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Universal scaling of unequal-time correlation functions in ultracold Bose gases
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We explore the far-from-equilibrium dynamics of Bose gases in a universal regime associated to
nonthermal fixed points. While previous investigations concentrated on scaling functions and expo-
nents describing equal-time correlations, we compute the additional scaling functions and dynamic
exponent z characterizing the frequency dependence or dispersion from unequal-time correlations.
This allows us to compare the characteristic condensation and correlation times from a finite-size

scaling analysis depending on the system’s volume.

I. INTRODUCTION

Nonequilibrium scaling phenomena are ubiquitous in
nature. A particularly well-understood example con-
cerns dynamic scaling behavior near second-order ther-
mal phase transitions, where a wide variety of physical
systems can be grouped into universality classes associ-
ated to thermal renormalization group fixed points. Each
universality class is characterized by a set of values of
critical exponents and scaling functions describing the
long-distance properties of systems [IJ.

While quenches to second-order thermal phase tran-
sitions can be still characterized by the universal crit-
ical behaviour, quenches across transitions are typically
well described in terms of the phenomenon of coarsening:
on the low-temperature side the systems form domains
which grow with time such that correlation functions can
be expressed in terms of scaling functions and power laws.
Their forms and values depend on the condensate struc-
ture and topological obstructions. Therefore, the study
of topological defects provides a case-by-case framework
for discussing coarsening in these different systems [2].

More recently, new universality classes associated to
nonthermal fixed points have been discovered in the con-
text of thermalization dynamics in the early universe
after inflation [3H5], heavy-ion collisions described by
quantum chromodynamics [6H8] and setups with ultra-
cold quantum gases [9HI3]. The scaling behavior of
these initially over-occupied systems is described in terms
of universal exponents and scaling functions. The lat-
ter are self-similar attractor solutions to which the sys-
tem evolves without fine-tuning of any relevant opera-
tor. Nonthermal fixed points can characterize remark-
ably large universality classes, encompassing relativistic
and non-relativistic quantum and classical theories even
with different symmetries and field content [12] [14].

So far, the most detailed understanding of nonthermal
fixed points has been obtained for the dynamics of scalar
fields with N components. While dynamic properties
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at shorter distances can be related to the phenomenon
of weak wave turbulence [5], the long-distance scaling
behavior is reminiscent of ordering dynamics with the
phenomenon of condensate formation [12, [I5HI]. In
contrast to expectations from coarsening, the infrared
scaling behavior is described in terms of universal expo-
nents and scaling functions that are remarkably insen-
sitive to the condensate structure and topological con-
siderations [12, 19]. As a consequence, important as-
pects of these phenomena can be described using large-
N expansions beyond leading order [12, 20, 21], which
do not capture topological defects [22H24]. The univer-
sality accross the wide set of condensate structures for
different values of N has been scrutinized in Ref. [25]
using classical-statistical simulations for the relativistic
N-component field theory. The latter has been demon-
strated in Ref. [I2] to be also in the same universality
class as its non-relativistic counterpart.

Here we extend previous work on nonthermal fixed
points by providing first results on the universal scaling
of unequal-time correlation functions. The latter give di-
rect access to the important “dynamic” scaling exponent
z, which describes the characteristic frequency depen-
dence or dispersion in the scaling regime. While close to
thermal equilibrium, the dynamic exponent z may also
be inferred from equal-time correlations using scaling re-
lations [I], this is less clear far from equilibrium. For
instance, in scaling regimes for energy transport towards
short distance scales z represents an independent expo-
nent [B]. To establish the universality classes of nonther-
mal fixed points, it is therefore crucial to determine the
role and value of z.

More precisely, we extract all scaling properties of two-
times correlation functions for a Bose gas described by
non-relativistic complex scalar fields in three spatial di-
mensions. The Bose gas corresponds to an O(N) sym-
metric system for N = 2 real scalar field components.
The universal exponents and scaling functions are ob-
tained from a finite-size scaling analysis depending on the
system’s volume. In particular, this allows us to compare
the effective condensation and correlation times for finite
systems by establishing their power-law scaling with vol-
ume.

For the numerical simulations we exploit the fact that
the quantum- and classical-statistical systems belong to
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the same universality class because of the large character-
istic occupancies involved [12] [20]. The comparisons to
analytic estimates are based on extrapolations of large-
N results at next-to-leading order [12] to the case N = 2
considered.

