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Supplementary Figure 1. Basic concepts of calling and classifying SVs.
(A) Short-read sequencing used in PCAWG comprises sequencing of reads ~100bp in length from both ends of DNA 
molecules 300-500bp in length. When that DNA molecule spans a breakpoint junction, the reads have non-standard 
orientation or separation when mapped to the reference genome.
(B) Breakpoint junctions can occur in four possible orientations, depending on how the two DNA ends are joined 
(whether the 5’ end or 3’ end of the break). ‘Rearrangement-side’ versus ‘Non-rearrangement side’ denotes which side 
of a given breakpoint is captured in the breakpoint junction. ‘Low end’ versus ‘high end’ distinguishes the two 
segments that get juxtaposed in the breakpoint junction.
(C) Adjacent breakpoints when mapped to the reference genome can also follow four possible orientations, each with 
different implications for the underling SV process (see Supplementary Methods). 
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Supplementary Figure 2. Transcriptional evidence for phasing of chains and cycles of templated insertions.
For (A) a chain of templated insertions and (B) a cycle of templated insertions, we find evidence in the 
RNA-sequencing data of transcripts that span two breakpoint junctions between templates. This would only 
be possible if the two breakpoint junctions were phased to the same derivative chromosome. 



p−value = 9.5e−40

0

50

100

150

0.00 0.25 0.50 0.75 1.00

C
ou

nt

Sub−class
Ins Chain

Ins Bridge

Ins Cycle

Templated Insertions

p−value = 3.3e−17

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00

C
ou

nt

Sub−class
Dup−Trp−Dup

Dup−InvDup

Loss−InvDup

Local 2−Jumps

p−value = 8e−05

0

5

10

15

0.00 0.25 0.50 0.75 1.00
Sample−specific quantiles of subclonal assignment cosine similarity

C
ou

nt

Sub−class
Cplxy + Ins

Cplxy Chain

Cplxy Cycle

Chromoplexy

A

B

C

Supplementary Figure 3. Distribution of clonal cell fractions for SVs in the same cluster. 
For (A) templated insertions (n=1877 events), (B) local 2-jumps (n=533 events) and (C) chromoplexy (n=136 
events), we considered samples with at least two estimated mutation clusters, at least one SV event of the given 
classification, and at least fifteen BPJs in the sample as a whole. Each SV has a vector denoting probabilities of 
which clonal/subclonal cancer cell fraction cluster it belongs to. For each pair of SVs in a given patient, we then 
estimate the cosine similarity between the cluster assignment probability vectors. The histograms show the 
distribution of quantiles for observed intra-event SVs relative to the distribution calculated for all inter-event SVs 
in that patient. Under the null hypothesis (that cancer cell fraction of intra-event SVs is a random draw from all 
SVs in that patient), we would expect the histogram to represent a uniform distribution. The p values are calculat-
ed by a one-sided Wilcoxon test against the null hypothesis of the average observed quantile being 0.5 (or less). 
These data demonstrate that individual breakpoint junctions within a given patient’s event are much more likely 
to share the same clonal fraction than expected by chance, therefore supporting the hypothesis that they 
occurred simultaneously.



Supplementary Figure 4. Possible alternative routes to generating Dup-invDup structures.

(Figure panels on next page)

There were a number of recurrent footprints in the dataset which solely contained rearrangements con�ned to one 
genomic region. Of those comprising two local rearrangements, some had straightforward explanations such as 
nested or adjacent tandem duplications. Many, however, did not have a trivial explanation (Figure 4A, main text). 
These included a duplication–inverted-triplication–duplication structure that has been observed in germline SVs (349 
instances); a structure of two duplications linked by inverted rearrangements (531 instances); and structures of copy 
number loss plus nearby duplication linked by inverted rearrangements (472 instances). These patterns all had theo-
retical solutions recapitulating the observed copy number pro�les with breakpoints phased to a single haplotype 
(Figure 4A, main text), but these con�gurations could not plausibly be generated by the sequential operation of 
simple SVs.

To exemplify our reasoning, consider the rearrangement structure of two duplications linked by inverted breakpoint 
junctions (Figure 4A, main text; left-hand panel). Using our genomic con�guration library of all possible sequential SV 
combinations, we can de�ne four possible routes to this structure (see �gure on the next page of ths Supplementary 
Note). The �rst is an episomal circle comprising the two ampli�ed segments, but this is an unlikely mechanism because 
the absence of a centromere leads to random episome segregation at mitosis and instability of copy number per cell. 
In contrast, most of our examples were at stable, integer copy numbers. The second possible explanation is two 
foldback rearrangements on di�erent copies of the chromosome, but this cannot explain all instances because linked, 
inverted duplications were sometimes found in tumours with only one copy of that chromosome. Thirdly, two unbal-
anced translocations between sister or homologous chromosomes, while formally possible, is unlikely because the 
average copy number on each side of the event for a�ected chromosomes is no lower than the rest of the genome on 
average. Finally, a tandem duplication followed by a reciprocal inversion and then a deletion could create the 
observed structure, but, if so, we would expect to see many more instances of the intermediate stage of tandem dupli-
cation with inversion. In fact, the linked, inverted duplication structure is far more common in this cohort (531 instanc-
es) than an inversion within a tandem duplication (33 instances).

Legend for �gure on next page.
(A) Two unphased fold-back inversions (through, for example, breakage-fusion-bridge events) could generate the 
structure. This cannot explain all instances because Dup-invDup events were sometimes found in tumours with only 
one copy of that chromosome (example in part (E)).
(B) An extrachromomal (episomal) ring comprising the two segments linked by inverted rearrangements would 
recapitulate the rearrangements, but this is an unlikely mechanism because the absence of a centromere leads to 
random episome segregation at mitosis and instability of copy number per cell.
(C) A series of unbalanced translocations between duplicated copies of the same chromosome is formally possible, but 
unlikely because of the close proximity of the rearrangements and stable background copy number of the chromo-
some.
(D) A tandem duplication, followed by inversion, followed by deletion could generate the structure, but, if so, we 
would expect to see many more instances of the intermediate stage of tandem duplication with inversion. In fact, the 
Dup-invDup is far more common in this cohort (531 instances) than an inversion within a tandem duplication (33 
instances).
(E) An example of such an event in a stomach cancer, occurring on the background of a single copy of the relevant chro-
mosome arm. That this occurs within a single copy implies that the two inverted rearrangements must be phased, 
excluding the two fold-back inversion structure shown in (A).
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Supplementary Figure 5. Clusters of patients with distinct profiles of replication timing.
(A) Patients with high numbers of tandem duplications (number per patient shown in upper right corner of each 
density distribution) were clustered according to the profile of replication timing. Five clusters were identified, 
with numbers of patients in each cluster shown in the facet label. Individual density distributions of up to 8 repre-
sentative patients in each cluster are shown in each column.
(B) Clustering of replication timing profiles for deletions, shown as for panel (A). 



LINE−−SINE
IMR90−−IMR90

LTR−−SINE
LINE−−LTR
ENH−−SINE

IMR90−−SINE
GENES−−LINE

ENH−−LINE
IMR90−−LINE
IMR90−−LTR

GENES−−SINE
DNASE−−SINE
ENH−−IMR90

GENES−−IMR90
DNASE−−GENES
DNASE−−IMR90
ENH−−GENES
GENES−−LTR
DNASE−−ENH

ENH−−LTR
DNASE−−LINE

GENES−−GENES
ENH−−ENH

DNASE−−LTR
DNASE−−DNASE

LINE−−LINE
LTR−−LTR

SINE−−SINE

0.
50

0.
75

1.
00

1.
25

1.
50

Fold enrichment over permuted background

B

1

10

100

Ba
se

s 
of

 m
ic

ro
ho

m
ol

og
y

**** **** ****

LINE-X LINE-LINE SINE-X SINE-SINE LTR-X LTR-LTR

Between 
elements

Element
to other

C

A

0 5 10 15 20 25 30 35
Bases of microhomology

Microhomology
mediatedR

ea
rra

ng
em

en
t f

re
qu

en
cy

100

10-4

10-3

10-2

10-1

Non-
homology
mediated

Supplementary Figure 6. Features of segments at breakpoint junctions.
(A) Distribution of sequence homology between the ends joined at a 
breakpoint junction (y axis is on a log scale). The area shaded in orange 
represents the expected frequency of homology occurring by chance 
between two joined DNA sequences, were homology not relevant to the 
repair process. The area shaded in blue represents observed rear-
rangements that exceed the expected distribution of homology.
(B) Enrichment or depletion of breakpoint junctions between regions of 
the genome with particular annotations, compared with a permuted 
background that preserves breakpoint positions but swaps breakpoint 
partners. Centre points are the mean fold-change over the permuted 
background; error bars represent three standard deviations. Analysis 
is based on a sample size of 2,559 genomes containing SVs. Complex 
uncl., complex clusters unclassified; LTR, long terminal repeat; SINE, 
short interspersed nuclear element; LINE, long interspersed nuclear 
element; ENH, enhancer; heterochrom, heterochromatin. 
(C) Breakpoint microhomology for rearrangements connecting repeti-
tive elements of the same class (green) or rearrangements with only 
one breakpoint in a repetitive element (orange). Analysis is based on a 
sample size of 2,559 genomes containing SVs. The box shows the 
median level of microhomology as a thick black line, with the box’s 
range denoting the interquartile range. The whiskers show the range of 
data or 1.5x the interquartile range, whichever is lesser. Comparisons 
with four stars indicate p<0.0001; two-sided t-test.



a: 0.987 b: 0.972 c: 0.932 d: 0.998 e: 0.963 f: 0.913 g: 0.979 h: 0.985 i: 0.998 j: 0.994

Deletion

Tandem
Dup

Transloc

Inversion

Local
2−Jump

Trans Plus

Templated
Insertion

Chromo−
plexy

Complex
Footprint

0.
0

0.
3

0.
0

0.
3

0.
0

0.
3

0.
0

0.
3

0.
0

0.
3

0.
0

0.
3

0.
0

0.
3

0.
0

0.
3

0.
0

0.
3

0.
0

0.
3

at fragile site
> 5Mb

<5Mb late
<5Mb mid

<5Mb early
<500kb late
<500kb mid

<500kb early
<50kb late
<50kb mid

< 50kb early

at fragile site
> 5Mb

<5Mb late
<5Mb mid

<5Mb early
<500kb late
<500kb mid

<500kb early
<50kb late
<50kb mid

< 50kb early

reciprocal
unbalanced

>100kb reciprocal
<100kb reciprocal

unbalanced
foldback

Dup−Trp−Dup
>100kb Loss−InvDup
<100kb Loss−InvDup
>100kb Dup−InvDup
<100kb Dup−InvDup

Trans + TD
Trans + Ins
Trans + FB
Split Trans

>5kb Ins Chain
<5kb Ins Chain
>5kb Ins Cycle
<5kb Ins Cycle

>5kb Ins Bridge
<5kb Ins Bridge

Cplxy Chain
Cplxy Cycle

b−^d−/b+/d+
b−/c−/c+/d+

b−/b+/d−/d+/f−/f+
b−/b+/d−/d+/e+
b−/b+/c+/e−/e+

a+^e−/c−/c+
a+^d−/b+^d+
a+^c+/c−/e−

a+^c+/c−
a+/c−/d−/d+

a+/c−/c+/e−/e+/g−
a+/c−/c+/e−/e+

a+/c−/c+/e−
a+/c−/c+/d+

a+/c−
a+/b+/d−/d+

a+/b+/d−
a+/b+/c+

a+/b+
SV cross Del (a+^d−/b+)
SV cross TD (b−^c+/b+)
TIns Pair (b−/b+/d−/d+)

TIns w/ SV (b−/b+/c+)
TIns w/ SV (a+/c−/c+)

TIns in cplx (b−/b+)
FB w/ SV (b−^c−/c+)
FB w/ SV (a+^b+/d−)

FB pair (a+^b+/c+^d+)
Trans in cplx (a+)

probability
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The PCAWG cohort was randomly split into two halves and signatures extracted independently on each. Ten 
signatures showed strong concordance between the two halves (red and cyan) and indeed the full cohort.
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Supplementary Figure 8. Distribution of SV signatures across tumour types.
Per-sample signature contributions across different tumour types in PCAWG. Within each tumour type, patients 
are ordered along the x axis by the total number of SV events they have (grey bar charts). The bottom panel for 
each tumour type is a stacked bar chart showing the proportion of those SV events attributed to each of the SV 
signatures identified. 
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Supplementary Methods 

Terminology and definitions 

This section will introduce and define some concepts and terms used in the remainder of the 
supplementary materials.  

Telomere and centromere copy number 

Telomere copy numbers are defined as the median copy number of the first 1Mb from the 
telomere after the telomeric assembly gap in GRCh37. Centromere copy numbers are defined 
as the median copy number of the first 1Mb from the centromere assembly gap in GRCh37. 
Centromeres are separated into two chromosomal arms: p-arm and q-arm centromere copy 
number are estimated using the 1Mb closest to the centromeric gap from the p-arm and the 
q-arm, respectively (Supplementary Figure 9).  

Because of how telomere and centromere copy numbers are defined, they are not necessarily 
the same. For example, an unbalanced translocation will cause the loss of a telomere or a 
centromere. Even when the telomere and centromere copy numbers of a chromosomal arm 
are the same, there can still be interstitial copy number changes in a chromosomal arm. A 
chromosomal arm is considered stable if all the following conditions are true. 

- The respective telomere and centromere copy numbers are within 0.5 of each other.  
- The 0.2 and 0.8 quantiles of the copy number on the chromosomal arm are within 0.5 

copies from the average copy number of the respective telomere and centromere.  

For example, in Supplementary Figure 9, the P-arm centromere and telomere CN are both at 
~3.5. However, the 0.2 quantile of the copy number is at ~2.5, caused by the large deletion, 
and therefore the P-arm is not considered stable. In the Q arm, the centromere CN is different 
to the telomere CN, and therefore the Q arm is also not considered stable.  



 13 

 
Supplementary Figure 9: Centromere and telomere copy numbers. P and Q telomere copy numbers are 
defined as the median copy number in the 1Mb closest to the respective telomere assembly gap. P and Q-arm 
centromere copy number is defined as the median copy number in the first 1Mb on the P and Q-arm side of 
the centromere assembly gap, respectively.  

Rearrangement end 

A rearrangement end is one of two breakpoints of an SV junction. Rearrangement ends are 
the genomic locations and orientations through which a rearrangement links two genomic 
loci together. 

The low end of an SV is the one with a lower chromosome name (lexicographically) or 
chromosomal position (Supplementary Figure 10). 

By definition, an SV indicates that a chromosome is broken from one rearrangement end of 
the SV and joined to the locus of the second rearrangement end. At a break, the side with a 
rearrangement end is termed rearrangement side, as that is the side that participates in the 
rearrangement. The other side of a break that is not linked in the SV is called non-
rearrangement side (Supplementary Figure 10).  
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Supplementary Figure 10: Definition of rearrangement and non-rearrangement side, and definition of low and 
high ends of SVs. The arc shows the SV breakpoint junction, the blue lines show the copy number in the local 
region. 

Copy numbers associated with a rearrangement end 

Rearrangement side and non-rearrangement side copy number of a rearrangement end is 
defined as the copy number of the segment on the rearrangement side and non-
rearrangement side of the SV, respectively.   

Rearrangement patterns 

Much of the supplementary materials will discuss different constellations of SVs and their 
associated copy number segments. We use the term ‘rearrangement pattern’ to refer to 
either a set of mechanistically or positionally connected SVs, or the combination of both SVs 
and their copy numbers. Several simple rearrangement patterns and trivial rearrangement 
mechanisms generating them are illustrated in Supplementary Figure 11.  
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Supplementary Figure 11: Examples of simple rearrangement patterns. Rearrangement patterns are 
schematic models of the observed SV and copy number information through paired-end whole-genome 
sequencing. Deletions (A), tandem duplications (B), direct inversions (C), unbalanced translocations (D), 
balanced translocations (E) all have their characteristic rearrangement can copy number pattern. Panel F 
shows an example of a pattern generated through two overlapping rearrangements, a direct inversion 
followed by a tandem duplication that overlaps with one of the inversion breakpoints. Here the two 
rearrangements that are balanced were part of the initial inversion, and the tandem duplication manifests as 
the unbalanced rearrangement in the inverted orientation (both rearrangement ends are in + orientation). 
This is not expected from a simple tandem duplication (B), which should have a minus-orientation breakpoint 
followed by a plus-orientation breakpoint. Instead, in the secondary tandem duplication one of the 
breakpoints got inverted because it occurred on the chromosomal segment that was inverted in the initial 
direct inversion event.  

Copy number relative to chromosomal arm 

Due to genomic instability, chromosomes in tumour cells can have differing ploidies. In order 
to study the copy number consequence of SVs, the background copy number of the 
chromosome on which the SVs occurred must be estimated accurately.  

The background copy number level of a rearrangement end is defined based on its orientation. 
If the rearrangement side of a rearrangement end is oriented towards a telomere 
(centromere), then its background copy number is defined as the copy number of the 
telomere (centromere) it is oriented towards. 

In other words, forward (+) and reverse (-) oriented rearrangement ends on the P-arm of a 
chromosome have their background copy number estimated using the P-arm telomere and 
centromere, respectively. Similarly, background copy numbers for forward and reverse 
oriented rearrangement ends on the Q-arm are estimated from the Q-arm centromere and 
telomere, respectively.  

An object-oriented framework for handling somatic SV and CNA data 

Due to the intricate relationship between SVs, their rearrangement ends and copy number 
segment breakpoints, they often have to be considered together in somatic SV analysis. We 
developed an object-oriented (OO) framework in Perl in order to facilitate the handling of 
copy number and rearrangement data jointly. The overarching purpose of the framework is 
to have a powerful way of detecting, managing and analysing rearrangement patterns such 
as those presented in Supplementary Figure 11. 

A common task is to estimate the copy number of an SV. This should be estimated from the 
observed CN changes at two rearrangement ends of the SV, weighted by their relative 
uncertainty. The CN change of a rearrangement end in turn derives from the CN difference 
between the two CN segments demarcated by it. The uncertainty of this CN change depends 
on the lengths of the two involved CN segments. Thanks to the OO framework linking these 
different abstract concepts together, obtaining the needed segment CN and length values for 
a given SV becomes a much more tractable task.  

A more challenging task is to compute the normalised rearrangement pattern for 
rearrangement clusters, which involves reordering and permuting footprints in order to 
obtain the lexicographically smallest string representation of the SV cluster (see details 
below). Without a flexible way of navigating between CN segments, rearrangement ends, 
clusters and footprints, computing normalised rearrangement patterns would have been a 
daunting task.  
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Supplementary Figure 12: The object-oriented framework for handling somatic rearrangements and copy 
number segments. The figure highlights main classes, their relationships and their key attributes and example 
methods.  

