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Abstract 

Prediction of disease risk is an essential part of preventative medicine, often guiding clinical 

management. Risk prediction typically includes risk factors such as age, sex, family history of 

disease, and lifestyle (e.g. smoking status); however, in recent years there has been increasing 

interest to include genomic information into risk models. Polygenic risk scores (PRS) aggregate 

the effects of many genetic variants across the human genome into a single score, and have 

recently been shown to have predictive value for multiple common diseases. In this review, we 

summarise the potential use cases for seven common diseases (breast cancer, prostate cancer, 

coronary artery disease, obesity, type 1 diabetes, type 2 diabetes, Alzheimer's disease) where 

PRS has or could have clinical utility. PRS analysis for these diseases frequently revolved 

around (i) risk prediction performance of a PRS alone and in combination with other non-genetic 

risk factors, (ii) estimation of lifetime risk trajectories, (iii) the independent information of PRS 

and family history of disease or monogenic mutations, and (iv) estimation of the value of adding 

a PRS to specific clinical risk prediction scenarios. We summarise open questions regarding 

PRS usability, ancestry bias, and transferability, emphasising the need for the next wave of 

studies to focus on the implementation and health-economic value of PRS testing. In 

conclusion, it is becoming clear that PRS have value in disease risk prediction and there are 

multiple areas where this may have clinical utility. 
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Introduction 

A multitude of human traits and diseases are heritable to varying degrees. Further, the genetic 

basis for many such traits has been established as polygenic—explained by the contributions of 

many genes, each with moderate or weak contribution to the trait, in contrast to Mendelian traits 

which are caused by variation in one gene or a small set of genes with large effect. The 

combination of large-scale genome variation projects, such as the HapMap (1) and 1000 

Genomes projects (2), together with low-cost robust genotyping platforms, has enabled 

genome-wide association studies (GWAS) on large cohorts. GWAS have focused on identifying 

disease- or trait-associated genetic variants (typically SNPs, single nucleotide polymorphisms) 

which are common in a given population (e.g. minor allele frequency [MAF]>1%). To date, 

GWAS have identified thousands of loci that are associated with a range of complex human 

traits and diseases, including cardiovascular diseases, cancers, obesity, and Alzheimer’s 

disease (3). These data have provided numerous insights into the genes and pathways that 

cause disease, but more recently the use of these data for disease risk prediction has gained 

interest (4–6). 

 

Polygenic risk scores (PRS), sometimes referred to as genomic risk scores (GRS), are one 

such method to predict an individual's genetic predisposition for disease. In its simplest and 

most common form, PRS are sums of the effects of m SNPs, based on the estimated SNP 

effect sizes  ̂ (obtained from GWAS summary statistics), 

      ∑     ̂

 

   

 

 

where     is the genotype for the ith individual and jth SNP (usually encoded as 0, 1, or 2 for the 

effect allele dosage). Typically, these scores include hundreds-to-thousands of SNPs, motivated 

by theory and data showing that many diseases are polygenic (7). In this way, PRS aggregate 

the contribution of an individual’s germline genome into a single number proportional to the risk 

for a given disease.  

 

There are numerous considerations related to the data and methods used to develop and 

validate a PRS (see (8, 9) for details). Here, we briefly summarise approaches that use GWAS 

summary statistics (alleles and effect sizes, and/or p-value) (10) rather than individual-level 

genotypes, although the principles are broadly similar. Initially, PRS tended to be constructed 

from genome-wide significant SNPs (typically, P<5x10-8), which for many diseases led to weakly 

predictive PRS as the number of genome-wide SNPs was small (11, 12). In contrast with 

GWAS, which was designed for detecting SNPs associated with the disease while maintaining a 

low false positive rate, the task of prediction allows for methods with a more lenient signal to 

noise trade-off. Thus, more powerful PRS can typically be constructed by incorporating larger 

numbers of SNPs, however, there is a trade-off between using a small number of SNPs with 

precise effect estimates and a large number of SNPs with increasingly noisy effect size 

estimates. There is no universal set of parameters for this trade-off, as they depend on the 

genetic architecture of the disease, genotyping density, and sample size. In practice, a training 
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set comprising individual-level genotypes and phenotypes is often used to optimise the PRS. 

