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ABSTRACT
We measure the variation of the escape speed of the Milky Way across a range of ∼40 kpc in
Galactocentric radius. The local escape speed is found to be 521+46

−30 km s−1, in good agreement
with other studies. We find that this has already fallen to 379+34

−28 km s−1 at a radius of 50 kpc.
Through measuring the escape speed and its variation, we obtain constraints on the Galactic
mass profile and rotation curve. The gradient in the escape speed suggests that the total mass
contained within 50 kpc is 30+7

−5 × 1010 M�, implying a relatively light dark halo for the Milky
Way. The local circular speed is found to be vc(R0) = 223+40

−34 km s−1 and falls with radius as
a power law with index −0.19 ± 0.05. Our method represents a novel way of estimating the
mass of the Galaxy, and has very different systematics to more commonly used models of
tracers, which are more sensitive to the central parts of the halo velocity distributions. Using
our inference on the escape speed, we then investigate the orbits of high-speed Milky Way
dwarf galaxies. For each considered dwarf, we predict small pericentre radii and large orbital
eccentricities. This naturally explains the large observed ellipticities of two of the dwarfs,
which are likely to have been heavily disrupted at pericentre.
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1 IN T RO D U C T I O N

The fastest moving stars have long been a subject of fascination
and speculation. Vibert Douglas (1956) recounts a discussion be-
tween Kopff and Eddington on horse-racing, an enthusiasm of the
latter. Kopff stated he was not interested because of course one
horse will always run faster than another. ‘But why’, retorted Ed-
dington. ‘When one star moves faster, you are very interested!’ The
fastest moving stars are intriguing both because of the processes that
accelerated them and because they are probes of their environment.

The local escape speed vesc is a measure of the depth of the
potential well at the solar position �(R0). Therefore, the veloci-
ties of the speediest stars passing through the solar neighbourhood
can in principle provide information on the enclosed mass. There
were early investigations on the local escape speed by Caldwell
& Ostriker (1981) and Alexander (1982), who suggested values
∼450 km s−1. The analysis methods were extended and system-
atized by Leonard & Tremaine (1990), who emphasized the impor-
tance of modelling the shape of the tail of the velocity distribution.
They provided a number of physically inspired models and con-
cluded that vesc lay between 450 and 650 km s−1 with 90 per cent
confidence. The recent spectroscopic surveys of the Galaxy have
stimulated a surge of activity, notably by Smith et al. (2007, here-
after S07) and Piffl et al. (2014, hereafter P14). These authors used
data from the RAdial Velocity Experiment spectroscopic survey,

� E-mail: aamw3@ast.cam.ac.uk

which provided an abundance of information on the kinematics
of local stars. P14, who defined the escape speed as the mini-
mum speed needed to reach three virial radii, concluded that it was
533+54

−41 km s−1 (90 per cent confidence), albeit on the basis of a
small sample.

There are some obvious drawbacks. First, there is no guarantee
that the high-velocity tail of the distribution function (DF) is actually
occupied all the way up to the escape speed. This may mean that
the velocity of the fastest moving star is an underestimate of the
true escape speed. Second, the method is sensitive to interlopers or
contaminants, which may be unrepresentative of a smooth, relaxed
stellar population. This includes stars in the process of leaving
the Galaxy, such as hypervelocity stars ejected by interaction of
binaries with black holes (e.g. Brown 2015; Boubert & Evans 2016).
Stars may also be unbound from the Milky Way but none the less
bound to the Local Group. Although no such stars are known,
the phenomenon is familiar to us through the intergalactic stars
identified in nearby clusters like Fornax (Theuns & Warren 1997).
Third, and perhaps most awkwardly, the spatial distribution of the
highest energy stars is set by the stochastic patterns of cosmic
accretion. Therefore, the concept of a smooth velocity distribution
may be a fiction at the highest energies, even at locations in the
inner Galaxy.

These disadvantages are offset by a number of assets. First, only
the high-velocity tail of the DF need be modelled, as opposed to its
entirety. This is clearly a massive simplification that sidesteps much
of the complexity in building DFs. Second, the method provides
a nice counterpoint to other ways of measuring the potential (or
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equivalently the mass) of the Galaxy. For example, methods based
on the Jeans equations use the first and second moments of the
distribution, and so are controlled by the main bulk rather than the
tail. And, third, future prospects are bright, with huge new data sets
of line-of-sight velocities from spectroscopic surveys and of proper
motions from the Gaia astrometric satellite becoming available.

All previous work has focused on measuring the escape speed lo-
cally. This is because samples of high-velocity stars have been small
(sometimes minute, for example S07 used just 16 stars, whilst P14
relied on 86 stars) and concentrated in the solar neighbourhood. In
this paper, we present the first measurements of the escape speed
throughout the Galaxy using a variety of tracers – main-sequence
turn-off stars (MSTOs), blue horizontal branch stars (BHBs) and
K-giants – extracted from the Sloan Digital Sky Survey (SDSS).
Although the MSTOs are located at heliocentric distances within
∼3 kpc, the BHBs and K-giants in our sample extend out to Galac-
tocentric radii of ∼50 kpc, providing much greater reach.

Section 2 describes the likelihood function and models for the
tail of the velocity distribution, primarily following the formalism
established by Leonard & Tremaine (1990). We discuss our tracers
and distance estimators in Section 3. This includes the cuts used
to build the samples of MSTOs, BHBs and K-giants, as well as to
extract the high-velocity stars. Our chosen parametrizations of vesc

are given in Section 4, and our analysis methods are described in
Section 5. Section 6 presents our results and their implications for
the mass profile and rotation curve of the Galaxy, and discusses
the possible orbits of three fast moving Galactic satellite galaxies
(Bootes III, Triangulum II and Hercules).

2 M E T H O D

A star travelling at the Galactic escape speed vesc(x) possesses just
enough energy to free itself from the Milky Way’s potential well.
Consequently, a measurement of the escape speed is linked to a
measurement of the potential, �(x). In a spherical galaxy, the two
quantities are related through the energy equation

1

2
vesc

2(r) + �(r) = �(rmax), (1)

so that a star travelling at speed vesc(r) at radius r will be stationary at
rmax, the radius beyond which stars are no longer bound to the Milky
Way. If the Galaxy existed in isolation then rmax = ∞, but in practice
rmax quantifies the distance a star must reach from the Galactic
Centre before it falls into another potential well.1 A measurement
of vesc(r) therefore amounts to quantifying

√−2 [�(r) − �(rmax)].
Importantly, if one maps the escape speed across some range in

radius, then the mass enclosed within this range may be inferred
directly from the escape speed and its derivative. The mass of a
spherically symmetric system is given by

M(r) = r2

G

d�

dr
. (2)

Eliminating �(r) using equation (1) gives

M(r) = −r2 vesc

G

dvesc

dr
, (3)

and so the mass within radius r is directly related to vesc and dvesc/dr.
A direct parametrization of the escape speed is preferable because
it reduces possible systematic biases that could arise from instead

1 Andromeda is ∼800 kpc from the Milky Way, so a rough estimate for rmax

is 400 kpc.

modelling the potential. First, if the potential is modelled, then
a value for rmax must be assumed or inferred. Second, the mass
profile of the Galaxy must be assumed out to rmax. Since rmax is
large, and lies far beyond where data are available, this extrapo-
lation can introduce further systematic bias. Indeed, P14 showed
that setting rmax = 3 Rvir instead of rmax = ∞ (as was assumed by
S07) introduced a 20 per cent difference in the inferred virial mass.
In this work, we will therefore work with direct parametrizations
of the escape speed itself, rather than models of the gravitational
potential.

