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Outdoor PM2.5 concentration 
and rate of change in COVID‑19 
infection in provincial capital cities 
in China
Yang Han1,5, Jacqueline C. K. Lam1,5*, Victor O. K. Li1,5*, Jon Crowcroft2, Jinqi Fu3, 
Jocelyn Downey1, Illana Gozes4, Qi Zhang1, Shanshan Wang1 & Zafar Gilani1

This study investigates thoroughly whether acute exposure to outdoor PM2.5 concentration, P, 
modifies the rate of change in the daily number of COVID-19 infections (R) across 18 high infection 
provincial capitals in China, including Wuhan. A best-fit multiple linear regression model was 
constructed to model the relationship between P and R, from 1 January to 20 March 2020, after 
accounting for meteorology, net move-in mobility (NM), time trend (T), co-morbidity (CM), and 
the time-lag effects. Regression analysis shows that P (β = 0.4309, p < 0.001) is the most significant 
determinant of R. In addition, T (β = −0.3870, p < 0.001), absolute humidity (AH) (β = 0.2476, p = 0.002), 
P × AH (β = −0.2237, p < 0.001), and NM (β = 0.1383, p = 0.003) are more significant determinants of R, as 
compared to GDP per capita (β = 0.1115, p = 0.015) and CM (Asthma) (β = 0.1273, p = 0.005). A matching 
technique was adopted to demonstrate a possible causal relationship between P and R across 18 
provincial capital cities. A 10 µg/m3 increase in P gives a 1.5% increase in R (p < 0.001). Interaction 
analysis also reveals that P × AH and R are negatively correlated (β = −0.2237, p < 0.001). Given that 
P exacerbates R, we recommend the installation of air purifiers and improved air ventilation to 
reduce the effect of P on R. Given the increasing observation that COVID-19 is airborne, measures 
that reduce P, plus mandatory masking that reduces the risks of COVID-19 associated with viral-
particulate transmission, are strongly recommended. Our study is distinguished by the focus on the 
rate of change instead of the individual cases of COVID-19 when modelling the statistical relationship 
between R and P in China; causal instead of correlation analysis via the matching analysis, while 
taking into account the key confounders, and the individual plus the interaction effects of P and AH on 
R.

COVID-19 was first reported in Wuhan, China in December 2019. Since then, more than 116-million infections 
have been reported, resulting in 2-million deaths globally.

Recent COVID-19 studies have investigated whether demography (D), co-morbidity (CM), meteorology, and 
lockdown have effects on viral infection1–4. Consistent with studies in SARS and MERS, depressed temperatures 
and rising humidity have been found to increase COVID-19 transmission5,6. Furthermore, influenza studies have 
suggested that exposure to PM2.5 (P) with and without interacting with meteorology may increase the risks of 
influenza infection7. In the US and Europe, chronic exposure to P and NO2 are linked to COVID-19 mortality8,9. 
Air pollution is considered to heighten the severity of COVID-19 infection, given that pollutants, such as P, 
may increase the risk of Vitamin-D deficiency and decrease immunity10. Increasingly, evidence suggests that air 
pollution is a significant contributor to COVID-19 infection11–16. Studies undertaken in China have concluded 
that P, NO2, and O3 associate with increased incidence of COVID-19 infections17, with significant interaction 
between air quality index (AQI) and rising temperature identified18. However, these studies have failed to fully 
account for the change in testing capacity and the inconsistency in COVID-19 case definition, as well as the 

OPEN

1Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong 
Kong. 2Department of Computer Science and Technology, The University of Cambridge, Cambridge, UK. 3MRC 
Cancer Unit, Department of Oncology, The University of Cambridge, Cambridge, UK. 4Department of Human 
Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and 
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. 5These authors contributed equally: Yang Han, 
Jacqueline C. K. Lam and Victor O. K. Li. *email: jcklam@eee.hku.hk; vli@eee.hku.hk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-02523-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23206  | https://doi.org/10.1038/s41598-021-02523-5

www.nature.com/scientificreports/

confounding effects of D and CM. A few studies in Italy have explored the correlation relationship between the 
COVID-19 cases and the PM2.5 and PM10 levels without controlling potential confounders, such as mobility19,20. 
A more sophisticated and rigorous study recently conducted in Italy has utilized doubling-time derived from 
a fitted epidemic curve to measure COVID-19 transmission while reducing the noise of the observed data21. 
Without taking into account potential confounders, this study concludes that P alone does not facilitate COVID-
19 transmission within the most affected regions21. However, one UK study has argued for a positive relation-
ship between P and COVID-19 infection, after controlling for confounders, including population density, age, 
sex, diabetes, smoking-status, and cancer22. These indicate potential challenges in assessing acute P exposure 
effects on COVID-19 infection in China, given the existence of noise and irregularities underlying the epidemic 
trends, the lack of control of confounders to P exposure, and the lack of sophisticated models to control these 
data challenges. More rigorous statistical modelling and control methodologies are needed to reduce (1) the 
noise underlying the epidemic trends due to the lack of testing capacity and redefinition of confirmed cases, (2) 
the confounding biases that affect the causal link between P and COVID-19 infection, and (3) the collinearities 
across different meteorology, D, and CM variables.

