations (Proposition 4.12) and a careful inte-
gration of the associated modulation equations; see Subsection 4.8.

Step 4: Backwards integration and energy bounds. We now solve the problem from
+oo following the backward integration scheme designed in [39, 31, 32, 27]. In the
setting of a suitable bootstrap (Proposition 5.2), the solution decomposes into two
bubbles and radiation

2
1 iy
u(t,z) = Zuj +e(t,x), wui(t,z) = —vi(sj,y;)e",
j=1 H
where the profiles v; have been constructed above. We pick a sequence T;, — +o0
and look for uniform backwards estimates for the solution to (1.1) with Cauchy data

at T;, given by
e(T,) = 0. (1.13)

The heart of the analysis is to design an energy estimate to control €. Following
[32, 27], the energy functional is a localization in space of the total conserved energy,
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with cut-off functions which are adapted to the dramatic change of size of the second
bubble. The outcome is an energy bound of the type

9 g(et| < 94

STy T
where N is the order of accuracy of the approximate solution and can be made
arbitrarily large, and G is a suitable energy functional with roughly

2
G() ~ Il

(1.14)

1

see Proposition 5.1. Bootstrapping the bound G(¢(t)) < — and integrating in time
t2

using the boundary condition (1.13) yields

Ge(t) S —.
N

2

which is an improved bound for N universal sufficiently large. The critical point
in this argument is the % loss only in the RHS of (1.14). In general, the terms
induced by the necessary localization procedure may be difficult to control, and
sometimes the only known way out is a symmetry assumption on the behaviour of
the bubbles as in [27, 38|. This is not an option here since the turbulent regime
is in essence asymmetric. Furthermore, a fundamental difficulty here is that the
linearized operator close to Q3 depends on 5 and degenerates as § — 1, see (5.16).
We show in Section 5 that the above strategy can be implemented with a sharp loss
of % only, using two new ingredients: a favorable algebra for the localization terms,
which seems specific to wave-like problems and is reminiscent of a related algebra
in [36], see the proof of (E.14), and the splitting of the motion along positive and
negative frequencies which move in space differently. Hence the full energy method
relies very strongly on the localization both in space and frequency of the infinite
dimensional part of the solution.

This paper is organized as follows. In Section 2, we construct the bifurcation
Q" — Qp a la Lyapunov-Schmidt, and we study in detail the Qg profile in Section
3. In Section 4, we produce the two-bubble approximate solution (Proposition 4.6)
and derive and study the associated dynamical system for the geometrical param-
eters (Proposition 4.12 and Subsection 4.8). In Section 5, we close the control of
the infinite dimensional remainder by setting up the bootstrap argument (Proposi-
tion 5.2), and by using in particular the key energetic control given in Proposition
5.4. The proof of Theorem 1.2 easily follows from Proposition 5.2 as detailed in
Subsection 5.8. Appendix A is devoted to simple algebraic formulae involving Q.
Appendix B revisits the two-soliton dynamics for the Szegé equation on the line
studied by Pocovnicu [12|. Appendix C establishes some non degeneracy lemma al-
lowing to implement the modulation theory in this context. Appendix D is devoted
to basic commutator estimates. Appendix E contains estimates on some cut-off
functions which are crucial in our energy method. Finally, Appendix F is devoted
to the coercivity of our energy functional.

Notations. On L?(R), we adopt the real scalar product

(1, v) = Re (/R uvdx). (1.15)

() =1+ 22

For z € R, we set
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If s > 0 and f is a tempered distribution such that f is locally integrable near & = 0,
we define the tempered distribution |D|*f by

o~

[DI°f(&) = €17 £(E) -
We define the differential operators

Mof = adef, Afi= Lf 4 Auf, o= (1-0)0s

and the function

0
B = 10,Qa + (1 5) 2.

We use the Sobolev norm

1 Fllwroe = Z5_oll 05 flle, k€N
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2. Existence and uniqueness of traveling waves

2.1. The limiting Szegd profile. We consider
1
HIR):={ue H%(R) : supp(a) C Ry},
1
and, for every u € H7 (R)\ {0},

(Du, u)[ul7

JT(w) :=
()=,

,IP= if JT(u).
ueH? (R)\{0}

It is known ([12]) that I* is a minimum and that its minimizers are exactly
Q(z)

Moreover, those minimizers which satisfy the following Euler—Lagrange equation

DQ+Q-1L.(IQPQ) =0,

= , Imp >0 .
T+0p P

are given by

Q) = "Q (w+m) . Q@) = s (ra0) ET xR (21)
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2.2. Existence of traveling waves. To show the existence of nontrivial traveling
waves (g satisfying (1.9), we consider the minimization problem

((|D] = BD)u, u)[ulZ.

Ja(u) == 7 , Ig:= inf Ja(u) .
[l weH2 (R)\{0}
From [20] and a simple scaling argument, we have the following result:

Proposition 2.1 (Small traveling waves). For all 0 < § < 1, the infimum Ig is
attained. Moreover, any minimizer Qg for Jg(u) such that

((ID| = 8D)Qs,Qp) _ 215

1
2 4
_ - — = 2.2
Q5132 = 51Qs11Ls — — (22)
satisfies the following equation'
IDI
Qﬁ + Qs = Qs Qs

ﬂ

In what follows, let Qg denote the set of minimizers Qg of Jg(u) such that (2.2)
holds.

Proposition 2.2 (Profile of Q). If Qs € Qg and f — 1,8 < 1, there exist
z(B) € R and v € T such that, up to a subsequence,

Qs(z — z(8)) = Q" (),
strongly in H%(]R) More precisely, for B sufficiently close to 1, we have

1Qs(z - 2(8)) = "Q* (@) 5 <C(L—B)/log(1 - B)[z.  (23)
Proof. First observe that, since |D| — D > (1 — 8)|D|,

and, by plugging v = Q" in Jg,

We claim that indeed,

1-8
Decompose
Qs =QF +Q5 , QF =T1.(Qp) .
Then identities (2.2) read

21
“LpIg;. @) = 2

1
IQF 1172 +11Q5 1172 = 5193 +Qzll74 = (DQF. QF) + 3

Tb?b

This implies in particular
_ 2 " o 41%
Q5117 < 2T, (ID|Qg,Q5) <2I+(1-8), Q51 < To —(1=5)=0.

We are going to improve these estimates on QE, using the following identity on
Fourier transforms, which is an immediate consequence of the equation for (Jg in
Proposition 2.2,

— 1 —
Qs(§) = 1+|§1|:E§|Q6|2Q5(5) .
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In particular,

— Liecoy 57
Q5 (&) = — 137, 1Qs1PQs(¢) - (2.4)
g 1+ 1]
From (2.4) and the Plancherel formula, we immediately get

! QsPOs©)2de <C(1—B),  (25)

0 1
277/_00 ( 1+ﬁ’€’>

Q51172 =

where we used a bound on Qs in L3, which is a consequence of identities (2.2) and
of the estimate Iy < (1 — 8)I" . Similarly, we have

1 /0 13 —
(D@5.Q5) = 5= [ (1'+‘%)2\Qm2@g<s>\2d§sc<1—ﬁ>2|log<1—/s>r,
(2.6)

because of the logarithmic divergence of the integral at £ = 0. This already implies
1Q51Izs < C(1 = B)*log(1 - B)|
Finally, using the bound on (g in all the LP-norms with p finite, we have

1QF 174 = 1Qs — Q5 lI74 = Q574 — 4Re (/R Qs1°QpQ5 dw) +0(1Q51174)

1 [0 1 —
_ 4 2 3/2 1/2
= [|Qpll7+ — 4Re (27T /oo . 1+5‘§|HQ5\2Q&(§)! d§> +O((1 - B)**[log(1 — B)["/7)

= 1Qsl74 — O((1 = B)[log(1 — B)))-

Therefore
I+ < QD) (DQE, QDIREIZ> ()
- Q111 1Qsl[1: — O((1 = B)[log(1 = B)])
— 125 - 0= B)log(1 — ) < I* +O((1 - B)[log(1 - H))).

Summing up, we have proved

01— 12 S (- B)llog(1 - B

/6 ~Y
1Q5 13 —20*| + |IQF I — 4| + (D@, @) — 21
S (1= p)[log(1 = B)| (2.7)
1
1Qg g2 S (11— )Ilog( IE (2.8)
10513 S (1- B
We now appeal to the stability results of [12] and |[15] concerning the ground state

Q" of the cubic Szegd equation — see also estimate (2.15) below—, which can be
reformulated as

1
3C > 0,360 > 0: VU € H?(R),
U172 = 2L | + (DU, U) = 21| + [[|U||74 — 41| < 6o =

: _ iy +H12 o o 4
o ntUC=9) = €TQH Iy < CIVIE = 214l + (DU.U) = 2] + 1V = 41

Applying this estimate to U = QE, this yields (2.3). O
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By a straightforward argument, we upgrade the convergence of ()3 to any H?®.

Proposition 2.3. Let 8, — 1, B, < 1, and suppose that Qg, € Qg, satisfies
Qp, — QT in H%(R) Then, for any s > 0, we have
1Qp, || 7s < Cs.
In particular, |Qga, ||~ < C and it holds that
Qp, — QT in H*(R) for all s> 0.
Proof. 1t suffices to prove the claim for integer s € N. By applying V® to the

equation satisfied by @, := Qg,, we obtain that

\Y
VoQn = WVS_I(IQnIQQn) =: A5, V' H(1Qul*Qn)- (2.9)

1_571
Using the simple fact that |{| — 8¢ > (1 — B)||, we see that ||Ag, |72 r2 < C holds.
Thus, by choosing s = 1, we obtain the uniform bound
IVQullzz < CllQul7s < C,

since ||Qn /s < C because of @, — QT in H 2. Hence we obtain the uniform bounds
|Qnllgr < C and ||Qnllre < C (by Sobolev embedding). Now, by induction over
s € N, Leibniz’ rule, and the uniform bounds ||Q, ||z~ < C, we find

1Qnll e < Cr
for any k € N. By interpolation, this bound implies that @, — Q" in H® for any
1
5> 0, since Q, — Q7 in H2 by assumption. O

2.3. Invertibility of the linearized operator. In this section, we fix a solitary
wave Qg € Qg. Let the linearized operator close to this solitary wave be

D| - 8D
Lge = |1’_g +e—2|Qsl°c — Q% (2.10)
We may now invert £g and prove the continuity of the inverse in suitable weighted
norms.

Proposition 2.4 (Invertibility of L£g). There exist 3. € (0,1) such that for all
B € (Bs,1) and for all Qg € Qg, the following holds. There exists C > 0 such that

forall f € H2 we have
1713 <€ (I2afl -y + (@) + (£, 2:Q5)1) - (2.11)

Let g € H~? with

(9,1Qp) = (9,02Qp) = 0. (2.12)
Then, there exists a unique solution to
. 1
Lof =g, (f,iQp) = (f,0.Qp) =0, feH> (2.13)
and
£y < lall, - (2.14)

Proof of Proposition 2.4. The invertibility claim follows easily once one proves (2.11).
Indeed, denote by Pg the orthogonal projection onto Vg := spang (iQ g, 0:Q3). Since
Vg C ker Lg from the invariance of the equation on ()3 by translation and phase
shift, we have

fekerLg= f—Pgf ckerLy.
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Applying estimate (2.11) to f — Pgf, we conclude that f — Pgf = 0, namely f € Vj.
Therefore, ker Lz = Vz. The rest of the statement is just Fredholm alternative
applied to the self-adjoint Fredholm operator Lg.

In the remaining we will prove (2.11).

Step 1: We first claim that

1
vfe B fll,y < C(16Fly +IH QDI+ (£ a:Q) . (215)
where £ denotes the linearized operator for the equation on Q*,

1

Le:=De+e—T,(2|Q" e+ (Q1)%) ,e c H2 . (2.16)

To prove this estimate, we closely follow Section 5 of [15]. More precisely, we
1
decompose f € H} according to the orthogonal decomposition
L2 =(VeiV)taiVeaeV, V =spang(iQ™,8,Q") ,
which reads
f=r+H+f.

By translation invariance and phase shift invariance, £ = 0 on V. Moreover, an
exact computation yields

LQT) =-2(DQT+Q7), LIDQ4) = —2DQ" —4Q" .
Consequently, £ : iV — iV is one to one. Finally, £: (V @iV)+ — (V @iV)* and
is coercive (as shown in [15]),

Y /112
(L) z el Iy (2.17)
and consequently,
L .
Ve HENV & iV)E 7],y < CIEF,

We now proceed by contradiction. Assume (2.15) fails. Then there exists a sequence

1
(fn) of H} such that
Wl s =1 NEFall, =0 [(iQ) 4 (225 0.

Decomposing f, = f} + f/; + fl5, we notice that the last condition exactly means
"y — 0 in the plane V. Moreover, since || f/|lz2 < || fnllz2, we may assume that

" — f{ in the plane iV. Since
we have, for every g € iV,

(Lfni:9) = (Lfasg) =0,
whence (Lf{',g) =0, or Lf{’ =0, which implies f{ = 0 since £ : iV — iV is one to
one. Finally, we conclude that L£f], — 0 in H _%, which implies f], — 0 in H %, and
finally f, = 0in H %, a contradiction.

Step 2: Proof of (2.11). This now follows from a standard perturbation argument.
Indeed, since (2.14) is translation and phase-shift invariant, it is enough to prove it
for Qs = Qp, — QF, B — 1, n > N sufficiently large. In the following, we write

Qn = Q,Bn-
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1
For f € H2, we observe that
1L, £II2 1 = Iy L, fII?
n H™ 2 n H

Write f* := I (f). We have

ML, £,

_1 _1 -
2 2

I (L5, f) = TR DI + 17 ~ T (2QPf + G2F)
hence, using the L* bound for Q,,
1+ Bn S , _
(L5, 11057 2 TG (DI £7) 4 13 = O el s

Using the Gagliardo-Nirenberg inequality for f~ and (3, close to 1, we can absorb
|13, with a large factor and get

1
1*/8n

(M- (Ls, f), [7) = (DI F7) + 17 M7 = oI F 117

and finally

1
1_671

2
I Ca Py = e
On the other hand,
I (Lp, f) =T (Lp, f7) + T (Lp, f7) = LI +rT 407,

(DI ) + ||f—|r%2) —olf 2

with
rmo= SILQQEPFT Q) Iy S e < Ol
rt o= SILR(QP — QT+ (@ — @D ) L Iy < HlrFllze < oW F Iz

where we have used uniform estimates on @Q,, and the fact that Q,, — QT in L? for
every p. Finally,

I (L, N2y = ILFEIE 4 = oIS 7 = OIS NEs - (2.18)

2
2,
Summing up, we get, using again the absorption of ||f~ ||z,

1
1_577,

a1y = e
On the other hand,
(£, 0:Qn) > + 1(£,iQu) 2 = 1(f1,8.Q0) + |(f7,iQ 1) — o(V)| fII22 -

Summing the last two inequalities and using estimate (2.15) for f*, we absorb the
term o(1)(|| f* |24 + || f]/22) and obtain the desired estimate. O

(DLF )+ 1513 ) #1671y — oD s

Remark 2.5. We also have the estimate
1715 <€ (1£afl, -3 + 107+ 1(7.0:27)]) - (2.19)

if 4 is close enough to 1 and Qg is close enough to Q*. This will be useful in the
next subsection for defining a smooth branch of Q3.
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2.4. Uniqueness of traveling waves for g € (,,1) close to 1.

Proposition 2.6. There ezists S, € (0,1) such that the following holds.

o For every B € (B«,1), for every Qg, Qs in Qg, there exists (v,y) € T x R
such that

Qp(x) ="Qp(z —y) .
o There exists a neighborhood U of Q™ in H? such that, for every 5 € (By, 1),
QpNU contains a unique point Qg satisfying
(Qp,1Q") = (Qp,8.QT) =0

Moreover, we have
1 1
1Qs = @*llr = O (11 = 81 1og(1 - B)[?) - (2:20)

The map B € (B«,1) — Qs € H3 is smooth, tends to QT as 3 tends to 1,

and its derivative is uniquely determined by
L5(95Qp) = 252 (@5 — T-(|Qs°Qp))
(05Qs,iQ™) = (9pQp, 0:QT) =0

Proof. Let us prove the first item. We may assume that ()g and Qﬁ tend to QT as
B tends to 1. For (v,y) € T x R, we then define

8(%,’7,@/,,@) = QB(:E> - einﬁ((L’ - y) )

(2.21)

and

Fvy. B) = (e(s7, 9, 8),iQ8) , 9(7.y,8) = (e(, 7,9, B),9:Qp) -

These two functions are smooth in (7, y) and their Jacobian matrix at (v, y) = (0,0)
is close to

(—iQ*,iQ%)  (8.Q",iQ") \ _ (—2m 2

(—iQT,0,Q") (0,Q+,0,Q")) — \—2m 4m

therefore it is uniformly invertible. Moreover, as 3 goes to 1, f(0,0, 3) and ¢(0, 0, 3)
tend to 0. By the implicit function theorem, we conclude that there exist functions
~v(B), y(B) with values near (0,0) such that

Then, coming back to the equations satisfied by Q3 and Qﬂ, we infer that e(z, §) :=
e(x,v(8),y(B), B) satisfies

16,6 By < ColD)le(-. )
and, using estimate (2.14), we conclude that e(x, 8) = 0.

[

Let us come to the second item. Select a family (Q%), with Q% € Qp, which

tends to QT as 8 tends to 1. Applying the implicit function theorem as before to
the functions

Fry.8) = (€7Q3(. —9),iQ™) , §(7.y.8) = (e7Q3(- — ), Q") ,

we find functions 7(8),%(3) valued near (0,0) which cancel f,§. This provides
the existence of ()g. The uniqueness comes from Remark 2.5. Furthermore, as a
consequence of (2.3), we get

1Qs = @*1l,,3 = O (11— I3[ log(1 - B)|2) .
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Coming back to the equation satisfied by (g,
DI =8D  \"
Qp = ——+1) (1Qs°Qs) ,
1-p
and expanding in the L?-norm
1 1
Qs1?Qs = |QT QT + O((1 - B)z|log(1 - B)[2) ,

we infer, in the L? norm,

(1+6)|D]

-1
DQs = D(D+1)"'ITH(|Q* 2Q1)+D ( + 1) I~ (1Q* Q™) +0((1-8) 2 log(1-p)|

1-p
and finally
DQs = DQT +O((1 - B)?|log(1 - B)|?) ,
in the L? norm, which completes the proof of (2.20).

Using again the equation satisfied by Q3 and the estimate from Remark 2.5, it is
then straightforward to prove that the map g +— Qg is smooth on (s,1) and that
its derivative satisfies

D|-D)Q :
Ls(0sQp) + W =0, (95Qp,1Q") = (95Qp,0.Q™) = 0.
Notice that (|D| — D)Qp = —2DQj5. Projecting the equation for Qs onto negative
Fourier modes, we get

2DQ, 2
B - 2
= Q, —1I_(|Qs]°Q
which, plugged into the equation on d3Qg, leads to (2.21). O

3. Properties of (3

We collect in this section information on )g which will be essential for the con-
struction of the two-bubble approximate solutions.

3.1. Weighted norms and Fourier multipliers. For every function f on R and
B € (B, 1), we define the following weighted norm,

| fll5 == sup(z)(1 + (1 = B)[z|)| f(2)] -
z€R
The next lemma will be crucial in all our estimates.
Lemma 3.1. Let {mg}s,<5<1 be a family of functions on R such that
sup mslz < Mo (3.1)
< Mo
1+ (1—B)|z|

for some My > 0. Assume {ag,bg}p.<p<1 is bounded in L™ and is tight in L2,
namely

(3.2)

|zms ()

Bx«<B<1
Then there exists a constant A > 0 independent of 3 such that, if f,h € L? satisfy

f=mgx(agf+bsf)+h,

sup/ ag(z)|® + |bg(z)*]dz — 0.
@+ @Rl

1
2

)
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the following estimate holds,

[l < Al(laslpoo + lasl g2 + 105l L0 + 1051 2) 1]z + [15] -

Proof. First of all, we have trivially

[z < Implp2 (lasl oo + 1081 100) 122 + 12l Lo
hence it is enough to estimate |f(z)| for = large enough. Let Ry > 0 such that

1/2 1/2 )
sup |[mg| ;2 </ !aﬁ(y)|2dy> + (/ Ibﬁ(y)|2)dy> <3
B ly|>Ro/2 ly|>Ro/2

For every R > 0, we set

M(R) := sup |f(z)] .
le|>R

For |z| > R, and R > Ry, we write

img * (agf + baf)(x)] <

/ ms(x — y)(ag(y) F(y) + bs (W) F(y)) dy

/ ms(x — y)(as(y)F(y) + bs(y) F))dy

1 R
< mara—mm Ul + el 1 + g <2) |

This implies, for every R > Ry,
Cllagl 2 + 10gl2) 1£12 + 10l Ly <R> .

M(R) < 5

- R(1+(1-pB)R) 8
Applying this to R = 2™ for n > ng, we obtain

-n ny— 1 n—
M(2") < K27 (14(1=8)2") 4 g M(2" ), K = Clagl po+bsl 1) 1f] g2 +17l 5 -

Iterating, we get

n—no n—ng+1
M) < KY reasa-grt () +(5) 0 ey
p=0

n—ngo 1 n—no+1
< K271+ (1-82m)7t > 2Py <8> M (2"~ 1)
p=0
< QK +4™ME2 ) 27m(1 4 (1 - B)2n) L.
Since |x| ~ 2" for 2" < |x| < 27! this completes the proof of the lemma. O

We now introduce an important class of families {mg}g, <g<1 satisfying estimates
(3.1), (3.2). Denote by M the class of families {y5}3,<g<1 such that the Fourier
transform is given by

f15(§) = Ag (f+(€) Leso+ /- (-igﬁ) 15<0> , (3.3)

where fi € C*°(]0,400)) satisfy the following requirements,

Vi > 0,5¢ € (0,+00), | < Cj(1+ )71, £4(0) = £(0),



22 PATRICK GERARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAEL

and where 3 — Ag is smooth on (f,1) and is bounded with bounded derivatives
of any order. Indeed, the L?-estimate (3.1) on g is provided by

|f=(O) < Co(1+¢)7F,

while (3.2) comes from

zug(x) = Ag <F+(x) — I (—i;gw» , Fiely) = /O+Oo ifi(¢) e % =0 (1 Jrlly\> :

The advantage of the class M is that it is stable through various important oper-
ations. The first one is of course the product of convolution, which corresponds to
the product of functions 3 +— Az and ¢ — f+(¢). The second one is the operator
x0y + 1, which corresponds to replacing f+ by —(f4. Finally, if {13}, <g<1 belongs
to class M, then

(=905 = (1= 0)4 (£ 1e0+ - (~155€) 1eca)  (30)
245 1+
+m g-— <_1—ﬂ£> leco, (3.5)

where g_(¢) := (f"(¢). Hence the family

{(1 = B)0sus}p.<p<1
is a sum of elements of class M.

A typical example of a family in class M is
1

mg = Ft

)

which corresponds to

Ag=1, f+(O)=f- () =1+,
The above considerations lead to the following result, which will be of constant use
in the sequel.

Lemma 3.2. All the multipliers

mgpq = (20:)"((1 = B)0p)"mg, p,q =0,
and any convolution products between them satisfy properties (5.1) and (3.2).

We complete this subsection with three auxiliary results. The first one is the
crucial estimate for L3 regarding the weighted norm || |5.
Proposition 3.3 (Continuity of Egl in weighted norms). Let 8 € (B4, 1) and
ge H =3 with
(9,i1Qp) = (9,0:Qp) = 0.

Then any solution f to
1
Lsf=yg, feH?
satisfies:
Iflls < Clgll -y +[(f:iQp)| + |(f, 02Qp)| + llmp * gli5) (3.6)
where
1 1

mg=F _
7 1+ =5
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Proof. The equation reads
f=mgxg+mg*(2Qs*f + Q5F) ,

so we are in position to apply Lemma 3.1 with ag = 2\@5\2, bg = Q%, h=mg=*g.
In view of the L*-estimates and the tightness property for the family ()3 obtained
from Proposition 2.6, we infer

1fllg < BUIfllzz + llmgs * glis) -
On the other hand, by Proposition 2.4,

Il < FI Lz S llgll, -3 + 10 iQp)] + I(f, 82Qp)]-
This completes the proof. O

Remark 3.4. In view of Remark 2.5, one can replace

|(£5iQp)| + (£, 0:Qp)]
by

[(f,iQ) [+ ([, 9Q4)]
in the right hand side of the estimate (3.6).

The second result is the following lemma.
Lemma 3.5. Assume pg satisfies (3.1) and (3.2). Then
g * (hah2)llg < [|Pallg l|h2lls -

Proof. First of all, the L>®-bound is an easy consequence of L? x L? C L™, so we
may assume |z| > 1. Then we split

pg * (hiho)(z) = /||<z| ps(x —y)hi(y)ha(y) dy +

/||>w| pp(x — y)hi(y)ha(y) dy

= O(lz|"(1 + (1 = B)[) ") |Ihrhel| 1
sz 1Rrh2ll L2 (y)> |l /2)

Oz (1 + (1 = B)|z))" Il g2 | ol 2
+O(|z[ 7321+ (1 = B)|z)) ) | hllgllhalls

and the lemma follows. O

IN

The third result concerns the LP norm of elements of class M.

Lemma 3.6. If {1g}3,<p<1 belongs to class M, then there exists C > 0 such that,
for every p € (1,00), for every p € (Bs, 1),

1
<C .
sl < € max (1)

Proof. From (3.3), the following holds,

us(o) = 43 (1es(0) + 1o (—1 50 ) )+ e i= )

It is therefore sufficient to prove that, for every f € C'(R,) such that

C C
FOI< 755 - 1FOI< g
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the inverse Fourier transform pu = F~!(f) satisfies

~ 1
€ (1,00) ey < € max (2p)
First, an integration by part leads to

_if(0) [ e g BE
o) = B2 i [ e 3

which provides the bound
1
(@) S 7 -
|z|

Secondly, if x is close to 0, introducing a cut-off function ¢ such that ¢ = 1 near 0,
and writing

o) = [ @ f @ G+ [ e = w5 = (o) + s (a)
i) 5 1og<‘ -

o) 5 [ ’Z[a&(wé)f(é)]‘ € < Jo]

We infer that, near z = 0,

we observe that

while

Consequently,

1 p dx
o< / <log<>) da:+/ .
llze = |z|<1 |z lzj>1 1P

1

pp_|_71

This completes the proof. O

N

3.2. Weighted estimates on (3.
Proposition 3.7. For every p,q € N, there exists Cy, 4 such that
VB € (Be1) , [(20:)P((1 = B)Ip)"Qsls < Cpyg -
Proof. First assume p = ¢ = 0. We use the identity
Qs = mg * (QslQsl) ,

and Lemma 3.1 with

1

B B _ ) B -
me =7 e | w8 =1Qsl", bs=0, h=0,
1+ =2

and we easily obtain
1Qsl < Cop -

Now let us prove the estimate for p = 0 and every ¢. Set ]\B = (1—p)0s. From
equation (2.21), we have

Ls(ApQp) = 35(Q5 —I-(1QsQp))
(ApQs,iQ™) = (AsQ5,0,QT) = 0
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From a priori H® estimates on Qg and inequality (3.6) — in fact Remark 3.4— we
infer

HAﬁQBH <C(1+Hmﬁ* I (|Qs°Qs)) H )

From the equation (1.9) of Qg, we have

Qs = mg * (1Qs1*Qp) »
so that, with mg = II_mg,

mg * (Qz — - (1Qs1?Qp)) = (my xmy —my) * (1Qs[*Qp) -
Notice that
53¢
(1— 1562

so that {mg *mg —mg}s <p<1 belongs to class M, and therefore Lemma 3.5 yields

F(mg xmg —mg)(§) = Leco

na, <6

For further reference, we are going to estimate “D@gQE HL2. Projecting the equation

of AﬁQg onto negative Fourier modes, we get

(1+8)DIsQ5 = AgQ5 —T1_(2|Qs1*AsQp+Q3AsQs) ———(Q5 —11_(|Qs1°Qp)) -

1+ﬁ

From the estimate on AgQB we just established, we infer
|pases],, < i
Let us prove by induction on ¢ > 1 that

1], = o

DasAL Qs L <y (3.7)

where Cp 4 and C’(’Z are independent of 3. Notice that we just proved the case ¢ = 1.
In order to deal with higher orders, we observe that, for every function f3 depending
smoothly on S,

~ _ 2Df . o
Ls(Asfs) = As(Lpfs) + ﬁ + 4Re(QpAsQ3) f5 + 2QpAsQsfp -

From this identity and the formula for AgzQg, we infer that Ls((Ag)1+1Qp) is a
linear combination of terms of the following form.
° Dag(Ag)TQg, with r < ¢ —1.
o Ag (AB)TQE for r < ¢ and Ag depends smoothly on 3, is bounded as well as
its derivatives.
e Bgll_ (([\ﬁ)“Qﬁ(]\ﬁ)bQB(f\ﬁ)cQg), where a + b+ ¢ < ¢, and Bg depends
smoothly on 3, is bounded as well as its derivatives.
° Cﬁ(]\ﬂ)aQﬂ(]\g)bQﬁ(]\ﬂ)cQg, where a +b+c¢ < g+ 1, a,b,c < g, and Cg
depends smoothly on 3, is bounded as well as its derivatives.