Leonard & Tremaine (1990) proposed that the velocity distribu-
tion of high-speed stars is a power law of the form

p(v) ∝
{

(vesc − v)k if vmin ≤ v < vesc,

0 otherwise,
(4)

where vmin is a cut-off such that p(v < vmin) begins to deviate from
a power law. Since the model depends only on the speed v, the
full velocity DF is implicitly isotropic. An obvious yet important
assumption of this model is that stellar velocity distribution really
does extend to vesc, instead of truncating at some smaller value.
Cosmological simulations provide some reassurance that this is
likely the case: S07 showed that star particles are seen with speeds
�0.9 vesc, so that premature truncations in the stellar velocity dis-
tribution may only cause small biases. Reasoning that line-of-sight
velocities are measured far more precisely than transverse veloci-
ties, it is useful to marginalize the above model over proper motion.
This gives

p(v||) ∝
{

(vesc − |v|||)k+1 if vmin ≤ v|| < vesc,

0 otherwise,
(5)

where v|| is the line-of-sight velocity from the perspective of an
observer who is stationary with respect to the Galactic Centre at the
location of the Sun (hereafter ‘Galactocentric line-of-sight velocity’
or simply ‘line-of-sight velocity’). Since we are only interested in
the absolute value of v|| in this work, we shall refer to |v||| as v|| for
brevity.

This model has been applied to data several times, most no-
tably by S07 and P14 using data from the RAVE survey (Kordopatis
et al. 2013). Both studies used small samples of stars (<100) close
to the sun and found vesc ∼ 530 km s−1. We seek to extend their
work by constraining the escape speed of the Galaxy at a variety
of locations. We do this by parametrizing the escape speed as a
function of position x, so that

p(v|| | x) =
{

C (vesc(x) − |v|||)k+1 if vmin ≤ v|| < vesc(x),
0 otherwise,

(6)

where C is a location-dependent normalization factor, given by

C = k + 2

(vesc(x) − vmin)k+2
. (7)

By far the largest source of uncertainty in our analysis is in the
distance to each star. Consequently, we consider the uncertainty in
the line-of-sight velocity, longitude and latitude to be negligible.
Our likelihood function should therefore be the probability of a
line-of-sight velocity, given Galactic coordinates and an imperfect
inference on the distance to the star. Writing x = (�, b, s), where
(�, b) are Galactic longitude and latitude, respectively, and s is the
measured line-of-sight distance to the star, we then have

p(v|| | �, b, s) =
∫

p(v|| | �, b, s ′)p(s ′ | s) ds ′. (8)
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p(s′ | s) is the probability that s′ is the true distance to the star given
our imperfect inference s. Finally, we also include a Gaussian outlier
model for possibly unbound stars

pout(v||) = A√
2 π σ 2

exp
(−v||2/2σ 2

)
, (9)

where we fix σ = 1000 km s−1, and A is the normalization of the
Gaussian over the interval [vmin, ∞]. We then introduce a free
parameter f for the fraction of outliers, so that the overall likelihood
function is

ptot(v|| | �, b, s) = (1 − f ) p(v|| | �, b, s) + f pout(v||). (10)

This equation represents the likelihood that we will use for the
remainder of the paper, while making specific choices for vesc(x).
In practice, we compute the RHS of equation (8) using Monte Carlo
integration so that

p(v|| | �, b, s) 
 1

N

N∑
n=1

p(v|| | �, b, sn), (11)

where each of the sn is drawn from p(s′ | s).

3 SA M P L E SE L E C T I O N

In order to measure the variation in the escape speed with position
in the Galaxy, we require a set of halo tracers that spans a suffi-
ciently large volume, and has measured line-of-sight velocities and
distances. To obtain such a sample, we use the SDSS 9th data re-
lease (Ahn et al. 2012). We choose to utilize three distinct sets of
tracers: MSTO, K-giant and BHB stars. MSTO stars are numerous,
and are mostly observed at distances ∼3 kpc. These stars allow us
to constrain the local escape speed, and its variation relatively close
to the sun. K-giants and BHBs are fewer in number, but are bright
and have been observed at distances ∼50 kpc from the sun, pushing
the spatial extent of our sample to a range of ∼40 kpc in Galacto-
centric radius. Before selecting our sample of high-speed stars, we
first constructed a ‘mother sample’ for each class of tracer using
a series of cuts. In addition to the cuts described below, we also
removed stars with latitudes |b| < 20◦ in order to remove possible
disc contaminants, and stars with radii r > 50 kpc. We compute
Galactocentric radii by assuming a solar radius R0 = 8.5 kpc. The
full SQL queries used are given in Appendix A.

3.1 MSTO sample

To extract the mother sample of MSTO stars, we start by selecting
in the de-reddened colour-magnitude box

0.2 < (g − r)0 < 0.6,

14.5 < r/mag < 20, (12)

where the r-band extinction Ar < 0.3. We then make cuts on spec-
troscopic parameters, so that

4500 < Teff/K < 8000,

3.5 < log g < 4,

−4 < [Fe/H] < −0.9. (13)

This gives us a sample of metal-poor MSTO stars. We also make
cuts to ensure high-quality photometry and line-of-sight velocity
measurements for the sample. To compute distances to these stars,
we estimate the absolute magnitude in the r band using the pre-
scription derived by Ivezić et al. (2008). With x = (g − i)0, we

have

δMr = 4.5 − 1.11 [Fe/H] − 0.18 [Fe/H]2,

Mr0 = −5.06 + 14.32 x − 12.97 x2 + 6.127 x3

− 1.267 x4 + 0.0967 x5,

Mr = Mr0 + δMr. (14)

Using these formulae, we compute a point estimate of the distance
to each star and remove objects with implied heliocentric distances
>15 kpc in order to remove objects with spurious absolute mag-
nitude estimates. This finally leaves us with a mother sample of
22071 MSTO tracers. In order to draw samples from p(s′ | s) (equa-
tion 8), we take the quoted uncertainties in g, r, i and [Fe/H] from
the SDSS pipelines and assume that they are normally distributed
and uncorrelated. We then draw Monte Carlo samples from each of
these distributions and compute the distance for each sample.