Using an independent validation dataset, or cross-validation, allows unbiased estimation of the 

predictive performance, avoiding optimism due to overfitting. Generally, once predictive 

performance plateaus or declines in the validation set, the optimal trade-off of signal and noise 

has been reached. 

 

Another consideration is linkage disequilibrium (LD), the correlations between nearby SNPs, 

which leads to over-representation of high LD regions in the model, thus potentially reducing its 

predictive performance. Common methods for constructing PRS include LD pruning (randomly 

removing one SNP from a pair in high LD), P-value thresholding, and clumping (pruning by LD 

while referentially retaining more significantly-associated SNPs), as well as more complex 

methods that explicitly account for LD, such as LDpred (13) and lassosum (14). The result of 

PRS development is the set of SNPs and effect sizes that can be applied to an independent 

sample. 

 

After the PRS has been constructed, it is essential to assess its predictive performance with the 

disease of interest in an external cohort, one not used for the underlying GWAS or for tuning the 

PRS. The accuracy of a PRS is bounded by the disease's heritability (total amount of disease 

variance that can be explained by genetics), and current PRS agree with estimates from theory 

(see Box 1). For polygenic scores of quantitative traits, the effect size per standard deviation 

(SD) change is usually reported, as well as the proportion of variance explained (R2) by the 

score. However, as most diseases are binary outcomes, the effect sizes are expressed as odds 

ratios (OR) or hazard ratios (HR), depending on the study design (case/control vs. prospective) 

and the availability of age at event. The model’s performance can be measured using variance 

explained (Nagelkerke's or pseudo-R2), or classification accuracy using area under the receiver-

operating characteristic curve (AUC), the area under the precision-recall curve (AUPRC), or 

Harrell’s C-index (15). However, caution must be exercised when interpreting prediction metrics 

such as AUC or C-index without sufficient context; even small increases in these metrics can 

lead to several percent of the population being reclassified into different risk categories, 

changing their clinical management. Further, these metrics do not take into account the costs 

and benefits of various clinical decisions (e.g. use of statins), which can only be done within a 

public health and health-economic framework. In addition, when comparing metrics across 

studies, it is important to note that the ancestry as well as study design (e.g. covariates included 

in the risk model) can affect these measures (as well as the standard deviation of the PRS). 

Potential for PRS utility 

We reviewed the literature for seven well-studied diseases where PRS could potentially have 

clinical value. These diseases include coronary artery disease (CAD), diabetes (types 1 and 2), 

obesity (and body mass index (BMI)), breast cancer, prostate cancer, and Alzheimer's disease. 

Table 1 summarizes information about each disease, their conventional risk factors, potential 

uses of a PRS, and recent references evaluating the clinical use of PRS in each case. A 

common theme is the expectation that the utility of PRS will be to predict future disease risk or 

identify those most at risk, and use this information to target treatments or alter screening 
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paradigms. In this section, we elaborate on two examples where the clinical benefit of a PRS 

has been suggested: (i) providing better CAD risk estimates to guide treatments, and (ii) the 

potential to target screening to populations at high risk of prostate cancer.  

 

For cardiovascular disease, traditional risk factors such as systolic blood pressure, cholesterol 

levels, and smoking habits (Table 1) are routinely used to predict risk and guide initiation of 

treatment (e.g. statins) to lower low-density lipoprotein (LDL) cholesterol and reduce the disease 

risk. Recent studies have shown that adding PRS for CAD to the Framingham Risk Score and 

the ACC/AHA pooled risk equations resulted in increased predictive power (16). Additionally, in 

two re-analyses of clinical trials evaluating the effect of statin use on cardiovascular disease 

prevention, it was shown that the treatment benefit (absolute CAD risk reduction) was highest in 

those with the highest CAD polygenic risk (17, 18). The MI-GENES study found that disclosing 

CAD genetic risk to patients when deciding whether to initiate statin therapy resulted in 

improved LDL reduction, and the effect was again higher in those with the most genetic risk 

(19). Preliminary health economic analysis has also shown the potential cost benefits of using 

PRS in targeted testing for CAD prevention within the Finnish health system (20). Together 

these results show that a PRS for CAD can inform a more accurate risk estimate and define 

individuals most likely to benefit from statin therapy; however, the exact net benefit will likely 

vary across health systems and thus will require evaluation within each one. 