In this study, we will examine the effect of P on the rate of change in the daily number of COVID-19 con-
firmed infections (R), across 18 high infection provincial capital cities in China, while addressing inadequacies 
in official case reporting due to the lack of testing capacity and inconsistencies in case definition, and taking into 
account confounders, including D, CM, meteorology, net move-in mobility (NM), time lag due to the incubation 
period, trends over time (T), and day-of-the-week (DOW) to reflect the recurrent weekly effect (see Table S5 in 
the Appendix for the definitions on the variables).

Outdoor P is chosen as the focus of our study given the assumption that R may be increased due to the poten-
tial deposition of viral droplets on P23. A recent rigorous study on COVID-19 aerodynamics has ascertained 
that viral aerosol droplets 0.25–1 µm in size can remain suspended in the air24. When such viral droplets are 
combined with suspending particles, P, they can travel greater distances, remain viable in the air for hours, and 
be inhaled deeply into the lungs, thus increasing the potential of airborne viral infection25.

Our study sheds new light on the effect of P in an outdoor environment, the interaction effect between P and 
absolute humidity (AH), and the effect of NM (lockdown), on R (the dependent variable). Our work reinforces 
the observation that COVID-19 droplets are airborne24,26, can suspend in the air and combine with the particu-
lates, promoting infection via the airborne transmission pathway27.

Results
Descriptive statistics and data adjustment.  We collected data, including the number of confirmed 
COVID-19 cases, PM2.5 pollution, meteorology, mobility, demographics, and co-morbidities, in 31 cities in 
China, covering the period from 1 January to 20 March 2020 (see “Data collection and procedure” for more 
details). The spatial distributions of population and COVID-19 infection in these cities are shown in Fig. 1a,b. 
Collected COVID-19 infection data was pre-processed (see “Data pre-processing” for more details). 13 cities 
were removed due to small sample size (i.e., less than 50 confirmed cases in total). The remaining 18 cities 
(including Wuhan) were considered COVID-prone and were kept for further analysis. Due to potential delays 
in case reporting and redefinition of confirmed cases, COVID-19 infection data in 18 high infection provincial 
capital cities were adjusted by a moving average interpolation method and an outlier removal procedure, to 
reduce the short-term fluctuations in the reporting of COVID-19 confirmed cases and to recover the underlying 
epidemic trends (see “Data pre-processing”). Figure 1c,d highlight the trend of COVID-19 infection in China 
before and after data adjustment. Further, the adjusted daily confirmed cases were used to calculate R, a metric 
that measures relative percentage change in COVID-19 infection. R is derived from the difference between the 
number of COVID-19 infections of the current day and of the previous day, divided by the number of COVID-
19 infections in the previous day (see “Data pre-processing”). By using R, even if the number of reported infec-
tions is inaccurate, relative changes in infection should be comparable (assuming consistent margins of error in 
case-reporting), with the adjusted data reflecting the underlying trends of COVID-19 infection. Figure 1e shows 
the adjusted distribution of R in 18 high infection provincial capital cities in China for the statistical analysis.

The sample data selection methodology is as follows: after data pre-processing, the number of data points 
became 412. For the 18 provincial capital cities, any city having more than 50 observations would then be selected. 
After adjusting the infection data, the rate of change in daily COVID-19 infections, R, was calculated, leading 
to a total of 1440 data points (80 days × 18 cities). 426 valid data points were obtained, given that many daily R 
values were unavailable due to (1) the number of infections at Dayt or Dayt-1 were not reported (e.g., all cities 
except Wuhan have started reporting COVID-19 infections from late January 2020) and (2) zero infection was 
reported at Dayt-1 (i.e., zero denominator). The adjusted R demonstrated a less significant Shapiro–Wilk normal-
ity test statistic (W = 0.994, p = 0.096), suggesting that the adjusted R followed a normal distribution. Finally, a 
few outliers were further removed according to the mean and the standard deviation of the R distribution, and 
421 data points were obtained for statistical analysis. Four of the outliers were identified at the later stage of the 
epidemic, when the number of daily confirmed cases became minimal, despite some fluctuations. One outlier 
occurred around the time when the case definition in Wuhan was significantly changed and a sudden increase in 
the case reporting was observed. Therefore, removing these outliers can reduce the noise in the epidemic curve 
and improve the validity of the statistical results. The adjusted R ranged from -0.516 to + 0.432, after adjusting 
the infection data and removing the outliers.