3.2 BHB sample

To obtain a clean sample of BHBs, we first select in the de-reddened
colour–colour box

− 0.25 < (g − r)0 < 0,

0.9 < (u − g)0 < 1.4, (15)

which was used by Deason, Belokurov & Evans (2011). There will
still be significant contamination from high surface gravity blue
stragglers within this box, so we then make the spectroscopic cuts

− 2 < [Fe/H] < −1,

3 < log g < 3.5,

8300 < Teff/K < 9300, (16)

giving us 1039 BHBs in total. We estimate the absolute g-band
magnitudes, and hence distances, of the BHBs using the relation
derived by Deason et al. (2011)

Mg = 0.434 − 0.169 (g − r)0 + 2.319 (g − r)2
0

+ 20.449 (g − r)3
0 + 94.617 (g − r)4

0. (17)

We then use the same Monte Carlo strategy as for the MSTO stars
to sample from the distance uncertainties.

3.3 K-giant sample

Rather than gathering a sample of K-giants directly from SDSS, as
we did for our other two tracer samples, we use the catalogue con-
structed by Xue et al. (2014), taken from Sloan Extension for Galac-
tic Understanding and Exploration (SEGUE). The SEGUE survey
(Yanny et al. 2009) explicitly targeted K-giants in three different
categories: ‘I-colour K-giants’, ‘red K-giants’ and ‘proper-motion
K-giants’. All three categories satisfy the photometric constraints

0.5 < (g − r)0 < 1.3,

0.5 < (u − g)0 < 2.5, (18)

and have measured proper motions <11 mas yr−1. Each target cat-
egory then populates distinct regions of the (u − g)–(g − r) plane.
The precise details of the targeting criteria are given in Yanny et al.
(2009). On top of the SEGUE selection, Xue et al. then make further
cuts such that

log g < 3.5,

E(B − V ) < 0.25 mag.
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Figure 1. The distribution in Galactocentric radius and v|| of each of our tracer samples. The MSTO stars probe a smaller range in radius, but are numerous,
whereas the K-giants probe a much larger distance range, but are fewer in number. The BHBs probe a similar range to the K-giants, but form a far smaller
sample. The black points in the MSTO panel highlight the 11 objects that are discussed in Section 6.

Besides our cuts on latitude and Galactocentric radius, we make
one further cut on this sample to ensure a clean halo population,
namely

[Fe/H] < −0.9. (19)

After applying our latitude and metallicity cuts, there remain
5160 K-giants in our mother sample. Xue et al. compute poste-
rior samples for the distance moduli, μ, of the K-giants. Their table
provides the maximum a posteriori value of μ for each star, per-
centiles of the posterior samples and a summary of the uncertainty,
δμ. In order to compute distance samples for the K-giants, we sim-
ply assume that the uncertainty in the distance modulus is Gaussian,
with a standard deviation of δμ.

3.4 High-speed sample

Given our three mother samples, we now seek to select members of
the high-speed tail of the velocity distribution. In order to do this,
we must make a decision for the value of vmin in equation (6). S07
did not have access to measurements of stellar parameters for their
sample, and adopted a very high threshold of vmin = 300 km s−1 in
order to avoid contamination from the Galactic disc. P14 used proper
motion measurements to remove stars with disc-like signatures of
rotation (although in practice this cut operates very similarly to a
metallicity threshold, see their fig. 9), and then introduced a cut
of vmin = 200 km s−1. Our cuts in latitude and metallicity serve to
remove disc contaminants, which is much less of a concern when
using more distant SDSS tracers than it is for samples of RAVE
stars. Since we expect very little disc contamination, our choice
of vmin now depends only on the range of velocities for which we
believe the power-law model in equation (6) is valid.

P14 performed a detailed analysis of the simulation suite of Scan-
napieco et al. (2009) in order to make an educated choice for vmin,
and found that the DF of v|| in the simulations does not significantly
deviate from a power law when v|| > 150 km s−1. In our work, we
must consider the fact that our cut must be appropriate across a
range of locations. Since the vast majority of our sample are further
from the Galactic centre than the sun, and physical reasoning sug-
gests that the escape speed cannot increase as a function of radius,
then a cut of 200 km s−1 should guarantee that the power-law model
of equation (6) is appropriate at the locations of all the stars in our
study. Consequently, we set vmin = 200 km s−1. Note that this cut is
applied to Galactocentric line-of-sight velocities, and so the motion
of the sun must be removed beforehand. For this, we assume a lo-
cal standard of rest vLSR = 240 km s−1 and a solar peculiar motion
(U�, V�, W�) = (11.1, 12.24, 7.25) km s−1 (Schönrich, Binney &
Dehnen 2010). Once this cut is applied, there remain 1573 MSTO

stars, 343 K-giants and 44 BHBs. The distributions of each of our
final tracer samples in the r − v|| plane is shown in Fig. 1. We note
that our sample of 1960 stars represents a factor of >100 increase
from the 16 stars used by S07 and a factor >20 compared to the 86
used by P14.

4 C H O I C E O F vesc(x)

Our primary model for the escape speed is a spherically symmetric
power-law model (SPL)

vesc(r) = vesc(R0)

(
r

R0

)−α/2

, (20)

where r is Galactocentric radius and 0 ≤ α ≤ 1, on physical grounds.
We normalize the model to the escape speed at the solar radius.

We will also report on results when a simple generalization of
the SPL, a power law in elliptical radius (EPL), is used. The EPL is
parametrized as

vesc(rq ) = vesc(R0)

(
rq

R0

)−β/2

, (21)

with rq =
√

R2 + z2/q2, where R and z are the usual cylindrical
coordinates, and 0 ≤ q ≤ ∞. If the escape speed falls off more
rapidly with height above the Galactic plane than it does in the
radial direction, then q < 1 (oblate), whereas larger escape speeds
high above the plane suggest q > 1 (prolate).

5 PR I O R S A N D N U M E R I C A L
I M P L E M E N TAT I O N

Having constructed our likelihood function and gathered our data,
we now need to choose explicit priors on each of our model param-
eters. We split these parameters into two groups: global parameters,
which are the model parameters that are independent of our choice
for vesc(x), and vesc(x) parameters, which concern our explicit model
of the escape speed.

5.1 Global priors

We allow a different power-law slope in the velocity distribution
of each tracer k = (kMSTO, kK−giant, kBHB), and we fit for the outlier
fraction, f. These four parameters constitute our global model pa-
rameters. We anticipate that the three values of k should be similar,
since all three sets of tracers belong to the halo. On the other hand,
the MSTO sample spans a different radial range to the BHB and
K-giant samples, and so any differences in our inferred k values
could suggest a radial variation in k.

