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Abstract: Parkinson’s disease (PD) is considered a synucleinopathy because of the intraneuronal 

accumulation of aggregated α-synuclein (αSyn). Recent evidence points to soluble αSyn-oligomers 

(αSynO) as the main cytotoxic species responsible for cell death. Given the pivotal role of αSyn in 

PD, αSyn-based models are crucial for the investigation of toxic mechanisms and the identification 

of new therapeutic targets in PD. By using a metabolomics approach, we evaluated the metabolic 

profile of brain and serum samples of rats infused unilaterally with preformed human αSynOs 

(HαSynOs), or vehicle, into the substantia nigra pars compacta (SNpc). Three months postinfusion, 

the striatum was dissected for striatal dopamine (DA) measurements via High Pressure Liquid 

Chromatography (HPLC) analysis and mesencephalon and serum samples were collected for the 

evaluation of metabolite content via gas chromatography mass spectrometry analysis. 

Multivariate, univariate and correlation statistics were applied. A 40% decrease of DA content was 

measured in the HαSynO-infused striatum as compared to the contralateral and the 

vehicle-infused striata. Decreased levels of dehydroascorbic acid, myo-inositol, and glycine, and 

increased levels of threonine, were found in the mesencephalon, while increased contents of 

fructose and mannose, and a decrease in glycine and urea, were found in the serum of 

HαSynO-infused rats. The significant correlation between DA and metabolite content indicated 

that metabolic variations reflected the nigrostriatal degeneration. Collectively, the metabolomic 

fingerprint of HαSynO-infused rats points to an increase of oxidative stress markers, in line with 

PD neuropathology, and provides hints for potential biomarkers of PD. 

Keywords: α-synuclein oligomers; Parkinson model; metabolomics; mesencephalic tissue; serum; 

gas chromatography mass spectrometry; biomarkers 

 

1. Introduction 

Abnormal aggregation of specific pathogenic proteins within the central nervous system has 

been recognized as a fundamental feature of several neurodegenerative disorders, including 
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Parkinson’s disease (PD) [1]. PD is considered a synucleinopathy due to the abnormal accumulation 

of misfolded, and often largely phosphorylated, α-synuclein (αSyn) in cells of the central nervous 

system (CNS) [2]. While the pathological role of aggregated αSyn in PD is generally acknowledged, 

increased levels of soluble intermediates of the aggregation process, such as small size oligomers 

(αSynO), have been described in biological fluids of PD patients, raising questions as to their toxic 

role in the disease [3,4]. In recent years, several preclinical studies have suggested that αSynOs are 

the most toxic αSyn species against neurons [5–7]. 

α-Syn neurotoxicity has defined the rationale for αSyn-based preclinical models of PD [8,9] and, 

in recent years, the intracerebral inoculation of preformed αSyn fibrils and oligomers has been 

proposed as a significant disease model [10–15]. Lately, preformed αSyn oligomers of human origin 

(HαSynO) have been produced and characterized for their in vitro and in vivo toxicity in neurons 

[7,16]. These studies demonstrated that these short oligomers hold a higher neurotoxicity compared 

to the monomeric species of the protein. Furthermore, we found that the intracerebral inoculation of 

these HαSynOs induced a gradual nigrostriatal dopaminergic loss associated with motor and 

cognitive impairment, the deposition of phosphorylated αSyn in neurons and microglia of 

dopaminergic areas, an early and persistent neuroinflammatory response and mitochondrial 

abnormalities, suggesting that it is a valuable preclinical model of PD that reproduces the cardinal 

features of the pathology [unpublished results]. 

Modeling the αSyn-related neuropathology may contribute to the investigation of toxic 

mechanisms in PD and may drive the identification of new therapeutic targets. Moreover, preclinical 

models that replicate neuropathological features of PD offer an essential tool for validating the use 

of disease biomarkers to monitor the evolution and the therapeutic response of PD to new 

treatments. The search for disease biomarkers has made significant progresses in past years, leading 

to the identification of several clinically validated biomarkers [17–20]. 

In this context, a nontargeted approach with metabolomics analysis provides a powerful tool to 

unveil neuropathological mechanisms and to investigate potential disease biomarkers that may 

differentiate complex diseases, such as neurodegenerative disorders, from nondiseased conditions. 