In section [[I] we describe the finite-size scaling ansatz
for two-times correlation functions. Section [[I]] presents
a class of initial conditions characterizing over-occupied
systems and their time evolution. Universal exponents
and scaling functions are determined in section[[V] where
we also comment on the value of the anomalous dimen-
sion. The conclusions are given in section |[V| We explain
our fit routines with error estimates in appendix @

II. SCALING OF NONEQUILIBRIUM
CORRELATION FUNCTIONS

We consider non-relativistic Bose gases out of equilib-
rium, whose quantum many-body dynamics may be de-
scribed in terms of a complex bosonic Heisenberg field op-
erator 1 (t,x). The nonequilibrium evolution is encoded
in correlation functions of fields at different space-time
points. We investigate spatially homogeneous systems
such that, for instance, the two-point correlation func-
tion of the anti-commutator

(W, x)" (', x') + 9T (¥, x)(t,x))
(1)

depends only on the spatial difference x — x’, while
the nonequilibrium evolution entails a breaking of time-
translation invariance and a dependence on both ¢ and ¢’
separately.

For quantum systems, the brackets (...) in de-
note the quantum-statistical expectation value involving
the trace over the density operator specifiying the ini-
tial state. We will concentrate on a range of far-from-
equilibrium initial conditions involving large occupancies
of typical modes, such that the quantum-statistical evolu-
tion can be accurately mapped onto a classical-statistical
field theory problem to be simulated on a computer [26] E|
In classical-statistical simulations, one samples over ini-
tial conditions and evolves each realization according to
the classical field equation of motion. In this case, the
brackets (...) denote the ensemble average over classical
trajectories.

For both quantum and classical representations, at
equal space-time points (t = ¢, x = x’) the quantity
(1)) corresponds to the density n, i.e. the conserved total

DO =

F(t,t',x—x')=

1 The approximate mapping is usually based on a sufficiently large
occupancy of typical modes for equal-time correlation functions.
While the validity of this argument is less clear for the computa-
tion of general unequal-time correlation functions, it should be
valid for power-law behavior in scaling regimes as considered in
this work.

particle number Nioa divided by the system’s volume
V.

n= = F(t,t,x —x). 2
ol ) 2
For our purposes, it is instructive to consider the absolute

value of the spatial integral of (1] over the volume V = L¢
in a box of length L in d spatial dimensions:

F(r,At,V) =

/ F(t,t',x)d%
v

. (3)

Here we introduced the central-time coordinate 7 and the
relative-time coordinate At as

t+t
2 b

= At=t—t. (4)
Taking the absolute value in amounts to disregard-
ing a rotating global phase ~ et which could also
be absorbed in a redefinition of the fields by ¢ —
e~ Ay Furthermore, since the correlation function
is symmetric under exchange of ¢ and ¢/, F(1,At,V) =
F(r,—At,V), we restrict our presentation to At > 0.
Though we keep the dimension d general in our nota-
tion, all our numerical results presented in subsequent
sections will concern d = 3.

Our aim is to investigate scaling solutions of nonequi-
librium correlation functions near nonthermal fixed
points. The scaling behavior of the correlation function
may be expressed in terms of real scaling exponents
a, 3 and z as

F(r,At,V) = s*PF(s Y87, s At,s7V)  (5)

under rescaling with the real scaling parameter s > 0.
The “occupation number” exponent « and the “central-
time” exponent S have been discussed in detail for At = 0
in Ref. [12] for the far-from-equilibrium case we are inter-
ested in. To determine the “dynamic” scaling exponent
z, which is associated to changes in relative times At,
and the respective unequal-time scaling functions is the
main focus of our investigationEI

Far from equilibrium, i.e., well beyond the linear re-
sponse regime, both the central-time exponent g and
relative-time exponent z can generally be linearly inde-
pendent as, for instance, realized in perturbative scal-
ing regimes for energy transport towards short distance
scales in related models [5]. In this work, we consider
the nonperturbative scaling regime associated to particle
transport towards long-distance scales [12] and determine
the role and value of z.

The importance of z stems from the fact that the dy-
namic scaling exponent for relative times is directly re-
lated to the characteristic frequency dependence or dis-
persion of the model. The dependence on the frequency

2 The nonthermal scaling exponents « and /3 are not associated to
a specific heat or order parameter exponent but defined by .



w is obtained from Fourier transforming with respect
to relative times, which gives

F(r,w,V) =2 / WAL E(r, At V) d(At)
0

_ SZWL"‘/BF(s*l/BT, sfw, Sidv) . (6>

Because the system is considered to have a finite size
L%, when the characteristic correlation length is ~ L,
the system can already become effectively ordered. Only
for shorter times the universal scaling behavior with a
full dependence on 7, At and V as in is expected to
hold. Below we determine the corresponding time scale
for condensation from equal-time correlation functions
and compare this to the characteristic correlation time
obtained from unequal-time functions.