The SV clustering and classification pipeline 

Rearrangement events often generate multiple junctions. A direct inversion generates two 
balanced inversion-type SVs, chromoplexy generates a chain or a cycle of balanced 
breakpoints and chromothripsis can generates hundreds of SVs at once. Mechanistic 
inference of SV junctions has to be done considering all involved junctions jointly. For example, 
what differentiates a fold-back inversion SV generated as part of a breakage-fusion-bridge 
cycle from an inversion SV generated as part of a direct inversion is the fact that the direct 
inversion SVs are balanced. Similarly, the chaotic break and join process of a chromothripsis 
event could generate dozens of SVs that on face value are consistent with simple deletions or 
tandem duplications when interpreted individually. 

A rearrangement event can involve multiple loci in the genome. For example, we previously 
reported an instance of a BFB-associated fold-back inversion that had an intervening 
templated insertion on a different chromosome1. Again, to correctly interpret the nature of 
these sub-cluster level events, all related SV junctions must be considered simultaneously. 
For example, templated insertions involve two rearrangement ends with their rearrangement 
sides oriented towards each other. Were these rearrangement ends considered 
independently, they would support two independent unbalanced translocations instead. 
Therefore, in addition to grouping SVs into clusters that imply temporal or mechanistic 
association between the SVs, the involved rearrangement ends must also be clustered into 
footprints that imply positional association.  

Motivated by these challenges in interpreting individual SVs, we developed a method for 
grouping SVs into clusters and footprints in order to allow structural and mechanistic 
inferences to be made systematically. In parallel, we process the somatic CN data and merge 
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it with SV junctions in order to allow us produce rearrangement patterns from the generated 
SV clusters and footprints. We produce normalised representations of SV cluster patterns, 
which allows us to tabulate the number of different cluster and footprint patterns and analyse 
their features. Finally, we performed manual and simulation-assisted interpretation of the 
recurrently observed cluster and footprint patterns.  

The individual steps of the SV classification pipeline are outlined below and detailed in the 
subsequent subsections.  

1. Computing exact breakpoint coordinates from clipped reads. 
2. Removing redundant “segment-bypassing” SVs.  
3. Merging rearrangement breakpoints with copy number data to yield SV breakpoint-

demarcated normalized absolute copy number data.  
4. Clustering individual SVs into SV clusters and footprints 
5. Heuristically refining SV clusters and footprints 
6. Filtering artefactual fold-back-type SVs with insufficient support 
7. Determining balanced overlapping breakpoints. This step is to distinguish very short 

templated insertions from mutually overlapping balanced breakpoints.  
8. Computing rearrangement patterns and categories 

1. Computing exact breakpoint coordinates from clipped reads 

Exact breakpoints enable more accurate copy number estimation, in particular when 
breakpoints are clustered and the involved copy number segments are very short.  

The raw read data in this project was aligned using BWA MEM, which is able align reads 
partially by soft-clipping them2. This feature is particularly useful around rearrangement 
breakpoints, where partially mapped reads soft-clipped at the exactly same genomic base can 
often be seen (Supplementary Figure 13). The most straightforward interpretation of these 
clipped reads is that the reads were aligned to the region until they split into the partner 
region of the SV. Thus, the reference genome positions of soft-clipped reads can be used to 
infer exact breakpoints of rearrangement ends.  Moreover, short segments are expected to 
harbour soft-clipped reads on both of its breakpoints. This feature is sometimes crucial in 
differentiating between templated insertions and balanced breakpoints with extended 
homology (Supplementary Figures 13-14).  

We wrote a Perl script for computing the absolute breakpoints of each rearrangement by 
looking at the presence of clipped reads at both sides of a read group (i.e. one side of a read 
pair group that supports a given SV). If there are clipped reads, the exact breakpoint position 
is inferred from the median of read soft-clipping positions. Otherwise, the alignment position 
of the read furthers into the breakpoint is used instead (Supplementary Figure 13).  
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Supplementary Figure 13: Estimation of exact rearrangement breakpoint from clipped reads. The IGV 
screenshot shows a genomic region with the low end of three rearrangement calls, two of deletion type 
(supported by red reads) and one of tandem duplication type (supported by green reads). There are two 
rearrangement breakpoints as shown by the vertical dashed lines going across the entire figure. In the left-
most rearrangement supported by the ‘+’ orientation red reads in the region under the orange bar on top, 
there are multiple reads whose alignment end with a soft-clip precisely at the first breakpoint. Similarly, the 
rearrangement breakpoint supported by the ‘-’ orientation green reads also has several reads whose 
alignment end right at the same breakpoint. This indicates that the first and the second rearrangements share 
a balanced breakpoint. The third rearrangement, which involves the same segment as the green reads, 
indicated by a blue bar on top, has a breakpoint at the second dashed line as evidenced by the soft-clipped 
red reads in this region. Note that in the blue segment, some of the red reads are not clipped from the 3’-end, 
but from the 5’-end at the same breakpoint as the soft-clipped green reads. This observation is crucial as 
explained in Supplementary Figure 14, because the 5’-end soft-clipping of the red reads in the blue region 
indicates that this chromosomal segment does not extend into the orange region, but there is another SV 
junction at the left side end of the blue segment. Indeed, this is supported by the rearrangement of the green 
reads, and indicates that the two rearrangements junctions demarcating the blue region are phased together. 
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Supplementary Figure 14: Distinguishing balanced breakpoints and templated insertions using read clipping 
patterns. In each panel, rectangles with blue and red gradient represent two different chromosomes. 
Lightning symbols denote double-stranded breaks. Blue and red arrows joined by dotted lines are read pairs 
derived from the breakpoint regions. A: In a typical balanced rearrangement breakpoint with or without end 
resection but without homology-mediated end filling, the non-rearrangement ends of the balanced 
breakpoints are oriented towards each other. When there is end resection at the breakpoints, a small section 
of deletion will be created between the breakpoints. B: Sometimes with homology-mediated double-stranded 
break repair, there may be a net gain of DNA material as, supposedly, homology-mediated replication 
replicates DNA on both breakpoints. If this happens, the breakpoints of the two rearrangements, as indicated 
by the supporting reads nearest to the breakpoints, may actually extend beyond each other, resulting in a 
small segment with ostensible copy number gain. C: In a templated insertion that is much larger than the read 
length, the rearrangement-side of both rearrangements point towards each other demarcating the gained 
segment that is inserted. D: When a templated insertion is very short, the rearrangement pattern at the 
insertion footprint can be very similar to what is observed in a balanced breakpoint with homology-mediated 
end filling (B). However, the two cases can be distinguished by the fact that in a balanced breakpoint, the 
rearrangement ends of the supporting reads are never soft-clipped. In contrast, in a small templated insertion, 
reads from both orientations will be soft-clipped on both ends of the inserted segment.   

2. Removing redundant “segment-bypassing” SVs 

Occasionally templated insertions can be much shorter than the average insert size of a 
sequencing library. In such cases read pairs can frequently bypass short templated insertions, 
with individual reads mapping to the rearrangement partner on either side of the templated 
insertion but not on the templated insertion itself (Supplementary Figure 15). When this 
happens, a cluster of read pairs supporting a redundant rearrangement may be called. Such 
a rearrangement call is misleading because there is no direct contact between the genomic 
regions on the two ends of the supporting read pairs. Instead the genomic contact happens 
through the templated insertion (Supplementary Figure 15).  

 

 

Chromosome 17 49 Mb Chromosome 2 220 Mb



 22 

Supplementary Figure 15: Segment-bypassing rearrangements. Two chromosomal regions of an example case 
are shown. The grey density plot indicates the overall coverage at the two regions. At chromosome 17, 
relevant abnormally paired read pairs are shown. On chromosome 2, both properly mapped (grey) and 
abnormally mapped (purple) read pairs are shown. In this example, there is a copy number gained region at 
chromosome 17. This gain is associated with a small inserted region derived from chromosome 2. Two read 
groups, two clusters of red reads on chr17 and two clusters of purple reads on chr2, link the duplicated region 
with the insertion region. However, the chromosome 17 region also has a cluster of tandem-duplication-type 
read pairs (green) spanning the duplicated region. These are read pairs that completely bypass the small 
inserted region on chromosome 2. Thus, the rearrangement call supported by the tandem duplication-type 
read pairs are bypassing the inserted segment derived from the chromosome 2.  

 

We detect and remove segment-bypassing SVs using the following procedure. We first look 
for an SV’s low end’s “neighbouring rearrangement ends”, which have the same orientation 
as and are within 200bp of the SV’s low end. Then, for each neighbouring rearrangement end 
that has a mate on a templated insertion (≤ 10,000kb), then we “jump” to the second 
rearrangement end of the templated insertion. We continue jumping until a rearrangement 
end’s mate is not on a templated insertion. If at this point we reach a neighbouring 
rearrangement end of the high end of our initial SV, then we deem that the initial SV is 
segment-bypassing and remove it. Note that the large templated insertion size cutoff here 
does not matter, since in order for an SV to be segment-bypassing, the total length of all the 
bypassed segments have to be less than insert size. Thus, a large cutoff just ensures that this 
algorithm works regardless of the sample’s insert size.  

3. Merging rearrangement breakpoints with copy number data 

Sample-specific ploidy and purity estimates were obtained using ascatNgs3. Other outputs of 
ascatNgs were not used. Instead, somatic copy number levels were estimated as described 
below.  

Reference genome was divided into non-overlapping 500 base pair windows. Per-window 
coverage log ratios were computed by dividing the tumour read depths by their respective 
read depths in the matching normal sample. A pseudocount of 0.1 was added to the both the 
tumour and matching normal per-window read depths.  

GC-content is a known covariate to read depth in many samples, and is generally corrected 
for in somatic copy number estimation. In our analysis, we noticed that the rate of local 
inverted read pairs (++ or -- read pairs with distance <5kb) also covaried with read depth 
independent of GC-content (Supplementary Figure 16). The high frequency of such read pairs 
probably reflect a previously reported of Illumina library preparation artefact4.  
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Supplementary Figure 16: Normalisation of read depth using fold-back read pair density. The data shown are 
based on a sample with high frequency of fold-back read pair artefacts. Panel A shows the density plot of per-
window fold-back read pair density against log2(tumour/normal) copy number ratio. The fold-back read pair 
density is computed as the number of fold-back type reads divided by the total read coverage of each window 
and capped at 0.3. Note that the association between fold-back read pair density and copy number is not 
linear in this sample. Panel B and C show the copy number estimates obtained by statistically correcting the 
log2-ratio data using GC-content alone (B) or with both GC-content and fold-back read pair density (C).  

 

Samples with a high number of fold-back inversion read pairs had an extremely high variance 
in their read depth (Supplementary Figure 16). Given the association between fold-back 
inversion read pair density and overall read depth, we thus used a generalised additive model 
(GAM) to model the additive but non-linear read depth effect of both GC content and fold-
back read pair density. GAM is a multi-dimensional generalisation to single-variable non-
linear regression such as loess, which can be more appropriate than purely linear regression-
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based normalisation (Supplementary Figure 16). In certain samples, somatic copy number 
estimates stabilised significantly when fold-back read pair rate was factored in 
(Supplementary Figure 16).  

Normalised per-window log2-ratio values were segmented using the R package 
‘copynumber’5 with a ‘gamma’ parameter of value 200. Per-window and per-segment 
absolute copy number estimates were computed from the normalised log2-ratio values using 
the following formula. 

purity-adjusted	log-ratio
= normalised	log-ratio −median(normalised	log-ratio)
+ log8((purity	 × 	ploidy + (1 − purity) × 2)/2) 

absolute	CN = (2@Apurity-adjusted	log-ratio − 2 × (1 − purity))/purity 

 

The copy number segmentation and rearrangement breakpoints were merged in order to 1) 
associate copy number segments with rearrangements and 2) increase the accuracy of both 
the copy number and the rearrangement calls. Point 2 is particularly important with respect 
to small copy number segments such as small deletions, because the copy number changes 
of these small regions are often missed during copy number segmentation due to limited 
resolution but can be rescued by adding rearrangement calls as extra copy number 
breakpoints. Rearrangement and copy number breakpoint merging were perfomed as 
described below.  

1. A combined breakpoint set was generated by combining all the copy number 
segmentation and rearrangement breakpoints.  

2. Copy number segmentation breakpoints that were within 20kb of any rearrangement 
breakpoints were removed. The rationale to this step is that breakpoints from copy 
number segmentation and rearrangement calling that are in the vicinity of each other 
likely represent the same somatic rearrangement event and this step thus removes 
this redundancy from the breakpoint set. Breakpoints in rearrangement data are 
prioritised over copy number breakpoints, because their localisation on the genome 
should be more accurate (Supplementary Figure 13). The threshold of 20kb was 
chosen so that copy numbers are accurate as they are estimated using segments of at 
least 20kb in size on both side of the rearrangement breakpoints.  

3. Of the remaining copy number segmentation breakpoints (that are not within 20kb of 
rearrangement breakpoints), those that demarcate segments of less than 10 genomic 
windows (typically equivalent to 5kb) were removed. 

4. Of the remaining copy number segmentation breakpoints, those that demarcate an 
absolute copy number change of less than 0.3 copies were removed.  

5. Rearrangement and copy number segmentation breakpoints located within sub-
telomeric or centromeric regions (Supplementary Table 2) were removed. Copy 
number segments that partially overlapped with the defined sub-telomeric or 
centromeric boundaries are truncated to these boundaries.  

6. After redefinition of breakpoints through steps 1-5, the copy number of each segment 
defined by the new breakpoint set is re-estimated by taking the median absolute copy 
number of the overlapping windows of each segment.  

7. Estimating absolute copy number for small segments (here defined as segments with 
fewer than 10 overlapping windows, which typically corresponds to 5kb) using copy 
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number windows is very noisy because only few windows are located within them. 
Therefore, instead of using per-window read depth data, copy number for small 
segments is estimated using base-resolution read depth data as described below, 
summarised in Supplementary Figure 17.  

i. A small segment is occasionally directly adjacent to other ‘small’ segments. In 
this case, all small segments were first grouped together and recorded.  

ii. Following the definition of (i), the two segments immediately upstream and 
downstream of this sequence of small segments are not small segments. These 
are taken as anchor segments. The idea is that anchor segments are large 
enough for their copy number to be accurately estimated from per-window 
copy number data. If a small segment sequence is immediately next to a 
telomere or a centromere, then it only has one anchor segment (the other side 
being a telomere or centromere gap).  

iii. The read depths of the anchor segments and the intervening small segments 
are computed using BedTools. If an anchor segment is larger than 10kb, then 
only the 10kb of the anchor region closest to the intervening small segments 
is included.  

iv. Based on the read depth of each small segment and the read depths and 
estimated copy numbers of the anchor segments, the absolute copy number 
of the small segments is then estimated as follows.  

 
𝑜@ = 𝑓 × 𝑐𝑛@ + (1 − 𝑓) × 2 
𝑜8 = 𝑓 × 𝑐𝑛8 + (1 − 𝑓) × 2 

CN estimate = FGHIJ×
KL
ML
N(@NO)×8

O
×

GHIJ×
KP
MP
N(@NO)×8

O
, 

 
where 𝑜@ and 𝑜8 are observed copy numbers of the anchor segments, 𝑓 is aberrant 
cell fraction (i.e. 1 − purity), 𝑐𝑛@ and 𝑐𝑛8 are the previously estimated absolute copy 
numbers of the anchor segments and 𝑐@ , 𝑐8  and 𝑐QRS  are the read depths of the 
anchor segments and the small segment, respectively. If only one anchor segment is 
available, then the copy number estimate is simply obtained using one anchor 
segment rather than taking the geometric mean of the estimates of the anchor 
segments.  
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Supplementary Table 2: Definition of chromosomal arm coordinates. Rearrangement and copy number 
breakpoints outside these boundaries are removed.   

Chr P-arm to centromere Centromere to q-arm 

1 750000 121270000 150000000 249220000 

2 10000 89330000 95390000 242950000 

3 60000 90500000 93510000 197820000 

4 40000 49090000 52680000 190910000 

5 10000 46400000 49440000 180720000 

6 200000 58770000 61880000 170920000 

7 80000 58050000 61980000 159130000 

8 160000 43790000 46880000 146300000 

9 200000 38770000 70990000 141090000 

10 100000 39150000 42400000 135230000 

11 190000 51580000 54800000 134940000 

12 180000 34850000 37860000 133840000 

13 - - 19360000 115110000 

14 - - 20190000 107290000 

15 - - 20030000 102280000 

16 80000 35240000 46490000 90160000 

17 0 22240000 25270000 81110000 

18 130000 15410000 18540000 78010000 

19 250000 24600000 27740000 59100000 

20 120000 26290000 29420000 62920000 

21 - - 14340000 48100000 

22 

X 

- 

310000 

- 

58500000 

16850000 

61730000 

51200000 

155240000 
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Supplementary Figure 17: Schematic representation of the algorithm for estimating the absolute copy number 
of small segments that only include few copy number windows.  

4. Clustering SVs into SV clusters and their constituent footprints 

SV clustering consists of three steps. First SVs are clustered together in an agglomerative 
manner as long as any pair of SVs are closer than expected based on background SV rate. 
Background SV rate estimation takes into account the background rate of different SV types 
(del, TD, inversion and inter-chromosomal) as well as their empirical size distributions. SV 
clusters are then divided into footprints, than can be considered independent contiguous 
regions that rearranged as part of the SV cluster event. Finally, we employ several heuristic 
steps to refine SV and footprint clustering.  

Rearrangement clustering 

The main challenge with rearrangement clustering lies with hypermutator samples with a 
high frequency of a particular SV type, such as tandem duplication. In these samples many 
SVs may cluster together simply by chance. More critically, the mere high frequency of certain 
basic SV types would cause them to frequently cluster together with real SV clusters such as 
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direct inversions. This contamination would detrimentally change the rearrangement 
patterns obtained from the real SV clusters. We therefore sought to develop an algorithm 
that considers the background rate and size distribution of each SV type (del, TD, inversion 
and inter-chromosomal) in a sample-specific manner.  

An overview of the SV clustering algorithm is as follows. 

1. We defined a distance metric D for pairs of SVs.  
2. We implemented a method for computing the expected false positive (FP) number of 

SV pairs with a distance shorter than a given observed value under the assumption 
that the all SVs occurred independently without clustering. We accounted for sample-
specific background rates and size distributions for each SV type when computing 
these expected numbers.  

3. We computed the distance expected FP numbers for the distances computed 
between each pair of SVs in a sample. 

4. We performed agglomerative hierarchical clustering on these expected FP numbers.  

The distance metric. Let 𝑑(𝑎, 𝑏) = abs(𝑎 − 𝑏)/3e9 be the distance between breakpoints a 
and b divided by genome length. 