Since all these terms are bounded in L? by the induction assumption, and since
(Ap)T1Qp,iQT) = ((Ap)TQp,0,QT) = 0, we infer from inequality (3.6) — in
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fact Remark 3.4— that ”(Aﬁ)qHQﬁHLz is bounded independently of 3.
Now let us prove (3.7) at step ¢ + 1. Applying (Ag)?! to
Qs = ms * (1Qs°Qp)

we obtain
()™ Qs = m + (21Qs1*(Ap)" Qs + Q3(Rs)71Qs) + Rag
where R, is a finite sum of terms of the form

(Aﬁ)amﬁ * [(AB)bQB(Aﬁ)CQﬁOiB)dQQ] ,a+b+c+d=q+1, max(b, c, d) <gq.

Using Lemma 3.1, the L? estimate on (]\5)‘1*1@5, and Lemmas 3.2 and 3.5, as well
as the induction assumption, we infer

H(AB)qHQBHﬁ < Cogt1 -

Furthermore,

_ D _ —
DO (Ra)'Q5 = 15 + (21Qs* (R Qs + Q3(Ra)7Qs) + (1= 1) DR,

where (1 — 8)"'DRg, is a finite sum of terms of the form
(1-B) "' D(Ag) *msx [(Aﬁ)bQﬂ(AB)CQﬁ(Aﬁ)dQﬁ] , atbtctd = g+1, max(b,c,d) < gq.

It remains to observe that, if {y13} is an element of class M, then

(1= 32Dy (©) = Teeop 7 (-~ 5¢)

is uniformly bounded in L*°, therefore the convolution with (1 — B)_lD,uE is uni-

formly bounded on L?. This proves the L2-estimate on D (Ag)qQE, and completes
the proof of (3.7) at step ¢ + 1.
Finally, we prove the estimate for every p, ¢, by induction on p + ¢. Assume that

AL(Ap)*Qp

and let us prove the inequality for » + s = n + 1. Since the case r = 0 is already
known, we may assume r = p+ 1,s = g with p+ ¢ = n. Recall that A, := x9,. We
use the identity

Ae(frg)=Aa(f)xg+frhalg) +frg=Ne+D)fxg+ fxAs(g)  (3.8)

to obtain
AZ(A)1Qp = my * (2\Q5!2A§(/~\6)QQ6 + Q%Ag(f\@)q%) + Rapa s
where R, 4 is a finite sum of terms of the form
(Ao + 1) () m + [AY (R9)'QaAS (Ap) Qg (Rp)1Qs)
a+b+ct+d=q,d+b++d=p, max(b,c,d) <q—1or max(t/,c/,d)<p—1.

6SC’I‘,S7T+SSn7

Let us first prove that AQH([X@‘]Qﬁ is uniformly bounded in L2. We apply A,
to the above formula giving AL(A3)?Qs. We expand A, Rg, , using again identity
(3.8), and we get, by the induction assumption, that A, Rg p 4 is uniformly bounded

in L2. As for the term
ms + (21QsPAR(R5)7Qs + Q3AR(R5)7Q )
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we write
x0y[mg * f] = x0pmpg * f + Opmp * (xf) .
From the induction assumption, we easily get that
|w0.ms < (21QaPAR(R)"Qs + Q3AE(RR)Qs) |, < Ay
On the other hand, since

_ i€
0ump(§) = — 5
14 g5

is uniformly bounded, the uniform bounds on

[2Q8l 1 1Q5l e+ |AB(A5)7Qs

L2
imply

0+ (201QsPAL(A2)1Qs + 2Q3ME(R0)1Qs )| | < Bpa

Summing up, we have proved that Agﬂ(]\g)q@ﬁ is uniformly bounded in L?. Tt
remains to prove a uniform bound of the weighted norm. But this is now a conse-
quence of the formula

% X PR a0
AL (Rp)1Q = mp + (21Qu AL (Rp)1Q5 + Q3AET (R5)7Q5) + Ropin,g
of Lemmas 3.1, 3.2, 3.5 and of the induction assumption. The proof is complete. [

3.3. Inverting Lz with a special right hand side. In this section, we consider
the equation

Ls(ipg) = 10,Qs , (ips,iQs) = (ipg, 0yQs) =0 . (3.9)
Since 10yQp is orthogonal to iQQg and 0,Qs, this equation has a unique solution
given by Proposition 3.3. The next lemma describes this solution as £ tends to 1.

Lemma 3.8. Let ipg be defined by (3.9). Then,

i3 = Qs+ 50,Qs+O((1 — 9)3log(1 ~ B)|}) in HI(R).  (3.10)

Proof. A computation based on the equation satisfied by Q)3 shows that

i L
Ls (Qﬂ + 5%%) = —2|Qs[*Qs +iQ50,Qp-
On the other hand, we have
28DQgp

£(@3) = 500~ 105705 - @,
From the last two equations, we conclude that

£5(Qs + 50,05 + 31— H1T5) = ~21QsPQs +iQ3T,Q5 + 190,05

1

- 5= BIQsPTs — 51~ B)Q} = RHS

Using (2.20) and Proposition 2.3, we then notice that
RHS = —2[Q*PQ* —i|Q*|* — Q" + O((1 — £)"/*|log(1 — §)|"/?) in H~Y/?
— i0,Q" + O((1 - )M log(1 — B)[/2) in H~1/?
— 0,Qs + O((1 — 8)"/2| log(1 — B)["/?) in B2
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Thus, denoting
7 1 —
98 = Qp + 50,Qp + 5 (1= B)Qp,
we have that
L3(gg) = i0,Qs + O((1 = B)/*log(1 — B)|"/?) in H~'/2.
Notice that
(QB + 581/@,871@5) = (Qﬁ + 50,Qs; 3yQB) =0.
Then, considering
. 1 . —
g8 =98 — 5(1 — B)Proj(iq,.0,04) @8 » (3.11)
we have that (g3,1Qg) = (g3, 0yQp) = 0 and
L(Gs) = Ls(gs) = 10,Qp + O((1 — B)"/*[1og(1 — B)['/?) in H~/.
Since Lg(ipg) = 10yQp, it follows that (ips — gg,iQs) = (ips — Gg, 0yQp) = 0 and
Lp(ips — gg) = O((1 = B)"/?|log(1 — B)["/?) in H~V/2.
Then, by Proposition 2.4, we have that
ipg — gs = O((1 = B)"/?|log(1 — B)[/?) in H'/?

In view of (3.11), we have js = Qs + 40,Qs + O(1 — 8) in Hz(R), thus (3.10) is
proved. ([

3.4. The profiles of Qg(z) and of 0,Qs(x) at infinity.

Proposition 3.9. Consider the following function,

F(x) = d R 3.12
@= [ Sda ser. (312)
and the quantity
)
cg = / 1Qs(x)*Qp(x) da . (3.13)
2w R
Then, as  — 1 and |z| — oo, we have
c 1-p 1
- Pr(_ il 14
Qo) = 2r (~1550) +0 () 31)
icgl—p3 1-p c 1—-p  log|x|
Oy = — Fl - - =40 . 3.15
Qp() z 145 < 1+48° 2 2 T EE (3.15)
Remark 3.10. (1) From the previous section and by Lemma A.1, we know

that cg tends to 1 as  tends to 1. In the next subsection — see (3.29)—
we will prove that

cg =14 0((1 = B)|log(1 - B)]) - (3.16)
(2) Notice that F(x) = 1+ O(|z||log|z||) as  — 0 and |F(z)| < & for all

|z]

|z| > 0. Therefore, as f — 1 and |z| — oo, we infer from (3.14) that

1
Qs(z)] < =gl V|z| > 0. (3.17)
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Furthermore, if 0 < 1 — 8 < 1, |z > 1, and (1 — 8)|z| < 1, the following
asymptotics follows from (3.14) and (3.16):

1+ 0((1 - B)[log(1 — B)I)

Qp(z) = - [1+0((1 - B)lz|log((1 — B)|=])])]
+o<;> (3.18)
(3) In view of the identity
Flz) = (; - z) Fz) - é , (3.19)

the main term in the asymptotics (3.15) for 0,Qs(x) is indeed obtained by
deriving the main term in the asymptotics (3.14) of Qg(z).

Proof. The starting point is again the formula

Qp =ms * (1Qs1°Qs) ,

where

. 1

S S

We notice that, for x # 0,
1 1-— 1—
mg(x) = Dy (G(a:) + 1 +gG (—1+ga:)> ,

ooeia:{
G(x):/o e

the second integral being obtained from the former by writing

a(1+€)
1+ 5 / da.

It is easy to check that G is smooth outside x = 0, G(x) =iz~ ! + 272 + O(x73) as
x — 00, and G(x) ~ log|z| as z — 0. In particular, G € LP(R) for every p € (1, 00),
with

where

dao,

o — 1T

1

Next we split
Q) = /R (2 — y)m(x — )| Qa(y) P Qs(y) dy + /R mae —1)9|Qs () 2Qs(y) dy

Let us estimate the second integral in the right hand side, writing

/ ma(z — y)ylQsy)*Qs(y) dy = / mg(x — y)ylQsy)*Qs(y) dy +
R ly|<|z|/2

/|>| /2 ms(z —y)ylQs(y)I*Qs(y) dy

From Holder’s inequality and the uniform bound |Qg(x)|(x) from Proposition 3.7,
we have, for every p > 1, close to 1,

11
| P

I

/|>| /2 ma(z — y)y|Qs(y)*Qp(y) dy| <
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which, by choosing

p=1+

log [z] ’
yields

logla| _ logla

e I

/ mg(z — y)ylQs(y)|*Qsy) dy| <
lyl>z1/2

On the other hand, because of the bounds on G, we have
img ()| S J2| ™t Ja] = oo
Indeed, the only non trivial case is (1 — 8)|z| < 1, so that

-8 [ 1-8
‘1+6G<_1+6$

We conclude that

)' S (1= )liogl(1— kel S 1

‘/ ma(z — vyl Qs(v)Qs(y) dy| S — |
lyl<lel/2 ]
so that
1 ) 1
Qo) =1 [ (o= wmste ~ 0IQsP Qs dy+0 (35 ) -
We come to the first integral. We observe that
o 1 (145 1+8,.\ 7 . leg
6= 0| g | =+ (75 e (10 155) il
so that
. -
xmg(zr) = % <F <—1 +g:v> - F(w)) , (3.21)
o) eix{ X He @ )
F@)::!A Oﬁfyd&:A O da=14inG) . (322
This leads to
/(m —y)mg(z —y)|QsW)*Qs(y) dy = —/ F(z —y)gs(y) dy
R R
+ /RF <—;g(fc—y)) 95(y) dy ,
9 = i@ﬁ‘QQB :

Again we are going to estimate the above two integrals by using the properties of F,
namely that F is smooth outside the origin, it is bounded near 0, F(z) = O(z~!)
at infinity, while |F'(z)] = O(]log|z||) near 0 and F'(z) = O(z~2) at infinity.
Furthermore, let us recall from Proposition 3.7 that
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We infer the following estimates,

/RF(SC—@/)gﬂ(y)dy = /|ygg F(w—y)gﬁ(y)dy+/|>lw F(x —y)gs(y) dy

= O(lz[7h) +0(=7?),

/RF (—1 :L g(w - y)> gs(y)dy = F (_igx> /lyS
" /|y<“” (F (—1;2@—@) —F (_1 :rgx» 95(y) dy

1—
= o (~1550) + 0l + Ol wl(1 - B)el)
sllogs| f0<s<i
1 if% <s ’

S

w(s)

This completes the proof of (3.14). Let us come to the proof of (3.15). Notice that

Boma(e) = ——e

14 =2

_ i1 1-8, _15>0+1—5 leco
&0~ 1 ple<o T T 1+/3(1+\51|f§5> ’

so that, using the formulae F~1(14¢50) = ZFzmpv ( ) + 50,

-1 1\, P i i (L=B\'( (_1=8
oums(e) = gy (3) o s 3 0@ (155) ©(1757)

and

0.0s0) = g (3) <00+ e Q(@PQsla)

1-8\ ,( 1-5 >
+ — | G| - — - G(x — d
/R<<1+B> ( 1Jrﬂ(ﬂﬁ y) (z—y) | 95(y) dy
Using, similarly as above, the estimates on G, and Proposition 3.7 for gg , we have
log |z|
Gz —y)gs(y)dy = O |
lyl>l21/2 ||

i 1 /. log |x|
G(x —y)g ydyz/g—i—(z/yg—i—/g)—l—O( >
/|y|§x|/2 ( )B() z Ju B 22 . B . B EE

On the other hand,

! 1/ + 1/ . ! (v*95)
v — | *xgs=— — —pu | — ] * .
po\g)ros= [ ost 5 [ vost gro| ) x (e
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From Proposition 3.7, hg(y) = y?gs(y) satisfies hg(y) = O({y)~1) and hs(y) =
O((y)~2). We infer

pv<1>*hﬂ _ /Ooohg(x—z)—hg(x—i-z)dz

X z
hg(x —z) —h
- sz =) —hsle+2)
(2| —=2[>1«|/2 o
hg(x —z) —h
o oo =) —hsle+2)
[lz|—z[<|z[/2 o

/ dz +/ dz
le|—2(>lel/2 2] =202 Jjjzj—zi<ja)/2 [2l{|2] = 2)
= O(lz|™") + O(|z| " log |z]) .

Summing up, we have proved that, as x — oo,

2i 1 _i(l—ﬁ)/ 1 1—-p  loglz|
1+ﬂpv<x)*g5 G*gﬁ_(l‘f‘ﬂ)x Rgﬂ a? Rgﬁ—i—O a? " |z[? .

It remains to study the last integral, namely

/R (1;2)2(; <_1 l?w B y>> 95(y) dy = /Iy|<|x/2 b /Mw2 .

Using again Holder’s inequality and optimizing on the power, we get

/|y>|x/2 G;g)% <_1 J_r /i(””” B y)> 98(y) dy| < (1= B8)logla]

|z[3
On the other hand, because of the estimates on G’, we have

/|y|<m|/z (1;@2 ¢ (ﬁ 1 g(x - y)> 95(y) dy =

(555) ¢ (-155e) Lm0 (*5) -

In view of the identity

this completes the proof of (3.15). O

3.5. Further estimates on 03Q)g. In this subsection, we improve some the esti-
mates on Qg := 0gQg deduced in Proposition 3.7.

Proposition 3.11. The following estimates hold as B tends to 1.

10313 S 1og(1 — B)] (323)
- C

2 . 3.24
301 T (321

Furthermore, if Hg = (1 — ﬁ)@%@g or Hg = 03y0,Qg, we have similarly

IHg ] ,3 < Hog(1 = B)l (3.25)
P C
) < o (3.20
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In particular,

i”QBH%Q — 0(|log(1 - B))) , (3.27)
B(DQBaQB) O(|log(1— B))) . (3.28)
= /R 1Qs2Q5 = O(|log(1 — A)]) . (3.29)

and, if Hg is as above, and pg is defined by (3.9), we have
|(Hg, Qp)| + [(Hg, DQg)| + |(Hg, ips)| = O(|log(1 — B)]). (3.30)

Proof. We project the equation (2.21) for Qg onto the negative and positive modes.
This gives

(1 +8)IDIQs + (1-8)Q5 =

5195 ~T-(QsPQ + 12051 — £)Qs + Q31— A2
DQY +QF — 1L 21Q41Q7 + Q3QF] = 11 21Qs2Q5 + Q2Q;]
(@F:iQ") = (QF,2:Q") =0.

Using the last equation, the invertibility (2.15) of £ defined in (2.16), and a per-
turbation argument as in Proposition 2.4, we can estimate QE by means of QE as
follows,

Q31,5 < lQsl*Q5 +Q5Q5II 1 S Q52 - (3.31)
On the other hand, the first equation leads to
A l5(¢)
%) BRI
bg = 7 ] _[mgs = (1Qs?Qp) — |Qs1° Q] + TI_[2|Qs*(1 — B)Qs + Q3(1 — B)Qg] -

Using the L? bound on (1 — B)Qg from Proposition 3.7, the above expression of {3
implies

sl < C,

which proves (3.24). Coming back to (3.31), we infer, using the L! and the L?
bound on Q%, and from Young’s L' % L? C L? inequality,

- 2 1
. Q36 — 1)l
+ B
ZLVERRS /R/Rl—6+(1+/3>|n|d” &«

dn dn
</| i-g+a +/3>|n|>2> i /Mg Bt (L BN
S |log(l—B)l

This proves (3.23).

N

N
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Next we prove (3.25) and (3.26). We apply (1 — 3)0p to the above equations on QE
and Q5. With Hg := (1-— B)E)%Qﬂ, we infer

(1+B)|D[Hg + (1= B)Hs + (ID| = 1)(1 - B)Qy

(1= 390 (125105 = T(1QsP Q)] + T 2QsP(1 — Qs + Q31 = 5)i])

DH} + Hy — 1 [2|Qp*Hy + Q3H] =

L4 [2(QsPHy + Q3Hy +2(1 = $)95(1Qs1%) Qs + (1 = B)3s(QF) Q] ,

(H},iQ%) = (H].0,Q") =0 .

In view of (3.24), the Fourier transform of (|D|—1)(1— ﬁ)Q; is uniformly bounded.

Furthermore, using again (3.24) and the L? bound on [(1 — 8)d5]*Qs from Propo-
sition 3.7, the Fourier transform of the right hand side of the equation on H 3 is

uniformly bounded. This provides estimate (3.26). In order to obtain (3.25), we
use the equation on Hg Notice that, again by (3.23) and (3.24) combined with the

Hausdorff-Young inequality,
121 = 8)95(1Qs1") Qs + (1 = £)95(Q3) Qs < (1~ H)IIQs1I74

d 3/2
5(1_ﬁ)</R((1—B)+(1£+6)|£|)4/3> + (1= B)llog(1 = HI
SR

~

By the perturbation argument of Proposition 2.4, we infer

1HGI|,3 S INQFHS ll2 +0((1 = 5)'?)

HZ ™~

and we obtain (3.25) exactly as we obtained (3.23) above.

Next we deal with the case of Hg := yayQﬁ. Applying y9, to the equation on
@3, we get
2
Ls(y0yQp) = 1Qs"Qp — Qs ,
and, taking the derivative with respect to S and projecting on the negative and
positive modes, we obtain

(1+AIDIH; + (1 - B)Hy =

-[2|Qs*(1 — B)Hp + Q3(1 — B)Hp)] + I (y9,Qp)

2
148

2 . - :
+ 13519 — I-(1QsFQa)] + T 21Q*(1 = 8)Qs + Q31 ~ A)Qs] — (1 - B)Q;
2 N
118 _121Qpl*y0,Qs + Q3y0,Qs]

+ 211 [(1 - B)QsQuv0,Qs + (1 — B)QsQayd,Qs + (1 — B)QsQsy0, Q).
DH} + Hf — 11 [2|Qs’HJ + Q3H]] =

1L [21Qs[*Hy + Q3Hj +2|Qal*Qs + Q3Qs) — QF

+ 211, [Q5Q5y0,Qs + QpQpyd, Qs + Q5Q390,Qs),

(Hg,iQ") = (H},0.Q7) =0 .
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Again, from Proposition 3.7, we notice that the Fourier transform of the right hand
side of the equation on Hjy is bounded. This provides (3.26). Using again the
perturbation argument of Proposition 2.4, we infer

11,3 S IQEHS 2 + 1Q3Qs 2 + 1QF Il 22 + 1QsQ5y0, Qs 12

and (3.25) again follows from (3.26), (3.24), (3.23), and the L'- and L2- bounds on
Qpy0yQp-
Let us come to the proof of (3.27). We have

d . . L
a5l = 2(Qs, Qs) = 2(Q5, QF) +2(Q5. Q5) -
From (3.23) and the L? bound on Qg, we infer

(QF, Q5| < [log(1 = B)] -

From (3.24) and the representation of Qp, we infer

o (1= 8)I1QsPRs(©)
@015 [ T i e

This completes the proof of (3.27). The proof of (3.28) is similar. As for (3.29), we

write
d 2 _ 2/ 24
75 [1asP@s =2 [ 10sP0s+ [ @305

Write ng = Qg + Q/g in the two integrals of the above right hand side. The
contribution of Qg is O(|log(1 — B)|) because of (3.23). As for the contribution
of Q[;, we evaluate it by means of the Plancherel theorem. In view of (3.24), it is
O(]log(1 — B)]). This completes the proof of (3.29).

The proof of the first two estimates of (3.30) follows exactly the same lines as (3.27).
As for the last estimate, we recall from (3.10) that

¢ = 0(1) .

) 1
lis — Qs — 5DQsllz2 < (1= 8)"/*[log(1 - B)/? ,

so that
|(Hg,ips)| S [log(1 = B) + (IHj |2 + | Hg |l 22)(1 = 8)"/* log(1 = B)['/ ,
and the proof is completed by using (3.25) and (3.26). O

4. The two-bubble approximate solution

This section is devoted to the construction of the two-bubble approximate solu-
tion. The general strategy follows the lines of [27] for the Hartree problem with
the additional difficulties of keeping very carefully track of the leading order terms
generated by the critically slow decay of the solitary wave and getting estimates
which are uniform in the singular limit § — 1.
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4.1. Renormalization and slow variables. Let
1 . dsj 1 x — xi(t)
ui(t,x) = —v(sj,y;)e, —L = R J ,
’ y U e A(t) 7T N1 = Bi(t))

Aj

for j = 1,2. We have

ipuj — |Dluj + ujlu;)?

Iy (ID] = BiD)v;  (Nj)s; i (@5)s;
= — id.. v: — J J I Avs — I _B:10, v
AJ% ¢ SJUJ 1— BJ t )‘j Uj 1— B] )‘J ﬁ] yJUJ
i(B5)s; -
+ 3 _Jgj Yi0y,05 — (13)s; 05 + vjli? | €9 (55, 95)-
j
Let us define the relative numbers
A
X =29 — 21, ,uz)TQ, I' =7 —m,
1
and
1— 05 X
b= , R= ——7~——. 4.1
1-p A(1—=p) (4.1)
We observe the relation
y1 = R+ pbys. (4.2)
We then decompose u(t, z) = ui(t, ) + uz(t, z), expand the nonlinearity
ulul* = uy(fus? + 2Juel? + wriy) + ua(|ua]? + 2|u |* + ugtr)
and split the contributions of crossed terms using a cut off function
Y1 b
xr(z) = x (E) =X (1 + Ry2) (4.3)
to obtain:
. 2 1 im 1 2
i0pu — |D|u + ulul” = —5 &1 (s1,y1)e™ + —5E2(s2, y2)e
AL Az
with
D|— 61D
51 = ’iaslvl — W — U1 + U1|’U1‘2
- B
(M) i (z1) i(51)
- 3 )\181 AUI —_ = 51 )\181 — /81 8y1U1 + 1 511 ylayﬂ}l — [(’)/1)31 — 1}’1)1
9 , e il el 2T
+ xg|—vi|va]” + V102 + 2—|v1|“ve + s |,
7 N N oot
) D|— B2D)v
52 = 1852112 — M — Vg + ’U2|UQ|2
1— 5
(A2) i (22) i(B2)
- ZT;ZA”? 1.5 TQSQ — P2 ) Oyv2 + T 522 Y20y,v2 — [(72)s, — vz

+ (1 —xg) [2m]v1[P2 + 2¢/me” T or|va|* + /e 13 + pe 2 o]
The full vector of parameters is denoted by

P = (A17)\27/817527F7R)' (44)
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Following [27], we now look for a solution to
E1=&E=0
in the form of a slowly modulated two-bubble, i.e.
vis5: yj) = Vi(y;, P(s))

where the time dependence of the parameters is frozen for translation and phase
invariances:

(17])
Aj

=B, (1)s; = 1, (4.5)

the dependence of scaling and speed is computed iteratively according to a dynam-
ical system

()‘j)sj ‘ (ﬁj)s] _n
)\j - M] (P)v 1— B] - BJ (7))7 (46)
Fslzi_lﬂ Fsy=1—p, X4=0—p (4.7)

and the remaining time derivatives for (b, R) are modeled after (4.1), (4.5), (4.6):

R51 =1—-b+ (Bl — Ml)R, R52 = ,u(l —b+ (Bl — Ml)R) (48)
Hence
D| — 51D)V; . . 5A%
g = UPI=BDIVL i A+ B [ylaylvl 1- 8L
1—p 01
oV Vi (1= B2)By 0V
M| — M- - = 4.
+ i\ 18)\ + i\ 28)\2—1—2 " 95, ( 9)
1-— Mavl 8Vl
— 1-— B M
+ M 3T +i(l—b+ (B1 — 1)R)8R
+ 2V + VRV 4 28 i Mvﬂ
X - )
R p 11Va VB N7 17V 2
D| — B2D)V; . . oV
E = —G‘l_ﬂ;” — Vo + Va|Va|? — iMaAVy + 0By [yzayzvé (1—B2) 52
OVa OVa OVa
+ Z)\QMQW + 1A M7 —= g + Zu( 51)31 95, (4.10)
) Vs OVa
Z(l — ) ar + Z/L(l —b+ (Bl Ml)R) R

(1= xr) [20lViPVa +2y/e " ViVal* + Ve VS + ue P TVETR)
and we need to solve the system of nonlinear elliptic equations in Vq, Vo,

_ : _ yu—R
{ Filn) =0 with 1o = g (4.11)
Sg(yQ) =0 with y; = R+ buys.

in a suitable range of parameters P.



38 PATRICK GERARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAEL

4.2. Definition of admissible functions. We define the open set of parameters:
Bj € (B 1), j=1,2

R> R,

1= X[+ 1= o <n

T<l=Bi<2n 1-Br>e B 0<b<s

for some universal constants R, > 1, 0 < n,d < 1 to be chosen later.

PeO= (4.12)

We now define a suitable topology:

Definition 4.1 (Admissible function). We consider functions g = g(y,P) : RxO —
C.
(i) (L*°-admissibility). We say that g is L®-admissible if Vo € N, JA, , VP € O,

HAZ”A%?ﬁi”fai‘;aﬁsﬁgfﬁg;g(-,P)HOO < Aq. (4.13)

(i) (Admissibility with respect to a bubble). Let j € {1,2}. We say that g is admis-
sible with respect to the bubble j — or j—admissible — if Voo € N7, JA,, VP € O,

| Ag agpagzansopAge Agrg(, P)

< Ag- (4.14)
Bj
(iii) (Strong admissibility with respect to a bubble). Let j € {1,2}. We say that g is
strongly admissible with respect to the bubble j — or j—strongly admissible — if it
is j-admissible and if, for every family {1p}ge(p«1) of multipliers in the class M,
the convolution product

pg; * 9., P)
18 j—admissible.

Notice that admissibility with respect to the bubble j implies L°°-admissibility.
Furthermore, we have the following fundamental property.

Lemma 4.2 (Admissibility of Qg). For j = 1,2, Qg, is strongly j-admissible.

Proof. Admissibility of Qg, with respect to the bubble j is a straightforward con-
sequence of Proposition 3.7. Given {p5}g¢(+,1) @ family of multipliers in the class
M, let us come to the j-admissibility of ug; *x Qg,. From the identity

Qp = mp * (|Qs°Qgs) ,

and the invariance of M by convolution, we infer that
pe * Qs = fip * (1Q5/°Qp)

where {fig}ze(+,1) belongs to M. Then, applying INX%AZ to this identity, and using
the stability properties of class M through these operations, the j—admissibility of
pp; * Qp; follows from the j-admissibility of g, and from Lemma 3.5. (]

4.3. Stability properties of admissible functions. We now prove some elemen-
tary stability properties of admissible functions.