III. INITIAL CONDITIONS AND
NONEQUILIBRIUM EVOLUTION

We envisage an interacting Bose gas in three spatial
dimensions with s-wave scattering length a and average
density n. We focus on the dilute regime, such that the
dimensionless parameter ( = vVna® < 1. We think of
preparing the system in an extreme nonequilibrium sit-
uation, where the typical occupation numbers are very
much larger than in thermal equilibrium. As a conse-
quence, the dynamics will be non-perturbative despite
being in a dilute regime.

To describe this extreme condition, we exploit the fact
that the density and scattering length can also be used to
define a characteristic “coherence length”, whose inverse
is described by the momentum scale Q) = v/ 167ran To
observe the dynamics near nonthermal fixed points for
the interacting Bose gas, an unusually large occupancy
of modes at the inverse coherence length scale @ has to
be prepared [I2]. Decomposing

n =gl + V1Y fo(p) (7)

into a condensate fraction |¢)o|?> and non-condensate frac-
tion with momentum distribution function fo(p), we ini-

tially set |12 = 0 and

fol@) ~ % > 1 (8)

to describe highly occupied modes with typical momen-
tum @. In this case the large occupation number ~ 1/¢
compensates for the smallness of the diluteness parame-
ter (: the system becomes strongly correlated and inde-
pendent of the value of ¢ [12].

3 We always employ natural units where the reduced Planck con-
stant and Boltzmann’s constant are set to unity: h = kg = 1.

B t=const.
A At =const.

Correlation Function: F/V
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FIG. 1. The upper graph shows the two-times correlation
function as a function of the central-time coordinate 7 and
the relative-time coordinate At for a volume V' with 128 lat-
tice points. The colored lines correspond to slices of constant
7 (squares) and constant At (triangles), which are separately
displayed in the lower graphs.

In particular, Bogoliubov or mean-field-type approx-
imations are not applicable in this regime and we em-
ploy classical-statistical lattice simulations. More specif-
ically, we compute correlation functions from an ensem-
ble average of inhomogeneous solutions of a complex Bose
field (¢, x), whose dynamics is described by the Gross-
Pitaevskii equation [27]

. &

i0u0(t.) = (5 gl xR vl ©)
m

with mass m and interaction parameter g = 4mwa/m.

With Q = 2,/nmyg and ¢ = mgQ/(167%/?), we sample

the fields at initial time such that

folp) = [ e (50.%)07(0.0) +47(0.0)8(0.0)

(10)
is given by fo(p) = 25/(mgQ) for momenta |p| < @ and
zero otherwise.

To reflect the classical-statistical nature of the dynam-
ics in the highly occupied regime, we measure time in
units of 2m/Q? and volumes in units of Q3. As a con-
sequence, the combination F (7, At,V)2mgQ for does
not depend on the values of m, g and Q. Though we
will write t, V and F, we always imply the rescalings
t — tQ%/2m, p — p/Q, V — VQ3 and F(r,At,V) —
F(1,At, V) 2mgQ in the following.

To give an overview, Fig. [I] shows the evolution of
the correlation function F(7,At,V) as a function of the



central-time coordinate 7 and the relative time At for a
volume V = 1283ﬁ For better visualization, the lower
graphs of Fig. [1| give slices of constant 7 (At) as a func-
tion of At (7) in the left (right) plot.

The decay of F' as a function of At establishes a charac-
teristic correlation time At,(V'), whose scaling with vol-
ume is investigated in detail in section [[V] Likewise, the
growth of F" as a function of 7 is seen to terminate around
a time 7,(V'), which is discussed in the next section. In
Ref. [12], 7.(V') has been associated to the characteristic
time scale for condensate formation.

IV. EXTRACTING UNIVERSAL EXPONENTS
AND SCALING FUNCTIONS

In a scaling regime described by , we may choose
s = V4 eliminating the scaling parameter to obtain

F(r,At, V) = ve/Bd g (y=Y B y=2/dAg) - (11)

where the scaling function Fy is defined in terms of
Fy (V-G y=2/dpay) = p(V-Y B yv-2/dAt 1),
This form makes it explicit that in the scaling regime
Fy depends only on two arguments instead of separately
on 7, At and V. Similarly, it is instructive to consider
the choices s = 77 in leading to

F(1,At, V) = 7* E.(r7%*At, 7PV, (12)
or s = At'/# in to get the scaling form
F(r,At, V) = AtYP Fa (AP 0 A2V . (13)

One may use any of the scaling forms 7 to effi-
ciently extract the universal scaling exponents «, § and
z from the numerical data. The different shapes of the
scaling functions Fy/, F and Fa; are also universal after
fixing their overall amplitudes and of their arguments.