𝐷[𝑆𝑉 , 𝑆𝑉_` = min(𝑑[𝑆𝑉 ,abc, 𝑆𝑉_,abc` × 𝑑[𝑆𝑉 ,d^Sd, 𝑆𝑉_,d^Sd`, 𝑑(𝑆𝑉 ,abc, 𝑆𝑉_,d^Sd) ×
𝑑(𝑆𝑉 ,d^Sd, 𝑆𝑉_,abc)), 

where SVi,low and SVi,high refer to the low and high end positions of SVi. 

The intuition behind this distance metric is that given SVi and SVj are unrelated, the P-value 
for a given breakpoint in SVj, say SVj,low being closer than 𝑑[𝑆𝑉 ,abc, 𝑆𝑉_,abc` from SVi,low should 
follow the exponential distribution. That is, Pr[𝑑[𝑆𝑉 ,abc, 𝑆𝑉_,abc` < 𝑥` = 1 − 𝑒Nij. Since we 
are mostly interested in situations when breakpoints are very close to each other (𝑥 ≈ 0), we 
can use the well-known approximation log(1 + 𝑥) ≈ 𝑥 to yield 1 − 𝑒Nij ≈ 𝑥.  

The expected FP number of SVs with observed distance. This is computed a given pairs of 
SVs. Suppose for the sake of an example that SVi is of deletion type and SVj is of tandem 
duplication type, and they have a SV distance of Di,j. First SVi is treated as an “anchor SV”, and 
the following pseudocode is used to compute the expected number of deletion-type SVs that 
would yield a distance with SVi ≤ Di,j.  

expected_FP_number = 0 

for other_sv in all deletion-type SVs: 

 expected_FP_number += Prob(D(SVi, other_sv) ≤ Di,j) 

The crucial part, Prob(D(SVi, other_sv) ≤ Di,j), can be computed analytically while considering 
the SV sizes of SVi and other_sv (see code for details). Thus, since the for loop traverses all 
SVs of the relevant type (here: deletion), this method of computing the expected FP number 
of low distance SVs takes into account both the rate and the empirical size distribution of the 
SVs of relevant type: the number of SVs of the relevant type in the sample affects how many 
other_svs are considered, and sizes each other_sv affects Prob(D(SVi, other_sv) ≤ Di,j). 

After the expected_FP_numberi,j is computed with SVi considered the anchor SV, the same 
computation is performed with the second SV, SVj, considered the anchor SV. The final 
expected FP number for an SV pair (requiring the exact SV types as SVi and SVj) is computed 
by averaging the obtained expected FP numbers when considering each SV as the anchor SV. 
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This expected_FP_number is now an estimate for the expected number of SVs of the exact 
types as SVi and SVj that would yield a distance ≤ Di,j under the null hypothesis of the SVs being 
independent and while accounting for the respective SV counts and size distributions. 

Agglomerative clustering. The expected_FP_number values computed between each pair of 
SVs reflect the expected number of pairs with a distance lower than the one observed given 
the SV types of each pair of SVs. However, the pairwise expected_FP_number value does not 
indicate how many SVs regardless of SV type would be expected to yield the observed SV 
distance. 

Since there are four SV basic types (del, TD, inversion and inter-chromosome), there are ten 
ways in which they can pair together (four ways of two SVs having the same SV type, six ways 
of having pairs of two different SV types). Since we are performing agglomerative clustering, 
by definition SVs are clustered together based on their pairwise expected_FP_number values 
in ascending order. Therefore, when time comes to decide whether SVi and SVj should be 
merged, the expected number of SV distances ≤ Di,j has to be smaller than any remaining un-
agglomerated expected number regardless of SV type. Thus, we can conservatively estimate 
that 

En𝐷∙,∙ < 𝐷^,_	regardless	of	SV	types ≤ 10 × E[𝐷∙,∙ < 𝐷^,_ ∣ SV	types	of	𝐷^	and	𝐷_] 

Therefore, we converted by original expected_FP_number that only apply for specific SV types 
to the expected_FP_number regardless of SV type by simply multiplying the former by 10. 
These expected FP numbers were then transformed into FDR values by dividing them with 
the number of SV pairs accepted clustered. 

We used agglomerative clustering with minimum as the distance involving already clustered 
clusters of SVs: 

𝐷(𝑐𝑙𝑢𝑠𝑡𝑒𝑟	1, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	2) 	= 	𝑚𝑖𝑛(𝐷(𝑆𝑉 , 𝑆𝑉_); 	𝑆𝑉 	𝑖𝑠	𝑖𝑛	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	1	𝑎𝑛𝑑	𝑆𝑉_	𝑖𝑠	𝑖𝑛	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	2). 

While visually examining initial clustering results, it was clear that there were some samples 
with very low rates of simple rearrangements but with massive chromothripsis events 
involving hundreds or even thousands of SVs. The high overall rate of SVs of each basic SV 
type in these samples led to an overestimation of the background rates of each SV type. To 
mitigate this, we applied a two-phase clustering approach. In the first phase, we aimed to 
capture and mark the high confidence clustered SVs by using an FDR cutoff of 0.01 for 
clustering. After this initial clustering step, all clustered SVs were removed from the 
background estimation, and the expected_FP_number values were recomputed for all the SVs, 
which were so far still not clustered. SV clustering was then continued for the still unclustered 
SVs using the new expected_FP_number values. In the final round of clustering, the FDR cutoff 
of 0.05 was used. 

Determination of rearrangement cluster footprints 

The SV clustering algorithm described above clusters individual rearrangements into clusters 
with the assumption that the unexpected level of clustering arises from the SVs having been 
generated through a rearrangement event involving multiple SV junctions. 

Every SV cluster involves one or more chromosomes. Within each chromosome, SVs can be 
clustered (1) throughout the chromosome, (2) throughout a chromosomal arm or (3) 
interstitially. Moreover, a SV cluster can form multiple disparate clusters of breakpoints, or 
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footprints, on a chromosome. In other words, a footprint is a genomic interval that is assumed 
to have undergone complex rearrangement event involving potentially more than one 
footprint. The steps below describe how the boundaries and widths of the footprints are 
determined. Note that while the SV clustering algorithm groups SVs together, the footprint 
determination algorithm breaks an SV cluster down on the basis of its individual SV 
breakpoints. Two rearrangement ends of an SV can belong to the same or to different 
footprints. 

SV clusters with only a single SV are defined to be formed by two footprints each containing 
one of the breakpoints of the SV. That is, singleton all SVs are defined to have two footprints 
each of which is exactly one base pair wide.  

For non-singleton SV clusters, the idea behind footprint determination is to model inter-
breakpoint distances using exponential distribution. The following steps are applied to a given 
SV cluster to determine its footprint coordinates. First, all inter-breakpoint distances of an SV 
cluster across all involved chromosomes is computed. Each interval between successive SV 
breakpoints is a candidate divider between individual footprints. Initially every chromosome 
involved in an SV cluster is assumed to contain only one footprint. The following steps are 
then iterated to divide individual SV breakpoints into footprints.  

1. Use all inter-breakpoint distances 𝑑^  over 𝑖 = 1, 2, … 	𝑛 intervals between breakpoints 
not (yet) classified as footprint dividers. Initially this includes all inter-breakpoint 
distances across all chromosomes of a SV cluster. Calculate the maximum likelihood 
mean inter-breakpoint distance under exponential distribution: 𝜆� = 𝑛/(𝛴^𝑑^) and 
𝐿� = ∏ 𝜆�𝑒Ni�/��^ . 

2. Take the largest inter-breakpoint distance 𝑑�  and compute the alternate model 
maximum likelihood: 𝜆@ = 𝑛/(𝛴^��𝑑^) and 𝐿@ =

@
��
𝑒N��/�� ∏ 𝜆@𝑒NiL/��^�� . 

3. Compute the log-likelihood ratio 𝛬 = 2 × (log(𝐿@) − log(𝐿�)). 
4. Compute the likelihood ratio test P-value using P(𝑋 ≥ 𝛬), where 𝑋 follows the Chi-

squared distribution with one degrees of freedom.  
5. Perform multiple testing adjustment on the P-value using the method by Benjamini 

and Hochberg. The number of tests is the number of inter-breakpoint intervals 
currently not yet classified as a footprint divider.  

6. If the adjusted P-value < 0.01, then declare the location with inter-breakpoint distance 
of 𝑑� as a footprint divider that separates two footprints on either side of it. After 
that iterate from step 1. If P-value ≥ 0.01, then stop iterating. 

The code for grouping SVs into SV clusters and footprints is available at 
https://github.com/cancerit/ClusterSV/.  

5. Heuristic refinement of SV clusters and footprints 

The clustering and footprint determination algorithm used above was not perfect, and we 
applied several straightforward heuristic steps to improve the results. 

- For each footprint, if there is a peripheral deletion or TD that does not overlap with 
any other breakpoints in the footprint, the deletion or TD was separated out from the 
footprint and put into its own cluster. This eliminates cases when a simple deletion or 
a simple TD gets clustered together with a real SV cluster by chance.  
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- Complete cycles of templated insertions or balanced breakpoints (see main text) were 
split out and put into their own clusters. This rescues some templated insertion and 
balanced breakpoint cycles that got accidentally clustered together with nearby 
unrelated SV clusters because they were located near each other by chance.  

- Sometimes a local two-jump event (see main text) was split into two footprints, 
because there is a particularly sort inter-breakpoint distance. For example, in some 
Loss-InvDup events the breakpoints at the insertion point can be within <100bp from 
each other, causing the other inter-breakpoints intervals to be considered footprint 
dividers in the footprint determination algorithm. We merged all SV clusters involving 
two inversion-type SVs over a total genomic interval of ≤5Mb into a single footprint. 
This step rescued some local two-jump events that were otherwise considered distal 
templated insertions based on footprint analysis.  

- Analogous to above, merge breakpoints within 5Mb forming the pattern A+^C+/C- 
(see below for the rearrangement pattern coding scheme) that got split into multiple 
footprints. This rescues some of these footprints.  

- For the same reason as above, sometimes the two breakpoints forming a templated 
insertion or a balanced breakpoint may be split into two footprints each consisting of 
a single breakpoint. We merged all successive single-breakpoint footprints, if all of the 
following were true. 

o Each footprint consisted of a single breakpoint. 
o The footprints were within 5Mb from each other. 
o The two breakpoints had rearrangement orientations consistent with either a 

templated insertion (-+) or a balanced breakpoint (+-). 
o The next closest footprint for the two footprints considered were further than 

15Mb away.  
- Finally, if an SV cluster only has a single footprint and only includes deletion or tandem 

duplication-type SVs, then these deletions and tandem duplications are considered 
simple deletions and tandem duplications and separated into their own clusters. This 
increases the number of correctly clustered deletions and tandem duplications, as 
they can sometimes inadvertently form SV clusters at deletion (fragile sites) and 
tandem duplications (certain genomic loci) hotspots despite the involved deletions 
and tandem duplications being independent.  

6. Filtering artefactual fold-back-type SVs with insufficient support 

While we performed the initial rearrangement analysis, we noticed some samples with a high 
number of fold-back-type rearrangements. Two patterns suggested that most of these SVs 
were false positive rearrangements that got through the initial SV set generated through 
merging the Broad, DKFZ and Sanger SV calls. Firstly, the fold-back SVs in these samples were 
rarely supported by consistent copy number change (Supplementary Figure 18). Secondly, in 
samples with an exceptionally large number of fold-back-type SVs, majority of them were 
called by Snowman and Delly but not by the dRanger nor the Sanger pipelines. 

Based on these observations, we added a post-hoc step to remove likely artefactual fold-back-
type SVs. All solo fold-back SVs, i.e. those that did not cluster with other SVs, were removed 
if they were supported by only two of the four SV pipelines.  
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Supplementary Figure 18: An illustrative chromosome from a sample with a high number of fold-back-type 
SVs (green and cyan). None of the supposed fold-back rearrangements are associated with consistent copy 
number change. 7. Detecting mutually overlapping balanced breakpoints 

As explained in Supplementary Figure 14, both balanced breakpoints and small templated 
insertions can have supporting reads from reciprocal rearrangements extending over each 
other, forming a small region of copy number gain. Therefore, without this step, some 
balanced breakpoints would be erroneously classified as templated insertions.  

We used the exact breakpoint position values to check whether the reads supporting the first 
rearrangement end are soft-clipped from the rearrangement side at the same position as the 
reads supporting its reciprocal rearrangement end (Supplementary Figures 13-14). If such 
soft-clipping was found, the segment between the rearrangement ends was classified as a 
templated insertion. However, if the reads of the reciprocal rearrangement ends extended 
without soft-clipping further than where their mates’ supporting reads were soft-clipped, 
then the segment was classified as a balanced breakpoint with overhang due to 
microhomology instead. The details of the method are as follows. 

1. We only considered footprints comprising a single CN segment ≤100bp (and thus one 
at each end of the segment), as 100bp was the read length used in this study, and thus 
if the region of microhomology was larger than 100bp, then the reads would be 
multimapped anyways.  

2. The following conditions must be met for the footprint to be considered a balanced 
breakpoint with microhomology. Otherwise the footprint classification was defaulted 
to templated insertion.  

o Rearrangement end orientations at the footprint are reverse (-) at the 5’-end 
and forward (+) at the 3’-end of the segment. 

o At the 5’-end of the footprint, the 5’-end of the reads supporting the forward 
rearrangement junction extend more than 5bp upstream of where the reads 
supporting the reverse rearrangement are soft-clipped. 

o At the 3’-end of the footprint, the 3’-end of the reads supporting the reverse 
rearrangement junction extend more than 5bp downstream of where the 
reads supporting the forward rearrangement are soft-clipped.  
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7. Determining balanced overlapping breakpoints 

Sometimes breakpoints involved in a balanced rearrangement can include microhomology 
that causes their supporting reads to align beyond each other, creating an appearance 
consistent with a templated insertion (Supplementary Figure 14). We implemented a method 
using the object-oriented framework to determine based on the soft-clipping patterns of 
supporting reads whether a locus with a forward and a reverse breakpoint were consistent 
with a small templated insertion or with a  balanced breakpoint (Supplementary Figure 14). 

8. Computing rearrangement patterns 

A string representation for entire rearranged somatic genomes 

This method was developed in order to prune the rearrangement library search (described 
below) by avoiding searching for evolutions from the same somatic genome intermediates 
more than once.  

In the context of structural variation analysis, the actual DNA sequence of a chromosome is 
mostly unknown. Instead, what is known is that the chromosome was derived from a wild 
type state through a sequence of rearrangement events, leaving observable rearrangement 
junctions. Therefore, having an encoding system for denoting SV junctions should be 
sufficient to describe the information available to rearranged derivative chromosomes. 

For example, a chromosome with a tandem duplication and a deletion could be encoded by 
dividing the wild type chromosome into five segments, A��⃗ B��⃗ C�⃗ D��⃗ E��⃗ , and then reporting the 
segment sequence of the derivative chromosome, e.g. A��⃗ B��⃗ B��⃗ C�⃗ E��⃗ . Alternatively, one could 
represent the same derivative chromosome using an equivalent representation of E⃖��C⃖�B⃖��B⃖��A⃖��. In 
a given encoding scheme, a single derivative chromosome always has two equivalent 
representations. In order to systematically perform statistical analysis on rearrangement 
patterns, we need a way to equate them when they represent the same pattern with a 
different but equivalent representation, e.g. when they are A��⃗ B��⃗ B��⃗ C�⃗ E��⃗  in one place and E⃖��C⃖�B⃖��B⃖��A⃖�� 
in another. 

A genome can be represented as an ordered list of its chromosomes, each with one of its two 
equivalent orientations. One can arrange the chromosomes and chromosomal orientations 
in any given way and still produce the same equivalent genome. This yields for a given genome 
a total of (𝑛!) × 2�  representations, where 𝑛  is the number of derivative chromosomes 
(Supplementary Figure 19). We say that different representations of the same derivative 
genome belong to the same representational equivalence class. 

One way to tell if two different representations describe the same (or equivalent) genome is 
to take one of the two representations, enumerate all possible permutations (in terms of 
chromosomal ordering and orientation) of that representation and check whether any of 
them match exactly with the second representation. This brute force approach requires 
(𝑛!) × 2�  iterations which can quickly become prohibitive when the number of genomes 
grow. 

We therefore implemented a faster approach based on a function 𝑚(⋅) such that for genomic 
representations 𝑟@  and 𝑟8 , 𝑚(𝑟@) = 𝑚(𝑟8)  if and only if 𝑟@  and 𝑟8  are equivalent 
representations of the same genome under our somatic genome encoding scheme.  
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We start with a string representation for genomic configuration. Given an array of derivative 
chromosomes with associated orientations representing a genome, the segments in each 
chromosome can be written out and concatenated to produce a ‘genome string 
representation’ (Supplementary Figure 19). Strings can naturally be lexically sorted, so 𝑚(𝑟) 
could be implemented by mapping 𝑟 to the lexicographically smallest genome string among 
configurations of the genome represented by 𝑟. As chromosomal segments do not have an 
inherent identity, we simply label them numerically in the order in which they are 
encountered in a genomic representation (Supplementary Figure 19).  

From the design of the genomic representation, one can see that the string representation is 
constructed left to right chromosome by chromosome. Therefore, instead of having to 
stringify all genomic configurations of a given genome, one can dynamically exclude strings 
that are guaranteed not to be lexicographically smallest based on how they start. This is 
achieved as follows. In the first iteration, every chromosome of the given derivative genome 
in both possible orientations is put as the first chromosome of the string representation. The 
stubs of the genome strings with one chromosome only can then be compared and those that 
are not lexicographically smallest at this point can then be ignored. The remaining genome 
configurations can then be iteratively extended and each time the genome string is extended 
by adding a new chromosome, those that result in non-smallest genome strings so far are 
removed. This procedure is repeated for each subsequent chromosome until all 
chromosomes have been included in the final representation. At this point the final 
representation is guaranteed to be lexicographically smallest.  