Lemma 4.3 (Stability properties of admissible functions). The following stability
properties hold.
(i) (Stability by derivation). Assume g is j—admissible (resp. strongly j—admissible).
Then

Ayg, ARg, 0y, 9,0rg, Ag;g (4.15)

are j—admissible (resp. strongly j—admissible).
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(ii) (Stability by multiplication). If g is j—admissible, h is L>-admissible, then gh
is j—admissible. Furthermore, if g and h are j—admissible, then gh is strongly j—
admissible.

(iii) (Ezchange of variables). Given a function g = g(y), we define

g'n) =g (ylb;R) (4.16)

and

g’ (y2) = g(R + buys) . (4.17)
If go is 2—admissible, then R(14 (1 — Bl)R)b_IXRgg is L>®-admissible, and b_lngg
is 1-admissible. If g1 is 1-admissible, then R(1 + (1 — B1)R)((1 — xr)g1)” is L>°-
admissible.
(iv) (Stability by scalar product). If g is j—admissible, then (g,iQg;) and (g,0yQgs;)
are L -admissible.
(v) (Stability by convolution). If g is strongly j-admissible and if {5} ge(ss,1) be-
longs to class M, then ug; * g is strongly j—admissible.
(vi) (Mized cubic nonlinearity and convolution). Assume gi,h; are 1-admissible,
and go, ho are 2—admissible. Then

R(1+ (1= SR xrarg5hs . R(L+ (1= BRI xr1hgh
are strongly 1-admissible, and
R(1+ (1= B1)R)((1 — xr)g1) g2h2 , R(1+ (1= B1)R)((1 — xr)g1h1) g2
are strongly 2—admissible.

Proof of Lemma 4.3. The first two properties are almost immediate — notice that
the strong admissibility of gh is a consequence of Lemma 3.5.

Property (iii) is established by first observing that |y;| < % on the support of xr gg,
so that

ly1 — R R
1= B) A= > (1 - B == .
(1—52) b = ( 61)2#
Similarly, R + buys > R/4 on the support of ((1 — xr)g1)’, so that

R
(1= B)IR +buye| = (1= 51) -
In the first case, we also have, on the support of xr gg,
1
ly1 — R| > Z(’yl‘ +R),
so that

Ixrgblle, < bllgalls, and R(L+ (1= B1)R)|Ixrdill= S bllga|s-
We argue similarly for ((1 — xg)g1)’. Furthermore,

R
Ay1 (.gg) = (Ay292)ti + @(ang)ﬁ ) Ay29? = (Az,ngl)b - R(azngl)b >
with similar formulae for derivatives /~\5j,A R, Oh;. Since
9y 9(y;) = Oly;) * 1),

this provides the correct decay of derivatives of x g gg and of (1 —xg)g1)".

Let us prove property (iv). The L*-admissibility of (g,iQp;) is a consequence of
the Cauchy-Schwarz inequality and of the j-admissibility of g and Qg;. As for the
L>°-admissibility of (g,0,Qp;), it is a consequence of the j—admissibility of g and
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of the boundedness in L? of A%Q3A%QsA5Qs. The latter fact follows from the
identity
9,Qs = dymgs * (1Qs°Qs) ,

and of the boundedness of the Fourier transforms of 8y/~X%m5.
Property (v) is an immediate consequence of the invariance of class M by convolu-
tion.
Finally, let us prove property (vi). By properties (iii) and (ii), we immediately get
that

R(1+ (1= SR xrgrg5hs . R(1+ (1= B1)R)b ™" Xrg1h1gh
are strongly 1-admissible, and

R(1+ (1= B1)R)((1 — xr)g1) g2h2

is strongly 2-admissible. Furthermore, R*((1 — xg)g1h1)’g2 is 2-admissible for the
same reasons.

The strong admissibility of R(1 4 (1 — 81)R)((1 — xg)g1h1)’g2 requires a specific
proof, as follows. We proceed as in the proof of Lemma 3.5. First of all, the L°°-
bound of pg, * R2((1 — xg)g1h1)’g2) is a consequence of L? x L? C L. Then we
consider the case |y1| > 1. We split

1, * (1= xr) 911 92) (y2) =

/ oy 62 (y2 — 5) (1 — xR) (R + pbyb)g1(R + pbyb)hi (R + pbyb)g2(ys) dyh
yhl<

2

" / i 102 = ) (L= XR) (R pnby)gy (R o+ byl (R + 1aby) ) e -
YalZ 73—

In view of decaying properties of p3 and of the L>°-bound on (1 — xr)g1h1, the first
term in the right hand side is bounded by

||92||52 / dyé dy/
ly2l(1+ (1 = B2)ly2)R2(1 + (1 — B1)R)® Jr (1 +[wh| + (1 — Ba)|whl?) 72
| log(1 — B2)|

Y2l (1 + (1= B2)[y2 ) R*(1 + (1 = B1)R)*
For the second term, we need the following LP bound on ug, proved in Lemma 3.6,
C
lsllLe®) < o1 I<p<2

Using this bound and Holder’s inequality, we infer that, for 2 < ¢ < oo, the second
term is bounded by

Cq (/ dyh )q

R2(1+ (1= B)R)(1+ |y2)) (1 + (1 = B2)ly2) \Jr (1+ (1 —B2)[y5])9

< Cq(1— By)~ Y1

Y RA1A+ (1= B)R) (1 + Jy2)(1+ (1= B2)lyal)
Optimizing on ¢, we get the bound

| log(1 — B2)|
(L+[y2))(1 + (1 = Bo) [y ) R2(L + (1 — A1) R)

We conclude that

|log(1 — B2)| < 1
1+ -=8)R) ~ RA+(1-pF1)R)

bbb
kg, * (L= xR) g1h192)l6: S 72
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because of the assumption

1—By>e R (4.18)
from (4.12). Similar estimates hold for the derivatives. This completes the proof.
O

Remark 4.4. Because b is bounded but can be small in the set of parameters O,
there is some asymmetry between bubble 1 and bubble 2, which is reflected by the
specificity of the last case in property (vi), for which we had to introduce assumption
(4.18).

4.4. Continuity of Egl on admissible functions. We claim a uniform continuity

property of Egl with respect to Schwartz-like norms which will be essential to
control the error in the construction of the approximate 2-bubble. Recall that

Pp = y0yQp + (1 — B)9sQp -
Lemma 4.5 (Generalized invertibility). Let j =1 or j = 2, let d be a nonnegative
integer, and o € R such that |a| < ax(d). If n < ni(d) and if g is of the form
d

g(y,P) = Z gT(yap ) ot )
r=—d

where P* := (A1, A2, 51, B2, R), and each g, , r = —d, ..., d, is strongly j—admissible,
then the problem

admits a unique solution (f, M, B), where M(P), B(P) are real valued, and

Z fr y, P et )

r=—d

where each fr. , r = —d,...,d, is in H?3 in the variable y. Furthermore, M, B are
L>®-admissible, and f is strongly j—admissible.

Proof. Since Lg is not C-linear, it is preferable to use the Fourier expansion in
cosines and sines, so we write

d
9(y, P*) = go(y, P*) Z y, P*)cos(rT) + g, (y, P*) sin(rT)] ,
d
fly,P*) = foly, P Z £ (5, P*) cos(rT) + f, (y, P*) sin(rT)]
d
M(P) = Mo(P*) + > _[M;}(P*) cos(rT) + M, (P*)sin(rT)] ,
r=1

B(P) = By(P*) + Z )cos(rl') + B, (P*)sin(rT)] .

The problem on f, M, B is therefore equivalent to the following family of problems
'Cﬁjfo = ZMOAQBJ - ,LBO(bﬂJ +90 ) (fﬂafLQ,Bj) = (vaayQﬁj) =0 ) (419)

{ ﬁﬁjf’lj- —iarf, = inj_AQﬁj _Z‘B;F(I)ﬁj +g7:‘— » ( j?iQﬁj) = ( ﬁ_?ayQﬂj) =0
(4.20)



42 PATRICK GERARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAEL

Let us first deal with (4.19). Recall from Proposition 2.4 that

ker Egj = SPGHR{iQﬁj7 ayj Qﬁj b

and that the range of L, coincides with the orthogonal of spanr{iQg,,d,,Qgs, }-
Consequently, the real numbers My, By must satisfy the orthogonality conditions

(90 — iMoAQp, +iBo®g;,iQp;) = (g0 — iMoAQp, +iBo®p;, 0y, Qp,) =0 .
Notice that, in view of (3.27), (3.28),

. . 1-84d 1
(i95,iQ5) = (24,Qp) = —5— 51Qsll12 — 51Qsl72 = =7+ O((1 = H)l log(1 ~ A},
. 1
(1AQs,0yQp) = 5(Qp, DQp) =+ O((1 — )l log(1 = B)I) ,
. 1-8d
(i®p,0yQp) = T@(QB,DQM = O((1 - B)|log(1 = B)|) -
In view of these identities, we infer that My, By are characterized for 3; close enough
to 1 — hence for 7 small enough —, given by the following formulae
2(go,1Qpg,
I UL (4.21)
HQﬁj ”LZ - Aﬁj HQﬁj ”L2
My = 2(9078yQ,3j) n 2(90>iQﬂj>Aﬁj”QﬁjHQL2 ' (4.22)

(@5, DQs;) ~ (Qs;, DQs,)(1Q5, 1172 — As, 1@, 1172)

In view of these formulae and of property (v) in Lemma 4.3, we conclude that My
and By are L°°-admissible.

Then Proposition 3.3 provides existence and uniqueness of function fj, as well as
the estimate

1follg; < llgollze + llmg; * goll; -
Applying inductively Agf\%j to the identity
fo=mg; * (iMoAQp, — iBo®s, + go) + mg, * (2|Qp; |* fo + QF, fo)

and using that AQp;, @, and gp are strongly j—admissible, we conclude from Lemma
3.1 that fp is strongly j—admissible.

Let us come to the systems (4.20). Given g € H~2, define

Blg| := 7 ,
7 1Qs;1172 — Ag,11Qp,1175
; A 2
M[g] — 2(9789Q5j) 2(g7ZQﬁj)AﬁjHQﬁjHL2

(Qﬁj’DQﬁj) (Qﬁj’DQﬁj)(HQﬁjH%2 - ]\ﬁj HQﬂgH%2) .
and let
Egl TH™2 N (ker L)+ — H2 N (ker L)+

be the R-linear isomorphism provided by Proposition 2.4 . Then the system (4.20)
is equivalent to

£ = L3 g +iarf; +iM[gh +iarfT1AQg, —iBlg! +iarf;]®s),
fi = L3 g —iarf +iMlg; —iarf|AQs, — iBlg; —iarf{19s,)
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The right hand side in the above side defines a mapping of (f;7, f) € HY/? x H'/?
which is contracting if ar is small enough. This provides existence and uniqueness
of (f, f) as well as uniform bounds in H/2, and the formulae

M = Mgf +iarf7), Bf = Blgt+iar f7), My = Mlgy —iarf], By = Blgy —iarf7].

The strong j-admissibility of f and f and the L>®-admissibility of M*, B
are then obtained from the system

T =mg, « (iM}AQp, —iB;f ®g, + gt +iarf ) +mg, x (2|Qs, I f; + Q%jﬁ) ,
fr =mg, = (IM7AQg, —iB; ®g, + g, —iarfF) +mg, + (21Qs, P f + Q% fr) |

applying again Lemma 3.1. U

4.5. Construction of the approximate solution. We are now in position to
construct the approximate two-bubble solution.

Proposition 4.6 (Construction of the two-bubble). Let N be a positive integer,
0 <n << n(N). We can find an expansion of the slowly modulated two-bubble for
j=1,2:

N

Vj(N) (yj7 P) = Z Tj,n (yj7 P)>
n=0

N
MNPy = Y M),

n=0
N
B(P) = 3 Bjn(P)

such that the following holds:
(1) (Initialization). For j =1,2, Tjo = Qp;(y;), Mjo = Bjo = 0.

(2) (Control of the error). Let 0 < n < N and (£j,)j=1,2 be given by (4.9),
(4.10) with V; = V™. Then
b (1+(1—-B1)R)R" L&, , is strongly 1-admissible, and (14+(1—p1)R)R" &y,
1s strongly 2—admissible.

(3) (Control of the profile). For all0 <n< N, j=1,2,
b1 (1+ (1= B1)R)R™ T, is strongly 1-admissible, and (1+(1—B1)R)R" Ty,
1s strongly 2—admissible.

(4) (Orthogonality). For j =1,2,n > 1, (T},,iQp;) = (Tjn, 0y, Qp,) = 0.

(5) (Control of the modulation equations). For all0 <n < N,
b 1(1+(1=B1)R)R" By, b1 (1+(1—B1)R)R" M 1, (14 (1—B1)R)R" By,
and (14 (1 — B1)R)R" M, are L*-admissible.

Proof of Proposition /.6. We argue by induction on N. In order to deal with the
dependence on the phase I', we need a more refined description of the error and
claim inductively:

dn
Tin=Y_ Tinre"" (4.23)
r=—dn
where d,, is an integer, b= (1 + (1 — 31)R)R" T}, is strongly 1-admissible,
(1 + (1 — p1)R)R"Ts,, is strongly 2-admissible, and they do not depend on T.
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Moreover,
n+1
= Y e (4.24)
r=—dp+1
where b1 (14-(1— 1) R)R" L&} ., is strongly 1-admissible, (14+(1—81)R)R" &5 ..,
is strongly 2—admissible, and they do not depend on I'. Finally,

dn
E wrl
Mj,nﬂ“ €

r=—dn

dn
§ : B‘,n,r ewF

r=—dp

where b1 (14-(1—81)R) R" M 1., b1 (14+(1=B1) R) R" By s, (1+(1— 1) R) R" Mo .-,
(1+ (1= B1)R)R"Ba,» are L>—admissible and do not depend on I' nor y.
Step 1: Initialization N = 0. We inject the decomposition

Vi = Vj(O) = Qp,;(Yj), Mjo=Bjo=0

j = 1,2, into the definitions (4.9) and (4.10) of the errors and compute from the
equation of Qg;:

ezF eZiFf
&0 = Q 1Qp[? + Q Qp, +2—=1Qp, [*Qp, + —Q5,Q3, |
B1 B2 f 51 52 \//j B1 B2 U B1 B2

52,0 = (1 - XR) [QF“QBJ Q,BQ + 2\/:‘7“e ZFQ51|Q52|2 + \/ﬁeiFQiﬁlQ%g + MeiziFQ%ﬁQiﬁz} :

We now recall from that Q)g; is strongly j—admissible. Therefore, a direct application
of Lemma 4.3, property (vi), ensures that b=1(1 + (1 — 81)R)RE1 is strongly 1-
admissible, and (1 + (1 — 81)R)RE> is strongly 2-admissible. Notice that we have
(4.24) with n = 0, d; = 2, and that the admissibility properties transfer to the
Fourier coefficients by integration in the I' variable.

Step 2: Induction. We assume the claim for N = n and prove it for N = n + 1.
We expand

Vj(n+1) _ Vj(") +Tjpy1, j=1,2 (4.25)

and show how to choose (ijﬂ, M; pq1, Bj7n+1) so that the corresponding errors
Ejny1 are such that b=1(1 + (1 — B1)R)R"2& ;11 is strongly 1-admissible, and
(14 (1= B1)R)R" 2 5,41 is strongly 1-admissible. We focus onto the first bubble,
the computations for the second bubble are completely analogous, except that there
is no gain of a b factor.

In general, we split the error term & into four contributions: the nonlinear term,

D|— 51D)V;
NL; = _M_%_FVHVHQ, (4.26)
1—p
the interaction term,
Int = i | 2VAIVB 4 o ()2V5 4 25 a2V + S|, (427)
1=XRr|—V1|V2 1 11" V2 2)7 ] :
JZ VH VH
the leading order term for modulation equations,
~ 1— p oV,

Mod; = —iMAV; + iBy[Ay, Vi + A Vi) +i— 221 (4.28)

g or
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and the lower order term for modulation equations,

By ~
Modlow; = iAl(M18A1V1+M28,\2V1)+i72A52V1+ (4.29)

(1—b
+ ’L<R+B1_M1>ARV1 .
Notice that we dropped the notation V# and V? in these formulae, since the indices
1,2 unambiguously suggest the arguments y1, yo.
Step 3: Choice of T’ y41, M1 pn+1, Bint1. We inject the decomposition (4.25) into

(4.26) - (4.29) and define £) |, k=1,....4 by
NLi i1 = NLiy = L5, Tiin + €y

2
Ity ni1 = Inty, + 51(,72+1

1-— Tl n
(1 —p) 0Ty, e

MOdl,n+1 = MOdl,n + {_ZMl,n—&—lAQBl + ZBl7n+1(I>B1} + or 1,n+1

Modlows 41 = Modlowy , + £, .

Therefore

i(1 —p) 0Ty g
or

Eint1 = Epn— LT + — M1 1AQp, + 181 nt1 P,

k
+ Eizlgl(,errl'

The smallness assumption on 7 and the definition of O imply that 1 — p is small
enough with respect to n, and we may therefore use Lemma 4.5 to solve the equation

. , 1
Lo, T + iM1y1AQp, — iB1 1@ — i

aFTl,n—H = gl,n .

From the inductive assumption on &, and Lemma 4.5, we infer that b=1(1 + (1 —
B1)R)R" Ty ;41 is strongly 1-admissible, and that b1 (1+(1— 1) R)R" L My 41,
b_l(l—l—(l—Bl)R)R”HBl,nH are L°°-admissible. Furthermore, T 11, M1 n+1, Bjnt1
are trigonometric polynomials of degree d, 1.

Step 4: Estimating 51(171 41- Explicitly:
1 n n e
S = 2|V = 1Qa ] T + [ = Q4 | Tarn (430)

+ 2V1(n)|T17n+1‘2 + Vl(n)T12,n+1 + T17n+1’T1,n+1|2'

1

First of all, we observe that 51(72 "
(1)

degree d,, /5 depending only on n. Secondly, using Lemma 4.3, the 1-admissibility
of b=1(1+(181) R) R* T} 1., and the 2-admissibility of (14 (161)R)R¥Ty  for k < n+1,
we conclude that b~ (1+ (1 — B1)R)R"+2€L)

n

1 is a trigonometric polynomial in I', with a

41 18 strongly 1-admissible.

Step 5: Estimating 8{273 41+ First of all, we observe that 51(272 41 s a trigonometric

polynomial in I'; with a degree dfi)r2 depending only on n. We then expand the

interaction term Int; ,41 (4.27). Notice that each term contains an exchange of
variables. Let us consider the term

20 ——
. XeV " T V3™,
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Recall that Vj(n) is j—admissible by the induction assumption, and that
(1+ (1= B1)R)R" Ty 41 is 1 admissible by step 3. By Lemma 4.3, (vi), we infer
that

o200
b (14 (1—pB1)R )Rn+2 p XRV1( T, n+1V2n)

is strongly 1-admissible. The other terms can be treated similarly. We therefore
conclude that b=(1 + (1 — Bl)R)R”JrQEl(?L 41 1s strongly 1-admissible.
Step 6: Estimating 5{ )+1 Again, 5{24_1 is a trigonometric polynomial in I'; with

a degree d(g) depending only on n.

1—p 0T ny1 (3)

Let us first observe that the term i—F=5p== is absent in &, since it is now a

part of the equation of T} j,41. For example, let us deal with the contribution of the

term —iM1AV] to 5{312 Y1 The other contributions can be handled similarly. We
have

MIYAVD MM AV My 1 AQp, = Myt AV = Q)+ M VAT 1y

Let us consider the first term MLnHA(Vl(n) — (Qp,) in the right hand side. By step
3, we know that b= 1(1+ (1 - 51)R )R”+1M1 n+1 is L*°-admissible, and independent

on y;. On the other hand, RA(V, v — Qp,) is strongly 1-admissible. Hence b~1(1+

(1-751)R )R”+2Mlyn+1A(V1( " Qp,) is strongly 1-admissible.
Let us come to the second term Ml(nJrl)ATLnH in the right hand side. From step
3, b1 (1 + (1 — B1)R)R™™ T ;41 is strongly 1-admissible, while, from step 3 and
the induction hypothesis

n+1

b (14 (1— )R RM" Y = b 11 4+ (1— B)R RZMlk

is L>°-admissible and independent on y;. We infer that =" (1+(1—51)R)R"HM{‘HATLHH
is strongly 1-admissible.

Summing up, b=(1+ (1 — ﬁl)R)R”“Sl(izH is strongly 1-admissible.

Step 7: Estimating 5{?472+1. Finally, we deal with b=%(1+ (1 — Bl)R)R"+2€£?T)L+1 via
the lower order term for modulation equations (4.29). In fact, the worst behavior
occurs in this part, and comes from the term

1-5

Indeed, this one only provides a gain of R, so we get exactly that

b1+ (1 - ﬁl)R)R”“z'l —

is strongly 1-admissible. The other terms are easier and left to the reader.

Defining d;, 42 := max{dn+2, k=1,...,4}, this completes the proof.
O

As a consequence of Proposition 4.6, we establish some additional estimates which
will be useful in Section 5.

Corollary 4.7. If V; = Vj(N) as in Proposition 4.6, and if
d' e {aFa AR? a>\j+17 (1 - /Bj+1)8ﬁj+1}
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with {j,7 + 1} = {1,2}, we have
1 _ .
DIV < L
R

Proof. From Proposition 4.6, we know that Vj; is j-admissible, and that R(V; —
ng) is j-admissible. Moreover, RN Hé'j is j—admissible, and RM;, RB; are L°°-
admissible. Consequently, in view of the expressions (4.9), (4.10) of £; and of Lemma
4.3, we conclude that

(!D | = B;D
1—B;
where RF) is j-admissible. Furthermore, since 9'Qg, = 0, R9'Vj is j-admissible,

and so is RJ'(|V;|?V;). This implies in particular
G
1—B; 2R
The proof is completed by observing that the operator
DI~ <D| —oD 1> 1
1-5
has a norm O(1 — ;) on L. O

1)V VPG = 5

+1>Vj

Corollary 4.8. If My = MQ(N) as in Proposition 4.6, we have

2
L= g + (1= o)l log(1 = )| + R~
|00 M| + |RORMs| + Y (1 — Bi)|ds, Ma| S R(1+(1-pB1)R)

k=1

Proof. Since R*(1+ (1 — f1)R)(Ms — M2 1) is L>®-admissible from Proposition 4.6,
we just have to prove the estimate for Ms ;. From the construction of Proposition
4.6 — see also the proof of Lemma 4.5, we have

My, — 2(E20 4 (1 — p)drTa,8,,Qp,) | 2(E20 + (1 — M)arTQ,laiQ/{z)[\ﬁgllQmHiz '
’ (Qp,- DQs,) (Qp,, DQp,)(1Q5, 1172 — Mg Q5. [172)
Since Qg,, and R(1 + (1 — 81)R)Ty1 are 2-admissible, and since (Qg,, DQp,) ',
Qs 172 — Ag,||Qs, 132)~ " are L>®-admissible, the only terms to be estimated are

(52,0> 8@/2 Qﬁz)? (52,0> ZQ,BQ)]\/BQ ”QﬁQ H%Q )

with
52,0 = (1_XR) (2M‘Q51|2Q52 + 2\/ﬁ67iFQ51|Q52’2 + \/ﬁeiFQiﬁlQ%g + :U’ei%FQ,%lQi@) :

We already know that R(1 + (1 — 81)R)E2 is 2-admissible. Furthermore, from
Proposition 3.11, we have

A5, 11Q, 72| + 1A%, 11Qp, 1721 < (1 = B2)[og(1 — B2)] -

This implies the claimed estimate for (£2,0,iQs,)As,|Qs, 12,. As for (£2,0,0y,Q3,),
since R(1—xr)®@p, is L>-admissible, we just have to study the contribution of the
terms with only one factor Q)g,, namely

2\/17((1 - XR)eiiFQﬁl ‘Q52|2’ 8y2Q52) + \//7((1 - XR)eiFQiﬁlQ%z’ 8?;2@52) .
After integrating by parts, this quantity is equal to

—\/,H«Re <€_ir/Ray2((1 - XR)Q51)|Q62|2Qﬂ2dy2> :
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Since R?(1+4(1—B1)R)dy, ((1—xr)Qp,) is L=-admissible, this completes the proof.
([

4.6. Improved decay for 75 ;. In this subsection, we improve some estimates of
the first correction 757 to (g, in the approximate solution we have constructed in
the previous paragraph.

Lemma 4.9. We have

T TQs (R) 1
( 8;‘1 3y2Q,82) = —27Re (eerﬁl(R))—FOO

Proof. Writing i0y,Q3, = Ls,(ipg,), we have
(10,1, 0y, Qp,) = —(0rT2,1,10y,Qp,) = —(OrT2,1, Lpyipp,) = — (0L, (T21),ips,)
. . 1-—
- <5F52,0 — i0r M21AQg, + i0r B21(y20,Qp, + (1 — B2)05,Qp,) +i—— p 8FT2 1, ZP,B2>

=I+1I+1IT+1V (4.31)
For IV, we have by Proposition 4.6 that

— pl + (1= B2)Y/?|log(1 — Bo)|V/2 + R‘1>
R(1+(1-p1)R) ‘

1 —pf
(1+(1-p1)R)
For III, we have by Proposition 4.6 that |0rBa 1| < m. Then,

(11| = ‘(iarle(w@yQQﬁg + (1 = $2)95,Q5,), ipﬂz)

S (10200 Qv ips)| + (1 = 52)[(105,Qss i03s) )
Using Proposition 3.11 and (3.10),

(1 - ﬁQ)‘(iaﬁQQﬁw ip52)‘ S (1 - /82)‘ log(l - /82)‘ (4'33)
Then, by (3.10), (2.20) and the identity

y9,Q" = Q" + 3Q+

V] < 4.32
V]S - (432)

1
R(1+(1-pb1)R)

we have
(120 Qi 10) = (1200 Qs> Qs + 5012Q5,) + OL(1 = 52)log(1 — B3)])

= (140,@", Q" + 50,Q%) + O((1 - ) log(1 — &) [¥)
= O((1 ~ )2 | log(1 — f2)|

Thus, we conclude that

N

). (4.34)

_ 1/2 _ 1/2
R(1+4+(1—p61)R)
For II, we have by Proposition 4.6 that [OrMa 1| < m. Then, by (4.34)
and (3.10) :
. . 1. . . .

(ZAQﬁw lPﬁQ) = 5(162527 ZP52) + (Zy28y2 Qﬁza Zpﬁz) (4'36)

1, . 1,. . 1 1

= i(ZQﬁw QﬁQ) + Z(ZQﬁzazayzQﬂz) + O((l — B2)2 | log(1 — 52)|2)
(4.37)

= O((1 - B2)?|log(1 — B2)]2).
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Therefore,

1 — Bo)2|log(1 — 52)1%'

(
S = Ra£a-R)

(4.38)
Finally, for I, we have that

—(0r&2,0,ipp,)

(1 = xR)=2ivie T Q1@ + /e T 0, QF, — 2ine™ T QR Q). in, )

= —/fiRe (z‘eiF / (1= xr)Q@p: (y1)[2Qp, [*ips, + Q%2%]dy2) + 0( R 1 )

14+ (1—p1)R)?
= v (" [ Q20 ins, + Q%Z@dyz) +0( : ).
Y2 \217“

R(1+4 (1= B1)R)?

Let 29 : b“” . We then Taylor expand for |z3] < 3, or equivalently |ys| < and

R
S @7
obtain by Propomtlon 3.7

Qo) = Qo (R(L+2)) = Qp (R / Resly, Qs, (R(L + t2)) dt

B R|z| B by
- 0+ 0 (s o) = 0+ (s dm)

Therefore,

I =/plm (eiFQm(R)/P!QﬁQ!Qi% + Q%05 (w2)dys ) + O(R2(1 T (i - 51()5’))).
4.39

Using (3.10) and Lemma A.1, we have that

/ 21Qs, *is, + Q, 105, (y2)dy2 = 3 / Q6,1 Qaody2 + i / Q. >0y, Qs Iy
— 5 [ @Bt + 00 - o) tos(1 - Ba)1)
=3 [1Q"PQry+i [10°P0,Q s~ 5 [(@ 8@ dy+ Ol ~ ) log(1 — o)
= —6mi + 2mi + 2mi + O((1 — B2)2|log(1 — Ba)|?)