Statistical results.  After accounting for a one-day time-lag variable representing R of the previous day and 
the important confounding factors, including D, CM, meteorology, NM, and T, the best-fit stepwise regression 
model was constructed using data from all 18 high infection provincial capital cities in China. The results of 
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Figure 1.   (a) Distribution of population across all provincial capital cities, (b) distribution of the cumulative 
number of confirmed COVID-19 cases across all provincial capital cities, (c) daily number of COVID-19 
infection across all provincial capital cities, (d) adjusted daily number of COVID-19 infection across 18 high 
infection provincial capital cities, and (e) adjusted daily R in COVID-19 infection across 18 high infection 
provincial capital cities, China, from 1 January 2020 to 20 March 2020. The two maps in (a,b) were created by an 
open source Python library, pyecharts (version number: 1.9.0, URL: https://​pyech​arts.​org/).

https://pyecharts.org/
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the statistically significant independent variables (p < 0.05) that associate with dependent variable R, including 
their standardized coefficients (β), are shown in Table 1 (see “Statistical analysis” for more details). In order to 
illustrate the relationship between P, AH, and R across 18 high infection provincial capital cities in China, the 
univariate regression plots of P and AH are shown in Fig. 2a,b. To further illustrate the relationship between 
P × AH and R in China, AH is categorized by a cut-off point. The cut-off point is defined as the value when the 
partial derivative of the best-fit regression equation with respect to P is equal to zero, given that the variables 
other than P and AH remain unchanged (see Fig. 2c).

As shown in Table 1, P, AH, NM, and T are the significant variables determining R across 18 high infection 
provincial capital cities in China. A higher P is associated with a higher R in China. When only observing the 
effect of P on R, a 10 µg/m3 increase in P is associated with a 1.5% increase in R (Coefficient = 0.0015, p < 0.001; see 
Fig. 2a). Moreover, AH is a significant variable accounting for R in China (Coefficient = 1.751 × 10–2, p = 0.002). 
As shown in Fig. 2b, when only observing the effect of AH on R, a higher AH decreases R. NM and T are also 
significant variables determining R in China. NM has a significant statistical correlation with R, and an increase 
in R is observed along with the increase in NM (Coefficient = 1.470 × 10–2, p = 0.003). T has a significant statisti-
cal correlation with R, and a decrease in R is observed along with the increase in T (Coefficient = −6.599*10–3, 
p < 0.001). Among D variables, GDP per capita is a significant variable that is positively associated with R (Coef-
ficient = 5.545 × 10–7, p = 0.015). Among CM variables, asthma is a significant variable that is positively associated 
with R (Coefficient = 9.024 × 10–4, p = 0.005). The best-fit day-lag for P, AH, and NM is fourteen. Furthermore, 
based on the significant covariates identified in Table 1, the causal effect of P on R is established via matching, 
by addressing the confounding biases. The result is consistent with our main findings. On average, across 18 
high infection provincial capital cities, according to the PM2.5 cut-off value set by China’s National Ambient Air 
Quality Standard28, in the days with a higher P (≥ 75 µg/m3) result in a 12.8% increase in R compared to the days 
with a lower P (< 75 µg/m3), after controlling for the important confounding factors including AH, NM, and T 
(see Table S6 in Appendix, p 8).

Moreover, the interaction between P and AH is significant across 18 high infection provincial capital cities in 
China (Coefficient = −3.779 × 10–4, p < 0.001; see Table 1). To further investigate the interaction between P and 
AH, AH was categorized into two levels according to the cut-off point of AH values when the partial derivative 
of the best-fit regression equation with respect to P is equal to zero. When AH is < 5.8 g/m3, a higher P and AH 
gave a higher R. When AH is ≥ 5.8 g/m3, a higher P and AH result in a lower R. As shown in the left part of Fig. 2c, 
when a higher P interacts with a lower AH, a higher R is still identified. In contrast, as shown in the right part of 
Fig. 2c, the effect of a higher P on R (in increasing trend) is counter-balanced by the effect of a higher AH on R 
(in decreasing trend). Nevertheless, based on the observed ranges of P and AH and the best-fit regression model 
that predicts R, a minimum R is attained when AH is 11.5 g/m3 and P is 170 µg/m3; whereas R (the rate of change 
in COVID-19 infection) is maximized when AH is 0.9 g/m3 and P is 170 µg/m3 (see Fig. 3).

Furthermore, when looking at the strength of the statistical relationship using standardized coefficient, for 
18 high infection provincial capital cities in China, P, T, AH, P × AH, and NM are more important determinants 
of R (in descending order) when compared to D and CM, based on the values of β. Specifically, our regression 
analysis has shown that P (β = 0.4309, p < 0.001) is the most significant determinant of R, within the range of data 
collected for this study (see Table 1). T (β = −0.3870, p < 0.001), AH (β = 0.2476, p = 0.002), P × AH (β = −0.2237, 

Table 1.   Statistically significant independent variables that associate with dependent variable R across all 18 
high infection provincial capital cities in China from 1 January to 20 March 2020. 1. P, AH, and NM are lagged 
and averaged by L = 14 days. 2. The standardized coefficient (also referred to as β coefficient) is calculated by 
multiplying the original regression coefficient by the ratio of the independent variable’s standard deviation to 
the dependent variable’s standard deviation. 3. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.