 

Another potential use case for PRS may be to increase the utility of lower sensitivity diagnostics. 

The serum prostate-specific antigen (PSA) test was used to screen for prostate cancer, but 

large trials showed that it results in a significant amount of overdiagnosis (false-positives leading 

to overtreatment) (21); while still used in diagnosis it has been abandoned for broad screening. 

Multiple prostate cancer PRS have been developed that can accurately stratify individual’s risk; 

a key finding from these studies has been that the probability of overdiagnosis by screening 

decreases as individual’s prostate cancer polygenic risk increases (22–24). This finding 

suggests that the PSA test could be targeted to a higher-risk population, as measured by a 

PRS, where the  PSA test has a higher positive predictive value. In other disease areas there is 

similar interest in adjusting screening test frequency and/or age of initiation, and in breast 

cancer the WISDOM clinical trial (25) is currently evaluating the use of risk (including PRS) 

instead of age-based guidelines (26) to guide these decisions. 

Lessons learned from PRS prediction studies 

PRS define a lifetime risk trajectory 

The majority of common complex diseases are late onset, with risk accumulating over time. Age 

is typically the strongest predictor of risk for many common diseases (Table 1), since it 

encapsulates the time dimension over which environmental exposures (risk factors) occur, as 

well as the ageing process (which can accelerate disease processes) (Figure 1). Thus the goal 

of risk prediction for such diseases is to evaluate whether the risk, either lifetime risk or shorter 

time horizons (e.g. 10-year risk), is higher than a threshold given by clinical guidelines or by 
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age-adjusted average risk. The predicted risk can then be used to plan appropriate clinical 

action, whether it be treatment or increased screening. The shape of this risk trajectory can be 

different from birth, and is modified by an individual’s genetics as well as environment and 

behaviors, such as smoking, diet, exercise, and medication usage. 

 

Analyses across a range of complex diseases have utilised methods from survival analysis to 

examine how PRS affect the trajectory of cumulative risk over a lifetime, including CAD (16, 27), 

breast cancer (28, 29), prostate cancer (23), Alzheimer’s disease (30, 31), and weight gain 

trajectories (32). These trajectories stratified by genetic risk can be estimated from an early age, 

prior to any clinical risk factors manifesting. For example, an average male in the UK Biobank 

would reach 10% cumulative risk of CAD by the age of 68 (27). On the other hand, individuals 

with the highest and lowest 20% of CAD PRS would attain 10% cumulative risk by 61 and 75 

years, respectively. Similarly, the risk trajectory of breast cancer was modified in a cohort of 

Estonian women (29), whereby at age 70 the average risk of breast cancer was 5%, but was 

12% for those >95th percentile of genetic risk, and 2.4% in those of the bottom quintile. Taken 

together, and with evidence from other diseases, it is clear that genetic risk can substantially 

stratify individual disease risk trajectories above what can be predicted by age alone. 

PRS capture risk not quantified by family history and rare 

monogenic mutations 

Two other major predictors that have been used for disease risk prediction are (i) family history 

and (ii) monogenic mutations.  

 

A family history of disease is a composite of genetic risk (both common and rare) and a shared 

environment. For instance, many breast cancer risk prediction methods implemented in clinical 

practice (e.g. BOADICEA (33)) use family history, often represented in a pedigree, to estimate 

risk alongside other predictors. Family history, however, suffers from several drawbacks: (i) 

family history depends on actual disease events occurring (a cancer diagnosis), and thus 

cannot detect individuals who are at high risk but have not experienced an event; (ii) complex 

trait theory predicts that the majority of cases of complex disease arise in individuals without any 

family history of disease (sporadic cases) (34); and (iii) family history information is often 

incomplete or imprecise in practice, leading to further reduction in its predictive power. 