MNRAS 468, 2359–2371 (2017)
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S07 and P14 both used cosmological simulations in order to place
informative priors on the value of k. S07 used a flat prior over the
range 2.7 < k < 4.7 and P14 adjusted this range to 2.3 < k < 3.7.
These priors were necessary for both analyses because of the limited
number of stars in both the S07 and P14 samples. Given our much
larger sample of stars, we opt for a much less informative prior on
each k, which is flat in the range 0 < k < 10. This loose prior will
allow us to critically assess the similarity between cosmological
simulations and the Galaxy. Our prior on f is flat in the permissible
range 0 ≤ f ≤ 1.

5.2 vesc(x) priors

We now detail the priors used on the parameters for our two forms
for vesc(x). The SPL model has two parameters: θ = (vesc(R0), α).
If the Galaxy is to possess a flat or declining rotation curve, as we
would expect from physical reasoning, then

0 ≤ α ≤ 1. (22)

Besides this basic physical constraint, we do not include any more
information about the value of α, so our prior is flat over the above
range. Since vesc(R0) is a positive definite scale parameter, we adopt
a scale invariant Jeffreys prior

p (vesc(R0)) ∝ 1/vesc(R0). (23)

The EPL model is identical to the SPL model other than the inclusion
of the axial ratio, q, so that θ = (vesc(R0), β, q). The priors we use
for β and vesc(R0) are the same as in equations (22) and (23). For q,
we follow Bowden, Evans & Williams (2016) and use a prior

p(q) ∝ 1

1 + q2
, (24)

which places equal weight on oblate (0 ≤ q < 1) and prolate (q > 1)
axial ratios.

5.3 Sampling method

Armed with our priors, we can now perform a Bayesian analysis.
Our full parameter space is � = (k, f , θ ), which has six (SPL) or
seven (EPL) dimensions. Bayes’ theorem for our problem can be
written in the following way:

p(� | data) =
p(θ) p(k, f )

3∏
j=1

Nj∏
i=1

ptot(v
j
||,i | �j

i , b
j
i , s

j
i , kj , f , θ )

p(data)
,

(25)

where the index j refers to the tracer type (MSTO, K-giant or BHB).
Since we do not seek to compare the evidence for our three models,
we do not explicitly compute the denominator of Bayes’ theorem.
In order to constrain the model parameters, we use an MCMC
approach.

In order to compute the likelihood, we evaluate the integral in
equation (8) using 200 Monte Carlo samples from the distance un-
certainties of each star. We draw these samples once, and then use
the same set for each likelihood evaluation, thus avoiding random
noise in the posterior (McMillan & Binney 2013). We then use the
EMCEE code (Foreman-Mackey et al. 2013) to Monte Carlo sample
the posterior distribution. EMCEE is a PYTHON implementation of the
affine-invariant ensemble sampling approach suggested by Good-
man & Weare (2010), where an ensemble of N ‘walkers’ is used,
and the proposal distribution for a given walker is based on the

current positions of N/2 of the remaining walkers. Here, we choose
N = 80. We initialize the ensemble by randomly sampling from our
prior distributions, and then evolve each walker for 5000 steps. We
then inspect the trace plots in each dimension in order to prune our
samples for burn-in, which typically requires ∼200 steps. To assess
the convergence of our chains, we first compute the acceptance frac-
tion af. For all the analyses presented in this paper, 0.3 < af < 0.5
for the entire ensemble of walkers. In addition, we compute the in-
tegrated autocorrelation time τ f for each of our chains, which is the
number of posterior evaluations required to produce independent
samples. We find τ f 
 50 in each dimension, so that our chains are
run for ∼100 autocorrelation times, which provides us with ∼8000
independent samples from the posterior.

6 R ESULTS

Fig. 2 shows the one- and two-dimensional projections of the poste-
rior samples of the six SPL model parameters, as well as the inferred
median posterior values and uncertainties based on the ±34 per cent
credible intervals. All of the model parameters are well constrained,
save for kBHB, which is unsurprising given that BHBs are by far the
least numerous tracer in our sample.

Our results imply a local escape speed of 521+46
−30 km s−1, which

is in good agreement with S07 and P14. We infer a power-law index
α = 0.37 ± 0.09, suggesting that the escape speed is falling rapidly
as a function of radius. The middle panel of Fig. 1 is prophetic
of this because the edge of the K-giant distribution in the r − v||
plane is steep. Fig. 3 shows the run of vesc with radius implied by
our inference, with 68 per cent and 94 per cent credible intervals,
and the steep drop in the escape speed is clear. For perspective,
we also show the distribution of the mother samples of each tracer
group in the r − v|| plane in Fig. 4. The Milky Way loosens its grip
on its inhabitants significantly: our model predicts that the local
escape speed is 521+46

−30 km s−1, and by 50 kpc this has dropped to
379+34

−28 km s−1.
A priori, it is unclear what the value of k should be. Leonard &

Tremaine (1990) point out that violent relaxation would lead to
k = 3/2, whereas collisional relaxation gives k = 1 (Spitzer &
Shapiro 1972). S07 further showed that the Plummer and Hern-
quist spheres (Binney & Tremaine 2008) have k = 2.5 and k = 3.5,
respectively. The simulations analysed by S07 and P14 both sug-
gest k 
 3. Clearly, there is a relatively large range of possible
values. Due to small sample sizes in previous studies, k has never
been measured from data on the Milky Way. Given our signifi-
cantly larger sample of stars, we are able to do this for the first
time. The two tracer samples containing the most stars, MSTO and
K-giants, both favour k 
 4 ± 1, which is in comfortable agreement
with simulations. These results also suggest that k is not a strong
function of position, given the rather different radial ranges probed
by the MSTO and K-giant samples. The inference on k for the BHB
sample is much weaker, and favours a slightly higher value. S07
points out that this is to be expected for small sample sizes. None
the less, the inference on kBHB is not in significant tension with the
hypothesis that k is constant. Our results vindicate the choice of
prior by S07, while the range used by P14 is a touch on the low
side.