= —2mi + O((1 — B2)7| log(1 — B2)|2). (4.40)
Then,

_ T TR 1= gl + (1= B2)3|log(1 — By)|2 1
I =—2rRe (eFQﬁl(R)> +O( T 0= AR >+O(R2(1+(1—51)R)>‘

Combining this with (4.32), (4.31), (4.35) and (4.38), the conclusion of the lemma
follows.

O
Lemma 4.10. We have

( 0T

OR 33;2@[32) = —27Im (e19,,Qp, (R)) + O(’1 — p| + (1= B2)2[log(1 — /82)‘§>

R2(14 (1—p1)R)

+O(R3(1 n (i—ﬁl)R))'
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Proof. The proof follows the same lines as the above one. With the same notation
as above, we have

(10RT2,1, 0y, Qp, )
— (€20 — ORMao1 AQp, + i0p B2 (1204, Qs + (1 = 52)03, Q). i3, )

11— .
- (l HMaFaRTQ,lazp[?g)
— V4 VI+VII+VIII. (4.41)

By Proposition 4.6, we have that

11— 4
(1+(1-B)R)

VIII| S & (4.42)

Using Proposition 4.6, we have that |OrB2 1| S ol

1 ) ‘
( ) ( ) RZA+(1-BR)" Then, it follows by
4.33) and (4.34) that

(1~ f2)7|log(1 — Ba)|2

VIS =m0t 0 - 3r)

Since |OpMa1| S 2 by Proposition 4.6, we have according to (4.36) that

1
1+(1-B1)R)

1 1
(1 B2)2[log(1 — Ba)|2
VI| < 4.43
IS TRa - aR) )
Lastly, by (4.40) we have that [(2|Qgs,|%ips, + Q%Qip52)dy2 = —2mi + O((1 —

52)?|log(1 — B2)|2), and thus
V= _(8R52,07 ipﬁQ) = \//jRe eZT /(1 - XR)ayl Qﬁl (2|Q52 ’2ip/32 + Q%2%)dy2
by2 \ pbly .
20 ([ (14022 ) 2L Qa2+ 11 Qi e

+0( [ (1= xw)I@s 110, @ | Qi e
(1— B2)%| log(1 —ﬁ2>|%>

= —2nIm (¢"'9,,Q3,(R)) + O ( R2(1+ (1—f1)R)

o <R3<1 _ —51>R>> |

O
Lemma 4.11. We have
0Ty, (1— B2)7|log(1 — Ba)| + |1 — Vb
’<1_ﬁ2)<1372’3y2@ﬂ2) S RO+ (1= A)R) RO+ (- R

Proof. Using the symmetry of Lg, with respect to the real scalar product, we write
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8T2 1 aTQ 1
(1= 52) (%5200 Q) = (1= B2) (5 101, Q,) (4.44)
0Ty 0T\ .
= (1= 8 55% Lanling) ) = —((1 = B2)Ls (554 ) inse)
02 0B
(1= 52) (0 (L0 o) + 203, (1Q )Tt + 05, (Q3,) Tor s, )
2D,
- ( 1 _ 6 ZpﬂZ)
We start by estimating the last term. Firstly,
2DT;, 2DT;, o
(T=gies)| < | 725 || Nirslee
L2
Projecting the equation satisfied by 75 ; onto negative frequencies, we obtain:
1+ B2 _ _ _ —
1.5 DTy, + 15, — I (|Qp,[*T2,1) — 1T (Q%QTZJ)

7 (&,0) — iMa 117 (AQp,) + iBa a1l (y20y,Qp, + (1 = 52)05,Q,)
+ i(l - u)apTle
and therefore, using the 2-admissibility of R(1 + (1 — $1)R)T>1 and R(1 + (1 —

B1)R)E2,, as well as the L®-admissibility R(1 + (1 — 81)R)B2,1 and R(1 + (1 —
B1)R)M> 1, we infer

2DTy,
1— P
On the other hand, by (3.10), we have

1
R(1+(1-p1)R)

lips, ll12 = +O((1 = B2) 2| log(1 — B2)[V?) < (1 — B2)2 | log(1 — Ba)|/2.

_ 1 _
Qﬁz + 5892 Qﬁz
L2

This shows that

(2021, | < (L= Blos— o)1
TR R1+(1-B)R)

Then, by (3.10), we easily notice that, for every p € (2, 00),

Q5,2 + 1@, e + Qg Il 12 (1 — B2)1/?|log(1 — fa) |/
R(1+ (1 - pB1)R)
< [1og(1 = )| +p(1 = o) P 4 |log(1 — )|/
R(1+(1-p1)R) ’

where we have used (3.23) and (3.24) combined to the Hausdorff-Young inequality.
Choosing p = |log(1 — f2)|, we conclude

(4.45)

(205, (1Q5. )T + 05, Q%) T ips, ) | <

_ (1- B2)log(1 - By)|
~ RO+ (- B)R)

(1= 2) | (205, (1Qs )T + 95,(Q3,)Tor v, ) . (4.46)

Finally, we deal with the term

(1= 82) (9a(LaaTo). s ).
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Recalling the equation of 75 1, we have:

08, (L, To1) = 08,E2,0 — 108, M2 1 AQp, — iMo,1AD3,Qp, (4.47)
. o
+1i0p,B21 Y20y, Qp, + (1 — B2) 3%?

+iBa1 [Y20y,05,Qp, — 95,Qp, + (1 — $2)03,Q,]
+ i(l — ,U/)ara@TQ’l

with

8270 = (1_XR) [QﬂeiiFQﬁl ‘Qﬁz |2 + /11672”@%1@752 + 2:“’@,32 ’QBI ‘2 + \/ﬁeiFQiﬁlQ%z} .

Because of Proposition 4.6, we have the pointwise bound on the Fourier coefficients

of 5270:

2
1
c“:iryg + €200 Y2 S . (4.48
2.2 &0l + 82000l S g mym AT a Ay 4
Using the fact that g—%; = — 1“}51, we also have the pointwise bound
2
D0 108,68 miy2)| + 105,E2,0,0(12)] (4.49)
+ r=1
|y2|
S WIWHNRJW\N% <\Q51||Q/32’2 + \Q51|2!Qﬂ2|)
|y2|
125 L2100 Qe (108,105 + 105, )

11521051 (1Q6, P + 10,11Q5. )
=IX+X+XI.

Using the bounds (3.7) on Qs and (3.23), (3.24) combined with Hausdorff-Young
yield
1

2 2 < .
X2 + 1 Xl 2 S 0 BRI+ (1R (4.50)
- — By)" Y
I X1 2yre S [log(1 — Bl +p(1 - B) 7 ,2<p<oo. (4.51)

R(1+(1—-pB1)R)
We are going to use this to estimate dg, Bo 1 and dg, M3 1. Recall that
Lo (&, 4l - T Q)
. . 905, . ,
(iy20y, @, + (1 — ﬂQ)Wﬁ;a iQp,)

2,1,r —
and a similar identity for Bs 1. Taking the derivative with respect to 82 and using
(4.48), we have

+ + . + .
|aﬁ2B2,1,r‘ S ‘ (aﬁzgz,o,r +i(1 - M)aﬂsz,l,rv ZQBQ)

+ . £
+ ‘(82,0,7’ +i(1 = p)135 ,,108,Qp,)

T RAT AR | (#20n05Q8 — 05,05 + i1 = £2)05, Qs 1Qs.)|
1
+ | (19204, Qp, +i(1 — B2)05,Qp,.108,Q3,)| -

R(1+(1-pB1)R)
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We estimate the inner products in the right hand side of the above inequality as
follows. Notice that, from the admissibility properties and (4.48), for every ¢ € (1, 2],

1 1
¢ < — IS '
1@8lle S =7 | M~ (g=DR(I+(1-B)R)

Given p € [2,00), using (4.50), (4.51), (3.23), (3.24), Holder’s inequality leads to
1 pllog(l — Bo)| +p*(1 — o)~ '/7

+ +
157 lle + 1€5

(98€5.00+1Q82)| <

(1= B)VBR(1+ (1 - B1)R) R(1+(1-B)R)
< pllog(l—Ba)| +p*(1 — Bp) /P
~ R(1+(1-p51)R)
_ pllog(l = Ba)] +pP(1 - B) P
~ R(1+ (1= p51)R)
1
(1= B)R(1+ (1= pB)R)
The other inner products are estimated thanks to (3.30). Choosing p = |log(1—2)|
in the above inequalities, we infer

Vb (1= Bo)(log(1 — B2))? 11— 4l
+
(1=52)105 By 1| 5 R2(1+ (1 - ﬁl)R)+ R(1+(1—-p)R)  R(1+(1—-pB)R)’
We obtain the same estimate for (1 — £2)0g,B2,1 0.
Arguing analogously, we obtain
Vb (1 — f2)(log(1 — B2))? 11— pl

+

R0 Mol S e = R T RO+ (- BOR) RO+ (- G0R)

Putting together the above estimates and using the fact that |Bai| + |Ma 1| <
L 57y We obtain from (4.47):

| (gi:o;rv ’Laﬁz Q,BQ ) |

(T35, 108,Q,)]

‘(852T2i,1,r7 iQﬂ2)| S

R(I+(1-A1)R)
. Vb (1= B2)(log(L — B2))* + [1 — 4
(1= 82) (0L To) o) | S (= pym ¥+ RO O3 '
This together with (4.44), (4.45), and (4.46) show that
0T, (1= Bo)2[log(1 ~ )| +[1— Vb
(1_/82) (ZTﬁvayzQﬂQ) 5 R(l + (1 _ BI)R) R2(1 + (1 - /BI)R) ’

which proves (4.44).
(]

4.7. Sharp modulation equations. We now compute explicitly the leading order
modulation equations. We need to exhibit some fine cancellations which could be
computed to the expense of lengthy computations® which can be avoided using the
following nonlinear algebra.

Before stating the result, let us define some more notation. We set

1 9 1
Ny = 5 1Qall3s  Po = 5-(DQ5.Qs) (45)
and we recall that

o= 3= [ Qs P Qs dy

4pecause we need the cancellation to the order 2 in the scaling law.
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and the asymptotics from Proposition 3.11,

N5 = 1+0((1-B8)log(1 - 8)) ,AgNs = O((1 - B)log(1 — 8)) ,
Ps = 1+0((1-B)log(l-B)), cs=1+O0((1~ f)log(1 - ) .

Proposition 4.12 (Sharp modulation equations). Let B](-N),M](N) be defined by
Proposition 4.6. The following estimates hold for P € O.

s _ Re(%( ) i e ’F)+O<b<|1—m+R1>>, .

— Mg, Ng, R(1+(1-p51)R)
Re (Qﬂl( ) s, 6‘”) - -1
N) pl+ R >
By = “ RN, +0 <R(1 T D) (4.54)
(N) ]\ﬂlpﬁl (N) _ b(|1_:u|+R_1) )
h P, 079 (R(l +(1-p)R)) (455

Ag, P, e () T8, Os (R)
My 2 BN 4 21— p)Re (€7 Qp, (R) + 2Im (79, Q, (R)) (4.56)
B2

0<(|1 —pl+ RY(I1— | + b+ (1 — B2)Y?]log(1 — B2)|/?) +R_2)
R(1+(1-pB1)R) .

Proof. We recall the system of nonlinear elliptic equations solved in Proposition 4.6.

[nlls, = OBR™7Y) | [[Enlls, = ORTN) .
(N)

To simplify the notation, we will use v; instead of Vi
will also drop the indices (V) from Bj, M; for j =1,2.

all along this proof. We

Let us recall the expressions of &7, &s.

D|— 61D 0
& = —M V1 + Ul”U1| —iMiAvy + 1B, ylaylvl + (1 — ,81) il
1—=75 loleh)
vy ovi (1= B2)By Ou1
M M- - - 4.
+ i\ 18)\ + i\ 28)\2 ) p 95, (4.57)
1— pdvy vy
+ 1 nar +1 (1—b+ (Bl Ml)R) R
2 5 e—iF i 62“—‘7 )
+ Xr ;01\U2| + vg + V1V3 |
D| — B2D)v ov
52 = —M V2 + 212’1)2| — ZMQAUQ + ZBQ |:y28y21)2 + (1 — ﬁg) 2
1— 5 0B
vy vy ov
+ iAo My—— D + iAo M —— W + Z/L( — Bl)Blﬁiﬁj (458)
. 8 61)2
+ i(l—p )8F +ipu(l—b+ (B1 — Ml)R)(?R

+ (1—xg) [2vHe T vi|va]® 4+ pe 0oz + 2pv0|v1|? + e viv3] .

Our strategy is to extract information on Bj, M; from (4.11), (4.57), (4.58) and the
admissibility properties of vy, vs.
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Step 1: Speed for the first bubble and estimate on B;. We take the scalar product
of (4.57) with iv;. We observe the cancellations

< _ (D] = p1D)n
1-5
Recall from Proposition 4.6 that

— U1 —i—?}1’1)1|2,i’l)1) =0, (iAvl,ivl) =0.

S ’
~R(1+(1-B)R)’
and that b=1(1 + (1 — 81)R)R/Ty ; is 1-admissible. We obtain

_ - 1 ; B
Bl[(Aleﬁl + A51Q51,Q,31) + O(R 1)] = - Im <6 F/ XR‘UI|2U102 dy1>
\//j R
b

2 2 1
+0 (/RXR|’01| |’U2| dyy + R(l—F(l—ﬁl)R) |:|1—M‘+R:|> .

From the 2—admissibility of v, we have

o [(YLT R
2 b
This allows to neglect the integral

/ XR\U1!2|02\2 dy .
R

| B1| + [M;

2 b2
S R0+ (1-B)R)? "

On the other hand,
b2

Xr(y1) <v2 <y1b:LR> T2 <;,]j>> s R2(1+(1-pB1)R)’

and more precisely, since R/ (14 (1 — 31)R)T% ; is 2-admissible,

w(BY o (R« b
2\ bu 2\ )| Y R+ (1-B)R?
Therefore we can replace vy by Qg,(—R/(bi)) in the integral

/ Xr|v1 2102 dyy
R

Similarly, because of the estimates on 77 ;, one can replace v; by (g, in the above
integral, and finally drop the factor yg, since the tale of |Qs,|® at infinity is small
enough. Identifying the coefficient of Bi, we infer

_ 1 R o
_WBl(N/Bl - Aﬂleﬁ) = _ﬁIm <Q52 <bﬂ> /R‘QﬁlFQﬂl ezF)
b

o <R<1 (-8R [’1 Hl+ ;%D |

which, using the notation for cg, provides (4.53). Notice that the factor 1/,/i has
been replaced by 1 up to an error

X <R<1 ‘+1<15’;1>R>> |

Step 2: Speed for the second bubble and estimate on By. We proceed for the
second bubble exactly as in Step 1. This leads to (4.54), as can be checked easily
by the reader. Notice that the absence of the factor b in the remainder term is due
to the slightly different estimate for 75 ; in Proposition 4.6.
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Step 3: Scaling for the first bubble and estimate on M. We take the scalar product
of (4.57) with dy,v1. We observe the cancellation

( — W — v + ’U1|U1|2,8y1111> =0.
— b
We now compute the leading order non linear term. First, by integration by parts,
9 2T
<XR |:,u1)1|v2‘2 + " 1)11)2] ay1111> (459)

1 1 i
- / 01120y, (xrlva|?)dyr — ZRG (/ *T01%0,, (Xsz)dyl)

From Proposition 4.6, we have the rough bound
1

[vj| + |y;0y.vi] < . (4.60)
T ) (14 (1= B85) )
Combining this with the fact that on the support of xp we have Q%b < yo| < 23—5),
we estimate
) 5 2 ey P e < .
v —|v —
Y1 XR|V2 ~ R 2 blU/ V2 ~ R3(1+ (1 _51) )
Then, by (4.59) and (4.60), we have
9 , el b2
—v1|ve|® + vv]8v>§ : 4.61
‘(XR[H oo =m0 | 9n v )| S B R (4.61)
For the remaining nonlinear term, we integrate by parts and obtain
o—il el
XR vivg + vz} ;0 v1>
< [ NN .
= Re < AR [e’irvfﬁaylvl + 26”1)11}711)283/11)1 dy1>
N )
= Re ( AR [641“172 [8y1 (U%UT) — 21)183/11)1171] + Qeirvlﬂvgﬁylvl] dy1>
Vi
—7,F 5
= ke ([ o0, (el an ) (162)

We extract the leading order term using the following pointwise bound which is a
consequence of the 1-admissibility of 5" 'R(1 + (1 — 81)R)(v1 — Qp,), and of the
2-admissibility of R(1+ (1 — 51)R)(v2 — Qg,),

orfon 20y, [xrT3] — Qs 1Q, 20y, [xr Qs
< b
~ R+ (1= )R ()

and thus:
—ZF ) —ZF
—Re < \F Ul’U1| ayl [XR@} dyl) = —Re < \F Q51|Q51’ 8yl [XRQﬂz] dyl)
b
+ [0) 4.63
<R3(1+(1—51)R)2) (4.63)
We now compute the leading order term. Let

Y
R

Z1 =
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Then, using |92,Qg,| we have for [21] < 1 that

< 1 _
~ (y2)%’

-R
Q1) = 0,05, (1= )

—-R R —R
= 0y, Qp, (bﬂ) +/0 Zl Qﬁz ( b (1- t21)> dt
R Rz | R b [y
s () o (B20) () 0(58)

Thus,

—zl"
~Re ( Q010 P2 [xa dyl)

—iI
= —Re (/y1|<R b \FQ51|Q61| XRay2Q52dy1>

i </{f<|y1|< \/EQ51|Q51| [0y, XR] QﬁQdyl)

i
e ([ pomontaaio)

ly1]< b#\f xR pLI%Bil Oy &5 A1 o
—R ol b
= —Re ( y2Q62 < b,UJ ) /|y1<1; bu\f@ﬁJQﬁJ dy1> + 0 (R3>
1 zl" )
= —mRe (ayzQﬁz ( ) /QﬁlQﬁl\ dy1> +0 (R3>

2 . R b
_ bui;ﬁ (e L5, 0y Qs, (m)) +0 <R3> . (4.64)

Finally we use again the following bound,

1 —R b
i e (5| s =

This together with (4.62), (4.63), and (4.64), yields

—i F 5 < b
‘("R[\/ﬁ”l”?+ Vi ] 200 ) |2 oy

Combining this with (4.61), we get that the contribution of the nonlinearity is

9 , T il i b
—vp|va|*+ V15 + ——vi2 v},a v)‘ﬁ .
’(XR[M ifee] po? ! 2P~ R2(1+ (1 B1)R)
(4.65)




58 PATRICK GERARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAEL

In view of the expression (4.57) of &1, we infer —assuming N large enough—,

. ) . 0
M (—iAvy, 0y, v1) + By <2y18y1v1 +i(1—p61) Zl 8y1211>

v v (1—B2)Bs [ 0w
+ MM < 8)\ ay11)1> + A\ Ms ( a)\ ay1111> —I-T < 8,3 8y1v1>

v (G o) 0B (1G5 o ) = 0680+ (1R,

We now compute the terms involving the modulation equations. First, by Proposi-
tion 4.6, we have that

. ) b
(—iAv1, 0y 01) = (—iAQg,,0y,Qp,) + O <R(1 +(1— ﬁl)R)>
b

R(1+(1-p61)R)

— aPy 40 ( (4.66)

On the other hand,

' ) o . 0 1 b
<1y1(9y1v1 +i(1 — 1) ;1 8y1v1> = (2(1 - 51)551;7 alebH) +0 <R(1 + (1 - 51)R)> ’

3 b
= 7hg P +0O (R(l +(1— /J’1)R)> '

Then, by Proposition 4.6,

(g/\l 83’1”1) + (g)\ ay”’l) (“‘52)8:1 a‘ﬂvl))‘
b
~ R(1+(1-p5)R
and
(G )+ | (15
b(|1 —pl+ R

~R(1+(1-p5)R)
The collection of above bounds yields the identity:

b(|1 — pl+R™Y) )
R(1+(1=p)R)) "’

—71Pg, My + A, P3, By = O (

which leads to the bound
]\Blpﬁl B
B1

-1
_ (L=l + R

My = ~ R1+(1-B)R) "

(4.67)

Step 4: Scaling for the second bubble and estimate on M;. We take the scalar
product of (4.10) with Jy,v2. We observe the cancellation

( _ (D] = BaD)vy

1 —62 —U2—|—02|U2|2,8y2112) =0.
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We now compute the contribution of the non linear term. Firstly, by integration by
parts,

<(1 — XR) [2uvalv1|* + pe T ig0i] 6y2112> (4.68)
=i [ Po (0~ xalor Py~ e ([ 2T w20, (1~ xpiine).
By the rough bound (4.60), we have

bu
10y, (1= xR)1 )| < *1§<|y1|<g\711!2+bM1|yl|>§ay1(!vl\2)

R
bl§<\y1|<§ b Ly >z < b
R(y1)? (y1)? ~ R3(1+(1-p1)R)*

Then, by (4.68), we have

< b ,
~R(1+ (1= B1)R)?

‘ ((1 — XR) [2nva|v1|* + pe™ Fvgvl] 8y2v2> (4.69)

For the remaining nonlinear term, we integrate by parts and obtain
((1 —Xr) [VreTv3vT + 24/pe ™ |va| vy ,8y2v2)
e (/ Vil —xgr) [eirvgvﬁm + 2671’1“7)2172111% dy2>
e (/ Vil —xgr) [eiFvT [BW(U%?TQ) — 21)28?/21)2172] + Qe*irvgvfgvlm dy2>
e ([ Ve aleaP0, [~ xu)er) e (4.70)
We extract the leading order term using the pointwise bound:

[valeal? Dy [(1 = XR)71] — Q@ 20y, [(1 — x) Q1]
1 bl sy, <2 . bpl > 2
R{y2) | Rlyn) L+ (1= B0l (a)2(1+ (L= Bl

Thus,

< b
~ R y)*(1+ (1= B)R)

e (/ VaeT va|va|*0y, [(1 — xr)VT] dy2>

e ( f V@105 o0 [0 x0T ) +0 g =)
(@)

We now compute the leading order term. Let 2o = b’”’? , then for |z3] < %:

1
9 Qp(11) = 0y Qp (R(1+ 22)) = 9, Qp, (R) + /O Rz205,Qp, (R(1+ tz2)) dt

i b
= 9,050 +0 () = a,0n(m + 0 (M)
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and thus:

feerﬁ2‘Qﬁg| Oy, [(1 - XR)th] dy?)

= —Re </| | bléfbeiIQ 2‘Q 2|23y1 [(1 —XR)Qigl] dy2>
Y2|> 5 :
— Re (/I | b,u\f,/eiI (2ﬁ2|Q82’28y1 [(1 - XR)jQ& dy2>
2| <5

b3
= —Re (/ bufelFQﬁ2‘Qﬁ2| 8y1Q51dy2> +0 (R4>
|y2\<2i

b/ Dy Qs (1) /

‘y2|\2},u

Q/B2 |Q32 | dyZ)

b b |ye|
+ O = —I—b/ — dyo
<R4 2l < 4% R3 (yo)?
R b
~ Re (bu\/ﬁe 0,0 [ Qul@sn dyQ) e ( R3>

- O(RQ(H&—&)R))

where we used (3.15) in the last step. Combining this with (4.70) and (4.71), we

obtain that

b
1+(1—,81)R) .

‘((1 — xr) [Vie" v3vT + 24 /e [vg|*v1 ] aay2v2)‘ S R

This, together with (4.69) yields

b
R(1+(1—p)R)

In view of the expression (4.58) of &, we infer

‘( 1— xg) [2pva|v1|? + pe * 0] + /e v3vr + 24 /e [vg vy | ﬂyzUz) ‘
S

) ) ov
M (—iAvg, Oy,v2) + Bo <1y23y2’02 +i(1— Ba) 52 ayQUQ)

vy vy vy
+ A Msy ( (9)\ ay2112> + Ao M < 8}\ 8y2U2> + ubBy < (1 —51) 5 8y21}2>

+ (1-p) ( aar aym) +(1—b+ (B — M1)R) ( gR ayﬂ?)

b 1
© <R2(1 -8R T RN+1> '

Next we compute the terms involving the modulation equations. On the one hand,

1 1

(iAUQ, 8927)2) = (iAQﬂga 8y2QB2)+O (

R(14(1— ﬁl)R)> =P, +0 <R(1 + (1 —B1)R)

)
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On the other hand, taking into account Lemma 4.11 and (3.23), (3.24),

v . oQ

o nve) = (0= )50,

0 1= [+ (1= B2)2[log(1 — Bo)['/> + R™!
R(1+(1-p1)R) ’

<1y28y2v2 +i(1— Ba)

5 11— pl + (1= B2)/?[log(1 = o)/ + R
= TFABZP52 + 0 ( R(l n (1 —ﬁl)R) .

Then, by construction,

(20 ) 122 ) [0 0200

Moreover, by Lemmas 4.9 and 4.10, we have

= 00m) 4409500
= (1= )| = 27Re (M Qu, (R))| + (1~ b) | — 2T (78, Qp, (R)) |

(1— )%+ |1 — p|((1 = B2)/?|log(1 — Bo)|'/* + R™1) + R_Q)

R(1+(1-p51)R) '
Notice that, in view of (3.15), the factor p(1 — b) in the above right hand side can
be replaced by 1 up to the expense of the additional error

b(|1 = pl+ R
o <R(1 +(1- 51)R> '

Ag, P, e .
My — =5 2By +2(1 = p)Re (¢ Qs (B)) + 21m (9, @, (R)) =
2

o(ﬂl —pl+ R = pl+b+ (1= B5)!/%log(1 — fo)|'/?) +R‘2>
R(1+(1—-pB1)R) ’
This completes the proof. O

< 1 )
~ R(1+(1-p1)R)

+0(

Summing up, we obtain

4.8. Solving the reduced dynamical system. Our aim in this section is to
exhibit a suitable exact solution to the idealized dynamical system

()t = Bj, (Vi) = %j,
(9 3 e =M(P), 2 =BT j=12, (4.72)

T2—x]

P'=vw—-m, R= M (1—51)

with P = (A1, A2, 81, B2, [, R), which will correspond to the leading order two-soliton
motion, and where from now on and for the rest of this paper we omit the subscript
N for the sake of simplicity.

Let 0 < 1,0 < 1. Define the times

J

and consider explicitly the solution

P :( Tov/\govﬁfo7ﬁgo7710077§o7miouxgo)
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o (4.72) with data at t = T:

P =1, AP =1,
1o =3 =0, .

1_6100:777 boo:(T7)2 ie 1_/8802(11?)27
=0, R=T" e 25°=T"n=0.

(4.74)

The fact that the system (4.72) with data (4.74) admits a unique maximal solution
is a simple consequence of the Cauchy—Lipschitz theorem.

We first claim the backwards control of this solution in the following perturbative
form.

Lemma 4.13 (Control of the solution in the perturbative turbulent regime). Let
d > 0 small enough and 0 < n < n*(§, N) small enough. Let P be the solution to
the approximate system

(x)e =B +0 (%), () t—,\ +O(%)

W= MP) +0 (), B BB oLy, j=12 @)
F=v-m, R=3H4
with initial data ot T~ satisfying :
[P(T) = P(T7)| < 0", (4.76)

then the parameters satisfy in t € [Tin, T~ the bounds:

M) =140 (%), No(t) =140 (Lrrloenl)

1—Bi(t) = (1 +0(n%)), b(t) = OV (4.77)
I'(t) = O(nt|log nt|)
R=t(1+0(n")).

Remark 4.14. Notice that the small quantity nt|lognt| grows on [Ti,,T ] from
(1 —06)n'°|logn| to §|log §|. Therefore, if § is small and if < n*(§), this quantity
is first smaller that 1%, then it becomes bigger than 1. This explains why we have
to keep both quantities in the remainder terms.

Proof of Lemma 4.13. From (4.74) and (4.76), we may assume the following bounds:

M) -1 <%, j=1,2

Ma(t) — 1| < K2 ool
1=l <o (4.78)
oz S 1= Bo(t) <

(@) < K + | log(nt)])

and aim at improving them for some large enough universal constant K, and for
0<d<6*(K),0<n<n*(K,J), which proves (4.77) through a standard continuity
argument. The difficulty is that the growth of Sobolev norms in (4.77) relies on an
uniform control of the phase which is not allowed to move, and this requires two
integrations in time in the presence of O(t%) decay only and hence some suitable
cancellation in the modulation equations.