Note that this method generalises naturally to breakpoint footprints of SV clusters. The only 
change needed is to ignore the host chromosomes of the footprints and instead consider each 
footprint as an independent ‘chromosome’. For example, a templated insertion from 
chromosome 1 to chromosome 2 or from chromosome 2 to chromosome 1 share the same 
rearrangement pattern and mechanism. Such rearrangement pattern equivalences between 
SV clusters can be systematically computed using this rearrangement pattern encoding 
scheme.  
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Supplementary Figure 19: A string representation for a rearranged genome and finding the lexicographically 
smallest string representation for a rearranged genome. A schematic representation of a diploid genome 
consisting of two chromosomes is shown on top. Parental origin of the segments is denoted by their dashed 
or solid outline. The rearranged chromosome is generated through an unbalanced translocation between 
chromosomes 1 and 2, a whole-chromosome loss of a copy of chromosome 1 and an inversion in chromosome 
2, resulting in two derivative chromosomes. The two derivative chromosomes can be put in two different 
orders and within each ordering each derivative chromosome can be represented in two different orientations. 
This yields a total of eight different possible combinations of arranging the derivative chromosomes in an 
array, four of which are shown in the diagram in the bottom section. For each derivative chromosome 
ordering and orientation combination, a string can be used to describe the segments of each derivative 
chromosome. Every segment is indexed, and reference chromosomes are rearranged and oriented in such a 
way that the resulting genome string is lexicographically smallest for the derivative chromosome arrangement 
in question. This way, a lexicographically smallest representation is obtained for each derivative chromosome 
arrangement. In order to find the overall lexicographically smallest representation for the derivative genome, 
one only has to find the derivative chromosome arrangement that produces the lexicographically smallest 
string representation. The naïve way to find the derivative chromosome arrangement that produces the 
lexicographically smallest genome representation is to enumerate all possible arrangements and compute the 
string representation for each of them. A more efficient way is to build the genome string representations 
using essentially a prefix tree in a breadth-first approach (i.e. chromosome by chromosome) and iteratively 
remove representations (branches) that are guaranteed to not be lexicographically smallest. The example 
arrangements shown in the figure illustrate all four possible derivative chromosome choices and orientations 
arranged as the first chromosome. From these arrangements one can see that by having the derivative 
chromosome generated through a translocation first and orienting it with the orange segments first produces 
the lexicographically smallest string for the first derivative chromosome, and therefore by starting a derivative 
chromosome arrangement with any other chromosome or orientation is guaranteed to produce a 
lexicographically larger genome string. This stepwise string extension can then be continued until all 
derivative chromosomes are placed in the arrangement, at which point the resulting genome string is 
guaranteed to be lexicographically smallest for the entire genome.  

A string representation for rearrangement patterns 

The actual segment structure of individual chromosomes is not observed through NGS-based 
rearrangement analysis. Instead, only copy numbers and rearrangements associated with the 
segments are observed. This process causes loss of information, and sometimes two non-
equivalent genomes can produce the exactly same breakpoint and copy number patterns 
(Supplementary Figure 20). The key difference between somatic genome representations and 
rearrangement patterns is that the former contains complete information of the somatic 
karyotype, but the latter only provides the somatic rearrangement junctions and copy 
number.  

Similar to the section above, we used the lexicographically smallest rearrangement pattern 
string representation to describe a rearrangement pattern. Furthermore, generating 
normalised rearrangement patterns for both real SV clusters and SV patterns generated 
through the rearrangement library (described below) allowed us match rearrangement 
patterns in real data to their equivalent simulated patterns (Supplementary Figure 20). 

Copy number estimates in real data are often too noisy to obtain accurate integer copy 
numbers. Since rearrangement pattern strings start with rearrangement junctions followed 
by CNs, if is possible to use normalised rearrangement pattern strings without the CN part.  

Note that the numbering and of segments is only used internally in the algorithm. In this 
manuscript, segment numbers are replaced by alphabets (A, B, C…) and rearrangement 
junctions are indicated by a caret as opposed to a comma used in Supplementary Figure 20. 
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Thus, the internal representation for Loss-InvDup is “0+,3+/2-,3- “, but the one used in this 
manuscript is “A+^D+/C-^D-“. 

It is possible to describe individual footprints using the rearrangement pattern string. A 
breakpoint and its partner breakpoint do not always belong to the same footprint. In this case, 
the rearrangement junction section of an orphan breakpoint will simply not have the partner 
breakpoint part, i.e. the caret and the breakpoint after the caret. For example, the 
rearrangement string representation for a unbalanced translocation breakpoint footprint is 
simply “A+”. 
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Supplementary Figure 20: Rearrangement pattern strings for describing rearrangement patterns. Top part of 
the figure shows two different rearranged genomes consisting of two copies of one chromosome. In genome 
1 one copy of the chromosome is wild type and the other copy has a deletion and a tandem duplication. In 
genome 2 one copy has the tandem duplication and the other copy has the deletion. Both derivative genomes 
produce the exactly same rearrangement pattern. The same rearrangement pattern can also be inverted to 
produce a different, but equivalent description of the rearrangements and copy numbers. The rearrangement 
pattern strings used to describe the rearrangement patterns are shown on the right hand side of the 
rearrangement patterns. Note that first orientation of the rearrangement pattern produces a lexicographically 
smaller string representation compared to the second one, and is thus the normalised representation for this 
rearrangement pattern.  

Library of all possible rearrangement patterns 

We wrote a C program for simulating the structures of somatic genomes following 
exhaustively enumerated sequences of basic rearrangement types. The core of the 
framework is simple. First a wild type genome, defined as an array of one or more 
chromosomes each in either a single copy or in diploid pairs is created. Rearrangement events 
from an array of known rearrangement mechanisms are applied one at a time on the wild 
type genome in all possible positions and orientations. The event types included in the 
framework are the following. 

- Internal deletion 
- Tandem duplication 
- Direct inversion 
- Unbalanced translocation 
- Balanced translocation 
- Terminal deletion 
- Terminal deletion + telomeric fusion (breakage-fusion-bridge) 
- Whole-chromosome gain 
- Whole-chromosome loss 
- Whole-genome duplication 

The same process can now be repeated recursively, applying a second rearrangement event 
on the derivative genomes that underwent one event so far, and so on, until the desired depth, 
i.e. the total number of rearrangements to be simulated, is reached. The simulation process 
can be modelled as a tree, where the root is the wild type genome and branches are child 
genomes derived from an application of an additional rearrangement event (Supplementary 
Figure 21).  
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Supplementary Figure 21: Schematic representation of the rearrangement simulation algorithm. In this 
example the wild type genome contains two parental copies of one chromosome, and the only simulated 
rearrangement event types are internal deletion and tandem duplication. The depth of search in this example 
is two events. The search algorithm is depth first. First, one rearrangement event, in this case a deletion, is 
simulated onto the wild type genome (1). This generates a derivative genome, whose genome string, 
rearrangement pattern and evolution is printed as output (2). In addition, the genome string representation 
of the derivative genome is stored in a hash table. Since the desired depth has not been reached yet, the 
rearranged genome with a deletion is subjected to further rearrangements. An additional deletion can be 
simulated onto the rearranged genome in multiple places now (3). The secondary deletion can overlap the 
original deletion. Alternatively, the secondary deletion could happen on the wild type copy of the 
chromosome, in which case the deletion could land before, over or after the initial deletion. In addition, 
simulations with a secondary tandem duplication in all possible locations are also carried out. In each of these 
cases, the secondary event reaches the desired depth of so events, so each of the rearranged genomes with 
two events are output and their respective genome string representations are stored in the genome string 
hash table, but no further rearrangements are applied to them. So far the algorithm has exhaustively 
enumerated all evolutions starting with a deletion on one copy of the chromosome. Next, the algorithm 
retracts back to the wild type genome, and searches for the next possible place for a deletion, which in this 
case will be in the other parental copy of the chromosome (denoted with a dashed outline) (4). After applying 
a deletion on this chromosomal copy, the genome string representation for the rearranged genome is 
computed. By querying the hash table with this string, it will then be noted that a somatic genome with an 
equivalent structure has already been encountered during the search, namely that belonging to the product 
of (1). Therefore, all leaves derived from the current rearranged genome (4) will be identical to those 
generated from the first genome (1). Instead of enumerating all rearranged genomes from (4), the algorithm 
simply prints a statement that the evolution of (4) produces an identical rearranged genome to that of the 
evolution of (1). Now the algorithm backtracks to the wild type genome again, and since all placements of 
deletions have been visited, the algorithm will now place tandem duplications on the wild type genome. The 
first rearranged genome with a tandem duplication (5) has not been encountered yet as it is not found in the 
genome string representation hash table, so it will have its genome string, rearrangement pattern string and 
evolution printed as output (6) and its genome string stored in the genome string hash. Then further patterns 
are searched starting from this rearranged genome. Subsequently when a tandem duplication is applied to 
the chromosomal copy with dashed outline (7), the algorithm again finds out that a genome with a genome 
representation string has already been encountered, and thus the algorithm simply states this and does not 
proceed to enumerate evolutions and patterns from this rearranged genome.  

The number of distinct genomic evolutions, and thus the search space, explodes after just a 
few simulated events. However, two distinct evolutions can produce derivative genomes that 
are equivalent, as defined above (Supplementary Figure 21). We thus prune the simulation 
tree whenever the genome string indicates duplicate representations. This is implemented by 
maintaining a hash table that of all encountered genomic configuration with the 
rearrangement evolution that produced the derivative genome. 

The simulations are performed depth first, and every time a new simulated chromosome is 
generated, the subsequent action is selected from the following.  

- Compute the normalised genome representation string for the current rearranged 
genome.  

- Lookup the normalised genomic representation from the hash table. 
- If an equivalent genome representation has already been generated through an 

evolution traversed earlier, then simply print a statement indicating that the current 
evolution converges to a structure generated from an earlier evolutionary sequence, 
which is retrieved from the hash table. After that skip the remaining steps.  

- If an equivalent genome representation string has not yet been encountered, then 
output the evolutionary history of the current derivative genome together with the 
rearrangement pattern and the rearrangement evolution that produced the current 
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pattern. After that store the current genomic representation into the genome string 
hash.  

- If the desired depth is not reached, then simulate all possible events starting from the 
current rearranged genome. Otherwise backtrack to the next genome that needs to 
be simulated.  

The code for simulating rearrangements can be found at 
https://github.com/cancerit/SimSvGenomes.  

Interpretation and analysis of rearrangement patterns 

This section describes the methods used in statistical analysis of rearrangement patterns.  

Inverted copy number gain patterns 

Stepwise generation of inverted copy number gain events 

We searched for sequences of up to four simple rearrangement events that generate the 
following rearrangement patterns: 

• A+^D+/C-^D- (Loss-InvDup) 
• B-^D-/B+^D+ (Dup-InvDup) 
• B-^C-/C+^D+ (Dup-Trp-Dup) 

In order to find inversions nested within tandem duplications, we searched for either 

• Direct inversions that are nested within tandem duplications; or 
• Rearrangement clusters containing exactly three rearrangements on the same 

chromosome, and have the rearrangement pattern compatible with a direct inversion 
nested within a tandem duplication, i.e. B-^F+/B+^D+/D-^F-. 

In both cases, the tandem duplication part of the rearrangement was required to be at most 
10Mb. This was to avoid situations when large tandem duplication-type intra-chromosomal 
rearrangements are misclassified as tandem duplications and thus are spuriously interpreted 
as direct inversion nesting tandem duplications.  

Relative copy numbers of chromosomes with inverted copy number gain patterns 

The following is done for each sample and each pattern, i.e. inverted copy number gain 
patterns, direct inversion, inter-chromosomal unbalanced translocation and fold-back 
inversion.  

For each chromosome with one or more instances of the pattern under analysis, the copy 
number difference between the chromosome and the average chromosomal copy number of 
the entire genome was computed. After that, the average copy number difference over all 
chromosomes with the respective pattern is stored. If a sample had more than five 
chromosomes with the pattern, then the respective pattern for the sample was not counted. 
This is to avoid bias when most chromosomes have at least one instance of the pattern.  

After the above data is stored, for each rearrangement pattern per sample, we plotted the 
average chromosomal copy number differences compared to the chromosomes without an 
instance of the pattern.  
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Relative copy numbers of chromosomes with footprints of two breakpoints involving two 
rearrangements 

Relative copy numbers for different footprints involving two breakpoints from two 
rearrangements (A+^B+, A+^C- and B-^B+) were computed the same way as for the inverted 
copy number gain patterns described above. 

Finding chains and cycles of templated insertion and balanced breakpoint footprints 

This was implemented in the object-oriented somatic rearrangement handling framework. A 
randomly selected templated insertion footprint is used as the anchor. The lower end 
breakpoint of the footprint is then used to check whether the mate of the lower end is also 
on a templated insertion footprint. If yes, then the other breakpoint of the second templated 
insertion is selected and the “walking” of templated insertions is thus continued.  

If the original templated insertion footprint is reached through this process of footprint 
walking, then the footprint (and all other traversed footprints) lie on a footprint cycle.  

Tandem duplications are technically templated insertion footprint cycles of length 1, but they 
are annotated as tandem duplications.  

If the original templated insertion footprint is not on a templated insertion cycle, then the 
length of the chain starting from the lower end breakpoint is noted, and the length of the 
chain starting from the higher end breakpoint can be computed in a similar way. Finally, the 
total length can be summed up.  

Chains and cycles of balanced breakpoint footprints are computed in an analogous manner.  

Signatures of somatic rearrangements 

Event and footprint types included in the analysis 

The size of tandem duplications is distributed over several clusters especially in cohorts with 
high rates of tandem duplications (Supplementary Figure 22). We therefore divided tandem 
duplications into four classes based on size, with size thresholds chosen somewhat arbitrarily 
at 5.5´104bp, 2´106bp and 107bp.  
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Supplementary Figure 22: Tandem duplication size histograms from three cohorts. Size distribution of tandem 
duplications from different tumour types (breast cancer, ovarian cancer and prostate cancer respectively). 
Vertical lines are at 4.75, 6.25 and 7.  

Similarly, there was clear clustering of deletions by size in cohorts with high rates of deletions 
(Supplementary Figure 23). We therefore divided deletions into three different size classes 
separated by thresholds of 104bp and 3´106bp. 

 
Supplementary Figure 23: Deletion size histograms from three cohorts. Size distribution of tandem 
duplications from different tumour types (breast cancer, oesophageal cancer and ovarian cancer respectively). 
Vertical lines are at 4 and 6.5.  

For both deletions and tandem duplications, those located entirely within a fragile site were 
classified as fragile site deletions and tandem duplications and not split by size.  

With the similar reasoning, templated insertions (Supplementary Figure 24) and balanced 
breakpoints (Supplementary Figure 25) were divided into three groups using cutoffs of 103 bp 
and 105 bp for templated insertions and 102 bp and 105 bp for balanced breakpoints. 
Templated insertions and balanced breakpoints were further categorized by whether they 
were present in a chain or in a cycle.  

 

 
Supplementary Figure 24: Templated insertion size distributions. Size distribution of templated insertions of 
different classes (cycles of templated insertions containing one template; chains of templated insertions 
containing 2 templates; and cycles of templated insertions containing two templates respectively). 
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Supplementary Figure 25: Balanced breakpoint size distributions. Histogram of distances between the two 
ends in balanced chromoplexy chains (length 1 and 2 respectively). 

Finally, direct inversion and inverted gain-loss footprints appeared to fall into two groups of 
sizes (Supplementary Figure 26). Based on this, these two footprint types were separated by 
size using threshold 105bp.  

 

 
Supplementary Figure 26: Size distribution of direct inversions and Loss-InvDup SV clusters. Histogram of sizes 
of the inserted fragments in balanced inversions and Loss-InvDup 2-jumps respectively. 

In addition to the aforementioned event or footprint types, we included all footprints with 
five or fewer breakpoints, if the footprints had a total incidence of at least 50 instances in the 
entire PCAWG cohort, with the following further adjustments. 

- Footprints corresponding to simple unbalanced breakpoints were considered 
separately from footprints corresponding to unbalanced breakpoints of an SV that 
was part of a more complex SV cluster. 

- Inversion-type SVs that were not clustered with any other SVs were divided into 
different categories by size. Inversion SVs with a distance ≤50kb were classified as 
fold-back inversions and other inversion SVs were classified as intra-chromosomal 
inversion SVs. 

- Reciprocal balanced translocation (i.e. chromoplexy cycle of two footprints) 
breakpoints and unreciprocal balanced translocation (i.e. chromoplexy chain of one 
footprint) breakpoints were put into separate classes from other chromoplexy chains 
and cycles.  

Nonnegative matrix factorisation of SV event counts 

We ran nonnegative matrix factorisation (NMF) using the R package ‘NMF’. We used Kullback-
Leibler distance as the cost function, which converges towards the maximum Poisson 
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likelihood6, which is a natural choice for nonnegative count data. Since we are modelling SV 
event counts with a Poisson generative process, we can naturally derive a Poisson likelihood 
for our fit, which allowed us to use Akaike information criterion for model selection.  

Library of genome properties 

We divided the hg19 human reference genome (autosomes and chromosome X) into 
3,036,315 pixels of 1kb, and calculated a suite of metrics per-pixel to summarise a variety of 
genome properties with potential relevance to the distribution of rearrangements 
(Supplementary Table 3). Properties from ROADMAP were matched as closely as possible to 
the tissue of origin for PCAWG cancer samples (Supplementary Table 4). All other genome 
properties were held fixed across all tissues.  

 
Supplementary Table 3: Library of genome properties. Each property is listed in the left column, how it is 
quantified in the third column, where the data was accessed from in the fourth column and the reference 
(where applicable) in the final column. 

Property Note Metric for 1kb pixel Source Reference 

Centromere 
 log10 (Mb distance 

+1) 

UCSC GB 
hg19 gap 
track 

doi:10.1093/nar/g
kt1168 Telomere 

GC content  Proportion of GC 
bases in pixel 

Hg19 
FASTA  

Sequence 
complexity 

Custom metric inspired 
by DUST, high values 
indicate low sequence 
complexity.  

Sum of squares of 
trinuc. motif counts 
in pixel, divided by 
square of non-N 
pixel width 

Hg19 
FASTA  

H3K9me3 

Raw data from 
ROADMAP are the p-
value signal tracks from 
ChromImpute 
(doi:10.1038/nbt.3157) 

 

Average imputed 
value in pixel, 
matched for cell 
type.   

ROADMA
P 

doi:10.1038/natur
e14248 

H3K36me3 

H4K20me1 

H3K79me2 

H3K4me1 

H3K27ac 

DNase 

H3K9ac 

H3K4me3 

H3K4me2 

H2A.Z 

H3K27me3 
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RNA expression Imputed logRPKM track 
from RNA-seq data  

Average imputed 
value in pixel, 
matched for cell 
type.   

ROADMA
P 

doi:10.1038/natur
e14248 

DNA 
methylation 

Imputed fractional 
methylation track from 
DNAMethylSBS data 

Average imputed 
value in pixel, 
matched for cell 
type.   

ROADMA
P 

doi:10.1038/natur
e14248 

Replication time 

Cell lines: NHEK (normal 
skin, ectoderm), 
GM12878 (normal 
blood, mesoderm), 
IMR90 (normal lung, 
endoderm) 

Wavelet-smoothed 
signal value 
averaged across 
three cell lines. High 
values are early 
replicating.  