 

PRS can be thought of as a method to explicitly capture the common polygenic component of 

family history. Indeed, even early PRS could predict lower prevalence diseases better than 

family history (35). Recently, more predictive PRS for higher prevalence disease, such as CAD, 

have been shown to be associated with CAD independently of family history (16, 36). Since 

family history includes an environmental as well as genetic component, we expect that as PRS 

get more powerful, they will better capture the common genetic component of family history, 

without affecting the shared environment or the monogenic (rare) component. Thus, it is likely 

that for prediction purposes, models combining both family history and PRS will be stronger 

than any one of the two single factors, and that family history will not be made redundant by 

PRS.  
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Another form of genetic risk is monogenic in origin, namely, Mendelian germline mutations with 

high penetrance. Such examples are given by BRCA1/2 for breast, ovarian, and prostate 

cancers, and familial hypercholesterolemia (FH, caused by LDLR/APOB/PCSK9 mutations) for 

CAD. While these mutations are often highly penetrant, their relative rarity in the population 

means that they only explain a small fraction of disease cases. Furthermore, these rare genetic 

variants are generally not well-genotyped by standard genome-wide genotyping arrays (nor 

well-imputed from reference panels) (37), such that PRS derived from standard GWAS 

summary statistics with typical MAF thresholds do not capture rarer variation with high 

accuracy.  

 

Comparing the relative contributions of polygenic and monogenic risk is not straightforward 

since PRS represent continuous risk while monogenic risk is typically represented as 

presence/absence of known mutations. One approach used by Khera et al. (2018) was to find 

what proportion of the population had a PRS level high enough to be considered as equivalent 

to carrying monogenic mutations. For example, the top 8% CAD PRS confers an odds ratio of 3, 

which is similar to that of FH (38, 39), but far more prevalent (1 in 13 and 1 in 200 for the PRS 

top 8% and FH, respectively), thus representing a much higher disease burden on the 

population level. 

 

Since monogenic and polygenic risk are largely independent, individuals can inherit any 

combination of these two factors, and some small proportion of the population may receive both 

high polygenic risk as well as monogenic mutations for the same disease, putting them at 

extreme risk; conversely, some monogenic carriers may be at lower risk than their average 

peers. This has been shown for LDL cholesterol levels in carriers of both FH mutations and high 

CAD risk (39), and by the ability of CAD PRS to predict CAD in cohorts of high-risk FH cases 

(16, 40). Outside of CAD, PRS for diseases have been combined with well-studied mutations to 

show that PRS provides additional stratification in carriers of BRCA1/2 mutations in prostate 

cancer (41) and breast cancer (42), and APOE ε4 carriers in Alzheimer’s disease (30, 43–45). 

There is some evidence from Alzheimer’s disease (44) and breast cancer (42) that polygenic 

risk may interact non-additively with monogenic risk, but more research is needed to understand 

the impact on risk prediction. Ultimately, combined monogenic/polygenic scores will likely 

provide the most information for individual risk prediction. 

PRS are largely independent of traditional risk factors and can 

improve current clinical risk prediction models 

When considering adding PRS to risk models based on traditional risk factors, there are three 

main questions: (i) is the PRS associated with disease risk independently of traditional risk 

factors; (ii) does the PRS combine additively or non-additively with traditional risk factors in 

affecting risk; and (iii) does the PRS increase predictive power over traditional risk factors.  

 

The PRS for several diseases have been shown to be associated with disease risk largely 

independently of traditional risk factors. For example, in CAD, the association of PRS with 
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disease is only partially attenuated by adjusting for a range of traditional risk factors such as 

systolic blood pressure, LDL cholesterol, BMI, and others (16, 27, 46). In addition, the PRSs are 

often only weakly associated with these risk factors. This is likely due to several reasons: (i) 

PRS are based on a large number of SNPs representing a multitude of biological pathways, 

some of which are not represented by traditional risk factors; (ii) many risk factors are 

themselves driven both by genetics and environment, and PRS can only capture the genetic 

component; (iii) current PRS are incomplete in that they typically only explain a small proportion 

of heritability; (iv) some risk factors, such as blood pressure, can exhibit substantial temporal 

variation and noise in measurements, whereas the PRS is capturing a life-long effect. 