A TWO-SOLITON FOR THE CUBIC HALF-WAVE EQUATION 63

Step 1: Leading order modulation equations. We extract the leading order modu-
lation equations of Proposition 4.12 in the regime (4.77) using the sharp description
of the asymptotic structure of Qg given by Proposition 3.9. We estimate from (4.78)

thgé
n
and hence
0<(I-B)RSNtSS< L

Now we appeal to the precise description of Qg given by (3.18):

Qu(my = US4 o pymioe((1 - R +0 (13
1)
- % + O <77t + 77| log T]t‘) (479)

where we used the localization of R given by (4.78) in the last step. Similarly, using
(3.15), it follows that

8y1Q51(R)
0 i :
_ 1+0<£|21gn!> {_1 + 51— BOR[L+O((1 — B)R|log(1 - ﬂﬁRDl} O (Zp)
; 5
- ;L4+54+0<Z+ﬁWMMW- (450
We also have
(1-py = 2R ca-gyngs
and thus,
R
Qﬂz <_b,u>
_ fo) — i
_ 1+o 5221 g(1 — B2)l) [1 +o((1 - 52)§10g((1 - B2>§>>} +0 <1§2>
bu

_— (i’) ' (4.81)

We now compute the leading order modulation equations of Proposition 4.12. We
first have the rough bound

Bl_(3<i> (4.82)

and the finer control from (4.79):

By = 201+ 0((1 - )l log(t — )] Re { cost —sint) [ 140 (T + pitog )|}
" 0(1;“+7}2>

2cosT 0 1—
_ 28 + 0 (71 + n|log(nt)| + | " #|> (4.83)

)
= % 1o <’1 + 10g(77t)|> (4.84)
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where in the last step we used from (4.78):

2 K0P 4Pt log(mt)?) _
i~ t ~

+ n|log(nt)| K *nt| log(nt)|

1 1
n n
S+ llog(nt)|K*0]10g o] < - + n| log(nt) (4.85)
for 6 < *(K) small enough. We similarly derive the rough bound
b(1—p b n*
2] £ 11— Bl oa(t — By + LI BT )

=

We now estimate My. First we compute from (4.79), (4.85):

2(1_M)Re(eirm) = 2(1 - p)Re {(cosF+isinF)< +O< 6+n|10g77t|>>}

2(1 — p)cosT’

= (/:) \1—ul0< +77|10g77t|>
2(1 —

= (tu)—i-O( +K17\10g77t2>

where we used in the last step from (4.78):

n° + nt|log(nt)|

I—pl S =1+ M -1 S K "

(4.87)

and hence

) ) 2
n n° + nt|log nt
11— pl <t +77|10g77t|> S i | )

t2

775
S 45+ Ko |lognt”
for n < n*(K,0) small enough. similarly from (4.80):

9 A D) - 1 i 776 2
9Im {e aleﬂl(R)} — 2Im {(Cosf‘—kzsmf) [t? (—1 + 27)75) +0 (tQ +n |log(nt)|)]}

2sinl’ g

)
n
= - o +tcosf+0<2+n2|log(nt)|>

2
-5t "Lo ( . |10g(17t)|>

where we used in the last step the development of cosT',sinI" with the bounds:

TP ol K3+’ lognt]®) | nK(n* + n*t?|log nt|?)
IR 2 * t

)
< Ly lognt| [t log nt | + K *nt|log nt]
t2

) )
< % + n?|log nt| K6 log 6] < % +n°| log nt|

for § < 0*(K) small enough. Using from (4.83) the rough bound |Bs| < 1 ensures
the finer bound from (4.56):
2(1—p) 20 n’ |1 — Bal[log(1 — Ba)|

Mg—l-f—tj—i-? < +K2772|1og(17t)|2+ n

-+ K| log(nt)|? (4.88)

~

where we used (4.78) in the last step to estimate 1 — [35.
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Step 2: Control of the speeds. We first integrate the law for Sy from (4.83):

G B _ L [2+0< +altog(nn)] )| = +o< +allog(nn)] )

We integrate on [¢,7~] and use

T 5
| ostmiar < [ iogolda < V5
t 0

T 6
/ n—dT:O(n‘s\lognD < \/5,
¢ T

for n < n*(K,0d), to estimate

—log <1_”82(?;)> = 2log (Tt_> + O(V9)

1 — Ba(t
from which using the initialization (4.74), (4.76):
T7)*(1 = Bo(T
1— oty = T > BoT7)) o) _ 1+0(/8)] . (4.89)
We now compute for 3; from (4.82):
Sl=lsiss
1 —51 a £~
which time integration using (4.74), (4.76) yields
—\y L O(L) 1
1=B1(t) =1 =p(T7))e" ' =n(1+0 2] (4.90)

Since t > Ti, = 77_5, this improves the estimate on 1 — 8y — 1. This yields with
(4.89):
1+ 0(V9)
bit) = -,
Step 3: Control of the scaling and the phase shift. We need to be extra careful
to remtegrate the law for I" which requires two integrations in time in the presence
of > decay only, and hence the possibility of logarithmic losses which would be
dramatlc to control the smallness of the phase and hence the growth of the Sobolev
norm. We first integrate A; from (4.86):

(4.91)

()il S M| S T ”
and hence from (4.74), (4.76):
7726
MB=1+0 <) . (4.92)

Now consider

. Using (4.92), we have

o= n T S = e () Jurowl

- v—|-0<775)+0( 2y |
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and we now estimate from (4.87):

(n° + nt|lognt|)* _ n°
2 ~ g2

v2§K2 +K2772]10g77t]2,

whence the first equation,
,'75
Iy=v+0 <t2 + K% lognt]2> .
Hence from (4.86), (4.88):

20 20 26
n n n

and hence from (4.88):

(A2): (Al)t]_ My M,

2v 2T
Ut:7_7+n

1
n
: 2 Ty + 0 <t2 + K2772| log(nt)|2> .

We therefore obtain the following system,

Ft = ’U‘l‘RF(t),
{vt—i”—”+?+Rv(t) (1.93)

t2
with
775
[Rr(t)| + [Ru(t)| < at K*n?|log(nt)|?,
and with the initial data
L(T™)=0(0n") ,v(T~)=01n").

A basis of solutions to the linear homogeneous system

I'=w
{ o 20 or (4.94)
t— ¢ 12
is given by {(T'1(t),v1(t)) = (t,1), (Ta(t),v2(t)) = (t2,2t)}, with Wronskian
W = 1)21“1 - F2U1 = t2

and hence the explicit solution with data (4.74) is given by:

T T
RF’UQ — RvFQ erl — RF’Ul
Ft:FOt—Flt/ dT—FQt/ e
() =To(t) ~T1(t) | 7 ® | 7
T T
RFUQ — RUFQ erl — val
v(t) = vo(t) — vi(t) / 2 dr — wa(t) / il
W ] W

t

dr,

where (I'g, vg) is the explicit homogeneous solution given by

T T
To(t) =T1(t) (0(7710) +/ Z%%) —Ty(t) (O(nm) +/t Zl“l%;) = O (nt(|lognt|)),

t
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and

T T
w(®) = u) (O(n10)+ / szi;)—w(t) (0(771”)+ / Zn%)

T T— _
n n T 1 1
= —dr — 2t —=dr =nl — ) =2t - — —
/t e /t 207 n0g<t> n(t T‘)

_ 0 <nt(\lognt\)> _

t

We now estimate the error:

- RF’UQ — RUFQ dr — o (t) - va‘l — RI‘Ul
W 2 W
T 775 6 é 776
< /t [T + K?n%|log(n7) } +K217/0 |logT|2dT§7+K2n5|log5]2
< 15 n K?26|log §|>nt|log nt| < TL n K25]10g5|2 nt|log nt| < n® 4 nt|log nt|
~ot t| log nt| ~ot | log 4| t ~ t ’

for § < §*(K) small enough, and similarly:

T T
R - R,T R,JIT1—R
F1(t)/ vz 2 2dT—F2(t)/ = lw o Sn‘s—i—nt!lognﬂ.
t t

w

The collection of above bounds using the modified initial data easily ensures
19
1° + nt|log nt|
o(p) 5 B,
which closes the bootstrap (4.77) for Ao, I" on [T}, 7] for K universal large enough.

IT(t)] < n° + nt|lognt|

Step 4: Control of the centers and the relative distance.
We compute from (4.90), (4.91):

(2)t — (1) = Poa—Pr=1-=p1—(1—pF2)=(1-p1)(1—0b(t))

o)A a0 3)

Hence using (22 — 21)(T~) = nT~ + O(n") from (4.74), we obtain by integration in
time:

(v2 = @1)(t) = (w2~ 2)(T ) 4t = T7) + 0 () =m +0 () .

and hence, using (4.90), (4.92):

R(t)—t To — T T2 — T 26
= —1= 1+0 —1
‘ tAr(1— Br) O
= 0(P) < i

which closes the R bound in (4.77).
]

We now come back the exact solution P> of (4.72) with data (4.74) and claim
that the corresponding dynamics is frozen for ¢ > T~.
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Lemma 4.15 (Post interaction dynamics). For § sufficiently small and n < n*(9),
there holds on [T, +00):

APt =1+0m), AF(t)=1+0(m)

%;é?” _(t)oftf(l +0(r)), 1-B3(t) = PP, (4.95)
R® =1(1+0(1)).

Proof. We bootstrap the following bounds on [T~ +00),

1= (®)] +[1 = Xof < K,
1= —nl < K7, [1-paf <p? (4.96)
R(t) > %
for some large enough universal constant K = K (), and where we omit the oo
subscript for the sake of clarity. Notice that the notation A < B in this context

means A < C' B with a constant C independent of ¢, assuming n < n*(4).
By (4.96) we have

bl < (4.97)
and using (3.17) and (3.15), it follows for R(1 — 1) 2 0 that

R b 1
‘% (‘w) SameE e

We may therefore estimate in brute force the parameters using Proposition 4.12:

77 Kn? 1
Bi|< 4 +—L <2
By| < 1 Kn 1

St e S
gy < (L= Pllos(t = By)| L En? Ky _ nllog|
~ 2 e ST

11— ul
+ .

|Ma| S

We therefore control the speeds on [T, 4+00) using (4.77):

(B1)¢
1—p1
(B2)
1—

<IBIS g be 1810 = ne”(F) =+ 0))

S| 2|Nnt2,

and similarly for the first size,

A
(a)e gyzwngiﬁ, ie. A(t)=1+0(n).
A1 t2
Hence:
L—pf 1
< < -l
el < M| 01 £ g
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from which we infer, using p(77) =1,

L[ )
1— < - | s
O =R

By Gronwall’s lemma, we conclude

dr.

1 )] 5 () = e

Hence the control of scalings and speeds is closed for K = K(¢) large enough in
(4.96). We now integrate the position.

(x2)t —(v1)e =P2—P1=1—p1— (1 —B2) =n(1+0(n))
from which we get

za(t) —x1(t) =n(1+0M)(t =T7) +nT~ =nt + O(n’t)

and )
o — I1
Rt)=———= 2 -,
®) thi(l—p61) 3
which concludes the proof of Lemma 4.15. U

5. Energy estimates

This section is devoted to the construction of an exact solution to (1.1) with two-
soliton asymptotic behavior and transient turbulent regime. The strategy is based
as in |27, 10] on an energy method near the explicit approximate solution which can
be closed thanks to the arbitrary high order expansion of the approximate solution,
and the R(t) ~ t distance between the two waves.

5.1. Backwards integration and parametrization of the flow. Given param-
eters

7) - ()\1))\271617/827F7R)7 ﬁ = (P,.’El,fEQ,'Yl,’}/Q),

we let N Vi Vo
o (2) = a5 (@) + 01 ()
with .
(N.5) (N) iy L= .
O (1) = =V P,y = ———~, j=1,2,
J

constructed in Proposition 4.6. We now fix one and for all a large enough number
N > 1, and for the rest of the paper, we omit the subscript N in order to ease
notations. We then pick a small enough universal constant é > 0 and, for 0 < n <
n*(9), we consider
P = ( c1>o7 20771007'7507%(1)071'50)

to be the exact solution to (4.72) with data (4.74) which is well defined on [T~ +00)
from Lemma 4.15.

We now build an exact solution to the full system (1.1) by integrating backwards
in time from +o00: we let a sequence T,, — +oo and consider u,(t) the solution to

10ty = | Dty — |tn|?tn,
un(Th,) = <I>7~500(Tn)(m).

We will very precisely study the properties of w,(t). Here and in the sequel, we
omit as much as possible the subscript n to ease notations.

(5.1)

. : . . 1
From standard modulation argument, as the solution remains close in H2 to a
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modulated tube around the decoupled two solitary waves , we may consider a de-
composition of the flow

u(t,z) = (I)ﬁ(t) (z) +e(t, x) (5.2)

where the parameters

P(t) = (Aa(6), Ao (1), Br (1), Ba (1), w1 (1), 22 (1), T(£), R(1))
with the explicit dependence
T -1
(-5
are chosen for each fixed ¢ in order to manufacture suitable orthogonality conditions
on the remainders

1 .
ei(t,y;) = A2 (e (t, A (1) (1 — Bj(1)y; + a;(t))e ), j=1,2. (5.4)
Observe that

F'=v%—v, R (5.3)

lell?e = (1= Bp)lleslzas 5 =12 (5.5)
Let w be the symplectic form

w(f,g) = Im / fgd = (f,ig),

and consider the generalized null space of the operator iLg formed of functions
f € HY? such that (iLp)%f = 0. This generalized null subspace consists of iQg,

0y,Q3, AQg, and ipg, where pg is the unique H3 solution to the problem (3.9).
Indeed, one can directly check that i£3(iQg) = iL5(0yQs) = 0 and

(iL5)*(AQp) = (iL3)*(ips) = 0.

We then impose the set of symplectic orthogonality conditions:

w(gﬁiQﬂj) - W(Ejvaijﬁj) = w(€j7AQﬁj) = w(5j7ipj) =0, yj=12,
or equivalently,
(gjaQﬁj) = (5j7iaij6j) = (€j7iAQﬂj) = (6j7pj) =0, =12 (56)
Let 0 := (\j,24,75,0;), j = 1,2 and ¥ be a compact subset of
(R* xR xR x (1—f,1))°
For (01,09) € ¥ and f € HY?, we define

Sy, f(x) = Al.l/Qf( x— )emj,
J

AL =55)

The existence and uniqueness for each ¢ of P(t) ensuring the decomposition (5.2),
(5.6) is now a standard consequence of the implicit function theorem applied to the
function G : H'/2 x ¥ — R®, G(¢),0) = 0, where G is defined by

(¢ - Solvl(P) - 502V2(P)> So, Q/Bl)
(@ZJ - 801‘/1(7)) - 502‘/2(7))» SUliafBQﬁ1)
(¢ 801‘/1(7)) - 502V2(,P)> SUliAQBJ
G(w 0.) _ (@ZJ - 801‘/1(7)) - ‘902V2(P)> 801p51)
7 (@Z} _Sﬂlvl(P) _802%(P)>802Q52) ’
(V) = S Vi(P) = S5, Va(P), 80,102 Q,)
(¢ - 801‘/1(73) - 502‘/2(73% SUQiAQ52)
(¢ - SUlvl(P) - 802‘/2(73)7 Sazpﬁz)
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where o = (01,092) and P = (A1, A2, 1,82, ', R). The key ingredient here is that,
for any (09, 09) € 3, the Jacobian matrix

0:G (S V™ + 5,375, 0)

o=(c{,03)

is invertible, which follows from the fact that the matrix

(AQp;, Qp;)  (AQg;,10,,Qp;)  (AQg;,iAQp)  (AQg;, pj)
A= | Qp;,Qp)  (iQp;,i0y,Qp;)  (iQp,,iAQs,) — (iQg;, pj)
’ (9y,Qp;> Qp;)  (0y,Qp,,10y,Qp;)  (9y,Qp,,iAQp;)  (8y,Qp;, ;)
(Eijﬁj) ( ]7’Lay]Q5]) ( J’ZAQﬁ) ( J’pj)
with
2j = yayQﬁj + (- Bj)aﬁjQﬂj (5.7)
is non degenerate
Jim |det 4, £0, j=1.2 (53)

see Appendix C.

5.2. Localized H %-energy. The heart of our analysis is the derivation of a suitable
monotonicity formula for a suitable localized H > energy tdentity. The localization
procedure is mandatory in order to dynamically adapt the functional to the dra-
matically changing size of the bubble, but this will lead to serious difficulties due
to nonlocal nature of the problem and the slow decay of the solitary wave. The
limiting Szegd problem will arise in the form of various different estimates for II*e
which will be essential to close the estimates.

Let us start by introducing suitable cut-off functions which adapt the energy
functional to the dramatic change of size of the second solitary wave.

Space localization. We pick explicitly a sufficiently smooth non increasing function
1 for =z <i
Ui(z)=| (1—21)1 for 3<2 <1 . (5.9)
0 for z1 > 1.
and let

1 for =z gi
b(t) for z; > 1.

From this function of (¢, z1) we deduce a function of (¢,y1) and (¢, z) via the following
change of variables,

o(t,x) = o1(t,y1) = @1(t, 21), 21 =

By(t,z1) = Uy + b(t)(1 — Uy) = (5.10)

Y1
R(t)(1—b(t)

We then define the localization associated to kinetic momentum

C(t ) = Bu(t) + (1 Bi(0)(1 — (1, 2)). (5.11)
so that (1) (D)
2= G _ | Bilt) for yi < < A=0Q))R(E)
(o) =althw) { Balt) for g1 > (1— b(t)R(H). (5.12)
similarly, let
T (t,21) = ()T (1) + (1— W (1)) = ‘ Wy for m s (5.13)

1 for =z > 1,
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with the same change of variables as before,

3sw) = datn) = B0, =1 = gty

We define the localization attached to the localization of mass,

ot x) = o(t, x) = 01(t, 1), (5.14)

L
Aa(t)
so that

(1—b(i))R(t)

(1= b())R(1)

Explicit estimates used throughout the proof involving functions (, 0 are stated in
Appendix E.

L~ for
a(t,yl):{ i) ¢
n@ oW

VoA

Localized energy. We now introduce the localized energy functional:

Ge): = % [(|1D|e — (De,e) + (0e,¢)]

- i [/R(ye+c1>y4 —|®|*)dx —4(g,<1>|q>2)] (5.15)

Notice that the inner products are taken in the x variable, and that ® denotes
the approximate solution ®5,,. This functional will be used as our main energy

functional. We indeed first claim that G is a coercive functional.

Proposition 5.1 (Coercivity of the localized energy). There holds® :

62) 2 (1= 1) | [leiPan + [ orlDlet P + (1D P 0
where €1 was defined in (5.4).

The proof adapts the argument in [33] and relies on a careful localization of the
kinetic energy and the coercivity of the limiting Szegé quadratic form. A key fact is
that the relative distance R between the solitary waves is always large. The presence
of the localization ¢; in (5.16) is an essential difficulty of the analysis and shows that
one looses control of HD%€+HL2 as #1 — 1 (through the factor 1— /1), which reflects
the singular nature of the bifurcation @+ — Q. This will be a fundamental issue
for the forthcoming analysis. The proof of Proposition 5.1 is detailed in Appendix
F.

5.3. Bootstrap argument. Since ¢(7;,) = 0 and P(T,,) = P>(T,), we run a
bootstrap argument in the following form. Let

Bj = log(1 - 5)) (5.17)

and

[AN|(8) == sup [Aj = A[(7), |AB|(1) == sup |B; = B5F(r), (5.18)

TEL,Tn] TE[t,Th]
|AR|(t) :== sup |R— R™|(7), |ATL|(t):= sup |I'=T|(r), (5.19)
TE[t,Th] TE[t,Ty]

5for some universal coercivity constant which is related to the coercivity of the limiting Szegd
functional (2.17).
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we assume on some interval [T, T;,], with T}, < T < T,,, the H'-bounds:

G(e(t)) < f%
le(®) 2 < & (5.20)

N
t4

Vt € [Tin, Tn, {
and the bounds on the parameters:
1. post interaction estimates: for ¢ € [T, T, N [T, T,],
|AR| < w—
_ t8~
|AB;] + |AT
23:1,2 ’A)‘j |

2. rough turbulent bounds: for ¢t € [Ti,, T~ N [T, T,

e (5.21)

A =1+ e -1 <L
I1<1-5i(t) <2, 3 <t(t) <2
D) < V0o

F<R<2t.

(5.22)

The heart of our analysis is that all these bounds can be improved.

Proposition 5.2 (Bootstrap). For N > N* large enough and 0 < n < n*(N) small
enough, the following holds:

G(e®) S —'x
vt e [T, Tn]7 ||€(t)||2 <Nt71 (5'23)
HY ~ Ny
and the bounds on the parameters:
1. post interaction estimates: fort € [T, T, N [T, T,],
|AR| S —x—
. N8~ )
|AB;] + AT S — 5 (5.24)
Nts

1,
Zj:l,Q |A)‘j| S Wﬂ
2. rough turbulent bounds: fort € [Tin, T~ N [T, T,], P satisfies (4.77).

Of course, the bounds (5.23), (5.24), (4.77) improve on (5.20), (5.21), (5.22) for
N universal large enough, so that we can finally set T' = Tj,. Proposition 5.2 is
the heart of the analysis and implies Theorem 1.2 through a now classical argument
which we detail in Subsection 5.8 for the convenience of the reader.

From now until Subsection 5.8, we assume the bounds (5.20), (5.21), (5.22) and
aim at improving them. Since t > T, = 77%’ we will systematically use the bound

1
nCt\/ﬁ

<1 for N = N(5), n<n*(N).

Let us also observe from (5.21), (5.22), (4.95) injected into Proposition 4.12 the
bounds: Vt € [Tin, T,),

|B1| + | Mi| S

| o

1 1
) |BQ|§¥

LMl S (5.25)
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. oy . . ds; 1
5.4. Equation for e. Let us start by writing the equation for e. Using — = bvt

we compute from (5.3) the generalized modulation equations:

1 —1
Fsl = (72)82 - (71)51 - ; -1 + (72)2 - ((71)51 - 1)’ FSQ = IU’FSI (526)

I
and
1 (xg)s 1 (xl)s
Ry, = 1—-b+(B1—M)R 2 _ — e
1 + (B1 1) +1_51< N 52) 1—51< N B
()\1)31 (ﬁl)S:l
- R|l———-M R - B 5.27
( A1 V) 1—p1 ! (5.27)
We compute by construction:
’L'atq)}s—|D|(I)p+(I)p|<I>‘f,’2 \If—f-z (t y] ij 7 =12,
j=1 )\

where

Sytta) o= =i | C0% —ag avy - 2 (B2 gy,

Aj 1—-p; Aj
+ ﬁﬁi);] - Bj] ily;0y, Vi + (1= 8;)98, Vil = [(v5)s1 — 1]V
+ 8 (5.28)

encodes the deviation of modulation equations from the idealized dynamical system
(4.72) with the lower order error computed from (5.26):

g — |2t |
Si .—z[ . (Vsy 1)] a0 (5.29)

1 T, 1 Tsy ()‘1)31
* {1—51< B2>_1—ﬁ1</\1_61>_R< A _Ml)

(61)81 avl
" <1 — B Bl) }83

+ i/\1{(A1)81—M]aV1+ Al[o‘)”_MQ]aVl

)\1 a>\1 /\2 8)\2
(1= 52) [ (Ba)ss Vi
o I [1—52_32}352
N A%
Sy =ilyey = 1= plys = D] 51 (5.30)

) 1 Ts, 1 Ty (M) s
" {151< 52>_151<>\1_ 1>_R< A1 _M1>

(61)31 aVQ
" R<1—51 _Bl> }(?R

. ()‘1)51 oVa ()\2)52 oVy
+ i) [)\1 —M] 8)\1+ iAo [ N _MQ}%
51 oVs
T+ (1 - ) [fﬂ_ﬁﬁl —Bl} 4
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The error term
2

V(o)=Y ig,eg,N (yj, P(t)) i (5.31)

, 3
7=1 )\J
encodes the error in the construction of V; and satisfies by construction

Cn 1
77CORN-H ~ nCtN-H’

[NZIPERS (5.32)

where we recall that N will be fixed later and n < n*(IN). We write the equation
for ¢,

i0e — |Dle +2|® 5% + (9 )% Si(t,y;) e, (5.33)

[
|
=
T
S
|

where
N(e) = (®p +)|@p +e? — @p|0p° — 2|05 % — (2)%.
In the sequel, we use the notation
j+1=1 for j=2.
5.5. Modulation equations. At this stage we can evaluate the right hand side

of the modulation system applied to the parameters P(t) given by the modulation
argument.

Lemma 5.3 (Modulation equations). Let

(Aj)s, 1 (@))s; ‘(5])8
Mod,(t) := L — M|+ L — B+ = — Bj| + [(vj)s, — 1,
i (1) ' by J 1-5; | N J 1-5; J |(%)J
then
1 le;llz2
Mod; (1) S o + L, (5.34)

Proof of Lemma 5.53. Let j =1 or j = 2 and consider a generic multiplier

O(t,z) = %@j(yj,ﬁj)e”f, (5.35)

Aj
with ©; strongly j-admissible. We compute from (5.33):

%(e, ©) = (¢,0,0) + (idse, i0) = (¢, —i0,(i0) + |D|(i0) — 2|B5|*(i0) — (9)%6))

1 .
— | N(e) + ¥ + S2_, — Sk (yx) €7*,i© (5.36)
Ak

and estimate all terms in this identity.
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The linear terms. Using the fact that Mj;, B; are L°°-admissible, we estimate:

’ _ 1 (DI=8D)8; o Ns o i ((z)s, '
Zat@_w‘@_xg{_l—ﬁj_@]_z Y A@]_l—ﬁj< X _’B])ayj@]
s g .t (1— 5050, Vs, — 10| (y;
30,5+ (1= 5:)03,05] = (1), = 18] (1)

1 D| - 3;D)0; -
- [EEELL P

+ O (Mod; () (|A®; (y;)| + 18y, 0(y;)| + |y;0y, 051 + (1 = 8;)05,0| + ©;(y;)]))
+ O(IM; 11065 + 1B, ly;0,,0; + (1 = ;)00
1 [(|D| - B:D)O; .
S 1 e N T
A? J

1
+ (Modj(t) + ;)o(yejy +10y,0;] + |A6;] +](1 — Bj)aﬂj@j\)-

Then, changing to the y; variable, using the definition of €; in (5.4), and Cauchy—
Schwarz, we have:

(e, — i04(i0) + |DJi© — 2|05 (i0) - (#5)2(i0)) = (=, —

+ (1 ) (Mod (D)l + 1512

% O (115122 + 19,0512 + 146512 + [1(1 = 5;)05, O, )
+ (1= 8)O(IV; P = 1Qs, )85l 2 15122 )

+ (1= 8)O(IIVs+1265 121122

+ (1= B0 (VY105 2 251112

with the convention y;;1 = y1 for j = 2. To estimate the remainder, we estimate
using that R(V; — Qg;) is j-admissible:

1 1
< =
2 ~Y

(Vi — 1Qs, )85l < | -

We now use
y1 = R+ buys (5.37)

so that |y1| < & implies |ys| > 2—& and hence the bounds

dyr _ dyy dy:
/ (y1)?(y2)* /|y1|<§ (1) (y2)4 - /|y1>§ (1) (y2)*

b4/ dy1+1 bdy2<b<ﬁ
y1]

R* <B ()2 " R2 ) (yo)2 ™~ R2 ™2
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/ dyy _ / dy1 +/ dy1
(y2)*(y1)? i< (Y2)? ()t Sy (y2)*(yn)?
b? d 1 [bd 1
R2/ ot / 5 S
i< ()t RYJ (y2)* Tt

which implies

[

Vi1 20l 2 + ViVitaOjllre < -

o~

The above collection of bounds yields

J

(e ~i0,i0) + | DIO ~ 2104[(i0) — (©:)(0)) = 1D (e;. 25, i®,))
+ =805 4 vodo)e 1] (5.38)

The nonlinear term. We estimate using (5.20):

12| P - 13
(Ve i0)1 5 -5 [ BT < (1= )1 + s s )
< 0= Bllesle < 1 - gplEles (5.39)

The ¥ term. From (5.32),

1

(¥,i0) § Leprr (5.40)

The S-terms and conclusion. We now pick

0, € Aj :=={Qp,;,10y;Qp;, ANQp;, pj}

which are strongly j-admissible, and estimate all terms in (5.36) using (5.38), (5.39),
(5.40). The derivative in time of (¢,0) drops using the orthogonality conditions
(5.6). Moreover, the same orthogonality conditions (5.6) imply that (e;, L, (i1©;)) =
0. We now use Appendix C to compute all the scalar products and conclude:

(85 = 8)e,10) | ~ (1= 8;)Mod;.