Because the system has a finite size L?, it can already
become effectively ordered at a finite time, which has
been studied from equal-time correlations in Ref. [12].
Using the scaling form , we denote the condensation
time

T ~ V(B (14)

with 7, = 7.(V, At = 0) as the time where F}, at equal-
times becomes approximately independent of 7 for given
volume V, ie., Fy (VY697 0) ~ const for 7 > ..
That Fy changes its behavior qualitatively from a power-
law ~ 7% to become an approximate constant around the
time 7, is indeed seen in numerical solutions as demon-
strated in Fig. 2] The figure is discussed in more detail

4 For all numerical estimates we employ an ultraviolet cutoff at
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FIG. 2. Rescaled correlation function Fy = /B a5 g
function of the rescaled central time V=Y for At = 0
and a range of volumes V in d = 3 spatial dimensions. For
the rescalings we employ o/(8d) =1 and 1/(8d) = 0.57. The
inset shows the function F' without rescaling for comparison.
The dashed line represents the power law behavior ~ 7% with
a = 1.74. The time where the power-law behavior stops and
the curve flattens indicates the characteristic condensation
time 7. (V).

below when we extract the values of the scaling expo-
nents. The interpretation of 7, as the time for the for-
mation of a Bose condensate is explained in Ref. [12].

In addition, we define the correlation time At,
from the decay of Fy as a function of relative time,
which is exemplified in Fig. More precisely, we
determine the decay-time from the “width” given by
the difference between the inflection points of the
curve Fy (V1Y Bd)7 = const, V=*/4At) as a function of
V—#/4At. This difference is found to grow monotoni-
cally with 7 until it reaches a maximum at a time 7o (V),
i.e., the width of the scaling function Fy becomes inde-
pendent of the central time for 7 2 7.

Though 7A and 7, turn out to scale in the same way
with volume as , they can be numerically different
and we find 7o < 7. In particular, in this regime
implies

At, ~ V*/d (15)

with At, = At (V,7 = 7A(V)).

Since V' = L%, the condensation time and the
correlation time are related to respective lengths,
which scale as

L~7f~ At (16)

A special case occurs if § = 1/z for which the scalings
with central and relative times are the same. We analyze
this possibility below.

In the following we extract the values of the univer-
sal exponents and determine the universal shape of the
scaling functions. Starting from the initial conditions
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FIG. 3. Rescaled correlation function Fy = V=B a5 a
function of the rescaled relative-time coordinate V~"*/¢At for
fixed values of the rescaled central-time coordinate V =1/ (5D,
We employ a/(8d) = 1.0, 1/(8d) = 0.57, and z/d = 0.61 for
two different volumes with {256°,512%} lattice points. The
inset shows the original function F' without rescaling. The
“width” of Fy as it decays with growing |V7Z/dAt| gives rise
to the characteristic correlation time At (V).

of section [[II} we follow numerically the relatively short
evolution until the system is attracted to the nonthermal
fixed point characterized by scaling. We analyze the scal-
ing behavior for times 7 < 7o (V) and At < At (V,7a)
for different volumes V. The evolution in this regime is
verified to exhibit the scaling behavior with suitably
chosen exponents.

We start by considering At = 0 and plot the rescaled
correlation function Fy (V=1 Bdr () as defined in .
In Fig. 2| we show results for a set of volumes with
{323,643,1283,256,5123} lattice points, respectively.
For comparison, the inset shows the correlation function
F(r,At = 0,V) for the corresponding values of 7 with-
out rescaling. With the appropriate choice of values for
the combinations of exponents a/(8d) and 1/(8d), the
rescaled curves at different V' lie remarkably well on top
of each other; in particular, since there is a large factor
of more than 103 between the smallest and the largest
volume.

To quantify the values of the exponents and their errors
we make use of the fit routine employed in Ref. [12] and
refer to appendix [A] for more details. This yields

[0
. =1.00 +0.02 1
G~ L00£002, (17)
1
— =0.5740. 1
§q — 057+ 003, (18)

where the error bars are due to statistical averaging and
fitting errors. We emphasize again that all our numeri-
cal values are obtained from simulations in d = 3 spatial
dimensions. Nevertheless, we keep here the parameter d

in the notation to reflect the fact that from the scaling
ansatz only the combination Sd of the scaling expo-
nent for central time (3) and for volume (d) enters.

We are now going to extract the value of z/d from
for At # 0. For visualization purposes, we plot in
Fig. [3] the rescaled correlation function Fy as a function
of V=#/4At for different values of V—1/ B+ To estab-
lish the scaling behavior requires the comparison of the
correlation function for different volumes V; at different
times 7;, when plotted versus At. In particular, the times
chosen need to fulfil 7;/7; = (V;/V;)"/(#9). In doing so,
one needs to make sure that the times 7; lie within the
regime where scaling is valid, which lasts longer for larger
volumes according to and ([L5)). For instance, we find
that for 2563 lattice sites the scaling regime is approxi-
mately given by the range of times ¢,¢' € [200,3000] and
for 5123 it is ¢, ¢’ € [200,7000]. Therefore, we plot in all
figures values of 7 and At which lie approximately within
these intervals.