 

A subsequent question is whether PRS and traditional risk factors combine additively in 

affecting disease, or does one modify the other in a non-additive way (statistical interaction). 

Results so far in CAD (16, 27) indicate that PRS and traditional risk factors combine largely 

additively; there is some evidence that PRS for breast cancer may interact with a minority of its 

risk factors including alcohol consumption, height, and hormone therapy (47), however, it is 

unknown whether the magnitude of these interactions has substantial implications for improved 

risk prediction. 

 

The final issue is whether PRS add substantial new information on top of traditional risk factors 

as to increase predictive power. In breast cancer this has been tested with multiple PRS 

(varying in GWAS summary statistics, training datasets, number of SNPs in the score) and 

multiple established risk predictors (varying in the genetic and non-genetic risk factors included; 

models listed in Table 1 and (48, 49)). In a systematic review and meta-analysis of these 

studies Fung et al. found that the AUC of any risk predictor improved by 0.004 with the inclusion 

of a PRS, and the net reclassification improvement (NRI, a measure of change in classification 

accuracy based on established risk thresholds) improved in all studies but one (49); however, 

care should be taken when interpreting these results as all of the scores included fewer than 

100 SNPs. In a recent study of PRS utility for risk prediction in 101 breast cancer families 

without BRCA1/2 mutations the inclusion of a 161 SNP PRS into the BOADICEA changed 

screening recommendations for 11.5–19.8% of women based on the risk guidelines used (50). 

Using another recent PRS (PRS-77; (51)) resulted in similar fraction of risk categories changing 

when included into BOADICEA and a number of other risk prediction methods (BRCAPRO, 

BCRAT, and IBIS) in a small Australian cohort (52), and a smaller 67 SNP PRS was 

independently predictive of risk when included in the Gail risk model along with mammographic 

density and endogenous hormones (53) (similar findings are observed using PRS-77 (54)). The 

use of larger cancer PRS (28, 29, 38) will likely improve risk stratification further. 

PRS are most informative for prevention 

While there is benefit to adding PRS to existing clinical risk scores, the unique characteristics of 

PRS open up possibilities for earlier prevention. Indeed, a study to predict the development of 

T1D in high-risk children (family history of T1D) found that a PRS was only predictive of 

progression to T1D before any metabolic abnormalities were present (high DPT-1 score), 

indicating the value of a T1D PRS for predicting those likely to progress to disease (55). For 
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cardiovascular disease, traditional risk factors are typically not measured early in life and can 

have substantial temporal variation. In contrast, individuals can be genotyped early in life, and 

have their PRS for a wide range of complex diseases. For those at substantially increased 

lifetime risk of disease, but without elevated traditional risk factors, targeted lifestyle 

interventions could be used to reduce their risk, for example by more frequent follow-ups or 

more stringent targets for traditional risk factors (e.g. cholesterol) (56).  

Open questions and challenges for the PRS field 

We have outlined the value and potential of PRS for disease risk prediction but there remain a 

number of technical, practical, and ethical concerns that should be resolved before widespread 

clinical adoption. 

Improving the replicability and comparability of PRS predictions 

Currently PRS exist in the research domain, where scores methods and standards are 

constantly developing. The PRS for a single disease area can vary widely in their risk 

predictions because they will include different numbers (10–106) and non-overlapping sets of 

SNPs, with different effect sizes in different scores, depending on the GWAS summary statistics 

used to create the score (e.g., number of samples and their ancestry, phenotype definition, 

imputation panel for SNPs), along with the computational method and samples used to train the 

score. Apparent performance can also vary due to the covariates adjusted for in the risk 

prediction, such as age and sex. We believe this lack of consistency to be a prime concern for 

the PRS field and additional resources, such as a centralised public database of published 

polygenic scores, are necessary to increase PRS comparability and evaluation, and thus 

improve their potential for translation. However, further major challenges remain, including those 

as discussed below: increasing the diversity of genotyped cohorts to reduce the bias of PRS 

performance for European ancestries; investigating sex-based differences in PRS performance; 

and delineating clinical utility in disease-specific scenarios, rather than relying on generic 

prediction metrics, such as AUC.  