Thus, in order to estimate Mod;, we are left with computing the crossed terms and
the error S; terms given by (5.30), (5.29). The detailed estimates are given below.

Case j = 1. We rescale to the y; variable and use the 1-admissibility of R(Vi —Qpg,)
to estimate:

|Mod; | + |[Mods|

(Brem,i0)| 5 (1 - py) ot R,
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We now recall (5.37) to estimate:

dy1
/ (y1) (1 + (1 = B1) (Y1) (y2) (1 + (1 — B2){y2))
< / dy
™ Sl ) X+ (1= B)(yn) (e)

dyi
! /y1|>§ (Y1) (1 + (1 = Bu)(yn)) (y2) (1 + (1 = B2)(y2))

< b/ dyi N 1 / bdy:

~ RJ (y)(A+ 0 =80)()  RA+nR)J (y2)(1+ (1= B2)(y2))
~ bllogn| +logt _ bllogn|

S 14t Yt

and hence the estimate of the crossed term:

‘ b1
1(S2e2,01)] < (1 — B1) [‘Otgm(Mon + Modl)] :

This yields the first bound,

Mod; + Mods ||61HL2 1
t + t nCtNJrl’

Mod; < (5.41)

Case j = 2. We estimate similarly

(526, 0)| 5 (1 - o) o T X%
and
/ dyo
(y1)(T+ (1 = B1){y1)) ((y2) (1 + (1 — B2){y2))
< 1 dyy 3 g

b/<?/1>(1+(1—B1)<y1>)(<y2>(1+(1—52)<y2>)N t

from which

Mod Mod 1
Mods < Olj 02+|o;g77\

1
< Hognl a1 Mody) +

(Mod; + Mody) + ”5275””

le2]| 2 1

t + nCtN"H .

Conclusion. Combined with (5.41), since t > |logn|, this yields

lealle> + lleall 1

Mod; + Modsy S ; nCtN+1

and hence using ||e1||z2 = Vb2 2

Mod; < Mod; + Mod, < 121122 Fl=2llee 1 1 leallz2 (1 + V/0)

~

t nCtN—‘rl ~ nCtN'H t

1 lle2llz2
nCtN+1 t

S

and from (5.41):

< 1 lellze | lleallzz o 1 leallze [, 1
~ 77C’tN—s—l t t2 NnCtN+1 t t\/l;

1 lle1]l 2
nCtN_H t

M0d1

N
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where we used
tvb>1 (5.42)
O

5.6. Energy estimate. We are now in position to derive the key monotonicity for-
mula for the linearized energy G which is the second crucial element of our analysis.

Proposition 5.4 (Energy estimate for G). There holds the improved pointwise
bound on [Ty, Ty]:

C

Ge(t) < —5

Ntz

for some universal constant C' independent of N,n,t.

(5.43)

Proof of Proposition 5./. The proof relies on the careful treatment of all terms in-
duced by the localization of mass and energy when computing the time variation
of the energy G. The main difficulty is the loss of control of the kinetic energy and
mass as 3 — 1 for €] as reflected by (5.16), which forces different set of estimates
for e*.

We rewrite (5.33) as:
iOe — |Dye+(<1>+s)|<1>+s|2—<I>|<1>|2 = F, (5.44)

F:=—U—-5 S= Z — S (y;) €7,
2
J

or equivalently

i0ie — |D]e + 2|®|%c + ®*6 = G
N(g) := (P +¢)|® +¢|?> — ®|®|? — 2|D|%c — P& (5.45)
G:=F—N()=—-¥—-5—N().

Step 1: Localization of mass. We compute the localized mass conservation law and
claim

i%(@e,s) = Z((8,0)e,e) + (—i|Dle, be) + (i®2, 0e%) + (i, b¢)
1

+ tN+1> . (5.46)

Indeed, from (5.45):

d1

1
gial0ee) = (00ie,e) + S ((90)e,€)

1
= (—i|D|e +i(2|®|% + %) — iG, fe) + 5((@9)5, £)

= (192, 0e%) — (iG, be) + %((&59)5,5)

(5.47)

_ %((8,59)6, £) + (—i|Dle, 02) + (iB2, 0?) + (iN(e), 0) + (1T, 0€) + (i, 0e).

We estimate from (5.32), (5.20):

’( ’ €)|< H€||L2 < 1 ]
~ CENFT ~ N+

For the nonlinear term, we estimate from (5.20) and (5.16),

g

[(N(e), 02)| S /(IS!4 +1el®) S lellz=llellze < 5



80 PATRICK GERARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAEL
and (5.46) is proved.

Step 2: Localization of kinetic momentum. We compute the localized kinetic
momentum conservation law and claim

li(gDe,g) = (2<1>|s|2+<1>52,<0x<1>)+0<f+ ! > (5.48)

2dt N+l
1 . 1 ) 1
+ 5(8tCD5, e) + (—i|Dle,(De + §8DC) + (1S,¢De + isDC).

Indeed, we compute from (5.44):

S 0(Dee) = L(0CDze) + 5(CDDE) + L (CDe,Dje)

= %(8,5CD5, ) + (O, (De + %aDC)

_ %(atgug, €) + (—i|D|e + i(2]®[2 + %) — iG, ¢ De + %5DC)
= 5(0CD=,2) + (~ilDle,CDe + D)

(2] + 9%8),(De + %EDC) 4 (—iG, CDe + %EDC).

We integrate by parts the quadratic term using the pointwise bound (E.2):
2
_ €
(i(2|®|%¢ + ®2%¢),(De) = (2®|e|® + D%, ¢0,P) + O (”!L) .
We estimate from (5.32) after integrating by parts:

. 1 1
(1%, ¢De + 5eDO)| S 1l mllel e S sx

For the nonlinear term:

‘ 1 g
(iN(),¢De + 52D S el lell2: S 7

and (5.48) is proved.
Step 3: Localized energy identity. We now compute the variation of the linearized

energy:

{300~ 1 [ [+ ot - ot - e, 00| (5.49)

= (0, |Dle) — ((e + D)|e + D%, e + 8:D) + (D|D|%, 0, D)
+ (Die, ®|D[*) + (e, 0:(@| %))

= (Ose,|Dle = (e + D)[e + D|* + @|®[*) — (9:P, N(¢))

= (1% +iS,|D|e — (e + ®)|e + O + ®|®|?) — (0;®, N(¢))

We estimate all terms in (5.49) and in particular first extract the quadratic terms.
From (5.32), Sobolev, ||[®|/z~ < 1 and (5.20):

(0, |Dle = (@ +&)|® +c* + @[@*)| < V] llell 2 (5.50)

<
~ tN+1
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Let us estimate the term (9;®, N(¢)). Since Vj, R(V; — Qp,) are j-admissible, and
RM;, RB; are L°°-admissible, we compute

2
(Br)s; 1 . OV; aV;
0.V = 1-— J —JFS, — R,
3V kg[mk + Bk)@ﬁk 1= 3. " it Rt
and hence, using (5.34) and the bootstrap assumption, we infer
1
|0:V;| < ——. (5.51)
T tyy)

Consequently, the admissibility of V}, (5.34), and the bounds 1—3; ~nand 1-35 2
n3 ensure

at(I) Z % [&sjV - )\J A‘/J - 1— ﬂ] |: )\] - /8]:| 8ij7 - 1_7@8%1/]
]
. ) Y50 VH(V)SV] " (y;) =0 22:1 (5.52)
L—g;7" e ’ % (y;)

7j=1
We use this with (5.20) to estimate:
—(04®, N () = — (0P, (P + €)|® + ¢|* — D|D|> — 2|®|%c — B%E)
2
— € € _
= — (0,®,29¢]* + Pe®) + O (W) = — (0:®,2®|e|* + ®<?) + O (f) .
n
similarly, using (5.34) and (5.20):
(iS,|D]e — (® +&)|® + |* + ®|D|?)

Mod; + Mods 9
——llellz2

— (iS,\D|5—2|<1>25—<1>25)+0( e

= (iS,|D|e — 2|®|%c — %) + O (f) :

The collection of above bounds yields
d 1
G {300k~ | [ ot o) - e mop)| | 5

= (5,|D|(iS) — 2|®[*(iS) — ®*iS) — (0., 2®|e|* + P?)

g 1
o9 k)

We now treat the remaining quadratic terms more carefully and combine them with
the leading order quadratic terms in (5.46), (5.48). Indeed, we rewrite (5.52) using
(5.34), (5.51), (5.25) and the j-admissibility of V;:

o

2
1 (Aj)s, 1 [(x)s, (ﬁ)
R V. — AV — J ;5
J

2 2
Z o) _ 5j3$q)(j) +0 Z
— A =ty

1

| =

<
>
~& | =
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where we have set

. 1 T — T ,
o0 (t,2) = v, () e
G,) )\]% ’ Ai(1 = B;)

We infer the bound
— (04, 20> + Be?) + (%,i0D2) — (2®|e|* + De?, (0, P)

1 _ _
— <ﬁ18 oM + 3,0,8% + 0 <2 <>> ,20|e|? + <1>52> — (20]e|? + Be2, ¢, D)
Yj
1 . 1) @)
+ (2,i® {ecp - Z?ZI)\-@O)}) 2(i ~ A2> (@D 4 @2
J

= —(20[e] + &%, (¢ — )0 @ + (¢ — B2)0,2P) + (£%,i®%F_ (91)@(”)

J

2

2 ()5 ST lell?
2, ieWe@) — = (|, ie®eM) + 0 ( =L
2

)\71(|€ 5 0 t

We recall (5.37), and hence [y1| < & implies \yg\ R from which

NP o S [l [l =

(y >< 2)
and hence
e, _ g

t t
We then use (y;1) 2 R on Supp(1l — ¢1) and Supp(%1 — ) and the explicit formula
(5.11) to estimate:

[l i @M @) + (|, i@P M) < <

(1 <‘1_¢1|<1

(€= ma.e| £ 5t <
1 1
— el < =
‘(0 M)@ <T

Similarly, we use (y2) = R on Supp(b — ¢1) and Supp(% — #), and the relation
B2 — (= (1~-p1)(¢1 —b) to get

(€ - B0 5 b(fl’s

1
i q)(?)
‘(9 >\2)

The second estimate above is straightforward. Let us explain how to obtain the first
estimate. Recall that b — ¢ = (b— 1)Uy, and 0 < W(z;) < 1, with ¥;(z;) =1 for
21 < 1/4, Uy(z1) = (1 — 21)10 for 1/2 < 21 < 1, and ¥y(z1) = 0 for 23 > 1, so we
may assume z; > 1. Moreover, recall that

1
t

1

Y1 R + ubys —b MY
a R(1—0) R(1—b) 1—b( + R)—
If
HY2 1
—1>2E s
- R — \/l;
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then |1 — 21| < Vb, and

4 4
S5
bly2)? ~ (y2)? — R* ™t
On the other hand, if
Hy2 1
LA Q—
R = Vb
then (y2) > R/v/b, and
oo oo ll
b(ya)? ~ b(y2)? ~ R2 ™t

We conclude using ||®||r < 1:

— (0@, 20| + Be?) + (%, i09%) — (2®|e|* + ®e?,(0,P) = O (f) :

Injecting this estimate into (5.46), (5.48) and (5.53) yields the full localized energy
identity:

jt{ (IDle + fe, 6)—7(§D€ €) — i U(;HW @) — (4e, @[ D] )H
(

= 5((@9)5,5) + (—i|D|e, 0e) + (e, |D|(iS) + i0S — 2|®|*(iS) — ®%iS)
- %(3,5{1)6,5) + (i|D|e,(De + %5DC) — (iS,(De + %eDC)

g 1
+ 0 (t + tNJrl)

= 5((@)=.2) + (~iDle, be) — H(ACD=, ) + (ilDle, ¢D= + 2=DC)

+ (&, (ID| = CD)(iS) + i6S — 2|®[2(iS) — B%iF) + 1(5 iSDC)
L0 <g N 1) (5.54)

t tN+1

where we integrated by parts the term (4.5, (De + %z—:DC) in the last step. We now
estimate all remaining terms in (5.54). The linear terms in (5.54) induced by the
localization of the mass and kinetic momentum® are particularly critical for our
analysis.

Step 4: Modulation equations terms. We estimate the remaining modulation equa-
tions terms in (5.54) and claim

1

+ tN+L°

(e, (ID] — ¢(D)(iS) +i0S — 2|®[*(iS) — ®%iS)| + |(¢,iSDC)| <

oo-\(]

(5.55)

Indeed, we first estimate the S terms in the y; variable. From (5.28), (5.29) and
(5.34) with [|ea| 2 = 152,

Vb
Mods 1 el 2 1
< < _
||‘S’1||H1}1 < Mod; + P ~ nCtN_H + P 1+ \/Bt
1 1|2
S nCtN+1 + n (5.56)

6which is necessary due to the dramatic change of size of each bubble.
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where we used (5.42) in the last step, and

Mod1 < 1 ”EQHLQ

ISy, S Moda + =90 S~y + 1 (557)
We also have similarly the pointwise bound using the admissibility of V:
1 1 lleall L2
k L
|0y, 52| < (y2)k [ nCtN+1 1 (5.58)
In particular,
ISz < 1Sz, + [1S2llzz, S 1Sullze, + Vol Sl 2,
1 lle1]| 2
S nCtN+1 t (5.59)

We therefore renormalize to the y; variable and estimate from (5.59), (5.11):

(,iSDO)| < (1— By)l(e1, S0y é1)| < © !

r lexllz2 + NI
and similarly using ||®||ze < 1:

1
[|(e,i0S — 2|@[*(iS) — 9%1S)| < (1 = Bu)llerllz2llSN 2, S N
Wenowuse (1 =081+ (1—=061)(1—¢1)=1—(1—p1)p1 to compute:
(e, (IDI = ¢D)(@9))| < |[((|D] = C1D)er, 19)]
< (1= Bul(@1D=1,i)| + |(ier, DI 8)| i= T+ 11,
We claim:
r+m<dy ! (5.60)
~ ¢ tN+1 ’

which concludes the proof of (5.55).

Control of I. We split S = 51 + S5 and first estimate after an integration by parts
and using (5.56):

1 1-5 9 1 g

(A=BD)l(@1D=1,i50)] S (=B0)lelielSillay, S s +—lerle S st

Next,

|(1 = B1)|(¢1Der,iS2) S (1 — B1)|(¢2Dez,iS)|
S (1= B2)l(e2,iDS2)| + (1 — B1)|(e2, D((¢2 — b)iS2)|.

The first term is estimated from (5.57):

. U Jele] o 16
(1= A(e2iDSI 5 (1= Bllealie | o + 1202 € e + 5.

The second term is estimated using (5.58), (5.37), (y2) 2 % on Supp(b — ¢2) and

10y, 2|l L0 S ][0y, 1L S & so that:

(1—=p51)|(e2, D((¢2 — b)iS2)] < (1 —51)% [,'70;\[-&-1 + H€2tHL2] / (E?)dw

< 1 —fo 1 _g

P2l + ey S 2

which concludes the proof of (5.60) for I.

+ tN+1
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Control of I1. Consider S; — gj. Then by commuting the null space relations
Ls(AQp) = —Qp, Lp(iQs) =0, L3(9,Qp) =0
and (2.21) with II~, we estimate:
1D (AQp) |2 + | DTI™ Qs 2 + || DI AQg| 12 + | DI 9, Q| 12 S 1 = B.
Hence from (5.28):

- s 1 llejlle2

DI (S, - $)lsz, & (1= BMod; S (1= 6) |~z + 14
from which:

3 _ ~ 1 €1 2 g 1

(21, DIT(81 = S0 5 (1= Bollealie | s + 102 £ 9
and renormalizing to the yo variable:
, _ & . _ = 1 €

|(ie1, DII” (S2 — S2))| = |(ieg, DII" (Sg — S2))| S (1 — B2)lle2]| 2 nCtN+1 ” thLQ}

g 1
S o T

We now argue similarly for the S’j terms. Indeed, from Corollary 4.7, we have

_ _ _ _ 1—p;
DX GeVj | 2+ DI AVl o+ DI04, Vil HI DI (185408, Ville S +22
Hence, arguing like for (5.56):

. 1—- 051 1 ”51HL2
DI Sz, = [Mods + Mode] (1= 1) | iy + 1
which implies
. -G 1 le1llz2 g 1
(i, DI30] 5 (1= Bollenlie | s + 102 £ 9t s
similarly:
— & 1 —BQ 1 ”€2||L2
DT Sallzg, =2 [Mods + Moda] (1= Ba) |y + 12
and
: ye 1 leallz2] G 1
|(ie2, DII™ S2)| < (1 — B2)lle2]l 2 [nCtNH | St
This concludes the proof of (5.60).
Step 5: Linear momentum terms. Let
f=—tr n=2, (5.61)
(z1) 2 R
we claim:
1 . 1
—i(ﬁtCDe,e) + (i|D|e,(De + §5DC) (5.62)

;&MMDQ+OQJH+1FW+%T;D'
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We first compute:

(¢ De,€) + (=il Dle,eDC) = (A(De* + De™),e* +7) + (Dt — De™, (= +7)0,C)
= (B¢ + 0u0) D™, &%) + (O — BpC)D™,27) + (€ — 0aQ) D™, &%) + (94 + 0,C) De
= (B¢ + D:0) D™, &%) + (O + BpC) D™, + (€ + D) D™, &%) + (94 + D,C) De

— 2(0:¢(De™,e7) — 2(0,(De", &™)

and now estimate the various contributions.

Term |(0¢(De™,e7)|. We claim:

S | 181117

|(@aCDe™,e7)| S 1 16() + — | (5.63)

Indeed, recall (5.11) and renormalize to the y; variable to compute:
[(0:(De™,e7)| S [(Dey, 0y, ey )|

We then commute:

’(Dgl_’ ayﬁblgl_)’ =

1 1
—xrDe] , €7

1
R(1—0)

1 1 1 1 1
o [—I1D[2xr[D|2ey + [|D|2, xg]|D|2e1],€7)
(21) 2

1 1 1 1 1 ~
S = {I(lDRer IDRe)| + 1(1DIer, DI, xrlé1) |

(

1 1 1 -
—= |1 DI2enll + HHD|27XR]51HL2] :
2

1 1 1ta
S gllPlerlle [||XR<21> 2 ||z |l
<1

We estimate from (D.1):

IIDIZ, xrléillze S —= e
\F

and from (D.2) applied to ( )i
21

1 1. 1 1 1 1 _
l——==[DPIze1llzz S [lID[Zey |2 + [|[-—z= [I1DI2, ——==]e1 [lr2
21) 2 Zl 2 Z21) 2

S Dy |2 + —= (5.64)

€1l 2
\F

and hence the bound:

(D=t 0 re)| 5 5 (11D 2. + 1EEe] < L 1BV
1>%y1 1/~ R 1L R ~ ¢ t )

this is (5.63).

Term (0,¢De~,e™). This term cannot be treated directly due to the 7 loss in
lef]ize < g We claim that

(0.0 ) = L o, 0(@)) + 0 (tN1+1 + 90 ) _ (5.65)

Indeed, first we renormalize to the y; variable,

_ 1 _
(aICDg 75+) = Y%(Dgl 7ay1¢151+)

T
+7€—)
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87
and now we need to use the equation. We rewrite (5.44) as

i@ts — |D|€ = F

Ftyr) = —0 — S — (& +&)|®+ = — 0|02), F(t,2) = Fi(s1, 1)
and renormalize to the y; = Afﬁﬁh) variable so that

D| - pD
0,y — P1= 51D

1-p1 o
+1= (M) €1 B1)s, b1
A PFL 4 " 1(2 + y10y,€1) — i 3, Yy10y,€1 + 1 (7 1)_5 Oy1€1 + Vs1€1
and thus after projecting with II~ and using [IT* ,0y] = [IT ,y8y] =
. 146
105,67 + 15 De; (5.66)
A1 s o - _ _
R R TR T et e W
A1 “1=5 1—=05
and
05,61 — Def (5.67)
-()‘l)s 5+ . (ﬁl)s . (xl)t - ﬁl
AL i " 1 (71 + y10y,67) — i1 511 y10y,67 + zﬁaylaf + (71)s,€7 -
Using (5.66), we have
1 _ 1-751 o
)\?(D&H 78y1¢151r) = m(—zaﬂﬁ aay1¢15;r)
11—/ 1+ ()‘1)81 €1 - . (/81)81 —
- | A, I Fy 4+ -2 (2L 19) — 0
n i($1)t -5

1- 5 83/151_ + ('71)5151_7 ay1¢1€1~_> .

We use Supp(dy,¢1) C {4 <y1 < t}, |0y, ¢1] L~ < 1 and the rough bound

()\1)31 (B1) s, (1)t — P < 1 <
)\1 1 Bl + 1 _ 51 t ‘(’Yl)sl‘ ~ ]' (568)
to estimate
M)y €7 -p g
(=60 (P22 + aer oot )| 5 252 el < 5.
and
. )\ S1 — . S1 — . - —
(1—=51) ‘ <’L( )1\3 Y10y,e1 — Ziﬁ_l)ﬁl Y10y,61 + Z(xll)iﬂlﬁlaylgl 78y1¢15f>‘
1-75 g
s =Pl s 7

Indeed, in order to absorb the derivative in the second estimate, we make use of the
commutator estimate (D.9). For instance

[(10y,67 50y 1) = [0y, [, 10y, pler )+ O(llenll2) S lleallZz
ad the two other terms are treated similarly.

The rough L*-bound |le1]|p~ < 1, (5.32) and (5.59) ensure

~ 1
[F1lz2 S lleallzz + HCENAT (5.69)
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and hence:

(1— B0)|(IT Fy, 0 1) <

We now integrate by parts in time:

-5 1 _g 1

2
; le1llze + NFT S ;Jr AN

1 . 1-5 . g 1
)\?(Dﬁ Oy 1e7) = —m(13t51 Oy d1ef) + 0 (t + tN+1>
— _i 1 - 61 s + o 1-— /81 — . + g 1
o dt {M(l + B1) (ier Oy drey )} A(1+ Br) (1, O dridel) + 0 PR
where we used (5.68) and the rough bound
1

0:0y, $1] < :

in the last step. We now inject (5.67) and conclude using a similar chain of estimates
as above:

1 _ o d 1-81 . _ I g 1
)\—%(Dsl,aylgzﬁlsl) = —ﬁ{M(Z517ay1¢151)}+0<t+tN+1>

1 _/81 — +
m(ﬁ » Oy, 91 De] )-

The last term is handled using again the commutator estimate (D.9):

leallZ
t2

(e, By d1Del)| = [(e1, [8y, é1, TTT]Dey )| S Nlef |22l P[0y, f1, T e (122 S

and the boundary term in time is estimated using [|0y, ¢1 = < 3:

1-p1 g
S — el S =

(i&f,aylgf)lsf) n

A1(1+B1)

The collection of above bounds yields (5.65).

Term (—i|D|e,(De). We claim similarly

(~ilDle,CD2) = 2 {0,0(0)) +0 <tN1+l . Giﬂ) _ (5.70)

Indeed, we compute:

1
(—i|Dle,(De) = m(—i(l)ei”—Dgl_),fl(Dgif‘+D€1—))
— M [(—iDef,(1Dey) + (iDey, G Dey)]

2 S
= ———(iDg] ,ClDef) = —

X0 ) (iDey , ¢1Def).

2
M
We compute from (5.66):
L
M

=B
A1+ B1)

1_6 1+1 - )\5 er _ ~/Bs -
M(Al o FI—H( )1\3 1(21+y16y151)—1§_1)ﬁ11y18y151

AT - _ _ .
z(ll)iﬂlﬁl(‘?ylsl + Vs8] ,z¢1D5f> .

(iDey,¢1Def) = (i0ey sig1Det)

_'_
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We estimate from (5.69), (D.9):

(1= B F, g1 D )| = (1 — B0)|(IT Ay, (1T, 6] Det)|
< - AIDIT, 6 Aillzlef e S 22 Al £ 2= el + oy
S S
We integrate by parts,

|(i10y,e1 ,igrDef )| = |(iey, Oy, (y1610y,¢])]

< Ger, (91 + 19,619y, + (T, 116105, €7)| -

For the first term, we estimate from (D.9):

(iex, (61 + 410y, 1)0y, 61 )| < llef 1122110y, [T, 61 + 110y, dale [l22 S *Hellle

For the second term, we use [II', y1]9,,e1 = 0 and (D.10) to estimate

|y, o111 (9205, e1))| = (e, [61, 1) (5105, 1))

o el
S Nt el ()02, [0, dnler e S 2

|(ie] , Y1105, €7

Similarly,
. _ _ 1
|(8y, &7, d1Def )| + [(e7, 1 Def)] < ;Hﬂlliz-

We therefore integrate by parts and using (5.68)

1 1-— A . 1
)\2 (ngl 7¢1D€1 ) 1(14_/8;1)(7’87551 77’¢1D€ii_) + O (f + ZL/N+1>
d 1-— 1— 1
- dt{mflm(gl"f“mf)} mﬁﬁ)“@fvmaﬂsﬂ+0(g+w)-

We now reinject (5.67) and estimate all terms similarly as above using (D.9), (D.10),
and (5.70) follows through a completely similar chain of estimates.

(Or + 0,)C terms. These terms gain an extra 1 — 81 which is essential to treat the

degeneracy of the kinetic energy and the L? mass for £ in the lower bound (5.16),
and we claim:

(B + 8D, )] + 1((B4C + ) De )| + (D€ + 00) D", e)]
+1(@¢+,0D%e) 5 7. 65.11)
Indeed, let
Bit,z) = B0 iy = g (). (5.72)

Vo
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We estimate, after renormalization to the y; variable, using (5.11), (E.3), (E.12),
(E.14), (E.15),

(D*, (0 + 0u)e®)| S | (VDT vaet)|
B)
‘(D(\/afff)ﬂﬂl«?l /‘ n?l |v1|[e1]*dys

1 1
< 1D (Ve [HUD\z,wﬂsl 2 + ln D3 uLz}+ 2 el

A

1 1-751 51

< [w DBt e + = uslup}x[g lerlle + 2= Var D et e
v R t2
1

+ Qdy1 S Eg(t) .