Dependent variable: Rt Number of observations: n = 421

Number of independent variables: 8 Adjusted R2: 41.15%

Independent variable Coefficient with 95% CI Standardized coefficient (β) p-value

Intercept −6.846 × 10–2

(−1.970 × 10–1, 6.008 × 10–2) 0.2957

Rt−1
2.510 × 10–1

(1.700 × 10–1, 3.319 × 10–1) 0.2725 2.52 × 10–9***

NMt−L
1.470 × 10–2

(5.133 × 10–3, 2.427 × 10–2) 0.1383 0.0027**

Pt−L
2.208 × 10–3

(1.244 × 10–3, 3.173 × 10–3) 0.4309 8.77 × 10–6***

AHt−L
1.751 × 10–2

(6.243 × 10–3, 2.878 × 10–2) 0.2476 0.0024**

Tt
−6.599 × 10–3

(−8.091 × 10–3, −5.108 × 10–3) −0.3870  < 2*10–16***

GDP 5.545 × 10–7

(1.075 × 10–7, 1.001 × 10–6) 0.1115 0.0152*

Asthma 9.024 × 10–4

(2.677 × 10–4, 1.537 × 10–3) 0.1273 0.0054**

Pt−L × AHt−L
−3.779 × 10–4

(−5.903 × 10–4, −1.654 × 10–4) −0.2237 0.0005***
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Figure 2.   Significant P, AH, and P x AH determining R across 18 high infection provincial capital cities in 
China. (a) Univariate regression of significant P determining R, (b) univariate regression of significant AH 
determining R, and (c) interaction of significant P × AH determining R. The line (with confidence interval) in 
each plot represents the best-fit line that predicts R. The lines in the x-axis in each plot represent the observed 
data points.

Figure 3.   Relationship between P, AH, and R, based on the observed range of P and AH and the predicted R 
from the best-fit regression model, for 18 high infection provincial capital cities in China.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23206  | https://doi.org/10.1038/s41598-021-02523-5

www.nature.com/scientificreports/

p < 0.001), and NM (β = 0.1383, p = 0.003) are more significant determinants of R than D (GDP per capita) 
(β = 0.1115, p = 0.015) and CM (Asthma) (β = 0.1273, p = 0.005), but less significant than P (see Table 1).

Finally, when examining the multivariate normality assumption for the regression model listed in Table 1, 
results have shown that most data points in the normal quantile–quantile plot lie on the diagonal line (see Fig-
ure S2 in Appendix), though the Shapiro–Wilk normality test is more significant (W = 0.992, p = 0.016). Although 
the normality assumption may be violated, the regression model would still be able to generate valid results when 
the per variable sample size is sufficiently large (when the number is larger than ten)29.

Discussion
Recent COVID-19 studies have investigated whether D, CM, meteorology, and lockdown affect viral infection and 
have ascertained that meteorological events can alter COVID-19 transmission2. Earlier studies have suggested 
that exposure to P can also increase influenza infection rates and identified PM10 and meteorological effects 
as risk-factors for SARS/MERS. In the US and Europe, long-term exposures to P and NO2 have been reported 
as the determinants of COVID-19 mortality, and evidence from China and Italy implicate air pollution as an 
attributor to COVID-19 infection. While previous research in China has concluded that P is associated with 
COVID-19 infection, it has yet to fully account for the changes in testing capacity, the inadequacy in confirmed 
case definition, and the confounding effects of D and CM. Recent studies have pointed towards the significant 
potential of COVID-19 transmission through the airborne pathway30.

To identify whether P affects R across 18 high infection provincial cities in China, including Wuhan, our 
regression model has accounted for all high potential confounders, including meteorological variables, NM, 
D at the provincial or city level, and CM at the provincial level, including eight major diseases that potentially 
decrease immunities and increase the risks of COVID-19 infection31,32. In addition, the time-lag effect on P, 
meteorology, and NM, have been addressed.

In particular, P with a lagged time of 14 days determines R, for all 18 high infection provincial capital cities 
in China, after accounting for the confounders/covariates. The higher the P value, the higher the R value. This 
implies that for one to reduce the COVID infection rate of change (R), the outdoor PM2.5 pollution concentration 
(P) across 18 Chinese provincial cities should be reduced. A 10 µg/m3 reduction in P will lead to 0.022 reduc-
tion in R after accounting for the covariates (see Table 1). Controlling and reducing outdoor P, and reducing 
the possibility for P to act as a carrier for COVID-19 viruses, require immediate public health attention. Public 
health measures such as installing air purifiers33, both indoors and outdoors, and improving air ventilation34, can 
help reduce P and reduce R. In particular, we recommend different methods of mechanical ventilation, includ-
ing the installation of fans along with HEPA filters on the windows or within the air ducts to purify outdoor 
and ambient air. In this ventilation scheme, a slight negative pressure can be maintained to reduce the level of 
humidity and PM condensation, which in turn deters the viral load. If mechanical ventilation is less likely or not 
possible, then wind-driven natural ventilation is preferred for windows and other openings, alongside the use 
of pollution filters. Further, cross and stack ventilation will facilitate the smooth inflow of pollutant-free fresh 
clean air35. Moreover, putting P aside, given that AH and P x AH are important determinants of R, adjusting 
AH and P appropriately within a reasonable range (0 µg/m3 < P < 170 µg/m3 and 5.8 g/m3 < AH < 11.5 g/m3) can 
help reduce R substantially (see Fig. 3).