Metabolomics starts with the axiom that the disease state and its therapeutic response, together with 

lifestyle factors, can be reflected by changes in metabolite concentrations [21]. Interestingly, 

metabolomics allows the unbiased simultaneous evaluation of multiple biomolecules in a single 

experimental sample, usually through the use of nuclear magnetic resonance spectroscopy [22,23] 

and/or mass spectrometry (MS) platforms [24,25]. In PD, several studies have investigated the 

metabolic profile of cerebrospinal fluid (CSF) and serum of PD patients to identify possible disease 

biomarkers [26,27]. 

The aim of the present work was to evaluate the metabolic profile of brain tissue and serum 

samples of rats inoculated with preformed HαSynOs into the substantia nigra pars compacta (SNpc) 

[10,11]. Given the human origin of the inoculated oligomers, and since this model reproduces 

neuropathological mechanisms of PD, we investigated whether it may offer a tool to model the 

metabolic fingerprint of PD. 

2. Results 

Gas chromatography mass spectrometry (GC-MS) analysis performed on tissue from the right 

and left mesencephalon and on serum from rats (n = 7) inoculated with HαSynOs into the left SNpc 

(Oligo class, Right (R) and Left (L), respectively) or with vehicle (n = 7) (Veh class, Right (R) and Left 

(L), respectively) showed significant metabolic changes in the inoculated rats compared with 

vehicles, and a correlation with striatal dopamine (DA) content. Serum samples were collected to 

detect any peripheral metabolic alteration resulting from the intracerebral infusion of HαSynOs. 

Through GC-MS analysis, we identified 25 and 27 metabolites in the mesencephalon and serum 

samples, respectively, including sugars, amino acids, fatty acids and biogenic amines. 
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2.1. Striatal DA and DOPAC Assessment 

Figure 1A shows that the inoculation of HαSynOs into the left SNpc caused a significant 

reduction of DA tissue levels in the ipsilateral striatum, compared with the contralateral striatum 

and with the left striatum of vehicle-infused rats. One way-ANOVA of the results showed a 

significant effect of treatment (F3, 23 = 4.11). Post hoc analysis (Tukey test) indicated that DA tissue 

levels in the left striatum of HαSynOs-infused rats were significantly lower with respect to those 

assessed in both the L and R striata of vehicle inoculated rats (p < 0.05) and with respect to the 

contralateral striatum. Figure 1B shows that the infusion of HαSynOs into the left SNpc did not 

cause significant changes of 3,4-Dihydroxyphenylacetic acid (DOPAC) levels in the ipsilateral 

striatum when compared with the contralateral striatum or with the L and R striatum of 

vehicle-infused rats. Based on these results, striatal DA concentration only was considered for 

statistical correlation with the metabolic profile.  

 

Figure 1. Striatal content of dopamine (DA) (A) and 3,4-Dihydroxyphenylacetic acid (DOPAC) (B). 

DA and DOPAC levels (pg/mg fresh tissue) were measured in the left (L) and right ® striata of rats 

infused with human α-synuclein oligomers (HαSynOs) or vehicle, three months after inoculation. 

Data are expressed as the mean and the standard deviation for each class. * p < 0.05). 

2.2. Multivariate Analysis 

Firstly, the metabolic changes in the mesencephalon were investigated. Principal component 

analysis (PCA) and the resultant score plot, together with the T2 Hotelling test, indicated the 

presence of one outlier belonging to the oligo class (unpublished results). A supervised model 

(partial least square discriminant analysis, PLS-DA) was first performed by analysing the R and L 

mesencephalon from rats belonging to the same class (vehicle or oligomers, respectively, Figure 2A). 