Finally, we infer
(01 + 9x)De™, %) = (/8D )| = |(Vo1Der )|
= (Vo1 ID1Bler + DI VrIDIEer, vnsh)
S IV8n IDIEIeT e laetllze + V61 DIEET ez (Il D3 et 2 + 1DIE, wleallzs )
and hence, using (E.14), (E.15), (E.12),
/81

[((B€ + 0:¢) D=, %) < J — lleallZ:
+ IDlkele (45 51||f|D|zsl oo+ el ) < 5.
and (5.71) is proved.
Step 6: Control of mass terms. We claim:
S(@10)2,2) + (~ilDl,6) = & {0y 0(0)} (5.73)

11 I1E1117
+ O <tN+1 +3 [g(t)+tLD.

Indeed, we split € = €™ + ¢~ and compute:
1 1
5((&0)5,8) + (—i|Dl|e, be) = 5((8t9)(5+ +e7), et +e )+ (—i(Det — De™),0(eT +¢7))
1
= 5((8t0)(€+ +e7 ), et +e7) = (OweT —0pe™,0(eT +£7))
= %((@6 + 0,0)eT, ™) + %((&9 — 0x0)e™, 7)) + (00T, e7) + (O™, 0cT) — (O™, 0e7)
= %((&te + 0,0)e™,eT) + %((ate — 0p0)e™,e7) + (040 + 0.0)et,e7)
— (0p0ct,67) + (Ope ™, 0ch) + (67,000~ + 00,27)
1 1
= 5((8t9 + (9;,;9)6"', €+) + 5((81/9 — 819)5_, 5_) + ((8t9 + ax9)€+, 5_)
+ 2(0eT,0.67)

and estimate all terms.
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(O + 0,)0 terms. We estimate from (E.19),

2
(020 + 0:0)e™,e%)| < Hgt‘m S %
Term ((0y — 03)0c™,e7). For t > T~ , we use
A2 = Ai[ S
and (E.17):
— oy < Pe=Ml e G()
< =2 o < ZA 7

For t < T, we use the bound

A2 — A1] S

~+ | =

and the space localization of dy,6; to estimate from (E.16):

~ ~ A2 — A1~ &1
(@)™ 7)) S (1) 470y, 00151, 21) 5 P2 Al gy 2, Bt

Term (0™, 0,e7). For the last term, we renormalize to the y; variable

(Ope™,0eT) = /\11(D€1_ ,—i01e7)

and hence, using (5.66),
1—P1,., .
(0pe™,0eT) = o gi (i0e] ,i61e7)

1 _61 1+~ .()\1)31 5; _
——— [\ I F —
+ )\1(1 + 51) < 1 1+ )\1 ( 2 + y18y151 )

(B1)s _ @) =B, _

_ 21 — 5113/1831151 +1 1 i 3 Oyie] + (71)s1€7 ,ngf
1— 51 . — . 1-— Bl

= 13 5, (i0ey ,ibhel) + O < " ]51H%2>

and hence, integrating by parts in time and using (5.67), (5.68), (5.69),

(0ze™,0eT) = d{l_ﬁi(slﬁlaf)}

dt |1+ 8
1_51 — + 1_51 2 1
s e D) +0 (el + )

We estimate from (D.9),
_ _ 1
|(e1,61Def)| = [(D[IF, 61)er,e7)| < ;Hellliz
and, for the boundary term in time, we use
1
(91:*[/1,\1’14-1—\1’1] ,

A2
to compute

1-51, _ _ 1-5 _ _ 1—-p5 . -
153 (e1,01]) = m(ﬁ (O +1-T e ) = N+ B Jrﬁl)(ﬂ D(er, rey) -
Hence

1—p

e (7. 01e7)| S A2 = Mil(L = Bu)llen]2 S 06



92 PATRICK GERARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAEL
which concludes the proof of (5.73).

Step 7: Small time improved bound for ||€1||z2. The collection of above estimates
yields the differential control:

¢ Gwa ol < 2 [ggey + 1Ele ! 5.74
SAGW(1 + om0 S 7 |60+ 22+ (5T
We now estimate the &7 term first through the following space time bound:
€1 (7117 Tn 1
/t Iz 4 /t G(r) + —y | (5.75)
which improves on the trivial bound ||€1(2)]17. < [le7 |22 S 7(7) for t < T . Indeed,

let

+o0
Y1 dz
h =H|= H = _—
(517111) <81> ) (Zl) /z; 1 <z>1+a

We estimate from (5.66):

1d 1 1+ —2
e [ =5 [ (00 = 15000 ) nle

()‘ ) (ﬁl)sl
)\1 1- ﬁl

1 1+ 0 2 1
= 5 [ (o0 - 250 ) tler P+ 0 lenle + i

where we integrated by parts and use (5.68), (5.69) in the last step. Moreover,

1+ _ 1, _1+h 1 O ;
e (o o= (1) e

and hence the bound using (ZS%‘*& <1
1 1+ 53 le7 |2 g 1 1d o
— < ——+-—— [ h )
(1—ﬁl> 5 e SO0 g T T, ) e

We integrate this on [s1(t), s1(T3,)] with e1(s1(7)) = 0 and (5.75) follows from
sp~t~R, 2<1— 61 < 2.

(@)= B
ylaylgl +Zl_7l81

+ <z’hz—:1,)\ 2" F +4 L 21 +y10y,67 ) — i 8y151+(71)5161>

Step 8: Conclusion. We integrate (5.74) in time on [t,T},] using (7},) = 0 so that

T, T ||Z. 112
mG(r " lEl 1
Gg(t) < (>d7'+/t 2L2d7+t—N.

t T T

CJ'!
O
\./

The first term is estimated using the bootstrap bound (5.2

T, T
" G(7) /” 1 11
—dr S dr < ——.
. NN%

t T

For the second term, we estimate from (5.75):

T ||&7 1 (T &l 1 [T 1
L2 L2
/t g dr t/t . dTgt/t [Q(T)—FTNH]CZT

1 1 (Tdr 11
S 15N+1+t/t TSNE

which concludes the proof of (5.43). O

N
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5.7. Proof of the bootstrap Proposition 5.2. We are now in position to con-
clude the control of the geometrical parameters and the H' bound.

Proof of Proposition 5.2. First observe that (5.43) yields the improved H 2 bound
in (5.23). Moreover, the bounds (5.21) at 7~ and (5.34), (5.16) (5.43) allow us
to apply the perturbative Lemma 4.13 and conclude that P satisfies (4.77). We
therefore need to prove (5.24) and the improved H! bound in (5.23).

Step 1: Proof of (5.24). Recall (5.17) so that
(1 5;)05, = 03,.
Since RM;, RB;j are L*>-admissible, we have

2 2
1

D 103 M| +105 M| + > [RORM;| + 00 My| < < (5.76)
g,k=1 j=1

2 2

1

> 105 B +105, Bl + Y |RORB;| + 00 B;| < - (5.77)
Jk=1 j=1

For t > T, the same chain of estimates like for the proof of Proposition 4.12 using
1—pl<n for t>T7

ensures the more precise control:

2 2
1
Z |0r M;j| + |RORM;| + ‘Z 05, M51 < - (5.78)
7j=1 7,k=1
Indeed, if j = 1, we know that b~'R(1 + (1 — 31)R)M; is L>-admissible, so that
2 b 1
M RORp M 0; My| < < -

k=1
since, for t >T~,b~n?, 1 - ~nand R ~t. If j = 2, Corollary 4.8 leads to

2
1= pl + (1 = B2)|log(1 — B2)| + R
‘aFM2|+|R8RM2|+Z(1—/8k)’aBkM2| N R(1+ (1 - B1)R)

k=1
Since, for t > T, |1 — pu| <, 1 — Bo ~n?, 1 — 1 ~ 1, R ~ t, we infer (5.78).
Recalling (5.18), (5.19), then (5.76), (5.77), (5.78) ensure:

2
1 ~ 1 1
1By = BFIS | D0AN|+IAGD + AT + AR S
i=1 ’
2
1 1 - AR _ 1
M =ML S 2D 1AM+ | D IABIHIATH + == S g
7j=1 Jj=1,2

Moreover, from (4.72), (5.34), (5.43):
()\j)sj ()\JO'O)Soo

_ J

by A

[(Aj)e = (A7)l = < [Mj — M| + Mod; <

T~ t%+2

which time integration using (5.82) ensures:

1

AN < .
AN S s
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We now compute similarly:

L 1B; + O(Mod;)] - 35 55| 8 B BEHBEIN AR S oy
t4

Aj J

|(B))e=(B5°)el =

and hence by integration in time:

~ 1
JAVCHIS Y
We now compute the phase shift:
T = | g <A12—;go) + O(Mod + Mody)| £
and hence
Ar| g —
245
We now estimate from (5.27):
~ 1 1
[Re — R[S Y JAB)] + |AN| + Mod; + |AT| + TIARIS T
j=1,2

which time integration concludes the proof of (5.24).

Step 2: Proof of the H! bound in (5.23). Since we have closed the H? bound at the
linear level, closing the H' bound or any higher Sobolev norm is now elementary.
Recall (5.45)

i0e — |Dle + 2|®|%c + ®? = G.

Let .
z = |D|z¢,
then:
i0iz — |D|z + 2|®*2 + ®?2 = G
< t i . (5.79)
= |D]2G = 2[|D|z, |®[*]e — [| D|z, %]
We now run an energy identity on (5.79). We consider
1
Go(2) = 5 [(IDI2,2) + (2,2) — (2102 + 072, 2)
then from (5.20):
1
1212y < Go(2) + 121172 < Gol2) + - (5-80)
t2

We compute the associated energy identity:
%ga (@2, | Dz + 2 — 2Bz — ®23) — (3,(|D[2)2 + %atqﬂz, 2)
= (—iG,|D|z + z — 2|®|?z — ®%2) + (22,iD?) — (@, 2®|2|* + D2?)
= (22,i®%) + (i|D|3 (¥ + S), |D|z + = — 2|®|%2 — 3%3)
+ (i [20D1%, |02} — [IDI3, 0] , D]z + = — 2/ — 0%2)
(z]D|2N( ), [D|z + 2 — 2|®|22 — @25)

— (01D, 202|? + ©2?)
=T+ I +IIT+1V +V. (5.81)
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We now estimate all terms in (5.81). From (5.20) and ||®|| g~ < 1:

1
=1(z%,i®Y)] < |le])? 1 € &
(=105 29)[ S el ) < e
For II, we use (5.32) and an integration by parts and (5.20) to estimate:
. 1 9 9_ 1 1 1
GD[> ¥, D]z + 2z = 2[®[°2 — @72)| S V] 5 ll2ll2 S SO S

For the modulation equation term, we estimate in brute force using the admissibility
of Vj, (5.34) and (5.20):

1 1 1
S| s < —(Mod; + Mody) < ——
1918 5 5 V5o
and hence:
oL _ 1 1 1
|(i| D|2S, |D|z + z — 2|® 2 — &%) < IS pgllzllce S —~ % < x-
n ta ta ta

For III, we use that for any function y:
1 1 1 1
[DI2[|D]2,x] = [|Dl,x] = [|D]2, X]|D|2
and hence using (5.20), (D.1) with R =1 and the admissibility of V:

. 1 1 1
|(2iD1%, 102e, D12 )| S IIDIEIDIE, @] 221,
1 1 1
< (NP 12PYelze + NIDI, [#P)D el 2 )1l y S olel 3l

< el S
TopCta HET T Al

The term (21’[\D|%, |®|%]e, z — 2|®|?2 — ®2Z) being easier to handle and proceeding
analogously for the terms containing z[|D|%, ®2)&, we conclude that

1
(TS
tj-i-l

For IV, we develop the cubic non linear term. The most dangerous nonlinear term
is the following which we estimate in brute force by Sobolev and (5.20):

. 1 . 1
(31DI3 ele2),1D1) | = |(i1DI(ee), 1DI32) | S Do) 2121,
S IDelallelZ= N,y S (ell3 + D=2 1212

< 1 .
~ t%+1

Then, by the fractional Leibniz rule and (5.20), we also have

. 1 _ 1
(1D (cll?), = — 2107 — 822) | < 11Dl elallelalzlen S 1l I,y 11
1
~ t%-ﬁ-l ’

We argue similarly for the quadratic terms and obtain:
L = _ 1
|(i1DI3 (21e2@ + £2), D)z + 2 = 2022 - 0%2)| S —gzz (lell3z + el %=1l 53
77 2

< 1
~ oAt
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Finally, to estimate V, we use from (5.52) the rough bound ||9;®|r~ < -1 to

n
estimate:
24922 < 2 < 1 1
V] = 1(0:®,20[2]" + @27)| S 0:®@]| oo [ @l o< l2ll22 S — & S 77
nCt 5 ta +
The collection of above bounds yields
d 1
2o < =
dtgo ~ t%-f—l
which time integration using £(7;,) = 2(T;,) = 0 with (5.80) yields
1
=12 ) <
H?2 T
This concludes the proof of (5.23) and of Proposition 5.2. O

5.8. Proof of Theorem 1.2. We are now in position to conclude the proof of
Theorem 1.2 as a simple consequence of Proposition 5.2. The argument is now
classical [31], we recall it for the convenience of the reader.

Proof of Theorem 1.2. First observe that Proposition 5.2 implies that u, (t) solution
to (5.1) satisfies:

=

Vn 1, V€ [Tin, Tl [[un(t) — Bsm (6)] 1 < (5.82)

sl=

t1

We now let n — +o0o and extract a non trivial limit to produce the dynamics de-
scribed by Theorem 1.2.

Step 1: H %—compactness. We claim that that the sequence u,(7;y,) is up to a
subsequence H2 compact. Indeed it is H! bounded from (5.82). We now claim
that it is H 2 tight: Veg > 0, 3R(g0) such that:

/ (T2 + / 1D un(Ton)* < 0. (5.83)
|z|>R(e0)

|z|>R(eo)

Indeed, pick €9 > 0, then from (5.82), we may find a time 7'(¢) such that
[un(T'(£0)) = Ppoe (T(e0)) 1t < €0
and then by construction of ®5.,, we may find R = R(e¢) such that

VR > R(s), / (1= xw)epa ()P + [ = xwllIDEan (T < 20
from which
/ (1= x)lun(T(e0)) + / (1= x@lDFun(T(=0) < 0.

We now propagate this information backwards at T;, by localizing the mass and
energy conservation laws. Indeed, a brute force computation and (D.4) ensure

a :
& Ja=xwlul

s 1

~ R ~R

and hence
T(eo) — Tin
1— W(Tin)? < ) T«
/( x)un(Tin)[° S €0+ —ps= S €0
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by possibly raising the value of R(g9). We similarly localize the conservation of
energy with (g = 1 — xr and estimate using (D.3):

d 1 1 1 B 2
at {z/CRHDﬁunrH 4/<R“”’4H = | @rtwn, 1DI2 Gl DIF )

N P T
from which T(eo) - T,
1 €0) — Lin
1-— Dz, (T:)|? < —r = <
A=l (TP 5 0+ St

by possibly raising the value of R(egp), and (5.83) is proved.

Step 2: Conclusion. The H! global bound and the tightness (5.83) ensure using
1

the compactness of the Sobolev embedding H' — HE)C the strong convergence up
to a subsequence

Un (Tin) = u(Tiy) in H? as n— +00.
Let u be the solution to (1.1) with data u(7;y,) , then the continuity of the flow in
H3 now yield the convergence of the whole sequence
Vit > Tin, un(t) = u(t) in H? as n— 400
and hence from (5.82) and lower semi continuity of the norm:
1
Vit > Tin, [u(t) = @5 (D)1 < T
10
Moreover, since the modulation equation are computed from local in space scalar
products, we have’

Vt > Tin, Pu,(t) = Pu(t) as n — 400,

and hence passing to the limit in the estimates (5.24), (4.77) ensures that u satisfies
the expected dynamics of Theorem 1.2. O

Appendix A. Algebra for the Szegé profile
Lemma A.1 (Algebraic relations). There holds:

/IQ+|2 = 2m, /8yQ+Q+ = 24, (A.1)
/ 1Q*[?9,QF = 2, / (Q1)?9,QF = —4r, (A.2)
/ QT PQT = 2im, / (QF)?QF = —2ir. (A.3)
(¥9,Q",iQ") =0 (A.4)
(y9,Q",9,Q") = 0. (A.5)
Proof. Since
1
Q+(y) = G
y+s3

these formulas are for instance easy consequences of the residue theorem. O

Tsee for example [33] for a detailed proof in a similar functional setting.
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Appendix B. The resonant two-soliton Szegé dynamics

This appendix revisits the result of Pocovnicu [13] about two-soliton solutions for
the cubic Szegs equation on the line, by putting emphasis on the ODE system on
modulation parameters. For ease of notation, in this appendix we set

1

=Qt(x)= ——
Q)= Q@) =

and we look for a solution u = u(t, z) of the cubic Szegs equation on the line

i0wu — Du + I(v*w) =0

of the form

u(t,z) = a1(t)Q <x;ﬂ€;)(t)> +az(t)Q <x;;(3;(t)> = Q1+ a2Q2 .

B.1. Derivation of the system. Notice that

Q@ =-Q*, 2Q(x) = —Qa) + LQ()? |

2
so that
. 1
Du—i0mu = z%Q% — (zal + zal) Q1 — oy <le + Hl) % +

K1 K1 2K1

T 1k
i— Q5 (zag + zag) Q2 — a2 <22 + 2) 5

K9 2 K9

On the other hand, using partial fraction decompositions, it is easy to check the
following identities, for j, k = 1,2,
27 _ RjiRk RE 2
H(Q]Qk) = = 2 Qj+ RjtRE YT
2

Kj+hk Tj— X — 1
(l'j—l’k—l 3 ) J

M(QuQ:Q,) = Kokj Q1 K1k; Q2

_l’_
_ c Ko —K1 o o "fl"""fj _ rK1—K2 _ _ H2+HJ
(:c1 Tro + 1= ) ((L‘l Tj—1— ) (xg xr1 + 15 ) (afg Tj — 5

This leads to

N(v*a) = T(QIQ;) + (QIQ,) + 2I(Q1Q2Q;) + 2I(Q1Q2Q,) + I(Q3Q,) + I1(Q3Q,)

= B1Q? +71Q1 + B2Q3 +1Q2 ,

2

with
o K2 2
pr = 1aa + (1,1 2y — Zn1+n2)a1a2
5 0426 Hlﬁga%ag 2iKk90r] ro i 2/1%&1042@2
1 = 191 — 2 K2—K K2—K i +K
(xl—xg—z’“Jr@) 1 — X2 + 1735 (ml—x2+22 1)(1‘1—3:2 1 2)
. 9 K1 2
B2 = iazaz+ = a0
_ _ jR2tR1
(CL‘Q I (3 2 )
N 042@ /452%104351 2iKk1 a1 Qg 2/43%0&2041@1
2 = 202 —
(2 — 21 — “2+“1)2 Ty — 21 + i85 (29 — @y 4 18552 (2 — @y — P2
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Identifying i0;u and IT(u?%), we obtain the following system,

A—2 15 Jonl? + Ko _
? -5 = la a1
K1 2 Ky ! (gjl_xz_i%) 162
(o K1 ‘ |2 K1Ko(1 (g 2iko0000] 2&2\a2|2 (1‘1 — X9 — “1"'”2) 1
7| — —_— = o —
a ™ 1 (11 — @ —imt2)? @y — wg + 0" (z1 — @g + 052551
A1 -z  1ks L2 K1 B
? —-— = 1o+ Y]
K9 2 Ko | 2’ (xQ_xl_im;m) 2e1
(G2 | ke 2 K2K1Q0 2ik 00l 2kt |? (w9 — @y — i8255L) !
"o Tk - ‘a2| B 2 + K1—K K1—K
(%) K92 ($2—IL’1—Z'€2+R1) To—T1 +1 12 2 (1‘2-%1—1—1 1— 2)

B.2. Conservation laws. Taking the real part of the combination of the first and
of the third equation with coefficients k1 and ks, we derive the first conservation
law,
K1+ Ko
2
The other conservation laws are not so easy to figure out. The first one corresponds
to the mass conservation,

lull72 = laa Q172 + la2l?|Q2ll72 + 2Refaran (Q1]Q2)] -

An elementary computation leads to

- K. (B.1)

Q10

(2m) Mullz = lea k1 + |aal?ka + 261 K2Im ( H1+H2> =:C. (B.2)

Ty — X2 —

For the other conservation laws, we use the Lax pair property for the Hankel oper-
ators Hy, ensuring that the eigenvalues of H? are conservation laws. Recalling that
H,(h) := TI(uh), the matrix of H, in the basis (Q1,Q2) is

- a1k
i e
M = T1—T2—i— 5=
| —E i
To—x1—i1T"2 1+~2
Since H, is antilinear the trace of H2 is
— Q0
tr (M M) = |oa|* + |as|® — 2k1K2Re | =M, (B.3)
Ty — wg — T2

which is also the momentum of u, divided by 27. The determinant of H? is

2
et [* = ol (1 - Ewp ) =D. (B4
1 2
(z1 — @9)? + (H15£2)
Let us specify the link of D with the conservation laws K, M and
1 4
= ol

We claim that
AKD =2MC — H .



100 PATRICK GERARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAEL

Proof. Let us check this identity by calculating H. We set X := x1 — xo.

Q17 Q2 Q1Q2|2
H = ‘041’4" ” | ‘4H HL2 +4‘ ’ ‘ 2,2” Tr’LQ
2 2
.\ m( <Q2|Q2>) e (o @9 e o aza%(c)lczz@g)) |
T 27
Using
Qi _ o 1@l 1@l 2Keim (@F1QD) _ 2}
27 T 27 ’ 27 X2+ K?' 27 (X —iK)3
(Q11Q1Q2) _ Timikg K1k (Q1Q2]Q3) _ Tikk2 K1K3
2 X —iK (X —iK)?’ 27 X —iK (X —iK)?
we infer
8K Kk1k9 ik2K2
H = 2m1|a1|4+2/<2|a2|4+|a1,2|a2|2m+41{e (OélOZQ()(_lZ,;()g

: 2 ; 2
—1R1K2 R1R2 _9 —lR1R2 R1K5
4R — 4R —
e <0‘10‘10‘2 <X —iK (X - z‘K)2>> e (O”O‘QO‘? (X —iK (X - z‘K)2>>

8K Kk1kg . ik2K2
= 2k1|on]t + 2k|asl* + |O‘1’2|O‘2‘2m + 4Re (ogag(X_lZ;{)g
109

(o o (P15 )~ dslonf® 4 o Praatche (15 )

On the other hand,

_ 2 2 Q10
M = l|ai]” +|az2|” — 2k1K2Re ((X—ZI()Q> )
C = 2 2 4 2k Kol a2
kilon|” + Kalaol® + 2K1Kolm <X K )
hence
(o513
2MC = 2wi]an|* + 2rofas|t + 4K a1 [|az|? — 4(k1]ar? + KolasP)kikoRe (| o —ars
(X —iK)
2 2 Q100 2.2 102 Q10
+ 4(loa|” + |az|?)k1k2Im (X — zK) — 8kiK5Re <(X — zK)2> Im (X - 1K> ,

and

2K1K
. 2 2 1~2
OIMC —H = 4K|a1]}|as| <1_2+ 2>

— — . 2,2
2.2 a2 o102 a2 IK]KS
%2y 4 )
sebeire (o255 ) 1 (2 ) — v (ool i i)

Now just observe that, for every complex numbers a, b,

—8Re(a)Im(b) + 4Im(ab) = 4Im(a)Re(b) — 4Im(b)Re(a) = 4Im(ab) .

Applying this identity to
010 _ o1ap

(X —-iK)?2' T X —iK

we infer

— — . 99
Q102 o109 (Yelyats 4K
_ I —4 =
8Re<(X—iK)2> m<X—iK> Re((X—z’K)?’) (X2 + K2)2
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and finally
2K1K9 K2K2
2MC — H = 4K |a;*|as)® [ 1 - 172 =4KD .
je["laz| ( X2+ K? (X2 4 K2)?
O
B.3. The reduced variables. Notice that
T1+io=2—-0C. (B.5)
Therefore, it is natural to introduce
Xi=x1—20, V:= MR
2
Setting
! _
O X R T X4k
the system reads
X = (X*+ KK =)|e) = (K+v)af],
v o= —2(K%*—1HRe[(1(o(X —iK)] .

Furthermore, the last three conservation laws read
C = (X4 KK+ )G + (K = v)|ef] + 2(K? = v)Im[G (X —iK))
M = (X*+ EK*)(|G]* +1¢*) = 2(K2 = v*)Re((i¢,)
= (K? =[G = G + (X2 + )G + 1)
D = [G]GP(X? +v%)?

B.4. The resonance condition. Notice that
M?—4D = (K*=v?)?|G = Gl + 2(52 — ) (X2 +02) |G — PGP + 16
+ (X2 r2(G12 - 1G)?
Therefore, this conservation law cancels if and only if
G=G¢=(.

In this case, the above three conservation laws degenerate as
M
](]2(X2+u2):7:\/5, C=KM .
Using the laws M, C, H, K and the identity
2MC — H =4KD |

we observe that the condition M? = 4D is therefore equivalent to the set of two
conditions,

MC=H and C=KM .
Indeed, on the one hand, M? = 4D implies C = KM as we have already observed,
and therefore,
AKD =2M?K — H=8KD — H
so that H =4KD =2MC — H, hence H = MC. On the other hand, if MC = H
and C = KM, then MC = 4KD and C = KM, hence KM? = 4K D, so M? = 4D.
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Under the resonance condition, the system in the reduced variables can be written

A X2+K2
X o= "Mvem

. K% - 12
v o= —MXX2+V2.

In particular,

d

Xv)=-MK*.
S Xv) =
This means that Xv cancels exactly once, so either X cancels and v keeps the same
sign, or v cancels and X keeps the same sign. In both cases, | X (¢)| tends to infinity
like K M]|t|, and |v| tends to K. Furthermore, in this case, we have

| = |e,

and the phase shift is given by
(05} eir _ X —iK

s X +iK
so the phase shift cancels at infinity. More precisely,

. X X v — 20K M v
T = - =M —Y X 4iK— (X —iK) = 22V
“TXITIK T X+iK X g g AP - (X —iR)] = 55

Since | X (t)| tends to infinity like K M|t|, we conclude that |I'(t)| cancels as fast as
t2

Appendix C. Proof of the non degeneracy (5.8)

The non degeneracy (5.8) follows from an explicit computation on the limiting
Szegd profile Q. However, before proceeding with the limiting process, we need
more precise information on ipg and (1 — 8)03Qs.

By (3.10) and Lemma 3.8, we have

) 1
p= —ZQg + 533/@5 + 05_>1(1), Y= yang + Og_>1(1).

which together with Lemma A.1 ensures:

(AQ,BJa Qﬂ]) (AQﬁJ 3 Zayj Q,BJ) (AQ,BJ ) ZAQﬂ]) (AQB] ’ P])
dot A — det | (@s;:Qp)  (iQp;,10y,Qp;)  (1Qp,.iAQg;) — (iQg;, pj)
/ (aijﬂpQﬁ]) (ayg Qﬁwzay] Qﬂ ) (aijﬁj7iAQ/Bj) (aijﬁj7pJ)
(%5, Qp,) (%;,10,,Qp;) (35,i1AQp;) (35, p5)
0 —m 0
N [
-7 0 0 0

and (5.8) is proved.
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Appendix D. Commutator estimates

This Appendix is devoted to the derivation of commutator estimates used all along
Section 5. All proofs are more or less standard but the involved norms and associated
decay are critical for the proof of Proposition 5.4, so we display all estimates in
detail.

We let in this section x denote a bounded Lipschitz continuous function and let

XR(7) :X(%>, R>1.

Lemma D.1 (\D|% commutator). There holds the global bound

1 [ x[[w1.00
D)z, 2 S 2, D.1
IlIDI2, xrlgllz = 19l (D.1)
and the weighted bound for 0 < a < 1:
1 1 Ixllwie g , z
——|D|?, < — with z = —. D.2
=101 xalglos S U | 5o (D)

Proof. Step 1: Kernel representation. First we provide a description of the operator

\D|% in the space variables. This operator is the convolution operator with the
tempered distribution

_ 1
k= FH(El7)
From the properties of the Fourier transform we know that k is homogeneous of

degree —3/2, and is even. As a consequence, it is characterized up to a multiplicative
constant. For every function ¢ in the Schwartz space, we therefore have

1 €2
- b5 d
<hw%—g/¢@7Hmmdx,a:(%yéﬁwwjfz57
R x|z e 2 —1
Iz o dx

and
k*@(w):c/RWdy.

Consequently, we can write

1D, xal gla) = [ XeW) “xR(@) o gy,

Rz -yt
Step 2: Proof of (D.1). We split the kernel in two parts,
1
D7, xRl g(x) = o(T™g(x) + T g()),

- x

lz—y|<5R |z — y|2
- x

Toffg(x) — / XR(y) X?( )g(y) dy )
lz—y|>5R  |x —y|2

We have .
IXr(z) — Xf(y)l < HXRHLOT <
[z —yl2 [z —ylz Rl -yl
and hence, by Young’s inequality,

o Ljo|<5R Ixllwree  Liaj<sr X100
Tmed ) S HXHW1 lz|< all 2 5 wh < gl 2 5 ) all 2.
| Iz R | ! Iz R | ]} Iz llgllz TR lgllz
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Similarly,

- S5R - Il
TP TV [l -

1T 12 S x| =2 Iz llglle S —=—=—llgllr2
|z|2 |z|2 VR

and (D.1) is proved.

Step 3: Proof of (D.2). For |z —y| < 5R, we have (%) < (%) and we infer

|#Tmed |< ||X||W1°° |36|<5R . \g\

Ito Ita
()2 Rl (g)5
from which, as above, from Young’s inequality,
1 Ixlwree gl
l—== Tl S I = lle:
(g) 2" VR (g)

For |z — y| > BR, we distinguish

XR\Y) — XR\T
Tfff=/ X&) ~ xr(z) 3( )g(y)dy
|lz—y[>5R,  |y|<2|z|

|z —y|2
Xr(Y) — xr(z
T;ff:/ () §( )g(y)dy
le—y|>5R, |y[>2lz| |z —y|2

1i>5r g
T g) < [l 22227 191

()= - oz (§)72
from which, as above,

1 Ljzi>5R g Ixllwie, g
—= T glle S x| LT < |

3 I 14+a HL2 ~ 14 ”LQ'
(£)5 kil (2)7 VR ()5

For the second kernel, |y| > 2|x| and |x —y| > 5R, we have |y| 2 R and |z —y| 2 |y|.
Therefore, from Cauchy—Schwarz’ inequality,

1+«
o) (lyl\ 2 dy
15 < ’XHLOO/ e \ R —3
IzR (%) 2 ly|2

1
~ 1+o¢ <%> ‘y|ZR |y|27a
HX||L°° g
< 2
where we used a < 1, from which
g s 8Ly g Dy 9y
(g) RS VR ()
where we simply changed variables and used « > 0 in the last step. This concludes
the proof of (D.2). O

We shall also use the following slightly different version.
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Lemma D.2 (Commutator estimate in L?). For a general function x such that
Oxx € L', there holds the following bounds.