Further, NM and T are significant determinants of R in China. An increase in mobility within the provincial 
capital cities would increase R, whilst a decrease in mobility can reduce R. Finally, D and CM are less significant 
determinants of R when compared to P, AH, P × AH and NM. Having said so, GDP per capita is singled out as 
a significant D determinant of R whilst Asthma is singled out as a significant CM determinant of R. This implies 
that provincial cities having a higher GDP per capita (the more affluent cities) have a higher R (more infectious), 
whilst provincial cities having a higher burden of asthma (in DALY) are also more vulnerable to COVID-19 
attacks, as asthma is often linked to airway inflammation and may increase COVID-19 susceptibility. Currently, 
only aggregate and annual D and CM data have been used for our regression analysis. Future study can make 
good use of D and CM data of higher temporal-spatial resolutions to provide us with better insights on how D 
and CM affect R across 18 high provincial capital cities in China.

Our model offers numerous advantages over those proposed in the previous literature covering air-pollution 
related COVID-19 epidemiological studies in four ways. First, instead of observing the absolute number of infec-
tions, which may be inaccurate due to possible human or systemic deficiency (related to testing methods and 
changes in case definition), our study examines R, the rate of change in COVID-19 infection (see “Data collection 
and procedure”). R can more sufficiently reflect the relative change in infection numbers, if the adjusted COVID-
19 infection trends are consistent. Our focus on R instead of the actual infection number thereby provides much 
greater resolving power when compared to the previous air pollution and COVID-19 infection/mortality studies, 
which focus on the absolute number of infections17,18 instead36.

Second, our study addresses a wide spectrum of confounders that can affect observations concerning the 
effect of P on R, including key meteorological, NM, D, and CM variables. This stands in contrast to the exist-
ing works that explore the effects of air pollution on COVID-19 infection/mortality by controlling for only the 
meteorological variables17,37, or the meteorological variables and simple D variables, without considering the 
lockdown and CM variables38. Furthermore, while taking into account the confounding effects, our work also 
addresses the issues of non-linearity, collinearity, and time-lag (see “Data pre-processing”). This is particularly 
critical for precision modelling when (1) the statistical relationships between meteorology and R can be non-
linear, (2) certain covariates among the meteorology, demographics, or co-morbidity variables can be collinear, 
and (3) the short-term effects of P, meteorology, and NM on R can be time-lagged due to the incubation period 
for COVID-19. By testing non-linearity and collinearity, and by accounting for the time-lag between some of 
our confounders and R, our model provides a more reliable and rigorous scientific explanation concerning how 
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and when P will determine R across 18 high infection provincial capital cities in China, including Wuhan, in 
contrast to other prior air pollution-related COVID-19 infection/mortality models which have yet accounted 
for these confounding/covariate issues8,38.

Third, this is the first study that pursues the individual effects of P and AH on R, as well as the interaction 
effect of P and AH on R, covering 18 high infection provincial capital cities in China. Our study ascertains that 
a higher P increases R, and a higher AH decreases R. A 10 µg/m3 increase in P is associated with a 1.5% increase 
in R in China on average (p < 0.001; see Fig. 2a). Further, when P interacted with AH, their interaction effect on R 
is significantly negative (β = −0.2237, p < 0.001, see Table 1). After breaking down AH into two groups according 
to the optimal cut-off value, when AH is < 5.8 g/m3, a higher P still leads to a higher R (see Fig. 2c). However, 
when AH is ≥ 5.8 g/m3, the effect of a higher P on R is counteracted by the effect of AH on R. When AH is 11.5 g/
m3 and P is 170 µg/m3, a minimum R is achieved. When AH is 0.9 g/m3 and P is 170 µg/m3, a maximum R is 
achieved (see Fig. 3).

Finally, to the best of our understanding, this is the first international study that demonstrates a causal rela-
tionship between P and R across 18 high infection Chinese provincial capital cities, via matching. Each high P 
exposure day is matched with a low P exposure day sharing similar background covariates such as AH and NM 
to estimate the causal effect (Appendix p 8). This causal relationship between immediate P exposure and R (i.e. 
a higher P can increase R, see Table 1 and Table S6 in Appendix p 8), when combined with the recent reports 
that particulates less than 10 µm can facilitate the deposition of COVID-19 viral droplets and be suspended in 
the air23, further substantiates the recent observations concerning the risks of airborne infection24,26.

Although PM2.5 levels are low globally, they remain high in China. It has been estimated that the reduction 
of PM2.5 concentration due to lockdown during the specified period across the provincial capital cities of China 
is 9.7%, which remains small as compared to the 15.4% reduction of NO2 concentration39. With such reduction, 
PM2.5 level in most of these cities will still fail to meet the WHO standards. For example, the daily PM2.5 level 
in Shanghai is more than four times over the WHO threshold limit (10 µg/m3)40. The high PM2.5 concentration 
during the lockdown period confirms that the contribution of PM2.5 from the transportation sector is small, 
while the PM2.5 level generated from industrial production and residential coal combustion are much larger, 
and should be properly controlled if we want to reduce the PM2.5 level and hence COVID-infection in China39.