Sources of bias in PRS predictions: stratification by ancestry and 

sex? 

Currently, the majority of PRS are developed and evaluated using individuals of European 

ancestries, since the majority of GWAS and genetic reference panels (used for imputation) are 

currently biased toward European ancestries (57, 58). Because of this it has been observed that 

PRS developed using data from European ancestries are less predictive in non-European 

ancestries (59–63). There are various possible reasons for this lack of transferability including (i) 

population stratification in the original summary statistics (confounding the association results); 

(ii) differences in LD patterns between ancestries; and (iii) differences in the true genetic 

architectures of disease, including gene-environment interactions (58, 64). 
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Population stratification can generally be adjusted for during the GWAS or in the evaluation of 

the score on new datasets, using principal component analysis (PCA) or linear mixed models 

(65). Care must be taken even within a single ancestry group, as there can be regional 

variations of PRS driven by subtle population stratification (66, 67). As for performance 

differences due to diverging LD patterns, these arise since many of the GWAS SNPs are not 

necessarily the causal SNP but are in LD with the causal SNP (tagging), however due to 

differences in LD between populations, the causal SNPs may no longer be well tagged, leading 

to reduced performance (58, 64). 

 

The issue of differences in genetic architecture differing by ancestry groups is difficult to assess 

without large GWAS in non-European ancestries. So far, the evidence from diseases such as 

T2D is that the genetic architecture is largely concordant between European and non-European 

ancestries (68–71); and directionally concordant effect sizes between different ancestries have 

been observed in multiple other comparisons of GWAS across ancestral groups (72–74). 

Assuming that this holds across the majority of complex diseases, LD differences are likely the 

main challenge to overcome. Some proposed solutions include a single pan-ancestry PRS or 

creating different ancestry-specific PRSs (62, 75–77). A related challenge will then be how to 

accurately align an individual to a PRS based on their ancestry. 

 

Another important yet relatively unexplored aspect of PRS predictive differences are how they 

differ by sex. Many traits, including disease risk, differ by sex and some of that may be partly 

genetic (78). However, most GWAS are not sex-specific, and often exclude sex chromosomes 

(particularly X) from the analysis. This is an area of interest for future PRS research, with recent 

results showing stronger predictive power for obesity (79) and Alzheimer’s disease (80) using 

sex-specific PRS. 

What is the value of PRS, and how do we achieve it? 

In this review we have outlined the benefits of how PRS can improve risk prediction, and 

highlighted cases of potential clinical utility. However, the evaluation of a PRS in public health 

and health economic terms as well as in feasibility of implementation is necessary to motivate 

adoption; these aspects, however, have not been extensively explored. Public health, economic, 

and implementation assessment will be highly dependent on the PRS use case and costs of the 

clinical action (e.g. medication, or altered screening guidelines). A previous review outlined the 

potential value of PRS in optimally allocating therapies in reducing the Number Needed to Treat 

(NNT) (81), however cost-benefit analysis represent another large step to be taken. To our 

knowledge the cost-benefit of PRS testing has only been explored in CAD and breast cancer. In 

a simulation framework of the Finnish health system, it was found that an optimal allocation of a 

CAD PRS alongside traditional risk factors would be cost-beneficial if deployed in a targeted, 

rather than population-wide, approach (20). In a UK-based analysis of the benefits of allocating 

breast cancer screening using risk-based (a combined predictor including a PRS) rather than 

age-based estimates would improve the cost-effectiveness and the benefit-to-harm ratio over 

current guidelines (26). While these cases suggest the value of genetic testing in their specific 

use cases, they may be underestimating the potential benefit due to the multiple PRS that can 

be estimated from a single genotype array. It is possible that there would be a significant health 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddz187/5540980 by U

niversity of C
am

bridge user on 31 July 2019



 10 

and economic benefit for genotyping once and receiving concurrent risk predictions for multiple 

diseases, optimizing treatment or screening for each.  