1 1 _ 1
D=, xIgll2 < MERX e llgllze S (10exl i1 0zax L) 2 lgll 2, (D-3)
1
D1, X9l e + 1D Al 2 S (192X L1921 21) * 119l 22, (D.4)
1 1
I1DIZ[ID[>, x]gll 2 (D.5)

1 1 1
N (Hasr:XHLlHaacmXHLl)2 ”|D’29HL2 + (HanHLlH@Z’X”Ll)2 HQHL%

Proof. Step 1: Proof of (D.3). Since d,x € L', Y(&) is discontinuous only at ¢ = 0,
with a mild singularity justifying the calculations below for every g in the Schwartz
space. We have

—

D12, x]g = | D] (x9)(€) — x(ID]29)(€) = /R (€17 = n]2)%(E — n)a(n) dn.

We use ) ) )
|1€]2 — In|2| < € —nl=. (D.6)
to estimate pointwise
1 1 . 1
1D )] 5 [ 16 ni21xits — mialtnyan = el 15+ ol

We conclude, from Young’s inequality and the Plancherel formula,

1 SN N N
D12, xlglle> S €D = [alll 2 S NIl Mz llgll 22

Finally, we estimate

1 182X £ DX || oo 1822 1
€2 |xlde < / HZXIL™ e + / WZ2e XL g6 S VA 0px || 1 + AL
/ <A g2 =4 €2 VA

1
S UOexl Lol Oraxllrr)2- (D.7)
by optimizing in A.

Step 2: Proof of (D.4). We compute

—

ID[XJ9©)] = [IDICo)(©) = x(Dlg)(&)| = ' [ 1= bt = matm dn

S / 1€ = nlIx[(€ = n)lgl(n) dn = (|€]]x]) * 9]
R
and hence

D] xdgllz> S XD * 1912 < €z llgllze-

We now estimate

N 82 1 1
/ 1%l < / 10l prde + / W92Xller g < (aux i oinli)? (D8)
lEl<A gza 1€l

and the first commutator estimate in (D.4) is proved. Similarly,

DIl = ] [ im0~ €1e0)(E - mata) dn

S / 1€ = nllxI(€ = m)lgl(n) dn = (I&][x]) = |3]
R
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and the conclusion follows as above.

Step 3: Proof of (D.5). We compute, using (D.6),

DD, g(€)] < /Rm% €} — |3

1X(§—m)g(n)ldn

. . 1 1.
S /R 1€ = nl[x(€ = mllg(n)ldn + /R € = nl2[RI(€ — n)Inlz|g](n) dn
. 1. 1,
S lExIx lgl+ 1€z [x] + [n2g]
and the conclusion follows as in the previous two steps. O
We similarly estimate II* commutators.

Lemma D.3 (IT* commutator). Assume that the derivative X' is supported in [1,2].
Then there holds

X k+1,00
e e P ) (D.9)
and
X 3,00
) DT, xlgl| o < WXIweee o (D.10)

R

Proof. We recall the standard representation formula
XR\T) — XR\Y
[IT%, xrlg(z) = C/ (x)_y()g(y)dy‘
Step 1: Case k = 1. We take a derivative,

0L xilg(o) = —c [ XHD XA =G I o) g

We now split the kernel as

O™, xrlg(x) = —c(TF“g(x)+ T g(x)) ,
med () Xr(®) = Xr(Y) — (v — y)xr(2)
TR g( ) L /xy<R (.’E . y)g g(y) dy 9
of f 2 = xr(z) — xr(y) — (x — y)X}z(ﬂﬁ)
TR g( ) T /g:—y>R (113' _ y)2 g(y) dy

We estimate
Xr(z) — xXr(Y) — (z — y)xR(®)
(x —y)?

Hence, by (D.11) and Young’s inequality,

Il
< Il 5 02 (D.11)

d [[xlwr2.o0 1 X200
I1TR““gll2 < Tnl\x—ykR*gHL? S ﬁ”l\x—ykRHLngHL? S TH9HL2-

Off the diagonal, we use the special structure of xr. Firstly, we have

! !
gly Xp\Z) — XRplY
70yl S o | Wl g, ¢ / IR (@) = XR W1,
le—y|>R |1' - y| |lx—y|>R |$ - y|

1
+ / Xk (y)gW)|dy == T + I+ II1.
e—y|>R |7 — Yl
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The first term is estimated by Young’s inequality,

1 1
(4IRS IIXIILwHWI\pr*!g\HLQ5\IXHLOOIIWIWRHUHgHLz

s ey,
For the second term, we use Young’s inequality and the fact that x'; () is supported
in R < |z| < 2R. We obtain

/

HxHLoo da
e S 18R px gl S |02 1|x\>R”L1Hg”L2 gl 22
|| 2| B z|<2R

()

s ey,

The last term is treated with Young’s and Cauchy Schwarz’s inequalities,

X[ o
(RERYIFZRES H| ’1|x\>R*(XRg)HL2|<”| ,1|x\>RHL2HngIIL1 Vi ngHL (R<|z|<2R)
HX”WZOO
< el

The collection of above bounds yields (D.9)for k = 1.

Step 2: Case k = 2. The proof is similar. We take two derivatives,

o) — o — ’ T +l 2.1
2c/XR() xr(y) — ( (xy_)xy}-)gé) (z —y)*xp(x )g(y)dy

a&%[H+7XR]g(x) =
= o(TRg(x) + T g()).

We estimate

Xr(®) = Xr(Y) — (@ —y)XR(@) + 5= —y)*Xk(@) | _ e < Xl

(xz —y)3 ~ ~ RS
from which
lIxllvws.o 1 ||XHW3°°
T3 2 < PR 1y gllze S I mgicrlurlglze S lollz»
Off the diagonal, we split
g\y
I NP =
le—y|>R |$ - y|
/ ) /
lz—y|>R |.CE - y| lz—y|>R ’.1' - y’
IXR(z) = XR(©)] Ly,
+ / l9(y)|dy + IX®(¥)g(y)|dy
lx—y|>R "T - y’ lze—y|>R "T - y’
= I+ IT+ 111

The first term is estimated by Young’s inequality,

1 1
[AIPEIS ||XHL°°”W1\9£|>R*’9‘”L25HXHL‘”le\xbRHLlH9HL2

~
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For the second term, we use Young’s inequality and the fact that x’,(x) is supported
in R < |z| < 2R. We obtain

/

!
XR XR HXHL dz
1281 omx gl S 1281 srlolgle S 22 gl —
|2 717> ]2 7> R elal<ar (T)2

X/l vws.00
s P gl
and
! L Ixllwsoe 1
HW1|1|>R*(XIRQ)”L2‘ S HW]'IZEbRHLQHX/RgHLI R§ ”g”Ll(R<|:c|<2R)
2
and hence
For the last term, we have
1 7
XR XR ||x||wsoo dz
1T oo r*gllz S 1T s rllallgllze < lgll 2 o
] "> ] T Relel<2r (@)
and
! 1 [
HmllxbR*(X/]{Bg)HL?‘ S HmllxbR”mHX/]/%gHLl NGz RQ!]g[]Ll(R<|$|<2R)

Il
s )0,

The collection of above bounds yields (D.9) for k = 2.

Step 3: Proof of (D.10). We revisit the estimates of step 2 in the presence of the
additional (x) weight. For |z| < 10R, we estimate directly from (D.9),

< Ixllwzes

H<$>Dk[ni’ XR]Q‘ L2(|z|<10R) ™ R

lgll

We therefore assume |z| > 10R. Since X’ = 0 outside [1,2], |z — y| < R implies
xr(z) — xr(y) = 0 and x’z(x) = 0. For |z — y| > R, we have |z —y| > |z| if z,y
do not have the same sign, and if x,y have the same sign, necessarily |y| < R, for
otherwise xr(z) — xr(y) = 0 again. In both cases, |z — y| Z |z|, and hence

1 |22 2| 1
1T gl Lo (12> 10R) 5/ ——3l9W)ldy < [lgllr2 H ~ e S —=llgllz2,
lz—y|Z || ‘:L‘ ‘ | ’ |x’2
therefore
1 llgll 2
H<$>Toffg”L2(\x|>10R) S g2l 3 HL2(\x|>10R) S R
(x)2
and (D.10) is proved. O

We will need a standard localization formula for the kinetic energy.
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Lemma D.4 (Localization of the kinetic energy). There holds for given functions
Z,f,

[izeioise = [pkEne (D.12)
O (I1DI3, 211 2 |INDIZ(Z)llz2 + 121D Flzz ) -

In particular, for xr(y) := x(%) with x a smooth function satisfying

1, if [yl < %
x(y) = :
{0, if lyl > 3,

_I_

we have

) . 2. 4Dz 2,
/X%«}HD‘QJC‘Q:/‘|D‘2(XRf)|2+O <||f”[, +H’\/‘E (XRf)HL ) (D.lS)

Proof. We expand and estimate

/ IDI2(ZH)? = (ID|2(Zf),|DI2(2f)) = (D2, Z)f + Z|D|3 f,|D|>(Zf))

= 0 (IIDIE, Z1f12IDIE (Z)z2) + (ZIDI3 £, (DI, 21 + Z|DJ% f)

= [ 2Dk sP + 0 (WD 217 ss (11D 20 + 12101 ]2

and (D.12) follows. We then estimate from (D.1),

1 1
IID12, xrlll L2522 S ﬁ

and (D.13) follows. O

Finally, for establishing the coercivity of our energy functional, we need the fol-
lowing — non sharp — estimate.

Lemma D.5. Let x be a smooth function satisfying
Loif |yl <
x(y) = ‘
{0, if [yl > 3,
There holds:

(xru™)~ 1
H < Ll (D11
(y) L2 3
Proof. Using a standard duality argument, it suffices to show that
_ 1
[((xru™) ", 0)| S EI!U+IIL2II<Z/>UHL2 (D.15)
3

for any v € L?(R) such that (y)v € L?(R). Let 0 < n < 1 and consider a cut off

function
§ 1 for |£] <1,

Cn(€)=C<n>v C(g):{ 0 for |¢>2

0(8) = ¢uo(§) + (1 = ¢o(§) =: 1 (§) + v2(§)-
For the high frequency part, we compute, using Plancherel’s identity, and the fact
that |y| > % on the support of 1 — xg:

and let

[((xru™) ™ v2)| = [(xru™ vy = [(1 = xr)u",vy)| S l||u+HL2|!(3/>UEIIL2
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and, by construction and Plancherel’s identity,

_ _ = 1 ) _ [yl
ooz 12 5 1052+ 10 P 5 o | [ 1o + jocop| < Tten
We estimate, for the low frequency part,
[((cru®) 0] = llutlpellonllze S lull e llon]] 2

and
161172 < / 10> S nllolze S nllvllze S nllw)oll7..
[€1<2n

The collection of above bounds and the choice n = R% yield
3

_ 1 1
[((xrut)",v)| S [R T fn] lut 2l W)l S = lu™ [l r2ll{w)vll L2,
n R3

which proves (D.15). O

Appendix E. Estimates on the cut-off functions

This Appendix is devoted to the derivation of various estimates related to the
localization of mass and kinetic energy which are used throughout Section 5. Recall
(5.9), (5.10).

¢ estimates. We recall the definition of the cut-off functions, see (5.10), (5.13). The
function ¥, is smooth enough, non increasing, with

1 for =z gi
Uyi(z1) =] (1 —2)'0 for
0 for z; > 1.

Furthermore, ®; = ¥ + b(1 — ¥y), and

Then, by construction, b3, = &1 — ¥; < &1, and there holds the global control
‘(1 - Zl)amq)l S D;. (El)

~

Then, since, by (5.11), ¢ = 1 + (1 — 1)(1 — ¢), we have

$<xn <1

1
0,01 S (1= B1)I00] S 35, 00,81 SHS By, (E:2)
We estimate )
061 S (£3)
R
and
02 <1 e <!
|| yl(z)lHLl ~ E’ H y1¢1|’L1 ~ ﬁ
from which, using (D.3),
1 1
1D2, 0y, ¢1lll 212 S —5- (E.4)
R2
More generally,
chlek,oo <1, k=23 (E.5)
21
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and hence, from ¢ = &4 (%) and (D.9),

| D*[IT*, ¢ gl 2 < ”ﬁ,f, k=1,2 (E.6)
1
DTS, 8y, gl e < 72 l9llz (E.7)

Next we compute

0i¢+ 0:C = (B1)1d1 — (1 = B1)(Okd1 + Ox01) = (1 — B1)W (t, R(yl> , (E8)

1-b)
with
(B1)t by 1—(z1)t
W(t, 2) = o, — L(®, - 8,,®
o) =g =y (=N = g a g r%
) (B by Ry
( M Tiop 1o wm) AN
(B1)t be ARz — 1 b
= @ —_— @ \Ij - z @ 4 (I)
1- 5 p (P1— P+ Wl 1+/\1(1—b)Ral !
(1)t — B (A)e | (B by
P — (- ., @1 . (E.
A= —pr " N Tiop Tiop) A0at (B9
We now use the bounds (5.25), (5.34), (5.20) and b < ¢ to derive
(B1) (A)e| | (@) = B b_ ¢
‘ 1—p * * 1-75 Flod 3 ™t
and hence, we obtain
0,
0+ 0,01 £ o - g - a2 @)

Then we compute
P TR I L1
A(1 = B1) A 1=
B2 — B
(-5 +00)
and hence
B2 — B
1—-05
Injecting this into (E.10) with (E.1) and b < ¢1, R ~ t, finally yields the fundamen-
tal estimate,
1—05

0 +0:¢ £~ (E.11)

Next we estimate the first three derivatives of v/¢1 with respect to y;. Since ®1 =
b+ (1 —b)¥y, with ¥; non increasing, we have

1—)\1th1 =1- |: +O(b):| Z1 :1—21+O(b2’1).

1
@1(31)Zﬁ721§§7

hence 851\/431(2'1) are bounded for £ =1,2,3 and z; < % As for % <z <1,
1
\ @1(21) = (b+ (1 — b)(l — 21)10) 2 5
hence again 851\/@)1(21) are bounded for k = 1,2,3. Consequently,

||agljl V ¢1||L1 5 f(1_4b)R<|y1K(1—b)R %dyl S #a k= 17273 5
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and thus, from (D.3), (D.5),
D17, Vol flle S \F
IIDI2([IDI2, /1) fll 2 < \FH!Dl 2 f g2 +*||f||L2 (E.13)

£z, W0DL V&l S £ 17l (B12)

According to (5.72), consider now

0= BT @) = i)
then from (E.11):
wi < & 61)\/5 (E.14)

In order to estimate the first two derivatlves of 11 with respect to y1, we use (E.8),
(E.9). We already noticed that the first three derivatives of v/®1(21) are bounded.
By a similar argument, the first two derivatives of ¥;/y/®; are bounded. Conse-
quently, using again R ~ t,

61 2 ﬁl
ayﬁbl = O < t ].R(l b) < <R(1 b ) 6y1¢1 = O t lR(l b) <y1 <R(1 b)

Hence

1-75 1—p1
10yl S ==, 105 v1ll § —5—
We conclude, from (D.3), that
1 1-p8
DIz, ]l 2o re S a - (E.15)
2
6 estimates. Recall from (5.13), (5.14):
1 1
H(t,:]}) = 9(t,y1) = 7\111(21) + 7(1 - \111)(2’1)
A1 A2
Hence | |
A2 — A1
|0y, 01| S 71(1—2b)R<y1<(17b)R (E.16)
and therefore | |
A1 — A2
00| S —— . E.17
Next N
1 1 2 — Al
%, 60,] = [II*, — ¥ I I, v
[ ? 1] [ )\1 1 + )\ ( 1)] )\1)\2 H ? 1]
and hence from (D.9):
A2 — A
o0 0] < 222 A (E.18)
We now estimate more carefully:
A A
(0 + 8,)0 = ! 12”\1/1 _{ 2‘2)71 — )
Al Aj

y (; - f) [(1 —ﬁﬁlmffz()l 5+ R bJ Ou V1

1 1 (M) (B)e Ry by
+ <)\1—>\2> |:— )\1 +1—B1 E‘f‘ b:| Zlazl\ljl
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and hence

(B +3,)0 = O <> . (E.19)

Appendix F. Proof of Proposition 5.1

This Appendix is devoted to the proof of Proposition 5.1. We recall the coercivity
of the linearized Szegs operator which we will use in the following form: there exists
1

a universal constant 0 < ¢y < 1 such that for u € Hf,

(L) > ol = = [0, + (0,iQ™)?]. (F1)

+

Proof of Proposition 5.1. We define the following functionals:

1
1-75

Gole) = By / IDIFer 2y + (1 - B1)G1(e)

1 1
Gi(e) = / D]z [Pdyr + /|!D|251_!2dy1 + Mller]Ze — (210W)2ey + (@) %27, 1)

where

1 .
oW (y1) = Vi(P,y1) + — Va(P,ya)e™.
/J,Z

Then the full functional G is exactly given by:

Ge) = ;[)\1190(5,5)—(CDe,e)—k((@—l)s,e)} (F.2)

- 3 Uﬂe + o' = 10f") - d(e, BlOf) — 2(2/0P% + 4’25’5)}

The heart of the proof is the derivation of a suitable coercivity for Gy.

Step 1: Splitting and coercivity for the first bubble. Let x¢(y1) = X(O)(%), where
¥ is a smooth cut off function satisfying:

1 for <
X (1) = { nsr
~ 5

We now split the L? norm:

/ ePdy = / &5 |y + / ey Pdys = / et Py + / (1= x)|ef Py + / &5 dyy

— / Caet)t Py + / Caet)™ Py + / (13t Py, + / &5 [Py
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We now split the kinetic energy according to (D.13):
1
JpetPan = [xHDiEePan + [0 @Dkt Py
) 2 L 12
J|liptcaed)] | am + [ |ip120et)]
+ [a=xnpitet Pan

1
L0 lexlZ2 + 11212 Ouet) 172
VR

We now decompose the potential energy. We first estimate:

dy

2leWPer+(@W) e, e1) = (200 et +(@ M), 6)+0 (| (@)% [z llenllz ) -

We now estimate from |V;| < @% and Sobolev:
J

. En
Viltler Pdyr S -1 3dy1 S lley 174 S llexllzzller |l g S lerllzeller ||
(1)? i
Enk
[ Walter P [ Ehim < Vleluelle

We now develop the potential term:

/@ Rl Pdy = /|¢> DIl 2+ (1= D)l ] dn

| log n|*(|e1]|2
/|Q51|2|X’€1+|2dy1 1o <RL2

+ /\cb 2(1 - )|t Py

logn|* | |
J 1@ Plaet P + 0 (| P55 1= g ogta = o)l e 2. )

+ 1P =)l P
by construction of V, the support properties of x; and the rough bound
1 1
1Qs — Q7 [l < HQﬂl — Qg1 $ (1~ B1)2[log(1 — Bi)|.
We now use (D.14) and |QT| < < 77 Which ensure
!(Xﬁf)‘\z 1 2
==L —diyy < —|le F.3
L < e (F3)
to conclude:
+ 2 1 1 1
J100Rlet Pan = (107 [oaet) [ o +0 (| + (0= )3 orta = )] el )
3
+ [10P( = )l P
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We argue similarly for the second potential term and obtain the first decomposition:
Gi(e) = (L4 Ouel) ™, (ae ) ") + (A — 1)/\(Xz€f)+\2dy1 (F.4)
1 1 1 _ _ _
o [ IR P+ [P Gast) P+ 2 [ 10as) P+ [ ler P
[ D P [ (@ e P
— 2 [P )l - Re [ (@020 - )
1 1 Ooe S ik
+ O ﬁﬂl—ﬁl)ﬂlog(l—ﬁl)l? lenlze + lleall Z2 1Dz er I 72

1 1
+ DD )

From the choice of orthogonality conditions (5.6) we have:
0 = (e1.Qa)" = (.Q7) + O((L — 1)z |log(1 — Bu) 2 |en )
= et @+ 0 ([ st ios - gt + 1l
= (et @72+ 0 (0= B3 on(r = )l + ] el
and similarly:
0= (61,10, Qs = (sl 0, @7+ (| (1= B H1og(1 = Al + | Bl

We now apply the coercivity estimate (F.1) to (x;e] )" and obtain from (F.4) the
control:

Gi(e) > o [P Cuet) 2 + st 3] + / IDJer P (F.5)
+ 0u=1) [t P+ 2 [l 0 ([(1—ﬁl>zuog<1—m>\% +¢1ﬁ] Hau%2)
+ /(1—xl>||D|zel|2+A1/<1—x1>|e-:1|

- /|<1> (- x)ef? — /(@”) (1 - B2
1/2(

1,1
+ Ol N0 er I + =PI (et )

Step 2: Coercivity for the second bubble. We now consider xg(y2) = x4 )(

=
\_/

where Y1) is a smooth cut off function satisfying
(1) . 0 for Y2 < -3
X (12) _{ 1 for yo > —2,
and let
1
Ga(e) : = [ NP e P+ [ et P =2 [ 1002t Py
~Re [ (@2 .
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Go will be useful in finding a lower bound for G;. We observe from the support
property of x;, x, and by construction of V; the bounds:

1 1
G1(2) > Gale) + co [I1DIF Cus s + st ] + =55 [ 1DIEer P

‘2 J1B0OPQ = =Dt Py~ Re [@0)20 =1 A E R <

and therefore rewrite (F.5):

+ =) [loeet) de1+A1/1mdy1+/<1—xl—bxr>umelrd,m

4 A1/<1—xl )t Py

1
I1D]2 (xeet )

(F.6)

1 3 1
= lealEs + len Dl 12 +
We renormalize to the gy variable using the formula

_ e (noRY e,
51(3/1)_\/E€2< by >—\/ﬁ2(92)

e ([(1—ﬁ1>%rlog<1—m>r%+ .

and compute:
1a(e) = o] [ DI Py + he [ s Py 2 [ 1922 P
~Re [ (@)

where
1 .
P (yo) = p2Vi(P,yr)e " + Va(P, 1a).
We estimate using (D.13):

/(1 —B)|D|Fes Py, = /(1 — 3 =)D Py +/||D| (xeed) Py

1
Lo (H&‘g 172 + 1DI2 (xres )Hp)

VR

and estimate as for the first bubble the potential energy to obtain:
1 _ _
HGaE) = b|(C4le ) osD) )+ [ID1E s P+ [ lorsf) e

L obe 1) / el )t Py

1
1012 (xre3 )72
VR '

+ b0 <[\/1§ + (1~ B2)%| log(1 — 52”4 le2llzz +

We estimate using the orthogonality conditions (5.6):

(o)™ Q)+ (o)™ i0,Q7) < [(1—62)5|10g(1—52)|5+;] le2llz:

f )
L2
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and hence conclude using the coercivity (F.1):

ng ()‘2_1)
G(e) > = [mm (e 2 + / mwdy] , / et Py

1 1 D% T 5 22
+ ZO([\}E+(1—52)2|10g(1—ﬁz)l2] e + PR ) <>r.7>

Step 3: Coercivity of Gy. We sum (F.6) and (F?) and conclude:

6:(2) > a[IIDIE (et + lhuetle] + = [ 1Dl P
+ =) [ sty P+ / |s;\ iy

1
4 /(1 ¢ b)IDEe Py +/<1 3 R Py

1
I1D1= (xee]) 172

1 1 1 9 3 1 1
Lo ([(1 B log(1— A + m} Jeal + lex L I1D e [, + 1

1
© beo {H\Dw(w;)uiﬁ / et deg]w(xa—l / (e )+ 2y

1 11D]2 (xred )!\L2>

£ (L/E + (1~ B2)%| log(1 — 52)|§] le2ll72 +

VR

which after renormalization to the y; variable implies:

Ge) > [ ok + oDt P+ |el||Lz] 8)

+ / (12 — b2 ||D3et Pys + Err(e),

where

1

A2
err(e) = o = 1) ostliEs + ol = Dllxest ) I +

—0uet) 1%
O = Dller 32+ 0((1 = 1) log(1 — B1)[% + (1 2)3log(1 — Bo)[ + —=) a3

VR

1 1

1112 (xeet) 172 + bllI DIz ()12
VR

3 11
T+ O(ler| 211D FeT 13- (F.9)
Equivalently, this yields the lower bound:

+0

Gole) = ﬁl/HDrQel 2y + (1 - B1)Gn

\%

co(1— B1)llexll7 +/ [B1+ (1= B1)(1 — 6o + codo)] || D] [Pdyn

4 / IDI3er Py, + (1 — Bu)Err(e),

with
b0 = Xi + bx;. (F.10)

)
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We now observe from the support property of x,,xi, 1 that ¢1 > ¢ and since
co < 1land1— 1 >0, we have

B+ (1= B1)(1 — o+ copo) = 1+ (1 — B1)(1 — ¢1 + codr).

We therefore have obtained the coercivity:
Gole) = 00(1—51)/|61|2 (F.11)
+ [ 1B =B = 61 + o] DT P
/||D|égl—|2 + (1 - B)Err(e).

Step 4: Control of the kinetic momentum and coercivity of G. We now consider
the full functional given by (F.2):

[jlgo@,e) — (CDe,e) + (0 )e.0)| + N ()

N(e) = % [/<€ +®* — |D|!) — 4(e, B|D|*) — 2(2|D[*c + %2, €)

The cubic and higher order terms are easily estimated using the rough bound
llell g < 1:

€) S / el + Clel|@lde < lellzee (llellzee + 1@ o) el S llella (el +DlelZ:
CO 2
< Dl = 2 gl
The L? error is estimated from |u| < 1:

(0 = Ve, )| < lulllellz: <

We therefore conclude from (F.11):

20 > =B e |2dy1+/¢1||D|zel|dy} S (e

[/ aliDiet P+ 5 [ 1Dl P - <ch51,51>]

We now estimate the kinetic momentum term. We first compute from (5.12):

/mDPsI — (Dt )
- / (1= (1= B)on)IDIEf 2 — (1 - (1 - B1)é1)Det )

0(1 — B1)ller 7

= -5 | [ oD - @r0et o)
We then estimate using (E.12) and (D.12):
(Dt &) = (GuDIet =) = (VaulDlet Vst
— (Vou DIt +1DI/bieh) Vo) = [IDIEVaiet P +0 (gl

[ #ilpet? 40 (Gl + = [lerls + I1VaIDet 1) )
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. . 1 .
which yield thanks to the smallness of TR

C 1
/Cl ‘D’251 ]2dy1 (G1Def,ef) > — 0( 61 /(bl ‘D|251 ]2dy1 +/‘51’ d?ﬂ]
similarly using (D.1):
—(CDeye7) = (Bi+ (1= pB1)o1|Dler,er)

1 L leall?
— GlIDIEer e + (1 500 (11Dl [ + 1

> DT 12— 201 - Bl

For the crossed terms, we estimate from (D.9):

(G Dey )| + (G Def s er)| = (1= B)|(¢1Dey , e1)| + (61, Dy )]

1—
S a—mnw;Dmt¢¢D+H@iDm:@knus—ﬁﬁwwé

The collection of above estimates yields the lower bound:
57‘1“( ).

60) > WP [laap+ [oulpet?] + [I0perp +
(F.12)

Finally, we need to treat the error Err(e) defined in (F.9). Most of the terms can
be bounded using the hypothesis

1
|)\1—1|+|)\2—1\+’M—1|+|1—51\+’1—52|+E<<1-

We turn to the last term in (F.9) and by Young’s inequality obtain that

3, 3)\10 1N2
wmmmm%wﬁzc(BA&mma( Dl lz)
C(3)\0)3
4c3
Thus, the last term in 1;161 Err(e) has a lower bound:

760(1 — 61) ||€ || o 0(3)\10)3(1 — ﬁl)
oY, Hiz2 4c3

Since 0 < 1 — 1 < 1, it can be absorbed by the main terms in (F.12) to obtain:

o) > WA [+ [alpietP] + 1 [Ipke

which concludes the proof of Proposition 5.1. U

€0 2 1 _ 9
< oy, lelze + I1D[2er |72

1 _
DIz 7 ]I72,
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