The COVID-19 transmission is primarily human-driven and the previous day infection along with human 
mobility are important factors for predicting R. Based on β, our results suggest that P is the most significant one 
predicting R during the first wave of COVID-19 in China, within the data range collected for this study (i.e., 
daily city-level PM2.5 concentration ranging from 2.6 μg/m3 to 208.4 μg/m3). Such findings are consistent with 
current studies that examine the effects of air pollution on R during the initial stage of outbreak. A cross-county 
study in US suggests that PM2.5 pollution is a more significant contributor to R during the early outbreak, when 
compared to population density41. A cross-country study suggests that PM2.5 is one of the most significant factors 
that associates with R during the early-stage outbreak across the world42. Non-pharmaceutical interventions that 
target to reduce human-to-human contact, such as school closure and stay-at-home order, are less significant 
as compared to R during the early-stage outbreak42. Nevertheless, when the number of COVID-19 infections 
reaches a certain threshold, the impact of PM2.5 on R is likely to be reduced to the minimal, when compared to 
factors such as the number of current infection cases.

All in all, increasing the risk of airborne COVID-19 viral infection is too high a cost to be ignored. Proper 
public health measures, such as mandating citizens to wear masks, are highly recommended to protect one from 
contracting COVID-19 via the viral-particulate transmission pathway, especially for countries of high popula-
tion densities and mobilities, and high ambient particulate concentrations. Further, reducing the ambient PM2.5 
particulate concentrations can substantially reduce the chance of COVID-19 infection. The installation of air 
purifiers and air ventilation improvement are recommended to reduce the effect of P on R. Meanwhile, after tak-
ing in account the number of days required for official reporting, given that the best fit linear regression model 
is yielded at the 14-day time-lag interval, P, AH, P × AH and NM values obtained 14 days prior to COVID-19 
infection of the day can serve as the best determinants of R of the day. A 14-day time lag for best determining 
R suggests a 14-day incubation period is needed for any COVID-19 patient to become symptomatic in China, 
based on the COVID-19 data obtained during the first wave of COVID-19 infection in China. This shall serve 
as an important piece of public health information, regarding the number of days needed for quarantine for 
rigorous COVID-19 detection and control.

The current study presents certain limitations, which can be addressed in future studies: First, study that 
explore the causal relationship of the variables cannot be done properly when observational data with potential 
confounding biases are being used43. Spurious positive correlations are more likely found in non-stationary epi-
demiologic time series data44. The current study has incorporated the relevant confounders as much as possible 
and has adopted the matching method to further reduce the confounding effects. However, our preliminarily 
determined causal relationship may deserve further verification given that relevant epidemiological variables 
included in the regression model are yet to exhaustive. In the future, advanced causal inference techniques, such 
as instrumental variables estimation, can be used to further account for any unobserved confounding factors. Sec-
ond, when analysing a wide variety of phenomena, it is possible to run into the look-elsewhere effect (also known 
as the multiple comparison problem)45. The current study adopts a stepwise regression approach in search of a 
set of significant variables for the best-fit model. The selection of significant variables involves multiple statistical 
tests and may be less robust due to the look-elsewhere effect46. In the future, bootstrap cross-validation techniques 
can be adopted to improve the robustness of model selection47. Finally, our study considers the incubation period 
as an interval ranging from 1 to 14 days, based on a uniform probability distribution. Given that the incuba-
tion period could have a more sophisticated distribution, more advanced statistical models using the Bayesian 
framework48 could be investigated to better account for the non-uniform distribution of the incubation period.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23206  | https://doi.org/10.1038/s41598-021-02523-5

www.nature.com/scientificreports/

Method
Data collection and procedure.  We collected data covering the daily P and the daily number of con-
firmed infections across 31 provincial capital cities in China, covering the period from 1 January to 20 March 
2020 (see Fig. S1 in Appendix p 3). This was the period when COVID-19 infection was first officially announced 
in China, the lockdown measures were strictly exercised in Wuhan and other parts of China, and the number 
of confirmed cases peaked and dropped (see Fig. S1 in Appendix p 3). Other data at the provincial city-level 
were also collected on a daily basis (including meteorology and NM) or on a yearly basis (including D and CM) 
from internet sources and official statistical documents (see Table S1 in Appendix p 2). A full description of the 
dependent variable and the independent variables adopted for our statistical modelling is listed in Appendix (p 
3–6). Descriptive statistics, including mean, standard deviation, minimum, and maximum values, are listed in 
Table S6 in Appendix. Given that the independent variables may not be normally distributed according to the 
Shapiro–Wilk normality test, the 25th percentile, the median (50th percentile), and the 75th percentile values 
are also reported in Table S6 in Appendix to better describe the distribution of variables. Table 2 highlights our 
research objectives and procedures.

Data pre‑processing.  Earlier COVID-19 studies expressed reservations concerning the number of infec-
tion cases reported, given inadequate testing capacity, the change in confirmed case definition, and undiscovered 
and undocumented asymptomatic cases3,49,50. In order to address the delay in testing capacity and the change in 
case definition and their effects on reported cases, we used R, rate of change, as the dependent variable, in order 
to capture the relative change in COVID-19 infection during the study period. By using R, even if the number of 
reported infections might deviate, the relative change in infection could still be accounted for, provided that the 
reporting trends remain consistent.