ENCODE 
/ 
Universit
y of 
Washingt
on Repli-
Seq 

doi:10.1038/natur
e11247 

doi:10.1073/pnas.
0912402107 

Recombination 
rate 

2011-01_phaseII_B37 
version 

Value at nearest 
point. 

HAPMAP 
phase II 

doi:10.1038/natur
e06258 

Genes Protein-coding genes 

Density in 1Mb 
windows, sliding 
every 1kb to centre 
on the pixel  

GENCOD
E v19 

doi:10.1101/gr.135
350.111 

Lamina 
associated 
domains 

Tig3ET normal human 
embryonic lung 
fibroblasts 

Density in 1Mb 
windows, sliding 
every 1kb to centre 
on the pixel 

Supp 
Data 
from 
Guelen 
et al, 
lifted 
over to 
hg19 

doi:10.1038/natur
e06947 

CpG islands  log10 (kb distance +1) 
UCSC GB 
cpgisland
s track 

doi:10.1093/nar/g
kt1168 

Direct repeats 

repeats of 10—300bp 
repeated directly one or 
more times 0—10bp 
away 

log10 (kb distance 
+1),  

non-B DB 
v2 

doi:10.1093/nar/g
ks955 

G-quadruplex 
motif 

Subset of non-B DB v2 
definition – chose 
motifs with four runs of 
three Gs, with 1bp 
between each run 

log10 (kb distance +1) 
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Cruciform 
inverted repeats 

repeats of 6 or more bp 
repeated inversely up 
to 4bp away 

Density in 3kb 
windows, sliding 
every 1kb to centre 
on the pixel 

Triplex mirror 
repeats 

repeats of 10 or more 
bp with 90% of one 
strand made of 
pyrimidines and 
repeated as a mirror up 
to 8bp away 

log10 (kb distance +1) 

Short tandem 
repeats 

repeats of 1—9bp 
repeated perfectly 
three or more times 
with no bases between 

Density in 3kb 
windows, sliding 
every 1kb to centre 
on the pixel 

Z-DNA motifs 

alternating purine-
pyrimidine tracts of 10 
or more bp, excluding 
AT/TA dinucleotide 
repeats 

log10(kb distance +1) 

ALU repeats  

log10 (kb distance +1) 

Repeatm
asker 
2014013
1  

http://www.repeat
masker.org 

MIR repeats  

L1 repeats  

L2 repeats  

LTR repeats  

DNA repeats DNA transposons 

Simple repeats Microsatellites 

TAD boundaries IMR90 cell line log10 (kb distance +1) 

Supp 
Data 
Dixon et 
al, lift 
over to 
hg19 

doi:10.1038/natur
e11082 

Nucleosome 
occupancy 

Cell line K562, MNase 
experiment 

Raw value per base 
rather than per 1kb 
pixel (only 
exception) 

ENCODE doi:10.1038/natur
e11247 
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Supplementary Table 4: ROADMAP cell lines averaged over to estimate a match to the cancer sample tissue 
of origin. The tissue of origin is shown in the left column, and the relevant cell lines in the right column. 

Tissue EIDs of Roadmap cell lines 

Biliary E028,E065,E076,E079,E094,E096,E098,E109,E126,E127 

Bladder E028,E065,E076,E079,E094,E096,E098,E109,E126,E127 

BoneSoftTissue E025,E107,E108,E129 

Breast E027,E028,E119 

Cervix E117 

CNS E067,E068,E069,E070,E071,E072,E073,E074 

ColonRectum E075,E076,E102,E103 

Esophagus E079 

HeadNeck E079 

Kidney E086 

Liver E066 

Lung E088,E096,E128 

Lymphoid E032,E034 

Myeloid E029,E030 

Ovary E097 

Pancreas E087,E098 

Prostate E028,E065,E076,E079,E094,E096,E098,E109,E126,E127 

Skin E059,E061,E126,E127 

Stomach E094,E110,E111 

Thyroid E080 

Uterus E028,E065,E076,E079,E094,E096,E098,E109,E126,E127 

 

Callable genome space 

To estimate the ‘callable’ subset of the hg19 reference genome (regions in which variants are 
able to be detected), we considered a random collection of 200 normal (not cancer) sample 
BAM files from the ICGC PCAWG project. We ran the GATK v3.3-0 CallableLoci tool with 
options maxFractionOfReadsWithLowMAPQ=0.25, maxDepth=1000, and otherwise default 
settings. Summarising the results across these 200 normal samples, we defined the callable 
genome space to be positions callable in >=40% of samples (>=20% on chrY), such that the 
length of non-callable regions must be at least 100bp, and the length of callable regions must 
be at least 300bp. The resulting callable genome covered 95.3% of non-N bases in hg19 
(2.76Gb).  
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Genome property association testing for SV event classes 

To test for association between SV event classes and the library of genome properties 
recorded in Supplementary Table 3, the genome property metrics were compared between 
real SV positions (randomly choosing one side of each breakpoint junction to reduce 
dependence between observations) and 1 million uniform random positions from the callable 
genome space. To compare the tissue-specific ROADMAP properties, each random position 
was assigned a random tissue type, drawing from the observed tissue type distribution in the 
SV call set. Note that the distance-type metrics were flipped to a negative scale so that 
positions close to the feature of interest scored higher than positions far away, and thus 
higher values correspond to signal enrichment.  

For each genome property and each event class, the real observations were pooled amongst 
the random ones, then rank transformed and normalised on a scale from 0 to 1. Under the 
null hypothesis of no event-vs-property association, the ranks of the real observations would 
follow a uniform distribution. We tested this in each case with a Kolmogorov-Smirnov test 
then applied a Benjamini-Yekutieli correction for false discovery rate across the entire suite 
of tests and set the threshold for significance reporting at 0.01.  

Defining the major fragile sites in the PCAWG dataset 

We considered 109 literature-defined common fragile sites (ldCFS) defined in the 
Supplementary Materials from Bignell et al7 and Le Tallec et al8, lifting over to hg19 co-
ordinates and using UCSC Genome Browser to find co-ordinates of cytogenic bands where 
necessary. Then we identified the longest protein-coding transcript overlapping each ldCFS 
(pctxCFS) and, pooling all samples in the cohort, calculated the observed deletion breakpoint 
density inside each ldCFS and pctxCFS, accounting for the number of bases considered 
‘callable’ (see above). Given that more than 99% of 2Mb genomic bins outside the ldCFS had 
a deletion density <1e-4, we chose a fragile-site defining threshold of deletion density >1e-4 
and absolute deletion breakpoint count >100. These criteria identified 17 fragile pctxCFS, and 
1 fragile ldCFS with no significantly fragile pctxCFS.  

For the significantly fragile ldCFS with a significantly fragile pctxCFS inside, when the pctxCFS 
was removed from the ldCFS they all ceased to meet the criteria of deletion density >1e-4 
and deletion count >100. Thus, fragile site definition is taken to be the pctxCFS in these cases. 
The one fragile ldCFS without an explanatory transcript is the FRAXB/ HDHD1;STS locus. We 
defined the 18 major fragile sites in the PCAWG dataset as: a) the 17 significantly fragile 
protein-coding transcripts - rounding outwards either side to the nearest 100kb, and b) 
manual definition for FRAXB guided by the local deletion distribution.  

 
Supplementary Table 5: Major fragile sites defined for the PCAWG dataset, in hg19 co-ordinates. Locations 
(chromosome and co-ordinates) of major fragile sites, the genes containing the fragile site, and the name of 
the fragile site. CFS, common fragile site. 

chrom start end width gene name CFS name 

chr1 71800000 72800000 1000001 NEGR1 FRA1L 

chr1 245800000 246800000 1000001 SMYD3 FRA1I 

chr2 140900000 143000000 2100001 LRP1B FRA2F 
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chr2 205300000 206600000 1300001 PARD3B FRA2I 

chr3 59600000 61300000 1700001 FHIT FRA3B 

chr3 115400000 117800000 2400001 LSAMP FRA3L 

chr3 174100000 175600000 1500001 NAALADL2 FRA3O 

chr4 90900000 92600000 1700001 CCSER1 FRA4F 

chr5 58200000 59900000 1700001 PDE4D FRA5H 

chr6 161700000 163200000 1500001 PARK2 FRA6E 

chr7 69000000 70400000 1400001 AUTS2 FRA7J 

chr7 110200000 111300000 1100001 IMMP2L FRA7K 

chr10 52700000 54200000 1500001 PRKG1 FRA10G;FRA10C 

chr16 78000000 79300000 1300001 WWOX FRA16D 

chr20 13900000 16100000 2200001 MACROD2 FRA20B 

chrX 6500000 8000000 1500001 HDHD1;STS FRAXB 

chrX 31000000 33500000 2500001 DMD FRAXC 

chrX 95800000 97000000 1200001 DIAPH2 FRAXL 

 

HDP method for SV signature discovery 

As input into the NMF method, the per-sample SV burdens were tallied by footprint type. The 
Hierarchical Dirichlet Process is a nonparametric Bayesian model that can perform mutational 
signature discovery across a tree of DP nodes organised to reflect sample groupings, and 
automatically learns the optimal number of signatures. Using hdp version 0.1.1 (an R package 
we developed applying HDP to signature analysis, available at 
https://github.com/nicolaroberts/hdp), we initialised a HDP structure with one common 
grandparent node, a parent node for each cancer histology type, and a child node for each 
cancer sample. Concentration parameters were shared between the children of each parent 
node, and were all drawn from gamma priors with hyperparameters at 1. We ran seven 
separate MCMC posterior sampling chains with 10,000 burn-in iterations and collected 250 
posterior samples off each chain at intervals of 100. Results were pooled and summarised as 
signatures using the post-processing functions available in 
https://github.com/nicolaroberts/hdp.   
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Supplementary Results 

Rearrangement clustering and interpretation statistics 

After all filtering, the final datasets consisted of 274,515 SV calls. These were clustered into 
130,438 SV clusters and 278,745 SV breakpoint footprints. Note that every SV has two 
breakpoints, and SVs residing in their own clusters without being clustered with any other SVs 
have two footprints by the convention of our clustering algorithm.  

Out of all SV junctions, 111,273 (41%) formed their own single-SV cluster. Therefore, the 
remaining 163,242 SVs were grouped into multi-SV clusters, forming 19,165 SV clusters and 
60,223 footprints. On average, one multi-SV cluster contains 8.5 SVs and 2.9 footprints.  

A considerable proportion of SVs were classified differently to their naïve interpretation 
(Supplementary Table 6). Roughly one third of deletion and tandem duplication-type SVs 
were classified as another SV event type than a simple deletion or tandem duplication, 
respectively. For inversion and inter-chromosomal translocation-type SVs, only about one in 
ten of the SVs were classified as immediately suggested by their straightforward 
interpretation.  

 
Supplementary Table 6: Raw SV junction counts and their final classification tallies in the PCAWG SV dataset. 
Counts of the common classes of SV junctions and possible subclassifications. Note that patterns in this table 
are counted regardless of footprints; e.g. an SV event was considered a direct inversion regardless of whether 
it was composed of one or two footprints.  

SV junction type Frequency Classified as Frequency Percentage 

Deletion (+-) 80,123 Deletion 54,363 67.8 % 

  Other 25,760 32.2 % 

Tandem duplication (-+) 69,096 Tandem 
duplication 

45,758 66.2 % 

  Other 23,338 33.8 % 

Inversion (++ or --) 63,801 Reciprocal 
inversion 

2,998 4.7 % 

  Simple fold-back 1,791 2.8 % 

  Dup-InvDup and 

Dup-Trp-Dup 

1,324 2.1 % 

  Other 57,688 90.4 % 

Inter-chromosomal 61,495 Simple 
unreciprocal 
translocation 

7,158 11.6 % 

  Balanced 
translocation 

1,232 2.0 % 

  Other 53,105 86.4 % 
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Rearrangement footprints in cancer 

In this section we identify and characterise the most recurrent somatic rearrangement 
patterns in cancer.  

Footprints with single breakpoints 

Footprints with a single breakpoint are the simplest footprints by definition. By our 
classification convention, simple deletions, tandem duplications, unbalanced inversions and 
unbalanced translocations are the only SV event types that have single-breakpoint footprint. 
Due to the simplicity of single breakpoint footprints, they serve well in demonstrating 
mechanistic inferences using statistical analysis of rearrangement patterns.  

A deletion by definition deletes the section between its breakpoints. Thus, the rearrangement 
side CN of a deletion should on average have the same copy number as the respective 
chromosome arm copy number, whereas the non-rearrangement side copy number should 
be below the chromosome arm copy number. In contrast, tandem duplication rearrangement 
side and non-rearrangement side CN should be above and on the level of the overall 
background copy number. These expected patterns can indeed be seen in relative copy 
number analysis (Supplementary Figure 27). An unbalanced translocation retains the 
rearrangement side of the chromosomal arm but loses the non-rearrangement side, which 
maintains a relative CN of 0 on both sides. This pattern can also be seen in relative CN analysis 
(Supplementary Figure 27). 
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Supplementary Figure 27: Relative copy numbers of rearrangement ends of deletions, tandem duplications 
and translocations. The rearrangement side of deletions is on average on the same level as the background 
arm-level copy number, whereas the non-rearrangement side tends to be one copy below the background. 
For tandem duplications, rearrangement side CN is one copy above and non-rearrangement side CN is on the 
same level as the background CN. Unbalanced translocations tend to lead to a partial loss of a chromosomal 
arm. The rearrangement side of the arm is not lost, and thus rearrangement side CN averages the same CN as 
the background CN. Similarly, non-rearrangement side CN causes the loss of the non-rearrangement side of 
the chromosomal arm, and thus the non-rearrangement side CN of a translocation is on average at the same 
level as the respective background arm level. See Supplementary Methods for the definitions of 
rearrangement and non-rearrangement side and arm-level CN.  

 

Footprints of two breakpoints from different rearrangements 

Two breakpoints can be arranged into four different pairs of orientations: +-, -+, ++ and --. 
Deletions and tandem duplications by convention of our classification scheme have two 
single-breakpoint footprints. Footprints of rearrangement end orientations ++ or -- with a 
single SV are fold-back SVs.  

The rest of the two-breakpoint footprints have footprints have each of their footprints 
derived from a different SV. The A+/C- and B-/B+ footprints are consistent with balanced 
breakpoints and templated insertions, respectively. The A+/A+ footprints are unphased, since 
a single rearrangement event cannot create two distinct breakpoints of the same orientation 
without additional breakpoints in between. Note that the balanced breakpoint footprint also 
has two obligatorily unphased breakpoints. The difference is that balanced rearrangements 
are a well-known mechanism for generating ‘A+/C-‘-type footprints.  

When the frequencies of different pairs of orientations are plotted out (only footprints 
involving two different SVs), the enrichment of +- and -+ type footprints is evident 
(Supplementary Figure 28). If the rearrangement breakpoints formed the footprints randomly, 
one would expect a uniform distribution of orientation pairs. The enrichment of ‘+-‘ and ‘-+’-
type footprints suggests that the SV and footprint clustering algorithm is capturing real 
biological SV patterns.  
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Supplementary Figure 28: Frequency of footprints with two rearrangement junctions from distinct SVs. The 
orientation of the two joined ends in the breakpoint junction are shown on the x axis, and counts on the y 
axis. 

 

If the ‘B-/B+’-type footprints really represent templated insertions, they should have an 
increased relative copy number compared to the chromosome arm-level background level. 
Indeed, relative copy number shows that footprints classified as templated insertion has a 
strong tendency to have one or more copies above the background arm-level CN 
(Supplementary Figure 29). In contrast, balanced rearrangement breakpoints tend to have 
the same copy number as the background chromosomal arm (Supplementary Figure 29). 

Another prediction of a templated insertion is that the two breakpoints are phased and 
generated in a single rearrangement event. If this was the case, they should have the same 
rearrangement CN vast majority of the time. Indeed, we found this to be the case, as the 
difference in CN between the low end and high end of B-/B+ footprint breakpoints is clearly 
unimodal and centred at 0 (Supplementary Figure 30).  

Crucially, the relative CN of unbalanced translocation breakpoints are centred at around 0 
(Supplementary Figure 27), meaning that unbalanced translocations, as expected, tend to 
have the same copy number as the background arm-level CN. This is clearly in contrast to the 
relative CN of the breakpoints that are part of B-/B+ footprints, as they most commonly have 
one copy above the background (Supplementary Figures 29, 31). The enrichment of ‘B-/B+’-
type footprints (Supplementary Figure 28) together with the tendency for copy number gain 
in these footprints strongly support the argument that the B-/B+ footprints we have found 
are not truly reflect a replicated, templated insertions as opposed to unrelated unbalanced 
translocations being merely inadvertently grouped together as footprints.  
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Supplementary Figure 29: Relative copy number of templated insertion and balanced breakpoint-type 
footprints. For B-/B+ type footprints, only those with a distance of ≥1kb between the breakpoints were 
considered, as copy number estimates become very noisy for segments smaller than that.  

 
Supplementary Figure 30: CN difference between low end and high end SVs of templated insertion (B-/B+) 
footprints. The x axis shows the difference in copy number between the two ends of a templated insertion. 
Note that the difference is typically 0, as would be expected if these are templates inserted into the genome. 
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Supplementary Figure 31: Distance between the demarcating breakpoints in B-/B+ footprints vs relative CN 
of the segment. At smaller segment sizes the CN estimates are very noisy, but as the segment size increases, 
one can see that the rearrangement CN tends most commonly to be one copy above, and almost never below, 
the background arm-level CN.  

Balanced rearrangements and chromoplexy 

We found a total of 6,902 balanced breakpoint footprints in the cohort. Of these, 907 (13%) 
had an overlap in the supporting reads of the two balanced breakpoints due to breakpoint 
homology, and thus had a breakpoint pattern consistent with templated insertions 
(Supplementary Figure 14). By considering the exact positions of the supporting reads’ soft-
clips, we were able to correctly classify these 907 footprints as balanced breakpoints as 
opposed to templated insertions.  

Balanced breakpoints are typically attributed to balanced translocations. However, we found 
that a substantial fraction of balanced breakpoints in isolation, not as part of balanced 
translocations (Supplementary Figures 32-33). The two types of balanced breakpoints also do 
not always correlate. For example, whereas Breast-DCIS has a large number of non-reciprocal 
balanced breakpoints (Supplementary Figure 33), it has very few actual balanced 
translocations (Supplementary Figure 34).  

As reported previously9, we found long chains or cycles of balanced breakpoints in prostate 
cancer but also in other cancer types. In addition, thyroid cancer appears to have particularly 
long cycles of balanced breakpoints (Supplementary Figure 32), suggesting that chromoplexy 
might occur relatively frequently in this cancer type.  