Subsequently, the PLS-DA model was performed on data from the mesencephalon of the different 

classes, vehicle and oligomers (Figure 2B). In Figure 2B, the plot resulting from the comparison of 

samples from all classes (including R and L mesencephalon) is shown on the left, followed by plots 

resulting from the comparisons of the R or L mesencephalon, respectively, (central and right panels 

in Figure 2B). The statistical parameters, as indicated in Table 1, demonstrated good separation of 

the Oligo R vs. Oligo L, and Vehicle L vs. Oligo L. 
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Figure 2. Score plot of the supervised models of R and L mesencephalon. The scores of the samples 

represent the result of the association/covariance between the Y-variables (treated or not-treated with 

oligomers rats) and metabolites concentrations as predictors (X-variables). (A) Partial least square 

discriminant analysis (PLS-DA) models comparing the R and L mesencephalon from Vehicle 

(respectively black and dark grey circles) or Oligo (respectively white and light grey diamonds) 

classes; (B) PLS-DA models comparing the mesencephalon of the Vehicle class (black circles) and 

Oligo class (white diamonds). 

Table 1. Summary of the statistical parameters of the supervised models of the mesencephalon 

analysis. 

Multivariate Analysis 

Mesencephalon 

Models R2X R2Y Q2 p-value 
Permutation test: 

Intercept R2\Q2 

Veh R vs. Veh L 0.38 0.82 −0.03 ns - 

Oligo R vs. Oligo L 0.55 0.84 0.57 0.04 0.56/−0.20 

Veh vs. Oligo (all) 0.45 0.64 −0.20 - - 

Veh R vs. Oligo R 0.39 0.72 −0.07 - - 

Veh L vs. Oligo L 0.77 0.83 0.72 0.01 0.41/-0.21 

Subsequently, the estimation of the correlations of the complete metabolic profile of L and R 

mesencephalon with striatal DA were evaluated through the partial least squares (PLS) regression 

analysis (Figure 3). The correlation between the complete metabolic profile of the L and R 

hemispheres with the striatal DA levels measured in the same hemispheres showed an R2 = 0.6. 
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Figure 3. Partial least squares (PLS) correlation analysis of the complete metabolic profile of 

mesencephalon samples with striatal levels of DA (expressed as pg/mg tissue). 

Based on the statistical parameters of the multivariate PLS-DA models, the models Oligo R vs. 

Oligo L, and Veh L vs. Oligo L were considered. Through the analysis of the loadings plot, it was 

possible to identify the variables responsible for the separation of the classes. For the model Oligo R 

vs. Oligo L, the discriminant metabolites were dehydroascorbic acid (DHAA) and myo-inositol. 

These metabolites were tested with the U-Mann Whitney test to evaluate the statistical significance, 

and the p-values were < 0.05. (Figure 4A). 

Similarly, the metabolites responsible for the separation between Veh L vs. Oligo L were 

identified and were tested through the U-Mann Whitney test. Changes in DHAA, glycine, 

myo-inositol, and threonine represented the specific pattern of the L part of the mesencephalon 

infused with oligomers and the p-values were < 0.05 (Figure 4B). Moreover, Holm-Bonferroni 

correction was applied. All the statistical results are reported in Table 2. 

The concentrations of DA were correlated with the concentrations of the single varying 

metabolites with a p-value < 0.05: DHAA, glycine, myo-inositol and threonine. To achieve this, a 

Spearman correlation was performed. The results are shown in Figure 5. DHAA, glycine and 

myo-inositol showed a good linear positive correlation. Threonine did not show any correlation. All 

the parameters are reported in Table 2. 
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Figure 4. Discriminant metabolites resulting from the multivariate analysis of the mesencephalon 

between Oligo R vs. Oligo L (A), and Veh L vs. Oligo L (B). U-Mann Whitney analysis was 

performed to evaluate the statistical significance. 
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Table 2. Summary of the results of the univariate statistical analysis and Spearman correlation of the 

mesencephalon. 

Mesencephalon 

Vehicles L vs. Oligomers L 

METABOLITES OLIGO p-value p-value corrected 

Spearman Correlation 

Dopamine  

R2 p-Value   

Dehydroascorbic acid − 0.008 0.004 0.7 0.01   

Glycine − 0.03 0.04 0.55 0.05   

Myo-Inositol − 0.02 0.04 0.6 0.04   

Threonine + 0.04 0.04 -0.01 0.8   

 

Figure 5. Spearman Correlation of striatal DA concentrations with the concentration of metabolites in 

the mesencephalon. p-value < 0.05. 