Moreover, to remove the potential errors due to outliers and irregularities observed from the COVID-19 
reported trends, a four-step data cleaning procedure was applied. First, 13 cities with a cumulative number of 
confirmed cases less than 50 were removed due to small sample size. This cut-off value was based the assumption 
that at least five types of independent variables should be taken into account in our model (including P, meteorol-
ogy, NM, D, and CM) and that each independent variable requires at least ten samples for valid statistical analysis. 
As a result, only 18 high infection provincial capital cities had been selected for our statistical study. Second, 
for each city, to address the potential delay between the onset and the confirmation of COVID-19 infection, the 
adjusted daily confirmed COVID-19 infection cases were calculated by a rolling window of the observed daily 
confirmed cases reported in the following W days (including the current day). The rolling window is a simple 
interpolation technique that smoothens the short-term fluctuations of the city-specific epidemic curve, while 
allowing for the backfill of delayed confirmed cases. More specifically, the adjusted number of confirmed cases on 
day t  was calculated as the average of the number of confirmed cases reported from day t  to t +W − 1 (see Eq. 1).

where Nc,t denotes the number of confirmed cases reported on day t  in city c . W  was set to 7 to address the 
reporting delay in COVID-19 case confirmation (which was estimated to be 7 days to 10 days50) and to account 
for the day-of-week fluctuations in case reporting. Further, any reported COVID-19 cases of zero value were 
removed, with the assumption that during the period of COVID-19 spread in China, the number of infection 
cases added per day would be greater than zero. Finally, for each selected city, daily R values were calculated 
throughout the study period (see Eq. 2).

where Nc,t denotes the number of adjusted confirmed cases reported on day t  in city c . For all R values across the 
selected cities, the mean and standard deviation of R were calculated. Assuming R follows a normal distribution, 

(1)Nc,t =

∑
i=t+W−1
i=t

Nc,i

W

(2)Rc,t =
Nc,t − Nc,t−1

Nc,t−1

Table 2.   Research objectives and procedures.

Primary objective

1. Explore the statistical relationship, and determine the causal effects, if any, between daily outdoor P
(PM2.5 concentration) and R (rate of change in daily COVID-19 infection) across the high infection provincial 
capitals in China, including Wuhan
2. To achieve this objective, we built two statistical models that can best address the following challenges in statistical 
analysis:
    (a) Redefinitions and potential delays in infection case reporting
    (b) Incubation period
    (c) Confounders and confounding biases, including meteorology, mobility/lockdown, demographic, co-morbidity, 

and time-trends
    (d) Collinearity
    (e) Linear relationship
    (f) Interaction between P and meteorology

Secondary objective
3. Highlight the conditions under which R can be reduced, and effective public health measures that can be employed 
to facilitate this
4. Add weight to the current observations that COVID-19 can be airborne and that particulates can be carriers of the 
viral droplets
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any R values out of the normal range (mean ± three times standard deviation) were considered as outliers and 
removed.

Statistical analysis.  We conducted statistical analysis in three steps. First, using stepwise multiple linear 
regression, a main effects model (i.e., without any interaction terms), including only the statistically significant 
variables in determining R, was constructed to model the relationship between daily outdoor P and daily R 
across 18 high infection provincial capital cities in China, while addressing the issues of collinearity and con-
founding brought by other independent variables. Second, to take into account the potential interaction effects 
between P and other significant meteorological and NM variables, the significant interaction terms were incor-
porated into the main effects model. A final regression models was developed for China (see Eq. 3).

where α is the intercept, the subscript c denotes a city, subscript t  denotes a day, subscript L denotes the time 
lag for P, AH, and NM, and ε serves as the error term. L ranges from one to fourteen days. R denotes the rate 
of change in the daily number of confirmed COVID-19 infections. A one-day time-lag variable representing R 
of the previous day was also included in the model as an autoregressive term to account for the temporal auto-
correlation among R time-series. P denotes the PM2.5 concentration. NM denotes the net move in mobility. AH 
denotes the absolute humidity. T is a variable representing the number of days since 1 January 2020, reflecting 
the time trend during the period of study. GDP represents gross domestic product per capita. Asthma repre-
sents the disability-adjusted life-year (DALY) numbers per 100,000 population. Two-sided p-values < 0.05 were 
considered significant for the statistical analysis. Third, the regression coefficient in the final regression model 
were standardized by multiplying the original regression coefficient by the ratio of the independent variable’s 
standard deviation to the dependent variable’s standard deviation, in order to compare the relative importance 
of each significant independent variable contributing to R.

Due to the lengthy asymptomatic incubation period before the onset of COVID-19 symptoms, the corre-
sponding time-lag in P, meteorology, and NM was accounted for by our statistical analysis, using the multi-day 
average lag model, based on previous air-pollution related epidemiological studies7. We determined the best fit 
lag-time from day 1 to day 14, with the assumptions that the lag-time follows a uniform probability distribution 
and the mean incubation period could cover a maximum of 14 days50.