Fig. 2 shows a strong degeneracy between kMSTO and vesc(R0),
which can be encoded by the empirical covariance matrix of the
samples

Cov (kMSTO , vesc(R0)) =
[

0.84 37 km s−1

37 km s−1 1713 km2 s−2

]
, (26)
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Figure 2. One- and two-dimensional projections of our MCMC samples for the SPL fit. The 68 per cent and 94 per cent credible intervals are shown in the
two-dimensional projections, and the median parameter values and uncertainties computed using the ±34 per cent credible intervals of the one-dimensional
projections are shown above the one-dimensional histograms. We multiply the outlier fraction f by the number of stars in our sample, N∗ = 1960 in order to
make the inferred value easier to interpret. All of our parameters are well constrained, except kBHB, which is unsurprising given that this is the tracer sample
with the smallest number of stars by an order of magnitude. Notable degeneracies are between kMSTO and kK−giant, which are constrained to be close to equal,
and between vesc(R0) and kMSTO and kK−giant. Larger values of k suggest larger values of vesc(R0), as expected. See text for discussion.

i.e. if kMSTO increases by unity, then vesc(R0) increases by 37 km s−1.
This is to be expected, and is the reason why a narrow prior on k
was necessary in previous work. Fig. 1 of P14 nicely demonstrates
the appearance of this degeneracy for varying sample sizes. Fortu-
nately, our sample is large enough to locate the maximum along the
degeneracy. The same degeneracy is seen between kK−giant and the
local escape speed, though it is broader. Note that this explains why
our statistical uncertainty on the local escape speed is larger than
that of P14, who found 533+54

−41 km s−1 at 90 per cent confidence,
compared to our 90 per cent credible interval of 521+88

−45 km s−1. Our
larger 95th percentile of 690 km s−1 is a consequence of the degen-
eracy between k and vesc(R0): the 95th percentile of the posterior on
kMSTO is 6, which is considerably larger than the upper end of P14’s
prior.

The inferred outlier fraction is very small, f 
 0.001, but non-
zero. This suggests that there are one or two outliers in our sample.
Inspection of Fig. 1 suggests one clear candidate: there is an MSTO

star at r 
 10 kpc, shown as a black point, with a measured line-
of-sight velocity of 518.2 km s−1, which is more than 100 km s−1

larger than any other star at a comparable radius in our sample.
Otherwise, there are no obvious outliers through visual inspection.
As a check of this intuition, we calculated the outlier probability of
each star in our sample as

p(outlier | v||, �, b, s) = f̄ pout(v||)
f̄ pout(v||) + (1 − f̄ ) p(v|||�, b, s, θ̄ , k̄)

,

(27)

using the model parameters obtained by taking the median values of
each of the one-dimensional marginalized posterior distributions,
�̄. The largest outlier probability is >0.999, and belongs to the
object identified visually in Fig. 1. Otherwise, the largest outlier
probability is <0.01, and so we conclude that this object is the only
probable outlier in the sample. Having identified this outlier, we
visually inspected its spectrum and image data from SDSS. From
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Fast moving stars in SDSS 2365

Figure 3. Our inference on the escape speed as a function of Galactocen-
tric radius. The median posterior result is shown as a dark blue line, and
the 68 per cent (94 per cent) credible interval is a dark (light) blue band.
The result using RAVE data from P14 and the associated 90 per cent credi-
ble interval is also shown, and is in good agreement with our inference. We
measure a significant gradient in the escape speed, such that it has already
fallen by ∼100 km s−1 by a radius of 30 kpc.

Figure 4. The distribution of our mother samples of stars in the r − v||
plane, with horizontal dashed lines at v|| = ±200 km s−1, our cut in line-of-
sight velocity. The coloured bands are our inference on the escape speed as
a function of radius. The ‘spur’ at negative line-of-sight velocities is from
K-giants belonging to the Sagittarius stream. Note that the contamination
in our high-speed sample from these stars is negligible, since the maxi-
mum velocity that the stream centroid reaches is ∼150 km s−1 (Belokurov
et al. 2014) with a dispersion of ∼20 km s−1.

the image data it is clear that this object is a galaxy, and has been
misclassified by the spectroscopic pipeline of SDSS. Having found
a galaxy contaminant in our sample, we added a further constraint
to our SQL query that all of the MSTO targets should be morpho-
logically classified as stars (as well as spectroscopically, as in our
original query) in order to check for any other similar contaminants.
The high-speed sample is reduced in size by 11 objects when this
stricter constraint is applied: all 11 of these targets, including the
galaxy outlier previously discussed, are shown as black points in
Fig. 1. We visually inspected the spectra and image data for all of
these objects, and concluded that, other than the original outlier that
we identified, they are likely partially blended stars. Although this

Figure 5. Posterior distribution for the EPL model. The results are very
similar to the SPL model, and the extra parameter q is found to be ∼1,
suggesting that the Galactic potential is probably spherical, though our
uncertainties are quite large.

might mean that the photometry for some of these objects may be
unrepresentative to some degree, visual inspection of their spectra
suggests that they likely have reliable stellar parameters and line-
of-sight velocities. For this reason, we opted not to remove them
from our sample, but we did re-run our analysis with these objects
removed to check for inconsistencies. We found that none of our
conclusions change when these targets are removed from the sam-
ple: the comparison of the posterior distributions with and without
these objects is shown in Appendix B. We also experimented with
a stricter colour cut of 0.2 ≤ (g − r)0 ≤ 0.35, to further remove
objects with potentially spurious stellar parameters, but again found
that this made no quantitative difference to our conclusions. Later,
when we compare our model to the data, we remove the bona-fide
galaxy contaminant from the sample, but retain the other 10 objects.

Fig. 5 shows the results of the EPL analysis. We removed the
global parameters from the figure because the results were essen-
tially identical to those found for the SPL model, without any in-
teresting additional degeneracies. The addition of a halo axial ratio,
q, leads to the conclusion that the escape speed falls at the same
rate in all directions from the Galactic Centre, with q = 1.03+0.63

−0.32.
This in turn implies that the Galactic potential is likely spherical,
although our uncertainties are large: the data are compatible with
q = 0.7–1.6. Since q corresponds to the flattening of the potential,
this corresponds to a relatively wide range of flattenings in the dark
matter halo. Hopefully, with more data, the method will provide a
more useful constraint on the symmetries of the Galactic potential.
The other two parameters of the EPL model are the same as those
in the SPL model, and the inferred values and uncertainties are
indistinguishable.

6.1 The mass and rotation curve of the Milky Way

Having mapped the escape speed across the Galaxy, we are now able
to convert this measurement into a mass profile M(r) and rotation
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Figure 6. Left: cumulative mass distribution within spherical shells, predicted by the SPL model. The 68 per cent (94 per cent) credible interval is shown
as a dark (light) blue band around our median result. We predict a relatively light Milky Way within 50 kpc, with M(50 kpc) = 29.8+6.9

−5.2 × 1010 M�. Right:

the rotation curve, also from the SPL model. The local circular speed is vc(R0) = 223+40
−34 km s−1, and the rotation curve falls with radius as a power law with

index −0.19 ± 0.05. In both panels are the results from various other studies, see text for discussion.

curve vc(r) for the Galaxy using equation (3) and v2
c (r) = G M(r)/r .

The mass and circular speed profiles for the Galaxy can be inferred
over the range for which we have mapped vesc(r): 6 � r/ kpc �
50. For example, the local circular speed implied by our method
is vc(R0) = 223+40

−34 km s−1, which is pleasingly consistent with a
multitude of other methods.