In the second part of the analysis, the serum samples of rats infused with HαSynOs were 

compared with the serum samples from vehicle-infused rats. The multivariate supervised analysis 

underlined a good clustering of the two classes. The score plot is reported in Figure 6A (R2X = 0.38, 

R2Y = 0.89, Q2 = 0.56, p = 0.01). 
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Figure 6. Results of the multivariate and univariate analyses of the serum sample. (A) Score plot of 

the rats infused with oligomers (white diamonds) and vehicles (black circles). (B) Bar graphs of the 

discriminant metabolites. U-Mann Whitney test was performed and these metabolites exhibit p-value 

< 0.05. * = p-value < 0.05; ** = p-value < 0.001 

As with the mesencephalon tissue analysis, the correlation of the complete metabolic profile of 

the serum samples from rats infused with oligomers or vehicles with L striatal DA was evaluated 

through PLS analysis (Figure 7). The correlation between the DA in the L hemisphere and the 

metabolic profile of the serum showed an R2 = 0.78. 

 

Figure 7. PLS correlation analysis of the complete metabolic profile of the serum samples with the 

level of the L DA (expressed as pg/mg tissue). 
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The serum metabolites responsible for the PLS-DA separation between rats infused with 

oligomers or vehicle were identified and tested through the U-Mann Whitney test. After the test, 

fructose, glycine, mannose, and urea resulted the discriminant metabolites (Figure 6B). The 

statistical parameters are reported in Table 3 without or with Holm-Bonferroni correction. 

Table 3. Summary of the results of the univariate statistical analysis of the serum samples. 

Serum 

Vehicles vs. Oligomers 

METABOLITES  OLIGO p-value  p-value corrected 

Fructose + 0.05 0.06 

Glycine − 0.008 0.02 

Mannose + 0.05 0.06 

Urea − 0.03 0.06 

3. Discussion 

The aim of this study was to investigate the metabolic fingerprint in the brain and serum of a 

new PD rat model induced by the inoculation of exogenous HαSynOs. Protein misfolding in the 

central nervous system is a key pathological mechanism in PD, which is currently ascribed to the 

family of synucleinopathies, characterized by the accumulation of misfolded aggregates of αSyn 

fibrils in neuronal and non-neuronal brain cells [1,28]. αSyn aggregation is a heterogeneous process 

generating a variety of intermediate structures [5,29,30]. Hence, although fibrillar aggregates of 

αSyn within Lewy bodies are a hallmark of PD, recent in vitro and preclinical evidence indicates that 

small soluble oligomers are the most toxic species towards neurons [5,31–37]. Moreover, recent 

studies have demonstrated that the toxicity of the αSyn oligomer is also structure-specific and 

species-dependent [5,7,15,16]. 

The intracerebral inoculation of preformed αSyn fibrils and oligomers is increasingly used as a 

preclinical model of PD [10–15]. Indeed, the presence of soluble oligomers in affected brain areas [38] 

and biological fluids of PD patients [3,4], suggested the pathological role of oligomeric species of 

αSyn. Here, we inoculated into the SNpc highly purified oligomers of αSyn composed of 

recombinant human αSyn. These oligomers have been shown to possess elevated homogeneity for 

size distribution and structure, as shown in previous characterizations based on analytical 

ultracentrifugation (AUC), nuclear magnetic resonance (NMR), atomic force microscopy (AFM) and 

Fourier transform infrared (FT-IR) [7,30]. Furthermore, in vitro and in vivo studies on these 

oligomers kinetically trapped in a toxic conformation, have evidenced the effect of specific 

antibodies in reducing the toxicity and cell damage of these aggregates [7,16]. Oligomeric species of 

αSyn exert their toxic activity in several cellular processes [39], including mitochondrial function, 

microtubule polymerisation, calcium signalling, protein degradation and interaction with glial cells 

to promote neuroinflammation [40]. Decreased efficiency of the aforementioned pathways increases 

the burden of cellular stress, eventually leading to oxidative stress, neuroinflammation and 

neurotoxicity [41] in brain areas affected by the disease, and to the degeneration of nigrostriatal 

neurons. 

We have recently found that the intranigral inoculation of HαSynOs, but not the inoculation of 

the same amount of vehicle, generated most neuropathological and symptomatic features of PD, 

including the slow degeneration of nigrostriatal neurons reflected by decreased striatal DA and 

motor impairment, mitochondrial damage and neuroinflammation [unpublished observation]. 