In the entire PCAWG cohort, 1,622 out of 4,793 unreciprocal balanced breakpoint footprints 
are simple unreciprocal balanced breakpoints. 623 unreciprocal balanced breakpoint 
footprints are part of SV clusters containing ≥50 SVs.  
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Supplementary Figure 32: Per-patient balanced breakpoint cycle lengths. Stacked bar chart showing the 
average number of balanced breakpoint cycles of different lengths per patient, split by tumour type (y axis). 
The right-hand side panel is a zoomed-in version of the left-hand side panel.  
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Supplementary Figure 33: Per-patient balanced breakpoint chain lengths. Stacked bar chart showing the 
average number of balanced breakpoint chains of different lengths per patient, split by tumour type (y axis). 
The right-hand side panel is a zoomed-in version of the left-hand side panel.  

 

The distance between balanced breakpoints at balanced breakpoint footprints peaks at 
around 10-100bp, in particular in singleton unreciprocal balanced translocations. In certain 
histologies, another smaller peak of balanced breakpoint distances can be seen at around 
100kb, e.g. in prostate cancer, pancreatic adenocarcinoma and oesophageal adenocarcinoma 
(Supplementary Figure 34).  
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Supplementary Figure 34: Distance distributions between balanced breakpoints at balanced breakpoint 
footprints. Shown are SV clusters classified as solo balanced breakpoints comprise of two SVs forming a non-
reciprocal translocation and not clustering with any other SVs. Each point comprises one such event, with 
distance on the x axis, split by tumour type on the y axis. 

 

Templated insertions 

Most templated insertions occur in isolation without being part of a larger templated 
insertion chain or cycle. However, sometimes chaining of templated insertions can reach a 
length of 7 templated insertions (Supplementary Figure 35).  

 

 
Supplementary Figure 35: Distribution of templated insertion chain lengths in each histology. Stacked bar 
chart showing the average number of chains of templated insertions of different lengths per patient, split by 
tumour type (y axis). The right-hand side panel is a zoomed-in version of the left-hand side full distribution.  
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Supplementary Figure 36: Distribution of templated insertion cycle lengths in each histology. Stacked bar 
chart showing the average number of cycles of templated insertions of different lengths per patient, split by 
tumour type (y axis). The right-hand side panel is a zoomed-in version of the left-hand side full distribution.  

 

Most templated insertion cycles are formed of two templated insertion footprints. However, 
longer cycles of templated insertions do occur sometimes: we found a single uterine cancer 
sample with a cycle of seven templated insertions (Supplementary Figure 36). 

Interesting patterns can be gleaned from the distribution of templated insertion chain and 
cycle lengths and size distributions. Firstly, all histologies with substantial amounts of simple 
templated insertions typically also have templated insertion chains and cycles 
(Supplementary Figure 37). The contrary is not true however, as exemplified by the high 
frequency of templated insertion chains but absence of simple insertions or templated 
insertion cycles in bone leiomyoma (Supplementary Figure 37). Since bone leiomyoma has a 
high rate of templated insertions (Supplementary Figure 37), but they are not simple 
insertions (Supplementary Figure 37), the implication is that complex rearrangements in bone 
leiomyoma often get repaired with templated insertions at the repair junctions.  

The sizes of simple insertions are typically one to few hundred base pairs (Supplementary 
Figure 37). Ovarian cancer, breast adenocarcinoma and liver cancer form an exception in that 
simple insertions in these cancers can often reach 10kb (Supplementary Figure 37). 

The size distribution for templated insertions within large SV clusters appear to form two 
clusters, one in the <1kb size range and another peaking around 100kb (Supplementary Figure 
37). Yet more different is the size distribution of templated insertions that form cycles, which 
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in several cancer types (e.g. oesophageal, pancreatic, skin, stomach and uterine cancer) tends 
to fall into the ~100kb cluster more often than the <1kb cluster.  
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Supplementary Figure 37: Size distribution of templated insertions. Shown are simple distal insertions are 
events comprising a simple templated insertion from a distal location. Each point comprises one such event, 
with distance on the x axis, split by tumour type on the y axis. 

 

We found a total of 1,372 instances of cycles of two templated insertions. In addition, we 
found 88 instances two ‘B-/B+’-type footprints linked together as a cycle, but with a copy 
number pattern consistent with an unbalanced translocation followed by an overlapping 
tandem duplication (see Supplementary Methods). Were all ‘B-/B+’-type footprints 
interpreted naively, the unbalanced translocation plus TD pattern, representing about 6% of 
all cycles of two B-/B+ footprints, would have been misclassified.  

Footprints with four breakpoints 

We will now postpone our study of footprints with three breakpoints and focus on footprints 
with four breakpoints. We found a total of 6,646 footprints involving four breakpoints in the 
PCAWG cohort (Supplementary Table 7).  

 
Supplementary Table 7: The 40 most frequent footprints involving four breakpoints in the PCAWG dataset, 
with descriptions on some notable patterns. Note that these footprint counts include both solo footprints 
that for their own SV cluster as well as footprints as part of larger SV clusters. 

Footprint pattern Frequency Description of pattern 

A+^C+/C-^E- 1227 Reciprocal inversion 

B-^D-/B+^D+ 531 Interlocked inverted duplication 

B-/B+/D-/D+ 507 Two templated insertions 

A+/C-/C+/E- 478 Two balanced breakpoints 

A+^D+/C-^D- 472 Inserted inverted duplication 

B-^C-/C+^D+ 349 Duplication – inverted triplication – duplication 

A+/C-/D-/D+ 213 Balanced breakpoint and templated insertion 

B-/C-/C+/D+ 158 Nested templated insertions 

A+^C+/C-/E- 142 Local + distal reciprocal inversion 

A+/B+/D-/D+ 135  

B-^D-/B+/D+ 134 Local + distal inverted duplication 

A+^E-/C-/C+ 123 Templated insertion within a deletion 

A+/C-/C+/D+ 121  

A+^B+/C+^D+ 115 Two unphased fold-back SVs 

A+^D-/B+^D+ 105  

B-/B+/C+/D+ 95  

A+^D+/B+^D- 88  

B-^D+/B+^C+ 88  



 64 

A+^C+/B+^E- 86  

B-^D+/C-/C+ 81 Templated insertion within a TD 

A+^C+/C-^D+ 79  

B-^C+/C-/D+ 72  

B-^C-/C+/D+ 69 Local + distal dup-inv trp-dup 

B-^D+/B+/D- 67 Balanced breakpoint within TD 

B-/B+^D-/D+ 65 Deletion within templated insertion 

B-^C+/B+^D+ 64  

A+^B+/D-^E- 54  

A+/C-^D-/D+ 41  

A+/C-/C+^D+ 38  

A+/B+/C+/E- 37  

B-^C-/D-/D+ 37  
A+^E-/B+^C+ 34  

B-/C-^C+/D+ 34  

A+^D+/C-/D- 33 Local + distal insertion of inverted duplication 
A+^D+/B+^C+ 32  
A+^D+/C-^C+ 31  

A+^B+/D-/D+ 30  
A+/B+^D-/D+ 23  
A+^D-/C-/D+ 23  
A+^C+/B+^D+ 22  

 

Local events involving two inversion-type SVs 

The most frequent of these events are all phased in a sense that a derivative chromosome 
can walk through all the SV junctions of the footprint. We thus term such events “local two-
jumps”. The most frequent footprint involving four breakpoints is that of the reciprocal 
inversion. Interestingly, there three other footprint types also involving two inversion-type 
SVs but consistent with copy number gain were frequently observed in the cohort 
(Supplementary Figure 38).  

Note that for the B-^C-/C+^D+ pattern to be classified as a duplication – inverted triplication 
– duplication event, we required the two involved SVs to have the same copy number. When 
one of the inversion SVs has twice the copy number as the other one, the B-^C-/C+^D+ pattern 
was classified as a footprint with two rounds of fold-back SVs derived from BFB. See 
Supplementary Methods for details.  
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Supplementary Figure 38: (A) SV clusters consisting of a single footprint involving two inversion-type SVs. The 
numbers in parenthesis indicate the number of each respective event in the PCAWG cohort. (B) Three possible 
trajectories that a polymerase can take to generate the inverted duplication pattern. Numbers under each 
schematic indicate the copy number of each section. Note that the frequencies here differ from those in 
Supplementary Table 7, because here only footprints constituting an entire SV cluster are counted.   

 

The relative copy number of these footprint types are shown in Supplementary Figure 39. As 
expected, the rearrangement breakpoints in reciprocal inversions are largely at the same CN 
level as the background arm-level CN. In local inverted duplications, there can be seen an 
enrichment of breakpoints with an increased copy number compared with the background. 
In the “interlocked inverted duplication” and “duplication – inverted triplication – 
duplication”, majority of the breakpoints are at a higher copy than the background 
chromosomal arm. In interlocked inverted duplication events, the prevailing relative CN is a 
single copy above the background, whereas in duplication – inverted triplication – duplication, 
the average relative CN is at around 1.5 copies. Therefore, in each of the patterns except the 
reciprocal inversion, relative CN analysis shows that these “local two-jump” patterns involve 
CN gain.  
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Supplementary Figure 39: Relative CNs of rearrangement breakpoints involved in local footprints comprising 
two inversion-type SVs. Frequency distribution of the copy number differences of local inversion-type 
footprints. The copy number difference between the copy number inside the rearrangement versus the 
background copy number of the chromosome arm is shown on the x axis. 

 

What rearrangement event or sequence or rearrangement events could generate these 
inverted two-jumps with copy number gain? Different models could explain these patterns. 
The inversions could be  

1. fold-back inversions derived from BFBs, 
2. generated through a stepwise process through simpler “classical” rearrangement 

mechanisms,  
3. in theory also arise from an extrachromosomal ring.  

In the following sections, we examine the above hypotheses one by one and show that they 
cannot satisfactorily explain the CN patterns and frequency of these inverted CN-gain 
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footprints. As an example, we focus on the interlocked inverted duplication pattern, but 
similar reasoning can be applied to the other inverted two-jump CN-gain patterns.  

The inverted copy number gain patterns are poorly explained by BFB-associated fold-back 
rearrangement events 

In theory the footprints presented above could be explained as two fold-back type inversion 
rearrangements being clustered together. However, several lines of evidence presented 
below argue against this alternative model as the mechanism behind the CN-gain inverted 
two-jumps.  

If the two inversion-type rearrangements were in phase, i.e. in the same derivative 
chromosome, then given their proximity it is highly likely that majority of such footprints 
arose through two cycles of a single BFB cycle event. If this was the case, the copy number 
segment immediately upstream of the footprint should have a different copy number 
compared to the segment immediately downstream of the footprint1. This requirement is 
mandatory if one of the two inversion-type rearrangements were the initiating fold-back 
rearrangement of a BFB cycle. As expected, two rounds of BFBs often involve a CN change 
from the segment upstream to the segment downstream of the footprint (Supplementary 
Figure 40). In contrast, almost none of the inverted CN-gain two-jump footprints involve a 
copy number change across the footprint. This suggests that the footprints classified as local 
inverted duplication, interlocked inverted duplication and dup – inv trp – dup cannot be 
explained by clusters of two FBs caused by BFBs.  
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Supplementary Figure 40: Difference in copy number between segments directly upstream and directly 
downstream of the footprints. Only footprints with both upstream and downstream segments >100kb are 
considered. Footprints of two successive fold-backs (top-left) with a copy number difference of around 0 
copies might be misclassified, patterns, for example when a breakpoint is missing within the footprint. 

 

Alternatively, it is possible that in the CN-gain two-jump footprints the two inversion-type SVs 
are generated through independent BFBs, which got erroneously clustered together into a 
footprint given their proximity by chance. Two have two arguments for why this is unlikely to 
be the case. First, of the footprints involving two inversion SVs of opposite orientations, the 
three most frequent cases (B-^D-/B+^D+, A+^D+/C-^D- and B-^C-/C+^D+) can in theory be 
phased. If these footprints were merely of unphased and erroneously clustered inversion SVs, 
one would expect their frequency to the equal to the obligate unphased patterns involving 
two inversion-type SVs (A+^B+/C+^D+ and A+^B+/D-^E-). However, this is not the case: while 
we found hundreds of the former three patterns (531, 472 and 349, respectively), there were 
an order of magnitude lower number (115 and 54, respectively) of the latter unphased 
patterns (Supplementary Table 7).  
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Secondly, if two inversions in a footprint were unphased, then by definition the two inversions 
must be on different derivative chromosomes. In addition, since a fold-back inversion 
connects two homologous chromosomes, two unphased fold-back inversions of opposite 
orientation must involve two chromosomal copies on either side. However, we did find 
several examples of the above described footprints on a single copy background 
(Supplementary Note 4). In these cases, the only possible explanation is that the two 
inversion-type rearrangements are in the same derivative chromosome.  

The inverted copy number gain patterns are unlikely to be generated through a stepwise 
application of independent simple rearrangement events 

Two key aspects of the local inversion footprints are presented above. First, they involve two 
inversion rearrangements of opposite orientations, and secondly, they involve copy number 
gain with respect to the background chromosomal CN. Could such footprints be generated 
through a sequence of simple events. After all, reciprocal inversions can generate inverted 
SVs, and tandem duplications could generate CN gains.  

In order to assess this model, we computed a list of all possible derivative chromosome 
patterns obtainable through a sequence of up to five simple SVs (such as reciprocal inversions, 
deletions and tandem duplications; see Supplementary Methods for details) that could 
generate the inverted CN-gain two-jump footprint patterns. It turns out that this pattern can 
indeed by generated through sequential application of classical rearrangement events 
(Supplementary Note 4). The insertion of inverted duplication and interlocked inverted 
duplication patterns can be generated through tandem duplication followed by an interstitial 
inversion and a deletion (Supplementary Note 4), with the difference in the position of the 
deletion breakpoints relative to the earlier SV breakpoints. The duplication – inverted 
triplication – duplication pattern can be generated in a similar fashion, except it requires two 
initiating tandem duplications to bring the maximum CN to 3 copies first.  

Interestingly, each of these parsimonious sequences generating the inverted copy number 
gain patterns involve an intermediate state with a direct inversion nested within a tandem 
duplication. Therefore, if the observed inserted copy number gain patterns indeed arose 
through such sequences of simpler events, then there must have been an intermediate state 
involving a direct inversion nested within a tandem duplication. Furthermore, since deletions 
overall cover only a small fraction of a given tumour genome, only few direct inversions within 
tandem duplications are expected to be afflicted by a subsequent deletion, whereas most of 
them are expected to remain in this intermediate state. In other words, if the inverted copy 
number gain patterns were indeed generated through these sequences of simple events, then 
one would expect to observe a large number of these intermediate states involving direct 
inversions nested within a tandem duplication.  

In contrast to this prediction, across tumours in all tissue types we only observed 33 instances 
of direct inversions nested within TDs, which is an order of magnitude lower than the 
supposed downstream product manifesting as inverted CN gain patterns. The high frequency 
of the inverted CN gain patterns relative to the supposed intermediate structures that led to 
them contradicts the hypothesis that they are generated through these sequences of simpler 
events.  
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The local copy number gain patterns are poorly explained by other well characterised 
rearrangement processes 

Any two given SVs can be trivially generated through two independent unbalanced 
translocations. In the case of local inverted two-jump patterns, both unbalanced 
translocations would create fold-back-type inversions between two homologous copies of the 
same chromosome (as opposed to sister chromatids as is the case in conventional BFB). Such 
an SV can result in one of the two possible configurations. In the first configuration the 
derivative chromosome with the initial translocations has no centromeres, in which case its 
copy number should be wildly unstable. In the second the derivative chromosome would have 
two centromeres and essentially be the same structure as after a single cycle of BFB. In the 
latter case, we can use the same reasoning as for fold-back SVs above to justify why it is 
unlikely that such a fold-back SV-mediated dicentric structure is unlikely to be behind the local 
inverted two-jump patterns.  

In theory the two inversion-type rearrangement could also form an extra-chromosomal ring 
of DNA. However, we believe this to be unlikely, as this ring will vast majority of the time have 
no centromeres and thus have a very unstable copy number, which is not something we 
observe, as in most cases the inverted copy number gain patterns have a clear integer copy 
number gain of 1-2 copies (Supplementary Figures 4, 39).  

All local inversion copy number gain patterns can be explained as polymerase template switch 
events 

We noticed that all the local inverted two-jump copy number gain patterns as well as the 
reciprocal inversion pattern can be explained by the same process. In this process, the 
polymerase makes two local template switches to the opposite strand. The first switch causes 
the polymerase to replicate DNA “backwards” and the second restores the original 
orientation of the polymerase. Depending on the relative positions of the template switch 
origin and target positions, the four different inversion patterns can be generated 
(Supplementary Figure 38). As none of the simpler rearrangement mechanisms can 
satisfactorily explain these observed patterns, we hypothesize that the inverted two-jump 
patterns, in particular those involving copy number gain are generated through this 
polymerase switching process.  

Footprints with four breakpoints from different SVs 

Among the most frequent footprint patterns involving four breakpoints were those involving 
four breakpoints from four different SVs. These footprints were consistent with different 
combinations of templated insertions and balanced breakpoints (Supplementary Figure 41). 
The relative CN pattern of the footprint with two templated insertions resembles that of a 
single templated insertion (Supplementary Figure 29), whereas the footprint involving two 
balanced breakpoints has the same relative CN pattern as a single balanced breakpoint. The 
footprint with a balanced breakpoint and a templated insertion has a combined relative copy 
number pattern of balanced breakpoints and templated insertions, and the nested templated 
insertion pattern has a relative CN similar to the duplication – inverted triplication – 
duplication footprint (Supplementary Figure 39).  
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Supplementary Figure 41: Footprint involving four breakpoints from different SVs. The numbers in 
parentheses indicate the frequency of each respective footprint in the PCAWG cohort. 

 

Footprints with breakpoints from three SVs 

The third class of footprints with four breakpoints are those involving three SVs. There were 
many composite patterns, which could be explained as a simple deletion or tandem 
duplication, two of the most frequent SV types, being closely located with other 
independently occurring SV.  

Interestingly, several patterns among the most frequent footprints involving three SVs closely 
resembled the local inverted two-jump patterns described above (Supplementary Figure 42). 
Each of them had one local inversion-type SV, and their relative CNs are very similar to their 
local two-jump counterparts (Supplementary Figure 38) as well as balanced breakpoints and 
templated insertions (Supplementary Figure 29), showing that these three-SV patterns are 
also copy number gain patterns with respect to the overall background chromosomal arm. 
Two of the patterns, A+^C+/C-/E- and A+^D+/C-/D- can only be unphased balanced 
breakpoints, one of which involving a local templated insertion. The other two patterns, B-
^D-/B+/D+ and B-^C-/C+/D+, can be phased into a single structure resembling two linked and 
closely positioned templated insertions (Supplementary Figure 42).  
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Supplementary Figure 42: Notable footprints involving four breakpoints from three different SVs. In A+^C+/C-
/E- and A+^D+/C-/D-, the breakpoints cannot all be phased into a single derivative structure, but form obligate 
balanced breakpoints with a local templated insertion. In B-^D-/B+/D+ and B-^C-/C+/D+, the involved 
breakpoints can both be phased (shown in the “Phased breakpoints” column) and unphased (not shown).  