To estimate the causal effect of P on R, our model for China had to cover the potential confounders. Inde-
pendent variables, including meteorology (AH, temperature (TEMP), air pressure (AP), and wind speed (WS)), 
and NM, were included in the statistical analysis for China as the confounders. Moreover, D (population density, 
age, sex, income, GDP per capita, and education) and CM (high blood pressure, diabetes, chronic obstructive 
pulmonary disease (COPD), stroke, obesity, asthma, Alzheimer’s disease (AD), and HIV/AIDS) were included 
in the statistical analysis to control for the provincial/city-level fixed effects in our model for China. T and day 
of week were included in the statistical analysis to control for the time-varying fixed effects and the recurrent 
fixed effects. The statistically significant variables were kept in the final fitted regression model. Furthermore, 
matching was adopted to further reduce the confounding biases in our model for China, by matching a high P day 
with a low P day, based on the similarities of corresponding confounders, thereby helping one more accurately 
estimate the causal relationship between P and R in China (see Appendix p 8).

To address the potential collinearity between the independent variables in our model for China, Spearman 
correlation analysis and variance inflation factor (VIF) analysis were performed. Before stepwise regression analy-
sis, a Spearman correlation analysis was conducted to select a subset of variables that presented low collinearity in 
the meteorological, D, and CM data. The absolute Spearman Coefficient threshold was set to be 0.5 to detect the 
collinearity between any variables before the regression analysis, and to prevent the highly correlated variables 
from being included in the regression model51,52. First, AH and WS were selected as the meteorological vari-
ables for stepwise regression analysis. We tested the collinearity between TEMP, AP, WS, and AH, and removed 
TEMP and AP, due to their high collinearity with AH, which would be capable of accounting for the transmis-
sion of a flu virus53, and hence could also be used to account for R (|Spearman coefficient|> 0.5; see Table S2 in 
Appendix p 3). Second, population density, age (0–14 years old), age (> 65 years old), sex ratio (female/male), 
and GDP per capita were selected as the D variables for stepwise regression analysis. We tested the collinearity 
between D, population density, age (0–14 years old), age (> 65 years old), sex ratio (male/female), urban dispos-
able income, GDP per capita, and education level (below high school). We found that all D variables, except for 
sex ratio and GDP per capita, correlated highly with population density and age. Population density and age 
might better account for R because (1) population density could account for the close-contact transmission of 
COVID-1954,55 and (2) old age could be linked to lower immunity56,57, making one more vulnerable to COVID-
19 infection58. The correlation between population density and COVID-19 transmission was also ascertained in 
related studies conducted in Bangladesh and Italy54,55. Hence, urban disposable income and education level were 
removed, due to their high collinearity with population density and age (|Spearman coefficient|> 0.5; Table S3 
in Appendix p 4). Third, high blood pressure, COPD, stroke, and asthma were selected as the CM variables for 
stepwise regression analysis. We tested the collinearity between CM variables, including high blood pressure, 
diabetes, COPD, stroke, obesity, asthma, AD, and HIV/AIDS. We found that all CM variables, except for stroke 
and asthma, correlated highly with high blood pressure and COPD, which were more common CMs identified 
from recent COVID infection cases, and might account for R21. Therefore, diabetes, obesity, AD, and HIV/AIDS 
were removed, due to their high collinearity with high blood pressure and COPD (|Spearman coefficient|> 0.5; 
Table S4 in Appendix p 4). Furthermore, after stepwise regression analysis, a variance inflation factor (VIF) 
analysis was performed to detect if any collinearity remained in the main effects model. An independent variable 

(3)
Rc,t = α + β1 * Rc,t−1+β2 ∗ Pc,t−L+β3 ∗ AHc,t−L+β4 ∗ NMc,t−L+β5∗Tt+β6∗GDP+β7∗Asthma+β8 ∗ P × AHc,t−L+ε
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with VIF exceeding 10 was considered a high collinearity with other independent variables51,59. No collinearity 
was identified from the main effect model.

To account for the potential non-linear relationship between the meteorological variables and R, a second-
order polynomial transformation was applied to the selected meteorological variables, including AH and WS, 
during stepwise regression analysis. In addition to the original meteorological variables, a quadratic term of each 
selected meteorological variable was included in stepwise regression model to address non-linearity. Based on 
the final stepwise regression model that achieved the best fit, we decided to use the first-order meteorological 
variables.

To examine the interaction effects between P and other significant meteorological and NM variables, three 
interaction terms consisting of the statistically significant variables were included in stepwise regression model 
for determining R. Three interaction terms, including P × AH, P × NM, and NM × AH, were added to the main 
effects model for China. P × AH, the statistically significant interaction term that associated with R, was included 
in the final stepwise regression model.

Finally, the multivariate normality assumption was examined by investigating the residuals of the main 
regression model shown in Eq. (3) via (1) a normal quantile–quantile plot and (2) a normality test statistic 
(Shapiro–Wilk normality test). In general, a linear regression model assumes that the model residuals (i.e., the 
errors between the observed and predicted values) are normally distributed. If (1) the data points in a normal 
quantile–quantile plot lie on a diagonal line and (2) a less significant p-value (p > 0.05) derived from the Shap-
iro–Wilk normality test is observed, the residuals can be assumed to follow a normal distribution.

Preprint.  This article was submitted to an online preprint archive60.

Data availability
The dataset used in this study will be made available upon request to the corresponding authors.

Code availability
The data processing and statistical analysis code for this study will be made available upon request to the cor-
responding authors.
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