One observes from Fig. [3| that the rescaled curves lie
pairwise on top of each other to remarkable accuracy.
This is the first demonstration of scaling dynamics in
unequal-time correlation functions close to the nonther-
mal fixed point. Although we show only a couple of dif-
ferent times, we note that the agreement is valid for the
whole scaling regime. In order to extract the exponents,
we use our previous result and employ the fit routine
to obtain

2 =0.61 +0.05. (19)
As a consistency check, we find that the result for z/d
does not depend much on whether we fix both «/(8d)
and 1/(8d) by and or only one of them when
applying the fit routine to extract exponents.

We can do the same type of analysis using the scaling
forms or , which leads to a determination of
the same exponents, however, in different combinations.
Fig. shows the correlation function F, = 77“F as
a function of 77#%At for two sets of values of 7759V
with the volumes 256% and 5123. The original function
F without rescalings is given in Fig. @b for comparison.
The rescaled curves lie again well on top of each other.
With the value of gd given by one obtains from the
fit routine

a=1.74+0.03, (20)
Bz =1.07 £ 0.06, (21)

which are consistent with the previous results within er-
TorS.

Fig. shows Fa; = At=%/P% F as a function of the
rescaled central-time At~'/P%7 for given sets of At=4/*V
with the exponents found above. For comparison, Fig.
displays the correlation function F(7,At,V) for given
values of At versus the central-time coordinate T without
rescalings. The curves corresponding to different volumes
V; and fulfilling (At;/At;)¥* = V;/V; lie pairwise well
on top of each other. We checked that the results one
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FIG. 4. a) F, = 7~° F as a function of the rescaled relative time 7~?* At for two sets of values of 7~??V employing the exponents
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a function of the rescaled central-time At~/#%r for given sets of At~%/*V with the same exponents. d) Unrescaled function

F(7,At, V) as a function of 7 for given values of At.

obtains for exponents are consistent with the ones pre-
sented above within errors. For the plots one needs to fix
the value for the dynamical scaling exponent z in order
to determine the values of fixed At in different volumes.
Furthermore, in Figs. [3]and [f] we only use the largest vol-
umes with 2562 and 5123 lattice points since the smaller
available volumes are not in the scaling regime for rel-
evant times. Nevertheless, we checked that comparing
with data for 1283 and 2563 lattices one gets similar re-
sults, although they are less reliable due to the short
duration of the scaling regime.

The above values for the universal scaling exponents
along with the scaling functions displayed represent our
central results. In order to interpret them, we first note
that the scaling relation o = Sd reflects particle trans-
port [12], which according to is well realized by the
scaling solution observed. Since with we have a > 0
the particle transport occurs from short to long distance
scales, which characterizes an inverse cascade in agree-
ment with the analysis of equal-time correlation func-
tions in Ref. [I2]. The inverse particle cascade leads to
the formation of a Bose condensate [12].

The result represents the first direct determina-
tion of the dynamic scaling exponent z for this nonther-

mal fixed point. Setting d = 3 we obtain z = 1.84 +0.15.
This value clearly excludes a “linear dispersion” (z — 1)
in this scaling regime, but appears marginally consistent
with a quadratic one (z — 2). As a consistency check, we
note that practically the same value for z is also obtained
from using for d = 3 giving 8 = 0.58 £ 0.03. In
addition, conveys the important information that z
is rather accurately determined by 1/, even though the
result for the errors stated indicates a small deviation.
The agreement of z and 1/ is, e.g., assumed in related
studies of equal-time correlators in Refs. [13] [I§].

Since the errors reflect only statistical uncertainties
and the accuracy of the fit procedure, systematic errors
could increase the error bars somewhat. To get an idea
about possible systematic errors, we note that in Ref. [12]
the values for o and [ were obtained from the scaling be-
havior of a momentum distribution function. In this work
we extract exponents from the (un)equal-time scaling of
a volume-averaged quantity , which reflects properties
of the correlator at zero spatial momentum only.

If we repeat, for comparison, the momentum scaling
analysis of Ref. [I2] for the distribution function with our
current numerical setup, we obtain @ — 1.64 £ 0.16 and
B — 0.55 + 0.02 consistent with Ref. [12]. The relatively



large error for a with this fit procedure is a result of
the rather weak dependence of the distribution function
at low momenta, and thus less accurate than our result
, which is explained in more detail in the appendix
In comparison, the value for 8 obtained in this way has
relatively small statistical errors and comes out directly
from the fit procedue, i.e., without involving products
as [z or Bd. Plugging this value naively into (21f), or
even into with treating the d from the scaling
ansatz as an independent parameterﬂ would lead to
z — 1.94 + 0.11. While this is still fully consistent with
our above result for z, its somewhat higher central value
might be viewed as an indication for a possible quadratic
dispersion.