Therefore, we conclude that the altered metabolic profile described in the present study was causally 

linked to the intracerebral inoculation of these HαSynOs. In the present study, we further 

characterised this HαSynO-based model, by analysing and comparing, via GC-MS, the specific 

metabolic pattern of the mesencephalic tissue and the serum of oligo and vehicle classes. 
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Furthermore, metabolites responsible for discrimination in the mesencephalon and serum were 

defined. Decreased levels of DHAA, myo-inositol and glycine, and increased levels of threonine, 

were found in the brain, while increased concentrations of fructose and mannose, and a decrease in 

glycine and urea, were found in the serum. The striatal tissue from the same rats was analyzed for 

DA and DOPAC levels, revealing a 40% decrease of DA content, reflecting the nigrostriatal 

degeneration. Importantly, the complete metabolic profile, as well as several discriminant 

metabolites in brain and serum, displayed good correlations with levels of striatal DA, suggesting 

that metabolic changes in brain and serum were causally correlated with the HαSynOs-induced 

nigrostriatal degeneration. Tissue analysis also showed a not significant reduction in DOPAC 

concentration in the striatum ipsilateral to the HαSynO injection. Although DOPAC is the main DA 

metabolite, its tissue levels also reflect the turnover of DA. Thus, in the present study the reduced 

synaptic concentration of DA may have stimulated DA turnover attenuating the decrease of DOPAC 

compared with that of DA resulting in an increased DOPAC/DA ratio. PD is now recognized as a 

systemic disorder, affecting several brain areas but also the peripheral nervous system and 

peripheral functions, as well as the immune system as a whole. Accumulation of αSyn may start in 

the gut and then propagate to the CNS via the sympathetic nervous system, the vagus and the 

glossopharyngeal nerves [42,43]. Moreover, neuronal damage within the CNS and mitochondrial 

disruption may trigger systemic inflammation, while brain-derived exosomes carrying 

damage-associated molecules can pass the blood-brain barrier and are found into the plasma [44]. 

Results of the present study suggest that HαSynOs-induced damage is not confined to the CNS but 

may trigger systemic dysfunctions shown by altered serum metabolites. Notably, this supports the 

concept of changes in serum metabolites correlated with striatal DA levels. 

Several studies have investigated the metabolomic signature and amino acids profile of 

parkinsonian patients in the search of biomarkers for early diagnosis or therapeutic response, 

revealing a clear separation of subjects according to both measures [17,45]. Remarkably, the 

discriminant metabolites induced by HαSynOs-inoculation in our rat model were also demonstrated 

in de novo parkinsonian patients. Similar to metabolomic changes observed in the present study, the 

investigation of the CSF fluid via metabolomic profiling [26] or serum via amino acid profiling [46] 

revealed decreased levels of DHAA, glycine and urea, and increased levels of threonine, fructose, 

and mannose, suggesting that HαSynOs largely reproduced the metabolic profile of the human 

disease. 

These findings support the inoculation of HαSynOs as a valid preclinical model of PD, which 

adds to previously collected evidence of neuropathological PD-like features of the model. Moreover, 

since oligomers were obtained via the aggregation of human αSyn, the present study supports the 

pivotal role of oligomeric species of αSyn in the human neuropathology of PD. 

Metabolic changes observed both in the brain tissue and in the serum point to a burden of the 

oxidative stress response as a result of cellular toxicity of HαSynOs. DHAA is the oxidized form of 

the antioxidant ascorbic acid [47], and metabolomic analysis of mesencephalic tissue revealed a 

decrease in the oligo class compared with the vehicle class (p = 0.004). The Spearman correlation 

revealed a high degree of rank correlation between DHAA and striatal DA concentration (R2 = 0.77, p 

= 0.009). DHAA is the blood-brain barrier transportable form of ascorbic acid [48] and is converted to 

its active form within the brain. Ascorbic acid plays a fundamental role in neurons, specifically in 

mitochondria, where oxidative phosphorylation is the main source of free radical [47] generation. As 

an antioxidant, ascorbic acid protects the mitochondrial genome and membranes from oxidative 

damage. The present results suggest that the overload of oxidative stress caused by HαSynO 

neurotoxicity may account for the depletion of ascorbic acid in the brain. Previous studies have 

shown that αSyn overexpression inhibits complex I [49–51] and disrupts mitochondrial membrane 

integrity, leading to increased ROS production [52,53]. Moreover, mitochondrial damage has been 

specifically related to αSyn oligomer toxicity [50,54–57]. 