Fig. 6 shows the mass and circular speed profiles implied by the
SPL model, along with associated 68 per cent and 94 per cent credi-
ble regions. Our model predicts M(50 kpc) = 29.8+6.9

−5.2 × 1010 M�.
For reference, we have also plotted the results from a selection of
other studies. Xue et al. (2008, X08), Deason et al. (2012, D12)
and Williams & Evans (2015, WE15) all used samples of halo
BHBs taken from SDSS. D12 and WE15 applied DF models to the
data, and infer systematically higher masses than we do here, with
M(50 kpc) 
 45 × 1010 M�. Both are consistent with the 94 per cent
credible interval of our inference, but there is a hint that there is a
discrepancy between DF methods and the present approach. X08, on
the other hand, compared SDSS BHBs to cosmological simulations,
and their result is comfortably in agreement with ours.

W99, like D12 and WE15, used a DF approach, but applied their
method to globular clusters and dwarf galaxies. Their sample was
small, with only 27 objects, and so their uncertainty is large. Their
preferred mass of M(50 kpc) = 54+2

−36 × 1010 M�, like the other
two DF approaches, is significantly larger than our result, although
the large asymmetric uncertainty removes any possible tension.

The final study to which we compare is that of Gibbons, Be-
lokurov & Evans (2014, G14), who modelled the disruption of the
Sagittarius stream. They exploited the fact that the apocentric pre-
cession of the stream should be sensitive to the details of the grav-
itational potential. Their inference produces very similar results to
our work, with M(50 kpc) = 29 ± 5 × 1010 M�. The two analyses,
though very different in detail, produce near identical results.

It is worth noting that our method clearly possesses very dif-
ferent systematic uncertainties when compared to more common
approaches in the literature. Most dynamical models of halo trac-
ers, like DF and Jeans analyses, are most sensitive to the central
parts of the velocity distributions. This is particularly true of Jeans
analyses, which generally only model the first and second moments
of the velocity distributions. DFs satisfy the full collisionless Boltz-
mann equation, and therefore the entire infinite hierarchy of Jeans

Figure 7. The distribution of dwarf galaxies around the Milky Way in the
r − √

3 v|| plane. The blue bands are our inference on the escape speed as a
function of radius. Line-of-sight velocities have been multiplied by

√
3, as

is done in the literature to account for unknown tangential velocities. If the
true speeds of Triangulum II, Tucana II, Grus 1, Bootes III and Hercules are
close to

√
3 v||, then they are likely to be unbound.

equations, but this generally comes at the cost of large systematic
uncertainties that arise from the chosen form of the model (Wang
et al. 2015). Our approach moves the focus to the tail of the velocity
distribution, and is therefore complimentary to other approaches.

6.2 The orbits of Milky Way dwarf galaxies

Fig. 7 shows the distribution of known Milky Way dwarf galaxies
in the r − √

3 v|| plane. It is typical in the literature to multiply
the line-of-sight velocity by

√
3 as a crude way of accounting for

unknown tangential velocities. We see that most of the dwarfs are
enveloped by the escape speed curves, with a similar shape to the
r − v|| distribution of stars (Fig. 4). However, some of the dwarfs
seem likely unbound based on our estimate of the escape speed.
On the other hand, 
 cold dark matter simulations predict that
99.9 per cent of subhaloes should be bound to their hosts (Boylan-
Kolchin et al. 2013). A reconciliation of these two statements is
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to conclude that the
√

3v|| approximation for the total speed of
these dwarfs is likely unrealistic in these cases. Given our inference
on the escape speed, the assumption that these objects are bound
allows us to place constraints on their orbits. The red points in Fig. 7
are Bootes III (Carlin et al. 2009; Grillmair 2009), Triangulum II
(Laevens et al. 2015) and Hercules (Belokurov et al. 2007), all of
which are likely associated with the Milky Way and have large line-
of-sight velocities. They are also at radii where our inference on
the escape speed is trustworthy (although Hercules is a somewhat
marginal case). The two yellow points are Tucana 2 and Grus 1
(Koposov et al. 2015; Bechtol et al. 2015), which are probably
dwarfs of the Magellanic clouds (Jethwa, Erkal & Belokurov 2016).
We do not seek to constrain the orbital properties of these dwarfs
because of their more complex orbital histories. For the three Milky
Way dwarfs, we would like to characterize their orbits through their
pericentre radii rperi, apocentre radii rapo and orbital eccentricities

e = rapo − rperi

rapo + rperi
. (28)

In order to compute posterior distributions on rperi, rapo and e, we
first write

p(X | vr , r) =
∫

p(X | vr , r,�) p(� | data) d�, (29)

where X = (rperi, rapo) and p(� | data) is the posterior distribution
on our model of the escape speed. We have written v|| 
 vr, where
vr is the velocity away from the centre of the Galaxy, because these
objects are distant. We then have

p(X | vr , r, �) =
∫

p(X | vr , vT, r,�) p(vT | vr , r,�) dvT,

=
∫

δ [X − fX(vr , vT, r,�) ] p(vT | vr , r,�)dvT,

(30)

where vT is the transverse speed. In a spherical potential, vT, vr

and r completely specify the orbit, and hence rperi, rapo and e. This
gives rise to the delta-function in equation (30), where fX represents
the relation between (vr, vT, r) and X. Finally, we need to specify
p(vT | vr, r, �). To do this, we assume that the high-speed dwarfs
follow the same DF as the high-speed stars, given by equation (4)

p(vT | vr , r,�) ∝
(

vesc(r) −
√

v2
T + v2

r

)k

. (31)

We make this assumption for simplicity, although Erkal et al. (2016)
note that the velocity distributions of subhaloes in the VLII sim-

ulations (Diemand et al. 2008) are not the same as those of the
dark matter particles, and have velocity dispersions of size 160–
200 km s−1. Measured velocity dispersions for Milky Way halo stars
tend to be somewhat smaller than this, at ∼100–150 km s−1 (Evans
et al. 2016). Hence, for a given radial velocity, larger tangential ve-
locities could be more probable than the estimate of equation (31),
which in turn means that the orbit of the dwarf may be more eccen-
tric than our simple calculation suggests.

Since fX is not analytic, we must solve for rperi, rapo and e numer-
ically by solving the energy equation in the potential �(r) implied
by our model of the escape speed. In practice, we sample p(X | vr, r)
in the following way. Given a set of parameters in our posterior
samples for the SPL model, we first draw a tangential velocity from
equation (31). For k, we use kMSTO, and we normalize the speed
distribution between vr and vesc(r). Then, we solve for rperi, rapo and
e and store the result. This process is repeated for every set of model
parameters in our posterior samples, and the resulting histograms
in rperi, rapo and e are then faithful representations of p(X | vr, r).