The discussion about the deviation from a quadratic
dispersion relation is also closely related to the ques-
tion of a non-vanishing anomalous dimension 7 describing
the deviation from canonical scaling [12], as recently ad-
dressed also in two spacial dimensions using equal-time
correlations [13]. Following Ref. [I2] employing large-N
expansions, the anomalous dimension may be determined
by the relation

= (23)

Taking the (somewhat more accurate) value of 3 obtained
from a fit to momentum scaling distributions as explained
above, we get

n=0.19+£0.08. (24)

The smallness of the anomalous dimension makes it diffi-
cult to draw definite conclusions in view of the relatively
large error bars. However, the central value obtained
for n at the nonthermal fixed point is rather large if com-
pared to typical values of the corresponding thermal crit-
ical exponent, which is on the order of a few percent in
scalar theories in three dimensions.

V. CONCLUSION

In this work we have presented first results on universal
scaling exponents and scaling functions for unequal-time
correlation functions describing nonthermal fixed points.
In particular, this allows us to directly establish the value
of the dynamic scaling exponent z, characterizing the
frequency dependence of unequal-time correlations or the
dispersion, and its close relation to 1/3 describing the

5 Such a procedure would lead, for instance, from and (A15)
to the value
d— 3.18£0.13, (22)

for the scaling parameter d in . The deviation from the spatial
dimension three, for the statistical and fit error given, may point
to a moderate additional systematic error.

scaling of equal-time quantities such as the distribution
function.

The method we have employed is based on a system-
atic finite-size scaling analysis of classical-statistical sim-
ulations for an interacting complex scalar field theory in
three spatial dimensions. Since the system has a finite
size, we are able to quantify the scaling of the characteris-
tic time scales 7, for condensation and of the correlation
time At, with volume. Since the former scales ~ V1/(8d)
and the latter ~ V*/¢, the established similarity between
the exponents 1/ and z entails a corresponding scaling
of both condensation and correlation times.

To put these results into context, we note that also
the corresponding relativistic model belongs to the same
universality class [12]. In all these theories, the infrared
scaling behavior is part of a dual cascade, with a tur-
bulent energy cascade towards shorter distances [5]. In
particular, for the scaling properties of the direct energy
cascade there is no such similarity between the corre-
sponding values of z and 1/8, which even turn out to
have opposite signs in that case [I2]. In this respect, the
non-perturbative inverse particle cascade and the per-
turbative direct energy cascade are found to behave very
differently.

Since the observed value of z close to two makes it
rather difficult to distinguish it from several other known
universality classes, we emphasize that the universal
shape of the scaling forms we have computed provides
important additional information. For instance, it has
been analyzed in great detail already in Refs. [12] 19 25]
that the shape of the momentum scaling functions ob-
tained from equal-time correlation functions exhibits a
remarkable universality across N-component scalar field
theories with different N. Since the complex scalar the-
ory we are considering corresponds to N = 2 real scalar
field components, we expect for the unequal-time scaling
functions a similar universality for different values of N to
hold as for the equal-time functions. This is supported
also by the close relation between equal- and unequal-
time scaling exponents that we established in this work.
This can be used to distinguish the scaling behaviour,
e.g., from coarsening phenomena. The latter strongly
reflect the topological obstructions that depend on N.

The remarkably large universality class associated to
the nonthermal fixed point is rooted in the extreme far-
from-equilibrium situation of very high typical excita-
tions or occupation numbers. Since the characteristic
occupancies are non-perturbatively large, ~ 1/¢ > 1 in
the dilute regime, they can become insensitive to the de-
tails of the underlying thermal or vacuum structure for
which typical occupancies are of order unity.

While these extreme conditions may appear unnatu-
ral at first sight, we emphasize that these are attractor
solutions: there is no relevant parameter to tune, as for
instance the tuning of a critical temperature to be at a
thermal transition. Moreover, the extreme conditions ap-
pear in situations associated to nonequilibrium instabili-
ties in a wide range of applications from particle-physics



cosmology to condensed matter physics. The universality
opens, therefore, the exciting possibility to learn some-
thing about the early stages of our universe from table-
top experiments with, e.g., ultracold atoms.
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Appendix A: Numerical fit procedure

In this section we describe the fit routine used to quan-
tify the central values and statistical errors of the scal-
ing exponents given in the main text. We use for this
the self-similar scaling behavior of the two-point unequal-
time correlation function according to the scaling forms
(11)—(13), which depend on different combinations of the
exponents («, 3, z) and on d. Although d is associated to
the fixed dimension of the system, here we keep the dis-
cussion more general by treating it as an independent pa-
rameter. At the end of the section, we also give some de-
tails about the scaling of the equal-time correlator, which
were not given in the main text.