Conclusions 

Sixteen years since the human genome sequence was finished and nearly 13 years since the 

GWAS era began, PRS have emerged as a powerful tool to predict genetic predisposition of 

disease. For the seven diseases we evaluate here, the addition of PRS generally increased the 

accuracy of existing risk models of established risk factors, with the resulting improved risk 

prediction models affecting clinical management (diagnostic screening and/or treatment) in 

sizeable fractions of patients (~10% in the case of breast cancer). While these studies 

demonstrate the potential clinical impact and benefits of using PRS, there are still open 

questions regarding their eventual utility.   

 

The utility of PRS for informing disease risk is further evidenced by its practical implementation 

as a one-time, minimally invasive DNA extraction (e.g. saliva or blood draw) at any point in a 

lifetime, coupled with low-cost array genotyping and, in the future, genome sequencing. A single 

individual's genotype data allows for the parallel calculation of PRS for many diseases. From 

this single test, preexisting risk prediction models for multiple diseases appear to be improved, 

and lifetime risk trajectories can be estimated. In the future, these risk estimates may be used to 

guide screening frequencies, therapeutic interventions, and targeted recommendations for 

lifestyle. Regardless, the predictive accuracy of PRS will continue to improve with larger and 

more diverse cohorts as well as improved methods to derive and apply PRS, all of which are 

likely to increase the potential clinical utility of PRS and accelerate translation. 
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Display Items  

 

Box 1: Empirical results for CAD closely follow predictions from polygenic trait theory. 

Under an additive genetic liability threshold model, by assuming several key quantities, 

including population prevalence K, heritability h2 (on the liability scale) (and/or the sibling 

recurrence risk λs), we can derive the expected predictive power of a PRS, measured in 

sensitivity, specificity, AUC, and other quantities (82, 83). 

 

The adjacent figure shows 

simulation results for two 

scenarios relevant to CAD 

(assuming a population 

prevalence K=0.05 and 

h2=0.5): (a) a PRS explaining 

10% of the phenotypic 

variance, similar to the results 

achieved by the latest CAD 

PRS (27); and (b) the results 

for a PRS explaining all the 

known heritability of CAD 

(50% of the phenotypic 

variance). Clearly, as the PRS 

explains more of the 

heritability, there is greater 

separation between the 

average scores of cases and 

non-cases (quantified by the AUC) and corresponding effect sizes (ORstdev). For a disease such 

as CAD, the expected AUC from a PRS explaining all of the known heritability is 0.9. For 

scenario (i), the top 5% of the population will have an average absolute (lifetime) CAD risk of 

15%, but for scenario (ii) this goes up to a risk of 40%, and the top 15% of the population have a 

risk of >10%.  

 

Note that the genetic liability threshold model does not have direct bearing on how to increase 

the heritability explained by PRS, only what are the consequences of the increase. To increase 

the explained heritability we will likely need larger GWAS sample sizes (84, 85), together with 

wider genotyping of rarer genetic variants, such as via whole-genome sequencing (86, 87). In 

the absence of larger sample sizes, multi-trait prediction models can also be used to make small 

but consistent gains in predictive power (88, 89). 
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Table 1. An overview of PRS in seven different diseases. 