The results of this procedure are shown in Fig. 8. All three dwarfs
are expected to be on very eccentric orbits. Bootes III and Trian-
gulum II have e 
 0.95, while Hercules has e 
 0.8, though with
a somewhat broader distribution. This is aligned with our intuition:
if the line-of-sight velocity alone is relatively close to the escape
speed at the radius of the dwarf, then the tangential velocity cannot
be large and hence the orbit must be eccentric. As a consequence,
the dwarfs have large apocentres, rapo ∼ 100–300 kpc and consider-
ably smaller pericentres rperi ∼ 10 kpc (although the posterior on the
pericentre of Hercules is significantly less peaked than for Bootes
III and Triangulum II).

Küpper et al. (2017) argued that the observed ellipticity of Her-
cules (ε 
 0.7) and its large line-of-sight velocity are suggestive
that it has ‘exploded’ as a consequence of its last pericentre pas-
sage. Using N-body simulations, they arrived at an estimate of the
orbital eccentricity e 
 0.95, which is larger than our value but not
in significant tension with it. Bootes III has a similar morphology
(ε 
 0.5) in keeping with the picture that these satellites are on or-
bits that will cause them to disrupt into streams after comparatively
few orbital periods. Both Bootes II and Hercules have positive
line-of-sight velocities: they are travelling away from the Galac-
tic Centre, suggesting that they have undergone at least one peri-
centre passage. Triangulum II, on the other hand, has a negative
line-of-sight velocity and a relatively small ellipticity (ε 
 0.2).
Therefore, it is plausible that Triangulum II is on first infall and is
about to undergo a large amount of disruption on its first pericentre
passage.

Figure 8. Posterior distributions on orbital pericentre rperi, apocentre rapo and eccentricity e for Bootes III, Triangulum II and Hercules. If the dwarfs are
bound, they must be on very eccentric orbits.
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6.3 Model performance and systematics

We now seek to assess how well our model fits the data by perform-
ing posterior predictive checks. Since our model is only generative
in line-of-sight velocities, and not in the positions of stars, we should
compare the distribution in v|| of the data with our model. There is
a subtlety in how this must be done, however. The velocity distribu-
tion of high-speed stars is position dependent in the model, owing
to the spatial variation of the escape speed. The fastest star at a
given radius is likely to be travelling slower than its counterparts at
smaller radii, where the escape speed is larger. This effect means
that we must take into account the number of stars that have been
observed at each radius in the Galaxy for our comparison between
model and data to be meaningful. We therefore write

p(v|| | �) =
∫

p(v|| | r,�) p(r) dr∫
p(v|||r,�) p(r) dr dv

=
∫

(vesc(r) − v||)k+1 p(r) dr∫
(k + 2)−1(vesc(r) − vmin)k+2 p(r) dr

, (32)

where p(r) is the probability of observing a star at radius r. We
approximate p(r) by binning the mother sample of each tracer in
radius and fitting a cubic spline to the resulting histogram. The two
integrals in equation (32) are then computed using 12 point Gauss–
Legendre quadrature. We then draw samples from the posterior
predictive distribution

p(v|| | data) =
∫

p(v|| | �) p(� | data) d�, (33)

which is the predicted distribution of v|| given the knowledge we
have gained by analysing our SDSS sample. To sample from this
distribution, we draw from equation (32) a mock data set that is
the same size as the SDSS data for each set of parameters in our
MCMC chain (Gelman et al. 2013), producing many replicated data
sets. In order to draw from equation (32), we use inverse transform
sampling, where we numerically compute the CDF

F (v|| | �) =
∫ v||

vmin

p(v||′ | �) dv||′ (34)

on a grid of points in v||, and compute the inverse function F−1 as a
cubic spline. Finally, we draw a set of points u, uniformly distributed
between 0 and 1, and compute the corresponding velocities via
v|| = F−1(u).

Fig. 9 shows the comparison of the posterior predictive distribu-
tions with the data for our MSTO, K-giant and BHB samples. For
each tracer, we constructed a histogram in line-of-sight velocity, and
show the number of counts as a black point at each bin centroid.
The median number of counts in each bin from our replicated data
sets is shown as a solid line in each panel. The 68 per cent and
95 per cent intervals are shown as bands around the median, and
the final band shows the full extent of the number of counts. Our
model reproduces the data very well over a range of ∼2.5 orders of
magnitude in the number of counts for the MSTO sample. Similarly
good agreement is seen for our other two tracers.

Besides verifying that the model is a good representation of the
data, we also seek to understand some of the possible sources of sys-
tematic uncertainty. We investigated three possibilities: our choice
of the local standard of rest vLSR, our choice of the cut veloc-
ity vmin and inconsistencies between the different tracer groups.
In the analysis presented in the rest of the paper, we assumed
vLSR = 240 km s−1. In order to test the influence that this assump-
tion has on our inference, we re-ran all of our analyses with a lower
value of vLSR = 220 km s−1. The local escape speed is then inferred

to be 542+56
−37 km s−1, which is consistent with our previous analysis

(note that different stars will enter our high-speed sample when a
different value of vLSR is used). The same is true for the rest of the
model parameters.

We chose vmin = 200 km s−1 because we were not particularly
concerned about contamination from disc stars. In order to check
the sensitivity of our work to this value, we re-ran the analysis with
vmin = 250 km s−1. This results in a significantly smaller sample of
644 stars (539 MSTO, 99 K-giants, 6 BHBs). We thus expect much
larger uncertainties in all of our model parameters. This is indeed
the case, and we find that the values of k for each of the tracers are
poorly constrained compared to our full analysis, leading to a worse
determination of the local escape speed. This is because the degen-
eracy between k and vesc(R0) is not broken as effectively by these
data, which pushes up our estimates of k and vesc(R0), as predicted
by S07. Specifically, we find vesc(R0) = 617+77

−84 km s−1. This value
is none the less consistent with our full analysis, due to the inflated
uncertainties. Correspondingly, the inferred values of k are ∼6, with
uncertainties ∼2, which again are consistent with our previous es-
timates, but systematically higher. Given how well our full model
represents the data, we would suggest that the speed distribution of
halo stars does not significantly deviate from a power law at speeds
>200 km s−1, thus vindicating our choice of vmin = 200 km s−1.
Larger choices of vmin should only be necessary in circumstances
where disc contamination is a more serious concern. If this is the
case, then our checks with vmin = 250 km s−1 imply that a prior on
the value of k is probably necessary.

Our final check was to understand whether there is any tension
between the different tracer samples. We ran our analysis again
using only the MSTO sample, and then with the K-giants alone.
We did not perform a run with the very small sample of BHBs. We
found no tension whatsoever between the results from the MSTO
only run and the K-giant only run. The K-giants favour a marginally
larger value of α, but the difference is not marked: the median values
of α for each run lie comfortably within the 68 per cent credible
regions of the other run.