The fit procedure is based on the study of equal-time
correlators in Ref. [12] and we extend it here to unequal-
time correlation functions. Due to the number of expo-
nents and different ways to write the scaling forms, we di-
vide our analysis into four steps where different combina-
tions of exponents are computed. We start by considering
the scaling ansatz (11]), which will serve to exemplify the
general strategy of our fit routine. To numerically quan-
tify the deviation from the self-similar evolution, we need
to compare the correlation function F'(7, At, V) at differ-
ent volumes by appropriately rescaling 7 and At. Having
this in mind, we define the rescaled correlation function

Frese(, AL V) = (V/ Vi) /P (A1)
X F ((V/Veeg) VPN 7, (V[ Vi) /1 ALY )

where V. is some reference volume to which we compare.
Using this definition, the self-similar scaling can be
rewritten as Fres (7, At, V) = F(1, At,V,¢s). Hence, de-
viations from scaling at a given point are given by

AF (1, AL V) = Froge(r, At V) — F(1, AL V,ep) . (A2)

Using (A2) we will define a x2?-function which adds up,
with the appropriate weight, all the deviations AF over a
given range of 7 or At. This y2-function quantifies, thus,

the total deviation from self-similarity which we will try
to minimize by a suitable choice of exponents.

To be more specific, we consider our first fit scheme
at equal times, i.e. At = 0 (7 = ¢). This allows us to
consider just the pair of exponents «/(8d) and 1/(8d).
Using we define for given V' and Vi :

2@ 1N\_ / AF(r,0,V) ) d(log(7))
X Bd7 ﬂd N F(T7 Oa Vref) T ’
where the integration limits are chosen to be within the
self-similar regime and

(A3)

T = / d(log(7)) (A4)
is the normalization of the integral. Due to the power-law
nature of the correlation function in the scaling regime,
we integrate over log(7) with 7 > 0. This enhances the
sensitivity of the integral to small times 7, where the den-
sity of points is smaller. For this first fit scheme we have
considered the set of volumes {323, 6431283, 2563,5123}
and have chosen Vs to be 128%. Each volume V of this
set is compared to V. individually and then the x? of
the different volumes are added up. Varying the val-
ues of the exponents «/(8d) and 1/(5d), we obtain the
distribution of y? values shown in Fig. The set of
exponents {(a/(3d))*, (1/(Bd))*} that minimizes the x2-
function (see dark shaded area) is the one that makes the
rescaled curves lie most accurately on top of each other
(see Fig. [2)) and hence constitutes our final result.

From the width of the distribution we extract the sta-
tistical errors. For this we first define a likelihood func-
tion

v [5; Bld] e ( x2(a/(§;in);n1/(ﬁd)) > as)

where \2,., = x*((/(8d))", (1/(8d))*) is the minimal
value of x? and the normalization constant Wy is chosen

such that
a 1 « 1
Wil—,—|dl = )d| = |=1.
v e a1 (50) 2 (a)
By integrating over only one of the exponents, we obtain

marginal likelihood functions Wa/(8d)] and W[1/(8d)]
defined via

[ ] [ 1] 1
W5 /W_Bd’ﬁd_d<ﬁd>’

(1] [ 1] o
W|— Wi l—,—|dl —].

| 3d] / | Bd’ Bd| <ﬁd>
Approximating these two functions with Gaussian distri-

butions, we obtain the errors of (a/(8d))* and (1/(8d))*
from the standard deviation [I2]. In this way, we get the

(A6)

(A7)

and

(A8)
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FIG. 5. The parameter x*(a/(3d), 1/(Bd), Vies) as a function
of the exponents a/(3d) and 1/(8d) with the reference volume
Vier = 256% and the fit interval 7 € [50, 8000].

central value and statistical errors of the exponents given
in and .

In our second fit scheme we consider the same scal-
ing form but for unequal times At # 0. To apply
the above fit routine, we consider slices of constant vol-
ume V and central-time 7 as a function of the remaining
variable At. We consider in this case the set of volumes
{1283,2563,5123} and set V¢ to be 256%. Due to the
rescaling of (Al]), the central times 7 of the different vol-
umes V have to fulfil

A A
Tref_ V’ref '

where 7. corresponds to Vi It is important to note
that both 7 and 7. have to lie within the scaling regime.
For V,.; we choose T,s € [600,2000]. To solve for 7 in
we use the exponent 1/(8d) that was determined
by the first fit (I8). Hence, only a/(3d) and z/d remain
as fitting parameters. Using this we define again a y?2
function to be minimized for fixed V', Viof, 7 and 7,cf by

() RS 3 o

(A9)

with the normalization factor

D= / d(log(At)). (A11)