Increased levels of fructose and mannose in the serum of HαSynO-infused rats may similarly 

reflect a burden of oxidative stress responses. Fructose and mannose are highly implicated in protein 

glycation. In PD, glycation end-products of αSyn colocalize in Lewy bodies of the substantia nigra 
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[58]. Interestingly, glycated αSyn undergoes oligomerization more easily, while glycated oligomers 

slow the fibril formation process [59,60]. Glycation is boosted by oxidative stress and leads to 

increased production of ROS, being itself an oxidative stress-promoting factor. In line with the 

present results, other markers of oxidative stress, such as malondialdehyde, oxidized glutathione 

and 8-hydroxydeoxyguanosine, together with low reduced-glutathione, have been described in the 

plasma of PD patients [61–64]. 

Myo-inositol was found at a lower concentration in the mesencephalon of HαSynO-injected rats 

compared with vehicle-injected rats (p = 0.04), suggesting that reduced levels resulted from 

HαSynO-induced neuropathology. Besides being a component of phosphatidylinositol in biological 

membranes, free myo-inositol has a key role in multiple cellular processes, such as maintenance of 

membrane potential, ion channel permeability, cytoskeletal remodeling [65] and stress response. 

Changes in myo-inositol concentration may, therefore, reflect impaired neuronal membrane stability 

caused by HαSynO-induced neuronal damage, and represent an additional biomarker of oxidative 

stress. 

Interestingly, we found altered amino acids levels in the serum of HαSynO-injected rats, in line 

with reports on the serum of PD patients. Specifically, lower levels of glycine, both in the brain and 

serum, and elevated content of threonine in the brain were found. A recent study reported lower 

levels of specific amino acids, including glycine, in the serum of parkinsonian patients [46]. 

Moreover, threonine concentrations positively correlated with disease duration in PD [45]. Amino 

acids serve multiple functions and are precursors for the synthesis of a plethora of molecules from 

ATP to hormones and nucleic acids. In the brain, amino acids are profoundly involved in 

neurotransmission and affect brain functions. For instance, impaired glycine transmission was 

related to REM (Rapid Eye Movement) sleep behavior disorder [66], and changes in serum amino 

acids were correlated with PD symptoms [46]. Glycine is also used in glutathione synthesis, along 

with glutamate and cysteine [67]. Low glycine levels may, therefore, reflect the increased glutathione 

demand and consumption to face oxidative stress in PD [68–70]. Considering the altered level of 

urea that we found in the serum of the oligo class, as the possible role of urea decrease in Parkinson’s 

disease is still unknown we cannot explain the urea decrease observed in our experimental model. 

4. Materials and methods 

4.1. Production of Recombinant H-αSyn 

Recombinant HαSyn was purified in E. coli using plasmid pT7-7 encoding for the protein as 

previously described [7]. 

The expression was induced with 1 mM IPTG at 37 °C for 4 h. The cell lysate was centrifuged at 

22,000 g (Beckman Coulter, Brea, USA) for 30 min and the supernatant was then heated for 20 min at 

70 °C. After centrifugation at 22,000 g, two steps of precipitation and centrifugation were employed 

and in particular 10 mg·mL−1 streptomycin sulfate was added to the supernatant for DNA 

precipitation and, subsequently, 360 mg·ml−1 ammonium sulfate was added to the supernatant to 

precipitate the recombinant HαSyn. The obtained pellet was resuspended in 25 mM Tris-HCl, pH 7.7 

and, after dialysis against the same buffer, loaded onto an anion exchange column (26/10 Q 

sepharose high performance, GE Healthcare, Little Chalfont, UK) to be eluted with a 0–1 M NaCl 

step gradient. Further purification was obtained with size exclusion chromatography (Hiload 26/60 

Superdex 75 preparation grade, GE Healthcare). The purity of the sample was analyzed by 

SDS-PAGE and the protein concentration was determined from the absorbance at 275 nm using an 

extinction coefficient of 5600 M−1·cm−1. 