 

In addition to relative copy number, these footprints involving a local inversion and two 
breakpoints shared other characteristics with balanced breakpoints and templated insertions. 
A substantial fraction of these footprints was connected to either balanced breakpoints or 
templated insertions through one or both of the outreaching breakpoints (Supplementary 
Figures 43-44). These rates exceeded the expected rates substantially. A randomly chosen SV 
in the PCAWG cohort has a chance of 4.1% and 6.6% of being involved in a balanced 
breakpoint or a templated insertion in at least one of its breakpoints, respectively 
(Supplementary Table 8). In contrast, the outreaching four-breakpoint footprints we are 
examining have a 19-46% chance of being connected to a balanced breakpoint or a templated 
insertion through their two outreaching breakpoints (with the exception of B-^C-/C+/D+ 
connected to balanced breakpoints). This rate is an order of magnitude higher than those for 
a randomly chosen SV, but in the same range as the rates for SVs with one of their ends 
already involved in a balanced breakpoint or a templated insertion (Supplementary Table 8). 
In other words, the outreaching footprints with four breakpoints are equally likely to be 
associated with balanced breakpoints and templated insertions as balanced breakpoints and 
templated insertions themselves, and this rate is an order of magnitude higher than the 
chance of a randomly chosen SV being associated with a balanced breakpoint or a templated 
insertion.  
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Supplementary Figure 43: Footprint types linked to the outreaching breakpoints of the A+^C+/C-/E- and 
A+^D+/C-/D- footprints. Numbers indicate each pattern’s frequency in the PCAWG cohort and percentages 
are out of the total number of each respective footprint type.  
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Supplementary Figure 44: Footprint types linked to the outreaching breakpoints of the B-^D-/B+/D+ and B-
^C-/C+/D+ footprints. Numbers indicate each pattern’s frequency in the PCAWG cohort and percentages are 
out of the total number of each respective footprint type. 
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Supplementary Table 8: Rates of being connected to balanced breakpoints of templated insertions for SVs 
and several footprints of interest. The description of the connection type is shown in the leftmost column, 
and its frequency in the dataset is shown in the rightmost column. 

SV or footprint connection type Symbol Proportion 

At least one breakpoint linked to a balanced breakpoint a 4.1 % 

Both breakpoints are a balanced b 0.9 % 

Second breakpoint is balanced given the first 
breakpoint is at balanced 

b / a 22.6 % 

At least one breakpoint linked to a templated insertion c 6.6 % 

Both breakpoints are at a templated insertion d 1.6 % 

Second breakpoint is on a templated insertion given 
the first breakpoint is on a templated insertion  

d / c 24.3 % 

One breakpoint is balanced, the other breakpoint is on 
a templated insertion 

e 1.1 % 

Second breakpoint is balanced given the first 
breakpoint is on a templated insertion 

e / c 16.6 % 

Second breakpoint is on a templated insertion given 
the first breakpoint is balanced 

e / a 26.7 % 

A+^C+/C-/E- connected to a balanced breakpoint  34 % 

A+^C+/C-/E- connected to a templated insertion  19 % 

A+^D+/C-/D- connected to a balanced breakpoint  36 % 

A+^D+/C-/D- connected to a templated insertion  33 % 

B-^D-/B+/D+ connected to a balanced breakpoint  20 % 

B-^D-/B+/D+ connected to a templated insertion  22 % 

B-^C-/C+/D+ connected to a balanced breakpoint  3 % 

B-^C-/C+/D+ connected to a templated insertion  46 % 

 

On the basis of the fact that these outreaching four-breakpoint footprints have both relative 
copy number patterns and rates of association with balanced breakpoints and templated 
insertions similar to balanced breakpoints and templated insertions, we suggest that these 
footprints are de facto balanced breakpoints and templated insertions, but with a local 
inverted polymerase switch event analogous to those in the local inverted two-jump events. 
If this model were true, the occurrence of these somewhat complex outreaching four-
breakpoint footprints can be explained elegantly with simple events (Supplementary Table 9).  
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Supplementary Table 9: Simple rearrangement events explaining the connection of certain outreaching four-
breakpoint footprints to balanced breakpoints or templated insertions. The footprint is shown on the left, and 
its interpretation on the right. 

Footprint of 
interest 

Connected to distal 
footprint 

Rearrangement event 

A+^C+/C-/E-, 
A+^D+/C-/D- 

Balanced breakpoint Reciprocal translocation, in which one of the 
balanced breakpoints has a local inverted 
polymerase switch event.  

A+^C+/C-/E-, 
A+^D+/C-/D- 

Templated insertion Insertion of a templated sequence. Insertion point 
has an additional local inverted polymerase 
switch event.  

B-^D-/B+/D+, 
B-^C-/C+/D+ 

Balanced breakpoint Insertion of a templated sequence. There is an 
inverted polymerase switch event at the template 
donor locus.  

B-^D-/B+/D+, 
B-^C-/C+/D+ 

Templated insertion A chain or cycle of templated insertions, in which 
one of the template donor loci has an inverted 
polymerase switch event.  

 

Footprints with three breakpoints 

We now return to the study or footprints with three breakpoints. In the PCAWG cohort we 
found a total of 5,148 three-breakpoint footprints, which are tabulated by frequency and 
schematically illustrated in Supplementary Figure 45. 

Many patterns are “composite events” involving unrelated SVs that got inadvertently 
clustered together due to their chance proximity. These footprints include an unbalanced 
translocation within a deleted region (A+^D-/B+) and a balanced translocation breakpoint 
near an unbalanced translocation (A+/B+/D-). However, the most commonly observed three-
breakpoint footprints have interesting commonalities.  

The two most common three-breakpoint footprints involve a templated insertion near an 
unbalanced translocation. In pattern ‘A+/C-/C+’, the inserted template is immediately after 
the breakpoint, while in ‘B-/B+/C+’ it is upstream of the unbalanced translocation.  
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Footprint pattern string
(frequency) Footprint pattern Type Relative CNs
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Supplementary Figure 45: Patterns and frequencies of footprints involving three breakpoints. Numbers below 
rearrangement pattern codes indicate the sample size (each SV pattern’s frequency in the PCAWG cohort). 
For the box-and-whisker plots on the right, the box shows the median level of relative copy number (CN) as a 
thick black line, with the box’s range denoting the interquartile range. The whiskers show the range of data 
or 1.5x the interquartile range, whichever is lesser. Outliers are shown as points outside the whiskers. 

 

Interestingly, about 15% of the footprints involving an adjacent templated insertion (A+/C-
/C+ and B-/B+/C+) are linked to these two footprint types themselves (Supplementary Tables 
10-11). Strikingly, around 5% of these two footprint types are linked to the footprint of the 
same type in a reciprocal manner, such that the templated insertion on each footprint is 
linked to the outreaching breakpoint of the other footprint (Supplementary Figure 46). These 
frequencies are much higher than expected. Over the entire cohort, only 1.7% and 1.0% of 
the SVs in the cohort are connected to an A+/C-/C+ and a B-/B+/C+ footprint, respectively. 
Otherwise the outreaching breakpoint of these two footprint types frequently reach out to 
unbalanced translocations, templated insertions, and balanced breakpoints (Supplementary 
Tables 10-11).  

 
Supplementary Table 10: The target footprint of the outreaching SV in the four most frequently encountered 
footprints with three breakpoints. Every column corresponds to one of the four footprints of interest and the 
outreaching breakpoint of each footprint is highlighted in bold.  

 
 

Reached footprint A+/C-/C+ B-/B+/C+ B-^C-/C+ A+^C+/C-
A+/C-/C+ 14.84% 5.83% 1.37% 1.32%
B-/B+/C+ 3.78% 9.80% 1.22% 0.56%
B-^C-/C+ 0.36% 0.13% 0.91% 1.32%
A+^C+/C- 0.15% 0.26% 1.06% 3.77%

Deletion 3.20% 2.12% 3.65% 12.81%
Tandem duplication 1.53% 7.42% 2.89% 5.08%

Inversion 2.69% 2.78% 6.53% 9.23%
Transloc 8.51% 10.60% 51.22% 38.04%

Templated insertion 10.91% 26.49% 10.49% 7.16%
Balanced breakpoint 7.71% 3.97% 2.28% 4.14%

other 46.33% 30.60% 18.39% 16.57%

Outreaching footprint and breakpoint
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Supplementary Table 11: Fold enrichments of the outreaching partner frequencies listed in Supplementary 
Table 10, normalised against the background rates of rearrangement breakpoint footprint types.  

 
 

 

 
Supplementary Figure 46: Patterns and frequencies of three footprint-to-footprint partner types of interest. 
The copy number changes are shown as straight black lines, and the arcs denote breakpoint junctions 
explaining the copy number changes. The percentages are out of the total frequency of each respective 
footprint.  

 

The third and fourth most frequent footprints with three breakpoints, B-^C-/C+ and A+^C+/C-, 
involve an inverted SV before an outreaching breakpoint. These footprints have a similar 
relative CN profile compared to local inverted two-jump patterns (Supplementary Figures 39, 
45). For these two footprints, 80% of the footprints that the outreaching breakpoint links to 
are relatively simple. Roughly 60% of these target footprints are consistent with single-SV 

Reached footprint A+/C-/C+ B-/B+/C+ B-^C-/C+ A+^C+/C-
A+/C-/C+ 16.8 6.6 1.5 1.5
B-/B+/C+ 7.3 18.9 2.3 1.1
B-^C-/C+ 0.9 0.3 2.4 3.4
A+^C+/C- 0.5 0.9 3.5 12.3

Deletion 0.2 0.1 0.2 0.6
Tandem duplication 0.1 0.4 0.2 0.3

Inversion 3.4 3.5 8.1 11.5
Transloc 3.3 4.1 19.6 14.6

Templated insertion 2.7 6.5 2.6 1.7
Balanced breakpoint 3.1 1.6 0.9 1.6

other 0.9 0.6 0.4 0.3

Outreaching footprint and breakpoint

Two footprints of
A+/C-/C+

80/1619 (4.9%)

Two footprints of
B-/B+/C+

42/950 (4.4%)

A+^C+/C-:
del-type

68/561 (12%)
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rearrangements (deletion, tandem duplication, intra-chromosomal inversion or translocation. 
Another 10% of the target footprints are templated insertions or balanced breakpoints. Given 
the resemblance of these “inversion then outreaching breakpoint” footprints to local inverted 
two-jumps (Supplementary Figure 42), we suggest that these footprints in fact are analogous 
to local inverted two-jumps. Both types of footprints involve an initial inverted template 
switch, after which the second template switch event determines the resulting footprint 
pattern. If the second template switch is also a local inverted event, a local inverted two-jump 
pattern is produced (Supplementary Figure 38). If the second template switch event is 
outreaching, the one of the B-^C-/C+ or A+^C+/C- patterns (Supplementary Figure 45) are 
produced. 

Analysis of footprint A+/C-/C+ 

Footprint A+/C-/C+ warrants extra attention. It is the most frequent footprint type with three 
breakpoints, and involves three breakpoints from three different SVs. On face value, the 
footprint is consistent with a single unbalanced translocation (A+) upstream of a templated 
insertion (C-/C+). On the other hand, one could also argue that this pattern was generated 
from a chromothripsis-like shattering event, where the fragment demarcated by the C-/C+ 
breakpoints is simply a shattered genomic fragment. We first took on to explore these two 
models.  

Several features argue that the segment demarcated by C-/C+ is typically generated by a 
templated insertion. Firstly, across the cohort, the rate of A+/C-/C+ footprints correlates 
strongly with the rate of templated insertion footprints (Supplementary Figure 47, Spearman 
correlation coefficient = 0.52, 𝑃 < 2.2 × 10@�). Secondly, the size distribution of the segment 
demarcated by the C-/C+ breakpoints has two noticeable peaks at ~100bp and ~10kb, 
followed by the segment size tailing off (Supplementary Figure 47). This size distribution 
pattern is remarkably similar to that observed in simple templated insertion footprints 
(Supplementary Figure 37). Strikingly, the joint distribution between the two distances in the 
footprint is remarkably similar to the equivalent distances in the A+^C+/C- footprint 
(Supplementary Figure 47). The latter footprint has a local inverted templated insertion linked 
to a translocation. This observation is consistent with the fact that the A+/C-/C+ footprint is 
analogous to the A+^C+/C- footprint with the difference that the templated insertion comes 
from a distant site as opposed to locally.  

Lastly, we do not believe that most A+/C-/C+ footprints are caused by inadvertent clustering 
of a templated insertion together with an unrelated, independent SV breakpoint. The partner 
footprints of the outreaching A+ breakpoint have a very particular distribution, being fivefold 
depleted in SVs consistent with a simple deletion, but enriched with other structure involving 
templated insertions, balanced breakpoints and translocations (Supplementary Table 11). If 
the clustering was accidental, we would expect the outreaching breakpoint to have a 
footprint distribution closer to the respective background rates of footprints.  

A significant fraction of the breakpoints between the A+ and C- breakpoints are ≤100bp 
(Supplementary Figure 47) and are essential balanced breakpoints. This raises the interesting 
possibility that in many A+/C-/C+ footprints, the strand invasion that generates a templated 
insertion also causes an adjacent unbalanced translocation.  
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Supplementary Figure 47: (A) Correlation between the per-sample rate of A+/C-/C+ footprints and templated 
insertion footprints. For the box-and-whisker plots, the box shows the median number of templated 
insertions as a thick black line, with the box’s range denoting the interquartile range. The whiskers show the 
range of data or 1.5x the interquartile range, whichever is lesser. Outliers are shown as points outside the 
whiskers. The x axis is distributed by the number of A+/C-/C+ footprints, with the sample size shown in 
brackets under the label denoting the number of patients in that category. (B) Distance distribution between 
the C- and C+ breakpoints in A+/C-/C+. (C) Distance distributions between the three breakpoints in A+/C-/C+ 
and A+^C+/C- footprints.  

 

Five breakpoint and six breakpoint footprints 

The more complex the footprint patterns become, the more distinct patterns there can 
combinatorically be, and the less recurrent they become. We found a total of 1,937 footprints 
with five breakpoints, of which only one footprint type with five breakpoints has a recurrence 
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above 100 in the dataset (Supplementary Figure 48). All these footprints appear to be a single 
translocation breakpoint clustered with adjacent templated insertions or balanced 
breakpoints.  

 
Supplementary Figure 48: Footprint patterns and relative CNs of footprints with breakpoints. In the relative 
CN plot, boxes one to five correspond to breakpoints one to five in the schematic representations in the 
middle. For the box-and-whisker plots, the box shows the relative copy numbers as a thick black line, with the 
box’s range denoting the interquartile range. The whiskers show the range of data or 1.5x the interquartile 
range, whichever is lesser. Outliers are shown as points outside the whiskers. The sample size shown in 
brackets under each category on the left represents the numbers of instances of each footprint in the dataset. 

 

Given the high frequency of local two-jump events, we also wondered whether there would 
be local three-jump events, i.e. footprints formed entirely of three local SVs. We found a total 
of 1,037 such footprints, of which only one had a recurrence above 50 in the cohort 
(Supplementary Figure 49). Both the footprint patterns and the relative copy number analysis 
suggest that three of the patterns are essentially local reciprocal inversions but with an 
additional template switch event. Two patterns are consistent with the interlocked inverted 
duplication pattern, except that there are three local inserted templates strung together. In 
addition, one footprint seems to be three rounds of BFB, as suggested by phasable fold-back-
type SVs and significantly increased relative copy number (Supplementary Figure 49). 
Therefore, footprints involving more than two local SVs appear to merely be more complex 
versions of footprints involving two local SVs.  
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Supplementary Figure 49: Six most frequent footprints involving three local SVs. For the box-and-whisker 
plots, the box shows the relative copy numbers as a thick black line, with the box’s range denoting the 
interquartile range. The whiskers show the range of data or 1.5x the interquartile range, whichever is lesser. 
Outliers are shown as points outside the whiskers. The sample size shown in brackets under each category on 
the left represents the numbers of instances of each footprint in the dataset. 

 

Analysis of somatic rearrangement mutational signatures 

Above we have described a collection of rearrangement patterns with up to six footprints. 
While some of the footprints at self-contained rearrangement events (e.g. reciprocal 
inversions), others have outreaching SVs. Therefore, a rearrangement event itself may involve 
many different footprint types. Classifying rearrangement clusters on the basis of its 
constituent footprint therefore gets complex combinatorically. To simplify the SV signatures 
analysis, we broke SV clusters down into footprints and decomposed the footprints using 
NMF instead. There is some biological rationale to this approach too. 

We fitted a nonnegative matrix factorization model on the matrix of per-sample footprint 
counts. We used Kullback-Leibler divergence as the cost function for fitting the model, which 
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corresponds to assuming that each footprint count is generated from a Poisson distribution6. 
As an additional benefit, when the footprint counts are modelled as generated from Poisson, 
each fitted NMF model will provide an overall model likelihood for the observed data, which 
makes many classical model selection approaches possible.  

We fitted NMF on the footprint counts data with ranks ranging from 1 to 20. The optimal 
model based on AIC was given by nine signatures, although the AICs for eight and ten 
signatures were very similar (Supplementary Figure 50). Below we discuss the footprints 
generated by each signature.  

 
Supplementary Figure 50: AIC for NMF models with ranks ranging from 1 to 20. The x axis shows the number 
of different signatures fitted and the y axis shows the estimated Akaike Information Criterion (AIC) of the 
resulting NMF fit. 

 

The small deletions signature generates all deletions 10kb, as well as small reciprocal 
inversions and small local inverted duplications (Supplementary Figure 38). This signature 
seems to be consistent with a template switch ahead of replication blockage. Most of the 
time the template switch event is codirectional, leaving a small deletion. Occasionally, the 
template switch is in inverted orientation, leading to a balanced inversion or a local inverted 
duplication. After the first local inversion junction, the second template switch can also be 
outreaching. When this happens, a Trans + Ins (A+^C+/C-) is generated. This signature 
resembles the recently described small deletions signature, which was reported to be 
associated with BRCA1 and BRCA2 inactivation10.  
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Another deletion signature generates all medium-size deletions (10kb-3Mb), more than half 
of reciprocal inversions >100kb and 25% of local inverted duplications >100kb. This signature 
is consistent with the same model as the previous signature, except that the initial template 
switch happens at a further distance from the initial breakpoint. This resembles a previously 
described signature associated with large deletions10. 
The third signature generates all small tandem duplications <55kb, as well as templated 
insertions that are part of templated insertion cycles. Interestingly, this signature is not the 
main generator of templated insertions that are in chains. This signature also generates a 
small number of interlocked inverted duplication events. The possible molecular model for 
this signature, as opposed to the deletion signatures, is that a template switch goes behind 
the initial replication blockage. When the template switch results in the polymerase 
proceeding in inverted orientation, an interlocked inverted duplication is generated. It is 
surprising that this signature does not appear to generate many duplication - inv triplication 
– duplication events. If the first breakpoint is outreaching and produces a templated insertion 
before returning to the original template, then a templated insertion cycle is produced, with 
the actual tandem duplication manifesting as a templated insertion. Finally, if the first 
template switch is backwards in inverted orientation but the second breakpoint is 
outreaching, then a translocation with a fold-back (B-^C-/C+) is produced. This signature is 
reminiscent of the small tandem duplication signature described recently10. 