The central values and statistical errors of the exponents
a/(Bd) and z/d are obtained from x? in the same way
as presented above. To obtain more accurate results, we
have considered around 30 different 7.y within the scal-
ing regime and averaged the final result over all fits. As
explained in the main text, we can only compare two dif-
ferent volumes with each other because of the condition
and the requirement that all times lie inside the
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FIG. 6. Rescaled distribution function 7<f(7, p) defined in
Ref. [12] as a function of the rescaled momentum 7°p with
the exponents a = 1.64 and 8 = 0.55 for 5122 lattice points.
The inset shows the original function without rescaling.

scaling regime. Therefore, the results given in and
used in Fig. [3| correspond to the largest volumes 256% and
5123,

An important point concerns the error of the exponent
1/(Bd) which propagates into the chosen values of T by
means of (A9). To quantify this additional source of er-
ror, we first use to define the times 7% lying at the
edges of the error interval by

, (A12)

-+t v Hxa(4)
Tref <Vref)
where A(1/3d) denotes the error of the exponent 1/(3d).
Repeating the fit routine with the values 7% yields
slightly different central values for the exponents «/(Sd)
and z/d. We interpret the deviation from our main re-
sult, calculated with 7 from , as the error propagated
from A(1/8d). Adding this extra error quadratically to
the statistical error obtained before from the width of the
x2-distribution, we obtain the final result given by (19)
and o/(Sd) = 1.0 £0.07, which is consistent with (|17)).
Our third step consists in considering the scaling form
. The fit routine follows along the same lines as be-
fore except for a different rescaled correlation function
given by

Fresc(Ta Ata V) = (T/Tref)_a F(Ta (T/Tref)ﬁz At,
(T/Tref)’gd V) . (A13)

The x?-function can be defined similarly to (A10). The
main difference is that we rescale with the central-time
coordinate instead of the volume. Volumes and central
times have to be chosen again such that is fulfilled.
We choose V,ef = 256% with 7, € [600,2000] and com-
pare to V = 5122 with 7 from (A9)), as a function of At.
Proceeding as before yields the fit results and



0.7

0.65 }
@ 06}
€
Eoosst  popiihi b
g
g 05
(o]
£ 0.45
]
[72] 04 F

0.35

0.3 L

100 1000 10000

Reference time: t

FIG. 7. Fit result for the exponent 8 with different values of
the reference time t,.; from the equal-time distribution func-
tion. It demonstrates that the value is very stable within the
considered range of t,ef.

where the error in 7 coming from was taken into
account as above. In an analogous way, one can check
the consistency of our results in a fourth step by making
use of the scaling relation .

While the application of the fit procedure to unequal-
time correlation functions at zero momentum has been
discussed in the main text, here we give some more
details about the application to momentum-dependent
equal-time correlators. The fit routine can be adapted
straightforwardly [12] to study the self-similar behavior
of the distribution function f(¢,p), defined for homoge-
neous and isotropic systems as the spatial Fourier trans-
form of F(t,t,x — x’) given by [I2]. The distribution
function f(t,p) evolves in the universal regime as

ft,p) =t"fs(t"p),

where fs(p) = f(1,p). This scaling form gives us access
to a and 3 separately. In general, the scaling ansatz for
f(t,p) should also include the dependence on the vol-
ume. However, our numerics reveal that this quantity
is rather insensitive to changes of the volume during the
universal regime (see also the inset of Fig. [2). To extract
the central values and errors of the exponents o and S,
one compares curves at different times ¢ with a reference
time t,.; and computes a x2-function in analogy to the
procedure outlined above. In this way, we get

(A14)

8 =0.55+0.02, (A15)
and a = 1.64 4+ 0.16, which is consistent with the results
of Ref. [12]. Fig. |§| shows how curves corresponding to
different times lie on top of each other after rescaling with
these exponents, reflecting the self-similar evolution of
f(t,p). We note that the value of a obtained in this way
is consistent within error bars with . The relatively
large error for o obtained from the momentum-dependent
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FIG. 8. Anomalous dimension 7 as obtained from the relation
B =1/(2 —n) using large-N techniques [I2]. The exponent
B is obtained from the scaling of f(¢,p). The time interval
chosen for the scaling analysis starts with ¢yef.

analysis is related to the form of the distribution function,
whose plateau at small momenta vanishes for long times
(see Fig. [6)).

As discussed in the main text, we can use the large-
N result to relate the anomalous dimension 7 to the
value of 5. For this we vary the value of the reference time
tret for 5123 within [200, 7000] and plot the obtained ex-
ponent in Fig.[7] As one can see, the value of 3 obtained
is rather stable over the whole universal regime. Using
, we plot the corresponding values of the anomalous
dimension 7 in Fig. While the error bars are rather
large, the central value is approximately constant over
the whole range and indicates a deviation from zero.
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