Cardiometabolic Traits/Diseases 

Obesity & BMI 

Risk 
Factors 

Mendelian Risk 
Factors 

MC4R mutations  

Other Factors 
Age, Sex, Family History 
Lifestyle: Diet, Physical Activity 

Potential clinical utility for PRS 

 Targeting lifestyle interventions and potential treatments (e.g. bariatric 
surgery) to those at most risk of developing obesity 

 BMI PRS is enriched in those who have undergone bariatric 
surgery in UK biobank (32) 

 Predicting weight gain trajectories (32, 90, 91) 

 Useful as a risk predictor of other diseases where obesity is a causal 
risk factor (79) 

Coronary artery disease (CAD) 

Risk 
Factors 

Mendelian Risk 
Factors 

Familial Hypercholesterolemia (FH) mutations: LDLR, APOB, PCSK9 

Other Factors 
Age, Sex, Family History 
Systolic blood pressure, LDL or non-HDL cholesterol, BMI 
Lifestyle: Smoking, Diet, Physical Activity 

Potential clinical utility for PRS 

 Adds accuracy to clinical risk predictors (e.g. Framingham Risk Score, 
ACC/AHA13 (16)) 

 Useful for defining most benefit from statin prescription (17, 18) 

 Useful for estimating lifetime risk trajectories (27, 56) 

Diabetes (Type 1) 

Risk 
Factors 

Mendelian Risk 
Factors 

Maturity onset diabetes of the young (MODY) related genes 
HLA susceptibility alleles 
 

Other Factors 
Age, Sex, Family History 
DPT-1 Metabolic Risk Score: BMI, glucose, and C-peptide 
 

Potential clinical utility for PRS 
 Predicting at-risk children who are most likely to progress to disease 

(55, 75, 92, 93) 

 Discriminating between Type 1 and 2 Diabetes (93) 

Diabetes (Type 2)  

Risk 
Factors 

Mendelian Risk 
Factors 

 Undetermined 

Other Factors 

Age, Sex, Family History 
BMI, waist circumference, waist-hip ratio, history of hypertension, history of 
high blood glucose 
Lifestyle: Smoking, Diet, Physical Activity level 

Potential clinical utility for PRS 
 Adding additional stratification to already accurate risk models (e.g. 

age, sex, BMI) (94) 

 Estimating lifetime risk trajectories (94) 

Cancers 
Breast Cancer 

Risk 
Factors 

Mendelian Risk 
Factors 

Pathogenic BRCA1/2 mutations 
Lower risk pathogenic variants: PALB2, ATM, CHEK2 

Other Factors 
Age, Sex, Family History 
Age at menarche, age at menopause, nulliparity and age at first childbirth, 
BMI, Hormone replacement therapy 

Potential clinical utility for PRS 
 Currently implemented within the BOADICEA risk model (33) 

 Added to other models including: Gail, Tyrer-Cusick, BCSC, BI-
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RADS, Rosner-Colditz, NCI (29, 49, 53) 

 Has value when included in risk models that can be applied to study 
risk-based vs. age-based screening programs (26) 

 Disease subtyping: Can be used to estimate genetic risk for ER-
positive or negative breast cancer separately (28) 

Prostate Cancer 

Risk 
Factors 

Mendelian Risk 
Factors 

Pathogenic BRCA1/2 mutations 

Other Factors Age, Sex, Family History 

Potential clinical utility for PRS 

 Improve predictions for risk-based screening and target PSA test to 
those with higher genetic risk (22) 

 Positive predictive value (PPV) of the PSA test increases with genetic 
risk (23) 

Other 
Alzheimer's Disease 

Risk 
Factors 

Mendelian Risk 
Factors 

APOE ε4 and ε2 alleles 

Other Factors Age, Sex, Family History 

Potential clinical utility for PRS 
 Current polygenic scores can explain the majority of heritability for 

common variants (95) 

 Polygenic Hazard Scores (PHS) to estimate age-of-onset (30) 
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Figure 1. PRS define lifetime risk trajectories. (A) Example density plot of a population 

according to polygenic risk. The distribution is filled and labeled according to the lowest (0-20%; 

blue), population average (40-60%; grey), and highest (80-100%; red) quintiles of genetic risk. 

(B). Example of a risk trajectory (Kaplan-Meier cumulative risk curve) for the population average 

(grey), and the highest and lowest quintiles of genetic risk (coloured as in A). Representative 

risk threshold shown for example. 
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