4.2. Purification of HαSynO 

Toxic oligomeric samples were prepared from purified recombinant HαSyn as previously 

described [7]. Lyophilized protein was resuspended in PBS buffer at a pH of 7.4 and a concentration 

of 12 mg·mL−1, then passed through a 0.22 μm cut off filter before incubation at 37 °C for 24 h 

without agitation. Residual fibrillar species were removed by ultracentrifugation for 1 h at 288,000 g 
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and excess of monomers were removed using several filtration steps with 100 kDa cutoff 

membranes. Samples of the toxic HαSyn oligomers prepared in this manner are stable for many days 

at room temperature, but in this study were used within two days of their production. 

4.3. Animals and Stereotaxic Surgery 

Male Sprague Dawley rats weighting 275–300g were deeply anesthetized with Fentanyl (3 

mg/Kg). HαsynOs were kept under gentle shaking at room temperature (RT) until they were infused 

into the left SNpc with 5 μL of HαSynOs (0.5 mg/mL, n = 7) or vehicle (n = 7) (coordinates from 

Bregma, according to the atlas of Paxinos and Watson, were as follows: anteroposterior: −5,4; 

mediolateral: −1,9; dorsoventral: −7,2) via a stainless-steel cannula, at the infusion rate of 1μL/min. 

The cannula was left in place for additional 5 min after infusion and then slowly withdrawn. Three 

months after surgery, animals were deeply anesthetized, sacrificed by decapitation, and blood 

samples were collected. After brain removal, the striatum and the mesencephalon from the side 

homolateral as well as contralateral to HαsynOs injection were dissected on ice, collected separately 

and stored at −80° for subsequent analysis. 

4.4. Sample Preparation 

Mesencephalic tissue: 50 mg of tissue were suspended with 600 μL of methanol. Tissue was 

homogenized for five minutes with a TissueLyser instrument (Tissuelyser 2, Quiagen, Hilden, 

Germany) and subsequently 600 μL of chloroform and 400 μL of Milli-Q water were added. After 30 

min of sonication, samples were kept at −20 °C for 20 min and then centrifuged at 8600 g for 10 min 

at 4 °C. The hydrophilic phase was collected for the instrumental analysis. The water-phase was 

concentrated overnight using a speed vacuum centrifuge (Eppendorf concentrator plus, Eppendorf 

AG, Hamburg, Germany). 

Serum: serum samples were thawed and firstly centrifuged at 1200 g for 15 min at room 

temperature (RT). An aliquot of 400 μL was mixed to 1200 μL of a chloroform/methanol 1:1 plus 175 

μL of distilled water. The samples were vortexed and centrifuged for 30 min at 1700 g at RT. Two 

phases were obtained, the hydrophilic and hydrophobic phases. The hydrophilic phase was 

concentrated overnight using a speed vacuum centrifuge (Eppendorf concentrator plus, Eppendorf 

AG, Hamburg, Germany) 

4.5. GC-MS Derivatization 

Derivatization was performed by adding 25 μL and 100 μL, respectively, for mesencephalic 

tissue and serum sample, of methoxyamine hydrochloride in pyridine solution (10 mg/mL) 

(Sigma-Aldrich, St. Louis, MO, USA) to dried brain samples at 70 °C. After 1 h, 50 and 100 μL, 

respectively, for mesencephalic tissue and serum sample of 

N-Methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA, Sigma-Aldrich, St. Louis, MO, USA) were 

added and the samples were left at room temperature for 1h. Samples were then diluted in hexane 

(50 μL for the mesencephalic tissue and 600 μL for the serum sample) with an internal standard 

(undecane at 25 ppm). For the serum samples, diluted samples were then filtered (PTFE 0.45 μm) 

and transferred into glass vials. As before, sample blanks were made to avoid noise caused by the 

laboratory instruments or by the chemicals used for the preparation, by following the same 

procedure. 

