Technical Perspective

Backdoor Engineering

By Markus G. Kuhn

IMAGINE YOU ARE a cyber spy. Your
day job is to tap cryptographically
protected communications systems.
But how? Straightforward cryptanal-
ysis has long become impractical: the
task of breaking modern algorithms
far exceeds all computational power
available to humanity. That leaves
sabotage.

You can target many Achilles
heels of a crypto system: random-
bit generators, side channels, binary
builds, certification authorities, weak
default configurations. You infiltrate
the teams that design, implement and
standardize commercial security sys-
tems and plant there hidden weak-
nesses, known as backdoors, that later
allow you to bypass the cryptography.

Take random-bit generation. Se-
curity protocols distinguish intended
peers from intruders only through
their knowledge of secret bit se-
quences. Servers have to chose many
key values at random to protect each
communication session, and an adver-
sary who can successfully guess these
can impersonate legitimate users.

One trick to backdoor a random
generator can be understood with ba-
sic high-school algebra. A determin-
istic random-bit generator (DRBG) is
initialized (seeded) with a start state
S0, and then iterated with some gen-
erator function: s; 41 := G(s;)

G(So) G(Sl)

S0 S1 S92

In simple DRBGs (say for simula-
tions), the s; may serve as both the
state of the generator as well as its
output. So anyone who saw an out-
put s; and knows G can easily pre-
dict all future outputs. Crypto-grade
DRBGs make four improvements: (a)
hardware noise sources (slow) seed so,
(b) the state s; has hundreds or thou-
sands of bits, (¢) a second function H
derives output values r; := H(s;)

5 G(s0) . G(s1) o .
lH(so) lH(sl) lH(SQ)
To 1 T2

and (d) both G and H are one-way

functions. These can be computed ef-
ficiently, but their inverses not. After
H, an adversary who can see some
of the outputs r; cannot infer any-
thing about the internal states s; or
other outputs ;. We know many ex-
cellent choices for G and H: one-way
functions carefully engineered to be
fast and to have no other known ex-
ploitable properties. Most are con-
structed from secure hash functions
or block ciphers.

As a saboteur, you do not want
these used. Instead, you lure your
victims towards a far more danger-
ous option: the class of algebraic one-
way functions that enabled public-
key crypto. These are orders of mag-
nitude slower and require much big-
ger values for equal security. Modular
exponentiation is a simple example.
If you follow a few rules for choos-
ing a big integer g and a big prime
number p, then G(z) := ¢® modp
is such a one-way function. While
g” alone is monotonic, and thus easy
to invert, the mod p operation (take
the remainder after division by p)
ensures that the result remains uni-
formly spread over a fixed interval
and appears to behave highly ran-
domly. The inverse discrete loga-
rithm problem, of calculating x when
given (¢g® mod p,p,g), becomes com-
putationally infeasible. (In the fol-
lowing, we drop mention of the mod
p operation, and just apply it auto-
matically after each arithmetic oper-
ation.) The exponentiation operator
g” has an important additional prop-
erty, not affected by the mod oper-
ation: (¢®)¥ = (g¥)®. While this
commutativity is completely useless
to honest designers of DRBGs, it can
be invaluable to saboteurs.

Convince your victims that
G(s;) == g% and H(s;) := h® are
excellent choices for generating ran-
dom numbers of the highest security:

S0 S1
So g S1 g S ..
oo | |
To 1 T2

You can claim “provable security

Communications of the ACM, Vol. 61, No. 11,
November 2018, p. 147, DOI:10.1145/3266289

based on number-theoretical assump-
tions”, but this is, of course, just a
smoke screen. The sole advantage
of this construction is that it allows
a backdoor. If you can choose g as
g = h®, then knowing your secret
integer e immediately allows you to
convert any output value r; into the
next internal state of the DRBG as

() = () = (h)* = g% = sipa:

S0 S1
S0 S1 S92
heoo T R T
L7 . hs2
4 e 4 e
.o To PO
To 1 2

So if you contact a server and re-
ceive one r;, you can now immediately
predict all future r; used to protect
the communication with others, and
decrypt or impersonate their mes-
sages. Job done. And nobody else
can do this, because finding e from
h and ¢ is computationally infeasi-
ble (the aforementioned discrete log-
arithm problem). Unless, of course,
they steal your backdoor by generat-
ing their own e’ and replacing your g
with their ¢/ := he".

The following article by Check-
oway et al. reports on the amazing
independent reconstruction of exactly
such a backdoor, discovered in the
firmware of a VPN router commonly
used to secure access to corporate in-
tranets. In 2004, the NSA planted the
above DRBG in NIST standard SP
800-90, including a g and h of their
choice. The details differ only slightly
(elliptic curve operations rather than
modular exponentiation, which uses
slightly different notation; the top 16
bits of r; discarded, can be guessed
via trial and error). The basic idea is
identical.

But planting a backdoor in a stan-
dard is not enough. You now also
have to ensure industry implements
it correctly, such that an r; reaches
you intact. And that nobody else re-
places your g. And that is where this
story begins.

Markus G. Kuhn (mgk25@cam.ac.uk) is
a Senior Lecturer teaching computer security
and cryptography at the University of Cam-
bridge, England.

https://doi.acm.org/10.1145/3266289
https://doi.acm.org/10.1145/3266291
https://doi.acm.org/10.1145/3266291