The fourth signature is very similar to the previous one, generating most medium-size TDs 
(55kb-10Mb), as well as templated insertion cycles where the templates are larger than 100kb. 
Again, templated insertions as part of chains does not appear to be generated by this 
signature. Around half of all interlocked inverted duplication events are generated by this 
signature, as well as some duplication - inverted triplication – duplication events. A composite 
footprint of a tandem duplication partially overlapping with a templated insertion 
(B−^C+/C−/D+) is also most frequently generated by this signature.  

Templated insertions as part of templated insertion chains are most commonly generated by 
the fifth signature. Interestingly, virtually none of the templated insertion footprints as part 
of cycles are generated by this signature. In contrast, this signature suggests frequent 
polymerase template switches during DNA repair. Balanced breakpoints are also often 
generated by this signature, as they form the genomic insertion points for chains of templated 
insertions. Curiously, this signature also yields unbalanced translocations and fold-back 
inversion-type SVs as part of more complex SV clusters (as opposed to in isolation). The two 
most recurrent three-breakpoint footprints, are generated by this signature, supporting the 
model that these footprints indeed involve templated insertions as opposed to 
chromothripsis-type genomic shattering (Supplementary Figure 45). As suggested above, 
certain four breakpoint footprints can be generated by templated insertions forming a local 
inverted template switch event (Supplementary Figure 42). Indeed, we find these footprints 
(B−^C−/C+/D+ and B−^D−/D+/D+) generated by this signature. Finally, this signature is 
associated with many footprints that are consistent with multiple templated insertions or a 
templated insertion clustered with other breakpoints.  

The sixth signature involves long distance intra-chromosomal fusions, such as large deletion, 
TD and unbalanced inversion-type SVs. More than half of large local inverted duplication and 
duplication - inverted triplication - duplication events are generated by this signature. The 
local inversion then outreaching SV-type footprints (Supplementary Figure 45) are mostly 
generated by this signature, as are fold-back inversions presumably derived from BFB. Most 
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complex footprints generated by this signature appear to be composite events of a fold-back 
inversion clustered together with a simple SV such as a deletion or a tandem duplication.  

Interestingly, signature six has many features of long-distance intra-chromosomal fusions, but 
simple nonreciprocal inter-chromosomal translocations are generated from a separate, highly 
specific signature that barely generates any other SV types.  

The eight signature generates all balanced rearrangements, whether in balanced breakpoint 
cycles or in chains, with the exception of the balanced breakpoints generated as part of 
templated insertions (signature five). This includes all conventional reciprocal translocations, 
as well as more complex chains or cycles of balanced breakpoints (i.e. chromoplexy). The 
balanced breakpoint pattern with a local inverted templated insertion (Supplementary Figure 
42) was also mostly generated by this signature, as expected. 

The final signature is the fragile site signature. This signature generates all deletions located 
within fragile sites, as well as about 75% of tandem duplications within fragile sites. It is 
interesting that apart from deletions, fragile sites are also prone to generating tandem 
duplications. 

Footprint connectivity analysis 

That footprints are not generated independently but are linked together through SVs allows 
the study of how they are connected to form complex rearrangements. We collected all 
footprints used in the signatures analysis that contain at least one outreaching SV as well as 
all complex footprints. For each resulting “anchor” footprint type, we computed the rate at 
which they were connected to different “target” footprint types through an outreaching SV 
(Supplementary Tables 12-13).  

Several interesting observations can be made from this analysis. The footprints can be divided 
roughly into five different clusters. The first cluster of footprints four-fold increased rate to 
be connected to simple unbalanced translocation breakpoints (Supplementary Table 13). 
These footprints include the unbalanced translocation breakpoint itself, composite 
erroneously clustered footprints (unbalanced breakpoint clustered with a deletion, tandem 
duplication or a local inversion) as well as footprints consistent with a local template switch 
followed by an outreaching unbalanced breakpoint (B-^C-/C+ and A+^C+/C-). This group of 
footprints are rarely linked to complex footprints of six of more breakpoints.  

The second group of footprints are preferentially linked to balanced breakpoints or templated 
insertions. These footprints include the balanced breakpoint and templated insertion 
breakpoints themselves. The footprints within this group seem fall into a gradient of 
connectivity from balanced breakpoints to templated insertions. The balanced breakpoint, 
balanced breakpoint with a local switch (A+^C+/C-/E-) and two local balanced breakpoint 
(A+,E-/C-/C+) are often linked to balanced breakpoints. On the other hand, inserted templates 
with a local inverted template switch (B-^D-/B+/D+ and B-^C-/C+/D+, see Supplementary 
Figure 42) have a stronger tendency to be linked to templated insertions, similar with 
composite footprints of templated insertions clustered with tandem duplications (B-^C+/C-
/D+ and B-^D+/C-/C+). This group of balanced breakpoint and templated insertion-linked 
footprints have a slightly elevated albeit still low rate of being connected to complex 
footprints with ≥6 breakpoints.  
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The third group of footprints comprises complex footprints of 1-5 breakpoints. In this group, 
none of the footprints with a total frequency of ≥50 in the PCAWG cohort (i.e. those not 
labelled “complex (1-5)”) had a local SV, but all breakpoints were outreaching, with their 
partner footprints in another footprint. This is contrary to the first and second group of 
footprints, most of which consist of at least one local SV. This group is less connected to simple 
unbalanced translocations than expected and clearly more connected to footprints in the 
same group than by chance (Supplementary Table 13).  

The fourth group of footprints are complex ones involving six or more breakpoints. 
Interestingly, there is a correlation even within this group, and these complex footprints tend 
to be connected to other complex footprints of similar number of breakpoints. For example, 
footprints with more than 50 breakpoints are connected to footprints with 6-10 breakpoints 
only 40% of the expected rate, but have a 3.9-fold rate of being connected to another 
footprint of >50 footprints.  

There is a curious tendency for like to like footprint connectivity. For example, although only 
six percent of B-^C+/C-/D+ footprints are linked to a footprint of the same type through an 
SV, this represents a 76-fold enrichment due to the rarity of B-^C+/C-/D+ footprints. Similarly, 
footprint types A+/C-/C+/D+/F-, A+/B+/D-/D+ and A+/B+/C+ are 45, 38 and 25-fold more 
likely to be connected to like footprint types than by chance (Supplementary Table 13).  
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Supplementary Table 12: A connectivity map of footprints. Every row corresponds to an anchor footprint type, 
and every column indicates the percentage that the anchor footprint is linked to a target footprint. Entries in 
each cell are percentage values. For example, 65% of the outreaching SVs in B-^C-/C+ type footprints are 
linked to single breakpoints, but only 2% of single breakpoints are linked to B-^C-/C+ type footprints. The set 
of footprint types considered for anchors and targets was the same, but only target footprints that are linked 
to at >5% frequency by at least one anchor footprint are shown. Footprints labelled as “complex” are further 
divided based on the number of clustered breakpoints, indicated in parentheses.  
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A+/B+/D- 12 0 9 7 4 0 8 6 1 6 0 2 0 1 1 15 15 5 3 1
B-/B+/C+ 14 0 4 19 2 0 5 8 0 2 1 1 0 0 0 11 8 9 5 4
A+/B+/C+ 13 0 2 14 3 0 8 3 6 4 2 0 1 1 0 13 8 8 7 4
A+/C-/D-/D+ 9 0 10 11 2 0 4 2 0 1 0 3 1 1 0 15 12 10 4 3
A+/C-/C+/E- 6 0 13 2 1 0 5 1 0 1 0 10 1 3 1 17 15 10 5 2
B-/B+/D-/D+ 5 0 5 12 2 0 5 2 0 0 1 2 0 1 0 13 14 13 8 7
B-/B+/C+/D+ 12 1 2 12 5 0 3 3 0 1 0 2 1 1 0 15 11 7 8 9
A+/C-/C+/D+ 7 0 5 6 2 0 4 2 0 1 0 2 1 1 0 17 19 10 7 3
B-/C-/C+/D+ 6 0 4 23 2 0 1 5 1 0 5 0 0 1 0 11 9 12 7 6
A+/B+/D-/D+ 7 0 2 7 2 0 5 1 0 0 0 4 7 3 0 12 13 15 8 4
A+/B+/D-/D+/F- 4 0 10 3 1 0 6 1 0 5 0 2 0 4 2 15 20 12 9 6
A+/C-/C+/E-/E+ 5 0 5 4 1 0 7 0 0 0 0 3 1 6 0 14 20 17 8 4
A+/C-/C+/D+/F- 5 0 8 3 1 0 5 1 0 3 0 6 0 1 7 16 18 14 6 0
B-/B+/D-/D+/E+ 6 0 3 9 4 0 4 5 0 0 0 0 1 1 0 10 17 16 13 4
B-/B+/C+/E-/E+ 7 0 5 6 1 0 2 2 0 0 2 2 0 2 0 10 15 17 15 8
complex (1-5) 11 0 7 9 2 0 4 2 0 1 0 2 0 2 0 17 15 10 6 3
complex (6-10) 4 0 3 4 1 0 3 1 0 1 0 1 0 2 0 11 26 22 11 6
complex (11-20) 3 0 2 2 1 0 1 1 0 0 0 1 0 1 0 6 18 30 21 10
complex (20-50) 2 0 1 2 0 0 1 0 0 0 0 0 0 1 0 3 8 20 35 24
complex (51+) 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 4 10 25 52
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Supplementary Table 13: The observed/expected connectivity rates, i.e. the rates in Supplementary Table 12 
normalised by the relative frequency of each target footprint type.  
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A+^D-/B+ 4.8 0.0 0.6 0.7 1.2 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.3 0.1 0.0 0.1
B-^C+/B+ 5.0 1.5 0.1 0.7 2.3 0.0 0.4 0.4 0.0 0.0 1.6 0.6 1.9 0.0 0.0 0.6 0.2 0.1 0.0 0.1
B-^C-/C+ 4.7 2.6 0.3 0.9 0.8 2.0 0.6 0.9 0.9 0.9 0.5 0.2 0.6 0.0 0.0 0.9 0.2 0.2 0.1 0.0
A+^C+/C- 4.9 3.7 0.6 0.7 0.8 0.0 0.5 0.4 0.0 1.4 0.6 0.6 0.7 0.2 0.0 0.6 0.2 0.2 0.1 0.1
single bkpt 4.5 4.7 0.5 0.6 1.0 1.0 0.9 1.0 1.0 0.9 0.5 0.4 0.5 0.4 0.4 0.8 0.3 0.2 0.1 0.1
A+/B+^C+ 4.4 15.8 0.3 0.4 2.3 0.0 0.8 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.4 0.3 0.0 0.0
A+^B+/C+ 4.7 8.6 1.1 0.5 1.9 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 1.2 0.1 0.2 0.0 0.1
A+^B+/D- 4.7 2.7 0.5 0.4 1.2 0.0 0.0 0.7 0.0 0.0 0.0 1.0 0.0 1.1 0.0 1.6 0.2 0.1 0.1 0.0
A+^E-/C-/C+ 0.5 1.2 6.6 0.8 1.6 0.0 0.2 0.0 5.2 2.4 0.0 3.6 0.0 0.9 5.2 1.6 0.4 0.2 0.1 0.0
A+^C+/C-/E- 1.1 0.0 4.3 1.5 1.6 0.0 2.0 1.3 0.0 2.1 0.0 2.7 1.4 0.4 0.0 1.4 0.2 0.2 0.0 0.0
bal bkpt 0.5 0.3 5.4 2.2 1.5 1.0 0.9 0.5 0.2 1.2 0.5 1.8 0.3 0.6 1.2 1.0 0.4 0.2 0.1 0.0
B-^D+/B+/D- 0.4 0.0 4.1 3.5 0.5 0.0 0.3 1.6 0.0 0.0 2.4 0.0 0.0 0.0 0.0 1.6 0.4 0.1 0.1 0.1
B-^D-/B+/D+ 1.2 3.4 2.7 1.8 2.7 0.0 1.2 0.3 0.0 0.0 0.0 0.9 0.0 0.0 0.0 1.4 0.5 0.5 0.2 0.2
A+/B+ 1.0 0.8 1.5 2.5 6.2 0.9 1.7 1.3 1.8 2.7 1.1 0.4 1.5 0.7 0.4 1.3 0.5 0.4 0.2 0.1
B-/B+^D-/D+ 1.1 0.0 2.1 2.7 3.9 0.0 1.3 0.6 9.9 0.0 0.0 0.0 0.0 0.9 0.0 1.6 0.4 0.5 0.1 0.0
B-^C-/C+/D+ 1.5 6.8 0.2 4.3 2.0 0.0 0.7 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.2 0.5 0.4 0.1
templated ins 0.6 0.9 2.2 4.0 2.5 4.2 0.8 1.8 1.4 0.7 2.3 0.2 0.6 0.3 0.3 0.9 0.4 0.2 0.2 0.2
B-^C+/C-/D+ 1.0 2.0 1.0 4.2 0.9 74.9 0.9 3.5 4.4 0.0 2.2 0.0 0.0 0.0 0.0 1.2 0.1 0.3 0.1 0.1
B-^D+/C-/C+ 0.5 0.0 0.6 5.5 0.4 17.3 0.8 6.5 0.0 0.0 8.2 0.0 0.0 0.0 0.0 0.8 0.1 0.3 0.0 0.1
A+/C-/C+ 0.9 0.6 0.9 0.8 1.7 0.9 5.5 2.2 3.0 3.1 0.4 2.1 2.1 2.8 2.1 1.6 1.2 0.6 0.3 0.2
A+/B+/D- 0.9 0.9 1.2 0.7 2.7 0.0 3.1 4.1 7.0 11.0 0.0 2.3 0.8 0.7 5.0 1.9 1.4 0.4 0.2 0.1
B-/B+/C+ 1.0 0.9 0.5 1.8 1.3 3.5 2.2 5.4 2.1 4.1 3.7 0.6 0.7 0.3 0.9 1.4 0.8 0.6 0.3 0.3
A+/B+/C+ 1.0 0.9 0.2 1.4 1.8 4.4 3.0 2.1 37.1 7.0 5.2 0.0 2.5 1.1 0.0 1.7 0.7 0.6 0.5 0.3
A+/C-/D-/D+ 0.7 0.4 1.3 1.1 1.4 0.0 1.5 1.6 0.0 2.7 0.8 2.6 4.3 1.4 0.0 1.9 1.1 0.7 0.3 0.2
A+/C-/C+/E- 0.4 0.2 1.8 0.2 0.4 0.0 2.1 0.6 0.0 2.3 0.4 10.2 4.6 3.5 6.3 2.2 1.4 0.8 0.3 0.1
B-/B+/D-/D+ 0.4 0.3 0.6 1.2 1.0 2.0 1.8 1.6 0.6 0.5 2.7 2.2 1.7 1.6 1.9 1.7 1.3 0.9 0.5 0.5
B-/B+/C+/D+ 0.9 1.6 0.3 1.2 3.2 0.0 1.3 2.0 0.0 2.2 0.9 2.4 4.2 0.9 1.7 1.9 1.0 0.5 0.5 0.6
A+/C-/C+/D+ 0.5 0.6 0.7 0.6 1.5 0.0 1.7 1.6 0.0 1.3 0.0 2.6 4.1 0.7 2.7 2.2 1.7 0.7 0.5 0.2
B-/C-/C+/D+ 0.5 0.5 0.5 2.3 1.1 2.2 0.4 3.7 5.2 0.0 15.8 0.4 0.0 0.9 0.0 1.4 0.8 0.9 0.5 0.5
A+/B+/D-/D+ 0.5 0.6 0.3 0.6 1.5 0.0 2.1 0.7 2.5 0.8 0.0 4.6 25.0 3.1 0.0 1.6 1.3 1.1 0.6 0.3
A+/B+/D-/D+/F- 0.3 0.0 1.3 0.3 0.6 0.0 2.3 0.6 0.0 8.7 0.0 1.9 0.0 4.0 11.1 1.9 1.9 0.9 0.7 0.4
A+/C-/C+/E-/E+ 0.4 0.0 0.6 0.3 0.7 0.0 2.8 0.3 1.1 0.7 0.9 3.5 3.1 5.9 1.1 1.8 1.9 1.2 0.5 0.3
A+/C-/C+/D+/F- 0.4 0.0 1.2 0.3 0.4 0.0 2.1 0.9 0.0 5.0 0.0 6.3 0.0 1.1 44.4 2.1 1.6 1.0 0.4 0.0
B-/B+/D-/D+/E+ 0.4 0.6 0.4 0.9 2.2 0.0 1.5 3.5 2.6 0.4 1.3 0.2 3.1 0.7 0.0 1.3 1.5 1.2 0.9 0.3
B-/B+/C+/E-/E+ 0.5 0.6 0.6 0.6 0.6 0.0 0.8 1.0 2.6 0.4 5.9 1.8 0.8 2.3 0.0 1.3 1.4 1.3 1.1 0.6
complex (1-5) 0.8 0.9 1.0 0.9 1.3 1.2 1.6 1.4 1.7 1.9 1.4 2.2 1.6 1.8 2.1 2.1 1.4 0.8 0.4 0.2
complex (6-10) 0.3 0.2 0.4 0.4 0.5 0.1 1.2 0.8 0.7 1.4 0.8 1.4 1.3 1.9 1.6 1.4 2.4 1.6 0.8 0.4
complex (11-20) 0.2 0.2 0.2 0.2 0.4 0.3 0.6 0.6 0.6 0.4 0.9 0.8 1.1 1.2 1.0 0.8 1.6 2.2 1.5 0.8
complex (20-50) 0.1 0.1 0.1 0.2 0.2 0.1 0.3 0.3 0.5 0.2 0.5 0.3 0.6 0.5 0.4 0.4 0.8 1.5 2.5 1.8
complex (51) 0.1 0.0 0.0 0.2 0.1 0.1 0.2 0.3 0.3 0.1 0.5 0.1 0.3 0.3 0.0 0.2 0.4 0.8 1.8 3.9
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