4.6. GC-MS Analysis and Data Processing 

The derivatized sample (1 μL) was injected in splitless mode into a 7890A gas chromatograph 

coupled with a 5975C Network mass spectrometer (Agilent Technologies, Santa Clara, CA, USA), 

equipped with a 30 m × 0.25 mm ID, fused silica capillary column, with a 0.25 μM TG-5MS stationary 

phase (Thermo Fisher Scientific, Waltham, MA, USA). The injector and transfer line temperatures 

were 250 °C and 280 °C, respectively. The gas flow rate through the column was 1 mL/min. The 

column initial temperature was kept at 60 °C for 3 min, then increased to 140 °C at a rate of 7 °C/min, 
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held at 140 °C for 4 min, increased to 300 °C at a rate of 5 °C/min and kept for 1 min. Identification of 

metabolites was performed using the standard NIST 08, and GMD mass spectra libraries and, when 

available, by comparison with analytical standards. 

Peak detection and retention time correction were carried out with the R library XCMS and 

parameters used for peak deconvolution were manually optimized [71]. The resulting matrices were 

processed using an in-house Python script and a total area normalization was performed to 

compensate for sample dilution biases [72]. 

4.7. Striatal DA and DOPAC Assessment. 

Striatal tissue was sonicated in 0.25 mL of 0.2 M perchloric acid and then centrifuged at 9391 g 

for 15 min at 4 °C. The supernatant was transferred and filtered in Spin-X centrifuge tube filters (0.45 

μm). The filtrate was diluted 1:10. Twenty microlitres were injected into an HPLC apparatus, 

equipped with a reverse-phase column (LC-18-DB, 15 cm, 5 μm particle size; Supelco, Milano, Italy) 

and a coulometric detector (ESA Coulochem II, Chelmsford, MA US) to quantify DA and DOPAC. 

Electrodes were set at +150 mV (oxidation) and 250 mV (reduction). The mobile phase (nM 

composition was: NaH2PO4, 100; NA2EDTA, 0.1; n-octyl sodium sulphate, 0.5; 7.5% methanol; pH 

5.5) was pumped (Jasco Europe, Italy) at 1 mL⁄min flow rate. The assay sensitivity for DA and 

DOPAC was 10 fmol/sample. 

4.8. Statistical Analysis 

Multivariate statistical analysis was performed on GC-MS data by using SIMCA-P software 

(ver. 15.0, Umetrics, Umeå, Sweden) [73]. Firstly, the variables were UV scaled and then PCA 

analysis was conducted, with the aim to explore sample distributions and to identify potential 

outliers (DmodX and Hotelling’s T2 tests were applied for this purpose). 

Supervised analysis was subsequently used. PLS-DA was employed to observe the effect of the 

oligomers on the samples compared to vehicles. For each model, the variance and the predictive 

ability (R2X, R2Y, Q2) were evaluatedand additionally and a permutation test (n = 300) was 

performed. The scores from each PLS-DA model were subjected to a CV-ANOVA to test for 

significance (p < 0.05). To study a possible linear relationship between a matrix Y (dependent 

variables, for example, the concentration of the DA and the DOPAC) and a matrix X (predictor 

variables, e.g., metabolites) a partial least squares regression (PLS) model was performed [74]. 

The variables responsible of the separation of the different classes of rats were extracted by the 

loading plot from the PLS-DA models. Significant changes of the variables concentration were tested 

through the U-Mann Whitney test followed by Holm-Bonferroni correction for multiple 

comparisons (GraphPad Prism software (version 7.01, GraphPad Software, Inc., San Diego, CA, 

USA) Finally, once the significant metabolites were selected, a Spearman correlation was performed 

between each selected significant metabolite and the levels of the DA and DOPAC. 

5. Conclusion 

The search for biomarkers of diagnosis and disease progression has been an area of intense 

investigation in PD. Compared to hypothesis-driven research, the untargeted metabolomics 

approach we used offers a great advantage to simultaneously measure different compounds, 

allowing identification of disease-specific alterations in individual compounds or metabolic 

pathways. Our analysis adds evidence supporting the role of αSyn oligomers in the aetiology of PD, 

and suggests that intracerebral HαSynO infusion is a valid preclinical model useful to identify new 

therapeutic targets and candidate biomarkers distinguishing a healthy condition from PD. 
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