7 C O N C L U S I O N S

The main achievement of this paper is the measurement of the
escape speed and its variation over Galactocentric radii between
∼8 and 50 kpc. This was done using a variety of tracer populations
– MSTOs, BHBs and K giants – extracted from the SDSS. We find
that the local escape speed is 521+46

−30 km s−1 in good agreement with
the studies by Smith et al. (2007) and Piffl et al. (2014) using data
from the RAVE survey.

Our sample extends out to Galactocentric radii ∼50 kpc, so we
can track the gradient in the escape speed with radius for the
first time. At 50 kpc, the escape speed has fallen to a value of
379+34

−28 km s−1, indicative of a rapid power-law decline (α = 0.37
± 0.09). This suggests that the total mass contained within 50 kpc
is 30+7

−5 × 1010 M�, implying a relatively light dark halo for the
Milky Way. Our mass is pleasingly consistent with the work of Gib-
bons et al. (2014), who modelled the disruption of the Sagittarius
dwarf galaxy, and therefore made very different assumptions in the
analysis.

Perhaps the most striking thing about this method is its simplic-
ity. We have demonstrated that modelling the tail of the velocity
distribution can recover results in excellent agreement with other,
much more elaborate, methods. In particular, there is no evidence
of any bias as the values of the escape velocity and circular speed
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Figure 9. Posterior predictive checks of the SPL model. The black points are the number of stars observed in bins of v||. The solid lines are the median counts
from our replicated data sets. The coloured bands around the median line are the 68 per cent, 95 per cent intervals and full range of the counts in the replicated
data sets. Our model produces replicated data that resemble the SDSS sample.

are in good agreement with other methods. As the size of data
sets becomes huge, the computational cost of any algorithm will
become an important yardstick. Our method is computationally
much cheaper than full DF approaches, and will be able to rapidly
provide robust results when faced with the output of enormous
surveys.

The advent of the second Gaia release in 2017 and the first results
from the WEAVE spectroscopic survey in 2018 will provide proper
motions and line-of-sight velocities for massive samples of halo
stars. The computational challenges of modelling such data sets are
severe. We suggest that analysis of the high-velocity tails may be
the optimum method to quickly extract information on the potential
of the Galaxy. Current data sets preclude a stringent measurement
on the shape of the halo using the variation in escape speed with

position, but we anticipate that this too will become possible in the
very near future.

Although our model provides a counterpoint to other methods in
the literature, it comes with some caveats. It is not known whether
the velocity distributions of halo stars extend to vesc, and it may
be the case that they truncate at a smaller value. If this is the case,
then our work provides a lower limit on the escape speed. Cos-
mological simulations analysed by S07 and P14 are indicative that
stars are indeed found at such high speeds, with particles consis-
tently found with speeds in excess of 0.9 vesc, which provides some
reassurance that this systematic bias is unlikely to be large. An-
other caveat is that the periods of orbits with speeds approaching
vesc are long, so that the DF may not be phase mixed at very high
speeds. Although S07 and P14 showed that the model is effective in
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recovering the escape speeds and virial masses of simulated haloes,
this may not be the case for the Galaxy.

As an application, we have used our model of the escape speed
to study the orbital properties of the extreme Galactic satellites,
Hercules, Bootes III and Triangulum II. All three must have highly
eccentric orbits, with Bootes III and Triangulum II possessing an
eccentricity e 
 0.95, and Hercules e 
 0.8. The dwarfs must
have large apocentres, rapo ∼ 100–300 kpc and small pericentres
rperi ∼ 10 kpc. Given that Hercules and Bootes III are now moving
radially outwards, this implies that they must have at least one
pericentric passage already and so we expect their morphology to
be elongated and disrupted, as is the case. Triangulum II is moving
inwards, and so must be on first infall, which is consistent with its
roundish shape and ellipticity of 0.2.

AC K N OW L E D G E M E N T S

AAW acknowledges the support of STFC. We thank Sergey Ko-
posov for plenty of helpful advice, and Prashin Jethwa, Jason
Sanders, Kathryn Johnston, Jorge Peñarrubia and Gabriel Torre-
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A P P E N D I X A : SQ L QU E R I E S

Here, we give the SQL queries that we used to obtain the MSTO and
BHB samples.

(i) MSTO query:
SELECT *

FROM sdssdr9.specphotoall AS spa,
sdssdr9.sppparams AS spp

WHERE spp.specobjid=spa.specobjid
AND spp.scienceprimary=1
AND spa.class=‘STAR’
AND spa.extinction_r<0.3
AND spa.dered_g-spa.dered_r BETWEEN
0.2 AND 0.6
AND spa.dered_r BETWEEN 14.5 AND 20.
AND spp.fehadop BETWEEN -4. AND -0.9
AND spp.loggadop BETWEEN 3.5 AND 4.
AND spp.teffadop BETWEEN 4500. AND 8000.
AND spa.psfmagerr_g BETWEEN 0. AND 0.04
AND spa.psfmagerr_r BETWEEN 0. AND 0.04
AND spa.psfmagerr_i BETWEEN 0. AND 0.04
AND spa.fehadopunc < 0.1
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AND (spp.zwarning=0 OR spp.zwarning=16)
AND spp.snr > 20.

When we apply our extra morphological cut, the condition

spa.TYPE = 6

is included in the above query.
(ii) BHB query:

SELECT *

FROM sdssdr9.specphotoall AS spa,
sdssdr9.sppparams AS spp

WHERE spp.specobjid=spa.specobjid
AND spp.scienceprimary=1
AND spa.class=‘STAR’
AND spa.psfmag_g-spa.extinction_g-spa
.psfmag_r

+spa.extinction_r BETWEEN -0.25 AND 0.
AND spa.psfmag_u-spa.extinction_u-spa
.psfmag_g
+spa.extinction_g BETWEEN 0.9 AND 1.4
AND spp.fehadop BETWEEN -2. AND -1.
AND spp.loggadop BETWEEN 3. AND 3.5
AND spp.teffadop BETWEEN 8300. AND 9300.
AND (spp.zwarning=0 OR spp.zwarning=16)
AND spp.snr>20.

APPENDI X B: R ESULTS WI TH STRI CTE R
M O R P H O L O G I C A L C U T S

Here, we show the results when objects that have not been mor-
phologically classified as stars are removed from the MSTO
catalogue. Fig. B1 shows the comparison of the posterior distribu-
tions from our original SPL run and when the stricter morphological
cut is applied.

Figure B1. One- and two-dimensional posterior distributions of two runs: our original SPL run, and the run where the stricter morphological cut discussed in
Section 6 is applied. The projections of the posterior distributions from the two runs are completely consistent with one another, save for the outlier fraction.
This is because, when the morphological cut is applied, the galaxy contaminant with a spurious line-of-sight velocity discussed in Section 6 is removed.
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